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Abstract

Designing efficient distributed protocols for various agreement tasks such as Byzantine
Agreement, Broadcast, and Committee Election is a fundamental goal with many applications,
including most secure multiparty computation (MPC) protocols. Motivated by modern large-
scale settings, we are interested in scalable protocols for these tasks, where each (honest) party
communicates a number of bits which is sub-linear in n, the number of parties. The state of the
art protocols require each party to send Õ(

√
n) bits1 throughout Õ(1) rounds. Despite significant

efforts, getting protocols with o(
√
n) communication per party has been a major challenge for

several decades.
We propose a new framework for designing efficient agreement protocols. Specifically, we

design Õ(1)-round protocols for all of the above tasks (assuming constant < 1/3 fraction of static
corruptions) with the following guarantees:

• Optimistic complexity: In an honest execution, (honest) parties send only Õ(1) bits.

• Pessimistic complexity: In any other case, (honest) parties send Õ(
√
n) bits.

Thus, all an adversary can gain from deviating from the honest execution is that honest parties
will need to work harder (i.e., transmit more bits) to reach agreement and terminate. We use
our new framework to get a scalable MPC protocol with optimistic and pessimistic complexities.

Technically, we identify a relaxation of Byzantine Agreement (of independent interest) that
allows us to fall-back to a pessimistic execution in a coordinated way by all parties. We implement
this relaxation with Õ(1) communication bits per party and within Õ(1) rounds.
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1 Introduction

Byzantine agreement [PSL80, LSP82] is a fundamental and well-studied abstraction used to illustrate
the problem of designing reliable distributed systems where many parts of it can become unreliable.
In more detail, the task in Byzantine agreement is to allow n parties, each with a private input, to
agree on a single common output that is equal to some party’s input. The challenge is to guarantee
that all honest parties successfully terminate despite the presence of an adversary fully controlling
the behaviour of some fraction of parties. There are few other intimately related agreement tasks
such as Broadcast, Committee Election, and Leader Election (see Section 3.2 for a description of
these abstractions). All of the above are not only interesting on their own right, but they serve
as basic building blocks in many distributed protocols; for example, a broadcast channel underlies
essentially all secure multi-party computation (MPC) protocols [BGW88, GMW87, CCD87].

Motivated by modern “large-scale” settings, we are interested in designing scalable protocols for
all of the above tasks, supporting a very large number of parties. Letting n be the number of parties
involved, a protocol is said to be scalable if the communication complexity of each party is sub-linear
in n, ideally even poly-logarithmic. Despite decades of work and thousands of papers, we still have
no fully compelling solution to any of the above tasks fitting large networks. Specifically, the state
of the art protocols require Õ(

√
n) per-party communication and Õ(1) rounds [KLST11, GK24].

It is a major open problem in this area to construct agreement protocols with full agreement and
Õ(1) per-party communication. This is true even in the model of synchronous communication and
static corruptions that we consider. See Section 1.1 for related work, known barriers, and further
details on known protocols.

Optimistic/pessimistic efficiency. In this work, we propose a new approach to make progress
on the above major open problem by considering “beyond worst-case” complexity of protocols.
Specifically, we consider protocols that could have different complexities, depending on the attacker’s
actions: If the attacker follows the protocol’s specification, then the protocol will terminate with
Õ(1) per-party communication and agreement will be reached. Otherwise, if the adversary deviates
from the prescribed protocol, the protocol will still terminate and agreement will be reached, but it
will require more work per-party. We emphasize that in either case the protocol terminates and full
agreement is reached. Thus, all an adversary can gain from deviating from the honest execution is
that honest parties will need to work harder (i.e., perform additional computation and transmit
more bits) to reach agreement and terminate. We state our main result next.

Theorem 1.1 (Scalable agreement; Informal). There are (computationally efficient) Õ(1)-round
Byzantine Agreement, Committee Election, and Broadcast protocols tolerating 1/3− ϵ fraction of
static corruptions2 for any ϵ > 0 with the following features:

Optimistic Complexity: In an honest execution, each party sends Õ(1) bits.

Pessimistic Complexity: In the worst-case, each honest party sends Õ(
√
n) bits.

The above result is useful in application where an attacker gains nothing from delaying the
protocol’s termination; in such cases, there is no point for it to deviate from the protocol, and
therefore we could achieve better efficiency. We further remark that while we stated above that our
protocols obtain optimistic efficiency (Õ(1) communication overall per party) in honest executions,
in fact, this is the case even if abort is allowed (i.e., an adversary can abort corrupted nodes).

2Static corruptions means that the set of corrupted parties is chosen by the adversary after the protocol is specified
but before an execution begins.
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The above theorem is obtained via instatiating a generic compiler that combines “optimistically
fast” with “pessimistically slow” protocols in a non-trivial way. The “optimistically fast” protocol
is very simple and is based on running an “almost-everywhere” agreement protocol [KSSV06] and
then random polling. The “pessimistically slow” protocol is the one of [GK24]. The main technical
contribution is the way we combine both protocols; see discussion below. First, here is a statement
of our compiler.

Theorem 1.2 (Scalable agreement compiler; Informal). Let X ∈ {ByzantineAgreement,Broadcast,
CommitteeElection} be a task. Assume that there is a protocol Π for X tolerating 1/3− ϵ fraction
of static corruptions for any ϵ > 0. Then, there is another protocol Π′ for X (tolerating 1/3 − ϵ
fraction of static corruptions for any ϵ > 0) with the following features:

Optimistic Complexity: In an honest execution, each party sends Õ(1) bits and the protocol
terminates within Õ(1) rounds.

Pessimistic Complexity: In the worst-case, the communication and round complexities of
Π′ is the same as that of Π plus Õ(1).

Technical highlight: agreement for failures. The main technical building block of the above
theorem is a method for composing an “optimistically fast” protocol with a “pessimistically slow”
one. To this end, we introduce and construct a relaxed variant of an agreement functionality, called
agreement for failures, which we explain next. Recall that in an agreement functionality the goal is
to guarantee that all parties terminate and agree on some specified value. Agreement for failures
relaxes the above by requiring that (1) in an honest execution, if all parties hold 0 (for “success”),
it must be the output, and (2) in any execution if an honest party holds 1 (for “failure”), it must
be the output. With this abstraction, we can identify failure in our “optimistically fast” protocol
and then fallback and execute the “pessimistically slow” protocol. We manage to implement an
agreement for failures protocol with essentially optimal complexity: Õ(1) rounds and Õ(1) per-party
communication.

As mentioned, we use our agreement for failures protocol to obtain a generic framework for
composing efficient optimistic protocols with less efficient pessimistic protocols. Specifically, we
manage to combine an efficient protocol Πlight (solving a given task X) where it is guaranteed that
a failure was noticed by at least one party with a less efficient protocol Πheavy (solving the same
task X) that is executed only if everyone knows that some failure occurred. The complexity of the
combined protocol is inherited from Πlight in an honest execution and from Πheavy in any other case.
We refer to Section 6 for full details.

Application to Scalable MPC. The above agreement tasks can be thought of as special cases
of secure multi-party computation (MPC) [GMW87, BGW88, CCD87]. MPC protocols enable a
set of mutually distrusting parties to compute a function on their private inputs, while guaranteeing
various properties such as correctness, privacy, independence of inputs, and more. Feasibility results
for (non-scalable) MPC have been long known, e.g., the BGW [BGW88] protocol gives a method
for computing an arbitrary function with communication cost that grows multiplicatively with the
circuit size of the function and some polynomial in the number of parties. That is, the communication
complexity of each of the n parties is s · poly(n) when computing a function represented as a circuit
of size s.3 The question of scalable MPC, i.e., protocols where the dominant term in the complexity

3Interestingly, in BGW it was already observed that their protocol has an optimistic/pessimistic flavor where in
the former the polynomial in n is slightly better than in the pessimistic case.
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is just the circuit size, is still an active topic and modern results achieve MPC protocols with strong
security guarantees and communication complexity Õ(s+ poly(n)) (see Section 1.1 for an overview
and references).

We use our scalable agreement protocols to obtain a new generic scalable MPC. The properties
of our new protocol are summarized in the next theorem. Note that for this result we also assume
private channels.

Theorem 1.3 (Scalable MPC; Informal). There is a statistically maliciously secure MPC protocol
tolerating 1/3− ϵ fraction of static corruptions for any ϵ > 0 with the following features. Given a
circuit of size s and depth d over n inputs, the protocol has the following complexity:

Optimistic Complexity: In an honest execution, each party sends Õ(s/n) bits.

Pessimistic Complexity: In the worst-case, each party sends Õ(s/n+
√
n) bits.

Round Complexity: All parties terminate after Õ(d) rounds.

The additive Õ(
√
n) term in the pessimistic complexity bullet comes generically from Theorem 1.2.

At a high level, the above MPC is obtained by using our agreement protocol to generate a quorum:
assign to each party its own representative (small and balanced) committee where there is a strong
majority of honest parties. Then, we distribute the gates of the circuit to these committees. Each
gate is evaluated by its assigned committees using some standard MPC (e.g., BGW). We emphasize
that our protocol has the appealing feature that in an honest execution the total communication
complexity is essentially equal to the circuit size, for any circuit, and it is split in a balanced manner
across parties. This idea largely appeared in the scalable MPC protocol of [DKM+17], where the
main difference is that we obtain optimistic/pessimistic complexity, while they only had pessimistic
complexity, and this is due to the use of Theorem 1.2 instead of the protocol of [KLST11].

1.1 Related Work

Scalable agreement. The BA problem was introduced in the landmark work of Lamport,
Shostak, and Pease [LSP82]. In the following couple of decades, several protocols were presented
(e.g., [DS83, DLS88, CL99]) but they all had quadratic total overhead, that is, every party had to
essentially communicate with every other party. A protocol of [KSSV06] was the first to break the
quadratic barrier, but it had the caveat of almost-everywhere agreement; that is, they only guarantee
that a 1−o(1) fraction of parties agree on the output. Extending their almost-everywhere agreement
to full agreement in a scalable manner and with minimal cost is still an exciting challenge. We
mention some of the key papers addressing this challenge, noting that almost-everywhere agreement
has a long history of research, and it was originally proposed to obtain best-possible guarantees in
sparse networks [DPPU88].

First, [KS09] presented a protocol that satisfies full agreement but it is not balanced. That is,
while most parties do communicate a sublinear amount of bits in n overall, there are few parties
that communicate essentially with everyone. Several follow up works (e.g., [BGH13, ACD+19])
suffer from the same issue. Then, [KLST11] presented a protocol that satisfies full agreement and
it is balanced, but this comes with an extra Õ(

√
n) term in the communication cost. A recent

work [GK24] gave a computationally efficient variant of the protocol of [KLST11].
The extra cost in efficiency is partially explained by an Ω( 3

√
n) lower bound on the communication

complexity of at least one party in any BA protocol with full agreement, due to [HKK08]. This
lower bound, however, applies only to protocols with static filtering. In static filtering, every party
decides on the set of parties it will listen to before the beginning of each round (as a function of its
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internal view at the end of the previous round). The recent work of [GK24] gave a related Ω̃(
√
n)

lower bound on the sum of communication and computational complexities of at least one party in
any Byzantine agreement protocol with static filtering and with full agreement.

Lastly, we mention works of [BCG21, FGK24]. They assume cryptographic and trusted setup
assumptions as well as a polynomial-time adversary. Also, they assume dynamic filtering; namely,
the decision of which message is received can be based on the content of received messages (in their
case, every message is checked if it contains a valid digital signature). With these relaxations of the
model, no lower bound is known. They showed a communication-optimal protocol: only Õ(1) bits
of communication per party are needed to reach full agreement.

We remark that all of the above works, as well as ours, assume near-optimal resilience, i.e., up to
(1/3− ϵ) fraction of corruptions (i.e., near-optimal resilience range). Less than n/3− 1 corruptions
is strictly necessary due to lower bounds of [LSP82, FLM86, Bor96] (unless further assumptions are
made such as a trusted setup or a computationally bounded adversary).

All of the above discussion considers static corruptions. We mention that a work of [KS10]
considers adaptive adversaries and they show a scalable protocol in the hidden-channel model.
Committee-based techniques do not seem to be applicable (because the adversary can corrupt the
committee members adaptively) and so does our framework.

Scalable MPC. There has been a rich line of work on scalable MPC protocols. The main goal is
to design protocols where the total communication complexity scales like O(s+ poly(n)) for securely
computing a size s circuit by n parties. This was studied in the context of perfect or statistical
security and optimal resilience (up to n/3− 1 or n/2− 1 corrupted parties) [HM01, DN07, BH08,
GIP+14, IKP+16, CCXY18, CGH+18], or with perfect or statistical security and near-optimal
resilience (up to (1/3− ϵ) or (1/2− ϵ) fraction of corrupted parties) [DI06, IPS09, DIK+08, DIK10].
In all of these works a broadcast channel is assumed but its usage is limited to a number of times
which is independent of the circuit size. All of these works obtain somewhat stronger notions of
security than what we obtain in Theorem 1.3 (e.g., they often tolerate adaptive corruptions while
we handle only static ones). Note that we can use our broadcast protocol from Theorem 1.2 to
instantiate the broadcast channel in the above works, achieving statistical security for (1/3 − ϵ)
fraction of static corruptions.

Most related to us are the works [DKMS12, DKM+17]. In these works the authors used the full
agreement protocol of [KLST11] to get a scalable MPC with complexity Õ(s/n+

√
n) to compute a

size s circuit by n parties, per party. The corruption model is (1/3− ϵ) fraction static corruptions,
same as ours. Our MPC prootcol is very similar to theirs (associating the wires of the circuit to
quorum members); but, our description is somewhat simpler because we use generic maliciously
secure MPC as black-box whereas they sometime use internal building blocks such as verifiable
secret sharing. The optimistic/pessimistic aspect is new to our work. Lastly, we mention the work
of [DKMS14] who studied scalable MPC protocols in an asynchronous setting.

2 Technical Overview

In this section we give a high level overview of our protocols. We start by explaining the ideas
underlying Theorems 1.1 and 1.2, i.e., the agreement protocols with optimistic/pessimistic efficiency
features. We then continue to explain our framework for composing general optimistic and pessimistic
protocols, and finally, we explain our application for secure multiparty computation, Theorem 1.3.
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2.1 Optimistic/Pessimistic Agreement

At a very high level, the challenge of composing an optimistic protocol with a pessimistic one is
that once fall-back to the pessimistic protocol is needed, all parties need to be aware of this and
proceed in a coordinated fashion. If the optimistic protocol has a “global failure detection” property,
guaranteeing that all honest parties know that the optimistic protocol failed, then we can directly
execute the pessimistic protocol, if needed.

Our main observation is that a “local failure detection” property is sufficient. In local failure
detection, we require (only) that there exists an honest party that notices that a failure occurred.
However, given a “local failure detection” property getting a “global failure detection” property is
by itself already some form of an agreement, which is exactly the problem we are trying to solve.
Our main observation is that a “local to global failure detection” protocol does not have to reach
agreement(!), but rather it only has to satisfy a “global failure detection” property, i.e., it must
have the property that if agreement is not reached, then all honest parties know about it. This
observation allows up to implement an efficient “local to global failure detection” protocol. Next,
we explain the above in more detail and show how to achieve this property in the context of scalable
agreement protocols.

Local to global failure detection. Recall that in an agreement protocol, abstractly, the goal is
for all honest parties to terminate and agree on some value. Specifically, we will consider the task of
agreeing on a long enough string with high enough min-entropy4—this will be sufficient to obtain
all of our applications, including Byzantine Agreement, Broadcast, and Committee Election.

Our starting point is the almost-everywhere agreement protocol of [KSSV06]. In their protocol,
the above task is met by almost all parties. That is, after poly-logarithmically many rounds of
communication, a poly-logarithmically long random string str with poly-logarithmic min-entropy is
known to 1− o(1) fraction of parties. The goal is to “boost” the knowledge of this string to all other
honest parties as well. At this point, a naive attempt would be to let every party poll sufficiently
many random parties and ask for their str value. Then, each party will decide on a string that it
obtained from more than 1/2 of the polled parties. By a simple application of Chernoff’s bound, it
suffices to poll independently poly-logarithmically many random parties.

This solution, however, is flawed because an adversary can easily prevent an honest party from
learning the right value. Specifically, assume that honest party P that does not know str polled
parties P1, . . . , Pℓ. The adversary can flood all parties in P1, . . . , Pℓ and thereby prevent them from
replying to P .5 In such case, P will not learn str. At this point, previous works [KLST11, GK24]
suggested various techniques limiting the adversary’s ability to perform such flooding attacks, but
this came with a significant cost in efficiency, requiring Θ̃(

√
n) communication.

We deviate from all of these previous works by making the following critical observation: While
the flooding attack does prevent P from learning str, it does provide P (and some of its poll list
members) with important knowledge: they were attacked! At this point we would have been happy
to merely fall-back to one of the known agreement protocols (such as [GK24] itself) and pay the
extra cost in efficiency. But, we are in a state of inconsistency: some of the parties know str and
think they are done while others do not know str and want to fall back to a heavy protocol.

4The min-entropy of a random variable is the negative logarithm of the probability of the most likely outcome. We
say that the min-entropy is high enough if the probability of the most likely outcome is negl(n).

5Flooding attacks (or “denial of service”) are a threat because we put a constraint on the honest parties’
communication complexity. Specifically, the adversary (controlling a constant fraction of parties) can send a poll
request (in the name of each controlled party) to every honest party. Since the honest nodes need to reply to all of
these poll requests, then (if per-party communication is limited to o(n) bits) there is no budget to reply to any honest
poll requests.
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It may seem, at first sight, that we have not gained much because we are again in a situation
where some of the parties are not aware of the right state of the protocol and so we many need to
perform some heavy agreement protocol. But, a closer look reveals that we have actually made a
lot of progress:

1. A party that did not know str after the almost-everywhere agreement now knows str or knows
the polling phase failed.

2. If the polling phase failed for at least one party, there must exist at least one party that did
know str and learned that the protocol failed.6

Our goal now is to propagate the knowledge of failure to everyone so that everyone can consistently
fall back to a heavy agreement protocol. This task is much simpler than agreeing on str to begin
with because (a) all the parties that know that the protocol failed already know what to output and
so we do not need to deal with them, and (b) all other parties necessarily agree on str. Thus, we
remain with the following simpler task: parties need to perform agreement given a shared sufficiently
long high min-entropy string str. The solution to this problem is quite standard and we explain it
next.

Semi-random string to a quorum. A “good” quorum is a collection of well-balanced “good”
committees, one per party. A “good” committee is a collection of c = polylog(n) parties where
at least 2/3 of them are honest. A good quorum consists of n such good committees, one per
party, and where every single party participates in polylog(n) committees. By a Chernoff bound, a
uniformly random collection of n small subsets of parties will be a good quorum, but we do not
have a uniformly random shared string. Here, we use a lemma of [GK24] saying that one can turn
a semi-random string to a good quorum. Note that, since every committee contains an honest
majority, the committees can be viewed as honestly-behaving parties so we need not worry about
Byzantine behavior.

Given a quorum, it is straight-forward how to make sure that if one of the parties has a Fail
input, then all parties will know it. The party that holds Fail will broadcast (using an arbitrary
polynomial-time protocol, e.g., [DS83]) it to its committee and then the committees will propagate
this in a tree-like fashion and inform all other committees of this. Finally, each committee will send
the Fail symbol to its party.

Applications. Once we obtain a quorum, we can get many applications in a straight-forward
way, similarly to how we disseminated the Fail symbol. For example, performing broadcast can be
done by the following simple protocol: the broadcaster sends its message to its committee and then
the committee broadcasts this value in a tree-like fashion among all other committees; the latter
send this value to their respective parties. (By saying that a committee sends or receives a value,
we mean that more than 2/3 of the parties in the committee send or receive it.) Similar protocols
can be described for Byzantine Agreement and Committee Election; see Section 7 for details.

2.2 A Best-Possible Optimistic/Pessimistic Framework

We generalize the above idea and present a general-purpose framework for building protocols with
an optimistic/pessimistic complexity. Specifically, consider a protocol Πlight with the following

6The claim is obvious for parties that know str and detect a failure (e.g., because their poll fails or because they
are flooded). Otherwise, if the poll of a party that knows str fails, then (w.h.p) at least one honest party that knows
str does not respond to its poll request (recall that we are guaranteed that most parties know str). The latter honest
party must have been flooded! So, we are back to the case that an honest party knows str and detects a failure.
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properties:

• In an honest execution, it achieves some goal.

• In any other case, at least one party knows that something went wrong (but privacy, if
considered, was not broken).

Additionally, we have a protocol Πheavy that achieves the same goal, no matter what the adversary
does.

We would like to combine these two protocol to a single protocol where we first run Πlight and
then, if something goes wrong, run Πheavy. Unfortunately, this is tricky since the state of all parties
at the end of Πlight may not be consistent: not all parties know that something went wrong. Thus,
we use the idea from above (the optimistic/pessimistic agreement) to propagate the knowledge
about the occurrence of a failure. Our combined protocol has the following structure:

1. Run Πlight. Each party has an output yi and a symbol oi ∈ {Fail,Success}.

2. Generate a quorum, as explained in Section 2.1. If this phase fails, each party that detects
failure sets its oi to Fail.

3. In a tree-like fashion, via the quorum committees, compute o which is an indicator for whether
there exists a party Pi with oi = Fail. Note that, only parties that know the right quorum
description will learn the right value of o.

4. For each party Pi, if oi = Fail or o = Fail, participate in Πheavy; Otherwise, output yi.

Observe that in an honest execution, Πheavy will never be invoked and so the complexity of the
protocol is similar to the complexity of Πlight plus Õ(1) (the complexity of ByzantineAgree-
mentForFailures). If a failure is detected, either during Πlight or during ByzantineAgree-
mentForFailures, Πheavy is invoked and its complexity dominates. Refer to Section 6 for the
precise statement and full details.

2.3 Secure MPC

The idea to obtain an MPC protocol is simple given the quorum structure we obtained above.
Following [DKM+17], once we have a good quorum, we associate each wire to some committee, in a
balanced way (i.e., if there are s wires, each committee is in charge of ≈ s/n wires). We compute the
circuit gate by gate, basically by relying on some known perfectly secure MPC to compute each gate
and provide input for the next gate. Notice that no committee member holds the wire, but instead
they have it in a secret shared fashion, and so when we process a gate, we first reconstruct the input
wires, and at the end share the outputs to the appropriate committee members. All of these details
are taken care of by a generic MPC, such as the one of BGW [BGW88]. Since each committee has
a strong majority of honest parties and since each committee consists of poly-logarithmically many
parties, this MPC costs Õ(1) communication and rounds.

3 The Model and Problem Definitions

3.1 The Model

Communication model. We consider n parties in a fully connected network (i.e., clique). Each
party has a unique ID and the IDs are common knowledge. We assume the IDs are 1, . . . , n. Parties
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can perform arbitrary computation and they have a source of private randomness. Communication
is authenticated, that is, whenever a party sends a message directly to another, the identity of the
sender is known to the recipient. We assume synchronous communication. That is, communication
proceeds in rounds; messages are all sent out at the same time at the start of the round, and then
received at the same time at the end of the same round. All parties have synchronized clocks.

We also care about the computational and storage complexity of each party in the protocol. Note
that an adversary can always blow up the storage and computational complexity of a protocol by
flooding honest parties with many bogus messages. It is therefore standard to count only messages
that are actually processed by honest parties. We follow the modelling of Boyle et al. [BCDH18],
who formalized this intuition. Namely, message receival consists of two phases:

1. filtering phase: incoming messages are inspected according to specific filtering rules defined
by the protocol specification, and some messages may be discarded.

2. storage and processing phase: each party computes its next-message function based on
the remaining non-discarded messages.

Note that the space and computational complexity of a party are only computed as a function
of the messages that were not discarded during the filtering phase.

Adversarial model (point-to-point full information). We assume that there is an adversary
that controls up to t parties and whose goal is to cause the protocol to fail in some way, depending
on the context. The adversary chooses which parties to control non-adaptively, i.e., it chooses the
set of corrupted parties at the start of the protocol. The adversary is malicious: corrupted parties
can engage in any kind of deviations from the protocol and send arbitrary messages in the name of
the corrupted parties. We emphasize that corrupted parties can send arbitrarily long messages to
arbitrary other parties. We assume that the adversary is rushing, that is, it can view all messages
sent by the honest parties in a round before the corrupted parties send their messages in the same
round. Moreover, the adversary sees all messages, even messages sent between two honest parties
(but honest parties only see messages that are sent directly to them). This model is known as the
point-to-point full information model [KSSV06].

3.2 Problem Definitions

Byzantine agreement. In this problem, there are n parties, P1, . . . , Pn. At most t of the parties
may be corrupted. Each party Pi begins with an input bit xi ∈ {0, 1} and outputs a bit yi. The goal
of the protocol is (with high probability) for all honest parties to terminate and, upon termination,
agree on a bit held by at least one honest party at the start. This should hold even when the t
corrupted parties collude and actively try to prevent it. More precisely, the Byzantine agreement
problem is defined as a protocol that satisfies with high probability the following agreement, validity,
and termination properties:

• Agreement: For every pair of honest parties Pi and Pj it holds that yi = yj .

• Validity: If there exists a bit x such that for every honest party Pi it holds that xi = x, then
the common output is x.

• Termination: Every honest party eventually outputs a bit.
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Other distributed tasks. There are few other intimately related basic distributed functionalities.
The first is committee election and the second is broadcast. In committee election, the goal is to
bring all honest parties to agree on a small subset of parties with a fraction of corrupted parties
close to the fraction in the whole set. In the extreme case, the committee is of size 1 in which case a
single leader is chosen (i.e., leader election) and the goal is to guarantee that the leader is an honest
party with constant probability (since the fraction of honest parties in the whole input is constant).
In broadcast, the goal is to allow an honest party to communicate a message to all other parties so
that the message that all other honest parties end up knowing is the same as the one sent.

4 Preliminaries

A function negl:N → R+ is negligible if for every constant c > 0 there exists an integer Nc such
that negl(n) < n−c for all n > Nc. The statistical distance between two random variables X
and Y over a finite domain Ω is defined by SD(X,Y ) ≜ 1

2 ·
∑

x∈Ω |Pr[X = x]− Pr[Y = x]|. Two
sequences of random variables X = {Xn}n∈N and Y = {Yn}n∈N are statistically close (or statistically
indistinguishable) if there exists a negligible function negl(·) for which SD(Xn, Yn) ≤ negl(n) for all
n ∈ N. For an integer n ∈ N we denote by [n] the set {1, . . . , n}.

4.1 Secure Computation

We consider execution of distributed protocols in adversarial environments. All of our protocols
assume n parties denoted P1, . . . , Pn.

Definition 4.1 (View). Given a protocol Π, an input x⃗, and party Pi, we let viewΠ
i (x⃗) be a random

variable corresponding to the information seen by Pi throughout an execution of Π. This consists
of (xi, ri,mi1 , . . . ,mik), where xi is Pi’s private input, ri is its internal coin tosses, and mij is the
jth message that was received by Pi in the protocol execution. For a subset of parties B, we denote
viewΠ

B(x⃗) = ∪i∈BviewΠ
i (x⃗).

Attacker classes. A class of adversaries that is often studied is adversaries that can abort. Such
adversaries can deviate from the protocol specification only in a limited way, as follows. At any
point during the execution of the protocol, the adversary can cause a corrupted party to abort.
After a party aborts, it cannot perform any computation nor send or receive messages.

Definition 4.2 (Aborting adversary). An adversary is an aborting adversary7 if every message
that is sent by a corrupt party is computed by following the protocol’s specification (as if it were
semi-honest), except that the adversary can dynamically cause a corrupted party to abort. Let AAbort

denote this class of adversaries.

Next, we consider malicious adversaries that can follow an arbitrary strategy in order to carry
out their attack.

Definition 4.3 (Malicious adversary). An adversary is malicious if it follows an arbitrary strategy,
arbitrarily deviating from the protocol. Let AAll denote this class of adversaries.

It follows immediately from the definitions above that

AAbort ⊆ AAll.

7Also known as an adversary that can cause crash failures.
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We shall only consider static corruptions in this work. Namely, the set of corrupted parties will
be chosen by the adversary after the protocol is specified but before an execution begins. Also, the
adversary will be allowed to control some constant fraction of the parties, typically, 1/3− ϵ for any
ϵ > 0. Thus, we introduce the notation A static

α for the family of adversaries that statically corrupt
up to α− ϵ fraction of parties for any positive constant ϵ. Lastly, we emphasize that in all of the
above definitions, we do not limit the computational power of the adversary in any way.

Security definition. Next, we provide a security definition that will be used throughout this
work. We follow the real-ideal paradigm [Can00, Can01, Gol04] that is helpful in modularizing our
proofs. Concretely, this method allows us to transition to a hybrid model where some of the building
blocks are implemented using ideal functionalities. Since all of our simulators will be simple enough
(so called “straight-line”) we will be able to automatically apply standard composition theorems.

The real-world execution: In the real-world execution, the protocol Π is carried out among n
parties, where some subset C of parties is controlled by the adversary A. We shall also assume that
the execution is performed in the presence of some auxiliary input aux known to A; this is important
for composition. Then, we let real-world execution consist of the view of the adversary and the
output of the honest parties. That is, for an input x⃗ = (x1, . . . , xn) and auxiliary information aux,
let realΠA(x⃗, aux) =

(
viewΠ

C (x⃗), {yi}i∈[n]\C
)
, where yi is Pi’s output.

The ideal-world execution:The ideal-world execution is augmented with a “trusted party” con-
stituting a general algorithmic entity called an ideal functionality and denoted F . The ideal
functionality, which is modeled as another machine, repeatedly receives inputs from the parties and
provides them with appropriate output values, while maintaining local state in between. To this end,
we define an experiment involving an imaginary adversary S (often called the simulator) that knows
A and can interact with F . The experiment’s output, given input x⃗ = (x1, . . . , xn) and auxiliary
information aux, is denoted idealFS,A(x⃗, aux) and is defined as follows. Note that we consider only
static corruptions.

1. Initialization: S chooses C ⊂ [n], the corrupted parties. S receives {xi}i∈C and aux.

2. Evaluation: F receives C and {xi}i∈[n]\C and then interacts with S. At the end of the
interaction, S knows {yi}i∈C and F outputs {yi}i∈[n].

3. Output: S computes {viewi}i∈C (based on everything that it knows) and the output of the
experiment is ({viewi}i∈C , {yi}i∈[n]\C).

The following definition says that a protocol is considered secure with respect to a functionality
and a class of adversaries if it is possible to come up with a simulator that causes the above two
worlds to be indistinguishable.

Definition 4.4. We say that a protocol Π realizes functionality F against adversaries family A , if
for every A ∈ A there exists a simulator S such that for every input x⃗ and every aux ∈ {0, 1}∗, it
holds that realΠA(x⃗, aux) is statistically indistinguishable from idealFS,A(x⃗, aux).

If the statistical distance between realΠA(x⃗, aux) and idealFS,A(x⃗, aux) is zero, we say that the
protocol Π is perfectly secure.

4.2 (Attacker-Dependent) Complexity Measures of Protocols

Given a protocol Π, consider some abstract complexity measure for Π, denoted complexity(·). For
concreteness, assume complexity stands for communication complexity, denoted also cc, but it
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could be anything else like round complexity, denoted rc, or computational complexity. Typically,
complexity(·) of a protocol is defined as the maximal total communication (of honest parties) in Π,
over all possible executions, in the presence of an arbitrary adversary. However, we want to be more
fine grained.

Definition 4.5 (Complexity). Given a protocol Π, an adversary A ∈ AAll, and randomness r, we
define complexity(Π,A, i, r) as the number of bits sent by party i throughout the execution of Π in
the presence of A and randomness r.

The standard definition of the complexity of the ith party in Π is then the worst-case over all
possible adversaries and randomnesses. Namely,

complexity(Π, i) = max
r,A
{complexity(Π,A, i, r)} .

For the complexity of the protocol Π, we sum up the complexities of individual parties (worst-case
over all possible adversaries and randomnesses).

complexity(Π) = max
r,A

{
n∑

i=1

complexity(Π,A, i, r)

}
.

We can now define the notion of balanced protocols.

Definition 4.6 (Balanced protocol). A protocol Π is said to be balanced if

cc(Π)

maxi∈[n] {cc(Π, i)}
∈ Θ̃(n).

Adversary-dependent complexity. It is useful to adapt the above definitions with respect to a
particular sub-class of attackers. For A ⊆ AAll, define

complexity(Π,A , i) = max
r,A∈A

{complexity(Π,A, i, r)}

and analogously,

complexity(Π,A ) = max
r,A∈A

{
n∑

i=1

complexity(Π,A, i, r)

}
.

In words, we restrict the possible set of actions the adversary can do, and then measure how
expensive the protocol is if such an adversary is present. Note that if A = AAll, then the above
definition coincides with the general (worst-case over all adversaries) definition above. That is,
complexity(Π,AAll, i) = complexity(Π, i) for every i ∈ [n] and complexity(Π,AAll) = complexity(Π).

5 Propagating Failure Detection

In this section, we show how to propagate the knowledge that a failure occurred during the execution
of a protocol from a single party to everyone. Of course this task can be easily achieved by using a
generic broadcast protocol or some variant of Byzantine Agreement, but this is expensive in terms
of communication and we would like to do it more efficiently. First, we explain the task at hand by
defining the functionalities we want to achieve formally. Then, we will show how to implement our
transformation efficiently.
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5.1 Failure Detection Functionalities

Generically, the behavior of a functionality in case some of the adversarial parties deviate from
the protocol’s specification in an evident way (say by completely aborting), depends on the exact
specification of the functionality. For us, we need to be more precise and we do so next.

We consider attackers that cheat and some honest party notices that something went wrong,
and how it affects the outcome of the protocol. Specifically, we define two variants (or wrappers)
of a given functionality F . The first variant, denoted FgFD (where gFD stands for global failure
detection), says that if some party noticed that something went wrong during an execution, then
every honest party should know about this. The second variant, denoted F lFD (where lFD stands
for local failure detection), says that at least one honest party should end up being aware that the
protocol did not execute honestly. In this case, we have no guarantee or requirement about the
output of all other parties.

It is worth pointing out that a priori it seems much easier to satisfy local failure detection. This
is true because going from local failure detection to global failure detection requires some form of
broadcast or agreement which are very close to the problem we are to solve in the first place.

We formalize both variants (FgFD first and then F lFD) as wrappers of a given functionality F .
In the above, the simulator S has to identify which parties notice that something went wrong during
the execution and inform the functionality. The latter will either set the output of all honest parties
to Fail or just a single party that notices, respectively.

Functionality 1: FgFD

1. S and FgFD interact according to F . At the end, FgFD knows y⃗ = (y1, . . . , yn).

2. S submits Fail or Success.

3. If S submitted Success, then output y⃗.

4. If S submitted Fail, output (Fail, . . . ,Fail).

Functionality 2: F lFD

1. S and F lFD interact according to F . At the end, F lFD knows y⃗ = (y1, . . . , yn).

2. S submits Fail or Success.

3. If S submitted Success, then output y⃗.

4. If S submitted Fail, then S specifies a vector (y′1, . . . , y
′
n), where at least one y′i

corresponding to an honest party is equal to Fail. Output (y′1, . . . , y
′
n).

Relation between F , FgFD, and F lFD. A simulator S for F directly implies a simulator SgFD

for FgFD. Indeed, notice that SgFD can merely submit Success in step 2 and output the output of
the interaction between S and F . By similar logic, a simulator SgFD for FgFD directly implies a
simulator S lFD for F lFD. In other words, it is easiest to realize the functionality F lFD, harder to
realize the functionality FgFD, and hardest to realize the functionality F .
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5.2 Propagating Knowledge of Failures

We show a method for propagating knowledge of failures from a single party to all of them.
Specifically, we translate protocols that realize local failure detection to ones that realize global
failure detection. Recall that it is only interesting to consider the above task if we insist on preserving
some other non-trivial property of the protocol. Indeed, if we only care about realizing FgFD for
some functionality F , then it is trivial: all parties will just output Fail. So, naturally, we will require
the propagation procedure to preserve the fact that the protocol realizes F . Details follow.

We start off with a protocol Π that realizes a functionality F against a class of attackers A .
Further Π realizes F lFD against A ∗, where A ⊂ A ∗. Thus, it is immediate that Π realizes FgFD

against A . Our next theorem shows that it is possible to transform Π into Π′ that realizes FgFD

against A ∗ (which contains A and therefore this task is non-trivial); at the same time, we preserve
the fact that Π′ realizes F against A . The transformation costs only an additive poly-logarithmic
term in n overhead in rounds and communication complexity (per party).

Theorem 5.1. Consider a protocol Π and a functionality F . Further, consider two attacker classes
A ∗ ⊆ A static

1/3 and A ⊆ AAbort ∩ A ∗. Assume that Π realizes F against A and realizes F lFD

against A ∗.
Then, there is a protocol Π′ that realizes F against A and realizes FgFD against A ∗. Further-

more, rc(Π′) = rc(Π) + polylog(n), and for every party i, cc(Π′, i) = cc(Π, i) + polylog(n).

At a very high level, we obtain Theorem 5.1 by designing a new type of Byzantine Agreement
abstraction. This abstraction, referred to as ByzantineAgreementForFailures, still requires
agreement among all honest parties, like standard BA. The main difference is that we require that
if some honest party has the input Fail, then all honest parties will agree on Fail. If all parties hold
Success and the adversary behaves somewhat honestly, then everyone will agree on Success. Using
the ByzantineAgreementForFailures protocol, we can first run a protocol with local failure
detection (as guaranteed in Theorem 5.1), and then “boost” the knowledge of failure of any party.
In the resulting protocol, either everyone gets the needed output or everyone agrees that something
went wrong.

5.3 Byzantine Agreement for Failures

First, we introduce a strong variant of Byzantine Agreement that we refer to as Biased Byzantine
Agreement, since this variant is stronger, it must satisfy the Agreement, Validity, and Termination
properties, but in addition there is a Bias property, meaning that, if there exists an honest party
with input bit 1, then it must be the output.

In this section we implement a protocol that solves the “Biased Byzantine Agreement” problem
and is secure against adversary A ∈ AAbort, where for any other adversary it achieves the global
failure detection property (i.e., if the protocol fails, all honest parties detect it and output the
special symbol Fail). Associating Fail with 1 and Success with 0, our protocol (referred to as
ByzantineAgreementForFailures) achieves the following properties:

• Agreement: For all honest parties the output is same.

• Termination: After fixed time (in n), each party must hold an output.

• Failure Detection: If an honest party Pi has xi = Fail, then the agreed value is Fail.

• Fairness: For all adversaries in AAbort (see Definition 4.2), if all parties’ inputs are Success
(includes corrupted parties), then all parties output Success.
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We do not require or provide any guarantee as to what the agreed value should be if (say) the
adversary is outside AAbort and all the inputs (of honest parties) are Success. This relaxation allows
us to implement our protocol much more efficiently than full BA.

The protocol. Our protocol relies on the existence of a good quorum. A committee is said to be
good if it contains polylog(n) many parties and more than 2/3 of them are good. A good quorum
is a set of n good committees where additionally each party appears in roughly the same number
of committees as any other party. In the next theorem we argue that there are efficient ways to
come up with a quorum. Put another way, we use a pseudorandom object that takes a sufficiently
random short string as input, and efficiently outputs many sufficiently-random good committees.
Such a construction is given in [GK24, Theorem 4].

Theorem 5.2 (Quorum generation [GK24]). For every integer n ∈ N, c = c(n) ∈ Ω(log2 n), there
exist a d = O(c · log n) and an efficiently computable mapping H: [n]× [nc]→ [n]d such that, viewing
each H(i, x) as outputting a multiset of [n] of size d, the following holds. For every B ⊆ [n], for at
least 1− negl(n) fraction of the x’s from [nc], it holds that

1. For every i ∈ [n], H(i, x) contains at most |B|/n+ o(1) fraction of parties from B.

2. Define H−1(j, x) = {i | j ∈ H(i, x)}. Then, for every j ∈ [n], |H−1(j, x)|∈ O(d). H−1 is also
efficiently computable.

The above theorem allows us, at a high level, to turn a sufficiently high (min-) entropy source
to a good quorum (with high probability). We now proceed with the description of the protocol.
Below, we associate Fail with 1 and Success with 0 so that Boolean operations (such as logical OR,
denoted ∨) are well defined.

The ByzantineAgreementForFailures Protocol

• Setup Phase: Each party Pi set yi ← xi.

• Almost-Everywhere Agreement Phase: All parties run together the almost-everywhere
Byzantine agreement protocol of [KSSV06].8 At the end, each party Pi holds a string stri of
size Θ(log3 n).

• Agreement Phase:

1. Each party Pi samples a set of log2 n parties (denoted Si), and sends them “ping”.
Filtering: Each party accepts at most 2 · log2 n “ping”s.

2. For each party Pj : if it received fewer than 2 · log2 n “ping”s, Pj answers with strj ; else,
Pj sets yj ← Fail.
Filtering: Pi accepts messages with size at most log4 n, only from parties in Si.

3. For each party Pi: if there is a string str∗ that was received more than |Si|/2 times, Pi

sets stri ← str∗; else, Pi sets yi ← Fail.

• Distribution Phase: This phase uses the quorum generation functions H,H−1 from
Theorem 5.2.

8The original almost-everywhere protocol provided by King et al. [KSSV06] is described as a leader election
protocol. However, a simple modification gives an almost-everywhere agreement protocol where the output of all but
o(1)-fraction of parties is a poly-logarithmically long string with poly-logarithmic min-entropy.
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1. For each party Pi, if yi = Fail, Pi sends “ping” to H(i, stri).
Filtering: Pj accepts messages of |“ping”| bit size, only from parties in H−1(j, strj).

2. For each committee Qi, if “ping” is received, then each party in the committee sets
yj ← Fail, else yj ← Success.

3. The committees compute the logical OR of the yi values: all committees communicate
their values upstream in a (depth O(log n)) tree-like manner, calculating a logical OR
along the way, and then broadcast the results in reverse order. (The exact pseudocode is
given in Appendix A as the Distribute protocol.)

4. Each party Pj sends xi to each party in H−1(j, strj).
Filtering: Pi accepts messages of 1 bit size, only from parties in H(i, stri).

• Output Phase: If there is x∗ that was received more than |H(i, stri)|/2 times, then Pi sets
x← x∗; else, Pi sets x← Success. After that, Pi outputs yi ∨ x.

Lemma 5.3. Consider an adversary A ∈ A static
1/3 corrupting a set of parties C. At the end of the

ByzantineAgreementForFailures protocol, with probability 1− negl(n), it holds that:

1. Agreement: All honest parties output the same value.

2. Failure Detection: If
∨

j∈[n]\C xj = Fail, then the output is Fail.

3. Fairness: If A ∈ AAbort and
∧

j∈[n] xj = Success, then the output is Success.

Efficiency. We analyze the round and communication complexity of each party in the above
protocol and argue that both of them are bounded by some polylog(n). First, the almost-everywhere
agreement phase requires polylog(n) rounds and each party sends and receives polylog(n) bits. Now,
we analyze the remaining phases separately. The agreement phase consists of two communication
rounds. In the first, each party sends O(log2 n) bits and receives at most O(log2 n) bits. In the
second, each party sends O(log6 n) bits and receives at most log6 n bits. The distribution phase
consists of 3 communication phases. The first requires each party to send O(log5 n) bits and receive
at most O(log5 n) bits. The Distribute sub-protocol (see Appendix A) requires O(log n) rounds,
and each party sends and receives O(log10 n) bits within each round. In the last round, each
party sends O(log5 n) bits and receives at most log5 n bits. Overall, the total number of rounds is
polylog(n) and the total communication is also polylog(n), per party, as needed.

Correctness. Next, we prove that the protocol satisfies all the claimed properties (Lemma 5.3).
First, we prove that after the agreement phase every honest party gained some knowledge in the
following sense: either it knows the “correct” string that defines the quorum (denoted str), or it
knows that something went wrong.

Claim 5.4. Assume that for at least 1 − o(1) fraction of honest parties stri = str. For every
adversary A ∈ A static

1/3 , at the end of the Agreement Phase, with probability 1−negl(n), for all honest

parties {Pi}i∈[n]\C, either stri = str or yi = Fail.

Proof. By Step 3 of the protocol, the conclusion could be wrong only if more than half of the
parties in some Si hold str∗ ̸= str. Recall that each Si is chosen uniformly at random. Let
µ = (2/3 + ϵ) · log2 n, and let δ = 1/

√
(2/3 + ϵ) · log log n. Thus, for every i ∈ [n] \ C, by a Chernoff

bound, with probability 1 − e−δ2µ/2 = 1 − e− log2 n/2 log logn = 1 − negl(n), the fraction of honest
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parties in Si is at least 2/3+ϵ−o(1). So, by the assumption, at least (1−o(1)) ·(2/3+ϵ−o(1)) > 1/2
fraction of honest parties in Si holds str. By a union bound, the above holds for all i’s simultaneously
with probability 1− negl(n).

Next, we prove that if there is an honest party for which stri = str but yi = Fail, then all honest
parties that know str will necessarily also output Fail.

Claim 5.5. Assume that for at least 1 − o(1) fraction of honest parties stri = str and that the
min-entropy of str is Ω(log2 n). For every adversary A ∈ A static

1/3 , if at the end of the Agreement
Phase there is an honest party Pi with stri = str and yi = Fail, then at the end of ByzantineA-
greementForFailures, with probability 1− negl(n), every honest party with stri = str will output
yi = Fail.

Proof. By Theorem 5.2, with probability 1 − negl(n) over str, each committee in the resulting
quorum has at least 2/3 fraction of honest parties. This means that with probability 1− negl(n),
the fraction of honest parties in each committee with stri = str is 2/3− o(1) > 1/2. Therefore, the
prerequisite for the Distribute sub-protocol (see Appendix A) is satisfied and it results with every
honest party setting yi = Fail.

We remain with the case where after the Agreement Phase only parties without knowledge of
str have y = Fail. However, as we show next, such a scenario is unlikely to occur.

Claim 5.6. Assume that for at least 1 − o(1) fraction of honest parties stri = str. For every
adversary A ∈ A static

1/3 , at the end of the Agreement Phase, if there is an honest party Pi with

yi = Fail, then with probability 1− negl(n), there is an honest party Pj with strj = str and yj = Fail.

Proof. If for Pi it holds that stri = str, we are done (as we can use j = i). So, assume that stri ̸= str
at the end of the Agreement Phase. As we argued in the proof of Claim 5.4, with probability
1− negl(n), this scenario can occur only if there is at least one honest party Pj ∈ Si with strj = str
that does not send a message to Pi in Step 2. From the way the protocol works, in this case, Pj

sets yj ← Fail, as needed.

Now, we show that an adversary that is semi-honest with drops cannot force an honest party to
not learn str.

Claim 5.7. Assume that for at least 1 − o(1) fraction of honest parties stri = str. For every
adversary A ∈ AAbort ∩ A static

1/3 , at the end of the Agreement Phase, with probability 1 − negl(n),
each honest party Pi holds stri = str and yi = xi.

Proof. As in the proof of Claim 5.6, for an honest party Pi, stri ̸= str only if there is at least one
honest party Pj ∈ Si that did not answer to Pi at Step 2. From the protocol description, the latter
is possible only if Pj receives 2 · log2 n “pings”. However, A is semi-honest with drops meaning that
it has to follow the protocol except it can decide to drop some of its outgoing messages. So, by a
Chernoff bound, too many “pings” arrive to Pj only with probability 1−e−(2/3+ϵ)·log2 n = 1−negl(n),
and from a union bound, too many “pings” arrive to some honest party in Si with probability
1− negl(n). Finally, in Step 2 and Step 3 each honest party will never set y ← Fail.

Finally, we are ready to combine all the above claims to prove Lemma 5.3.

of Lemma 5.3. From the correctness of the almost-everywhere agreement protocol, after the Almost-
Everywhere Agreement Phase at least 1− o(1) fraction of honest parties holds stri = str, where the
min-entropy of str is Θ(log2 n). Let K be the set of honest parties that do not know str after the
Agreement Phase, that is, K ≡ {Pi | Pi ∈ [n] \ C ∧ stri ̸= str} at the end of the Agreement Phase.
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• If K = ∅:

1. Agreement: By Claim 5.5, w.h.p (1−negl(n)) for each honest party Pi, yi ←
∨

j∈[n]\C yj .

2. Failure Detection: From the protocol description, if xi = Fail, then at every step
yi = Fail. So, if

∨
j∈[n]\C xj = Fail, then also

∨
j∈[n]\C yj = Fail.

3. Fairness: If A ∈ AAbort and
∧

j∈[n] xj = Success, then by Claim 5.7 w.h.p at the start of
the Distribution Phase, for each party Pi, yi = Success, and therefore nobody will send
“ping” at Step 1. So, at the end, each honest party will output Success.

• If K ̸= ∅:

1. Agreement: By Claim 5.4, w.h.p it follows that each party in K will output Fail. By
Claim 5.6, w.h.p it follows that there is a party Pj ∈ [n] \ (C ∪K) with yj = Fail, so from
Claim 5.5 w.h.p it follows that each party in [n] \ (C ∪K) will output Fail.

2. Failure Detection: The output of all parties is Fail by correctness of the Distribution
sub-protocol.

3. Fairness: By Claim 5.7, w.h.p for each honest party Pi, stri = str which mean that
Pi /∈ K, and so K = ∅. This is a contradiction to K ̸= ∅, which can only happen if
A /∈ AAbort which is again a contradiction.

5.4 Proof of Theorem 5.1

In this section we prove Theorem 5.1, boosting protocols with local failure detection to ones with
global failure detection.

The protocol Π′

Assumption: Π is a protocol that realizes F against A and realizes F lFD against A ∗.

The protocol:

1. All parties participate in an execution of Π. At the end, each party Pi holds an output yi.

2. For each party Pi, if yi = Fail, then Pi sets x
∗
i ← Fail; else x∗i ← Success.

3. All parties run the ByzantineAgreementForFailures protocol from Section 5.3 with
{x∗i }i∈[n]. The outputs are denoted {y∗i }i.

4. For each party Pi, if y
∗
i = Fail, then Pi outputs Fail; else Pi outputs yi.

In what follows we show that Π′ realizes F against A and realizes FgFD against A ∗. For this
we present two simulators.

5.4.1 Realizing FgFD Against A ∗

Since Π realizes F lFD against any A ∈ A ∗, then there is a simulator S lFD that communicate
with F lFD in the ideal experiment and causes the ideal and real worlds to be indistinguishable;
see Functionality 2 for the local failure detection functionality and Section 4.1 for the ideal world
experiment. We will design a simulator for the global failure detection functionality as described in
Functionality 1. The simulator is described next:
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1. Initialization: SgFD is initialized the same as S lFD.

2. Evaluation: SgFD executes S lFD. In the case that S lFD sends Fail in Step 2 of Functionality 2,
then in Step 4, S lFD provides a vector (y′1, . . . , y

′
n). SgFD does not need to provide anything

in Step 4 of Functionality 1, so it saves the vector for internal use.

3. Output:

(a) SgFD computes {viewlFD
i }i∈C exactly like S lFD.

(b) For each honest party Pi, if y
′
i = Fail, then SgFD set x∗i ← Fail, else x∗i ← Success.

(c) SgFD and A run the ByzantineAgreementForFailures protocol with {x∗i }i∈[n],
where SgFD simulates the honest parties by running honestly. At the end, SgFD holds
{view′

i}i∈[n], the view of the execution.

(d) SgFD outputs {viewi}i∈C = {viewlFD
i ||view′

i}i∈C

Claim 5.8. Let SimlFD be a simulator for Π and the functionality F lFD. Then, SgFD, as described
above, is a simulator for Π′ and the functionality FgFD.

Proof. Let {viewΠ′
i }i∈C = {viewΠ′

1
i ||view

Π′
2−4

i }i∈C be the adversary view in the real world execution,

split to the stages in Π′. Since Π realizes F lFD against every A ∈ A ∗, then ({viewΠ′
1

i }i∈C , {y′i}i∈[n]\C)
is statistical indistinguishable from ({viewlFD

i }i∈C , {yi}i∈[n]\C). Since SgFD knows the inputs of the

ByzantineAgreementForFailures protocol and act honestly, {viewΠ′
2−4

i }i∈C and {view′
i}i∈C are

identically distributed. Also, the outputs of the ByzantineAgreementForFailures protocol are
statistical indistinguishable. To see this, we consider two cases:

• There is an honest party Pi with y∗i = Fail:

– Real world: By bullet 1 of Lemma 5.3, we know that every honest party will output
Fail, and so {yi}i∈H = {Fail, . . . ,Fail}.

– Ideal world: If there is an honest party Pi with y∗i = Fail, then S lFD sends Fail at step
2 of Functionality 2. Thus, SgFD also sends Fail at step 2 of Functionality 1, and so
{yi}i∈H = {Fail, . . . ,Fail}.

• Otherwise (no honest party Pi has y∗i = Fail):

– Real world: By bullets 1 and 2 of Lemma 5.3 this case can occur (w.h.p) only if for
every honest party Pi after the first stage of Π′, yi ̸= Fail. But, since Π realizes F lFD,
then y⃗ ∈ F(C, {x̃i}i∈[n]).

– Ideal world: If no honest party Pi has y
∗
i = Fail, then S lFD sends Success at step 2 of

Functionality 2. This means that SgFD also sends Success at step 2 of Functionality 1,
and so y⃗ ∈ F(C, {x̃i}i∈[n]).

Overall, the tuple ({viewi}i∈C , {yi}i∈H) is statistical indistinguishable between the real and ideal
worlds.
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5.4.2 Realizing F Against A

Since Π realizes F against an adversary A ∈ A , then there is a simulator SΠ that communicates
with F in the ideal experiment and is able to generate the right view. The behavior of S in the
ideal experiment (see Section 4.1) with F is described next:

1. Initialization: S simulates SΠ.

2. Evaluation: S simulates SΠ.

3. Output:

(a) S computes {viewΠ
i }i∈C by simulating SΠ.

(b) For each honest party Pi, S sets x∗i ← Success.

(c) S and A run the ByzantineAgreementForFailures protocol with {x∗i }i∈[n], where
S simulates the honest parties and acts honestly. At the end, S holds {view′

i}i∈[n], the
view of the execution.

(d) S outputs {viewi}i∈C = {viewΠ
i ||view′

i}i∈C .

Claim 5.9. Let SimΠ be a simulator for Π and the functionality F . Then, S, as described above,
is a simulator for Π′ and the functionality F .

Proof. Let {viewΠ′
i }i∈C = {viewΠ′

1
i ||view

Π′
2−4

i }i∈C be the adversary view in the real world execution,

split to the stages in Π′. Since Π realizes F against A, then ({viewΠ′
1

i }i∈C , {yreali }i∈[n]\C) is statistical
indistinguishable from
({viewlFD

i }i∈C , {yideali }i∈[n]\C), and for every honest party Pi, the value of yreali after the stage 1
is not Fail. Since S knows the inputs of the ByzantineAgreementForFailures protocol and

acts honestly, {viewΠ′
2−4

i }i∈C and {view′
i}i∈C belong to the same distribution. This means that

{viewΠ′
i }i∈C is statistically indistinguishable from {viewi}i∈C. From bullets 1 and 3 in Lemma 5.3

we obtain that {yreali }i∈H ← F(C, {x̃i}i∈[n]), which means that the tuple ({viewi}i∈C , {yi}i∈H) is
statistical indistinguishable between the real and ideal worlds.

6 Optimistic/Pessimistic Combiner Framework

In this section, we spell out the optimistic/pessimistic framework to obtain a full-fledged protocol
implementing some given functionality. At a very high level, the starting point is an optimistic
protocol for the functionality, where the protocol roughly assumes that parties behave honestly
but has the property that it can recognize if some party deviated from the honest execution. We
transform this protocol into a full-fledged protocol that is secure against all adversaries, even ones
that do not follow the protocol specification.

In more detail, we first transform the given protocol into a protocol for the same functionality but
with global failure detection (using Theorem 5.1). That is, the resulting protocol has the property
that if some party notices that another party deviated from the protocol than all honest parties will
know of this. Now, we execute the protocol with global failure detection; by our guarantee, if a
failure was noticed by any party, all honest parties know of this, and can then fallback to some less
efficient but always secure protocol.

Theorem 6.1. Consider a functionality F and two attacker classes A ∗ ⊆ A static
1/3 and A ⊆

AAbort ∩A ∗. Assume that
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• protocol Πlight realizes F against A and F lFD against A ∗, and

• protocol Πheavy realizes F against A ∗.

Then, there exists a protocol Π that realizes F against A ∗ with the following efficiency properties:

1. Worst-case communication complexity: For every party i ∈ [n]:

cc(Π, i) = cc(Πlight, i) + cc(Πheavy, i) + polylog(n).

2. Adversary-dependent communication complexity: For every party i ∈ [n]

cc(Π,A , i) = cc(Πlight, i) + polylog(n).

3. Worst-case round complexity: rc(Π) = rc(Πlight) + rc(Πheavy) + polylog(n).

4. Adversary-dependent round complexity: rc(Π,A ) = rc(Πlight) + polylog(n).

Proof. First, use Theorem 5.1 to compile Πlight (that only realizes F lFD against A ∗) into Π′
light

(that realizes FgFD against A ∗). Now, we describe Π.

Protocol Π:

1. Run Π′
light.

2. For each (honest) party Pi, if yi = Fail, then participant in Πheavy; Otherwise, output the
output of Π′

light and terminate.

Efficiency. In the worst-case, cc(Π, i) = cc(Π′
light, i) + cc(Πheavy, i) and rc(Π,A ) =

rc(Π′
light,A ) + rc(Πheavy,A ). Now, by Theorem 5.1, cc(Π′

light, i) = cc(Πlight, i) + polylog(n) and
rc(Π′

light,A ) = rc(Πlight) + polylog(n). This proves bullets 1 and 3. If the adversary is in A
(meaning it does not deviate from the protocol except by possibly dropping messages), then by the
guarantee of Π′

light, there will not be an honest party Pi with yi = Fail, and so all honest parties
will not participant in Πheavy. Thus, in this case, the complexity of the protocol is: cc(Π,A , i) =
cc(Π′

light, i) = cc(Πlight, i) + polylog(n) and rc(Π,A ) = rc(Π′
light) = rc(Πlight) + polylog(n). This

proves bullets 2 and 4.
Security. Since Π′

light realizes FgFD against A ∗, then by definition if an honest party Pi has
yi = Fail, then we are guaranteed that all honest parties have y = Fail. Thus, all honest parties
will participate in Πheavy, and since Πheavy is secure against A ∗, then Π is also secure against A ∗.
Formally, we define a simulator for Π and functionality F as follows: First run the simulator of
Π′

light and then if all honest parties have y = Fail, then run the simulator of Πheavy. The proof that
this simulator generated an indistinguishable view is straightforward given the guarantees of the
underlying two simulators.

7 Applications

In this section we present several instantiations of our framework. First, in Section 7.1, we show
how to build a quorum, i.e., a well-formed representative committee for each party in the protocol.
This is a useful abstraction on its own because (as we show in Section 7.2) it can be used to directly
obtain several other applications, essentially without added complexity. For example, we show how
to use it to directly obtain a Byzantine Agreement protocol, a broadcast protocol, and a committee
election protocol. All of these have super efficient “optimistic” complexity and the best known
worst-case overhead as fallback. As another (less immediate) application, in Section 7.3, we build a
scalable secure multiparty computation (SMPC) protocol with almost no overhead in an optimistic
execution beyond the circuit size.
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7.1 A Quorum

We start by defining the properties of a good quorum. We implement the construction of a quorum
via a distributed protocol and so it is convenient to specify the properties of a quorum via a
functionality. At a very high level, a quorum is a collection of n poly-logarithmic size subsets where
(1) each subset contains roughly the same fraction of bad parties as in the total population, (2) Each
party is a member in poly-logarithmically-many committees. We parametrize a quorum functionality
with ϵ > 0, where the adversary controls constant < ϵ fraction of parties in the total population.

Functionality 3: Fϵ-quorum - Quorum Building

1. S specifies a function f : [n]→ [n]d, where d ∈ Õ(1), such that:

(a) For all i ∈ [n], |f(i)∩C|
|f(i)| < ϵ.

(b) Let f−1(j) = {i | j ∈ f(i)}. Then |f−1(j)|∈ O(d) for all j ∈ [n].

2. F outputs f to every party Pi.

“Heavyweight” quorum building. A protocol for generating a 1/3-quorum in the presence of
attackers that statically corrupts 1/3− ϵ fraction of parties for a constant ϵ > 0 is known [GK24].
The protocol consists of Õ(1) rounds and Θ̃(

√
n) communication per party.

Lemma 7.1 (Heavyweight quorum generation [GK24]). There is a protocol Πheavy realizing
F1/3-quorum against A static

1/3 . The protocol consists of Õ(1) rounds and Θ̃(
√
n) communication

per party.

“Lightweight” quorum building. For the lightweight protocol, we observe that it was actually
obtained in ByzantineAgreementForFailures (Section 5.3). Specifically, we run this protocol
up until the end of the Agreement Phase, where the inputs of all parties are Success, and the output
of Pi is Fail if yi = Fail. If not, the output is fstri(⋆) ≜ H(⋆, stri), where H is the function from
Theorem 5.2.

See formal description in Section 7.1.1. The proof that we obtain a realization of the 1/3-quorum
functionality readily follows from Claims 5.4 and 5.7. We thus have the following lemma whose
proof can be found in Section 7.1.1.

Lemma 7.2 (Lightweight quorum generation). There is a protocol Πlight (described above) that
realizes F1/3-quorum against AAbort ∩A static

1/3 and realizes F lFD
1/3-quorum against A static

1/3 .

We apply our optimistic-pessimistic framework from Theorem 6.1 using Lemmas 7.1 and 7.2.
Thus, We get the following result.

Theorem 7.3 (Quorum building). There is a protocol Π that realizes F1/3-quorum against adversaries
family A static

1/3 . Furthermore, Π has the following efficiency properties:

1. rc(Π) = Õ(1). (Round complexity)

2. For each party Pi, cc(Π,AAbort ∩A static
1/3 , i) ∈ Õ(1). (Optimistic complexity)

3. For each party Pi, cc(Π, i) ∈ Õ(
√
n). (Pessimistic complexity)
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7.1.1 Lightweight Quorum Building Protocol (Proof of Lemma 7.2)

In this protocol, we associate Fail with 1 and Success with 0, so logical Boolean operations are well
defined.

Lightweight Quorum Building Protocol (Πlight)

• Setup Phase: Each party Pi sets yi ← Success.

• Almost-Everywhere Phase: All the parties run together the almost-every agreement
protocol from [KLST11]. At the end, each party Pi holds a string stri of size Θ(log3 n).

• Agreement Phase:

1. Each party Pi samples a set of log2 n parties (denoted Si), and sends them “ping”.
Filtering: Each party accepts messages of size |“ping”|, and at most 2 · log2 n of them.

2. For each party Pj : if it received less that 2 · log2 n “ping”s, Pj answers with strj ; else, Pj

set yj ← Fail.
Filtering: Pi accepts messages of size at most log4 n and only from parties in Si.

3. For each party Pi, if there is a string str∗ that was received more than |Si|/2 times, Pi

sets stri ← str∗; else, Pi sets yi ← Fail.

• Output Phase: For each party Pi if yi = Fail then output Fail; else, output
yi = fstri(⋆) ≜ H(⋆, stri), where H is the 1

3 -quorum building function from Theorem 5.2.

We proceed with the proof of correctness. Since the inputs are fixed in the protocol description,
the simulator for an adversary A simulates the honest parties to obtain the view of A. By Claim 5.4,
it follows that the output of each honest party is either fstri (the same function for all honest parties)
or Fail. By Claim 5.2 (see also [KLST11]) with all but negligible probability of error, for str with
Ω(log2 n) (min-)entropy, H(⋆, str) defines a good quorum. Thus, fstr ∈ F 1

3
-quorum(C), and so Πlight

realizes F lFD
1
3
-quorum

against A.
By Claim 5.7 it follows that if A ∈ AAbort ∩A static

1/3 , then the output of all honest parties is fstr
(nobody will output Fail). This means that Πlight realizes F 1

3
-quorum against A.

7.2 Byzantine Agreement, Broadcast, and Committee Election

Once we have a quorum (as in Section 7.1), it is relatively easy to obtain other useful abstractions
with essentially no extra complexity. Specifically, we obtain Byzantine Agreement, Broadcast, and
Committee Election (formal definitions in Section 3.2), and more with essentially optimal optimistic
complexity and otherwise the best-known worst-case complexity.

Theorem 7.4. There are Õ(1)-round Byzantine agreement, broadcast, quorum/committee/leader
election protocols, each with negligible (in n) probability of failure, and with the following complexity:

• For each party, if the adversary is in A static
1/3 , the communication complexity is Õ(

√
n).

• For each party, if the adversary is in AAbort ∩A static
1/3 , the communication complexity is Õ(1).
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It is rather straightforward to obtain the above theorem given the quorum functionality realization
in Section 7.1. We sketch the details next. Consider the Byzantine Agreement problem in which
every party has an input bit and the goal is to reach an agreement on an input which is held by one
of the honest parties. We first generate a quorum using Theorem 7.3. Then, each party sends its bit
to its associated committee members. The committees now perform agreement in a tree-like fashion
by say computing the majority value of their input bits (recall that the committees can be viewed as
honestly-behaving parties so we need not worry about Byzantine behavior). Finally, all committees
distribute the agreed upon bit to their respective associated parties. Broadcast is implemented in a
similar fashion by performing broadcast in a tree-like fashion between the committees defined via the
quorum (again, since these committees are behaving honestly, this is easy). Committee election is a
special case of quorum9 (the first committee in the quorum is a good committee). Leader election
can be implemented by running a naive (heavy-weight) protocol among a chosen committee.

7.3 Secure Multiparty Computation

In MPC there are n parties, each having an input xi. The goal is to jointly evaluate a known
functionality described by a circuit C without revealing unnecessary information about the private
inputs.

This can be captured within our general real-ideal simulation given in Section 4.1 using the
following functionality.

Functionality 4: FC - MPC for a circuit C

1. Every party Pi submits x̃i, where for honest parties x̃i = xi.

2. Compute (y1, . . . , yn)← C(x̃1, . . . , x̃n).

3. For every party Pi, output yi.

The size of a circuit C is defined as the total number of wires in C, and is denoted |C|. We
further denote the depth of C by Depth(C) and define it as the length of the longest path from an
input wire to an output wire. We shall assume that each gate in C has a constant number of input
and output wires; say two inputs and two outputs.

Recall that our communication model assumes only point-to-point synchronous communication.
The communication is authenticated and private. (This is in contrast to the rest of the paper where
communication is only authenticated but not private.) We obtain an MPC protocol that has worst
case complexity Õ(|C|/n+

√
n) per party when computing C. If the adversary is honest, then the

complexity per party is Õ(|C|/n). In either case, the round complexity is Õ(Depth(C)). Notice that
if we are considering a linear size circuit, then the complexity of an honest execution is essentially
the best possible. The protocol uses techniques similar to those in [DKM+17], but our protocol
appears to be a simpler. Additionally, we employ our scalable optimistic/pessimistic protocol for
quorum generation. We refer to Appendix B for full details.

Theorem 7.5 (Optimistic/Pessimistic Scalable MPC). There is an MPC protocol Π such that for
every circuit C, it has the following complexity:

• rc(Π) ∈ Õ(Depth(C)). (Round complexity)

9Usually, we want committees of size poly-logarithmic and have the property that the number of corrupted parties
in the committee be roughly the same as their fraction in the total population.
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• For each party Pi, cc(Π
C
MPC ,AAbort ∩A static

1/3 , i) ∈ Õ(|C|/n). (Optimistic complexity)

• For each party Pi, cc(Π
C
MPC , i) ∈ Õ(|C|/n+

√
n). (Pessimistic complexity)
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A The Distribute Sub-Protocol

For convenience, we assume that party and committee IDs go from 0 to n− 1. In this protocol we
assume a quorum, meaning that there are n committees (Q0 . . . Qn−1), where in each committee
there is a majority of honest parties that have knowledge about the quorum. When we say that
a committee sends a message, we mean that all the parties in the committee send this message,
and when we say that a message was received by a committee, we mean that it was received by a
majority of the parties in the committee.

The protocol is very simple, all the committees communicate their values upstream in tree-like
communication pattern, calculating a logical OR along the way, and then broadcast the results in
reverse order, it takes O(log n) rounds. Since the communication pattern and messages sizes are
fixed (given n), we avoid writing the filtering rules.

The Distribute Protocol

Input: Each committee Qi holds a bit xi, indicating that Pi sent a message to Qi.

Output: Each committee Qi holds a bit x, which is the logical OR of all the indicators.

The Protocol:

(a) For r in 1 . . . ⌈log n⌉+ 1:

i. For each committee Qi and if i mod 2r−1 = 0:

A. If r ̸= 1 ∧ i+ 2r−2 < n, Qi set yi to be the value that was received most times
from Qi+2r−2 in previous round (0 if there is a tie), else, Qi set yi ← 0.

B. Qi set xi ← xi ∨ yi.

C. If i mod 2r ̸= 0, Qi sends (i, xi) to each party in Qi−2r−1 .

(b) Q0 set x← x0, and all other committees set x← ⊥.
(c) For r in ⌈log n⌉ . . . 0:

i. For each committee Qi and if i mod 2r = 0:

A. If i ̸= 0 ∧ i mod 2r+1 ̸= 0, Qi set x to be the value that was received most times
from parties in Qi−2r in previous round (0 if there is a tie).

B. If r ̸= 0, Qi sends x0 to each party in Qi+2r−1 .

B Secure Multiparty Computation

The BGW protocol and secret sharing. Our protocol will rely on the generic MPC protocol
of Ben-Or et al. [BGW88]. This protocol gives a perfectly secure general purpose protocol. Security
holds for a static malicious adversary corrupting t < n/3 of the parties, where n is the number
of parties, and even with concurrent composition. The protocol supports all computations and
assumes they are given as circuits. Given a circuit of depth d and size s (where size is measured as
the number of wires), the protocol requires O(d) rounds and each party sends s · poly(n) bits overall.

Looking forward, we will use this MPC protocol only among poly-logarithmic size groups of
parties and only for computing (poly-)logarithmic size circuits. Thus, the communication and
round overhead per invocation of these protocols will be Õ(1). (Recall that even though we use
a polynomial-time broadcast algorithm [DS83], we execute it among poly-logarithmic number of
parties).
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Theorem B.1 (Perfectly secure heavyweight MPC e.g., [AL17]). Let f be an n-ary functionality
and C its arithmetic circuit representation. There exists an explicit protocol ΠMPC

Heavy realizing FC

with perfect universally composable security against static adversaries that corrupt < n/3 parties.
Furthermore, rc(ΠMPC

Heavy) ∈ O(Depth(C)) and cc(ΠMPC
Heavy) ∈ poly(|C|, n).

Furthermore, we will rely on a robust secret sharing scheme, a technique for splitting a secret s
among n parties in such a way that every coalition of t parties can reconstruct the secret and every
coalition of t− 1 parties learn nothing about the secret. A well-known method achieving the above
was suggested by Shamir [Sha79]. We will need a strong notion of correctness called robustness:
large enough sets of parties that try to reconstruct the secret will succeed even if some of the parties
try to cheat in the reconstruction phase. Concretely, we will need that the n parties always succeed
in reconstructing the secret, even if there are t − 1 parties that try to cheat. This property is
known to be achievable for Shamir’s scheme if t < n/3. Note that the sharing and reconstruction
procedures are efficient, namely, there is a polynomial time algorithm (in n) that implements them.

The MPC Protocol. We denote the circuit corresponding to n/3-out-of-n Shamir’s secret sharing
scheme [Sha79] by sharen(x, r). For robust reconstruction, we use the (efficient, polynomial time)
procedure of [WB86]. When we say that committee is associated with outputs of the share circuit,
we mean that the ith share is associated with the ith member of the committee in lexicographic
order.

Secure Multiparty Computation Protocol

• Setup Phase (Quorum Building):

1. All parties run the quorum building protocol from Theorem 7.3. At the end, each party
holds a function f as described in Functionality 3. Denote the ith committee (f(i)) by
Qi, and let qi be the size of each committee.

2. Associate each committee Qi with |C|/n wires.

• Share Phase: Each party Pi and committee Qi perform a “heavy” MPC protocol
(Theorem B.1) on shareqi(xi, ri), where ri is fresh randomness.

• Evaluation Phase:

1. For layer ℓ ∈ 1 . . . Depth(C):

– For each gate G in layer ℓ, do (in parallel):

∗ All the committees that are associated with wires that are connected to G
perform an MPC protocol (Theorem B.1) on Cqi

G , where Cqi
G is a circuit that

wraps the functionality of the gate by first reconstructing the input wire values,
then evaluating the gates, and finally resharing the output with the committee
members of associated with the output wires. This circuit is formally defined
in Appendix B.3.

• Output Phase (Reconstruct): Each party Pi reconstructs the output value by pulling
shares from its committee members Qi.

29



B.1 Security

We specify the simulator S for the ideal experiment with FC (Functionality 4). Note that we will
get statistical security due to the statistical error in the quorum building protocol from Theorem 7.3.

1. Initialization: S chooses the same set of corrupted parties C as A.

2. Evaluation: S run the setup and share phases with A, where S simulates every honest party
Pi with xi = 0. At the end, S extracts {x̃i, ri}i∈C using qi/3 shares of honest parties. Then, it
sends {x̃i}i∈C to FC , and receives back {yi}i∈C .

3. Output: S run the protocol with A with the same randomness as before, with the following
changes:

(a) Setup Phase: S invokes the simulator of the quorum building protocol from Theorem 7.3;
at the end S holds fS .

(b) Share Phase: S invokes the simulator of n concurrent executions of the “heavy” MPC
protocol, where S simulates FC as follows:

• For Pi ∈ C: S outputs shareqi(x̃i, ri) using the values that were extracted previously.

• For Pi /∈ C: S outputs shareqi(0, r) using fresh randomness.

(c) Evaluation Phase: For layer ℓ ∈ 1 . . . Depth(C), let k be the number of gates in layer ℓ.
S invokes the simulator of k concurrent executions of the “heavy” MPC protocols, where
for each such execution S simulates the functionality FC

qi
G as follows:

• If the output of G corresponds to an output yi:
S outputs (shareqi(yi, r1), shareqi(0, r2)) using fresh randomness.

• Else, S outputs (shareqi(0, r1), shareqi(0, r2)) using fresh randomness.

To show that the above simulator succeeds in simulating the view of the real world, we proceed
by considering five intermediate hybrids. The first hybrid corresponds to the ideal experiment, the
last hybrid corresponds to the real experiment, and in each intermediate hybrid, we specify one
component that we change.

• Hybrid 0: This worlds corresponds to the ideal experiment with S as above.

• Hybrid 1: In this world S behave as in Hybrid 0, except that in the Setup Phase, S behaves
like in the real world execution by using f instead of the simulated ones fS .

• Hybrid 2: In this world S behave as in Hybrid 1, except that S knows the honest parties
inputs, and in the Share Phase, when S simulates FC , for Pi /∈ C, S outputs shareqi(xi, r)
using fresh randomness.

• Hybrid 3: In this world, S behaves as in Hybrid 2, except that in the Share Phase, S behaves
as in the real world execution.

• Hybrid 4: In this world, S behaves as in Hybrid 3, except that in the Evaluation Phase, S
behaves as in the real world execution. This hybrid is identical to the real world.

Let (view
(k)
i , y

(k)
i ) be the view and output of Pi in Hybrid k. Denote H = [n] \ C, the set of

honest parties.

Claim B.2. The distributions ({view(0)
i }i∈C , {y

(0)
i }i∈H) and ({view(1)

i }i∈C , {y
(1)
i }i∈H) are statistically

close.
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Proof. Follows directly from the security of the protocol from Theorem 7.3.

Claim B.3. The distributions ({view(1)
i }i∈C , {y

(1)
i }i∈H) and ({view(2)

i }i∈C , {y
(2)
i }i∈H) are identical.

Proof. By Theorem B.1 it follows that the adversary learns nothing about S’s inputs from the
execution of the heavy MPC protocol. From the security of the secret sharing scheme, it follows
that the adversary’s outputs are independent of the inputs. Overall, the distribution of the view
that is generated by the heavy MPC simulator is identical for all possible inputs.

Claim B.4. The distributions ({view(3)
i }i∈C , {y

(2)
i }i∈H) and ({view(3)

i }i∈C , {y
(3)
i }i∈H) are identical.

Proof. For each party Pi /∈ C the claim is true by Theorem B.1. For each party Pi ∈ C, we use the
fact that S extracts the right x̃i and ri. Indeed, by Theorem B.1, S receives at least 2qi

3 shares
of x̃i, and by the parameters of the secret sharing scheme, S correctly extracts both x̃i and ri, as
needed.

To prove that Hybrid 3 and Hybrid 4 are identical we define additional sub-hybrids as follows:

• Hybrid (3, ℓ): In this world, S behaves as in Hybrid 3, except that in the first ℓ layers of the
Evaluation Phase, S behave as in the real world execution.

Clearly, Hybrid (3, 0) is identical to Hybrid 3, and Hybrid (3, Depth(C)) is identical to Hybrid 4.
Also, for convenience and without loss of generality, we assume that the gates connected to output
wires are in layer Depth(C).

Claim B.5. For every ℓ ∈ [Depth(C) − 1], the distributions ({view(3,ℓ)
i }i∈C , {y(3,ℓ)i }i∈H) and

({view(3,ℓ−1)
i }i∈C , {y(3,ℓ−1)

i }i∈H) are identical.

Proof. By the construction of the Cqi
G circuit, it follows that each output is computed by shareqi(⋆, r

∗),
where r∗ is XOR of random values submitted by committee members. From Theorem B.1, it follows
that the adversary learns nothing about the inputs from the execution of the heavy MPC protocol,
and so since the XOR contains at least one unknown uniformly random value, r∗ is also uniformly
random and unknown to the adversary. From the security of the secret sharing scheme, it follows
that the outputs of the adversary are independent of the private inputs. Overall, the distribution of
the view that is generated by the heavy MPC simulator is the same for all inputs.

Note that, up to this point the outputs of the adversary are generated by the ideal functionality. In
the following claim, we prove the “correctness” of the protocol.

Claim B.6. In the real execution, assuming the quorum building protocol succeeds, for every input
vector x⃗ and gate G ∈ C, the result of applying the reconstruction scheme on the outputs of share in
the wrapped circuit is equal to the value of output of G in C (without wrapping).

Proof. We prove this by induction on the layers of the circuit.

• Base case (ℓ = 0): For each party Pi, by the security of the heavy MPC protocol, the output
of each honest party Pj ∈ Qi at the end of the Share Phase is the output of shareqi(xi, ri).
Thus, more than 2qi/3 honest parties hold the right shares of xi, and so from the robustness
property, the reconstruction scheme will output xi.
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• Inductive step: Assume that the claim holds for all ℓ ∈ [l]. For layer l+1, Let Cqi
G be a circuit

on layer l+1. In the construction of Cqi
G , at first the reconstruction scheme is applied for each

G input to obtain x1 and x2, then G(x1, x2) calculated, and lastly, the share scheme is applied
for each output. From the security of the heavy MPC it follows that the result of applying
the reconstruction scheme on each share circuit output will be same as G’s output.

Claim B.7. The distributions ({view(3,Depth(C))
i }i∈C , {y(3,Depth(C))

i }i∈H) and
({view(3,Depth(C)−1)

i }i∈C , {y(3,Depth(C)−1)
i }i∈H) are identical.

Proof. The proof of this claim is analogous to the proof of Claim B.5. By Claim B.6 with ℓ =
Depth(C), it follows that the outputs in the real execution are equal to C(x̃1, . . . , x̃n), i.e., the
output of the functionality FC .

B.2 Efficiency

By Claim B.8, each Cqi
G is of size polynomial in the committee size and the latter is poly-logarithmic

in n (Functionality 3). That is, |Cqi
G |= poly(qi) = polylog(n). Together with Theorem B.1, each

heavy MPC on Cqi
G costs polylog(n) rounds and communication; the same goes for the share and

output phases. Since for each layer in the circuit C we compute all the gates in parallel for the
share, evaluation, and output phases, we need Õ(Depth(C)) rounds, and Õ(|C|/n) communication
per party. Together with Theorem 7.3, we got the following complexities:

• rc(ΠC
MPC) ∈ Õ(Depth(C)).

• For each party Pi, cc(Π
C
MPC , i) ∈ Õ(|C|/n+

√
n).

• For each party Pi, cc(Π
C
MPC ,AAbort ∩A static

1/3 , i) ∈ Õ(|C|/n).

B.3 The Gate Wrapper

Given a gate G with two inputs and two outputs, and a pair of circuits sharen and recn that represent
the sharing and reconstruction mechanism of the robust variant of Shamir’s scheme [Sha79] (i.e.,
using the reconstruction of [WB86]), we build a circuit Cn

G with 4n inputs and 2n outputs as follows,
and as depicted in Figure 1:

• Connect each input of G to the output of a new recn circuit.

• Connect each output of G to the first (value) input of a new sharen circuit.

• Connect the second (randomness) input of each sharen circuit to a new XORn circuit, where
XORn is implemented in a tree-like manner.
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Figure 1: The wrapper of a gate G.

Since the sharing and reconstruction procedures can be implemented in polynomial time and since
all other computations are efficient, we conclude that the wrapper can be written as a polynomial
size circuit.

Corollary B.8. For each gate G, |Cn
G|∈ poly(n).
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