
Actively Secure Half-Gates with Minimum Overhead under
Duplex Networks

Hongrui Cui ID

Shanghai Jiao Tong University
rickfreeman@sjtu.edu.cn

Xiao Wang ID

Northwestern University
wangxiao@northwestern.edu

Kang Yang ID

State Key Laboratory of Cryptology
yangk@sklc.org

Yu Yu ID

Shanghai Jiao Tong University
yuyu@yuyu.hk

October 29, 2024

Abstract

Actively secure two-party computation (2PC) is one of the canonical building blocks in
modern cryptography. One main goal for designing actively secure 2PC protocols is to reduce
the communication overhead, compared to semi-honest 2PC protocols. In this paper, we make
significant progress in closing this gap by proposing two new actively secure constant-round 2PC
protocols, one with one-way communication of 2κ+5 bits per AND gate (for κ-bit computational
security and any statistical security) and one with total communication of 2κ + ρ + 5 bits per
AND gate (for ρ-bit statistical security). In particular, our first protocol essentially matches
the one-way communication of semi-honest half-gates protocol. Our optimization is achieved by
three new techniques:

1. The recent compression technique by Dittmer et al. (Crypto 2022) shows that a relaxed
preprocessing is sufficient for authenticated garbling that does not reveal masked wire values
to the garbler. We introduce a new form of authenticated bits and propose a new technique of
generating authenticated AND triples to reduce the one-way communication of preprocessing
from 5ρ+ 1 bits to 2 bits per AND gate for ρ-bit statistical security.

2. Unfortunately, the above compressing technique is only compatible with a less compact au-
thenticated garbled circuit of size 2κ + 3ρ bits per AND gate. We designed a new authen-
ticated garbling that does not use information theoretic MACs but rather dual execution
without leakage to authenticate wire values in the circuit. This allows us to use a more
compact half-gates based authenticated garbled circuit of size 2κ+1 bits per AND gate, and
meanwhile keep compatible with the compression technique. Our new technique can achieve
one-way communication of 2κ+ 5 bits per AND gate.

3. In terms of total communication, we notice that the communication overhead of the consis-
tency checking method by Dittmer et al. (Crypto 2022) can be optimized by adding one-round
of interaction and utilizing the Free-XOR property. This reduces the online communication
from 2κ+3ρ bits down to 2κ+ρ+1 bits per AND gate. Combined with our first contribution,
this yields total amortized communication of 2κ+ ρ+ 5 bits.

1 Introduction

Based on garbled circuits (GCs) [47], constant-round secure two-party computation (2PC) has
obtained huge practical improvements in recent years in both communication [5, 33, 48, 38] and

1

https://orcid.org/0000-0002-6203-413X
rickfreeman@sjtu.edu.cn
https://orcid.org/0000-0002-5991-7417
wangxiao@northwestern.edu
https://orcid.org/0000-0002-7453-4043
yangk@sklc.org
https://orcid.org/0000-0002-9278-4521
yuyu@yuyu.hk

Table 1: Comparing our protocol with prior works in terms of round and communication complexity. Here
κ, ρ denote the computational and statistical security parameters instantiated by 128 and 40 respectively.
Round complexity is counted in the random COT/VOLE-hybrid model. One-way communication is the
greater of the two parties’ communication; two-way communication is the sum of all communication. For
the KRRW and HSS protocol we take the bucket size as B = 3.

2PC
Rounds Communication per AND gate

Prep. Online one-way (bits) two-way (bits)

Half-gates 1 2 2κ 2κ

HSS-PCG [28] 8 2 8κ+ 11 (4.04×) 16κ+ 22 (8.09×)
KRRW-PCG [32] 4 4 5κ+ 7 (2.53×) 8κ+ 14 (4.05×)

DILO [18] 7 2 2κ+ 8ρ+ 1 (2.25×) 2κ+ 8ρ+ 5 (2.27×)
DILOv2 [18] 3 4 2κ+ 2ρ+ 2 (1.32×) 2κ+ 4ρ+ 2 (1.63×)
This work, v.1 8 3 2κ+ 5 (1.02×) 4κ+ 10 (2.04×)
This work, v.2 8 2 2κ+ ρ+ 3 (1.17×) 2κ+ ρ+ 5 (1.18×)

computation [6, 26, 25]. However, compared to passively secure (a.k.a., semi-honest) 2PC protocols,
their actively secure counterparts require significant overhead. Building upon the authenticated
garbling framework [39, 40, 32, 45] and, more generally, working in the BMR family [5, 34, 35, 29,
27], the most recent work by Dittmer, Ishai, Lu and Ostrovsky [18] (denoted as DILO hereafter) is
able to bring down the communication cost to 2κ + 8ρ + O(1) bits per AND gate, where κ and ρ
are the computational and statistical security parameters, respectively.

Although huge progress, there is still a gap between actively secure and passively secure 2PC
protocols based on garbled circuits. In particular, the size of a garbled circuit has been recently
reduced from 2κ bits (half-gates [48]) to 1.5κ bits (three-halves [38]) per AND gate, while even
the latest authenticated garbling cannot reach the communication efficiency of half-gates. It is
possible to close this gap between active and passive security using the GMW compiler [24], and
its concrete efficiency was studied in [1]. However, it requires non-black-box use of the underlying
garbling scheme and thus requires prohibitive overhead.

Bringing down the cost of authenticated garbling at this stage requires overcoming several
challenges. First of all, we need the authenticated GC itself to be as small as the underlying GC
construction. This could be achieved for half-gates as Katz et al. [32] (denoted as KRRW hereafter)
proposed an authenticated half-gates construction in the two-party setting. However, when it comes
to three-halves, there is no known construction. These authenticated GCs are usually generated
in some preprocessing model, and thus the second challenge is to instantiate the preprocessing
with only constant additive overhead. Together with recent works on pseudorandom correlation
generators (PCGs) [11, 10, 46, 15, 9], Katz et al. [32] can achieve O(κ) bits per AND gate, while
Dittmer et al. [18] can achieve O(ρ) bits per AND gate. However, the latest advancement by
Dittmer et al. [18] is not compatible with the optimal authenticated half-gates construction and
requires an authenticated GC of size 2κ+ 3ρ bits per AND gate.

1.1 Our Contribution

We make significant progress in closing the communication gap between passive and active GC-
based 2PC protocols. We first propose an actively secure 2PC protocol with constant rounds and
one-way communication essentially the same as the half-gates 2PC protocol in the semi-honest
setting. Towards two-way communication, we optimize the consistency checking protocol in DILO

2

(which is an optimized WRK checking protocol [39] with amortized 3ρ bits overhead) and reduce
the consistency checking overhead down to ρ bits per AND gate as compared to the semi-honest
half-gates protocol.

1. We manage to securely instantiate the preprocessing phase with O(1) bits per AND gate. Our
starting point is the compression technique by Dittmer et al. [18], who showed that in authen-
ticated garbling, the random masks of the evaluator need not be of full entropy and can be
compressed with entropy sublinear to the circuit size. This observation leads to an efficient
construction from vector oblivious linear evaluation (VOLE) to the desired preprocessing func-
tionality. This reduces the communication overhead of preprocessing to 5ρ + 1 bits per AND
gate. To further reduce their communication, we introduce a new tool called “dual-key authenti-
cation”. Intuitively this form of authentication allows two parties to commit to a value that can
later be checked against subsequent messages by both parties. Together with a new technique
of generating authenticated AND triples from correlated oblivious transfer (COT), we avoid the
ρ-time blow-up of the DILO protocol, and the one-way communication cost is reduced to 2 bits
per AND gate.

2. As mentioned earlier, the above compression technique is not compatible with KRRW authen-
ticated half-gates; this is because the compression technique requires that the garbler does not
learn the masked values since the entropy of wire masks provided by the evaluator is low. We
observe that the dual-execution protocol [31, 30] can essentially be used for this purpose, and it
is highly compatible with the authenticated garbling technique. In particular, the masked value
of each wire is implicitly authenticated by the garbled label. Therefore we can perform two
independent executions and check the actual value of each wire against each other. Since every
wire is checked, we are able to eliminate the 1-bit leakage in ordinary dual-execution protocols.
The overall one-way communication is 2κ+ 5 bits per AND gate.

3. Towards total communication, we optimize the consistency checking procedure in WRK [39],
resulting in a consistency checking protocol compatible with the compression technique [18]
with amortized communication of ρ bits, which may be of independent interest. Recall that in
WRK we use an additional garbled circuit to evaluate the MAC tag of the masked output wire
value for each AND gate. First of all, we notice that in the secure computation scenario, we
can settle for evaluating the secret sharing of the MAC tags, whose consistency can be verified
using equality checking. This reduces ρ bits of communication. Moreover, notice that 1) we
can perform batched MAC checking by checking the random linear combination of all AND
gates, and 2) in Free-XOR compatible garbled circuits, the masked wire values of each wire is
a public linear combination of previous AND gate outputs and circuit inputs. By changing the
summation order, only one multiplication is needed per AND gate and input wire. Together
with the distributed half-gate garbling scheme [32] and our preprocessing protocol, we get a
circuit evaluation protocol with total amortized communication of 2κ+ ρ+ 5 bits.

We provide a detailed comparison of our protocol with the literature in Table 1. Notice that in
terms of amortized one-way communication we achieve constant additive overhead (5 bits per AND
gate) as compared to the semi-honest half-gates protocol, while for amortized two-way communi-
cation the overhead is ρ + 4 bits. Under full-duplex networks (e.g., most wired communication)
where communication in both directions can happen simultaneously, the one-way communication
is more relevant and the first variant of our protocol effectively imposes no slow down compared
to semi-honest half-gates; Nevertheless, even our two-way communication is minimal in the litera-
ture, for half-duplex networks (e.g., most wireless communication), we still cannot achieve the same
desirable constant additive overhead in communication.

3

The DILOv2 protocol builds upon doubly authenticated multiplication triples [18]. Compared
to DILO, the DILOv2 protocol is less efficient, as DILOv2 requires quasi-linear computational
complexity. The reason is that the current instantiation of such doubly authenticated multiplication
triples PCG based on Ring-LPN [12] is not on the same efficiency level as the random COT/VOLE
PCGs. Moreover, DILOv2 can only generate authenticated triples over F2ρ , while authenticated
garbling requires triples over F2. This incurs a ρ-time overhead when utilizing such triples.

We also would like to stress that our protocol achieves adaptive security without relying on the
random oracle model while all previous authenticated garbling protocols with adaptive security [39,
32, 29, 18] need the random oracle model.

2 Preliminaries

2.1 Notation

We use κ and ρ to denote the computational and statistical security parameters, respectively. We
use log to denote logarithms in base 2. We write x← S to denote sampling x uniformly at random
from a finite set S. We define [a, b) = {a, . . . , b − 1} and write [a, b] = {a, . . . , b}. We denote
[n] = [1, n]. We use bold lower-case letters like a for column vectors, and bold upper-case letters
like A for matrices. We let ai denote the i-th component of a (with a1 the first entry) and Ai,j

denote the entry on the i-th row and j-th column of A. We use {xi}i∈S to denote the set that
consists of all elements with indices in set S. When the context is clear, we abuse the notation and
use {xi} to denote such a set. For a string x, we use lsb(x) to denote the least significant bit (LSB)
and msb(x) to denote the most significant bit (MSB).

For an extension field F2κ of a binary field F2, we fix some monic, irreducible polynomial f(X)
of degree κ and then write F2κ

∼= F2[X]/f(X). Thus, every element x ∈ F2κ can be denoted
uniquely as x =

∑
i∈[0,κ) xi · Xi with xi ∈ F2 for all i ∈ [0, κ). We could view elements over F2κ

equivalently as vectors in Fκ
2 or strings in {0, 1}κ, and consider a bit x ∈ F2 as an element in F2κ .

Depending on the context, we use {0, 1}κ, Fκ
2 and F2κ interchangeably, and thus addition in Fκ

2 and
F2κ corresponds to XOR in {0, 1}κ. We also define two macros to convert between F2κ and Fκ

2 .

• x← B2F(x): Given x = (x0, ..., xκ−1) ∈ Fκ
2 , output x :=

∑
i∈[0,κ) xi ·Xi ∈ F2κ .

• x← F2B(x): Given x =
∑

i∈[0,κ) xi ·Xi ∈ F2κ , output x = (x0, ..., xκ−1) ∈ Fκ
2 .

A Boolean circuit C consists of a list of gates in the form of (i, j, k, T), where i, j are the indices
of input wires, k is the index of output wire and T ∈ {⊕,∧} is the type of the gate. In the 2PC
setting, we use IA (resp., IB) to denote the set of circuit input wire indices corresponding to the
input of PA (resp., PB). We also use W to denote the set of output wire indices of all AND gates,
and O to denote the set of circuit output wire indices in the circuit C. We denote by Cand the set
of all AND gates in the form of (i, j, k,∧).

Our protocol in the two-party setting is proven secure against static and malicious adversaries
in the standard simulation-based security model [13, 23]. We recall the security model, a relaxed
equality-check functionality FEQ and the coin-tossing functionality FRand in the Appendix and give
a summary of the notations and macros used in our protocols in Table 2.

2.2 Hash Functions

To instantiate our protocol without relying on the random oracle, we require different security prop-
erties for various hash functions that appear in our protocol. Here we recall their definitions. For

4

Table 2: Definitions of the notation and macros used in this paper.

Notation Definitions

κ Computational security parameter
ρ Statistical security parameter
x← S Sample x uniformly at random from S
[a, b) and [a, b] {a, . . . , b− 1} and {a, . . . , b}
a, ai, A, Ai,j Vector, the i-th entry of a, matrix, the (i, j)-th entry of A
{xi} A set without specifying the indices
lsb(x),msb(x) Least significant bit of x, most significant bit of x.
B2F Macro to convert from Fκ

2 to F2κ

F2B Macro to convert from F2κ to Fκ
2

C, O A Boolean circuit, the set of circuit-output wires in C
IA, IB The sets of circuit-input wires of PA and PB

Cand,W The set of all AND gates and set of their output wires
n,m, t Parameters n = |W|+ |IB|,m = |W|+ |IA|, t = |W|
L Compression parameter L = ⌈2ρ log en√

2ρ
+ log 2ρ

2 ⌉
[[x]]∆ = (KA[x],MB[x], x) IT-MAC authentication of x under the global key ∆
⟨x⟩ = (α, β, x) Dual-key authenticated value on x under ∆A∆B

CheckZero([x]) Check that x is equal to 0
CheckZero2(⟨x⟩) Check that x is equal to 0
Open([[x]]∆) Opening x authenticated by ∆
Convert1[·]→⟨·⟩([[x∆B]]∆A

) Convert [[x∆B]]∆A
to a dual-key authenticated bit ⟨x⟩

Convert2[·]→⟨·⟩([[x]]β, ⟨y⟩) Convert [[x]]β along with ⟨y⟩ = (α, β, y) to ⟨xy⟩
EQCheck Check equality of values auth. under different global keys
Garble,Eval Generation and evaluation of distributed garbling

the circular correlation robust under naturally derived keys (ccrnd) and tweakable correlation robust
(tcr) hash functions we refer the work by Guo et al. [26] for the respective efficient instantiations
in the random permutation model.

In addition to the conceptual benefit of working in a less idealized model, using ccrnd and tcr
properties instead of the random oracle model also has an advantage in terms of performance. The
random oracle model is usually instantiated by a cryptographic hash function (e.g., SHA256). On
the other hand, the random permutation can be instantiated by fixed-key AES and according to
the experiments in [26], the AES-based ccrnd hash function (used in circuit garbling) is 13 ∼ 45
times faster than SHA256.

Tweakable correlation robustness (tcr) We first recall the tweakable correlation robustness
property which is used in the reduction from string OT to correlated OT. The hash function has
the syntax as H : {0, 1}κ×{0, 1}κ → {0, 1}κ, where the first input is the hashed message while the
second input is an index that ensures uniqueness of each hash function invocation. We recall the
definitions as follows.

Definition 1. Let H : {0, 1}2κ → {0, 1}κ be a function, and let R be a distribution on {0, 1}κ.
For ∆ ∈ {0, 1}κ, define Otcr

∆ (x, i) = H(x ⊕ ∆, i). For a distinguisher D, we define the following

5

advantage

AdvtcrH,R :=

∣∣∣∣ Pr
∆←R

[DO
tcr
∆ (·)(1κ) = 1]− Pr

f←F2κ,κ

[Df(·)(1κ) = 1]

∣∣∣∣ ,

where F2κ,κ denotes the set of all functions mapping 2κ-bit inputs to κ-bit outputs. We call H
(t, q, ρ, ϵ)-tweakable correlation robust if for all D running in time t and making at most q queries
to the oracle and all R with min-entropy at least ρ, it holds that AdvtcrH,R ≤ ϵ.

(Circular) correlation robustness under naturally derived keys (ccrnd). We require that
the hash function H ensures the privacy property in the garbling scheme. During garbling, the
queries of H are not adversarially chosen, but generated by the honest party in the garbling process.
Queries generated in this way are referred to as “naturally derived” in the literature [48, 26].

Definition 2. Let H : {0, 1}2κ → {0, 1}κ be a function, and let R be a distribution on {0, 1}κ. For
∆ ∈ {0, 1}κ, define Occrnd

∆ (x, i, b) = H(x ⊕∆, i) ⊕ b ·∆. A sequence of queries Q = (Q1, ..., Qq) is
natural if each query Qi with response xi is one of the following:

1. xi ← {0, 1}κ.

2. xi = xi1 ⊕ xi2, where ii < i2 < i.

3. xi = H(xi1 , i), where i1 < i.

4. xi = O(xi1 , i, b), where i1 < i.

Fix some natural sequence Q of length q. In the real-world experiment, denoted RealH,Q,R, a key
∆ is sampled from R and then the oracle O in step 4, above, is set to Ocrnd (resp. Occrnd). In
the ideal-world experiment, denoted IdealH,Q, the oracle O is instead a function chosen uniformly
from F2κ,κ (resp. F2κ+1,κ) (Fn,m denotes the set of all functions mapping n-bit inputs to m-bit
outputs). Either experiment defines a distribution (determined by executing the operations in Q in
order) over values x1, ..., xq, which are output by the experiment.

For a distinguisher D, we define the following advantage and use superscript to differentiate the
two cases.

AdvH,Q,R :=

∣∣∣∣ Pr
{xi}←RealH,Q,R

[D({xi}) = 1]− Pr
{xi}←IdealH,Q

[D({xi}) = 1]

∣∣∣∣ ,

We call H (t, q, ρ, ϵ)-correlation robust (resp. circular correlation robust) for naturally derived keys
if for all D running in time t and all Q of length q, and all R with min-entropy at least ρ, it holds
that AdvcrndH,Q,R ≤ ϵ (resp. AdvccrndH,Q,R ≤ ϵ).

2.3 Information-Theoretic Message Authentication Codes

We use information-theoretic message authentication codes (IT-MACs) [7, 37] to authenticate bits
or field elements in F2κ . Specifically, let ∆ ∈ F2κ be the global key of PA. We adopt the notation
[[x]]∆ = (KA[x],MB[x], x) to denote that an element x ∈ F (where F ∈ {F2,F2κ}) known by PB is
authenticated by the other party PA. Here PA holds the local key KA[x] ∈ F2κ , while PB holds the
tag MB[x] = KA[x] + x ·∆ ∈ F2κ . The case where values known by PA are authenticated by PB can
be defined symmetrically.

For a constant value c ∈ F2κ , it is easy to define [[c]]∆ = (c ·∆, 0, c). It is well-known that IT-
MACs are additively homomorphic and support public scalar multiplication. That is, given public
coefficients c0, c1, . . . , cℓ ∈ F2κ , two parties can locally compute [[y]]∆ := [[c0]]∆ +

∑ℓ
i=1 ci · [[xi]]∆.

6

We extend the IT-MAC notation to authenticated vectors. Let m, ℓ ∈ N be dimension parameters.
For a vector x ∈ Fℓ

2κ , we denote by [[x]]∆ = ([[x1]]∆, ..., [[xℓ]]∆) a vector of authenticated values.
Furthermore, given a public matrix M ∈ Fm×ℓ, we use the notation [[y]]∆ = M · [[x]]∆ to denote
the matrix multiplication operation on authenticated vectors, where for each i ∈ [m], [[yi]]∆ =∑

j∈[ℓ]Ai,j · [[xj]]∆.
For a1, b1, a2, b2, a3, b3 ∈ F2κ , we refer to ([[a1]]∆B

, [[b1]]∆A
, [[a2]]∆B

, [[b2]]∆A
, [[a3]]∆B

, [[b3]]∆A
) with

(a3+ b3) = (a1+ b1) · (a2+ b2) as an authenticated multiplication triple. If a1, b1, a2, b2, a3, b3 ∈ F2,
this tuple is also called authenticated AND triple.

Batch opening of authenticated values. In the following, we describe the known procedure [37,
17] to open authenticated values in a batch. Here we always assume that PA holds the values
and MAC tags, and PB holds the global and local keys. For the case that PB holds the values
authenticated by PA, these procedures can be defined similarly. We first define the following
procedure (denoted by CheckZero) to check that all values are zero in constant small communication.
Notice that we hash the MAC tags to reduce communication [17].

• CheckZero([[x1]]∆, . . . , [[xℓ]]∆): On input authenticated values [[x1]]∆, . . . , [[xℓ]]∆, PA convinces PB

that xi = 0 for all i ∈ [ℓ] as follows:

1. PA sends hA := H(MA[x1], ...,MA[xℓ]) to PB, where H : {0, 1}∗ → {0, 1}κ is a cryptographic
hash function modeled as a random oracle.

2. PB computes hB := H(KB[x1], ...,KB[xℓ]) and checks that hA = hB. If the check fails, PB

aborts.

Following previous works [17, 41], we have the following lemma, which we prove for completeness.

Lemma 1. If ∆ ∈ F2κ is sampled uniformly at random and H is modeled as a random oracle,
then the probability that there exists some i ∈ [ℓ] such that xi ̸= 0 and PB accepts in the CheckZero
procedure is bounded by 2

2κ .

Proof. Suppose xi ̸= 0 for some i ∈ [ℓ]. Then the value KB[xi] = MA[xi] + xi∆ appear uniformly
random to PA. Consider the following two cases.

• If hA is returned from a random oracle query, then the probability that it’s preimage corresponds
to KB[xi] is bounded by 2−κ. Conditioned on this event no happening, hA = hB implies collision
of random oracle output on two distinct inputs, and its probability is bounded by 2−κ.

• If hA is not returned by a random oracle query, consider the following two sub-cases. If hB
appears in the random oracle transcript then by the definition of this case we have hA ̸= hB.
Otherwise, hB has not been sampled yet and we have Pr[hA = hB] = 2−κ.

Therefore, we conclude that if ∃i, xi ̸= 0 then PA passes the test with probability 2
2κ .

The above lemma can be relaxed by allowing that ∆ is sampled uniformly from a set R ⊂ F2κ .
In this case, the success probability for a cheating party PA is at most 1

|R| + 2−κ. Based on the

CheckZero procedure, we define the following batch-opening procedure (denoted by Open):

• Open([[x1]]∆, . . . , [[xℓ]]∆): On input authenticated values [[x1]]∆, . . . , [[xℓ]]∆ defined over field F2κ ,
PA opens these values as follows:

1. PA sends (x′1, . . . , x
′
ℓ) to PB (the purported values of x1, ..., xℓ), and then both parties set

[[yi]]∆ := [[xi]]∆ + [[x′i]]∆ for each i ∈ [ℓ].

2. PA runs CheckZero([[y1]]∆, . . . , [[yℓ]]∆) with PB. If PB does not abort, it outputs (x′1, . . . , x
′
ℓ).

7

Functionality FL
bCOT

This functionality is parameterized by an integer L ≥ 1. Running with a sender PA, a receiver PB and
an ideal adversary, it operates as follows.

Initialize. Upon receiving (init, sid,∆1, ...,∆L) from PA and (init, sid) from PB where ∆i ∈ F2κ for all
i ∈ [L], store (sid,∆1, ...,∆L) and then ignore all subsequent (init, sid) commands.

Extend. Upon receiving (extend, sid, ℓ) from PA and PB, do the following:

• For i ∈ [L], if PA is honest, sample K
(i)
A [u]← Fℓ

2κ ; otherwise, receive K
(i)
A [u] ∈ Fℓ

2κ from the adversary.

• If PB is honest, sample u← Fℓ
2 and compute M

(i)
B [u] := K

(i)
A [u] + u ·∆i ∈ Fℓ

2κ for i ∈ [L]. Otherwise,

receive u ∈ Fℓ
2 and M

(i)
B [u] ∈ Fℓ

2κ for i ∈ [L] from the adversary, and recomputes K
(i)
A [u] := M

(i)
B [u] +

u ·∆i ∈ Fℓ
2κ for i ∈ [L].

• For i ∈ [L], output (sid,K
(i)
A [u]) to PA and (sid,u,M

(i)
B [u]) to PB.

Figure 1: Functionality for block correlated oblivious transfer.

2.4 Correlated Oblivious Transfer

Our 2PC protocol will adopt the standard functionality [10, 46] of correlated oblivious transfer
(COT) to generate random authenticated bits. This functionality (denoted by FCOT) is shown in
Figure 1 by setting a parameter L = 1, where the extension phase can be executed multiple times
for the same session identifier sid. Based on Learning Parity with Noise (LPN) [8], the recent
protocols [10, 46, 15, 9] with sublinear communication and linear computation can securely realize
the COT functionality in the presence of malicious adversaries. In particular, these protocols can
generate a COT correlation with amortized communication cost of about 0.1 ∼ 0.4 bits.

We also generalize the COT functionality into block COT (bCOT) [18], which allows to generate
authenticated bits with the same choice bits and different global keys. Functionality FL

bCOT shown
in Figure 1 is the same as the standard COT functionality, except that L vectors (rather than a
single vector) of authenticated bits [[u]]∆1 , . . . , [[u]]∆L

are generated. Here the vector of choice bits
u is required to be identical in different vectors of authenticated bits. It is easy to see that FCOT is
a special case of FL

bCOT with L = 1. The protocol that securely realizes functionality FL
bCOT is easy

to be constructed by extending the LPN-based COT protocol as described above. Specifically, we
set ∆ = (∆1, . . . ,∆L) ∈ FL

2κ
∼= F2κL as the global key in the LPN-based COT protocol, and the

resulting choice-bits are authenticated over extension field F2κL . Note that the protocol to generate
block COTs still has sublinear communication, if L is sublinear to the number of the resulting COT
correlations.

While the COT functionality outputs random authenticated bits, we can convert them into
chosen authenticated bits via the following procedure (denoted by Fix), which is also used in the
recent designated-verifier zero-knowledge (DVZK) protocol [4].

• ([[x]]∆1 , . . . , [[x]]∆L
)← Fix(sid,x): On input a session identifier sid of FbCOT, and a vector x ∈ Fℓ

2

from PB, two parties PA and PB execute the following:

1. Both parties call FL
bCOT on input (extend, sid, ℓ) to obtain ([[r]]∆1 , . . . , [[r]]∆L

) with a random
vector r ∈ Fℓ

2 held by PB, where FL
bCOT has been initialized by sid and (∆1, . . . ,∆L).

2. PB sends d := x+ r to PA.

3. For each i ∈ [L], both parties set [[x]]∆i := [[r]]∆i + [[d]]∆i .

8

Functionality FDVZK

This functionality runs with a prover P and a verifier V, and operates as follows:

• Upon receiving (dvzk, sid, ℓ, {[[xi]]∆, [[yi]]∆, [[zi]]∆}i∈[ℓ]) from P and V where xi, yi, zi ∈ F2κ for all i ∈ [ℓ],
if there exists some i ∈ [ℓ] such that one of [[xi]]∆, [[yi]]∆, [[zi]]∆ is not valid, output (sid, false) to V and
abort.

• Check that zi = xi · yi ∈ F2κ for all i ∈ [ℓ]. If the check passes, then output (sid, true) to V, else
output (sid, false) to V.

Figure 2: Functionality for DVZK proofs of authenticated multiplication triples.

For a field element x ∈ F2κ , PA and PB can run x ← F2B(x), ([[x]]∆1 , . . . , [[x]]∆L
) ← Fix(sid,x)

and ([[x]]∆1 , . . . , [[x]]∆L
)← B2F([[x]]∆1 , . . . , [[x]]∆L

) to obtain the corresponding authenticated values.
Note that B2F only involves the operations multiplied by public elements X, . . . ,Xκ−1 ∈ F2κ , and
thus ([[x]]∆1 , . . . , [[x]]∆L

) can be computed locally by running B2F. For simplicity, we abuse the Fix
notation, and use ([[x]]∆1 , . . . , [[x]]∆L

) ← Fix(sid, x) to denote the conversion procedure. The Fix
procedure is easy to be generalized to support that the values are defined over any extension field
of F2 such as F2ρ . The Fix procedure can be symmetrically defined when PB holds (∆1, . . . ,∆L).
We further extend Fix to additionally allow to input vectors of random authenticated bits instead
of calling FL

bCOT, which is denoted by [[x]]∆ ← Fix(x, [[r]]∆) for the case of L = 1.
We note that Vector Oblivious Linear Evaluation (VOLE) is an arithmetic generalization of

COT, which enables PA to obtain (∆,KA[u]) ∈ F×Fℓ and PB to get (u,MB[u]) ∈ Fℓ×Fℓ such that
MB[u] = KA[u]+u·∆, where F is a large field such as F = F2ρ . Like COT, VOLE can be generalized
to block VOLE and can be generated with sublinear communication and linear computation under
the LPN assumption.

2.5 Designated-Verifier Zero-Knowledge Proofs

Based on IT-MACs, a family of streamable designated-verifier zero-knowledge (DVZK) proofs with
fast prover time and a small memory footprint has been proposed [41, 20, 4, 44, 42, 2, 19, 43, 3].
While these DVZK proofs can prove arbitrary circuits, we only need them to prove a simple
multiplication relation. Specifically, given a set of authenticated triples {([[xi]]∆, [[yi]]∆, [[zi]]∆)}i∈[ℓ]
over F2κ , these DVZK protocols can enable a prover P to convince a verifier V that zi = xi · yi for
all i ∈ [ℓ]. This is modeled by an ideal functionality shown in Figure 2. In this functionality, an
authenticated value [[x]]∆ is input by two parties P and V, meaning that P inputs (x,M) and V
inputs (K,∆). We say that [[x]]∆ is valid, if M = K + x · ∆. Using the recent DVZK proofs, this
functionality can be non-interactively realized in the random oracle model using constant small
communication (e.g., 2κ bits in total [44]).

2.6 (m,L)-Independent Matrix

We recall the notion of (m,L)-independent matrix below. This notion first appears in [21] and is
applied in the authenticated garbling setting in [18].

Definition 3. We call a matrix M ∈ Fn×L
2 (m,L)-independent if any m rows of M are linearly

independent.

In particular, this property guarantees that if M ∈ Fn×L
2 satisfies (m,L)-independence and b∗ is

uniformly random over FL
2 , then b := M·b∗ ism-wise independence. We show in Lemma 2 that if we

9

set L = ⌈ρ+m · log(enm) + logm
2 ⌉ then a uniformly random M satisfies (m,L)-independence except

with probability 2−ρ. We give the proof in Appendix B.1. In the following we set L = ⌈2ρ log(en√
2ρ
)+

log 2ρ
2 ⌉ and assume that a uniformly random n× L matrix satisfies (2ρ, L)-independence.

Lemma 2. Let L = ⌈ρ+m · log(enm) + logm
2 ⌉ and let M be a uniformly random matrix over Fn×L

2 .
M satisfies the (m,L)-independent property except with probability 2−ρ.

3 Technical Overview

In this section, we give an overview of our techniques. The detailed protocols and their formal
proofs are described in later sections. Firstly, we recall the basic approach in the state-of-the-art
solution [18].

3.1 Overview of the State-of-the-Art Solution

Recently, Dittmer, Ishai, Lu and Ostrovsky [18] constructed the state-of-the-art 2PC protocol with
malicious security (denoted by DILO) from simple VOLE correlations. For one-way communication,
this protocol takes 5ρ+ 1 bits to generate a single authenticated AND triple and 2κ+ 3ρ bits per
AND gate to produce one distributed garbled circuit. Their approach lies in the authenticated
garbling framework, which we recall next.

Table 3: An example of semi-honest garbled truth table for AND gate (i, j, k,∧). For w ∈ {i, j, k}
Λw and λw denote the masked wire value and wire mask for the wire w. H is a hash function.

Λi Λj Λk Ciphertext

0 0 λiλj ⊕ λk H(Li,0, Lj,0)⊕ (Λk, Lk,Λk
)

0 1 λiλ̄j ⊕ λk H(Li,0, Lj,1)⊕ (Λk, Lk,Λk
)

1 0 λ̄iλj ⊕ λk H(Li,1, Lj,0)⊕ (Λk, Lk,Λk
)

1 1 λ̄iλ̄j ⊕ λk H(Li,1, Lj,1)⊕ (Λk, Lk,Λk
)

Authenticated Garbling. Garbled circuit is a classical solution to the two-party computation
problem, but the vanilla version guarantees no security against a malicious garbler PA, as we explain
below. Recall that with standard point-and-permute [5] and Free-XOR [33] techniques, each wire
w in a Boolean circuit C is associated with a wire mask λw known by the garbler PA such that if the
real value of that wire is zw then the evaluator PB learns the masked value Λw = zw ⊕ λw during
circuit evaluation. Each wire w is also associated with two labels Lw,0, Lw,1 = Lw,0 ⊕∆A sampled
by PA and PB will learn the label Lw,Λw corresponding to the masked wire value during evaluation.

For each AND gate (i, j, k,∧), PA prepares a garbled truth table as shown in Table 3. With
input labels Li,Λi , Lj,Λj , PB can decrypt the ciphertext indexed by (Λi,Λj) to learn the masked value
Λk and label Lk,Λk

of the next level. Therefore, PB can evaluate the entire circuit in a gate-by-gate
manner. Nevertheless, a malicious PA can perform the following two attacks by choosing erroneous
ciphertexts.

• PA can corrupt some rows of the garbled truth table such that if PB uses the corrupted ciphertexts
then the garbled execution deviates from the computation of C. Suppose that such deviation
causes observable failures in the protocol (e.g. PB aborts) then PA can infer which row is chosen

10

w.r.t. the corrupted garbled truth table and learn the masked values Λi,Λj . Since PA knows the
wire masks, it can therefore recover the real values.

• PA can change the logic of the circuit by encrypting (Λ̄k, Lk,Λ̄k
) on each row, effectively changing

an AND gate to a NAND gate. Since PB only learns the overall output of C, not its intermediate
values, PB has no way of detecting this change.

To solve these problems, Wang et al. [39] proposed the authenticated garbling framework.
Firstly, the wire masks are secret shared between PA and PB. This ensures that even if some rows
of a garbled truth table are corrupted, PA cannot learn any information from this event since the
wire masks are uniformly random in the view of PA. Moreover, to prevent PA from changing the
logic of the circuit, we authenticate PA’s wire masks using IT-MAC under the global key of PB. In
this way, the real wire values are essentially committed after PB’s evaluation, making it possible to
check for consistency over the committed values.

Additionally, Wang et al. showed that PA can use the garbling key ∆A as its IT-MAC global
key. Moreover, by authenticating the wire masks, as well as the multiplication of two input wire
masks for each AND gate, the two parties can locally derive secret shares of the garbled truth
tables, which allows the parties to securely reconstruct the garbled truth table with secret shared
wire masks.

Efficient Generation of IT-MACs. The authenticated garbling framework extensively utilizes
IT-MAC as an authentication method and therefore it is crucial to generate IT-MACs efficiently.
Let [[x]]∆ be a vector of IT-MAC correlation (cf. Section 2.3 for more details on this notation), the
two party functionalities of generating [[x]]∆ for a random x vector over binary and larger fields are
commonly referred to as correlated oblivious transfer (COT) and vector oblivious linear evaluation
(VOLE) respectively.

COT and VOLE functionalities can be extended to the block versions where the authentication
of the same vector x under L different global keys ∆1, ...,∆L are generated in one go. This can
be realized by calling the original functionalities with a L-time larger key, and then using the field
isomorphism to locally convert the IT-MAC over the large key into L IT-MACs over small keys.

Building on the Learning Parity with Noise (LPN) assumption [8], recent protocols [10, 46, 15, 9]
could realize the COT and VOLE functionalities with communication sublinear to the length of
the generated vector. For the sake of this work, we may view (block) COT and VOLE as black
boxes and assume that they incur no influence on the amortized communication costs.

Compressed Preprocessing. In the above authenticated garbling framework, a large portion
of the total communication is incurred by the preprocessing phase which generates necessary au-
thentication material for subsequent garbling. Dittmer et al. [18] observed that if the masked wire
values are not revealed to PA then the wire masks of PB is unnecessary to be uniformly random,
which would significantly reduce the communication of preprocessing (as indicated by Table 1).

In particular, for the state-of-the-art distributed half-gate scheme in Section C.1, by corrupting
a garbled truth table, PA has probability 1/2 of causing inconsistency. This implies that for a
statistical security parameter ρ, PA can only guess at most ρ − 1 masked wire values. Otherwise,
the protocol will abort with probability at least 1− 1/2ρ. Therefore, it suffices for the mask shares
of PB to be 2ρ-wise independent since if no more than ρ gates are corrupted then the corresponding
wires masks would be uniformly random due to the 2ρ-wise independence property. If more than
ρ gates are corrupted, PB would abort with overwhelming probability.

11

Dittmer et al. further observed that a 2ρ-wise independent vector can be acquired by expanding
a short uniformly random vector with a public random matrix. Therefore, the two parties only
need to authenticate a short vector and PB’s wire mask can be expanded using the homomorphism
of IT-MAC. Moreover, compressing PB’s wire masks also allow the multiplication of AND gate
input wire masks to have a compact representation, enabling a significant improvement of the
preprocessing efficiency. In the following, we give an overview of Dittmer et al.’s approach on how
to generate preprocessing information for a circuit with n AND gates.

1. PA and PB generates a vector of authenticated bits [[b∗]]∆A
with a uniform b∗ ∈ FL

2 by calling
FCOT. Then, both parties define [[b]]∆A

:= M · [[b∗]]∆A
. (We show in Lemma 2 how to choose the

parameter L = O(ρ log(n/ρ).)

2. Both parties compute authenticated bit [[bi,j]]∆A
for each AND gate (i, j, k,∧) via running the

Fix procedure with input {bi,j} where bi,j := bi · bj .

3. PB samples ∆B, γ ← F2ρ . Then, both parties initializes two functionalities FL+2
bCOT and FL+2

bVOLE

with the same global keys (b∗1 · ∆B + γ, . . . , b∗L · ∆B + γ,∆B + γ, γ), where FL+2
bVOLE is the same

as FL+2
bCOT except that the outputs are VOLE correlations over F2ρ instead of COT correlations.

Here γ is necessary to mask b∗i ·∆B. In particular, a consistency check in DILO lets PB send a
hashing of values related to b∗i ·∆B to the malicious party PA, which may leak the bit b∗i to PA.
This attack would be prevented by using a uniform γ to mask b∗i ·∆B. Given [[a]]b∗i∆B+γ and [[a]]γ
for any bit a held by PA, it is easy to locally compute [[ab∗i]]∆B

from the additive homomorphism
of IT-MACs. Similarly, given [[a]]∆B+γ and [[a]]γ , two parties can locally compute [[a]]∆B

.

4. PA and PB calls FL+2
bCOT to generate the vectors of authenticated bits [[a]]∆B

, [[â]]∆B
as well as

[[aib
∗]]∆B

for each i ∈ [n], where a ∈ Fn
2 (resp., â ∈ Fn

2) is used as the vector of random masks
{ai} (resp., {âk}) held by PA on the output wires of all AND gates. Then, they can locally
compute [[aibj]]∆B

and [[ajbi]]∆B
for each AND gate (i, j, k,∧) by calculating M · [[aib∗]]∆B

. Both
parties run the Fix procedure with input {ai,j} to obtain {[[ai,j]]∆B

}, where ai,j = ai∧aj for each
AND gate (i, j, k,∧).

5. PA and PB call FL+2
bVOLE to get a vector of authenticated values [[ã]]∆B

with a uniform vector
ã ∈ Fn

2ρ . Both parties run the Fix procedure with input (∆A ·a,∆A · â, {∆A ·ai,j}(i,j,∗,∧)∈Cand ,∆A)

and with respect to FL+2
bVOLE to get the following authentication.

• [[∆A · â]]∆B
.

• {[[∆A · ai,j]]∆B
}(i,j,∗,∧)∈Cand

• [[∆Aaib
∗]]∆B

for i ∈ [n].

• [[∆A]]∆B
and [[∆A]]b∗i∆B

for i ∈ [L], which is equivalent to [[∆B]]∆A
and [[b∗i∆B]]∆A

for i ∈ [L].

We use [[B∗i]]∆A
to denote [[b∗i∆B]]∆A

. Furthermore, PA and PB can locally compute [[∆Aaibj]]∆B

and [[∆Aajbi]]∆B
for each AND gate (i, j, k,∧) by computing [[∆Aaib]]∆B

= M · [[∆Aaib
∗]]∆B

for
each i ∈ [n].

6. Parties PA and PB call FDVZK to prove the following relations:

• For each AND gate (i, j, k,∧), given ([[bi]]∆A
, [[bj]]∆A

, [[bi,j]]∆A
), prove bi,j = bi ∧ bj .

• For each AND gate (i, j, k,∧), given ([[ai]]∆B
, [[aj]]∆B

, [[ai,j]]∆B
), prove ai,j = ai ∧ aj .

• For each i ∈ [L], given ([[b∗i]]∆A
, [[∆B]]∆A

, [[B∗i]]∆A
), prove B∗i = b∗i ·∆B.

12

7. PB also executes an efficient verification protocol to convince PA that the same global keys are
input to different functionalities FL+2

bCOT and FL+2
bVOLE. It is unnecessary to check the consistency

of ∆A ·a,∆A · â, {∆A · ai,j},∆A input to Fix w.r.t. FL+2
bVOLE. The resulting VOLE correlations on

these inputs are used to compute the MAC tags of PB on its shares. If these inputs are incorrect,
this only leads to these MAC tags, which will be authenticated by PA, being incorrect. This is
harmless for security.

8. For each AND gate (i, j, k,∧), PA and PB locally compute [[b̃k]]∆B
:= [[ai,j]]∆B

+ [[aibj]]∆B
+

[[ajbi]]∆B
+ [[âk]]∆B

and [[B̃k]]∆B
:= [[∆Aai,j]]∆B

+ [[∆Aaibj]]∆B
+ [[∆Aajbi]]∆B

+ [[∆Aâk]]∆B
+ [[ãk]]∆B

.
Then, PA sends a pair of MAC tags (MA[b̃k],MA[B̃k]) to PB, who computes the following over
F2ρ

b̃k := (KB[b̃k] +MA[b̃k]) ·∆−1B and B̃k := (KB[B̃k] +MA[B̃k]) ·∆−1B .

It is easy to see that b̃k = ai,j⊕aibj⊕ajbi⊕âk ∈ F2 and B̃k = (ai,j+aibj+ajbi+âk)·∆A+ãk ∈ F2ρ ,
where the randomness ãk ∈ F2ρ is crucial to prevent that B̃k directly reveals ∆A in the case of
b̃k = 1. We observe that both parties now obtain an authenticated bit [b̃k]∆A

by defining its
local key KA[b̃k] = ãk and MAC tag MB[b̃k] = B̃k.

9. For each AND gate (i, j, k,∧), PA and PB locally compute an authenticated bit [[b̂k]]∆A
:=

[[b̃k]]∆A
⊕ [[bi,j]]∆A

. For each AND gate (i, j, k,∧), both parties obtain an authenticated AND

triple ([[ai]]∆B
, [[bi]]∆A

, [[aj]]∆B
, [[bj]]∆A

, [[âk]]∆B
, [[b̂k]]∆A

).

3.2 Our Solution for Generating Authenticated AND Triples

In the above DILO protocol, the one-way communication cost of generating the authenticated
AND triple an AND gate (i, j, k,∧) is induced by producing an authenticated bit [[b̃k]]∆A

that is
in turn used to locally compute [[b̂k]]∆A

with b̂k = b̃k ⊕ bibj . DILO generates the authenticated
bit [[b̃k]]∆A

= (KA[b̃k],MB[b̃k], b̃k) by computing authenticated values on b̃k and MB[b̃k] under ∆B.
Specifically, we have the following two parts:

• PB computes the bit b̃k from the authenticated bit on b̃k under ∆B and corresponding MAC tag
sent by PA in communication of ρ+ 1 bits.

• PB computes the MAC tag MB[b̃k] by generating the authenticated value on MB[b̃k] under ∆B

and corresponding MAC tag sent by PA in communication of 4ρ bits.

We observe that the communication cost of the first part can be further reduced to only 2 bits by
setting lsb(∆B) = 1. In particular, PA can send the LSB xk of the MAC tag w.r.t. [[b̃k]]∆B

to PB who
can compute b̃k by XORing xk with the LSB of the local key w.r.t. [[b̃k]]∆B

. The authentication of
{b̃k} can be done in a batch by hashing the MAC tags on these bits. However, the communication
cost of the second part is inherent due to the DILO approach of generating the MAC tag MB[b̃k].
This leaves us a challenge problem: how to generate authenticated bit [[b̃k]]∆A

without the ρ-time
blow-up in communication.

The crucial point for solving the above problem is to generate the MAC tagMB[b̃k] with constant
communication per triple. In a straightforward way, PA and PB can run the Fix procedure to
generate [[b̃k]]∆A

by taking one-bit communication after PB has obtained b̃k. However, PA has no
way to check the correctness of b̃k implied in [[b̃k]]∆A

, where [[b̃k]]∆B
only allows PB to check the

correctness of b̃k.
We introduce the notion of dual-key authentication to allow both parties to check the correctness

of b̃k, where the bit b̃k is authenticated under global key ∆A · ∆B and thus no party can change

13

the bit b̃k without being detected. We present an efficient approach to generate the dual-key
authenticated bit ⟨b̃k⟩ with communication of only one bit. By checking the consistency of all
values input to the block-COT functionality, we can guarantee the correctness of ⟨b̃k⟩, i.e., b̃k is
a valid bit authenticated by both parties. When setting lsb(∆A ·∆B) = 1, PB can obtain the bit
b̃k by letting PA send one-bit message to PB (see below for details). By using Fix, PA and PB

can generate [[b̃k]]∆A
. Now, PB can check the correctness of b̃k obtained, and PA can verify the

correctness of b̃k implied in [[b̃k]]∆A
, by using the correctness of ⟨b̃k⟩. Particularly, we propose a

batch-check technique that enables both parties to check the correctness of {b̃k} in all triples with
essentially no communication. In addition, we present two new checking protocols to verify the
correctness of global keys and the consistency of values across different functionalities (see below
for an overview). Overall, our techniques allow to achieve one-way communication of only 2 bits
per triple, and are described below.

Dual-key authentication. We propose the notion of dual-key authentication, meaning that
a bit is authenticated by two global keys ∆A,∆B ∈ F2κ held by PA and PB respectively. In
particular, a dual-key authenticated bit ⟨x⟩ = (DA[x],DB[x], x) lets PA hold DA[x] and PB hold
DB[x] such that DA[x] + DB[x] = x · ∆A · ∆B ∈ F2κ , where x ∈ F2 can be known by either PA or
PB, or unknown for both parties. From the definition, we have that dual-key authenticated bits
are also additively homomorphic, which enables us to use the random linear combination approach
to perform consistency checks associated with such bits. We are also able to generalize dual-key
authenticated bits to dual-key authenticated values in which x is defined over any field F2κ . This
generalization may be useful for the design of subsequent protocols. A useful property is that ⟨x⟩
can be locally converted into [[x∆A]]∆B

or [[x∆B]]∆A
and vice versa.

Let x = a · b where PA holds a ∈ F2 and PB holds b ∈ F2. Without loss of generality, we focus
on the case that a is a secret bit. The bit b can be either a secret bit or a public bit 1, where
the former means that no party knows x and the latter means that only PA knows x. The DILO
protocol [18] implicitly generates a dual-key authenticated bit by running Fix(a∆A) w.r.t. global
keys b∆B + γ, γ to obtain [[a∆A]]b∆B

= ⟨ab⟩ = ⟨x⟩, which incurs ρ-time blow-up in communication
(even if a allows to be a random bit). Our approach can reduce the communication cost to at most
one bit. In particular, we first let PA and PB generate a dual-key authenticated bit ⟨b⟩ = (α, β, b)
with α + β = b ·∆A ·∆B ∈ F2κ , where PA gets α and PB obtains β. Then, both parties initialize
functionality FbCOT with a global key β. If a ∈ F2 allows to be random, both parties call FbCOT

to generate [[a]]β without communication. Otherwise, both parties run Fix with input a to generate
[[a]]β with one bit of communication. Given [[a]]β = (KB[a],MA[a], a), PA and PB can locally compute
a dual-key authenticated bit ⟨a⟩ by letting PA compute DA[x] := MA[a] + a · α ∈ F2κ and PB set
DB[x] := KB[a] ∈ F2κ . We have that DA[x] + DB[x] = (MA[a] + KB[a]) + a · α = a · (α + β) =
a · b ·∆A ·∆B ∈ F2κ . To guarantee correctness of ⟨x⟩, we need to check the consistency of β input
to FbCOT and a input to Fix, which will be shown below.

Sampling global keys with correctness checking. As described above, we need to generate
two global keys ∆A and ∆B such that lsb(∆A · ∆B) = 1, which allows one party to get the bit
x = lsb(DA[x]) ⊕ lsb(DB[x]) from a dual-key authenticated bit ⟨x⟩. To do this, we let PA sample
∆A ← F2κ such that lsb(∆A) = 1. Then, we let PB sample ∆B ← F2κ , and make PA and PB

run the Fix procedure w.r.t. ∆A with input ∆B to generate [[∆B]]∆A
= ⟨1⟩ = (α0, β0, 1) (i.e., dual

key authentication of constant 1), where α0 ⊕ β0 = ∆A∆B. PA and PB can exchange lsb(α0) and
lsb(β0) to decide whether lsb(α0)⊕ lsb(β0) = 0. If yes, then lsb(∆A∆B) = lsb(α0)⊕ lsb(β0) = 0. In
this case, we let PB update ∆B as ∆B ⊕ 1, which makes ∆A∆B be updated as ∆A∆B ⊕∆A, where

14

lsb(∆A∆B ⊕ ∆A) = lsb(∆A∆B) ⊕ lsb(∆A) = 1. Since ∆B is changed as ∆B ⊕ 1, α0 needs to be
updated as α0 ⊕∆A in order to keep correct correlation.

While we adopt the KRRW authenticated garbling [32] in dual executions, some bit of global
keys ∆A,∆B ∈ F2κ is required to be fixed as 1. We often choose to define lsb(∆A) = 1 and
lsb(∆B) = 1. While lsb(∆A) = 1 has been satisfied, lsb(∆B) = 1 does not always hold, as PB

may flip ∆B depending on if lsb(α0) ⊕ lsb(β0) = 0. Thus, we let PB set msb(∆B) = 1 for ease of
remembering. More importantly, msb(∆B) = 1 has no impact on setting lsb(∆A∆B) = 1.

To ensure that neither party can guess the value of ∆A ·∆B, we need to ensure that ∆A ̸= 0 and
∆B ̸= 0. We notice that this requirement is implied by the aforementioned constraints of circuit
garbling (lsb(∆A) = 1 and msb(∆B) = 1) and satisfied in the previous sampling process. Therefore,
we show how to check these two constraints below. To enable PB to check lsb(∆A) = 1, both
parties can generate random authenticated bits [[r1]]∆A

, . . . , [[rρ]]∆A
, and then PA sends lsb(KA[ri])

for i ∈ [ρ] to PB who checks that lsb(KA[ri]) ⊕ lsb(MB[ri]) = ri for all i ∈ [ρ]. A malicious PA

can cheat successfully if and only if it guesses correctly all random bits r1, . . . , rρ, which happens
with probability 1/2ρ. The correctness check of msb(∆B) = 1 can be done in a totally similar
way. Furthermore, we need also to check lsb(∆A∆B) = 1, and otherwise a selective failure attack
may be performed on secret bit b̃k. We first let PB check lsb(∆A∆B) = 1 by interacting with PA.
We make PA and PB generate random dual-key authenticated bits ⟨s1⟩, . . . , ⟨sρ⟩. Then, the check
of lsb(∆A∆B) = 1 can be done similarly, by letting PA send lsb(DA[si]) to PB who checks that
lsb(DA[si])⊕ lsb(DB[si]) = si for all i ∈ [ρ]. To produce ⟨s1⟩, . . . , ⟨sρ⟩, PA and PB can call FCOT to
generate random authenticated bits [[s1]]∆A

, . . . , [[sρ]]∆A
, and then run the Fix procedure w.r.t. ∆A on

input (s1∆B, . . . , sρ∆B) to generate [[s1∆B]]∆A
, . . . , [[sρ∆B]]∆A

that are equivalent to ⟨s1⟩, . . . , ⟨sρ⟩.
Then, the correctness of the input (s1∆B, . . . , sρ∆B) needs to be verified by PA via letting PB prove
that ([[si]]∆A

, [[∆B]]∆A
, [[si∆B]]∆A

) for all i ∈ [ρ] satisfy the multiplication relationship using FDVZK.
Due to the dual execution, PA needs also to symmetrically check lsb(∆A∆B) = 1 by interacting
with PB.

Generating compressed authenticated AND triples. As described above, for generating
a compressed authenticated AND triple ([[ai]]∆B

, [[bi]]∆A
, [[aj]]∆B

, [[bj]]∆A
, [[âk]]∆B

, [[b̂k]]∆A
), the crucial

step is to generate a dual-key authenticated bit ⟨b̃k⟩ with b̃k = b̂k ⊕ bibj . From the definition of
b̃k, we know that ⟨b̃k⟩ = ⟨ai,j⟩ ⊕ ⟨aibj⟩ ⊕ ⟨ajbi⟩ ⊕ ⟨âk⟩. We use the above approach to generate
the dual-key authenticated bits ⟨ai,j⟩, ⟨âk⟩ and ⟨aib∗⟩ for i ∈ [n] that can be locally converted to
⟨aibj⟩, ⟨ajbi⟩ by multiplying a public matrix M. Then, we combine all the dual-key authenticated
bits to obtain ⟨b̃k⟩. From lsb(∆A∆B) = 1, we can let PA send lsb(DA[b̃k]) to PB who is able to
recover b̃k = lsb(DA[b̃k]) ⊕ lsb(DB[b̃k]). By running the Fix procedure with input b̃k, both parties
can generate [[b̃k]]∆A

, which can be in turn locally converted into [[b̂k]]∆A
. More details are shown as

follows.

1. As in the DILO protocol [18], we let PA and PB obtain [[b∗]]∆A
and {[[bi,j]]∆A

} by calling FCOT

and running Fix with input bi,j = bibj . Then, both parties compute [[b]]∆A
:= M · [[b∗]]∆A

to
obtain [[bi]]∆A

, [[bj]]∆A
for each AND gate (i, j, k,∧).

2. PA and PB have produced ⟨1⟩ = (α0, β0, 1) such that α0 + β0 = ∆A · ∆B ∈ F2κ . For each
i ∈ [L], both parties can further generate a dual-key authenticated bit ⟨b∗i ⟩ = (αi, βi, b

∗
i) with

αi+βi = b∗i ·∆A ·∆B ∈ F2κ by running Fix w.r.t. ∆A with input B∗i = b∗i∆B. The communication
to generate ⟨b∗1⟩, . . . , ⟨b∗L⟩ is Lκ bits and logarithmic to the number n of AND gates due to
L = O(ρ log(n/ρ)).

3. PB and PA initialize FL+1
bCOT with global keys β1, . . . , βL,∆B, and then call FL+1

bCOT to generate

15

[[a]]β1 , . . . , [[a]]βL
and [[a]]∆B

. For each tuple ([[ai]]β1 , . . . , [[ai]]βL
), we can convert it to ⟨aib∗⟩. By

multiplying the public matrix M, both parties can obtain ⟨aibj⟩ and ⟨ajbi⟩ for each AND gate
(i, j, k,∧). From [[a]]∆B

, both parties directly obtain [[ai]]∆B
, [[aj]]∆B

for each AND gate (i, j, k,∧).

4. PB and PA initialize F2
bCOT with global keys β0,∆B, and then call F2

bCOT to generate [[â]]β0 and
[[â]]∆B

. Both parties further run the Fix procedure with input ai,j = ai ∧ aj to generate [[ai,j]]β0

and [[ai,j]]∆B
, where [[ai,j]]∆B

will be used to prove validity of ai,j . The parties can convert [[â]]β0

and {[[ai,j]]β0} into ⟨âk⟩ and ⟨ai,j⟩ for each AND gate (i, j, k,∧).

5. Both parties can locally compute ⟨b̃k⟩ := ⟨ai,j⟩ ⊕ ⟨aibj⟩ ⊕ ⟨ajbi⟩ ⊕ ⟨âk⟩. Then, PA can send
lsb(DA[b̃k]) to PB, who computes b̃k := lsb(DA[b̃k]) ⊕ lsb(DB[b̃k]) due to lsb(∆A∆B) = 1. Both
parties run Fix on input b̃k to generate [[b̃k]]∆A

.

6. PA and PB locally compute [[b̂k]]∆A
:= [[b̃k]]∆A

⊕ [[bi,j]]∆A
. Now for each AND gate (i, j, k,∧), the

parties hold ([[ai]]∆B
, [[bi]]∆A

, [[aj]]∆B
, [[bj]]∆A

, [[âk]]∆B
, [[b̂k]]∆A

).

Consistency check. We have shown how to generate compressed authenticated AND triples.
Below, we show how to verify their correctness. We only need to guarantee the consistency of all
Fix inputs, all global keys input to the bCOT functionality and all bits sent by PA to PB. When
all messages and inputs are consistent, no malicious party can break the correctness of all triples.
Specifically, we present the following checks to guarantee the consistency.

1. Check the correctness of the following authenticated AND triples:

• ([[bi]]∆A
, [[bj]]∆A

, [[bi,j]]∆A
) s.t. bi,j = bi ∧ bj for each AND gate (i, j, k,∧).

• ([[ai]]∆B
, [[aj]]∆B

, [[ai,j]]∆B
) s.t. ai,j = ai ∧ aj for each AND gate (i, j, k,∧).

• ([[b∗i]]∆A
, [[∆B]]∆A

, [[B∗i]]∆A
) s.t. B∗i = b∗i ·∆B for each i ∈ [L].

2. The keys β0, β1, . . . , βL input to functionality FbCOT are consistent to the values defined in
⟨1⟩, ⟨b∗1⟩, . . . , ⟨b∗L⟩.

3. PA needs to check that two global keys ∆
(1)
B and ∆

(2)
B respectively input to functionalities FL+1

bCOT
and F2

bCOT are consistent with ∆B defined in ⟨1⟩.

4. PA checks that the bit b̃k defined in [[b̃k]]∆A
is consistent to that defined in ⟨b̃k⟩, and PB checks

that b̃k computed by itself is consistent to that defined in ⟨b̃k⟩.

The first two checks guarantee the correctness of ⟨b̃k⟩ and [[bi,j]]∆A
, the third check verifies the

consistency of the global keys in [[ai]]∆(1)
B

, [[aj]]∆(1)
B

, [[âk]]∆(2)
B

, and the final check assures the consis-

tency of bits authenticated between ⟨b̃k⟩ and [[b̃k]]∆A
. Check 1 can be directly realized by calling

functionality FDVZK.
For Check 2, for each i ∈ [0, L], we let PA and PB run the Fix procedure w.r.t. βi on input ∆′A to

generate [[∆′A]]βi
, which can be locally converted into [[βi]]∆′

A
, where ∆′A ∈ F2κ is sampled uniformly

at random by PA.
1 For i ∈ [0, L], we present a new protocol to verify the consistency of βi in the

following equations where we define b∗0 = 1.

αi + βi = b∗i ·∆A ·∆B,

KA[βi] +MA[βi] = βi ·∆′A,
1An independent global key ∆′

A is necessary to perform the consistency check, and otherwise a malicious PB will
always pass the check if ∆A is reused.

16

We first multiply two sides of the first equation by ∆−1A , and obtain αi ·∆−1A + βi ·∆−1A = b∗i ·∆B.
We rewrite the resulting equation as KA[βi] + MB[βi] = βi · ∆−1A where KA[βi] = αi · ∆−1A and
MB[βi] = b∗i ·∆B. Below, we can adapt the known techniques [20, 18] to check the consistency of
βi authenticated under different global keys (i.e., [[βi]]∆−1

A
and [[βi]]∆′

A
) in a batch (see Section 4.3

for details).

For Check 3, we make PA and PB run the Fix procedure w.r.t. ∆
(1)
B (resp., ∆

(2)
B) on input ∆′A to

obtain [[∆
(1)
B]]∆′

A
(resp., [[∆

(2)
B]]∆′

A
). Authenticated values [[∆

(1)
B]]∆′

A
and [[∆

(2)
B]]∆′

A
are equivalent to

⟨1(1)B ⟩ and ⟨1
(2)
B ⟩ where ∆

(1)
B ∆′A and ∆

(2)
B ∆′A are used as the global keys in dual-key authentication.

Both parties can invoke a relaxed equality-check functionality FEQ (shown in Appendix A) to check

1
(1)
B −1

(2)
B = 0. Using the checking technique by Dittmer et al. [18], we can also check the consistency

of the values authenticated between [[∆
(1)
B]]∆′

A
and [[∆B]]∆A

generated during the sampling phase.
For Check 4, we use a random linear combination approach to perform the check in a batch.

Specifically, we can let PA and PB call FCOT to generate [[r]]∆A
and then obtain [[r]]∆A

← B2F([[r]]∆A
),

where r ∈ F2κ is uniform. Then, both parties run Fix w.r.t. ∆A on input r∆B to generate [[r∆B]]∆A

(i.e., ⟨r⟩). We can let the parties call a standard coin-tossing functionality FRand to sample a
random element χ ∈ F2κ . Then, both parties can locally compute ⟨y⟩ :=

∑
χk · ⟨b̃k⟩ + ⟨r⟩ and

[[y]]∆A
:=
∑

χk ·[[b̃k]]∆A
+[[r]]∆A

. Then, PB can open [[y]]∆A
that allows PA to get y in an authenticated

way. Finally, both parties can use FEQ to verify that the opening of ⟨y⟩ − y · ⟨1⟩ is 0. Since χ is
sampled uniformly at random after all authenticated values are determined, the consistency check
will detect malicious behaviors except with probability at most n/2κ.

3.3 Our Solution for Dual Execution without Leakage

While the evaluator’s random masks are compressed, the state-of-the-art construction of authenti-
cated garbling based on half-gates by Katz et al. [32] is no longer applied. The consistency checking
protocol in [32] requires the evaluator to reveal all masked wire values, which is prohibitive for the
compression technique. Therefore, based on the technique [39], Dittmer et al. [18] designed a
new construction of authenticated garbling without revealing masked wire values. However, this
construction incurs extra communication overhead of 3ρ − 1 bits per AND gate, compared to the
half-gates-based construction [32].

In duplex networks, communication cost is often measured by one-way communication. This
allows us to adopt the idea of dual execution [36] to perform the authentication of circuit evaluation.
In the original dual execution [36], the semi-honest Yao-2PC protocol [47] is executed two times
with the same inputs in parallel by swapping the roles of parties for the second execution, and then
the correctness of the output is verified by checking that the two executions have the same output
bits. However, an inherent problem of the above method is that selective failure attacks are allowed
to leak one-bit information of the input by the honest party, even though there exists a protocol
to check the consistency of inputs in two executions. For example, suppose that PA is honest and
PB is malicious. When PA is a garbler and PB is an evaluator, both parties compute an output
f(x, y) where x is the PA’s input and y is the PB’s input. After swapping the roles, they compute
another output g(x, y) with g ̸= f , as garbler PB is malicious. If the output-equality check passes,
then g(x, y) = f(x, y), else g(x, y) ̸= f(x, y). In both cases, this leaks one-bit information on the
input x.

In the authenticated garbling framework, we propose a new technique to circumvent the problem
and eliminate the one-bit leakage. Together with our technique to generate compressed authen-
ticated AND triples, we can achieve the cost of one-way communication that is almost the same
as the semi-honest half-gates protocol [48]. Specifically, we let PA and PB execute the protocol,

17

which combines the sub-protocol of generating authenticated AND triples as described above with
the construction of distributed garbling [32], for two times with same inputs in the dual-execution
way. For each wire w in the circuit, we need to check that the actual values zw and z′w in two
executions are identical. We perform the checking by verifying zw · (∆A ⊕∆B) = z′w · (∆A ⊕∆B).
Since ∆A ⊕∆B is unknown for the adversary, the probability that zw ̸= z′w but the check passes is
negligible. Our approach allows two parties to check the correctness of all wire values in the circuit,
and thus prevents selective failure attacks.

In more detail, for each wire w, let (Λw, aw, bw) be the masked value and wire masks in the
first execution and (Λ′w, a

′
w, b
′
w) be the values in the second execution. Thus, PA and PB need to

check that Λw ⊕ aw ⊕ bw = Λ′w ⊕ a′w ⊕ b′w for each wire w, where the output wires of XOR gates
are unnecessary to be checked as they are locally computed. Below, our task is to check that
(Λw ⊕ aw ⊕ bw) · (∆A ⊕∆B) = (Λ′w ⊕ a′w ⊕ b′w) · (∆A ⊕∆B) holds for each wire w. From the two
protocol executions, both parties hold ([[aw]]∆B

, [[bw]]∆A
, [[a′w]]∆B

, [[b′w]]∆A
) for each wire w. When PA

is a garbler and PB is an evaluator, PA holds a garbled label Lw,0 and PB holds (Λw, Lw,Λw). Since
Lw,Λw = Lw,0⊕Λw∆A has the form of IT-MACs, we can view (Lw,0, Lw,Λw ,Λw) as an authenticated
bit [[Λw]]∆A

, where Lw,0 is considered as the local key and Lw,Λw plays the role of MAC tag. Similarly,
when PA is an evaluator and PB is a garbler, two parties hold an authenticated bit [[Λ′w]]∆B

. Following
the known observation (e.g., [32]), for any authenticated bit [[y]]∆A

, PA and PB have an additive
sharing of y · ∆A = KA[y] ⊕ MB[y]. Therefore, for all cross terms, both parties can obtain their
additive shares, and then can compute two values that are checked to be identical. In particular,
both parties can compute the additive shares of all cross terms: ZA

w,1⊕ZB
w,1 = Λw∆A, Z

A
w,2⊕ZB

w,2 =

Λ′w∆B, Z
A
w,3⊕ZB

w,3 = aw∆B, Z
A
w,4⊕ZB

w,4 = a′w∆B, Z
A
w,5⊕ZB

w,5 = bw∆A, Z
A
w,6⊕ZB

w,6 = b′w∆A. Then,
for each wire w, PA and PB can respectively compute

V A
w = (⊕i∈[6]Z

A
w,i)⊕ aw∆A ⊕ Λ′w∆A ⊕ a′w∆A

V B
w = (⊕i∈[6]Z

B
w,i)⊕ bw∆B ⊕ Λw∆B ⊕ b′w∆B,

such that V A
w = V B

w . Without loss of generality, we assume that only PB obtains the output, and
thus only PB needs to check the correctness of all masked values. In this case, we make PA send
the hash value of all V A

w to PB, who can check its correctness with V B
w for each wire w.

Optimizations for processing inputs. Dittmer et al. [18] consider that the wire masks (i.e.,
bI) on all wires in IB held by evaluator PB is uniformly random and authenticated AND triples
associated with bI are generated using the previous approach (e.g., [32]). This will require an
independent preprocessing protocol, and also brings more preprocessing communication cost. We
solve the problem by specially processing the input of evaluator PB. In particular, instead of
making PB send masked value Λw := yw ⊕ bw for each w ∈ IB to PA where yw is the input
bit, we use an OT protocol to transmit Lw,Λw to PB. This allows to keep masked wire values
Λw := yw ⊕ bw for all w ∈ IB secret. In this case, we can compress the wire masks using the
technique as described in Section 3.2 and adopt the same preprocessing protocol to handle bI .
Since L is logarithm to the length n of vector b (now n = |W|+ |IB|), this optimization essentially
incurs no more overhead for the preprocessing phase. Furthermore, our preprocessing protocol to
generate authenticated AND triples has already invoked functionality FCOT. Therefore, we can
let two parties call FCOT to generate random COT correlations in the preprocessing phase, and
then transform them to OT correlations in the standard way. This essentially brings no more
communication for the preprocessing phase, due to the sublinear communication of the recent
protocols instantiating FCOT. Our optimization does not increase the rounds of online phase. As a
trade-off, this optimization increases the online communication cost by |IB| · κ bits.

18

In the second protocol execution (i.e., PA as an evaluator and PB as a garbler), we make a
further optimization to directly guarantee that the masked values on all circuit-input wires are
XOR of actual values and wire masks. In this case, it is unnecessary to check the correctness of
masked values on all circuit-input wires between two protocol executions. The key idea is to utilize
the authenticated bits and messages on circuit-input wires generated/sent during the first protocol
execution along with the authenticated bits produced in the second protocol execution to generate
the masked values on the wires in IA ∪ IB. Due to the security of IT-MACs, we can guarantee
the correctness of these masked values in the second execution. We postpone the details of this
optimization to Section 5.

3.4 Optimization Towards Minimal Total Communication

We also make effort to minimize the total communication of two party computation protocols by
optimizing the DILO-WRK protocol [18], achieving the two-way communication of 2κ+ ρ+ 5 bits
per AND gate. We explain the intuition behind our optimization as follows.

We first explain the consistency checking protocol in DILO-WRK, which substitutes the state-
of-the-art checking technique [32] in the DILO protocol due to aforementioned security issues. In
the original WRK protocol [39], the garbler essentially utilizes another garbled circuit AuthGC to
compute the MAC tag of Λk for each AND gate (i, j, k,∧), which ensures that the correct Λk is
acquired by the evaluator. The authors of DILO observe that using the half-gates technique the
original 4ρ bits communication of WRK (which corresponds to an un-optimized garbled circuit)
can be optimized to 3ρ bits, resulting in a scheme which we dub “DILO-WRK”.

Recall that for each wire w, we use aw, bw,Λw to denote the wire masks of PA and PB and the
masked wire value. We define λw = aw ⊕ bw. Essentially, the goal of the WRK IT-MAC checking
is to let the evaluator compute (λk ⊕ (Λi ⊕ λi) · (Λj ⊕ λj)) ·∆B using the garbled circuit labels and
preprocessing information, and compare it against the Λk · ∆B that is locally computable. Since
the former term is unalterable by the security of IT-MAC and is correct by definition, consistency
follows when the equality check passes. Therefore, consistency checking reduces to an efficient
comparison operation.

Our first insight is that unlike regular IT-MAC opening where the entire MAC tag has to be
completely conveyed, in the secure computation setting we may settle for evaluating the additive
share of (λk ⊕ (Λi ⊕ λi) · (Λj ⊕ λj)) · ∆B since it is only used for subsequent equality checking.
Therefore, we focus on the cross-terms Λi ·MA[aj] and Λj ·MA[ai] in the expanded equation below.

(λk ⊕ (Λi ⊕ λi) · (Λj ⊕ λj)) ·∆B = λk ·∆B ⊕ Λi · Λj ·∆B ⊕ Λi · λj ·∆B ⊕ Λj · λi ·∆B ⊕ λi · λj ·∆B

= λk ·∆B ⊕ Λi · Λj ·∆B ⊕ λi · λj ·∆B ⊕ Λi · bj ·∆B ⊕ Λi · KB[aj]⊕ Λj · bi ·∆B ⊕ Λj · KB[ai]

⊕ Λi ·MA[aj]⊕ Λj ·MA[ai] .

In the DILO-WRK scheme, the two cross-terms are computed as follows. The garbler sends two
ciphertexts G′k,1 := H(Li,0)⊕H(Li,1)⊕MA[aj] and G′k,2 := H(Lj,0)⊕H(Lj,1)⊕MA[ai] to the evaluator
and defines C1 := H(Li,0), C2 := H(Lj,0). The evaluator computes D1 := H(Li,Λi) ⊕ G′k,1 =
Λi ·MA[aj]⊕C1 and D2 := H(Lj,Λj)⊕G′k,2 = Λj ·MA[ai]⊕C2, which constitute the additive sharing
of the cross-terms with C1 and C2. In DILO-WRK the garbler sends an additional message that
conveys the XOR of its local shares. Using our observation, this message can be omitted, leading
to 2ρ bits of communication per AND gate.

In secure computation, the task of checking the aforementioned equality on every AND gate
can be effectively reduced to only one equality check via random linear combination. The secure
computation task therefore reduces to evaluating

∑
(i,j,k,∧)∈Cand χ

k · (Λi ·MA[aj] + Λj ·MA[ai]). Our

19

second observation is that in free-XOR compatible garbling schemes every masked wire value Λw

is a public linear combination of the masked values of previous AND gate output wires and input
wires. More generally, we define the public binary vector cw for every wire w ∈ W such that
Λw =

∑
k∈W∪I c

w
k · Λk. Using this notation, we can expand the target expression as

∑
(i,j,k,∧)∈Cand

χk ·

(
(
∑

k′∈W∪I
cik′ · Λk′) ·MA[aj] + (

∑
k′∈W∪I

cjk′ · Λk′) ·MA[ai]

)
.

By exchanging the summation order, the expression is transformed into a linear operation on all
the masked Λw values, where the coefficients can be computed by the garbler. (Notice that the
indices are renamed.)∑

k∈W∪I
Λk ·

∑
(i′,j′,k′,∧)∈Cand

χk′ · (ci′k ·MA[aj′] + cj
′

k ·MA[ai′]) .

Using the half-gates technique, we can evaluate the target expression by sending G′k := H(Lk,0) ⊕
H(Lk,1) ⊕

∑
(i′,j′,k′,∧)∈Cand χ

k′ · (ci′k · MA[aj′] + cj
′

k · MA[ai′]) for each index k ∈ W ∪ I, which has
amortized communication cost of ρ bits per AND gate. We note that this checking method is
applicable to all distributed garbling schemes that support Free-XOR. Therefore, we believe that
this subprotocol ΠGCCheck (Figure 10) is of independent interest.

3.5 Adaptive Security without Random Oracle

Compared with the conference version [16] we removed the reliance of the random oracle model in
our circuit garbling protocols. In particular, we prove the adaptive security of the garbled circuit
protocol without using the random oracle, while all previous authenticated garbling protocols with
adaptive security [39, 32, 29, 18] uses the random oracle model during circuit garbling. Recall that
with adaptive security the garbler can send the garbled circuit ciphertexts in the preprocessing
phase. Then a malicious evaluator can adaptively choose its input values after seeing the garbled
circuit ciphertexts and the protocol remains secure regardless of the evaluator’s choice. Therefore,
with adaptive security the parties only need to determine input labels in the online phase, saving
online communication.

To prove the adaptive security, one has to construct a simulator that generates the garbled
circuit ciphertexts only from the circuit output values. In particular, the simulation is done with-
out knowing which ciphertexts would be decrypted during evaluation. The choice of ciphertexts
is determined by the relevant masked wire values and are collectively referred to as an “active
path” [29]. Previous protocols construct the simulator as follows. In the preprocessing phase the
ciphertexts and the active path are sampled randomly. Then in the online phase, since the circuit
is garbled with a random oracle, we can utilize its programmability to make the garbled circuit
evaluation phase output the correct result, regardless of the actual input.

Nevertheless, we observe that in authenticated garbling the active path is inherently randomized
and it is possible to construct such a simulator without using the random oracle. Recall that in our
preprocessing protocol, for each wire w, the wire mask λw is shared between the garbler PA and the
evaluator PB as λw = aw ⊕ bw. In particular, the garbler has uniformly random wire masks aw for
each of the evaluator’s input wire w ∈ IB. In the online phase, let PB’s input value for wire w ∈ IB
be yw. PB first specifies its input Λ̃w := yw ⊕ bw and then PA opens its wire mask aw, allowing PB

to learn Λw := aw ⊕ Λ̃w
2.

2In more detail, due to the compression of PB’s wire masks, we cannot send Λ̃w directly but rather feed it to an
oblivious transfer protocol.

20

In our security proof, the simulator generates the garbled circuit using uniformly random Λw

values in the preprocessing phase. Then in the online phase, once it receives PB’s Λ̃w message,
we can define aw = Λw ⊕ Λ̃w and open it so that PB learns exactly the previously generated Λw

values. Opening arbitrary aw values can be done since the simulator knows PB’s authentication key
corresponding to aw and can thus open a flipped value if necessary. Therefore, we can still argue
adaptive security even if the garbled circuit is generated without the random oracle. We note that
this technique is applicable to both of our online protocol in Section 5 and Section 6.

4 Preprocessing with Compressed Wire Masks

In this section we introduce the compressed preprocessing functionality Fcpre (shown in Figure 3)
for two party computation as well as an efficient protocol Πcpre (shown in Figure 5 and Figure 6)
to realize it. In a modular fashion we first introduce the sub-components which are called in the
main preprocessing protocol. The security of the protocol is also argued similarly: we first prove
in separate lemmas the respective security properties of sub-components and then utilize these
lemmas to prove the main theorem.

On the length of the input masks. In Fcpre the garbler PA has wire masks for each wire
w ∈ IA∪IB∪W. Nevertheless, the masks for IB is only required for the security proof without the
random oracle model since in the security proof the garbled circuit has to be generated according
to the active path and garbler’s input mask for w ∈ IB allows randomized masked wire value in
the view of PB. Therefore, if we can settle for the random oracle model or the garbled circuit
ciphertexts are sent during the online phase after the input has been specified, then the wire masks
of PA can be shortened to |IA|+ |W| bits.

4.1 Dual-Key Authentication

In this subsection we define the format of dual-key authentication and list some of its properties
that we utilize in the upper level preprocessing protocol.

Definition 4. We use the notation ⟨x⟩ := (DA[x],DB[x], x) to denote the dual-key authenticated
value x ∈ F2κ, where PA,PB holds DA[x],DB[x] subject to DA[x] +DB[x] = x∆A∆B and ∆A,∆B are
the IT-MAC keys of PA,PB respectively.

We remark that for any x ∈ F2κ the IT-MAC authentication [[x∆A]]∆B
can be locally transformed

to ⟨x⟩, which we summarize in the following macro (the case for [[∆B]]∆A
can be defined analogously).

In particular, [[∆B]]∆A
is equivalent to ⟨1⟩, i.e., authentication of the constant 1 ∈ F2κ .

• ⟨x⟩ ← Convert1[·]→⟨·⟩([[x∆B]]∆A
): Set DA[x] := KA[x∆B] and DB[x] := MB[x∆B].

For the ease of presentation, we also define the following macro that generates dual key authen-
tication of cross terms ⟨xy⟩ assuming the existence of ⟨y⟩ := (α, β, y) and [[x]]β = (KB[x],MA[x], x).
The correctness can be verified straightforwardly.

• ⟨xy⟩ ← Convert2[·]→⟨·⟩([[x]]β, ⟨y⟩): Given IT-MAC [[x]]β and dual-key authentication ⟨y⟩, PA and
PB locally compute the following steps:

– PA outputs DA[xy] := α · x+MA[x].

– PB outputs DB[xy] := KB[x].

21

Functionality Fcpre

This functionality is parameterized by a Boolean circuit C consisting of a list of gates in the form of
(i, j, k, T). Let n := |W| + |IB| (resp., m := |W| + |I|) be the number of all AND gates as well as
circuit-input gates corresponding to the input of PB (resp., PA and PB), and L = ⌈2ρ log(en√

2ρ
) + log 2ρ

2 ⌉
be a compression parameter where t = |W|. It runs with parties PA, PB and the ideal-world adversary
S, and operates as follows:

Initialize. Sample two global keys ∆A,∆B ∈ F2κ as follows:

• If PA is honest, sample ∆A ← F2κ such that lsb(∆A) = 1. Otherwise, receive ∆A ∈ F2κ with
lsb(∆A) = 1 from S.

• If PB is honest, sample ∆B ← F2κ such that lsb(∆A∆B) = 1 and msb(∆B) = 1. Otherwise, receive
∆B ∈ F2κ with msb(∆B) = 1 from S, and then re-sample ∆A ← F2κ such that lsb(∆A∆B) = 1 and
lsb(∆A) = 1.

• Store (∆A,∆B), and output ∆A and ∆B to PA and PB, respectively.

Macro. AuthA(x, ℓ) (this is an internal subroutine only)

• If PB is honest, sample KB[x]← Fℓ
2κ ; otherwise, receive KB[x] ∈ Fℓ

2κ from S.

• If PA is honest, compute MA[x] := KB[x] +x ·∆B ∈ Fℓ
2κ . Otherwise, receive MA[x] ∈ Fℓ

2κ from S, and
recompute KB[x] := MA[x] + x ·∆B ∈ Fℓ

2κ .

• Send (x,MA[x]) to PA and KB[x] to PB.

AuthB(x, ℓ) can be defined similarly by swapping the roles of PA and PB.

Preprocess the circuit with compressed wire masks. Sample M ← Fn×L
2 , and then execute as

follows:

• For w ∈ IA, set bw = 0 and define [[bw]]∆A
.

• If PA is honest, sample a ← Fm
2 ; otherwise, receive a ∈ Fm

2 from S. Then, execute AuthA(a,m) to
generate [[a]]∆B

. For each wire w ∈ IA ∪ IB ∪W, define aw as the wire mask held by PA.

• If PB is honest, sample b∗ ← FL
2 ; otherwise, receive b∗ ∈ FL

2 from S. Let b = M · b∗. Run AuthB(b, n)
to generate [[b]]∆A

. For each wire w ∈ IB ∪W, define bw as the wire mask held by PB.

• In a topological order, for each gate (i, j, k, T), do the following:

– If T = ⊕, compute [[ak]]∆B
:= [[ai]]∆B

⊕ [[aj]]∆B
and [[bk]]∆A

:= [[bi]]∆A
⊕ [[bj]]∆A

.

– If T = ∧, execute as follows:

1. If PA is honest, then sample âk ← F2, else receive âk ∈ F2 from S.
2. If PB is honest, then compute b̂k := (ai ⊕ bi) ∧ (aj ⊕ bj)⊕ âk. Otherwise, receive b̂k ∈ F2 from

S, and re-compute âk := (ai ⊕ bi) ∧ (aj ⊕ bj)⊕ b̂k.

Let â and b̂ be the vectors consisting of bits âk and b̂k for k ∈ W. Run AuthA(â) and AuthB(b̂) to

generate [[â]]∆B
and [[b̂]]∆A

, respectively.

• Output M and ([[a]]∆B
, [[â]]∆B

, [[b∗]]∆A
, [[b̂]]∆A

) to PA and PB.

Figure 3: Compressed preprocessing functionality for authenticated triples.

In our protocol we utilize the following properties of dual key authentication. Since they are
straightforward we only provide brief explanation and refrain from providing detailed description.

Claim 1. The dual-key authentication is additively homomorphic. In particular, given ⟨x1⟩ :=

22

(DA[x1],DB[x1], x1) and ⟨x2⟩ := (DA[x2],DB[x2], x2), PA,PB can locally compute ⟨x1 + x2⟩ :=
(DA[x1] + DA[x2],DB[x1] + DB[x2], x1 + x2). Moreover, given public constant c ∈ F2κ and ⟨x⟩ :=
(DA[x],DB[x], x), PA,PB can locally compute ⟨c · x⟩ := (c · DA[x], c · DB[x], c · x).

We define the zero-checking macro CheckZero2 which ensures soundness for both parties. We
note that this is simply the equality checking operations.

• CheckZero2(⟨x1⟩, ...⟨xℓ⟩): On input dual-key authenticated values ⟨x1⟩, ...⟨xℓ⟩ both parties check
xi = 0 for i ∈ [ℓ] as follows:

1. PA computes hA := H(DA[x1], ...,DA[xℓ]), and PB sets hB := H(DB[x1], ...,DB[xℓ]), where
H : {0, 1}∗ → {0, 1}κ is a cryptographic hash function modeled as a random oracle.

2. Both parties call functionality FEQ to check hA = hB. If FEQ outputs false, the parties abort.

Notice that the additive homomorphic and zero-checking properties allow us to check that a dual-key
authenticated value ⟨x⟩ matches a public value x′ assuming the existence of ⟨1⟩ = (DA[1],DB[1], 1)
by calling CheckZero2(⟨x⟩ − x′⟨1⟩). Similar to CheckZero we have the following soundness lemma
of CheckZero2.

Lemma 3. If ∆A,∆B ∈ F2κ is sampled uniformly at random and are non-zero and H is modeled
as a random oracle, then the probability that there exists some i ∈ [ℓ] such that xi ̸= 0 and PA or
PB accepts in the CheckZero2 procedure is bounded by 2

2κ .

4.2 Global-Key Sampling

We require ∆A ̸= 0, ∆B ̸= 0, and lsb(∆A∆B) = 1 in the preprocessing phase to facilitate dual-
key authentication. Considering the requirement of half-gates garbling, we have the constraints
lsb(∆A) = 1, msb(∆B) = 1, and lsb(∆A∆B) = 1 in Fcpre. We design the protocol Πsamp in Figure 4
and argue in Lemma 4 that the key constraints are satisfied.

Lemma 4. The protocol Πsamp satisfies the following properties:

• The outputs satisfy that lsb(∆A) = 1, msb(∆B) = 1, and lsb(∆A ·∆B) = 1 in the honest case.

• If lsb(∆A) ̸= 1 then PB aborts except with probability 2−ρ. Conditioned on ∆A ̸= 0, if lsb(∆A ·
∆B) ̸= 1 then PB aborts except with probability 2−ρ.

• If msb(∆B) ̸= 1 then PA aborts except with probability 2−ρ. Conditioned on ∆B ̸= 0, if lsb(∆A ·
∆B) ̸= 1 then PB aborts except with probability 2

2κ +2−ρ, where τ upper bounds the running time
of PB.

Proof. For the honest case since PA and PB follow the protocol instruction when sampling keys,
the constraints on ∆A and ∆B are satisfied automatically. Moreover, notice that lsb(∆A∆̃B) =
lsb(KA[∆̃B])⊕ lsb(MB[∆̃B]) and lsb(∆A) = 1. If the parties discover in step 6b that lsb(∆A∆̃B) = 0,
PB sets ∆B := ∆̃′B ⊕ 1 and lsb(∆A∆B) = lsb(∆A∆̃B +∆A) = 1.

For the case of a corrupted PA, notice that lsb(KA[r])⊕ lsb(MB[r]) = r · lsb(∆A) and lsb(DA[r])⊕
lsb(DB[r]) = r · lsb(∆A∆B) for r ∈ F2. If lsb(∆A) = 0 then PA passing the test is equivalent to
m0

A ⊕ (lsb(KA[u1]), ..., lsb(KA[uρ])) = u which happens with 2−ρ probability since u is sampled
independently from the left-hand side of the equation. Conditioned on ∆A ̸= 0, the second test
passes when lsb(∆A∆B) = 0 except with 2−ρ probability from similar argument.

For the case of a corrupted PB, the checks in step 5 and step 6e are equivalent to the corrupted
PA case. Thus the soundness of the first check is 2−ρ. Also Lemma 3 guarantees that inconsistent
∆B will be detected except with 2

2κ probability. By union bound the soundness of the second check
is 2

2κ + 2−ρ.

23

Protocol Πsamp

PA samples ∆A ← F2κ such that lsb(∆A) = 1. PB samples ∆̃B ← F2κ such that msb(∆̃B) = 1. Then, PA

and PB execute the following steps.

1. PA and PB call functionality FCOT on respective input (init, sid0,∆A) and (init, sid0), and then call
FCOT on the same input (extend, sid0, ρ) to generate random authenticated bits [u]B.

2. Then PA convinces PB that lsb(∆A) = 1 by sending a ρ-bit vector m0
A := (lsb(KA[u1]), . . . , lsb(KA[uρ]))

to PB, who checks that m0
A = (lsb(MB[u1])⊕ u1, . . . , lsb(MB[uρ])⊕ uρ) holds.

3. PB runs Fix(sid0, ∆̃B) to generate [[∆̃B]]∆A
. Then, PA sends m1

A = lsb(KA[∆̃B]) to PB, and PB sends

m1
B = lsb(MB[∆̃B]) to PA in parallel. If m1

A⊕m1
B = 0, both parties compute [[∆B]]∆A

:= [[∆̃B]]∆A
⊕[[1]]∆A

where ∆B = ∆̃B ⊕ 1; otherwise, the parties set [[∆B]]∆A
:= [[∆̃B]]∆A

.

4. PA and PB calls FCOT on respective input (init, sid′0) and (init, sid′0,∆B), and then call FCOT on the
same input (extend, sid′0, ρ) to generate random authenticated bits [v]A.

5. Then PB convinces PA that msb(∆B) = 1 by sending a ρ-bit vector m0
B := (msb(KB[v1]), . . . ,

msb(KB[vρ])) to PA, who checks that m0
B = (msb(MA[v1])⊕ v1, . . . ,msb(MA[vρ])⊕ vρ) holds.

6. PA and PB execute the following steps to mutually check that lsb(∆A ·∆B) = 1.

(a) Both parties call FCOT on the same input (extend, sid0, ρ) to generate random authenticated bits
[[x]]∆A

, as well as run Fix(sid0,∆B · x) to generate [[∆B · x]]∆A
. PB proves to PA that a set of

authenticated triples {([[xi]]∆A
, [[∆B]]∆A

, [[xi∆B]]∆A
)}i∈[ρ] is valid by calling FDVZK, and PA aborts

if it receives false from FDVZK.

(b) Both parties set ⟨x⟩ := Convert1[·]→⟨·⟩([[∆B · x]]∆A
). Then, PA sends m2

A := (lsb(DA[x1]), . . . ,
lsb(DA[xρ])) to PB, who checks that m2

A = (lsb(DB[x1])⊕ x1, . . . , lsb(DB[xρ])⊕ xρ).

(c) The parties run Fix(sid′0,∆A) to generate [[∆A]]∆B
.

(d) Both parties call FCOT on the same input (extend, sid′0, ρ) to generate random authenticated bits
[[y]]∆B

, as well as run Fix(sid′0,∆A · y) to generate [[∆A · y]]∆B
. PB proves to PA that a set of

authenticated triples {([[yi]]∆B
, [[∆A]]∆B

, [[yi∆A]]∆B
)}i∈[ρ] is valid by calling FDVZK, and PB aborts

if it receives false from FDVZK.

(e) Both parties set ⟨y⟩ := Convert1[·]→⟨·⟩([[∆A · y]]∆B
). Then, PB sends m2

B := (lsb(DB[y1]), . . . ,
lsb(DB[yρ])) to PA, who checks that m2

B = (lsb(DA[y1])⊕ y1, . . . , lsb(DA[yρ])⊕ yρ).

(f) Both parties locally compute two dual-key authenticated bits ⟨1B⟩ := Convert1[·]→⟨·⟩([[∆B]]∆A
)

and ⟨1A⟩ := Convert1[·]→⟨·⟩([[∆A]]∆B
).

(g) The parties run CheckZero2(⟨1B⟩ − ⟨1A⟩), and abort if the check fails.

7. PA outputs (∆A, α0) and PB outputs (∆B, β0), such that lsb(∆A) = 1, msb(∆B) = 1, lsb(∆A ·∆B) = 1
and α0 + β0 = ∆A ·∆B ∈ F2κ .

Figure 4: Sub-protocol for sampling global keys.

4.3 Consistency Check Between Values and MAC Tags

In our protocol to generate dual-key authentication, we need a party (e.g., PB) to use the MAC
tags (denoted as {βi }) of some existing IT-MAC authenticated values as the global keys of another
FbCOT instance (denoted as {β′i }). We enforce this constraint by checking equality between values
authenticated by different keys. Our first observation is that the MAC tags are already implicitly
authenticated by ∆−1A .

24

Authentication under inverse key. We define the Invert macro to locally convert [[x]]∆A
=

(KA[x],MB[x], x) to [[y]]∆−1
A

:= (KA[y],MB[y], y). We note that this technique appeared previously

in the certified VOLE protocols [20].

• [[y]]∆−1
A
← Invert([[x]]∆A

): On input [[x]]∆A
for x ∈ F2κ , PA and PB execute the following:

– PB outputs y := MB[x] and MB[y] := x.

– PA outputs KA[y] := KA[x] ·∆−1A ∈ F2κ .

We demonstrate the correctness of the Invert macro as follows.

Lemma 5. Let [[x]]∆A
= (α, β, x) where x ∈ F2κ then the MAC tag of PB, β, is implicitly authen-

ticated by ∆−1A , i.e., the inverse of PA’s global key over F2κ.

This claim can be verified by multiplying both side of the equation by ∆−1A .

β︸︷︷︸
MB[x]

= α︸︷︷︸
KA[x]

+x ·∆A =⇒ x︸︷︷︸
MB[β]

= α ·∆−1A︸ ︷︷ ︸
KA[β]

+β ·∆−1A .

Random inverse key authentication. Notice that in the Invert macro, if we require the input
[[x]]∆A

to be uniformly random, i.e., x ← F2κ , then the output value y := MA[x] = x∆A − KB[x] is
also uniformly random in the view of PA. Using this method we can generate random F2κ elements
authenticated by ∆−1A .

Equality check across different keys. We recall a known technique to verify equality between
two values authenticated by respective independent keys [18], which we summarize in the EQCheck
macro. We recall its soundness in Lemma 6 and prove it in Appendix B.2. In the following, we
assume that FCOT has been initialized with (sid, ∆A) and (sid′, ∆′A).

• EQCheck({[[yi]]∆A
}i∈[ℓ], {[[y′i]]∆′

A
}i∈[ℓ]): On input two sets of authenticated values under different

keys ∆A,∆
′
A, PA and PB check that yi = y′i for all i ∈ [ℓ] as follows:

1. Let [[yi]]∆A
= (ki,mi, yi) and [[y′i]]∆′

A
= (k′i,m

′
i, y
′
i). PA and PB run Fix(sid, {m′i}i∈[ℓ]) to obtain

a set of authenticated values {[[m′i]]∆A
}i∈[ℓ], and also run Fix(sid′, {mi}i∈[ℓ]) to get another set

of authenticated values {[[mi]]∆′
A
}i∈[ℓ].

2. For each i ∈ [ℓ], PA computes Vi := ki ·∆′A + k′i ·∆A + KA[mi]∆′
A
+ KA[m

′
i]∆A

∈ F2κ , and PB

computes Wi := MB[mi]∆′
A
+MB[m

′
i]∆A
∈ F2κ .

3. PB sends hB := H(W1, ...,Wℓ) to PA, who computes hA := H(V1, ..., Vℓ) and verifies that
hA = hB. If the check fails, PA aborts. Here H : {0, 1}∗ → {0, 1}κ is a cryptographic hash
function modeled as a random oracle.

Lemma 6. If ∆A and ∆′A are independently sampled from F2κ, then the probability that there exists
some i ∈ [ℓ] such that yi ̸= y′i and PA accepts in the EQCheck procedure is bounded by 3

2κ .

The consistency check. The observation in Lemma 5 suggests that the MAC tags {βi } are
already implicitly authenticated by ∆−1A . Moreover, by calling Fix(∆′A), PA and PB can acquire
{ [[∆′A]]β′

i
} and locally convert them to { [[β′i]]∆′

A
}. Since ∆A and ∆′A are independent, we can apply

EQCheck to complete our goal.
We list the differences that inverse key authentication induces to EQCheck. Recall that FCOT

has been initialized with (sid, ∆A) and (sid′, ∆′A).

25

• EQCheck({[[βi]]∆−1
A
}i∈[ℓ], {[[β′i]]∆′

A
}i∈[ℓ]): On input two sets of authenticated values under different

keys ∆−1A ,∆′A, PA and PB check that βi = β′i for all i ∈ [ℓ] as follows:

1. PA and PB call FCOT on the same input (extend, sid, ℓκ) to get [[r1]]∆A
, . . . , [[rℓ]]∆A

with
ri ∈ F2κ . Then, for i ∈ [ℓ], both parties define [[ri]]∆A

:= B2F([[ri]]∆A
) with ri ∈ F2κ , and set

[[si]]∆−1
A

:= Invert([[ri]]∆A
).

2. PA and PB run EQCheck({[[βi]]∆−1
A
}i∈[ℓ], {[[β′i]]∆′

A
}i∈[ℓ]) as described above, except that they use

random authenticated values [si]∆−1
A

for i ∈ [ℓ] to generate chosen authenticated values under

∆−1A in the Fix procedure.

It is straightforward to verify the soundness is not affected by changing to the inverse key. Thus
we omit the proof of the following lemma.

Lemma 7. If ∆A and ∆′A are independently sampled from F2κ, then the probability that there exists
some i ∈ [ℓ] such that βi ̸= β′i and PA accepts in the EQCheck procedure is bounded by 3

2κ .

4.4 Circuit Dependent Compressed Preprocessing

We now describe the protocol to realize the functionality Fcpre. Following the conventions of
previous works, we defer all consistency checks to the end of the protocol. Notice that step 1 to
step 5 corresponds to the circuit-independent phase (where we only require the scale rather than
the topology information of the circuit) while the rest is the circuit-dependent phase (where the
entire circuit is known). The protocol is shown in Figure 5 and Figure 6. We then analyze its
security in Theorem 1. The proof is presented in Appendix B.3.

Theorem 1. Protocol Πcpre shown in Figure 5 and Figure 6 securely realizes functionality Fcpre

(Figure 3) against malicious adversaries in the (FCOT,FbCOT,FDVZK, FEQ,FRand)-hybrid model.

Consistency checks. We explain the rationale of the consistency checks in Πcpre.

• The FDVZK in step 11 checks that the Fix inputs of PA in step 6 and those of PB in step 6 and
step 3 are well-formed.

• The CheckZero2 and EQCheck in step 12 ensure to PA that the multiple instances of ∆B in Πsamp

(Figure 4) and Πcpre (step 4 and step 5 in Figure 5) are identical. Also, PB can make sure that
∆′A in step 4 and step 5 of Πcpre (Figure 5) are identical.

• PB checks that the message in step 9 of Πcpre from PA are correct. To do this, PB checks its locally
computed value against the dual-key authenticated value, which is unalterable. Moreover, we
reduce the communication using random linear combination. This is done in step 14 and step 15
of Πcpre (Figure 6).

• PA checks that the Fix inputs of PB in step 10 of Πcpre (Figure 6) are correct. This is done by
checking the IT-MAC authenticated values against the dual-key authenticated ones in step 16 of
Πcpre (Figure 6).

Optimization based on Fiat-Shamir. In the protocol Πcpre, both parties choose random public
challenges by calling functionality FRand. Based on the Fiat-Shamir heuristic [22], both parties can
generate the challenges by hashing the protocol transcript up until this point, which is secure in
the random oracle model. This optimization can save one communication round, and has also been
used in previous work such as [10, 46].

26

Protocol Πcpre

Inputs: A Boolean circuit C that consists of a list of gates of the form (i, j, k, T). Let n = |W|+ |IB|,
m = |W|+ |I|, L = ⌈2ρ log(en√

2ρ
) + log 2ρ

2 ⌉ and t = |W|.

Initialize: PA and PB execute sub-protocol Πsamp (Figure 4) to obtain (∆A, α0) and (∆B, β0) respectively,
such that lsb(∆A) = 1, msb(∆B) = 1, lsb(∆A ·∆B) = 1 and α0+β0 = ∆A ·∆B ∈ F2κ . Thus, both parties
hold ⟨1⟩ (i.e., [∆B]∆A

). After the sub-protocol, FCOT was initialized by session identifier sid0 and ∆A.

Generate authenticated AND triples: PA and PB execute as follows:

1. PB samples a matrix M← Fn×L
2 and sends it to PA.

2. Both parties call FCOT on input (extend, sid0, L) to generate random authenticated bits [[b∗]]∆A
where

b∗ ∈ FL
2 and compute [[b]]∆A

:= M · [[b∗]]∆A
with b ∈ Fn

2 .

3. Both parties run Fix(sid0, {b∗i∆B}i∈[L]) to generate authenticated values [[b∗i∆B]]∆A
. The parties lo-

cally run ⟨b∗i ⟩ ← Convert1[·]→⟨·⟩([[b
∗
i∆B]]∆A

). Let αi, βi ∈ F2κ such that αi + βi = b∗i ·∆A ·∆B for each
i ∈ [L].

4. PB and PA call FL+1
bCOT on respective inputs (init, sid1, β1, ..., βL,∆B) and (init, sid1). Then, both parties

send (extend, sid1,m) to FL+1
bCOT, which returns ([[a]]β1 , . . . , [[a]]βL

, [[a]]∆B
) where a ∈ Fm

2 . Then, PA

samples ∆′
A ← F2κ , and then two parties run Fix(sid1,∆

′
A) to obtain ([[∆′

A]]β1 , . . . , [[∆
′
A]]βL

, [[∆′
A]]∆B

).

PA and PB set ⟨1(1)B ⟩ := Convert1[·]→⟨·⟩([[∆B]]∆′
A
) where [[∆B]]∆′

A
is equivalent to [[∆′

A]]∆B
, and define

[[βi]]∆′
A
= [[∆′

A]]βi
for i ∈ [L].

5. PB and PA call F2
bCOT on respective input (init, sid2, β0,∆B) and (init, sid2). Then, both parties send

(extend, sid2, t) to F2
bCOT, which returns ([[â]]β0 , [[â]]∆B

) to the parties. PA and PB run Fix(sid2,∆
′
A)

to get [[∆′
A]]β0

and [[∆′
A]]∆B

, and then locally convert to [[β0]]∆′
A
and [[∆B]]∆′

A
. Then, both parties set

⟨1(2)B ⟩ := Convert1[·]→⟨·⟩([[∆B]]∆′
A
).

6. For w ∈ IA, PA and PB set [[bw]]∆A
= [[0]]∆A

. For each wire w ∈ I ∪ W, two parties define [[aw]]∆B

in [[a]]∆B
as the authenticated bit on wire w; for each wire w ∈ IB ∪ W, define [[bw]]∆A

in [[b]]∆A
as

the authenticated bit on wire w. In a topological order, for each gate (i, j, k, T), PA and PB do the
following:

• If T = ⊕, compute [[ak]]∆B
:= [[ai]]∆B

⊕ [[aj]]∆B
and [[bk]]∆A

:= [[bi]]∆A
⊕ [[bj]]∆A

.

• If T = ∧, PA computes ai,j := ai ∧ aj , and PB computes bi,j := bi ∧ bj .

7. Both parties run Fix(sid0, {bi,j}(i,j,∗,∧)∈Cand
) to generate a set of authenticated bits {[[bi,j]]∆A

}, and
also execute Fix(sid2, {ai,j}(i,j,∗,∧)∈Cand

) to generate a set of authenticated bits {[[ai,j]]∆B
}.

8. For i ∈ [n], j ∈ [L], PA and PB set ⟨aib∗j ⟩ := Convert2[·]→⟨·⟩([[ai]]βj , ⟨b∗j ⟩). Then, both parties collect
these dual-key authenticated bits to obtain ⟨aib∗⟩, and compute ⟨aibj⟩ and ⟨ajbi⟩ for each AND gate
(i, j, k,∧) from M · ⟨aib∗⟩ for i ∈ [n]. Further, both parties set ⟨âk⟩ := Convert2[·]→⟨·⟩([âk]β0

, ⟨1⟩) and
⟨ai,j⟩ ← Convert2[·]→⟨·⟩([ai,j]β0

, ⟨1⟩).

Figure 5: The compressed preprocessing protocol for a Boolean circuit C.

Communication complexity. As recent PCG-like COT protocols have communication com-
plexity sublinear to the number of resulting correlations, we can ignore the communication cost of
generating random COT correlations when counting the communication amortized to every triple.
Our checking protocols only introduce a negligibly small communication overhead. Therefore, the
Fix procedure brings the main communication cost where Fix is used to transform random COT to
chosen COT. Also, since parameter L is logarithmic to the number n of triples, we only need to

27

Protocol Πcpre, continued

9. For each AND gate (i, j, k,∧), PA and PB locally compute ⟨b̃k⟩ := ⟨ai,j⟩⊕⟨aibj⟩⊕⟨ajbi⟩⊕⟨âk⟩. Then,
for each k ∈ W, PA sends lsb(DA[b̃k]) to PB, who computes b̃k := lsb(DA[b̃k])⊕ lsb(DB[b̃k]). For each

AND gate (i, j, k,∧), PB computes b̂k := b̃k ⊕ bi,j .

10. Both parties run Fix(sid0, {b̂k}k∈W) to obtain [[b̂k]]∆A
for each k ∈ W.

Consistency check: PA and PB perform the following consistency-check steps:

11. Let [[B∗
i]]∆A

= [[b∗i∆B]]∆A
produced in the previous phase. Both parties call FDVZK to prove the

following statements hold:

• For each AND gate (i, j, k,∧), for ([[bi]]∆A
, [[bj]]∆A

, [[bi,j]]∆A
), bi,j = bi ∧ bj .

• For each AND gate (i, j, k,∧), for ([[ai]]∆B
, [[aj]]∆B

, [[ai,j]]∆B
), ai,j = ai ∧ aj .

• For each i ∈ [L], for ([[b∗i]]∆A
, [[∆B]]∆A

, [[B∗
i]]∆A

), B∗
i = b∗i ·∆B.

12. PA and PB call FCOT on respective input (init, sid3, ∆
′
A) and (init, sid3). Then they run [[∆B]]∆′

A
:=

Fix(sid3,∆B) and ⟨1(3)B ⟩ := Convert1[·]→⟨·⟩([[∆B]]∆′
A
). PA and PB run CheckZero2(⟨1(1)B ⟩−⟨1

(2)
B ⟩, ⟨1

(2)
B ⟩−

⟨1(3)B ⟩) and EQCheck([[∆B]]∆A
, [[∆B]]∆′

A
) to check that ∆′

A,∆B are consistent when it is used in different
functionalities. Both parties run [[βi]]∆−1

A
← Invert([[b∗i∆B]]∆A

) for each i ∈ [0, L], and then execute

EQCheck({[[βi]]∆−1
A
}i∈[0,L], {[[βi]]∆′

A
}i∈[0,L]).

13. PA and PB call FCOT on input (extend, sid0, κ) to generate a vector of random authenticated bits
[[r]]∆A

with r ∈ Fκ
2 , and run [[r]]∆A

← B2F([[r]]∆A
) where r =

∑
i∈[0,κ) ri ·Xi ∈ F2κ . Then both parties

run Fix(sid0, r ·∆B) to obtain [[r ·∆B]]∆A
. The parties execute ⟨r⟩ ← Convert1[·]→⟨·⟩([[r ·∆B]]∆A

).

14. PA and PB call FRand to sample a random element χ ∈ F2κ .

15. PA convinces PB that b̃k is correct (and thus b̂k is correct) for k ∈ W as follows.

(a) Both parties compute ⟨y⟩ :=
∑

k∈W χk · ⟨b̃k⟩+ ⟨r⟩. Then PB sends y′ to PA.

(b) The parties execute CheckZero2(⟨y⟩ − y′ · ⟨1⟩).

16. PB convinces PA that [b̂k] is correct for k ∈ W as follows:

(a) For each AND gate (i, j, k,∧), PA and PB compute [[b̃k]]∆A
:= [[b̂k]]∆A

⊕ [[bi,j]]∆A
.

(b) Both parties compute [[y]]∆A
:=
∑

k∈W χk · [[b̃k]]∆A
+ [[r]]∆A

.

(c) PA and PB run CheckZero([[y]]∆A
− [[y′]]∆A

).

Output: PA and PB output a matrix M along with ([[a]]∆B
, [[â]]∆B

, [[b∗]]∆A
, [[b̂]]∆A

).

Figure 6: The compressed preprocessing protocol for a Boolean circuit C, continued.
consider the Fix procedures related to n.

This includes IT-MAC generation of ai,j (from PA to PB in step 7 of Figure 5), bi,j (from PB to

PA in the same step), b̂k (from PB to PA in step 10 of Figure 6). In addition, for each triple, PA

needs to send lsb(DA[b̃k]) to PB in step 9 of Figure 6. Overall, the one-way communication cost is
2 bits per triple.

5 Authenticated Garbling from COT

Now we describe the online phase of our two-party computation protocol. We first introduce a
generalized distributed garbling syntax which can be instantiated by different schemes and then

28

introduce the complete Boolean circuit evaluation protocol Π2PC.

5.1 Distributed Garbling

We define the format of distributed garbling using two macros Garble and Eval, assuming that the
preprocessing information is ready. Notice that these two macros can be instantiated by different
garbling schemes. We utilize the distributed half-gates garbling scheme [32] for both of our proto-
cols. For the protocol in this section that optimizes towards one-way communication we apply the
dual-execution technique to check consistency whereas for the second protocol in the next section
that optimizes towards total communication we design a novel consistency checking procedure that
achieves ρ bits of communication per AND gate. Since our second protocol is inspired by the
optimized WRK garbling of Dittmer et al. [18], we recall that scheme as well as the distributed
half-gates garbling at Appendix C.1 and Appendix C.2.

• Garble(C): PA and PB perform local operations as follows:

– PA computes and outputs (GCA, {Lw,0, Lw,1}w∈IA∪IB∪W∪O).
– PB computes and outputs GCB.

• Eval(GCA,GCB, {(Λw, Lw,Λw)}w∈IA∪IB): PB evaluates the circuit and gets {Λw, Lw,Λw}w∈W∪O.

In semi-honest garbling schemes [48, 38], the garbler controls all wire masks. Moreover, those
schemes process the circuit in a gate-by-gate manner, and for each gate the evaluator only chooses
some ciphertexts according to the masked gate inputs. Using those facts, the garbler can launch the
selective failure attack by filling some ciphertext locations w.r.t. a Boolean gate with random values
such that inconsistency only occurs when the evaluator uses those ciphertexts.3Since the garbler
can deduce the real wire values from masked wire values, the inconsistency event is correlated with
the circuit real values, damaging privacy.

Distributed garbling schemes solve this problem by secret sharing wire masks between the
garbler and the evaluator such that the aforementioned inconsistency event is independent of real
wire values in the garbler’s view. If the evaluator’s shares are uniformly random as in [39, 32]
then the wire masks are of full entropy and the probability of inconsistency is independent of the
input values. Moreover, Dittmer et al. [18] observed that if the evaluator’s masks satisfy 2ρ-wise
independence then the probabilities of inconsistency differ with at most 2−ρ under different input
values and is sufficient for defeating selective failure. Therefore, we present a quantified version of
selective failure resilience of distributed garbling in Definition 5.

Definition 5. Let Garble and Eval define a distributed garbling scheme in the preprocessing model.
The garbler PA holds ∆A, the evaluator PB holds ∆B and both have ([[a]]∆B

, [[â]]∆B
, [[b]]∆A

, [[b̂]]∆A
).

Using the circuit notations in Section 2.1, we consider the following experiment induced by PB’s
input y.

1. PA provides GCA, {(Lw,0, Lw,1)}w∈IB , {(Λw, Lw,Λw)}w∈IA
3Different garbling schemes vary in the choice of where to place the consistency check. For the WRK scheme the

evaluator can detect inconsistency and abort during the evaluation whereas for the half-gates garbling the circuit
values are effectively committed after evaluation and a subsequent checking phase is dedicated to ensure that the
circuit values are correctly computed. Therefore, we focus on the inconsistency event where the plaintext execution
differs from the evaluation of the garbled circuit.

29

2. PB runs Garble(C) to get GCB and defines Λw = yw ⊕ aw ⊕ bw for w ∈ IB. PB runs

{Λw, Lw,Λw}w∈W∪O ← Eval(GCA,GCB, {(Λw, Lw,Λw)}w∈IA∪IB)

to learn Λw for w ∈ W.

3. Let z be the output of C on inputs x,y where x is defined as xw = aw ⊕ bw ⊕ Λw for w ∈ IA.
Let Bady be the event that ∃w ∈ W, zw ̸= aw ⊕ bw ⊕ Λw.

We call a distributed garbling scheme to be ϵ-selective failure resilience, if for any y,y′ s.t. y ̸=
y′, we have ∣∣Pr[Bady]− Pr[Bady′]

∣∣ ≤ ϵ .

With uncompressed preprocessing the DILO-WRK and KRRW distributed garbling (recalled
at Appendix C.1 and Appendix C.2.) has 0-selective failure resilience [39, 32] since the inputs Λw

to Eval are completely masked and independent of the real input. In Lemma 8 we show that for the
KRRW scheme that we use in this paper, replacing the evaluator’s mask to 2ρ-wise independent
randomness induces 2−ρ-selective failure resilience.4The proof is given in Appendix B.4.

Lemma 8. By sampling the wire masks a, b using the compressed preprocessing functionality Fcpre

(recall that b := M · b∗ is compressed randomness), the KRRW distributed garbling scheme (see
details at Appendix C.1) has 2−ρ-selective failure resilience.

The next lemma states that after evaluating the garbled circuit the garbler and evaluator
implicitly holds the authentication of the masked public wire values (color/permutation bits). To
the best of our knowledge we are the first to apply this observation in the consistency check of
authenticated garbling.

Lemma 9. After running Eval, the evaluator holds the ‘color bits’ Λw for every wire w ∈ W. The
garbler PA and evaluator PB also hold KA[Λw],MB[Λw] subject to MB[Λw] = KA[Λw] + Λw∆A.

Proof. We can define the following values using only wire labels:

Λw := (Lw,0 ⊕ Lw,Λw) ·∆−1A , MB[Λw] := Lw,Λw , KA[Λw] := Lw,0 .

It is easy to verify MB[Λw] = KA[Λw] + Λw ·∆A, which implies that [[Λw]]∆A
:= (Lw,0, Lw,Λw ,Λw) is

a valid IT-MAC.

5.2 A Dual Execution Protocol Without Leakage

We describe a malicious secure 2PC protocol with almost the same one-way communication as
half-gates garbling. We achieve this by adapting the dual execution technique to the distributed
garbling setting. Intuitively, our observation in Lemma 9 allows us to check the consistency of
every wire of the circuit. Together with some IT-MAC techniques to ensure input consistency, our
protocol circumvents the one-bit leakage of previous dual execution protocols [31, 30].

In the following descriptions, we denote the actual value induced by the input on each wire w
of the circuit C by zw. The masked value on that wire is denoted as Λw := zw ⊕ aw ⊕ bw which is
revealed to the evaluator during evaluation. The protocol is described in Figure 7 and Figure 8.

4We note that in the proof of Dittmer et al. [18] the mask b is assumed to be ρ-wise independent and the argument
is that one corrupted table entry is equivalent to a coin toss with 1/2 probability of failure. If there are less than ρ
corrupted table entries then evaluator’s abort probability is input-independent, otherwise (more than ρ entries are
corrupted) the evaluator would abort with overwhelming probability. Their argument is not very precise so we choose
to focus on the probability that the input-output correlation on each AND gate being falsified, which implies that the
evaluator would abort. Thus, we require the stricter 2ρ-wise independence in b, but this does not affect amortized
performance of our protocol.

30

Intuitions of Consistency Checking. The privacy of garbled circuit guarantees that when the
garbled circuit is correctly computed, then except with negligible probability the evaluator can only
acquire one of the two labels (corresponding to the active path) for each wire in the circuit. Thus,
we can check the color bits of the honest party against the labels that the corrupted party acquires
(in the separate execution) to verify consistency.

Using the notations from Lemma 9, we may define Λw using the wire labels Lw,0, Lw,Λw and the
global key ∆. Our goal is to check the following equations where the left-hand (resp. right-hand)
side is the evaluation result of PA (resp. PB). Here Equation 1 is the corrupted PA case while
Equation 2 is the corrupted PB case.

(L′w,Λ′
w
⊕ L′w,0) ·∆−1B ⊕ a′w ⊕ b′w = Λw ⊕ aw ⊕ bw (1)

Λ′w ⊕ a′w ⊕ b′w = (Lw,Λw ⊕ Lw,0) ·∆−1A ⊕ aw ⊕ bw . (2)

Multiplying the first equation by ∆B, the second by ∆A and do summation5 gives the V A
w , V B

w

values in the consistency checking.

(aw ⊕ a′w ⊕ Λ′w)∆A ⊕MA[aw]⊕MA[a
′
w]

⊕MA[Λ
′
w]⊕ KA[bw]⊕ KA[b

′
w]⊕ KA[Λw]

=
(bw ⊕ b′w ⊕ Λw)∆B ⊕MB[bw]⊕MB[b

′
w]

⊕MB[Λw]⊕ KB[aw]⊕ KB[a
′
w]⊕ KB[Λ

′
w]

Communication complexity. In our dual execution protocol, PA and PB sends (2κ+ 1)|W|+
(κ+2)|IA|+(2κ+1)|IB|+2κ+ |O| and (2κ+1)|W|+(κ+2)|IB|+(2κ+1)|IA|+κ bits respectively.
Therefore the amortized one-way communication is 2κ + 1 bits per AND gate. Since we need to
call Fcpre twice in Π2PC, we conclude that the amortized one-way (resp. two-way) communication
in the (FCOT, FbCOT, FDVZK, FEQ, FRand)-hybrid model is 2κ+ 5 (resp. 4κ+ 10) bits.

5.3 Security Analysis

We state the security of our 2PC protocol in Theorem 2 and prove it in Appendix B.5. As an
intermediate step, we prove in Lemma 10 that the difference of the V A

w and V B
w values in the

consistency checking phase actually captures the error on the wire w (indicating whether the result
of w is flipped).

Lemma 10. Let ew := (aw ⊕ bw ⊕Λw)⊕ (a′w ⊕ b′w ⊕Λ′w) be the error on wire w ∈ W ∪ I after the
execution of Π2PC-1way. Then the checking values V A

w , V B
w satisfy that V A

w ⊕ V B
w = ew · (∆A ⊕∆B).

Theorem 2. Let Hccrnd be a (poly(κ), 2|W|, κ, ϵccrnd)-circular correlation robust hash function under
naturally derived keys, Htcr be a (poly(κ), |I|, κ, ϵtcr)-tweakable correlation robust hash function.
Protocol Π2PC shown in Figure 7 and Figure 8 securely realizes functionality F2PC in the presence
of malicious adversary in the Fcpre,FCOT-hybrid model.

6 Optimization Towards Two-Way Communication

In this section we propose an optimization to the DILO-WRK online protocol, reducing the amor-
tized online communication cost from 2κ + 3ρ bits to 2κ + ρ + 1 bits per AND gate. We mainly
focus on reducing the overhead with regard to consistency checking. In particular, our technique
is to perform random linear combination prior to hashing so that the cross-terms from different

5We define aw, a
′
w, bw, b

′
w by the MAC tag and keys to implicitly authenticate them.

31

Protocol Π2PC-1way

Inputs: In the preprocessing phase, PA and PB agree on a Boolean circuit C with circuit-input wires
IA ∪ IB, output wires of all AND gates W and circuit-output wires O. In the online phase, PA holds

an input x ∈ {0, 1}|IA| and PB holds an input y ∈ {0, 1}|IB|; PB will receive the output z = C(x, y). Let
Htcr : {0, 1}2κ → {0, 1}κ be a tweakable correlation robust hash function, Hccrnd : {0, 1}2κ → {0, 1}κ be a
circular correlation robust hash function under naturally derived keys, H is a cryptographic hash function
modeled as a random oracle. Let (Garble,Eval) denote the KRRW distributed garbling procedures.

Preprocessing: PA plays the role of a garbler and PB acts as an evaluator, and two parties execute as
follows:

1. PA and PB call Fcpre to get a matrixM and vectors of authenticated bits ([[a]]∆B
, [[â]]∆B

, [[b∗]]∆A
, [[b̂]]∆A

).
The parties locally compute [[b]]∆A

:= M · [[b∗]]∆A
.

2. Following a predetermined topological order, PA and PB use ([[a]]∆B
, [[â]]∆B

, [[b]]∆A
, [[b̂]]∆A) to obtain

authenticated masks [[aw]]∆B
, [[bw]]∆A

for each wire w.

3. PA and PB run Garble (using Hccrnd with tweaks {w∥00, w∥01} to instantiate the hash function inside
Garble) to generate a distributed garbled circuit (GCA,GCB). In particular, For each wire w, two
labels Lw,0, Lw,1 ∈ {0, 1}κ are generated and satisfy Lw,1 = Lw,0 ⊕∆A. PA then sends GCA to PB.

Online: In the following steps, PA securely transmits one label on each circuit-input wire to PB, and
PB evaluates the circuit.

4. For each w ∈ IA, PA computes Λw := xw ⊕ aw ∈ F2, and then sends (Λw, Lw,Λw
) to PB.

5. PA samples ΓA ← F2κ . PA and PB call FCOT on respective inputs (init, sid,ΓA) and (init, sid). For
each w ∈ IB, PB computes Λ̃w := yw ⊕ bw and then the two parties call Fix(Λ̃w) to get [[Λ̃w]]ΓA

. Then
PA sends mw,0 := Htcr(KA[Λ̃w], w∥0)⊕ Lw,aw

and mw,1 := Htcr(KA[Λ̃w]⊕ ΓA, w∥0)⊕ Lw,āw
for w ∈ IB

to PB, who computes Lw,Λw
:= mw,Λ̃w

⊕ Htcr(MB[Λ̃w], w∥0).

6. PA and PB run Open([[aw]]∆B
) for w ∈ IB, which allows PB to learn aw and computes Λw := Λ̃w⊕aw.

7. PB runs Eval(GCA,GCB, {(Λw, Lw,Λw)}w∈IA∪IB
) (once again, using Hccrnd with respective tweaks to

instantiate the hash function H inside Eval) to obtain (Λw, Lw,Λw) for each wire w ∈ W ∪O. For each
w ∈ W, both parties define [[Λw]]∆A

= (Lw,0, Lw,Λw
,Λw).

Figure 7: Actively secure 2PC protocol in the (Fcpre,FCOT)-hybrid model.

AND gates can be combined. Then, using the half-gate multiplication technique we can securely
evaluate the cross-term using ρ bits for each AND gate as compared to 3ρ bits in the DILO-WRK
scheme. We present the protocol in Figure 9.

We note that in Π2PC-2way we only use the hash function a la half-gates. Therefore, we only
require the hash function to be circular correlation robust under naturally derived keys (ccrnd),
which can be instantiated in the random permutation model with one random permutation [26].

Since the consistency checking phase only relies on the Free-XOR properties, we formulate it
as an independent procedure that can be coupled with any distributed garbling protocol that sup-
ports Free-XOR. This may be of independent interest to future protocols that requires consistency
checking without revealing the masked values for each wire.

On the length of ∆B. We remark that since the key of PB no longer serves to garble a circuit,
its length can be reduced to ρ bits. Since the preprocessing protocol has constant amortized
communication overhead, we can re-use the same preprocessing protocol (thus using the same
functionality Fcpre) but truncate all MAC tags and keys related to ∆B, including ∆B itself down to

32

Protocol Π2PC-1way, continued

Dual execution and consistency check:

8. Re-using the initialization procedure of functionality Fcpre (i.e., the same global keys ∆A and ∆B are
adopted), PA and PB execute the preprocessing phase as described above again by swapping the roles
(i.e., PA is an evaluator and PB is a garbler). Thus, for each w ∈ W, PA and PB hold [[a′w]]∆B

and
[[b′w]]∆A

.

9. PA and PB run Garble (using Hccrnd with tweaks {w∥10, w∥11} to instantiate the hash function H
inside Garble) to generate a distributed garbled circuit (GC′A,GC

′
B). For each wire w, two labels

L′w,0, L
′
w,1 ∈ {0, 1}

κ
are generated and satisfy L′w,1 = L′w,0 ⊕∆B. PB sends GC′B to PA.

10. Swapping the roles (i.e., PA is the evaluator and PB is the garbler), PA and PB execute the online
phase as described above again (using fresh tweaks). In particular:

(a) For each w ∈ IB, PB computes Λ′
w := yw ⊕ b′w and then sends (Λ′

w, L
′
w,Λ′

w
) to PA.

(b) PB samples ΓB ← F2κ . PA and PB call FCOT on respective inputs (init, sid′) and (init, sid′,ΓB).
For each w ∈ IA, PA computes Λ̃′

w := xw⊕a′w and then the two parties call Fix(Λ̃′
w) to get [[Λ̃

′
w]]ΓB

.
Then PB sends m′

w,0 := Htcr(KB[Λ̃
′
w], w∥1)⊕ Lw,b′w

and m′
w,1 := Htcr(KB[Λ̃

′
w]⊕ ΓB, w∥1)⊕ Lw,b̄′w

for w ∈ IA to PA, who computes L′w,Λ′
w
:= m′

w,Λ̃′
w

⊕ Htcr(MA[Λ̃
′
w], w∥1).

(c) PA and PB run Open([[b′w]]∆A
) for w ∈ IA, which allows PA to learn b′w and computes Λ′

w :=
Λ̃′
w ⊕ b′w.

(d) PA runs Eval(GC′A,GC
′
B, {(Λ′

w, L
′
w,Λ′

w
)}w∈IA∪IB

) (once again, using Htccr to instantiate the hash

function H inside Eval) to obtain (Λ′
w, L

′
w,Λ′

w
) for each wire w ∈ W ∪O. For each w ∈ W, both

parties define [[Λ′
w]]∆B

= (L′w,0, L
′
w,Λ′

w
,Λ′

w).

11. PA and PB check that (Λw ⊕ aw ⊕ bw) · (∆A⊕∆B) = (Λ′
w ⊕ a′w ⊕ b′w) · (∆A⊕∆B) holds by performing

the following steps.

(a) For each w ∈ W ∪ I, PA and PB respectively compute

V A
w = (aw ⊕ a′w ⊕ Λ′

w)∆A ⊕MA[aw]⊕MA[a
′
w]⊕MA[Λ

′
w]⊕ KA[bw]⊕ KA[b

′
w]⊕ KA[Λw],

V B
w = (bw ⊕ b′w ⊕ Λw)∆B ⊕MB[bw]⊕MB[b

′
w]⊕MB[Λw]⊕ KB[aw]⊕ KB[a

′
w]⊕ KB[Λ

′
w].

(b) PA computes hA := H({V A
w }w∈I∪W), and then sends it to PB who computes hB :=

H({V B
w }w∈I∪W) and checks that hA = hB. If the check fails then PB aborts.

Output processing: For each w ∈ O, PA and PB run Open([[aw]]∆B
) such that PB receives aw, and

then PB computes zw := Λw ⊕ (aw ⊕ bw).

Figure 8: Actively secure 2PC protocol in the (Fcpre,FCOT)-hybrid model, continued.

ρ bits. This can be done by simply discarding the respective κ − ρ higher bits since the messages
that they authenticate are single bits. We use the original notations in the following descriptions
but remind the readers that the MAC keys and tags are truncated and of ρ-bit length.

Intuitions of the consistency checking. Our starting point is the KRRW scheme, where all
masked wire values are made public so that the checking equation (Λi⊕λi) · (Λj ⊕λj) ·∆B = (Λk⊕
λk) ·∆B reduces to equality checking (recall that λi · λj ·∆B is already shared after preprocessing).
With compressed preprocessing, the masked values must be kept secret due to not being fully
masked. Therefore, we must securely compute the secret sharing of the multiplication between the

33

Protocol Π2PC-2way

Inputs: In the preprocessing phase, PA and PB agree on a Boolean circuit C with circuit-input wires
IA ∪ IB, output wires of all AND gates W and circuit-output wires O. In the online phase, PA holds

an input x ∈ {0, 1}|IA| and PB holds an input y ∈ {0, 1}|IB|; PB will receive the output z = C(x, y). Let
Htcr : {0, 1}2κ → {0, 1}κ be a tweakable correlation robust hash function and Hccrnd : {0, 1}2κ → {0, 1}κ
be a hash function that is circular correlation robust under naturally derived keys. Let (Garble,Eval)
denote the KRRW distributed garbling procedures.

Preprocessing: PA plays the role of a garbler and PB acts as an evaluator, and two parties execute as
follows:

1. Both parties call Fcpre to obtain a matrix M and vectors of authenticated bits

([[a]]∆B
, [[â]]∆B

, [[b∗]]∆A
, [[b̂]]∆A

). The parties locally compute [[b]]∆A
:= M · [[b∗]]∆A

.

2. Following a predetermined topological order, PA and PB use ([[a]]∆B
, [[â]]∆B

, [[b]]∆A
, [[b̂]]∆A) to obtain

authenticated masks [[aw]]∆B
, [[bw]]∆A

for each wire w.

3. PA and PB run Garble (using Hccrnd with tweaks {w∥00, w∥01} to instantiate the hash function inside
Garble) to generate a distributed garbled circuit (GCA,GCB). In particular, For each wire w, two
labels Lw,0, Lw,1 ∈ {0, 1}κ are generated and satisfy Lw,1 = Lw,0 ⊕∆A. PA then sends GCA to PB.

Online: In the following steps, PA securely transmits one label on each circuit-input wire to PB, and
PB evaluates the circuit.

4. For each w ∈ IA, PA computes Λw := xw ⊕ aw ∈ F2, and then sends (Λw, Lw,Λw
) to PB.

5. PA samples ΓA ← F2κ . PA and PB call FCOT on respective inputs (init, sid,ΓA) and (init, sid). For
each w ∈ IB, PB computes Λ̃w := yw ⊕ bw and then the two parties call Fix(Λ̃w) to get [[Λ̃w]]ΓA

. Then
PA sends mw,0 := Htcr(KA[Λ̃w], w∥0)⊕ Lw,aw and mw,1 := Htcr(KA[Λ̃w]⊕ ΓA, w∥0)⊕ Lw,āw for w ∈ IB
to PB, who computes Lw,Λw

:= mw,Λ̃w
⊕ Htcr(MB[Λ̃w], w∥0).

6. PA and PB run Open([[aw]]∆B
) for w ∈ IB, which allows PB to learn aw and computes Λw := Λ̃w⊕aw.

7. PB runs Eval(GCA,GCB, {(Λw, Lw,Λw)}w∈IA∪IB
) (once again, using Hccrnd with tweaks {w∥00, w∥01}

to instantiate the hash function H inside Eval) to obtain (Λw, Lw,Λw
) for each wire w ∈ W ∪ O. For

each w ∈ W, both parties define [[Λw]]∆A
= (Lw,0, Lw,Λw

,Λw).

8. PA and PB run ΠGCCheck to check for consistency. If the check succeeds then the parties proceed to
the next step. Otherwise, they abort.

Output processing: For each w ∈ O, PA and PB run Open([[aw]]∆B
) such that PB receives aw, and

then PB computes zw := Λw ⊕ (aw ⊕ bw).

Figure 9: Actively secure 2PC protocol in the (Fcpre,FCOT)-hybrid model that optimizes towards
minimal two-way communication. The differences as compared to Π2PC are marked in blue.

masked wire values and values known to PA.
In more detail, we need to check for every AND gate (i, j, k,∧) the following equation,

(Λi ⊕ λi) · (Λj ⊕ λj) ·∆B = (Λk ⊕ λk) ·∆B .

We can re-write the equation as follows (notice that B′k ∈ F2 can be locally computed by PB),

(Λi · Λj ⊕ Λk ⊕ bk ⊕ b̂k ⊕ Λi · bj ⊕ Λj · bi︸ ︷︷ ︸
B′

k

⊕ak ⊕ âk ⊕ Λi · aj ⊕ Λj · ai) ·∆B = 0 .

34

By expanding the terms and utilizing the IT-MAC relation ak ·∆B = MA[ak] + KB[ak] we have,

B′k ·∆B ⊕MA[ak]⊕KB[ak]⊕MA[âk]⊕KB[âk]⊕Λi · (MA[aj]⊕KB[aj])⊕Λj · (MA[ai]⊕KB[ai]) = 0 .

By re-arranging the terms according to their membership, we have:

B′k ·∆B ⊕ KB[ak]⊕ KB[âk]⊕ Λi · KB[aj]⊕ Λj · KB[ai]︸ ︷︷ ︸
Bk

⊕MA[ak]⊕MA[âk]︸ ︷︷ ︸
Ak,0

⊕Λi·MA[aj]⊕Λj ·MA[ai] = 0 .

Notice that the value Bk and Ak,0 are both locally computable by PB and PA respectively, so we
only have to securely compute the rest of the terms. The previous method is to utilize the fact that
the masked value Λi,Λj are already authenticated by the wire labels. Given such authentication
we can evaluate the multiplication of Λi with any value X ∈ F2ρ known to PA as follows. PA sends
Gi := H(Li,0)⊕ H(Li,1)⊕X to PB who later recovers H(Li,Λi)⊕ Λi ·Gi = H(Li,0)⊕ Λi ·X. Clearly
this forms an additive sharing of Λi ·X, and since there are two multiplications, at least 2ρ-bit of
communication is needed for every AND gate.

Our insight is that in garbled circuits with free-XOR optimization, the masked value Λi on any
wire i is a public linear combination of the masked wire values on all the AND gate output wires and

input wires. We formalize this by defining the following public vector ci ∈ F|I|+|W|2 for every wire i
s.t. Λi =

∑
k c

i
k ·Λk. This allows us to collapse the two terms into one by exchanging the summation

order with the random linear combination. In particular, to check the correctness of every AND
gate (i, j, k,∧) we perform random linear combination using public randomness χ1, ..., χt, and our
checking equation becomes the following. (Recall that t = |W|.)∑

k∈W
χk ·Bk ⊕

∑
k∈W

χk ·Ak,0 ⊕
∑

(i′,j′,k′,∧)∈Cand

χk′ · (Λi′ ·MA[aj′]⊕ Λj′ ·MA[ai′]) = 0 .

Using the aforementioned notation, we have,∑
k∈W

χk ·Bk⊕
∑
k∈W

χk ·Ak,0⊕
∑

(i′,j′,k′,∧)∈Cand

χk′ ·
(
(
∑

k∈W∪I
ci

′
k ·Λk)·MA[aj′]⊕(

∑
k∈W∪I

cj
′

k ·Λk)·MA[ai′]
)
= 0 .

By exchanging the summation order, we have,∑
k∈W

χk ·Bk ⊕
∑
k∈W

χk ·Ak,0 ⊕
∑

k∈W∪I
Λk ·

∑
(i′,j′,k′,∧)∈Cand

χk′ · (ci
′
k ·MA[aj′]⊕ cj

′

k ·MA[ai′])︸ ︷︷ ︸
Ak,1

= 0 .

Using the half-gates technique, PA sends G′k := Hccrnd(Lk,0, k∥2)⊕Hccrnd(Lk,1, k∥2)⊕Ak,1 for every
k ∈ W ∪ I to evaluate the additive sharing of Λk · Ak,1. Therefore, we reduce the consistency
checking of AND gate correlation to equality checking using ρ bits of amortized communication.

Now we formulate this as an independent procedure GCCheck in Figure 10.

Communication Complexity. In the online phase PA and PB sends (2κ+ ρ+1)|W|+(κ+ ρ+
1)|IA| + (2κ + ρ + 1)|IB| + κ + |O| and |IB| bits respectively. Since in this protocol we only need
to invoke Πcpre once, we conclude that the total two-way communication of Π2PC-2way is 2κ+ ρ+ 5
bits per AND gate.

35

Protocol GCCheck

Inputs: PA and PB holds the wire masks a, â, b, b̂ authenticated by ∆B,∆A respectively. Moreover, PB

holds the evaluated masked wire bits and the corresponding labels {Λw, Lw,Λw
} for each wire w in the

circuit, while the garbler holds {Lw,0, Lw,1}. Let H′
ccrnd : {0, 1}2κ → {0, 1}ρ be the hash function that

evaluates Hccrnd and truncates the output down to ρ bits. Here Hccrnd is a circular correlation robust
hash function under naturally derived keys.
Consistency check:

1. PB samples a random challenge χ1, ..., χt ∈ F2ρ and sends it to PA. (Recall that |W| = t.)

2. The parties locally compute the following values.

• PA computes Ak,0 := MA[ak]⊕MA[âk] for k ∈ W and Ak,1 :=
∑

(i′,j′,k′,∧)∈Cand
χk′ · (ci′k ·MA[aj′]⊕

cj
′

k ·MA[ai′]) for k ∈ W ∪ I, where ci is a public vector such that
∑

k∈W∪I cik · Λk = Λi.

• PB computes B′
k := Λi ·Λj ⊕Λk ⊕ bk ⊕ b̂k ⊕Λi · bj ⊕Λj · bi and Bk := B′

k ·∆B ⊕KB[ak]⊕KB[âk]⊕
Λi · KB[aj]⊕ Λj · KB[ai] for (i, j, k,∧) ∈ Cand.

3. For each AND gate (i, j, k,∧), PA sends G′
k := H′

ccrnd(Lk,0, k∥2) ⊕ H′
ccrnd(Lk,1, k∥2) ⊕ Ak,1 to PB. PA

locally defines Ck := H′
ccrnd(Lk,0, k∥2) while PB computes Dk := H′

ccrnd(Lk,Λk
, k∥2)⊕ Λk ·G′

k.

4. PA computes hA :=
∑

k∈W χk ·Ak,0⊕Ck and sends it to PB. PB computes hB :=
∑

k∈W χk ·Bk⊕Dk

and aborts if hA ̸= hB. Otherwise PB continues.

Figure 10: The consistency checking procedure that keeps the privacy of the evaluator’s masked
bits.

6.1 Security Analysis

We first claim in Lemma 11 that the soundness error of the consistency checking phase can be
bounded by 2

2ρ . Then, the main security theorem is shown in Theorem 3. The respective proofs
are shown in Appendix B.6 and Appendix B.7.

Lemma 11. After the equality check GCCheck (Figure 10), except with probability 2
2ρ , PB either

aborts or evaluates the garbled circuit exactly according to C.

Theorem 3. Let Hccrnd be a (poly(κ), 3|W|+ |I|, κ, ϵccrnd)-circular correlation robust hash function
under naturally derived keys, Htcr be a (poly(κ), |IB|, κ, ϵtcr)-tweakable correlation robust hash func-
tion. Protocol Π2PC-2way shown in Figure 9 securely realizes functionality F2PC in the presence of
malicious adversary in the (Fcpre,FCOT)-hybrid model.

Acknowledgements

Kang Yang is supported by the National Key Research and Development Program of China
(Grant No. 2022YFB2702000), and by the National Natural Science Foundation of China (Grant
Nos. 62102037, 61932019, 62022018). Yu Yu is supported by the National Natural Science Founda-
tion of China (Grant Nos. 62125204 and 92270201), the National Key Research and Development
Program of China (Grant No. 2018YFA0704701), and the Major Program of Guangdong Basic
and Applied Research (Grant No. 2019B030302008). Yu Yu also acknowledges the support from
the XPLORER PRIZE. Xiao Wang is supported by DARPA under Contract No. HR001120C0087,
NSF award #2016240, #2236819, and research awards from Meta and Google. The views, opinions,

36

and/or findings expressed are those of the author(s) and should not be interpreted as representing
the official views or policies of the Department of Defense or the U.S. Government. We thank the
anonymous reviewers for their helpful comments.

References

[1] Jackson Abascal, Mohammad Hossein Faghihi Sereshgi, Carmit Hazay, Yuval Ishai, and
Muthuramakrishnan Venkitasubramaniam. Is the classical GMW paradigm practical? The
case of non-interactive actively secure 2PC. In ACM Conf. on Computer and Communications
Security (CCS) 2020, pages 1591–1605. ACM Press, 2020.

[2] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benôıt Razet, and Peter Scholl.
Appenzeller to brie: Efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In
ACM Conf. on Computer and Communications Security (CCS) 2021, pages 192–211. ACM
Press, 2021.

[3] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl. MozZ2karella:
Efficient vector-OLE and zero-knowledge proofs over Z2k . In Advances in Cryptology—
Crypto 2022, Part IV, volume 13510 of LNCS, pages 329–358. Springer, 2022.

[4] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese: Zero-
knowledge proofs for boolean and arithmetic circuits with nested disjunctions. In Advances in
Cryptology—Crypto 2021, Part IV, volume 12828 of LNCS, pages 92–122. Springer, 2021.

[5] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd Annual ACM Symposium on Theory of Computing (STOC),
pages 503–513. ACM Press, 1990.

[6] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling
from a fixed-key blockcipher. In IEEE Symposium on Security and Privacy (S&P) 2013, pages
478–492, 2013.

[7] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic
encryption and multiparty computation. In Advances in Cryptology—Eurocrypt 2011, volume
6632 of LNCS, pages 169–188. Springer, 2011.

[8] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic
primitives based on hard learning problems. In Advances in Cryptology—Crypto 1993, volume
773 of LNCS, pages 278–291. Springer, 1994.

[9] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, and Pe-
ter Scholl. Correlated pseudorandomness from expand-accumulate codes. In Advances in
Cryptology—Crypto 2022, Part II, volume 13508 of LNCS, pages 603–633. Springer, 2022.

[10] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter
Scholl. Efficient two-round OT extension and silent non-interactive secure computation. In
ACM Conf. on Computer and Communications Security (CCS) 2019, pages 291–308. ACM
Press, 2019.

[11] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Effi-
cient pseudorandom correlation generators: Silent OT extension and more. In Advances in
Cryptology—Crypto 2019, Part III, volume 11694 of LNCS, pages 489–518. Springer, 2019.

37

[12] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Ef-
ficient pseudorandom correlation generators from ring-LPN. In Advances in Cryptology—
Crypto 2020, Part II, volume 12171 of LNCS, pages 387–416. Springer, 2020.

[13] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, January 2000.

[14] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In 18th Annual ACM Symposium on Theory of Computing (STOC), pages 364–369.
ACM Press, 1986.

[15] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE and obliv-
ious transfer from hardness of decoding structured LDPC codes. In Advances in Cryptology—
Crypto 2021, Part III, volume 12827 of LNCS, pages 502–534. Springer, 2021.

[16] Hongrui Cui, Xiao Wang, Kang Yang, and Yu Yu. Actively secure half-gates with minimum
overhead under duplex networks. LNCS, pages 35–67. Springer, 2023.

[17] Ivan Damg̊ard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. The TinyTable
protocol for 2-party secure computation, or: Gate-scrambling revisited. In Advances in
Cryptology—Crypto 2017, Part I, volume 10401 of LNCS, pages 167–187. Springer, 2017.

[18] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenticated garbling from
simple correlations. In Advances in Cryptology—Crypto 2022, Part IV, volume 13510 of LNCS,
pages 57–87. Springer, 2022.

[19] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Improving line-point zero knowl-
edge: Two multiplications for the price of one. In ACM Conf. on Computer and Communica-
tions Security (CCS) 2022, pages 829–841. ACM Press, 2022.

[20] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and its appli-
cations. In 2nd Conference on Information-Theoretic Cryptography, 2021.

[21] Yevgeniy Dodis and Sanjeev Khanna. Space time tradeoffs for graph properties. In Intl.
Colloquium on Automata, Languages, and Programming (ICALP), volume 1644 of LNCS,
pages 291–300. Springer, 1999.

[22] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology—Crypto 1986, volume 263 of LNCS, pages
186–194. Springer, 1987.

[23] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, Cambridge, UK, 2004.

[24] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In 19th Annual ACM Symposium
on Theory of Computing (STOC), pages 218–229. ACM Press, 1987.

[25] Chun Guo, Jonathan Katz, Xiao Wang, Chenkai Weng, and Yu Yu. Better concrete security for
half-gates garbling (in the multi-instance setting). In Advances in Cryptology—Crypto 2020,
Part II, volume 12171 of LNCS, pages 793–822. Springer, 2020.

38

[26] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multiparty computa-
tion from fixed-key block ciphers. In IEEE Symposium on Security and Privacy (S&P) 2020,
pages 825–841, 2020.

[27] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Actively secure
garbled circuits with constant communication overhead in the plain model. In Theory of
Cryptography Conference (TCC) 2017, volume 10678 of LNCS, pages 3–39. Springer, 2017.

[28] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC
combining BMR and oblivious transfer. In Advances in Cryptology—Asiacrypt 2017, Part I,
volume 10624 of LNCS, pages 598–628. Springer, 2017.

[29] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC
combining BMR and oblivious transfer. J. Cryptology, 33(4):1732–1786, October 2020.

[30] Carmit Hazay, abhi shelat, and Muthuramakrishnan Venkitasubramaniam. Going beyond dual
execution: MPC for functions with efficient verification. In Intl. Conference on Theory and
Practice of Public Key Cryptography 2020, Part II, volume 12111 of LNCS, pages 328–356.
Springer, 2020.

[31] Yan Huang, Jonathan Katz, and David Evans. Quid-Pro-Quo-tocols: Strengthening semi-
honest protocols with dual execution. In IEEE Symposium on Security and Privacy
(S&P) 2012, pages 272–284, 2012.

[32] Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimizing authenticated
garbling for faster secure two-party computation. In Advances in Cryptology—Crypto 2018,
Part III, volume 10993 of LNCS, pages 365–391. Springer, 2018.

[33] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In Intl. Colloquium on Automata, Languages, and Programming (ICALP), vol-
ume 5126 of LNCS, pages 486–498. Springer, 2008.

[34] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant
round multi-party computation combining BMR and SPDZ. In Advances in Cryptology—
Crypto 2015, Part II, volume 9216 of LNCS, pages 319–338. Springer, 2015.

[35] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient constant-
round multi-party computation from BMR and SHE. In Theory of Cryptography Conference
(TCC) 2016, volume 9985 of LNCS, pages 554–581. Springer, 2016.

[36] Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for malicious two-party compu-
tation. In Intl. Conference on Theory and Practice of Public Key Cryptography, volume 3958
of LNCS, pages 458–473. Springer, 2006.

[37] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
new approach to practical active-secure two-party computation. In Advances in Cryptology—
Crypto 2012, volume 7417 of LNCS, pages 681–700. Springer, 2012.

[38] Mike Rosulek and Lawrence Roy. Three halves make a whole? Beating the half-gates lower
bound for garbled circuits. In Advances in Cryptology—Crypto 2021, Part I, volume 12825 of
LNCS, pages 94–124. Springer, 2021.

39

[39] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient
maliciously secure two-party computation. In ACM Conf. on Computer and Communications
Security (CCS) 2017, pages 21–37. ACM Press, 2017.

[40] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computa-
tion. In ACM Conf. on Computer and Communications Security (CCS) 2017, pages 39–56.
ACM Press, 2017.

[41] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In IEEE
Symposium on Security and Privacy (S&P) 2021, pages 1074–1091, 2021.

[42] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique: Efficient
conversions for zero-knowledge proofs with applications to machine learning. In USENIX
Security Symposium 2021, pages 501–518. USENIX Association, 2021.

[43] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang. AntMan: Interac-
tive zero-knowledge proofs with sublinear communication. In ACM Conf. on Computer and
Communications Security (CCS) 2022, pages 2901–2914. ACM Press, 2022.

[44] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient and af-
fordable zero-knowledge proofs for circuits and polynomials over any field. In ACM Conf. on
Computer and Communications Security (CCS) 2021, pages 2986–3001. ACM Press, 2021.

[45] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from improved triple genera-
tion and authenticated garbling. In ACM Conf. on Computer and Communications Security
(CCS) 2020, pages 1627–1646. ACM Press, 2020.

[46] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast extension for
correlated OT with small communication. In ACM Conf. on Computer and Communications
Security (CCS) 2020, pages 1607–1626. ACM Press, 2020.

[47] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science (FOCS), pages 162–167. IEEE, 1986.

[48] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Advances in Cryptology—Eurocrypt 2015,
Part II, volume 9057 of LNCS, pages 220–250. Springer, 2015.

40

Appendix

A Security Model and Functionalities

A.1 Security Model

We say that a two-party protocol Π securely realizes an ideal functionality F if for any probabilistic
polynomial time (PPT) adversary A, there exists a PPT adversary (a.k.a., simulator) S, such that
the joint distribution of the outputs of the honest party and A in the real-world execution where
the party interacts with A and execute Π is computationally indistinguishable from that of the
outputs of the honest party and S in the ideal-world execution where the party interacts with S
and F. We adopt the notion of security with abort, where fairness is not achieved in the two-party
setting [14]. For all our functionalities, the adversary can send abort to these functionalities at any
time, and then the execution is aborted. For the sake of simplicity, we omit the description in these
functionalities.

A.2 The Equality-Check Functionality

Our protocol will invoke a relaxed equality-checking functionality FEQ [37] that is recalled in Fig-
ure 11. This functionality can be securely realized by committing to the input and then opening
it, as we allow to leak the inputs if two inputs are different. The protocol realizing FEQ needs two
rounds and takes 2κ+ ℓ bits of one-way communication for ℓ-bit inputs.

Functionality FEQ

Upon receiving (eq, sid, ℓ, x) from PA and (eq, sid, ℓ, y) from PB, where x, y ∈ {0, 1}ℓ, this functionality
executes as follows:

• If x = y, then send (sid, true) to both parties.

• Otherwise, send (sid, false) to both parties, and also send the input of the honest party to the adversary.

Figure 11: Two-party equality-checking functionality.

A.3 The Coin-Tossing Functionality

Our protocol will use a standard coin-tossing functionality FRand shown in Figure 12, which samples
a uniform element in F2κ . This can be securely realized by having every party commit to a random
element via calling FCom, and then open the commitments and use the sum of all random elements
as the output.

Functionality FRand

Upon receiving (Rand, sid) from two parties PA and PB, sample r ← F2κ and sends (sid, r) to both
parties.

Figure 12: Two-party coin-tossing functionality.

41

B Proofs of Security

B.1 Proof of Lemma 2

Proof. Let L = ⌈ρ+m · log(enm) + logm
2 ⌉ and let M← Fn×L

2 be a uniformly random matrix. In the
following we show that M satisfies the (m,L)-independent property except with probability 2−ρ.

Recall that the property states that any ρ rows of the matrix are linearly independent. Since
we are working in the binary field, a set of vectors in FL

2 being linearly dependent implies that they
XOR to 0, which happens with probability 2−L for uniformly random vectors. Therefore, denote
R as the random variable counting the number of linearly dependent sets with size no more than
ρ, then by the linearity of expectation we have:

E[R] =
m∑
k=1

(
n

k

)
2−L .

Using Markov’s inequality we have

Pr[R ≥ 1] ≤ E[R] =
m∑
k=1

(
n

k

)
2−L .

In our secure computation setting m = 2ρ and n is the number of circuit input gates and AND
gates so we may assume n > 2m. Thus we have

Pr[R ≥ 1] ≤ n
m

m!
· m
2L

.

Using Stirling’s approximation and taking L ≥ ⌈ρ+m · log(enm) + logm
2 ⌉ we have

Pr[R ≥ 1] ≤ nm

2
√
m(me)

m
· m

(2ρ · enm)m ·
√
m

≤ 2−(ρ+1) < 2−ρ,

which implies Pr[R = 0] ≥ 1− 2−ρ.

B.2 Proof of Lemma 6

Proof. Suppose yi ̸= y′i for some i ∈ [ℓ]. Then we have

Vi = ki∆
′
A ⊕ k′i∆A ⊕ KA[m̃i]⊕ KA[m̃

′
i]

= (mi ⊕ yi∆A)∆
′
A ⊕ (m′i ⊕ y′i∆

′
A)∆A ⊕ (MB[m̃i]⊕ m̃i∆

′
A)⊕ (MB[m̃

′
i]⊕ m̃′i∆A)

= (yi ⊕ y′i)∆A∆
′
A ⊕ (mi ⊕ m̃i)∆

′
A ⊕ (m′i ⊕ m̃′i)∆A ⊕MB[m̃

′
i]⊕MB[m̃i]

= ((yi ⊕ y′i)∆A ⊕ (mi ⊕ m̃i))∆
′
A ⊕ (m′i ⊕ m̃′i)∆A ⊕MB[m̃

′
i]⊕MB[m̃i] .

With probability 2−κ we have (yi ⊕ y′i)∆A ⊕ (mi ⊕ m̃i) = 0. Conditioned on this event not
happening, we can use the same argument as in Lemma 1 to argue PB’s advantage in passing
the test is bounded by 2

2κ . Therefore, by a union bound,we conclude that the soundness error of
EQCheck is bounded by 3

2κ .

42

B.3 Proof of Theorem 1

Proof. Correctness. Lemma 4 shows that the key sampling procedure Πsamp returns keys subject
to lsb(∆A∆B) = 1, which ensures lsb(DA[x])⊕ lsb(DB[x]) = x for any x ∈ F2. This implies that all
the b̃k values that PB computes in step 9 are correct.

Now we argue security. We first present the sampling simulation as a separate process and
then describe the simulation for the main protocol Πcpre. In the following proof there are multiple
instances where the same keys ∆A or ∆B are used. We use different superscripts to differentiate
those keys received from the adversary.

Corrupted PA. SA first simulates the key sampling protocol Πsamp as follows:

1. SA receives the input key ∆1
A by simulating FCOT.

2. SA receives m0
A of A. If lsb(∆A) ̸= 1 then it aborts.

3. SA samples ∆̃B s.t. msb(∆̃B) = 1, to handle the Fix command and m1
B message. It also receives

the message m1
A from A.

4. SA simulates the init and extend commands of FCOT internally.

5. SA sends m0
B following the protocol instructions.

6. SA then simulates the checking procedure as follows:

(a) SA simulates extend and Fix using previously sampled keys. It also sends true to A to
simulate FDVZK.

(b) SA receives m2
A from the adversary. If m2

A ̸= lsb(DA[x1]), ..., lsb(DA[xρ]) then SA aborts.

(c) SA extracts A’s input of Fix as ∆2
A.

(d) SA samples y as the output of extend and extracts A’s input to the Fix command. If the
multiplication correlation does not hold then SA aborts.

(e) SA sends m2
B according to protocol instruction.

(f)–(g) If ∆1
A ̸= ∆2

A then SA sends h← F2κ to A and aborts to simulate CheckZero2. Otherwise it
follows the protocol instruction.

Then SA simulates the main protocol Πcpre.

1. SA samples M← Fn×L
2 and sends it to A.

2. SA locally simulates the extend command and samples b∗.

3. SA simulates the Fix command using previously sampled b∗ and ∆B.

4–5 SA simulates the init command internally and receives a ← Fm
2 and â ← Ft

2 from A in FL+1
bCOT

and F2
bCOT. Then it extracts (∆′A)

(1) and (∆′A)
(2) respectively from the two Fix commands.

6. SA follows the protocol instruction.

7. SA simulates Fix using uniformly random messages. It also extracts ai,j from the Fix command
from A.

8. SA follows the protocol instruction.

43

9. SA receives the lsb(DA[b̃k]) message from A and evaluates the b̂k values.

10. SA simulates Fix using previously computed b̂k values.

11. SA simulates FDVZK on ([[bi]]∆A
, [[bj]]∆A

, [[bi,j]]∆A
) for each AND gate (i, j, k,∧) and ([[b∗i]]∆A

,
[[∆B]]∆A

, [[B∗i]]∆A
) by sending true to A. If the previously extracted ai,j ̸= ai · aj then SA aborts.

12. SA extracts A’s input to FCOT as (∆′A)
(3). If (∆′A)

(1) ̸= (∆′A)
(2) or (∆′A)

(2) ̸= (∆′A)
(3) then SA

sends h← F2κ to simulate CheckZero2 and aborts. Otherwise it follows the protocol instruction
to simulate EQCheck.

13. SA follows the protocol instruction and samples r ← F2κ .

14. SA simulates FRand internally and sends χ← F2κ to A.

15. SA sends y :=
∑

k∈W χk · b̃k + r to A. If the previous lsb(DA[b̃k]) messages are erroneous then
SA sends h ← F2κ to FEQ and aborts to simulate CheckZero2. Otherwise it follows protocol
instructions.

16. SA follows the protocol instruction for CheckZero.

Now we argue that the ideal world output and the real world output are indistinguishable using
a series of hybrids.

Hybrid 1 This is the real-world execution.

Hybrid 2 SA extracts ∆1
A in step 1. If lsb(∆A) ̸= 1 then SA aborts in step 2. By Lemma 4 the

two hybrids are 2−ρ-indistinguishable.

Hybrid 3 We make explicit the use of ∆B in this hybrid and mark them in blue.

• In step 6g we compute hB = H(DA[1B] ⊕ DA[1A] ⊕ (∆1
A ⊕∆2

A)∆B) where ∆2
A is defined as

in the simulation above.

• We compute hB in CheckZero2(⟨1(1)B ⟩ − ⟨1
(2)
B ⟩, ⟨1

(2)
B ⟩ − ⟨1

(3)
B ⟩) in step 12 as H(DA[1

(1)
B] ⊕

DA[1
(2)
B]⊕ ((∆′A)

(1) ⊕ (∆′A)
(2))∆B,DA[1

(2)
B]⊕ DA[1

(3)
B]⊕ ((∆′A)

(2) ⊕ (∆′A)
(3))∆B).

• In step 15 we compute hB as H(DA[y]⊕ y · DA[1B]⊕
∑

k χ
kek∆

1
A∆B) where ek is the error

in b̃k that A sends in step 9.

Since we merely re-write the input inside the H function, Hybrid2 andHybrid3 are identical.

Hybrid 4 SA replaces the blue terms in the previous hybrid with uniform randomness. Since the
preimage in the blue terms are uniformly random to A, except with probability τ

2κ the blue
values are uniformly random (τ upper bounds the running time of A). Thus, Hybrid3 and
Hybrid4 are τ

2κ -indistinguishable.

Hybrid 5 SA sends true to A and locally verify the multiplicative relation to simulate FDVZK in
all subsequent hybrids. Since the functionality FDVZK is ideal, the two hybrids are identically
distributed.

Hybrid 6 SA receives the message m2
A from A. If m2

A ̸= lsb(DA[x1]), ..., lsb(DA[xρ]) then SA aborts.
By Lemma 4 the two hybrids are 2−ρ-indistinguishable.

44

Hybrid 7 If ∆1
A ̸= ∆2

A in step 6c then SA aborts. Since hB is uniformly random to A if ∆1
A ̸= ∆2

A,
we have that Hybrid6 and Hybrid7 are 2−κ-indistinguishable.

Hybrid 8 Let (∆′A)
(1) and (∆′A)

(2) be the Fix command input of A in step 4 and step 5 respectively.
Let (∆′A)

(3) be the input of FCOT in step 12. If (∆′A)
(1) ̸= (∆′A)

(2) or (∆′A)
(2) ̸= (∆′A)

(3) then
SA aborts to simulate CheckZero2. Using the previous argument, the two hybrids are 2−κ-
indistinguishable.

Hybrid 8 If A sends incorrect lsb(DA[b̃k]) values in step 9 then SA simulates the CheckZero2
command using previous strategy. By the Schwartz-Zippel lemma the two hybrids are (t+1

2κ)-
indistinguishable. This is the ideal world execution.

Therefore, the ideal world and real world executions are (2
2ρ + t+τ+3

2κ)-indistinguishable in the
corrupted PA case.

Corrupted PB. SB first simulates the key sampling protocol Πsamp as follows:

1. SB simulates the init and extend command internally.

2. SB sends m0
A following protocol instruction.

3. SB extracts ∆̃1
B from the Fix macro, sends m1

A and receives m1
B. It fixes [[∆̃1

B]]∆A
according to

protocol instruction.

4. SB extracts ∆2
B from the init command.

5. SB receives m0
B from A and aborts if msb(∆2

B) ̸= 1.

6. SB simulates the checking procedure as follows:

(a) SB sends x← F2ρ to simulate extend. It also extracts the input from the Fix command. If
the multiplication correlation does not hold then it aborts.

(b) SB sends m2
A according to the protocol instruction.

(c) SB samples ∆A to simulate Fix.

(d) SB samples y to simulate extend and Fix. It then sends true to A to simulate FDVZK.

(e) SB receives m2
B from A and aborts if m2

B ̸= lsb(DB[y1]), ..., lsb(DB[yρ]) then SB aborts.

(f)–(g) If ∆̃1
B ̸= ∆2

B then SB sends h← F2κ and aborts to simulate CheckZero2.

SB then simulates the main protocol Πcpre as follows.

1. SB receives the compression matrix M from A.

2. SB receives b∗ from A to simulate the extend command.

3. SB extracts the inputs {b∗i∆B}i∈[L] from the Fix command of A.

4–5 SB extracts the input (β1, ..., βL,∆
3
B) and (β0,∆

4
B) from the init command. Then SB follows

protocol instructions.

6–8 SB follows protocol specifications to generate ai,j for each AND gate (i, j, k,∧). Then it extracts
bi,j from A’s input to Fix and generates ⟨âk⟩, ⟨ai,j⟩ following protocol specifications.

45

9. SB follows protocol specifications and sends lsb(DA[b̃k]).

10. SB extracts the input {b̂2k} of the Fix command.

11. SB simulates the FDVZK functionality by sending true to A. If the extracted values in previous
step 3 and step 6 do not satisfy the multiplicative relation then SB aborts.

12. SB extracts the A’s input ∆5
B from the Fix command. If ∆3

B ̸= ∆4
B or ∆4

B ̸= ∆5
B then SB

sends h ← F2κ to FEQ and aborts to simulate CheckZero2. If ∆5
B ̸= ∆1

B (the latter one is from
simulation of Πsamp) or the {βi } inputs from step 3 are inconsistent then SB aborts to simulate
EQCheck.

13. SB receives r ← Fκ
2 to simulate extend. Define r := B2F(r). Then it extracts r ·∆6

B in the Fix
command.

14. SB simulates FRand by sending χ← F2κ to A. Define y :=
∑

k∈W χk · b̃k + r.

15. SB receives y2 from A. If y ̸= y2 or ∆6
B ̸= ∆1

B then SB sends h ← F2κ to FEQ and aborts to
simulate CheckZero2.

16. If the b̂k extracted in step 10 are incorrect then SB aborts.

Now we argue that the ideal world and real world are indistinguishable by a series of hybrid
experiments.

Hybrid 1 This is the real-world execution.

Hybrid 2 SB extracts ∆̃1
B from the Fix command in step 3. If msb(∆̃[B]1) ̸= 1 then SB aborts.

By Lemma 4 the two hybrids are 2−ρ-indistinguishable.

Hybrid 3 We make explicit the usage of ∆A in this hybrid and mark them in blue.

• In step 6g we compute hA = H(DB[1B]⊕DB[1A]⊕ (∆̃1
B⊕∆2

B)∆A) where ∆2
B is extracted as

in the previous simulation.

• In step 12 we compute hA in CheckZero2(⟨1(1)B ⟩ − ⟨1
(2)
B ⟩, ⟨1

(2)
B ⟩ − ⟨1

(3)
B ⟩) as H(DB[1

(1)
B] ⊕

DB[1
(2)
B]⊕ (∆3

B⊕∆4
B)∆A,DB[1

(2)
B]⊕DB[1

(3)
B]⊕ (∆4

B⊕∆5
B)∆A). For the EQCheck commands

we simulate them as H(M[ṽ1]∆⊕M[ṽ2]∆′ ⊕ (v1⊕ v2)∆∆′) where v1, v2 are two values to be
checked and ∆,∆′ are two keys.

• In step 15 we compute hA as H(DB[y]⊕ y ·DB[1]⊕ (e∆1
B ⊕ r(∆1

B ⊕∆6
B))∆A) where e is the

error in y that A sends in step 15 and ∆6
B is defined as in the above simulation.

Since we merely re-write the input inside the H function, Hybrid2 andHybrid3 are identical.

Hybrid 4 SB replaces the blue terms in the previous hybrid with uniform randomness. Since the
preimage in the blue terms are uniformly random to A, except with probability τ+1

2κ the blue
values are uniformly random (τ upper bounds the running time of A). Thus, Hybrid3 and
Hybrid4 are τ+1

2κ -indistinguishable6.

Hybrid 5 SB sends true to A and locally verify the multiplicative relation to simulate FDVZK in
all subsequent hybrids. Since the functionality FDVZK is ideal, the two hybrids are identically
distributed.

46

Hybrid 6 SB receives the message m2
B from A. If m2

B ̸= lsb(DB[y1]), ..., lsb(DB[yρ]) then SA aborts.
By Lemma 4 the two hybrids are 2−ρ-indistinguishable.

Hybrid 7 If ∆̃1
B ̸= ∆2

B in step 3 then SB aborts. Since hA is uniformly random to A, Hybrid6

and Hybrid7 are 2−κ-indistinguishable.

Hybrid 8 Let ∆3
B and ∆4

B be the init command input of A in step 4 and step 5 respectively. Let
(∆B)

5 be the input of Fix in step 12. If ∆3
B ̸= ∆4

B or ∆4
B ̸= ∆5

B then SB aborts to simulate
CheckZero2. Using the previous argument, the two hybrids are 2 · 2−κ-indistinguishable.

Hybrid 9 In step 12 if the input to EQCheck does not equal then SB aborts. Since the hA values
are uniformly random to A, Hybrid8 and Hybrid9 are 2 · 2−κ-indistinguishable.

Hybrid 10 If the y2 that A sends in step 15 does not satisfy y2 =
∑

k∈W χk · b̃k + r or ∆6
B ̸= ∆1

B

then SB aborts. The two hybrids are 2−κ-indistinguishable.

Hybrid 10 If the b̂k are incorrect in step 10 then SB aborts in step 16. By the Schwartz-Zippel
lemma, the two hybrids are (t+1

2κ)-indistinguishable. This is the ideal world execution.

Therefore, in the corrupted PB case the real world and ideal world executions are (2
2ρ +

t+τ+8
2κ)-

indistinguishable.
We conclude that the protocol Πcpre in Figure 5 and Figure 6 securely computes the Πcpre

functionality in Figure 3 in the (FCOT, FbCOT, FDVZK, FEQ, FRand)-hybrid model.

B.4 Proofs of Security Lemmas in Dual Execution

In this subsection we prove that with compressed preprocessing Fcpre the KRRW distributed gar-
bling scheme still has 2−ρ-selective failure resilience. This is essentially a formalization of the results
in the work of Dittmer et al. [18, Appendix B.2].

Proof of Lemma 8.

Proof. Observe the equation zw = aw ⊕ bw ⊕ Λw. Fix an arbitrary y ∈ F|IA|2 , we analyze the
event Bady inductively. Consider the following pebbling game, where we consider every input wire,
internal gate, and output wire as nodes on a DAG and place a pebble on that node once the wire
label and masked value for that wire/gate output is known. Specifically, we place a blue pebble
if the masked value of that wire is always correct and a red pebble if the probability that the
wire value is inconsistent with respect to its two predecessor wires (denote this event as Bad′y) is
non-zero.

Initially, we can place blue pebbles on all input wires, since they are correct by definition.
As an inductive step, given the preprocessing information and garbler’s share of the garbled

circuit GCA (possibly malformed), the evaluator’s share GCB, we can pebble those gates whose two
input wires are both pebbled. If this is an XOR gate, we place a blue pebble. Otherwise (this is an
AND gate), we can identify the errors in the bit position where the evaluator extract the masked
wire value (usually this is the LSB). Denote this gate as (i, j, k,∧), if there are errors in Gk,0 or
Gk,1 then we place a red pebble on this gate. If there are no errors regardless of the choice of Λi,Λj

then we place a blue pebble.

6The additional 1
2κ

security less is due to the probability that ∆′ cancels out the ∆ terms, similar to the argument
in Lemma 7.

47

Inductively, we can go through the entire DAG until all nodes are pebbled. Notice that the
event Bady occurs if the event Bad′y occurs on any of the nodes with red pebbles. Let ℓ be the
number of red pebble nodes and consider the following two cases.

• ℓ ≤ ρ : In this case the (2ρ, L)-independence of M ensures that the Λw values that underlies
all the Bad′ events are completely masked by b and so probability of Bad is independent of the
evaluator’s input.

• ℓ > ρ : In this case the event Bady not happening implies that ρ consecutive coin flips all equal
to head, which occurs except with probability 2−ρ.

Therefore, for different evaluator’s inputs y and y′, the probabilities of Bady and Bady′ differ with
at most 2−ρ probability. In other words, the KRRW scheme with compressed preprocessing is
2−ρ-selective failure resilient.

Proof of Lemma 10 We prove that the difference of the V A
w and V B

w values in the consistency
checking phase actually captures the error on the wire w (indicating whether the result of w is
flipped).

Proof. In particular, we can re-write V B
w using the notations from Lemma 9.

V B
w = (bw ⊕ b′w ⊕ Λw)∆B ⊕MB[bw ⊕ b′w ⊕ Λw]⊕ KB[aw ⊕ a′w ⊕ Λ′w]

= (bw ⊕ b′w ⊕ Λw)∆B ⊕ (bw ⊕ b′w ⊕ Λw)∆A ⊕ KA[bw ⊕ b′w ⊕ Λw]

⊕ (aw ⊕ a′w ⊕ Λ′w)∆B ⊕MA[aw ⊕ a′w ⊕ Λ′w]

⊕ (aw ⊕ a′w ⊕ Λ′w)∆A ⊕ (aw ⊕ a′w ⊕ Λ′w)∆A

= (aw ⊕ bw ⊕ Λw ⊕ a′w ⊕ b′w ⊕ Λ′w)∆B

⊕ (aw ⊕ bw ⊕ Λw ⊕ a′w ⊕ b′w ⊕ Λ′w)∆A

⊕ KA[bw ⊕ b′w ⊕ Λw]⊕MA[aw ⊕ a′w ⊕ Λ′w]⊕ (aw ⊕ a′w ⊕ Λ′w)∆A

= V A
w ⊕ ew · (∆A ⊕∆B) .

B.5 Proof of Theorem 2

In this subsection we prove the security of the two party computation protocol Π2PC based on dual
execution as shown in Figure 7 and Figure 8.

Proof. We first prove the security against a malicious PA and then prove the case for a malicious
PB. The running time of A is bounded by τ = poly(κ). We first describe the simulator and then
argue its effectiveness through a series of hybrid experiments. In the following, we simulate the
random oracle by recording all the query-answer pairs and answer the queries from A consistently.

Simulator SA for malicious PA

1–3 During the simulation of Fcpre, SA receives ∆A, a, â, MA[a], MA[â], KA[b
∗], and KA[b̂] from A

and locally records those values. Then SA internally samples b∗, b̂ and computes KA[b
∗],KA[b̂]

accordingly. Then the wire masks aw, bw for each wire w in the circuit are derived according to
the protocol. SA also receives GCA from A.

48

4. SA receives the wire masks and labels (Λw, Lw,Λw) for each w ∈ IA and extracts the input x of
A by computing xw := Λw ⊕ aw. SA sends the extracted input x to F2PC.

5. SA uses the all-zero input y (i.e., Λw = bw) to simulate the Fix command. Then it receives
mw,0,mw,1 for w ∈ IB and computes the input label Lw,Λw := mw,Λ̃w

⊕ Htcr(MB[Λ̃w], w∥0).

6. SA simulates the Open command with A.

7. Using the information from preprocessing and the adversary’s random tape, SA defines the
additive error for each AND gate k as eAk,0, e

A
k,1. SA then evaluates the garbled circuit using the

information from previous simulation and derives the result {Λw, Lw,Λw }.

8. SA simulates the preprocessing functionality Fcpre by receiving (a∗)′, â′, MA[(a
∗)′], MA[â

′],

KA[b
′], and KA[b̂

′] from A. SA randomly samples b′, b̂′ and computes MA[b
′], MA[b̂

′] accordingly.

9. SA simulates the garbling process by generating GC′B and the active path (the labels to be
acquired by A) topologically as follows.

• For an XOR gate (i, j, k,⊕), SA defines Λ′k = Λ′i ⊕ Λ′j and L′k,Λ′
k
= L′i,Λ′

i
⊕ L′j,Λ′

j
.

• For an AND gate (i, j, k,∧), SA samples Λ′k ← F2 and generates G′k,0 ← F2κ , G
′
k,1 ← F2κ .

Then SA evaluates L′k,Λ′
k
according to the protocol specification in KRRW and defines c′k =

ExtBit(L′k,Λ′
k
)⊕ Λ′k.

Finally, SA sends the simulated GC′B to A.

10. SA simulates the online phase as follows.

(a) For each w ∈ IB, SA uses the all-zero input y and sends (Λ′w, L
′
w,Λ′

w
) to A.

(b) For each w ∈ IA, SA extracts the input x′ of A by simulating the Fix command. Then
SA simulates the message m′w,Λ′

w
:= Htcr(MA[Λ

′
w], w∥1) ⊕ L′w,Λ′

w
and m′

w,Λ̄′
w
← {0, 1}κ for

w ∈ IA and sends them to A.
(c) SA simulates the Open command by opening Λ′w ⊕ Λ̃′w for w ∈ IA. Since SA knows the key

∆A this can be done efficiently.

(d) SA locally defines MA[Λ
′
w] for w ∈ W using Eval.

11. SA receives h̃A from A and locally computes hA according to the protocol specification. Then
we define ew to be the error for wire w ∈ W ∪ I as follows. For each input wire w ∈ IA
define ew := xw ⊕ x′w, for w ∈ IB define ew = 0, and for the AND gate (i, j, k,∧) define
ek := (Λi ⊕ ai ⊕ bi) · (Λj ⊕ aj ⊕ bj) ⊕ Λk ⊕ ak ⊕ bk. SA checks that h̃A = hA and ew = 0 for all
w ∈ W ∪ I. If not then SA sends abort to F2PC, otherwise it sends continue.

12. SA checks that A sends the correct MAC tag MA[aw] for w ∈ O. If not it sends abort, otherwise
it sends continue.

Now consider the series of hybrids where the first one is the real protocol execution and the last
one is the above simulated execution.

Hybrid 1 This is the real execution where SA plays the role of an honest PB using the actual input
y.

49

Hybrid 2 In this hybrid we make explicit the usage of the honest party’s secret ∆B and mark
them in blue. In particular,

• In step 10b SA generates m′w,Λw
= Htcr(MA[Λ̃

′
w], w∥1)⊕ L′w,Λ′

w
and m′

w,Λ̄′
w
= Htcr(MA[Λ̃

′
w]⊕

ΓB, w∥1)⊕∆B ⊕ L′w,Λ′
w
for w ∈ IA.

• In step 11b SA computes the checking value hB as H({V A
i ⊕ ew ·∆A ⊕ ew ·∆B}), where ew

is the error for each wire w ∈ W ∪ I during Eval in step 7.

• In step 9 SA generates each gate in the garbled circuit GC′B as follows. The XOR gates are
garbled as usual, while the AND gates are garbled as G′k,0 = Hccrnd(L

′
i,Λ′

i
, w∥10) ⊕ K[a′j] ⊕

Hccrnd(L
′
i,Λ′

i
⊕∆B, w∥10)⊕b′j ·∆B and G′k,1 = Hccrnd(L

′
j,Λ′

j
, w∥11)⊕K[a′i]⊕L′i,Λ′

i
⊕Hccrnd(L

′
j,Λ′

j
⊕

∆B, w∥11)⊕ (b′i⊕Λ′i) ·∆B while the output label L′k,Λ′
k
is derived using the Eval algorithm.

The first two changes make no difference to the view of the adversary since we just re-write
the hash function input. Due to the observation in Lemma 10 the third change also brings no
change to the adversary’s view. Therefore, Hybrid1 andHybrid2 are identically distributed.

Hybrid 3 In this hybrid we replace the first blue term with uniformly random values. Due to the
tweakable correlation robust property, Hybrid2 and Hybrid3 are ϵtcr-indistinguishable.

Hybrid 4 In this hybrid we replace the second blue term with uniformly random values if ew ̸= 0
for some w ∈ I ∪W. Except when A queries the value V A

i ⊕ ew ·∆A ⊕ ew ·∆B the random
permuted output appears uniformly random to A. Thus, Hybrid3 and Hybrid4 are τ

2κ -
indistinguishable.

Hybrid 5 In this hybrid we replace the third blue term with uniformly random values. Due to
the circular correlation robust under naturally derived keys property, Hybrid4 and Hybrid5

are ϵccrnd-indistinguishable.

Hybrid 6 In this hybrid we change the simulation of the checking phase. Namely, SA sends abort
whenever ew ̸= 0 for a wire w ∈ W. If ew ̸= 0 in Hybrid4 then hB is uniformly random in
the view of A, therefore an honest PB would abort except with probability 2−κ. Hybrid5

and Hybrid6 are 2−κ-indistinguishable.

Hybrid 7 In this hybrid we change the input of PB from y to all zeros. Since in step 5 PB’s input
is completely masked the view of A is not changed. As for the honest party’s output, due to
Lemma 8 the probability that PB aborts changes at most with probability 2−ρ. Therefore,
Hybrid6 and Hybrid7 are 2−ρ-indistinguishable. This is exactly the ideal distribution.

Altogether, the ideal world and real world executions are (ϵtcr+ϵccrnd+
τ+1
2κ + 1

2ρ)-indistinguishable
in the corrupted PA case.

Simulator SB for malicious PB

1–3 During the simulation of Fcpre, SB receives ∆B, b
∗, b̂, MB[b

∗], MB[b̂], KB[a], and KB[â] from A
and locally records those values. Then SB internally samples a, â and computes KB[a],KB[â]
accordingly. Then the wire masks aw, bw for each wire w in the circuit are derived according to
the protocol.

SB simulates the garbling phase by generating GCA and the active path (the labels to be acquired
by A) topologically as follows.

50

• For an XOR gate (i, j, k,⊕), SB defines Λk = Λi ⊕ Λj and Lk,Λk
= Li,Λi ⊕ Lj,Λj .

• For an AND gate (i, j, k,∧), SA samples Λk ← F2 and generates Gk,0 ← F2κ , Gk,1 ← F2κ .
Then SA evaluates Lk,Λk

according to the protocol specification in KRRW and defines ck =
ExtBit(Lk,Λk

)⊕ Λk.

Finally, SB sends the simulated GCA to A.

4. SB sets Λw = aw (using all zero inputs) and then sends Λw, Lw,Λw for w ∈ IA to A.

5. SB simulates the Fix command and extracts the input y of A and sends it to F2PC. Then, SB
generates the input messages mw,Λw = Htcr(MB[Λ̃w], w∥0) ⊕ Lw,Λw and mΛ̄w

← F2κ and sends
them to A.

6. SB simulates the Open command by opening Λw ⊕ Λ̃w for w ∈ IB. Since SB knows the key ∆B

this can be done efficiently.

7. SB locally defines MB[Λw] for w ∈ W using Eval.

8–9 SB simulates the preprocessing functionality Fcpre by receiving b′, b̂′, MB[b
′], MB[b̂

′], KB[(a
∗)′],

and KB[â
′] from A. SA randomly samples (a∗)′, â′ and computes MA[(a

∗)′], MA[â
′] accordingly.

SB receives the garbled circuit GC′B from A. Using the information from preprocessing and the
adversary’s random tape, SB defines the additive error for each AND gate k as (e′)Bk,0, (e

′)Bk,1.

10. SB simulates the online phase as follows.

(a) For each w ∈ IB SB receives Λ′w, L
′
w,Λ′

w
and recovers the input of A as y′.

(b) SB simulates the Fix command and recovers the input labels L′w,Λ′
w
for w ∈ IA.

(c) SB simulates the Open command with A.
(d) SB evaluates the garbled circuit using the information from previous simulation and derives

the result {Λ′w, L′w,Λ′
w
} for w ∈ W.

11. SB checks that the Λ′w values derived from the evaluation of GC′A and GC′B are consistent with
C(0,y) and that y = y′. In particular, for each AND gate (i, j, k,∧), SA checks that (Λ′i ⊕ a′i ⊕
b′i) ·(Λ′j⊕a′j⊕b′j) = Λ′k⊕a′k⊕b′k. If not then SB samples hA ← F2κ and sends it to A. Otherwise,
SB computes hB = H({Vw}w∈I∪W) according to protocol specification and sends it to A.

12. If the previous step does not abort, then SB receives the correct output zw from F2PC for w ∈ O.
Then SB sends the corrected MAC tag MA[aw] ⊕ (z0w ⊕ zw) · ∆B to A, simulating the Open
command. Here z0 denotes the output value of C(0,y).

Hybrid 1 This is the real execution where SB plays the role of an honest PA using the actual input
x.

Hybrid 2 In this hybrid we make explicit the usage of the honest party’s secret ∆A and mark
them in blue. In particular,

• In step 5 SB generates mw,Λw = Htcr(MB[Λ̃w], w∥0) ⊕ Lw,Λw and mw,Λ̄w
= Htcr(MB[Λ̃w] ⊕

ΓB, w∥1)⊕∆A ⊕ Lw,Λw for w ∈ IB.
• In step 11b SB computes the checking value hA as H({V B

i ⊕ ew ·∆B ⊕ ew ·∆B}), where ew
is the error for w ∈ W ∪ I during Eval in step 10d.

51

• In step 3 SB generates each gate in the garbled circuit GCA as follows. The XOR gates are
garbled as usual, while the AND gates are garbled as Gk,0 = Hccrnd(Li,Λi , w∥00) ⊕ K[bj] ⊕
Hccrnd(Li,Λi⊕∆A, w∥00)⊕aj ·∆A and Gk,1 = Hccrnd(Lj,Λj , w∥01)⊕K[bi]⊕Li,Λi⊕Hccrnd(Lj,Λj⊕
∆A, w∥01)⊕ (ai⊕Λi) ·∆A while the output label Lk,Λk

is derived using the Eval algorithm.

Due to the observation in Lemma 10 the third change also brings no change to the adversary’s
view. Therefore, Hybrid1 and Hybrid2 are identically distributed.

Hybrid 3 In this hybrid we replace the first blue term in Hybrid2 with uniformly random values.
Due to the tweakable correlation robust property of Htcr, Hybrid2 and Hybrid3 are ϵtcr-
indistinguishable.

Hybrid 4 In this hybrid we replace the second blue term in Hybrid2 with uniformly random
values if ew ̸= 0 for some w ∈ W∪I. Except when A queries the value V B

i ⊕ew ·∆A⊕ew ·∆B

the random permuted output appears uniformly random to A. Thus, Hybrid3 and Hybrid4

are τ
2κ -indistinguishable.

Hybrid 5 In this hybrid we replace the third blue term in Hybrid2 with uniformly random values.
Due to the circular correlation robust under naturally derived keys property, Hybrid4 and
Hybrid5 are ϵccrnd-indistinguishable.

Hybrid 6 In this hybrid we change the input of PA from x to all zeros. Since in step 4 PA’s input
is completely masked the view of A is not changed. As for the honest party’s output, due to
Lemma 8 the probabilities that ∃w ∈ W, ew = 0 under any pair of input values differ changes
at most with probability 2−ρ. Therefore, Hybrid3 and Hybrid4 are 2−ρ-indistinguishable.
This is exactly the ideal distribution.

Altogether, the ideal world and real world executions are (ϵtcr+ϵccrnd+
τ
2κ+2−ρ)-indistinguishable

in the corrupted PB case. This implies that the protocol Π2PC shown in Figure 7 and Figure 8
securely realizes F2PC against malicious adversary in the Fcpre,FCOT-hybrid model.

B.6 Proof of Lemma 11

In this subsection, we prove the soundness of the consistency checking procedure in Figure 10.

Proof. Let ek := (ai ⊕ bi ⊕ Λi) · (aj ⊕ bj ⊕ Λj)⊕ (ak ⊕ bk ⊕ Λk) be the error of the output wire for
an AND gate (i, j, k,∧). Then we can show that the errors are captured in the XOR of hA and hB.

In particular, we can re-write hB as follows.

hB =
∑
k

χk ·Bk ⊕Dk

=
∑
k

χk(B
′
k∆B ⊕ KB[ak]⊕ KB[âk]⊕ Λi · KB[aj]⊕ Λj · KB[ai])⊕Dk

=
∑
k

χk((Λi · Λj ⊕ Λk ⊕ bk ⊕ b̂k ⊕ Λi · bj ⊕ Λj · bi) ·∆B

⊕ KB[ak]⊕ KB[âk]⊕ Λi · KB[aj]⊕ Λj · KB[ai])⊕Dk

=
∑
k

χk((ek ·∆B)⊕MA[ak]⊕MA[âk]⊕ Λi ·MA[aj]⊕ Λj ·MA[ai])⊕ Λk ·Ak,1 ⊕ Ck

=
∑
k

χkek ·∆B ⊕
∑
k

(χk ·Ak,0 ⊕ Ck)⊕
∑
k

χk · (Λi ·MA[aj]⊕ Λj ·MA[ai])⊕
∑
k

Λk ·Ak,1 .

52

Now we claim that the term marked blue is zero. Recall that we define Ak,1 :=
∑

(i′,j′,k′,∧)∈C χk′ ·
(ci

′
k ·MA[aj′]⊕cj

′

k ·MA[ai′]) and cik is the public vector subject to
∑

k c
i
k ·Λk = Λi. Then by exchanging

the summation order in the second part of the blue term, we can get the following result.∑
k

Λk ·Ak,1 =
∑
k

Λk · (
∑

(i′,j′,k′,∧)∈C

χk′ · (ci
′
k ·MA[aj′]⊕ cj

′

k ·MA[ai′]))

=
∑

(i′,j′,k′,∧)∈C

χk′ ·
∑
k

Λk · (ci
′
k ·MA[aj′]⊕ cj

′

k ·MA[ai′])

=
∑
k′

χk′ ·
∑
k

Λk · ci
′
k ·MA[aj′]⊕

∑
k′

χk′ ·
∑
k

Λk · cj
′

k ·MA[ai′]

=
∑
k′

χk′ · Λi′ ·MA[aj′]⊕
∑
k′

χk′ · Λj′ ·MA[ai′] .

This implies that the blue term is actually zero. Therefore, we have that hB = hA ⊕
∑

k χk · ek.
Recall that χ1, ..., χt are uniformly random. Suppose ek ̸= 0 for some AND gate (i, j, k,∧) then
except with probability 1

2ρ we have hA ̸= hB. In this case, suppose A sends a hA that passes the
test, then it implies that ∆B = (hA ⊕ hB) · (

∑
k χk · ek)−1. Since ∆B is uniformly random for A in

the Fcpre-hybrid model, this happens except with probability 2−ρ.
Using the union bound, we conclude that the soundness error of the consistency checking phase

is bounded by 2
2ρ .

B.7 Proof of Theorem 3

In this subsection we prove the security of the two party computation protocol Π2PC-2way in Figure 9
that optimizes towards total communication complexity.

Proof. We first prove the security against a malicious PA and then prove the case for a malicious
PB. We first describe the simulator and then argue its effectiveness through a series of hybrid
experiments.

Simulator SA for malicious PA

1–3 During the simulation of Fcpre, SA receives ∆A, a, â, MA[a], MA[â], KA[b
∗], KA[b̂], and GCA from

A and locally records those values. Then SA internally samples b∗, b̂ and computes MB[b
∗],MB[b̂]

accordingly. Then the wire masks aw, bw for each wire w in the circuit are derived according to
the protocol.

4. SA receives the masked wire values and labels (Λw, Lw,Λw) for each w ∈ IA and extracts the
input x of A by computing xw := Λw ⊕ aw. SA sends the extracted input x to F2PC.

5. SA simulates the Fix command using the all-zero input y (i.e., Λ̃w = bw). Then it receives
mw,0,mw,1 for w ∈ IB from A and computes Lw,Λw = Htcr(MB[Λ̃w])⊕mw,Λ̃w

for w ∈ IB.

6. SA simulates the Open command and computes Λw for w ∈ IB.

7. SA evaluates the garbled circuit using the information from previous simulation and derives the
result {Λw, Lw,Λw }.

8. SA simulates the protocol ΠGCCheck as follows.

53

(a) SA samples a random challenge χ and sends it to A.
(b) SA locally computes Ak,0, Ak,1 from A’s previous input to Fcpre.

(c) SA receives the G′k messages from A and computes the Dk values for each AND gate
(i, j, k,∧) as well as the Ck values.

(d) SA receives the tag h̃A from A and computes the hA value according to the protocol speci-
fication. Let ek be the error of the AND gate (i, j, k,∧) defined as ek = (ai⊕ bi⊕Λi) · (aj ⊕
bj ⊕ Λj) ⊕ (ak ⊕ bk ⊕ Λk). If h̃A ̸= hA or ek ̸= 0 for some k, then SA sends abort to F2PC.
Otherwise, it sends continue.

9. SA simulates the verification operation inside the Open command. For w ∈ O, let ãw be the
message that A sends in this step. If aw ̸= ãw for any w ∈ O then SA sends abort to F2PC.
Otherwise it sends continue.

Now consider the series of hybrids where the first one is the real protocol execution and the last
one is the above simulated execution.

Hybrid 1 This is the real execution where SA plays the role of an honest PB using the actual input
y.

Hybrid 2 In this hybrid we simulate the Open command as in the simulation described above,
i.e., whenever A sends inconsistent messages SA sends abort to F2PC. By the soundness of
IT-MAC, Hybrid1 and Hybrid2 are 2−ρ-indistinguishable.

Hybrid 3 In this hybrid we simulate the consistency checking in step 4 as in the step 8d in
simulation above. Due to Lemma 11, Hybrid2 and Hybrid3 are 2

2ρ -indistinguishable.

Hybrid 4 In this hybrid we change the input of PB from y to all zeros. Since in step 5 PB’s input
is completely masked the view of A is not changed. As for the honest party’s output, due to
Lemma 8 the probability that PB aborts changes at most with probability 2−ρ. Therefore,
Hybrid3 and Hybrid4 are 2−ρ-indistinguishable. This is exactly the ideal distribution.

Altogether, the ideal world and real world executions are 4
2ρ -indistinguishable in the corrupted

PA case.

Simulator SB for malicious PB

1–2 During the simulation of Fcpre, SB receives ∆B, b∗, b̂, M[b∗], M[b̂], K[a], and K[â] from A
and locally records those values. Then SB internally samples a, â and computes M[a],M[â]
accordingly. Then the wire masks aw, bw for each wire w in the circuit are derived according to
the protocol.

3. SB simulates the garbling phase by generating GCA and the active path (the labels to be acquired
by A) topologically as follows.

• For the input wires w ∈ IA, SB defines Λw = aw (using all zero inputs) and randomly samples
Lw,Λw ← F2κ . Then it samples Λw ← F2 and Lw,Λw ← F2κ for w ∈ IB.

• For an XOR gate (i, j, k,⊕), SB defines Λk = Λi ⊕ Λj and Lk,Λk
= Li,Λi ⊕ Lj,Λj .

• For an AND gate (i, j, k,∧), SA samples Λk ← F2 and generates Gk,0 ← F2κ , Gk,1 ← F2κ .
Then SA evaluates Lk,Λk

according to the protocol specification in KRRW and defines ck =
ExtBit(Lk,Λk

)⊕ Λk.

54

Finally, SB sends the simulated GCA to A and locally defines MB[Λw] for w ∈ W using Eval.

4. SB sends Λw, Lw,Λw for w ∈ IA to A.

5. SB simulates the Fix command, extracts the input yw = Λ′w ⊕ bw, and sends it to F2PC. Then,
SB generates the input messages mw,Λw = Htcr(MB[Λ̃w], w∥0)⊕Lw,Λw and mΛ̄w

← F2κ and sends
them to A.

6. SB simulates the Open command by opening the corrected input mask Λ̃w ⊕ Λw for w ∈ IB.

7. We don’t need to simulate this step since it’s non-interactive.

8. SB simulates the protocol ΠGCCheck as follows:

(a) SB receives the random challenge χ from A
(b) SB locally computes Bk for each AND gate (i, j, k,∧).
(c) SB samples G′k ← F2ρ for each AND gate (i, j, k,∧) and sends them to PB. Then it locally

evaluates Dk according to the protocol specification.

(d) SB computes hB =
∑

k χk ·Bk ⊕Dk and sends it to A.

9. If the previous step does not abort, then SB receives the correct output zw from F2PC for w ∈ O.
Then SB sends the corrected MAC tag MA[aw] ⊕ (z0w ⊕ zw) · ∆B to A, simulating the Open
command. Here z0 denotes the output value of C(0,y).

Hybrid 1 This is the real execution where SB plays the role of an honest PA using the actual input
x.

Hybrid 2 In this hybrid we generate the masked bits Λw for w ∈ IB as in the simulation above,
i.e., by first sampling Λw ← F2 and then opening the corrected mask aw ⊕ Λw ⊕ Λ′w. Since
aw is uniformly random in the view of A, Hybrid1 and Hybrid2 are identically distributed.

Hybrid 3 In this hybrid we make explicit the usage of the honest party’s secret ∆A and mark
them in blue. In particular,

• In step 5 SB generates mw,Λw = Htcr(MB[Λ̃w], w∥0) ⊕ Lw,Λw and mw,Λ̄w
= Htcr(MB[Λ̃w] ⊕

ΓB, w∥0)⊕∆A ⊕ Lw,Λw for w ∈ IB.
• In step 3 of Figure 9 SB generates each gate in the garbled circuit GCA as follows. The XOR
gates are garbled as usual, while the AND gates are garbled as Gk,0 = Hccrnd(Li,Λi , k∥00)⊕
K[bj] ⊕ Hccrnd(Li,Λi ⊕ ∆A, k∥00) ⊕ aj · ∆A and Gk,1 = Hccrnd(Lj,Λj , k∥01) ⊕ K[bi] ⊕ Li,Λi ⊕
Hccrnd(Lj,Λj ⊕∆A, k∥01)⊕ (ai ⊕ Λi) ·∆A while the output label Lk,Λk

is derived using the
Eval algorithm.

• In step 3 of Figure 10 SB computes G′k = H′ccrnd(Lk,Λk
, k∥2)⊕Ak,1⊕H′ccrnd(Lk,Λk

⊕∆A, k∥2).

Both changes all make no difference to the view of the adversary since we just re-write the
hash function inputs. Therefore, Hybrid2 and Hybrid3 are identically distributed.

Hybrid 4 In this hybrid we replace the first blue term in Hybrid3 with uniformly random val-
ues. Due to the tweakable correlation robust property of Htcr, the two hybrids are ϵtcr-
indistinguishable.

55

Hybrid 5 In this hybrid we replace the second and the third blue values in Hybrid3 with uni-
formly random values. Due to the circular correlation robust under naturally derived keys
property of Hccrnd, the two hybrids are ϵccrnd-indistinguishable.

Hybrid 6 In this hybrid we change the input of PA from x to all zeros. Since in step 4 PA’s input
is completely masked the view of A is not changed. As for the honest party’s output, due to
Lemma 8 the probabilities that ∃w ∈ W, ew = 0 under any pair of input values differ changes
at most with probability 2−ρ. Therefore, Hybrid4 and Hybrid5 are 2−ρ-indistinguishable.
This is exactly the ideal distribution.

Therefore, the ideal world and real world executions are ϵtcr + ϵccrnd + 2−ρ-indistinguishable in
the corrupted PA case.

Altogether, the ideal world and real world executions are indistinguishable in the corrupted PB

case. This implies that the protocol Π2PC-2way shown in Figure 9 securely realizes F2PC against
malicious adversary in the Fcpre,FCOT-hybrid model.

C Construction of Distributed Garbling Schemes

In this section, we recall the constructions of two distributed garbling schemes.

C.1 KRRW Distributed Garbling

We recall the distributed half-gates garbling scheme by Katz et al. [32]. Let H : {0, 1}κ×{0, 1}κ →
{0, 1}κ be a hash function and ∆A ∈ {0, 1}κ be the global key held by PA.

• Garble(C):

1. For each circuit input wire w ∈ I, PA samples Lw,0 ← Fκ
2 and sets Lw,1 := Lw,0 ⊕∆A.

2. Process the gates topologically. For each XOR gate (i, j, k,⊕), PA sets Lk,0 := Li,0 ⊕ Lj,0 and
Lk,1 := Li,0 ⊕∆A. For each AND gate (i, j, k,∧), PA computes

G
(A)
k,0 := H(Li,0, k∥0)⊕ H(Li,1, k∥0)⊕ aj∆A ⊕ KA[bj] ,

G
(A)
k,1 := H(Lj,0, k∥1)⊕ H(Lj,1, k∥1)⊕ ai∆A ⊕ KA[bi]⊕ Li,0 ,

Lk,0 := H(Li,0, k∥0)⊕ H(Lj,0, k∥1)⊕ (ak ⊕ âk)∆A ⊕ KA[bk]⊕ KA[b̂k] .

We also define Lk,1 := Lk,0⊕∆A and ck := ExtBit(Lk,0) where ExtBit is a bit selection normally
instantiated by lsb.

3. PA outputs {Lw,0, Lw,1}w∈IA∪IB∪W∪O and GCA = {G(A)
w,0, G

(A)
w,1, cw}w∈W .

4. For each (i, j, k,∧) ∈ W, PB defines

G
(B)
k,0 := MB[bj] ,

G
(B)
k,1 := MB[bi] .

5. PB outputs GCB = {G(B)
w,0, G

(B)
w,1}w∈W .

• Eval(GCA,GCB, {(Λw, Lw,Λw)}w∈IA∪IB):

56

1. PB processes the gates topologically. For each XOR gate (i, j, k,⊕) define Λk := Λi ⊕ Λj and
Lk,Λk

:= Li,Λi ⊕ Lj,Λj .

2. For each AND gate (i, j, k,∧) compute the output label

Gw,0 := G
(A)
w,0 ⊕G

(B)
w,0

Gw,1 := G
(A)
w,1 ⊕G

(B)
w,1 ⊕ Li,Λw

Lk,Λk
:= H(Li,Λi , k∥0)⊕ H(Lj,Λj , k∥1)⊕MB[bk]⊕MB[b̂k]

⊕ Λi(Gk,0 ⊕MB[bj])⊕ Λj(Gk,1 ⊕MB[bi]⊕ Li,Λi) ,

and the public value Λk := ExtBit(Lk,Λk
)⊕ ck.

3. Output { (Λw, Lw,Λw) }w∈W∪O.

C.2 WRK Distributed Garbling with Optimization

We recall the optimized WRK distributed garbling scheme by Dittmer et al. [18]. Let H : {0, 1}κ×
{0, 1}κ → {0, 1}κ and H′ : {0, 1}κ×{0, 1}κ → {0, 1}ρ be two hash functions, and ∆A ∈ F2κ ,∆B ∈ F2ρ

be the global keys held by PA and PB respectively.

• Garble(C):

1. For each circuit-input wire w ∈ I, PA samples Lw,0 ← Fκ
2 and sets Lw,1 := Lw,0 ⊕∆A.

2. Process the gates topologically. For each XOR gate (i, j, k,⊕), PA computes Lk,0 := Li,0⊕Lj,0
and Lk,1 := Li,0 ⊕∆A. For each AND gate (i, j, k,∧), PA computes

G
(A)
k,0 := H(Li,0, k∥0)⊕ H(Li,1, k∥0)⊕ aj∆A ⊕ KA[bj] ,

G
(A)
k,1 := H(Lj,0, k∥1)⊕ H(Lj,1, k∥1)⊕ ai∆A ⊕ KA[bi]⊕ Li,0 ,

Lk,0 := H(Li,0, k∥0)⊕ H(Lj,0, k∥1)⊕ (ak ⊕ âk)∆A ⊕ KA[bk]⊕ KA[b̂k] ,

G
′(A)
k,0 := H′(Li,0, k∥0)⊕ H′(Li,1, k∥0)⊕MA[ak]⊕MA[âk] ,

G
′(A)
k,1 := H′(Li,0, k∥1)⊕ H′(Li,1, k∥1)⊕MA[aj] ,

G
′(A)
k,2 := H′(Lj,0, k∥0)⊕ H′(Lj,1, k∥1)⊕MA[ai] .

We also define Lk,1 := Lk,0 ⊕∆A.

3. PA outputs {Lw,0, Lw,1}w∈IA∪IB∪W∪O and

GCA = {G(A)
w,0, G

(A)
w,1, G

′
k,0, G

′
k,1, G

′
k,2}w∈W .

4. For each (i, j, k,∧) ∈ W, PB defines

G
(B)
k,0 := MB[bj] ,

G
(B)
k,1 := MB[bi] ,

G
′,(B)
k,0 := KB[ak]⊕ KB[âk] ,

G
′,(B)
k,1 := KB[aj] ,

G
′,(B)
k,2 := KB[ai] .

57

5. PB outputs GCB = {G(B)
w,0, G

(B)
w,1, G

′,(B)
k,0 , G

′,(B)
k,1 , G

′,(B)
k,2 }w∈W .

• Eval(GCA,GCB, {(Λw, Lw,Λw)}w∈IA∪IB):

1. PB processes the gates topologically. For each XOR gate (i, j, k,⊕) define Λk := Λi ⊕ Λj and
Lk,Λk

:= Li,Λi ⊕ Lj,Λj .

2. For each AND gate (i, j, k,∧) PB first recovers the garbled table as:

Gw,0 := G
(A)
w,0 ⊕G

(B)
w,0

Gw,1 := G
(A)
w,1 ⊕G

(B)
w,1 ⊕ Li,Λw

G′w,0 := G
′(A)
w,0 ⊕G

′(B)
w,0

G′w,1 := G
′(A)
w,1 ⊕G

′(B)
w,1

G′w,2 := G
′(A)
w,2 ⊕G

′(B)
w,2 ,

Then PB computes the label and masked wire value of the AND gate output wire as follows.
Notice that if the value (H′(Li,Λi , k∥0)⊕ H′(Lj,Λj , k∥1)⊕G′w,0 ⊕ ΛiG

′
w,1 ⊕ ΛjG

′
w,2) ·∆

−1
B ̸∈ F2

then PB aborts.

Lk,Λk
:= H(Li,Λi , k∥0)⊕ H(Lj,Λj , k∥1)⊕MB[bk]⊕MB[b̂k]

⊕ Λi(Gk,0 ⊕MB[bj])⊕ Λj(Gk,1 ⊕MB[bi]⊕ Li,Λi) ,

Λk := bk ⊕ b̂k ⊕ Λibj ⊕ Λjbi ⊕ ΛiΛj

⊕ (H′(Li,Λi , k∥0)⊕ H′(Lj,Λj , k∥1)⊕G′w,0 ⊕ ΛiG
′
w,1 ⊕ ΛjG

′
w,2) ·∆−1B .

3. PB outputs { Lw,Λw ,Λw }w∈W∪O.

58

	Introduction
	Our Contribution

	Preliminaries
	Notation
	Hash Functions
	Information-Theoretic Message Authentication Codes
	Correlated Oblivious Transfer
	Designated-Verifier Zero-Knowledge Proofs
	(m,L)-Independent Matrix

	Technical Overview
	Overview of the State-of-the-Art Solution
	Our Solution for Generating Authenticated AND Triples
	Our Solution for Dual Execution without Leakage
	Optimization Towards Minimal Total Communication
	Adaptive Security without Random Oracle

	Preprocessing with Compressed Wire Masks
	Dual-Key Authentication
	Global-Key Sampling
	Consistency Check Between Values and MAC Tags
	Circuit Dependent Compressed Preprocessing

	Authenticated Garbling from COT
	Distributed Garbling
	A Dual Execution Protocol Without Leakage
	Security Analysis

	Optimization Towards Two-Way Communication
	Security Analysis

	Security Model and Functionalities
	Security Model
	The Equality-Check Functionality
	The Coin-Tossing Functionality

	Proofs of Security
	Proof of Lemma 2
	Proof of Lemma 6
	Proof of Theorem 1
	Proofs of Security Lemmas in Dual Execution
	Proof of Theorem 2
	Proof of Lemma 11
	Proof of Theorem 3

	Construction of Distributed Garbling Schemes
	KRRW Distributed Garbling
	WRK Distributed Garbling with Optimization

