Efficient Hardware Implementation for
Maiorana-McFarland type Functions

Anupam Chattopadhyay’, Subhamoy Maitra?, Bimal Mandal?,
Manmatha Roy?, Deng Tang*

! Nanyang Technological University, Singapore, anupam@ntu.edu. sg
2 Indian Statistical Institute, Kolkata, subho@isical.ac.in,
manmatha@isical.ac.in
3 Indian Institute of Technology Jodhpur, India, bimalmandal@iitj.ac.in
4 Shanghai Jiao Tong University, Shanghai, dtang@foxmail.com

Abstract. Maiorana—McFarland type constructions are basically con-
catenating the truth tables of linear functions on a smaller number of
variables to obtain highly nonlinear ones on larger inputs. Such functions
and their different variants have significant cryptology and coding theory
applications. The straightforward hardware implementation of such func-
tions using decoders (Khairallah et al., WAIFI 2018; Tang et al., STAM
Journal on Discrete Mathematics, 2019) requires exponential resources
on the number of inputs. In this paper, we study such constructions in
detail and provide implementation strategies for a selected subset of this
class with polynomial many gates over the number of inputs. We demon-
strate that such implementations cover the requirement of cryptographic
primitives to a great extent. Several existing constructions are revisited
in this direction, and exact implementations are provided with specific
depth and gate counts for hardware implementation. Related combinato-
rial results of theoretical nature are also analyzed in this regard. Finally,
we present a novel construction of a new class of balanced Boolean func-
tions with very low absolute indicators and very high nonlinearity that
can be implemented in polynomial-size circuits over the number of in-
puts. We underline that these constructions have immediate applications
to resist the signature generation in Differential Fault Attack (DFA) and
to implement functions on a large number of variables in designing ci-
phers for the paradigm of Fully Homomorphic Encryption (FHE).

Keywords: Balancedness, Bent Function, Boolean Function, Combinational
Circuits, Hardware Implementation, Maiorana-McFarland Construction.

1 Introduction

Boolean functions (for details see [3,4]) are an integral part of computing as well
as communication science and technology. As a subclass, the bent functions [5,
6, 18] (detailed study is available in [15]) are one of the most interesting combi-
natorial structures that have applications to coding theory and cryptology. The

Maiorana-McFarland (we will call it MM from now on) construction is the sim-
plest and one of the most fundamental techniques in this domain. It has been
used in different kinds of construction that could achieve interesting proper-
ties relevant to cryptology, in particular for the design of symmetric ciphers. To
advance the proceedings technically, let us immediately describe the MM bent
functions on n = 2k variables. Consider the input variables in two different sets
as x = (z1,T2,...,25) and y = (y1,¥2,.-.,Yk).- The MM bent functions are of
the form x - 7(y) @ g(y), where 7 is a permutation of k bits to k bits (a sub-
class of multiple output Boolean functions) and ¢ is a k-input l-output Boolean
function. How many such functions are there? One can see that there are (2F)!

such permutations and 22" possible ways to choose ¢g(y). Thus, the total number

of such functions is (2%)! - 22%, for even n = 2k. It is easy to see that this is a
huge class of functions. It is also needless to mention that implementation of m,
g may require an exponential number of gates, and the depth of the circuit can
also be high. On the other hand, we require circuits that can be implemented
with a significantly small number of gates as well as depth. For example, if we
choose 7 as the identity permutation and g as identity 0, then the function can
be implemented using a significantly small amount of circuit components. The
function is then z1y; @ xoys & - -+ & xxyg, which we refer henceforth as MM,
function. Indeed, It can be implemented with k& two-input AND gates placed in
parallel and k£ — 1 two-input XOR gates placed in the form of a complete binary
tree with [log, k] depth.

How does such a function look like in truth table format? Suppose the left
half of the input variables are y and the right half is x. The linear functions
@le a;x;, for all 2% different options of (a1, as,...,ax). Each such linear func-
tion has a truth table of 2* length, and concatenating different 2* of them, one
can get a truth table of length 2%* for an n = 2k variable function. In a general-
ized framework, the small truth tables of the linear functions can be permuted
among each other, which is defined by m. Moreover, whether the linear func-
tion will be presented as it is or complemented will be decided by the function
g. It can be proved that such functions are bent, i.e., they have nonlinearity
2n=1 _923-1 Now, it is well understood that, indeed, there exists a sub-class of
permutation 7 and a sub-class of any function g that can be implemented effi-
ciently (to be precise, with at most polynomial many components with respect
to the input size). We explore such a class in Section 2.

The bent functions are generally not directly exploited as cryptologic primi-
tives since they are not balanced. However, it should be noted that globally, these
are the best possible Boolean functions available, where the Walsh—Hadamard
(related to confusion and better properties to resist linear cryptanalysis) and
autocorrelation (related to diffusion and better properties to resist differential
cryptanalysis) spectra provide the provably optimized characteristics. The non-
linearity of a Boolean function f, denoted by ni(f), is maximum when it is
bent, and such functions exist only on an even number of variables. Modified
versions of such bent functions are compromised a little in terms of nonlinearity
and autocorrelation values, but certain other properties, such as balancedness

and resiliency, could be achieved. One well-known modification technique is to
replace the truth table of the all zero linear function (i.e., @?:1 a;r;, with all
a; = 0) by some nonlinear balanced functions on k = 4 variables, as described
in [7]. This technique provides balanced functions on (even) n variables, with
nonlinearity 2" ~! —2% + nib(%), where nlb(t) is the maximum nonlinearity of a

balanced Boolean functions in ¢ variables.

Due to different applications, efficient implementations of Boolean functions
on a large number of inputs have been studied in the literature. In this regard,
one may refer to [20, 21], where the circuits for cryptographically significant func-
tions have been presented. The basic idea was to start with a Boolean function
and then add a new variable in each step of the pipeline. Later in [10], efficient
representation and software implementation of resilient Maiorana-McFarland S-
boxes have been studied. However, the ideas did not refer to how one can im-
plement functions on a large number of variables in hardware having very good
nonlinearity as well as autocorrelation properties. Very recently, certain evo-
lutionary algorithms have been exploited in [16] to construct functions with
good parameters, and that improves certain results of [11]. However, such search
methodologies can only work up to a certain number of variables, namely 26, as
pointed out in [16]. Our motivation here is to provide generic constructions and
implementations that are not limited to a certain range, and we will soon dis-
cuss the implementation of a 200-variable function. In fact, the question of such
efficient implementation has been raised a few years back in [2], too. Presently,
these questions are of renewed interest for the following reasons.

In recent years, symmetric-key cryptographic primitives, such as stream ci-
phers, block ciphers, hash functions, pseudo-random generators, pseudo-random
functions, message authentication codes, and various related primitives serve
as fundamental building blocks for many new applications of cryptography like
secure Multi-Party Computation (MPC) [24], Zero-Knowledge proofs (ZK) [9],
and Fully Homomorphic Encryption (FHE) [8,17]. MPC allows different users
who do not necessarily trust each other to evaluate a function on a shared secret
without revealing it. FHE allows a user to operate on encrypted data with-
out decrypting them. Finally, ZK is a technique that allows the authentication
of secret information without disclosing it. In such scenarios, the inputs, out-
puts, and keys of symmetric-key cryptographic primitives are secretly shared or
distributed between two or more parties and the cryptographic computations
(expressed as an arithmetic circuit composed of gates which are multiplications
and additions and connected by wires) are also processed in a distributed man-
ner. In MPC/ZK/FHE, the bottleneck of cryptographic computations is the
multiplicative complexity of the symmetric-key cryptographic primitives, and
traditional standards like AES and SHA-3 are no longer efficient. Naturally, a
line of research on MPC/ZK /FHE-friendly symmetric-key primitives has been
developed. In this regard, if one looks into the design of the stream cipher family
like FLIP [14], one can see that Boolean functions on a large number of variables
are in use, but those do not have significantly good cryptologic parameters.

There is another important aspect from the fault attack point of view. One
may note that most of the stream ciphers use only a few outputs from the
Feedback Shift Registers (FSRs, Linear, and Nonlinear) and combine them to
produce the key stream. However, that creates a situation where all the FSR
points do not contribute to the output function. This is the reason, corresponding
to a fault, signatures can be generated by comparing the stream without fault
and the faulty key stream for several key-IV samples offline (see [19] and the
references therein for more details). Consequently, these signatures can be used
during the actual fault attack to identify the fault’s location easily. If all the
points of the FSRs are fed into a Boolean function, and the function has a good
autocorrelation property, then such signatures cannot be generated efficiently.
Since most modern lightweight hardware stream ciphers use around 200-length
FSRs, we need to construct functions on those many variables. Using our method
(see Remark 4 in Section 4.3), this is achievable as, for n = 2k = 200 it is easy
to note that 11.5k + 8 = 1158, and it is possible to implement these many logic
gates in a lightweight circuit. A concrete stream cipher design in this direction
could be a possible research direction.

1.1 Organization & Contribution

We first present our overall idea towards the efficient implementation of certain
types of MM bent functions in section 2. The techniques we exploit are known
in circuit design, but they are assembled from an engineering viewpoint to set
up the constructions. We also present a preliminary understanding of circuit
complexity results as passing remarks. The foundation of our construction is in
the following section.

In section 3, we will identify how such modifications of bent functions can
be accommodated with efficient circuit implementation strategies. Toward ob-
taining a very good autocorrelation spectrum and very good nonlinearity, some
recent studies [11,22,23] considered certain modifications of MM type of con-
structions. Since such functions have immediate applications as cryptographic
primitives, certain works ([12], [23, Section 4.3]) considered the implementation
issues, and the gate count in those cases is exponential. This is because the cir-
cuit ideas are primarily based on decoders, and thus, O(2¥) amount of logic gates
are used. We investigate such constructions in detail and obtain efficient poly-
nomial implementations in this regard. Such improvements are also presented in
Section 3.

Finally, in section 4, we construct balanced Boolean functions having very
good nonlinearity and very low absolute indicators. It should also be noted that
the algebraic degree of the constructed functions is also high, as evident from
Remark 2. This is a novel class and efficient implementation related to this
complete framework are presented here. Section 5 concludes the paper. Before
proceeding to the contributory sections, let us briefly outline a few definitions.

1.2 Preliminaries

First, we present some basic definitions and notations of Boolean functions. Let
F5 be the prime field of characteristic 2 and Fo» be an nth degree extension finite
field over Fy. Let F4 be an n-dimensional vector space over Fy. An element of
F% is denoted by x = (21,22, ..., %), where x; € Fo, 1 < i < n. Further, the set
of nonzero elements of Fy is denoted by F5*. The weight of x € Iy is defined as
wt(x) = Y., x;, where the sum is over integers. The cardinality of a set S is
denoted as |S|, the number of elements in S. Any function from the vector space
Fy to F3' is called an n-variables Boolean function having m outputs. Without
mentioning specifically, we consider m = 1, and the set of all n-variable 1-output
Boolean functions is denoted as ,,. A Boolean function f in n variables can be
written as a multi-variables polynomial of the form

f(x) = @ paairas? g,

acFy

where ua € IFy for all a € F}. This representation is called the Algebraic Normal
Form (ANF) of f. The algebraic degree of f is defined by deg(f) = max{wt(a) :
ta # 0}. If deg(f) < 1, then f is called an affine function. In particular, if the
constant term of an affine function is zero, then it is called a linear function.
The set supp(f) = {x: f(x) = 1} is called the support of f and its cardinality,
i.e., [supp(f)|, is called weight of f. If [supp(f)| = 2"~ of an n-variable Boolean
function f, then f is said to be a balanced function. The Walsh—-Hadamard
transform of f at a € F4 is defined as

Wya) = 3 (-1) 090,

x€Fy

The multiset [Wy(a) : a € Fy] is called Walsh-Hadamard spectrum of f.
By the well known Parseval’s theorem, Zang Wi(a) = 2°" for all f € B,.
Thus, for any Boolean function f in n variables, we have maxacry |Wy(a)| >
23 . The nonlinearity of f € B, is the minimum Hamming distance from all
affine functions in n variables. According to the definition of Walsh—Hadamard
transform, we have nl(f) = 2"7! — I maxacry |Wy(a)|. It is known that the
nonlinearity of f € B,, is upper-bounded by 27”~! — 22~ A Boolean function
that achieves the nonlinearity bound is called a bent function, i.e., for any bent
function f € B,, ni(f) = 2=t — 23 ~!. Thus, bent functions exist only for an
even number of input variables and are not balanced since |W;(a)| = 2%, for
all a € FZ. Another important property, the autocorrelation of f € B, at point
acFy, Cy(a), is defined as

Cf(a) _ Z (71)f(x)€Bf(x€Ba)'

x€Fy

The absolute indicator of f € B, is defined by Ay = maxacrp- |Cy(a)|. For a
bent function f € B,, C¢(a) = 0 for all nonzero a € F3 and C¢(0) = 2.

From a cryptographic point of view, one needs to construct a balanced
Boolean function having very high nonlinearity and very low absolute indicator
to resist the linear and differential attacks on symmetric ciphers. In this direc-
tion, many such functions are constructed in [7,11,22,23]. In [23], the number
of logic gates required to implement some balanced functions is counted, and it
was noted that an exponential order of components is required. In this paper,
we discuss the hardware implementation of known balanced functions [7, 11, 22,
23] in more detail. Based on these, we show that it is possible to implement a
subclass of such functions having very high nonlinearity and very low absolute
indicator using a polynomial-size circuit.

2 Warm up: Identifying a Subclass of MM Bent
Functions having Efficient Implementation

In this section, we study the circuit complexity of MM functions of the form
f(x,y) = x-7m(y)®g(y), where 7 is a permutation over F&, g € By, and x,y € Fk.
It is convenient to study those constructions with the help of an implementa-
tion view using a decoder and without any decoder. Any MM function f in 2k
variables can be written as a concatenation of 2% distinct linear functions in k
variables, called a linear block of length 2¥. We present Fig. 1, which depicts
a generic circuit implementation for the MM Bent function f € By, directly

following the definition. To select a linear function in k variables z1,zo, ..., Tk,
| YiVk-1 Y1 |
[Permutation Function]
YiVk-1 Y1 X X—1 X1
] | YiYi-1-1 |
0 Linear function 1 Linear Function 1 | Linear Function 2 L/near Function 2
— |xkxk 1-X1 | XpeXk—1 X1 xkxk 1 X1

Al/

2k—1 Linear function 2%
- | J/kYk 1)1 |

1 Linear function 2

o)

Fig. 1: Generic circuit implementation for MM bent function

a decoder of k inputs and 2* outputs are used, which require 2* logic gates
to implement. It can be easily observed that this naive construction leads to a
circuit of exponential complexity, which we also write formally in the following.

Lemma 1. Implementation of an n-input MM Bent function using AND, OR,
XOR and NOT gates, where AND, OR, and XOR gates have a fan-in bound
of 2 basis, following the circuit given in Fig. 1 in O(n2%)-size.

Proof. To establish the result, we first need to show a sub-circuit of O(2%)
complexity. Considering the simplest case of the permutation function, 7 being
identity, the overall circuit size is dominated by the k-input @ gates, each of
which can be implemented with O(k)-size circuit. Since we have 2* linear func-
tions to be implemented, the overall size is 1ower bounded by O(k2*). Since k is
an additive sub-part of n, in particular £k = 2, in this case, we get the result. O

This is to explain that the straightforward implementations are not efficient,
which is dependent on permutation 7 over F5 and g € Bg. The kind of calcula-
tion we presented in Lemma 1 has been noted in [12], as well as in [23, Section
4.3]. However, this work explains that the circuit complexity can be lowered
to polynomial order for certain subclasses without compromising any crypto-
graphic properties. This is briefly touched upon earlier using the MM circuit.
The construction can be generalized, leading to a large number of variants. We
begin with a simple construction with 7 as an identity permutation over F§ and
g(y) =0, for all y € F5. The circuit implementation of MM, functions is given
in Fig. 2

| YeVi-1 Y1 |

1

[Permutation Function]

_Linear Function Generator i J

Fig. 2: Circuit implementation of MMq functions

Let m(Yks Yk—1s---2¥1) = (Yis Y1, ----y1) for all (Yu,ye—1,...,41) € F5.
The output of the circuit given in Fig. 218 g(Yx, Yk—1,---,y1) D 2k D21 D - B
21) = YTk OYk—1Tk—1D- - Oy121 = (T, Tp—1, - - - 1) T (Y, Ye—1, - - -, y1). The
smallest case of such a circuit (i.e., MMjy) is when 7 and g are taken as identity
permutation and identity 0, respectively. For that, we need k¥ AND gates and
k —1 XOR gates (or one XOR gate with a fan-in of k).

Lemma 2. Implementation of a 2k-input MMg bent function using AND and
XOR gates with fan-in of 2, given in Fig. 2, can be done in O(n)-size circuit.

Instead of identity permutation, we now discuss the cases considering other lin-
ear permutations and some nonlinear permutations that can be implemented in
polynomial circuit size. Let us denote the set of all invertible and orthogonal
binary matrices of order k x k by GL(k,F3) and SL(k,Fs), respectively.

Case (i): Let the permutation be defined as 7(y) = yA, for all y € F5, where
A€ GL(k,Fy). If n(y) = (wg, Wg—1, - - -, w1), then w;, 1 <4 < k, can be written
as a Fa-linear of y. To implement each coordinate of 7(y), we need k — 1 XOR
gates in the worst case. So, in the worst case, we need k? — k XOR gates to
implement the permutation 7(y) = yA (in particular, we need strictly k% — k
XOR gates). In this case, we can implement the function using k% + k gates (k
AND and k% XOR gates), i.e., in O(k?)-size circuit.

Case (ii): Let n(y) = yA, for all y € F5, where A € SL(k,F,). Here, we need
k AND gates and k£ — 1 XOR gates (fan-in of 2). So, the implementation of the
corresponding MM function in n = 2k variables is in O(n)-size circuit.

Case (iii): Instead of linear permutation, we can consider certain kinds of non-
linear permutation, which can be realized in very low-depth and small-size cir-
cuits. For a suitable f, one can construct a subclass of permutation of the form
T(Yks -5 Y2,91) = (Yky- -+, Y2, h(y)), where h € By such that deg(h) > 2. The
main advantage of such permutation is that one can control the algebraic degree
of the permutation by picking suitable A, which in turn is reflected in the final
function. For example, let n = 4 and 7(y4, y3, Y2, Y1) = (Y4, Y3, Y2, Yaysy2 S y1).
To implement 7, it requires 2 AND and 1 XOR gates (with fan-in of 2), i.e., in
polynomial size.

Lemma 3. The circuit given in Fig. 2 can implement all MM bent functions
realizable through the circuit given in Fig. 1.

Proof. Since 7 is a permutation over F&. for each (yx,yx—_1,---,¥1), there exists
unique (wy, wg_1,...,w;) € F5 such that (wg, wr_1,...,w1) = T(Yks Yk—1- - -
y1). We consider AND gate with fan-in of 2 for each pair of input z; and w;,
1 < i < k. So, we can implement any MM bent using this circuit. In particular,
if 7 is identity, w; = y; for all t =1,2,... k. a

Performance Trade-offs for Particular MM Function Construction:
One can get an interesting resource-sharing opportunity. The sub-circuit con-
structing the linear function can be easily extended by carrying certain input
bits to the output. In this idea, both the linear function and the permutation
function can be derived from the same circuit. We discuss such possibilities now.

Construction 1 The implementation scheme in Fig. 8 provides a MM bent
function, which can share the same resources for the function g and the permu-
tation .

| YieYi-1 Y1 | | ZkZk—1 21 |

| YiYie-1 Y1 |

Permutation Function g0

L2

| WiWg—1 ... Wy |

C?_
H
(:t—/

% O,
m% %gj
i

W

Linear Function Generator /

I -
K Permutation Function j

e -

L |
S e

wzﬂk T w

d

=

Fig. 3: Variants of MM bent function circuit with performance trade-off.

We schematically capture two variants of MM circuit implementations with re-
source sharing in Construction 1. Since 7 is a k-input, k-output function and
g(.) is a k-input, l-output function, there is always a choice to select g(.) from
the final outputs of 7, or from a sub-circuit of 7, allowing resource sharing. This
is shown on the left portion of Fig. 3. Furthermore, as shown on the right part of
Fig. 3, it is possible to share the circuits for linear function generator, permuta-
tion function 7, and ¢(.). A multiplexing logic is introduced for different inputs
at different stages of computing.

By sharing the implementation of g(.) with =, there is no performance over-
head, though the possible choices of g(.) get restricted. On the other hand, when
the k-input XOR circuit is shared with the permutation function 7, the circuit
needs to process one set of inputs at a time. This is controlled by the multiplexer.
Thus, the sharing of combinational logic leads to an increase in the runtime. Note
that including multiplexing logic does not extend the complexity of the result-
ing circuit beyond polynomial size since the multiplexer is implemented using 5
many 2 X 1 multiplexers.

3 Efficient Circuits for Modified MM Bent Functions

The Circuits given in Fig. 1, 2 and 3, while achieving excellent nonlinearity,
do not achieve balancedness and resiliency. In 1994, Dobbertin [7] constructed
balanced Boolean functions in even variables 2k by modifying the all-zero linear
block with balanced functions in k variables. That is, it is to replace the truth
table of the all-zero linear function with another nonlinear balanced function
on k variables. We can implement this balanced function using a single 2 x 1
multiplexer. The balanced Boolean functions with very good autocorrelation
spectrum and nonlinearity are recently constructed by modifying the MM func-
tions in [11, 22, 23]. For that, Kavut et al. [11] and Tang et al. [22] modified two
fixed positions in each linear block by two nonlinear balanced functions having
certain properties. In [23], Tang et al. modified the first all-zero linear block by a
nonlinear function in k variables and the all-zero input of all other linear blocks
by another nonlinear function in %k variables. These two small functions satisfy
certain properties. We can implement these balanced functions using two 2 x 1
multiplexers. In [23], Tang et al. counted the number of logic gates required to
hardware implement the balanced functions given in [22, 23], and it requires the
exponential circuits. If we use the 2 x 1 multiplexers to modify some outputs
of MM functions, then the hardware implementation cost of constructing such
balanced functions depends on the hardware implementation cost of permuta-
tion and the small functions. Here, we observe that it is possible to construct
balanced Boolean functions in polynomial size considering the suitable permu-
tation and the small functions by using 2 x 1 multiplexers. Now, we present the
hardware implementation of such functions.

3.1 Balanced functions given in [7]

Let n = 2k, 7 be a permutation over F§ with 7(0) = 0, and g € B with
g(y) = 0, for all y € F5. The new components added in Fig. 4 are a k-input
XOR gate, a 2 x 1 multiplexer and a nonlinear balanced function, denoted as
f(xr, xr—1,...,21). It is clear that the outputs of the circuit given in Fig. 4
are the outputs of a balanced Boolean function constructed by Dobbertin [7]. In
order to still preserve the polynomial circuit size, the nonlinear balanced function
and permutation need to be polynomial size. In that scenario, the proposed
balanced function yields a circuit in polynomial size, shown in Fig. 4.

Lemma 4. Let the permutation w(y) = yA, where A € GL(k,Fs) and f be in
polynomial size. Then, the circuit given in Fig. 4 implements a balanced function
with polynomial size.

Proof. The implementation of permutation 7 needs polynomial-size logic gates.
To implement this function, we add k-input XOR gate, a 2 x 1 multiplexer, and
a nonlinear function f in k variables in polynomial size. Thus, the constructed
balanced Boolean function can be implemented in polynomial size. O

10

| YieYk-1 Y1

[Permutation Function]
| YiYi-1--Y1 |

Vi VYk-1V V1

f Ot Xpe—1 - %1)

Fig.4: Circuit implementation for modified MM bent function, Dobbertin con-
struction

Instead of linear permutation, we can consider a nonlinear permutation, which
can be realized in very low-depth and small-size circuits. For example we can
consider the permutation 7(yg,...,y2,¥1) = (Yk,---, Y2, YeYk—1 Y2 ® y1) for
k > 3. To implement m, we need k — 2 AND gates and one XOR with a fan-in
bound of 2, i.e., in polynomial size. Now, the question is to identify the nonlinear
balanced function f in k variables in a polynomial-size circuit. Let us consider
k>3 and f(z1,x0,...,05) = 102 D23 D x4 D --- D x. Then f is a balanced
nonlinear function in polynomial size; in particular, we need one AND gate and
k — 2 XOR gates with fan-in bound of 2 for hardware implementation.

Remark 1. We like to point out here that the algebraic degree of these functions
can be made substantially high so that they can be used as primitives in nonlinear
combiner or filter generator model where LFSRs or NFSRs are used. It is possible
to implement an MM function in polynomial circuit size as given in Fig. 2 with
degree more than 3, i.e., deg(m) > 2. One can construct a balanced function with
high nonlinearity in polynomial size by choosing a suitable nonlinear balanced
sub-function in k variables with degree k—1 as in Fig. 4. In general, the algebraic
degree of balanced Boolean functions constructed in [7,11,22,23] is dependent
on the degree of permutation and the sub-functions. Further, it is possible to
choose the nonlinear sub-functions in polynomial size.

11

3.2 Balanced functions given in [11, 22, 23]

Kavut et al. [11] and Tang et al. [22,23] presented constructions of balanced
Boolean functions by modifying Maiorana-McFarland bent functions having good
cryptographic properties in terms of their autocorrelation spectrum and nonlin-
earity. Instead of changing one linear block in the MM function, they modified
MM functions by using two different nonlinear functions in small variables. The
basic idea of this construction is to change the outputs of MM functions at two
fixed positions of each linear block or the first all-zero input of each linear block
and all all-zero blocks by two suitable small functions. Notably, the total number
of gates required for hardware implementation of constructed balanced Boolean
function is exponential in k, i.e., O(k2¥), using a decoder, which is exponential
in k. The modification can be implemented by using two 2 x 1 multiplexers. For
that, hardware implementation cost mainly depends on permutation 7w and two
small functions. We can consider the suitable permutations and small functions
so that the hardware implementation of the balanced Boolean function given
in [23] is polynomial over the input variables. Let 7 be a permutation over F§
with 7(0) = 0, g € By with g(y) =0, and f1, fo € By having certain properties.
Suppose hi,he € By are used to modify the outputs of the bent function at
two fixed points. The circuit given in Fig. 5 generates balanced Boolean func-
tions in 2k variables constructed in [11,22,23] for different f; and h;, i = 1,2,
functions. The outputs of 2 x 1 multiplexers are decided by h; and ho, which

| YkVk—1 V1

&

[Permutation Function

<23

— —

| WieWie—1 - Wy

O

Fig. 5: Construction of balanced Boolean function proposed in [11,22, 23]

are implemented in polynomial size logic gates. Thus, the total number of gates
to hardware implement the circuit given in Fig. 5 depends on permutation

12

and small functions f; and fy. It is possible to identify a circuit of balanced
functions implemented in polynomial size instead of exponential in k. Now, we
discuss such cases one by one with examples.

Circuits of balanced Boolean functions given in [11,22]: In [11, 22], bal-
anced Boolean functions in 2k variables (odd k > 9 in [22] and even k& > 10
in [11]) with good cryptographic properties are constructed by modifying the
simplest PS,, bent function, a subclass of PS™, of the form Trlf(’\j'”), where

Tth(z) = 2@ 22 @ - @22 ', for all 2,y,\ € For with A # 0. For that,
they first constructed two Boolean function f; and f5 in k variables such that
wt(f1) + wt(fz) = 2*. The outputs of Tr’f();l—’”) is modified by f1(y) when z = 0,
and by f2(y) when z = u € For \ {0}. In [23, Theorem 2], it is proved that the
bent function Tr’f(’\f) can be written as a concatenation of 2* linear functions
and changes are in two fixed points in each linear function. Here, the permutation
Yy — y2ki2 is nonlinear over a finite filed Fox. The function corresponding to
Tr’f(wm), where w = y2k_2 and \ = 1 over vector space F5 x F¥ is fixed, is linear
in k variables. We first need to calculate the gate count of this permutation over
F&. In 2012, Boyar et al. [1] proved that the hardware implementation of AES
S-box requires 128 logic gates with depth 16. The AES S-box is a combination of
the multiplicative inverse function over Fas and an affine transformation. Thus,
the nonlinear permutation y — y2 2 for k = 8 might be implemented in poly-
nomial size and depth. So, it might be possible to implement this permutation
in polynomial size and depth for some k£ > 10. Using the circuit given in Fig. 5,
we can generate the balanced function constructed in both [11] and [22]. Let us
define

hi(x) = xxVap_1V...Vay and he(x) = (2pBer)V (2r—1Per—1) V...V (x1PBer),

where (¢1,€9,...,61) # 0. Thus, hy and hs can be implemented in polynomial
circuit size. Suppose A = 1. Then, the number of gates required for hardware

implementation of balanced functions is dependent on the permutation y —

ka*Q and small function f; and fo. We identify the functions f; and fy as

defined in [23, Definition 3] for small number of inputs k = 9 of the form

fi(y) = y2 © Y192 © Y2ys © y2ys © y1y293 © Y121 D YsYeyr © YsYsYo © Y6YsY9s
f2(y) = 1@ y1 ©y2 ©y1y2 © Y2y3 D y1ya © Yoys © Y1Y3Y3 © YoY3ya D YsY7Yo

D YeyrYo D YsYsYo-
To hardware implement of f; (and f3), it is required 13 (14, respectively) AND
and 8 (11, respectively) XOR gates. That is, these functions are implemented

in polynomial circuit size. We have also identified the functions f; and fy as
defined in [11, Definition 1] for small number of inputs k& = 10 of the form

[1(Y) =11 Dy2 y1y3 © y1Ya S Y2ys D yaya © y2uys D Yays © Y1Y2y3 D Y2Y3ya
D Y1Y2Ys D Y1Y4Ys D YsYsY10 D YeYoY10 D Y7Ysyio0,

f2(y) = 1® y2y3 ®© y1ya © Y1293 D Y1Y2Ya D y1yays © Y2yays D YsYsYio
@ Yrysyio D Y7YoYio-

13

To hardware implement of f; (and f2), it is required 20 (16, respectively) AND
and 14 (9, respectively) XOR, gates. That is, polynomial-size gates are required
to implement these functions. Here, the constructed balanced Boolean functions
given in [11,22] are highly nonlinear and can be implemented in polynomial
circuit size.

Polynomial size circuits of balanced Boolean functions given in [23]:
Tang et al. [23] constructed balanced Boolean functions in 2k variables having
very high nonlinearity and very low absolute indicator (maximum absolute value
of its autocorrelation spectrum) by modifying simple MM bent function of the
form x - 7(y), where 7 is permutation over F§ with 7(0) = 0. They used two
Boolean function f; and f> in k variables so that f1(0) = f2(0) = 0 and wt(f1)+
wt(fz) = 21, The outputs of x - 7(y) is modified by fi(y) when x = 0,
and by fa(x) when y = 0. It is noteworthy that the total number of gates
required for hardware implementation of constructed balanced Boolean function
is exponential in &, i.e., O(k2*). Let us define

hi(x) =xp Vag_1V...Vzyand hao(y) =y Vys—1 V...V y1.

The circuit given in figure 5 generates balanced Boolean functions in 2k variables
constructed in [23] for k > 10. Now, we consider suitable permutations and small
functions f; and f; to become polynomial-size circuits.

Lemma 5. Let n(y) = yA, where A € GL(k,F3), fi and fa be two Boolean
functions in k variables in polynomial size such that f1(0) = f2(0) = 0 and
wt(f1) +wt(fz) = 2571, Circuits given in figure 5 implement a balanced Boolean
function in 2k variables with polynomial size.

Proof. Here, x - 7(y) can be implemented with & many AND gates and k% — k
XOR gates (worst case) both fan-in of 2. Additionally, we need two k-input V
gates, two 2 x 1 multiplexers, and two nonlinear functions f; and fs in polynomial
size. Thus, the combined circuit is implemented in polynomial size. ad

Instead of linear permutation, we can consider a nonlinear permutation, which
can be realized in very low-depth and small-size circuits, as discussed in section
3.1. We identify two functions f; and fo as constructed in [23, Theorem 9] and
[23, Theorem 12], respectively, for small number of inputs k = 6 of the form

HY) =10 @y @ys Dys @ ys © Yo D Y1y O Y291 D Y15 D y3ys D Y2¥s
D Yals D Y1Y3Ys D Y24Ye
fo(X) =21 D22 ® w3 D14 D x5 © 16 © 1173 D T274 © 1175 © 1375 D TaTe
D@ z426 O T1T3%5 D T2T4Te D 1222374
For hardware implementation of f; (and f5), we need 10 (13, respectively) AND

and 13 (14, respectively) XOR gates. Here f; and fo are implemented in poly-
nomial circuit size.

14

4 A class of ultra-lightweight Boolean functions with
strong cryptographic properties

In the previous sections, we discussed the hardware implementation cost of some
known balanced functions that are constructed by modifying MM bent func-
tions. In particular, if we used multiplexers instead of a decoder, the number of
gates required to implement such functions depends on sub-functions. In some
known constructions, it is difficult to write the complete algebraic form of sub-
functions for all input variables. In this section, we propose a new construc-
tion method for balanced Boolean functions by modifying a simple MM bent
function. In fact, the constructed balanced functions are in polynomial circuit
size. We first constructed two sub-functions with explicit algebraic forms. Let
us recall the Maiorana-McFarland (MM) of bent functions, which is defined as
f(x,y) =x-é(y) @ g(y), where x,y € F4, ¢ is an arbitrary permutation on F%,
and g is an arbitrary Boolean function in k variables. The MM bent functions
were discovered independently by Maiorana and McFarland (see [5,13]). In this
section, we propose a class of ultra-lightweight balanced Boolean functions with
good autocorrelation properties and almost optimal nonlinearity. Our construc-
tion is based on modifying the MM bent functions using two ultra-lightweight
sub-functions.

4.1 Two ultra-lightweight sub-functions for main construction

We first define a balanced Boolean function in ¢ > 5 variables, which is a con-
catenation of certain bent functions.

Definition 1. Let t be an integer such thatt > 5. Let g be a t-variable Boolean
function defined as follows:

EB?”ML o @ r.

1=21+1

where T = (r1,72,...,1) € Fy and v = [15].

5o s0
the function g is a concatenation of two bent functions in ¢ — 1 variables, a bent
and its complementary. If ¢ is even, then ¢ = % — 1, and so, the function g is a
concatenation of four bent functions in ¢ — 2 variables of the form

Since @;_;r;r;+, is a bent function in 2¢ variables. If ¢ is odd, then ¢ = =

D1 TiTie|| By Tiris | @iy ririe ® 1| Bizy riTige
It is clear that g is a balanced function in ¢ variables.
Lemma 6. Lett > 5 be an integer and g € By be the function defined in Defi-
nition 1. Then for any d = (dy,ds,--- ,d;) € FL, if t is even, we have

0, (dtadt 1) € { O’())) () (170)}

_ (
Wg(d)_{<—1)®?1did7ﬁ+"-25+1,' £ (dydiv) = (1,1

)

15

and if t is odd, we have
0, it d, =0

Wq(d) = {(_1)6921 didiy, ";1 lf d; = 1’
where 1 = [151].
Proof. Let g1(x) = ®!_2;w;+,, where x € F3*, and t be an even integer. Then
v =% —1and g(r) = ®i_ririp, ®re—1 ® 1. For any d = (d',dy—1,ds) €
F5~2 x Fy x Fy, we have

Wg(d) _ Z (_l)g(r',ml,n)@d’~r'@dt71n71€9dtm

(r/re—1,m¢) EFL T2 xFa xFy

Z (—)gl(r Jod'x’ Z gl(r)®1pd’ v Bds—1

r,eFt—Q r E]Ft 2
+ E : gl(r YB1ed' v’ ®d, + }: g1(r)od v ®ds 1 Dds
r G]Ft 2 r GIFt 2

(1+(71)dt—1@1 +(71)dt@1+(l)dt 1€Bdt)ng d/)
_ {0, if (de, di—1) € {(0,0), (0, 1), (1,0)}
25+ (—1)®imr didire if (dy,dyq) = (1,1) '

Suppose t is an odd integer. Then ¢ = ; and g(r) = @i riTit, © ri. For any
d = (d',d;) € F5! x Fy, we have

Wo(d) =) (-1)90%dr = S (—pyetred e,

el (r/, Tt)EFt_l Fo
— Z (—1)o(ed’r" | Z 1)1 ()@18d r'6d,
r’G]I";*l v/ €FL~ 1
= (14 (-)"®)W,, (d)
_ O, lf dt = 0
o 2%(_1)692[:1 didive if d, =1
O

Thus, the maximum absolute Walsh—-Hadamard spectrum value of g € B; is 25+1
(and 2”71) for t is even (odd, respectively).

Lemma 7. Lett > 5 be an integer and g € B, be the function defined in Defi-

nition 1. Then for any d = (di,ds,--- ,ds) € FS, if t is even, we have
o Qt(fl)dtfleadt, lf (dl, d2 ey dt_g) = (0,0, e ,O)
Cold) = {0, otherwise ’

and if t is odd, we have

[24(=1)4 if (dy,da...,di—1) = (0,0,...,0)
Co(d) = { 0, otherwise, ‘

16

Proof. Let + = L%J and b = (d,41,...,ds,,d1,...,d,) for d € Fi. Suppose
r' = (r1,79,...,79,) for any r € F4. Let t > 5 be an even integer. Then 2t =t —2
and

Og(d) — Z (_1)9(!‘@(1)@9(1‘) _ Z(_l) i ((h‘@di)(Ti+,,@di+,,)€97’7‘,7“i+l,)@dt—1€Bdt
ref} ref}
—_ Z (71)69;:1(ridi+L®ri+Ldi)@@;:1didi+L®dt71@dt

reFh
= (~) 3 (-
refi
24 (=1)1®deif (dy,dy ..., di—2) = (0,0,...,0)
10, if otherwise ‘

Suppose that ¢t > 5 is an odd integer. Then 2¢ =t — 1, and similarly, we get the
results. a

Now, we define the two Boolean functions in 2¢ > 10 variables, which are used
to construct the sub-functions.

Definition 2. Let k = 2t > 10 be an even integer. We define two Boolean
functions p,q € By, as follows:

t
p(z,1) = @ ZiTis
i=1

and

g(I‘), ifz=0

q(z,r) = A4 .
’ D ziri—1 ® 217 D zor, otherwise
i=2
t t
=g(r) H(Zz ©1) @ @Zﬂ“iq D 211t D 2214,
i=1 i=2

where z = (21, 29,...,2t),* = (r1,72,...,7¢) € Fy and g € By is given in Defini-
tion 1.

Here, p is a quadratic MM bent function in 2¢ variables, and the algebraic degree
of g € By is t + 2. If we consider a zero function for z = 0 instead of g, then ¢
is also a quadratic bent function.

Lemma 8. Lett > 5 be an arbitrary integer and ¢(z) = (22, 23, -+, 2t—1, 2, 21D
22), where z = (21, 22,...,2) € F5. Then both ¢(z) and ¢(z) ® z are permuta-
tions over Fy. Moreover, the composition inverse of ¢(z) is ¢~(z) = (21 @
Bty R1yR25 -y thl)'

17

Proof. Tt is clear that ¢ is a permutation over Fi. Let x,y € F% such that
6(x) & x = ¢(y) & y. Then

(T1 D T2, T 1 DT, 21 T2 D) = (Y1 D Y2, -+, Yt—1 DY, Y1 D Y2 S yt)
S T, DT =Y DYip1, forall 1 <i<t—landz1 Dz @y =y DY2 Dy
& x; =y, forall 1 <4 <t

Further, the composition inverse functions of ¢ is $=1(z)) = (21®z¢, 21, - -, 2t-1)-
(]

Lemma 9. Letk = 2t > 10 be an even integer and p, q € By, be the two functions
defined in Definition 2. Then for anyc = (c1,¢2,...,¢),d = (d1,da, ..., d;) € F
we have

Wy(e,d) = (1)< -2,

{0 ifd=0
T L (=)oY 2t W, (d), otherwise

and

0, ifd=0
Whaq(c,d) = { (_1)c'd” -2t + W, (d), otherwise ’

Wy(d) is given in Lemma 6, d’ and d” are the composition inverse of ¢(d) and
o(d) @ d, respectively, where ¢(d) = (da,ds, .. .,di—1,ds, d1 B da).

Proof. Since p is a bent function in 2¢ variables, for any ¢,d € FL, we have
W,(c,d) = 2t(—1)¢d. For any c,d € F%,

Wy(c,d) = Z (—1)‘1(Z1r)®c-z@d.r
z,ref}
= Y (1pweds | $Y S (L)@l s Ganennecasds
reFh zEFL* reFL
= Wg(d) + Z (71)c-z Z (71)65:2 2iTi_1Dz1r:Dzor®dd-T
zEFy” refy
— Wg(d) + Z (_1)c-z Z(_l)(a@d)r
zEFy” ref}

= Wg(d) + Qt(_l)od,a

18

where a = (22, 23,..., 2,21 ® 22) and d' = (dy D dy, dy, ..., dy). Since Wy(0) =0
and 2:1,6]5-3(—1)@95:2 ziric1®zn®z2re — () for z # 0, we have Wy(c,0) = 0. Also

I

z,rcF}
_ Z(_l)g(r)®d-r+ Z Z(_l)z-res@§=2 2iri—1D2z17D2zor D zdhd T
refF} z€FL* refl
_ Wq(d) + Z (_1)c‘z Z (_1)z.r@®§:2 2iTi—1@z17:DzorBd-T
zeFL rcfF}
= Wy(d) + Y (-1 3o (~)e
zeFL rcF}

= Wy(d) + 2! (—1)=?",

where b= (21 @ 22,..., 201 D 21,21 D22 @ 2) and d” = (P _, di, B, diydy @
@E:S diy...,dy @dt) Since Wg(O) = (0 and Zrng (_l)z.reaGBE:z ziTi—1®z1T: P22
0 for z # 0, we have Wjg4(c,0) = 0. O

It is clear that |[W,(c,d)| = 2 for all ¢,d € F5, and

2t + 23+ if ¢ is even
W 7d) W 7d S t ’ . . .
‘ a(c,d)|, [Wpaqg(c) {2,5_’_2;1’ i tis odd
Lemma 10. Let k = 2t > 10 be an even integer and p,q € By, be the two func-
tions defined in Definition 2. Then for anyc = (¢1,c¢a,...,¢t),d = (d1,da, ..., ds)
€ FL we have

2k ifc=d=0

0, otherwise ’

Gyl =

2k ife=d=0
Cy(c,d) = Cg(d)lf?, if c=0,d#0
2(=1)< W, ('), if c £ 0

where ¢’ = (ca,¢3, ..., ¢, ¢1 D) for ¢ € Fy, and Wy(c') and Cy(d) are given in
Lemma 6 and Lemma 7, respectively.

Proof. Since p is a bent function in 2t variables, C,(0,0) = 2% and Cy(c,d) = 0
for all nonzero c,d € F%. we have derived the autocorrelation values of ¢ in
different cases.

Case (i): Let ¢ = 0. Then

g(r) @ g(rod), ifz=0

q(z,r) @ q(z,r & d) = {@E_gzz'di—1 © 21, @ 2ndy, otherwise

19

and so,

Cq(O,d) — Z(_l)g(r)GBg(r@d) + Z Z(_1)@::22idi_1@zldt®22dt

refF) z€FY* refF}

=Cy(d) + 2t(Z (-1)9% — 1)7 where z’ = (29,23,...,2,21 D 22)

z€F}
— Cy(d) + 22!5o(d) — 2"

Here (21,...,21-1,2t) — (22,...,2;, 21 ® 22) is a permutation over . If d = 0,
then C,(0,0) = 2%, and if d # 0, then C,(0,d) = Cy(d) — 2°.

Case (ii): Let ¢ # 0 and d = 0. Suppose ¢’ = (co,¢3,...,¢,¢1 D co) for any
nonzero ¢ € F,. Then

Cy(c,0) = Z (_1)Q(Zyr)®q(z€9c,r)
z,reIE‘g
=23 (~1)9B (@l aeri)@ er

ref}

+ E § (71)695:261%7169617“&96273

zeFi\{0,c} refF}

=2) (~1)ree Ty (2f —9) Y (—1)

ref} ref}
= 2W,(c') + 2" (2" — 2)8o(c’) = 2W,(c’), as ¢ # 0.
Case (iil): Let ¢ # 0 and d # 0. Then we have

g(r) ® Bl _ycirio1 ® c1ry @ cory®
Ol _ycidi—1 ® crdy @ cady, ifz=0
gr®d) ® @l _scirig ®erry B eary, if z=rc
Bt _ozidi—1 B 21d; B 22di® ’
B _ocirim1 B ey B cory®
&l _ycidi—1 @ crdy @ cady, ifz#0,c
glr)®dc -rdc -d, ifz=0
=< gred) &c r, ifz=c

7z -ddc roc-d,if z#0,c

q(z,r)©q(z®c,rdd) =

where 2’ = (29, 23,...,2t,21 ® 22) for z € F}, and so
Cy(c,d) = Z (—1)(=r)®q(zde,red)
2,reF,
= Z (*1)-‘1(“)69‘:/"1@‘:/"i + Z (,1)g(r®d)€9c’-r
refy reF}

+ Z Z(_l)z'-d@c/~r®c'-d

z€FL\{0,c} refF}

= 2(=1)"4W,(c'), as ¢ # 0.

20

O

Definition 3. Let k = 2t > 10 be an even integer. We define two Boolean
functions u,v € By as follows:

t t t
u(z,r) = p(z,r)q(z,1) = @zm @21‘7%71 D (217t D z074) @Zﬂ“i,
i=1 i=2 i=1

and

v(z,r) = (p(z,r) &) 1)q(z, r) = u(z,r) ®q(z,r)

t t t t
=g(r) H(Zz ®1)® (@Zﬂ”z’ 1) @Zﬂ’z‘—l © (217t Zﬂt)(@zim ®1),
i=1 i=1 i=2 i=1
where z = (21, 22,...,2¢),r = (11,72, ...,7:) € FS and g € By is given in Defini-

tion 1.

It is direct that the algebraic degree of the functions u and v in 2¢ > 10 variables
are 4 and t + 2, respectively. Now, we derive the Walsh spectrum values of the
functions v and v given in Definition 3 using the following known results.

Lemma 11 ([23]). Let uy,us be two k-variable Boolean functions and define

u(x) = uy(x)ua(x), where x = (z1,72,...,7x) € F5. Then for any b € F§ we
have 1
Wa(b) = 257 180(b) + 5 (Way () + Way (B) = Wassus (b)),

where do(+) is the Dirac (or Kronecker) symbol, which is defined by do(b) = 1 if
b =0 and §o(b) = 0 otherwise. For any d € F5*, we have

1

Culd) = 272 4 (€, (@) + Cu (@) + Cusns (@) + 5 (W, (0) + Wo (0)

4 2
Wa60(0)) 5 (Crs (@)~ Cu s () ~ Cuua ().

Lemma 12. Let k = 2t > 10 and u,v € By be the functions defined by Defini-
tion 3. For any c,d € F, we have

ok=1 4 ot=1 ifc=d=0
Wae,d) = § 27, fez0,d=0,
2-1((=1)=d 4 (—1)¢d — (=1)=d") if otherwise
and
gk=1 _ot=1, ifc=d=0
Wy(c,d) = { —2t71, ifc#0d=0,

W,(d) — 2071 (—1)ed — (=1)e9 — (=1)=9") if otherwise

where d' = (dy ©dy,dy,...,di—1) and d”" = (D' _, di, ®'_, diydr @ D}_sd;, .. .,
dy @dt)

21

Proof. From [23, Theorem 20] and Lemma 9, we have for any c¢,d € F}

W(e,d) = 28" 150(c,d) + %(LV;(c,d)A%IWQ(c,d)——I@}@q(c,d))

— 9k 160 (e, d) + 201 (=1)° 9 4 {821(_1)@& + WD) ;ft}?e;w?se
0, if d=0
- {ztl(l)C'd” + WQT@), otherwise
ok=1 4 gt=1 ifc=d=0
e ifc#0,d=0.

2t=1((=1)°d + (—1)°'d/ — (—1)°'d”), if otherwise

where d’' = (dy @ dy,dy,...,d;) and d” = (Di_, di, D', diyd1 © D_sdi, ...,
di @ dy). Since Wyg1(c,d) = —W,(c,d) for all ¢,d € F, we have

1
Wale,d) = 2100 (c,d) + 5 (Wpei (e, d) + Wy(e,d) = Wyegen(c,d))

1
= 2""1do(c,d) + 5 (= Wy(e,d) + Wy(e, d) + Wiaq(c, d))

ok—1 _ ot—1 ifc=d=0
— —2t717 1fC7é07d:O .
W,(d) — 207 1((—=1)¢d — (=1)¢d" — (=1)=9"),if otherwise

O

From the above results, it is clear that the maximum absolute Walsh spectrum
values of the functions © and w in k = 2¢ > 10 variables are 251 + 2t=1 and
2k=1 _ 2t=1 respectively.

Lemma 13. Let k = 2t > 10 and u,v € By be the functions defined by Defini-
tion 8. For any c,d € F, we have

22 — 2 <Cy(c,d) <2872 + 272, and
2k=2 3. 91 <\ (c,d) <2872 4 3. 21FL

Proof. We first consider the autocorrelation spectrum of the Boolean function

t

u. Let us define ¢'(z,r) = € z;ri—1 D 217 ® 221 = ¢(2) - r which is a quadratic
i=2

bent function, where ¢(z) = (22, 23,...,2t—-1, 2,21 @ r2) is a permutation over

F.. Then we have u(z,r) = p(z,r)q(z,r) = p(z,r)¢ (z,1) since p(z,r) = 0 with
z = 0. Obviously, we have C,(c,d) = 2* if (c,d) = (0,0). In what follows,
we consider the values of C,(c,d) with (c,d) € F%\ {0,0} and our strategy
is based on Lemma 4.6. First, we can easily see that W,(0,0) = W,(0,0) =
Wyaqe (0,0) = 2t In addition, for any (c,d) € F5 \ {0,0}, we have C,(c,d) =
Cy(c,d) =0 and Cpgy (c,d) =0 since (p P ¢')(z,r) is also a bent function due

22

to z @ ¢(z) is a permutation on Fy by Lemma 8. Furthermore, we have

Z Z zrea (z&c)-(r&d)) _ Z Z erB (z)®¢(c)) (rd))

z€F} ref} z€F} ref}
_ Z Z z®¢(z T®P(z) dBd(c) rd¢(c)-d
z€F} ref}
— Z Z ¢~ (2)®z) rdz-dD¢(c) rd(c)-d
z€F} ref}

= (—=1)* Wy . (d, ¢(c)) € {2F, —2'},

where ¢/ (z) = ¢~ (z)Pz is a permutation over F5. Similarly, we have C), pgq (¢, d)
€ {2%, -2} and Cy paqy (c,d) € {2, —2'}. Therefore, for any (c,d) € F5 \ {0, 0}

we have
2F=2 2! < Cpy(c,d) = Cpy(c,d) < 2872 4 2112,

We now consider the autocorrelation spectrum of Boolean function v. Similar to
the case of u. We can get that

2k—2 _ 2t+1 S C(p@l)q’ (C,d) S 2k—2 + 2t+1.

Note that the support of v = (p & 1)q equals supp((p & 1)¢’) U supp(g) and
|supp(g)| = 2¢=1. Then we have

2"2 = 3.2 < Clpenyg(e,d) <2872 4 3. 200,

This completes the proof. a

4.2 Main construction of ultra-lightweight Boolean functions

In this section, we construct a class of balanced Boolean functions by modifying
a simple MM bent function using two sub-functions defined in Definition 3.

Construction 2 Let n = 2k = 4t be an even integer not less than 20. We
construct an n-variable Boolean function f over F§ x F% as follows

u(y), if x=1,y€Fy\ {1}
f(xy) = q v(x), if y=x¢cTF} ;
(x®y) -y, otherwise

where u and v are the two Boolean functions over F% defined in Definition 3.

Since the outputs of MM bent function (xy) -y =x-y® @le y; is modified
by a sub-function © when x = 1 and y # 0, and a sub-function v when x =y,
where x,y € F5. The function f can be written as

fxy) = (122 op(1y2- Yy ©1) ©1)(x DY) -y D122 T (Y1y2 - - - Yk
S u(y) ® (18 @ 1) (22 Y2 D 1)+ (21 & yp ® Do(x)

23

Remark 2. Here, the algebraic degree of balanced Boolean functions defined in
Construction 2 depends on the sub-functions v and v. Both the sub-functions are
nonlinear, in particular, deg(u) = 4 and deg(v) = t + 2. Thus, f is a nonlinear
function where the algebraic degree can be made substantially high with the
value 3t 4+ 2 = % + 2. Further, in subsection 4.3, it is observed that f can be
implemented in polynomial circuit size.

Balancedness, autocorrelation properties, and nonlinearity We now de-
rive the Walsh spectrum and autocorrelation values of balanced Boolean function
f in 2k variables defined in Construction 2. Then, we compute the nonlinearity
and absolute indicator of f.

Theorem 1. Let n = 2k > 20 and f € B,, be a Boolean function generated by
Construction 2. Then for any (a,b) € F5 x F& we have

Wa(b) + W,(b) +25, if (a,b) € {0} x Fk*

W,(0)(~1)Y2 + W,(a), if (a,b) € F&* x {0}
W (b)(~1)1* + W, (a @ b)

W;(a,b) = ok (L1)a(1eb) if (a,b) € F5* x F&*\ U’
W, (b)(=1)1* + W, (0)
2830 (b)(~1)*, if (a,b) €U

where U = {(c,c) : ¢ € F&} C F5 x F5 and 6o(-) is the Dirac (or Kronecker)
symbol which is defined by do(b) =1 if b =0 and do(b) = 0 otherwise.
Proof. We can easily get that erwg(—l)c‘x@d'y equals 0 if ¢ € F&* and equals
2F otherwise, where d and y are arbitrary vectors in F5. Then for any (a,b) €
F5 x F%, according to the definition of the Walsh transform we have
Wiab)= 3 (-pfiexciy
(x,y)EF5 xFk
= Z (—1)/ xy)Daxeby | Z (—1)f xy)@axeby
(x,y)e{1}xFE\{1} (x,y)eU
+ Z (—1)fxy)Baxeby

(x,y)€{(x,y):x€FE\{1},y €FE y#x}

— Z (_1)"(}')@1<a@b*y+ Z(_l)v(x)@a.x@b.x

yEF5\(1} x€F}

+ Z (_1)x-y€Bl-y€Ba~x€Bb-y.
(x,y)€{(x,y):x€F5\{1},y €F§ y#x}

Note that
Z (_1)U(y)®1~a®b~y _ Wu(b)(—l)l'a _ (_1)“(1)@1-(a®b)
y€F5\{1}

= W, (b)(=1)*2 — (=1)*@®P) (since u(1) = 0).

24

Since ermg(—l)”(x)@a'x@b'x =W,(a®b), and

Z (71)x-y€Bl-y€Ba~x€Bb-y
(x,y)€{(x,y):x€F5\{1},y €F y#x}
— Z (_1)x'y®1'y@a~x@b'y _ Z (_1)x~y®1~y®a'x@b~y
(x,y)EFE xFE\U (z,y)€{1} xFE\{1}

xyhl-yba-xDb- x-xPl-xPa-xDb-x
S (apvevemay - 3 (o)
(x,y)EFk xFk z€FS

_ Z (_1)1k-y®1~y®a~1®b~y _ (_1)1-(3@10)

y€EF
- | S ey 5 e
zeF% yelry zeF%
(_1)1~a Z (_1)b~y _ (_1)1~(a€9b)

y€eFk
= 2k (—1)2(A%P) _9k5 (a @ b) — 2860(b)(—1)12 4 (—1)+(@®P),
Then we have
Wi(a,b) = W,(b)(—1)1® + W,(a® b) + 28(—1)>1%P) _ k5, (a @ b)
—2k5o(b)(—1)t2

W, (b) + W,(b) + 2k, if (a,b) € {0} x F*
W, (0)(=1)Ya + W,(a), if (a,b) € F&* x {0}

_ JWu(d)(-1)'* + W, (a@b)

) F2F(—1)a(eb), if (a,b) € F5* x F&*\ U ~
W (b)(=1)*" +

if (a,b) €U

O

It follows from Theorem 1 that W;(0) = W, (0) + W,(0) — 2% = 0, so we have

the following results. We also get the nonlinearity of the balanced function f.

Corollary 1. Let n = 2k = 4t be an even integer not less than 20. The n-

variable Boolean function f € B, generated by Construction 2 is balanced.

Corollary 2. Let n = 2k = 4t be an even integer not less than 20 and t be an
even integer. The nonlinearity of n-variable Boolean function f € B, generated

by Construction 2 is

nl(f) =221 — k=1 _3.9t=1 _ 93,
Further, if t is odd, the nonlinearity of f is 22F—1 —2k=1 _3.9t=1 _ 2%
nl(f) <22k=1 —2k=1 _3.9t~1

25

<

Proof. Let a = 0 and b # 0 € F5. Suppose b = (¢,d) # (0,0) € F4 x F&.
If d = 0, then ¢ # 0, and W,(c,0) + W,(c,0) +2F = 2F. If d # 0, then
Wa(c,d) + W, (c,d) + 28 = 28 + W, (d) + 2¢(—1)¢?, where the value of W,(d)
is given in Lemma 6. Thus,

max [W;(0,b)] =

c, 2

2k + 2t 4 25" if ¢ is odd

oF 4 2t 4 231 if ¢ is even
Let a # 0 € F5 and b = 0. Suppose a = (c,d) # (0,0) € Fy x Fi. Then
W(a,0) = W, (0,0)(—1)** =D 1 W, (c,d), and so

max |Wy(a,0)| =

ok=1 4 ot+1 4 255 if ¢ is odd
c,de]F

ok=1 4 ot+1l 4 93+1 if ¢ is even

Let a=b = (c,d) € F5, where c,d € F4. Then Wy (a,a) = W,(c,d)(—1)wHd
+W,(0,0) — 2F(—1)2ted§ 4 o) (c,d), and so max,ers [Wy(a,a)| = 2871 + 28
Let a # 0,b # 0 € FX and a = b. Suppose a = (c,d) and b = (e, h) € F} x Fj.
Since (d®h) =d’@h’ and (d®h)” =d” @ h”. If ¢t be an even integer, then
there exist values of a, b such that wt(a) is even,a-b=0,c-d =0, c-d’ =0,
c-d’"=1,(chve)- (ddoh)=1, (cde) - (d@h’)=0, (cde) - (d"@®h”) =0 and
(di—1 @ hy—1,dy & he) = (1,1). Then max, pegs [Wy(a,b)| = 28 432! 42341,
Thus, the nonlinearity of f is nl(f) = 22¢—1 —2k=1 —3.2t=1 23,

Let t be an odd integer. Then the maximum absolute value of W (a,b)
satisfies the inequality

2% 43.2< max |W(a,b)|<2"4+3.2042%
a#beFk\{0}

Thus, the nonlinearity of f is 22k=1 — 2k=1 _ 3. 2t=1 _ 25" < pj(f) < 22k-1 _
2k—1 _3.9t1, o

Theorem 2. Letn =2k =4t > 8 and f € B,, be a Boolean function generated
by Construction 2. Then for any (a,b) € F5 x F& we have

2m, if (a,b) = (0,0)
Ou(b) +2W, (b)(—1)*+P
2(u(1)®u(1db) _ 2()v(l)
Crlab) = 4 21" (V)@uIeb) _ 9k 4 2 if (a,b) € {0} x Fk*
7(2:D) =1 ¢ (@) + 2, (a) (1)1 2 — 2F, if (a,b) €U’
2W,(a)(—1)2P + 21, (a @ b)(—1)@®1)p

u(a)
—2(-1) (1®aeb) 2(—)U(l@a)GBU(l@a@b)
(1)1}(1@3) + 2 if (a, b) € FIQC* X Fé \ U’

where U' = {(c,c) : c € F§*} C Fs x F%.

Proof. By the definition of autocorrelation function, we immediately get that
C¢(0,0) = 2". We now consider the values of C¢(a,b) for all (a,b) € F§ x F \

26

{(0,0)}. Our discuss is mainly based on the fact that ermg(—l)c'x@d'y equals

0 if ¢ € F5* and equals 2* otherwise, where d and y are arbitrary vectors in F5.
We consider the values of Cy(a,b) for all (a,b) € F5 x F5 \ {(0,0)} from the
following three cases:

Case (i): Let (a,b) € {0} x F5*. In this case, we have

Cr(a,b) = Z (—=1)fA¥)ef(Lysb) 4 Z (—1)fCey)@f (xy®b)
(x,y)e{1} xFk (x,y) €T xFk
= Z (—1)uuly®) 4 (1 ywD)SuABh) 4 (_1)ueb)v()
yEF5\{1,18b}

+Z(T (C1)EVEEYER) (Eh) 4 ()pEh (xob)
XET \yert\ xxeb)

+(_1)b~(x@b)®v(X))

— Z (_1)U(y)€BU(y®b) + 2(_1)v(1)®u(1@b)
yeF5\{1,10b}

+ Z ((2k _ 2)(_1)b-x®1vb + 2(_1)v(x)®b-x®1~b)

xeT
= Oy (b) — 2(=1)uM&ueb) 4 9(_1)v()Su(1h)

(28 —2) D (1)PXEP — (28— 2) 4 2, (b) (-)P — 2~ 1))
x€F%
— Cu(b) + 2Wv(b)(—1)1k'b o 2(_1)u(1k)€9u(1k69b) + 2(_1)v(1)®u(1€9b)
—2(—1)"M) — 9k 4 o

where T' = F5\ {1}. It can be easily verified that v(1) = 0 if ¢ is odd and v(1) = 1
if ¢ is even. In addition, we can check that «(1) = 0. Thus, in this case, we have

Ctla,b) = Cyu(b) + 2W,(b)(=1)*P — 2% 4+ 2(1 — (=1)"F1) (1 — (—1)»(1&P)),
Case (ii): Let (a,b) € U’'. We can get that
Ct(a,b) = Z (—1)/1y)©f1oayda) 4 Z (—1)/1©2.y)®f(1,y®a)

x=1,y€F¥ x=1®a,y€FE

+ Z (—1)f YO (xD1,y@a)
(x,y)EEaxF§

= Z (_1)u(y)@(1®a®y®a)-(y®a) + (_1)v(1)®v(1®a) + (_1)U(1®a)€91-a
yEF5\{1,10a}
+ Z (_1)(1®a®}’)'}’@u(y®a) + (_1)v(1€Ba)€Bv(1) + (_1)1-a®u(1€9a)
y€F5\{1,1®a}

P (O (e veteasysa o (_1)v<x)eav(xeaa>>
x€E, “yeFk\{x}

27

=9 Z (—1)u@oaydta L (_q)r)ouoa) 4 (_q)juloa)dla
yEF5\{1,1®a}
4 Z (Z (—1)ay@ax _(_pjaxax | (_1)U(X)€Bv(x®a))
x€B, “yeFk
- [QWu(a)(—l)l'a —2(—1)® 2(_1)v<1>@v<1@a>}
+ [Cv(a) —9(—1)rM@v®a) _ ok _ 2)]
=Cy(a) +2W,(a)(—1)*2 — 2k,

where E, = F5\ {1,1 @ a}.
Case (iii): Let (a,b) € F5* x F5\ U’. In this case, we can obtain that

Cf(a,b) = Z (—1)/1y)@f1ayodb) | Z (—1)/(192.y)®/(1y®b)

x=1,yF§ x=1da,y €F5

+ Z (=1)/ x¥)®f (xO1,y®b)
(x,y)EEaxFS

_ Z <(_1)u(y)@(1@a@y@b)»(y®b)+(_1)v(1)@(a@b)-(1eab)
yEFE\{1,10a0b}
+(1)u(1®a@b)®v(l@a)) + Z <(1)(1®a€9y)-y€au()’®b)

yeF5\{14a,1¢b}

+(71)v(1(;Ba)E{Bu(l@a@b) + (1)(a€ab)~(l®b)®v(1))

+ Z (Z (—1)(x®Y) ¥ (xPady©b)-(y&b)

x€Ea " yeFh\{x,x®adb}

+(_ 1)U(x)®(a@b)‘(x@b) + (_ 1)(a@b) . (x@a@b)@u(x@a))

=92 Z ((_1)u(}’)€9a~ye}a‘b + (_1)U(1)€9a~(1€9b)
y€F5\{1,1®a0b}

+(_1)v(1®a)®u(l®a@b)) + Z (Z (_1)a-y®(a®1®x)~b
x€Ea “yeFh\{x,xPadb}

+(71)u(x)@(a@b)~x69a~b651-b + (1)v(x€9a)€9(a€9b)~x@l-(a@b))

2 ¥ ((_1)u(y>@a~y@a-b 4 (—1)p@eas)
yEFs\{1,10adb}

+(_1)v(1®a)@u(1@a€9b)> + Z (_(_1)(a@b).x@b<(1@a)
XEEq

28

_(_1)(a@b)'x@1‘(a@b) + (_1)1z(x)@(a@b)'x@a~b@1~b

+(_ 1)v(x®a)®(a®b) ‘x€B1~(a@b)>

— (2Wu(a)(—1)a'b _ 2(_1)u(1)€9a~(1€9b) _ 2(_1)u(1@a@b)
+2(_1)U(1)€Ba'(1€9b) +2(_1)U(1€Ba)®u(1®a€9b))
+(2W,(a® b)(—1)@®VP _o(_1)v(1)sa (bS1k)
_2(_1)v(1@a) +2(_1)a-(1@b) +2)

= 2W,(a)(—1)*P + 2, (a @ b)(—1)@SVP _ 9(_1)u(1®adh)
+2(_1)v(1@a)€au(1@a€9b) _ 2(_1)v(1@a) + 2’

where E, = F5\ {1,1 @ a}. O

From the above results, we can derive the maximum absolute autocorrelation
value of the constructed balanced function in 2k variables, which is strictly less
than 2F.

Corollary 3. Letn =2k =4t > 20 and f € B,, be a Boolean function generated
by Construction 2. Then the absolute indicator of f € B,, is Ay < 28—2k=249.2¢,

Proof. Ifa=b =0 € F}, then C}(a,b) = 2". We derive the maximum absolute
autocorrelation value of f on different cases.

Case(i): Let us consider a = b # 0 € F5. Suppose a = (c,d) € F4 x F5\ {(0,0)}.
Then

Ct(a,a) = Cy(c,d) + 2W,(c, d)(—1)wHed) _ gk

[Cy(c,0) +2W, (c,0)(—1)*He) — 2k if ¢ £0,d =0
T Cule,d) + 2W,(c,d)(—1)wHed) — 2k if d £ 0 '

Since —2¢ < 2W,(c, 0)(—1)"*®) < 2t for ¢ # 0 and —3-2¢ < 2W,(c,d)(—1)*HeD)
< 3-2" for d # 0. From Lemma 13, we have max,cps 0} [Cr(a,a)| < 2k k=24
9.2t

Case(ii): Let a = 0 and b # 0 € F5. Suppose b = (e,h) € F5 x F4 \ {(0,0)}.
Then

C5(0,b) = Cy(b) + 2W, (b)(—1)2*®) — 2k 1 9
_ 2(71)u(1)®u(1®b) + 2(71)v(1)€9u(1®b) _ 2(71)0(1)
= A(b) + B(b),

29

where A(b) = Cy(b) +2W,(b)(—1)“P) — 2% and B(b) = 2 — 2(—1)u(DSu1®b)
+2(—1)rWSuAEL) — 2(—1)*(M) for all b € F§. Since maxy, - |B(b)| < 8 and

A(b) = Cu(e h) + 2Wv (e’ h)(_l)’wt(e,h) _ 2k

[Cu(e,0) +2W,(e,0)(~1)*"®) — 2k if e£0,h =0
~ | Cu(e,h) +2W, (e, h)(—1)wHeh) — 2k if h £ 0

Cu(e,0) — 2t — 2F if e # 0,wt(e) is even, h =0
={ Cy(e,0) + 2t + 2k, if e # 0,wt(e) is odd, h=10
Cu(e,h) +2W, (e, h)(—1)wHeB) 2k if h £ 0

Thus from Lemma 13, we have max|A(b)| < 2% — 2¥=2 4 2!*1 for b = (e, 0)
with e # 0. If h # 0, then we have

ok —2k=2 4 4.9t £ 2% if tis odd
A(b)| < ’ ,
max [A(b)] < {2’“—2k‘2+4~2t+25+27iftis even
ok _ok=2 1 9t+2 L 9% 1 8 if ¢ is odd
ok _ ok=2 4 ot+2 4 25+2 L 8 if ¢ is even
Case(iii): Let a # 0, b # 0 with a # b. Then we have

and s0, maxy, -

Cf(O’b)| < {

3.9t+l 4 9k—2 4 o=F* + 8, if tis odd

3.9t+1 L 9k=2 4 9542 4 8,if t is even

max |Cr(a,b)| < {
a,beFk* a#b

Combining all three cases, we get the result. ad

Recently, the balanced Boolean functions with good cryptographic properties
are constructed in [11,22,23] by modifying MM bent functions. Here, we add
one more class of balanced Boolean functions in a polynomial-size circuit having
good cryptographic properties.

4.3 Efficient implementation of Boolean functions defined as in
Construction 2

It is known that a 2k-variable MM bent function can be written as a concate-
nation of 2% affine functions in k variables. Using a decoder, we can implement
the balanced Boolean function f in 2k = 4t > 20 variables generated by Con-
struction 2. However, in that case, the naive implementation will require O(2F)
gates.

Remark 3. Instead of using a decoder, one can use the circuit given in Fig.
6 considering an identity permutation over F5 and a nonzero function g on k
variables of the form g(y) =y1 @ y2 @ - - - ® yx. In Fig. 5, the permutation may
not be linear and g(y) = 0, for all y € F5. The functions g,u,v,h; and hy are
different in both Fig. 5 and Fig. 6.

30

| YiVk-1 Y1

L0
[Permutation Function]
L2
| YkYk—1 V1 |
i

Fig. 6: Balanced function given in Construction 2

The number of logic gates that are required to implement a balanced function in
2k variables generated in Construction 2 is dependent on the k-variable Boolean
functions g, u,v,hy and ho. Here, we consider two 2 x 1 multiplexers. Let us
define f1(y) = u(y) and fa(x) = v(x), for all x,y € F5, and

hi(x) = axpzp—1---21®1 and ha(x) = (2D yr) V (Tk—1 BYr—1) V- -V (21 DYy1).

Let the output of the original bent function be ¢ € Fo. The output after applying
the first multiplexer is €1 = (1@ hy(x)) f1(y) @ h1(x)e € Fo. Similarly, the output
of the circuit, i.e., after applying the second multiplexer, is (1 @ ha(x))f2(x) @
ha(x)eq.

Remark 4. The circuit’s implementation of the balanced Boolean function gen-
erated from Construction 2 is given in Fig. 6. To implement two multiplexers, we
need 8 logic gates (4 AND and 4 XOR gates). The required logic gates (fan-in of
2) to implement the functions g, w, v, hy and hy in k = 2t > 10 variables are as
follows: g requires k — 1 logic gates, hi requires k logic gates, hy requires 2k logic
gates, f1 requires 2k logic gates, fs requires 3k + % + 1 logic gates, i.e., a total
of 9.5k. Further, 2k — 1 logic gates (fan-in of 2) are required to implement the
function x - y, where x,y € F5. Thus, the hardware implementation cost of the
balanced Boolean function f in 2k > 20 variables generated from Construction
21is 11.5k + 8.

Here, all these small functions can be implemented in polynomial circuit size

over the input variables. Thus, the balanced Boolean function generated from
Construction 2 can be implemented in polynomial circuit size.

31

5 Conclusion

In this work, we have first studied multiple polynomial-size constructions for
MM bent functions. These constructions present various performance and design
space choices, thus significantly augmenting the arsenal of designers. Further,
we consider the construction of cryptographically significant balanced functions
with polynomial-size circuit size by modifying the MM bent functions. It is
proved that the constructed function has very good nonlinearity and a very
low absolute indicator value. In this regard, we would like to underline that
the functions constructed by our method have low multiplicative complexity as
evident from Construction 2 (Figure 6). Here we need AND gates to implement
the functions x -y, hy, fi, f» and multiplexers, where x,y € F5. It is clear that
k+4 AND gates are required to implement multiplexers and x - y. As discussed
above, we need k — 1 AND gates for h1, k+ 1 AND gates for fi, and 3t + ¢+ 2
AND gates for fy, where k = 2t and « = | %5]. Thus, we need 3k +t+¢+6 AND
gates to implement the function f € Bg given in Figure 6, where k = 2t and
L= L%J This way, we can implement the function f given in Construction
2 using polynomial size AND gates. Therefore, such functions can be used in
the design of MPC/ZK /FHE-friendly symmetric-key primitives due to their low
multiplicity complexity and additionally very good autocorrelation properties,
very high nonlinearity, and good algebraic degree. Such functions will also have
immediate applications in resisting Differential Fault Attacks in stream ciphers
based on Feedback Shift Registers.

References

1. J. Boyar and R. Peralta, A small depth-16 circuit for the AES S-box, In: D. Gritzalis,
S. Furnell, M. Theoharidou (eds) Information Security and Privacy Research, SEC
2012, IFTPAICT 376 287-298 Springer.

2. A. Canteaut, S. Maitra, H. Yoshida, L. Perrin, S. Jha, R. Rohit A. Baksi, Design of
filtering functions for lightweight stream ciphers. Presentation in ASK 2018, Kolkata,
India.

3. C. Carlet, Boolean functions for cryptography and error correcting codes, In: Y.
Crama, P. Hammer (eds.), Boolean Methods and Models, Cambridge Univ. Press,
Cambridge 257-397 (2010).

4. T. W. Cusick and P. Stanica, Cryptographic Boolean functions and applications,
Elsevier—Academic Press, (2009).

5. J. F. Dillon, Elementary Hadamard Difference Sets, PhD Thesis, University of Mary-
land (1974).

6. J. F. Dillon, Elementary Hadamard Difference Sets, In: proceedings of 6th S. E.
Conference of Combinatorics, Graph Theory, and Computing, Utility Mathematics,
Winnipeg, 237-249 (1975).

7. H. Dobbertin, Construction of bent functions and balanced Boolean functions with
high nonlinearity, Fast Software Encryption 1994 LNCS 1008 61-74 (1994).

8. C. Gentry, Fully homomorphic encryption using ideal lattices, in Proceedings of the
forty-first annual ACM symposium on Theory of computing, 2009, pp. 169—-178.

32

9. S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interac-
tive proof-systems (extended abstract), in Proceedings of the 17th Annual ACM Sym-
posium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
R. Sedgewick, Ed. ACM, 1985, pp. 291-304. https://doi.org/10.1145/22145.
22178

10. K. C. Gupta and Palash Sarkar, Efficient Representation and Software Implemen-
tation of Resilient Maiorana-McFarland S-boxes, WISA 2004: 317-331, LNCS 3325.

11. S. Kavut, S. Maitra and D. Tang, Construction and search of balanced Boolean
functions on even number of variables towards excellent autocorrelation profile, De-
signs, Codes and Cryptography 87(2-3) 261-276 (2019).

12. M. Khairallah, A. Chattopadhyay, B. Mandal and S. Maitra, On Hardware Im-
plementation of Tang-Maitra Boolean Functions, Arithmetic of Finite Fields - 7th
International Workshop, WAIFI 2018, LNCS 11321 111-127 (2018).

13. R. L. McFarland, A family of difference sets in non-cyclic groups, Journal of Com-
binatorial Theory, Series A 15(1) 1-10 (1973).

14. P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet, Towards stream ciphers
for efficient fhe with low-noise ciphertexts, in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2016, pp. 311-343.

15. S. Mesnager, Bent Functions — Fundamentals and Results, Springer, Switzerland
ISBN 978-3-319-32593-4 1-544 (2016).

16. E. Ozcekic, S. Kavut and H. Kutucu, Genetic Approach to Improve Cryptographic
Properties of Balanced Boolean Functions Using Bent Functions, Computers, 12(8),
159, 14 pages, 2023.

17. R. L. Rivest, L. Adleman and M. L. Dertouzos, On data banks and privacy homo-
morphisms, Foundations of secure computation, vol. 4, no. 11, pp. 169-180, 1978.
18. O. S. Rothaus, On bent functions, Journal of Combinatorial Theory, Series A 20

300305 (1976).

19. D. Roy, B. N. Bathe and S. Maitra, Differential Fault Attack on Kreyvium & FLIP,
IEEE Trans. Computers 70(12): 2161-2167 (2021).

20. P. Sarkar and S. Maitra, Efficient Implementation of “Large” Stream Cipher Sys-
tems, CHES 2001: 319-332, LNCS 2162.

21. P. Sarkar and S. Maitra, Efficient Implementation of Cryptographically Useful
‘Large’ Boolean Functions, IEEE Trans. Computers 52(4): 410-417 (2003).

22. D. Tang and S. Maitra, Constructions of n-variable (n = 2mod 4) balanced
Boolean functions with mazimum absolute value in autocorrelation spectra < 2%,
IEEE Transactions on Information Theory 64(1) 393-402 (2018).

23. D. Tang, S. Kavut, B. Mandal and S. Maitra, Modifying Maiorana—McFarland type
bent functions for good cryptographic properties and efficient implementation, SIAM
Journal on Discrete Mathematics 33(1) 238-256 (2019).

24. A. C. Yao, Protocols for secure computations, in 23rd annual symposium on foun-
dations of computer science (FOCS 1982), IEEE, 1982, pp. 160-164.

33

