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Abstract—In this work, we introduce FANNG-MPC, a ver-
satile secure multi-party computation framework capable to
offer active security for privacy-preserving machine learning
as a service (MLaaS). Derived from the now deprecated
scALE-MAMBA, FANNG is a data-oriented fork, featuring
novel set of libraries and instructions for realizing private
neural networks, effectively reviving the popular framework.
To the best of our knowledge, FANNG is the first MPC
framework to offer actively secure MLaaS in the dishonest
majority setting, specifically two parties.

FANNG goes beyond SCALE-MAMBA by decoupling offline
and online phases and materializing the dealer model in
software, enabling a separate set of entities to produce offline
material. The framework incorporates database support, a new
instruction set for pre-processed material, including garbled
circuits and convolutional and matrix multiplication triples.
FANNG also implements novel private comparison protocols
and an optimized library supporting Neural Network func-
tionality. All our theoretical claims are substantiated by an
extensive evaluation using an open-sourced implementation,
including the private evaluation of popular neural networks
like LeNet and VGG16.

Index Terms—Multi-Party Computation, Privacy-Preserving
Machine Learning, Homomorphic Encryption, Neural Net-
works, MPC, PPML.

1. Introduction

The increasing relevance of Al and its brisk market
penetration have sparked unprecedented interest in privacy-
enhancing technologies (PETs) applied to machine learn-
ing (ML). This interest arises from the necessity to protect
users’ data, driven either by user concerns or obligations
to regulations such as the General Data Protection Regula-
tion (GDPR) in Europe and the California Consumer Privacy
Act (CCPA) in the United States. The privacy problem in
ML is twofold. Firstly, training AI models requires vast
amounts of data, which may be distributed among various
entities and subject to diverse privacy regulations. Secondly,
the massive size of ML models makes deployment on the
user side impractical, leading AI towards the cloud service
paradigm, where users must send their data to the cloud.

This poses a considerable privacy risk and can hinder the
wide adoption of Al in scenarios involving sensitive data.

The privacy bottleneck can be mitigated through various
PETs. Indeed, solutions based on data anonymization, gener-
ative models, or differential privacy have garnered attention
from the research community, contributing to the coining
of the term Privacy-Preserving Machine Learning (PPML).
However, within the realm of PPML, confidential computing
has gained recent prominence. The concept involves per-
forming data processing confidentially using secure Multi-
Party Computation (MPC) and/or Fully Homomorphic En-
cryption (FHE), offering enhanced privacy guarantees. Sev-
eral PPML frameworks have been proposed, incorporating
MPC, FHE, or a combination of both. Unfortunately, the ma-
jority of these frameworks either employ generic construc-
tions without ML-specific optimizations or utilize tailored
protocols linked to specific trust settings, often confined to
honest majority and semi-honest (i.e., passive) security, as
depicted in Table 1.

In this work, we introduce a novel MPC-based frame-
work named FANNG-MPC, derived from the popular
SCALE-MAMBA [3] framework. While maintaining the di-
verse set of protocols inherent in SCALE-MAMBA, FANNG
introduces novel constructions tailored for private ML in-
ference that operate in the dishonest majority setting with
active security.

1.1. SoTA on PPML frameworks

In this section, we provide an overview of several im-
portant PPML frameworks that are based on MPC and HE
techniques. While we won’t go into the nuance of their pro-
tocol constructions, we will briefly discuss their settings, key
strengths and limitations, as well as the security model they
adhere to. Given the extensive nature of the literature on this
topic, we will focus on a selected few frameworks from each
category, as listed in Table 1. For a more comprehensive
understanding, we recommend referring to [12], [35], [50]
for detailed information.

As illustrated in Table 1, the majority of the studies
focus on scenarios involving a small number of parties,
specifically 2, 3, and 4. Frameworks supporting 2 parties
are mainly based on passive security, except for XONN
which is entirely based on GCs and can achieve active
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TABLE 1: Summary of PPML frameworks (only a representative
subset) in the literature. Security: (U - semi-honest, @ - malicious
(abort), © - malicious (fair), @ - malicious (GOD). Notations: HE
- Homomorphic Encryption, GC - Garbled Circuits, SS - Secret
Sharing, OT - Oblivious Transfer, FSS - Function Secret Sharing.

Setting Framework Security Techniques
CryptoNets [24] O HE
SecureML [47] @) HE+GC+SS
MiniONN [42] O HE+GC+SS
2-party DeepSecure [57] O GC
(dishonest  Gazelle [29] O HE+GC+SS
majority)  XONN [54] © GC
CryptFlow?2 [53] O HE+OT+SS
Delphi [45] @) HE+GC+SS
ABY2.0 [52] O OT+GC+SS
Cheetah [28] @) HE+OT+SS
5 Chameleon [55] O OT+GC+SS
-party

(+ helper)  Crypten [36] O ss
LLAMA [25] O FSS
ABY3 [46] © GC+SS
3-party ASTRA [15] [ ™) SS
(honest  gecureNN [61] O SS
majority)  qwIFT [37] o SS
Falcon [62] © SS
Trident [16] ("] GC+SS
4-party  FLASH [11] | Ss
(honest SWIFT [37] [ ] SS
majority)  Fapgastic Four [19] ) SS
Tetrad [39] o GC+SS
Cerebro [64] © HE+GC+SS

n-party
MPClan [38] ("] SS

security through cut-and-choose technique, though this is
rather inefficient. In the following sections, we present a
concise overview of research within each category.

Two-party (2PC): The field of PPML for two parties
traces its origins to a seminal work by Lindell and Pinkas
[41]. They proposed a secure algorithm for data mining,
specifically for decision trees. Subsequent research follow-
ing [41] focused on algorithms such as k-means clustering,
linear regression, and logistic regression. However, these
approaches suffer from high efficiency overheads and are
primarily theoretical in nature.

Later advancements in techniques like Levelled Homo-
morphic Encryption (LHE) have paved the way for innova-
tive solutions like CryptoNets [24]. CryptoNets introduced
a non-interactive solution for private neural network pre-
dictions over encrypted data. They employed LHE-friendly
approximations for activation functions and made the as-
sumption that one party possesses the model and evaluates
it on the private data of another party.

SecureML [47] utilized techniques such as GC and SS
to create efficient protocols for PPML inference, including
neural networks. GC was employed for evaluating non-linear
functions like Sigmoid, ReL.U, and SoftMax, while SS-based
techniques were utilized for evaluating linear layers. Se-

cureML also introduced MPC-friendly versions of functions
such as Sigmoid through the use of a piecewise polynomial
evaluation paradigm, and demonstrated practicality of MPC-
based techniques for PPML tasks. Subsequently, several
works such as MiniONN [42], DeepSecure [57], Gazelle
[29], and XONN [54] focused on improving efficiency by
leveraging advancements in underlying primitives.

Recent works such as CryptFlow2 [53], Delphi [45],
ABY2.0 [52] and Cheetah [28] employ state-of-the-art opti-
mizations in HE and OT Extension domains. They utilize a
combination of techniques such as arithmetic and Boolean
secret sharing and garbled circuits, using a mixed protocol
approach to achieve efficient solutions for PPML inference.
Most of these works incorporate a preprocessing phase to
enhance online phase efficiency, while works like ABY2.0
optimizes the online phase further through function-
dependent preprocessing. However, with the exception of
XONN,' these works only offer security against semi-honest
adversaries and are unable to handle malicious corruptions.

Two-party with helper (2PC™): In many real-world
scenarios involving a server and a client, a 2PC setting is
commonly used. However, even in the semi-honest solu-
tions within this setting, there is a significant computational
and communication burden in the preprocessing phase to
generate correlated randomness in a distributed manner. To
address this efficiency issue, some studies have explored
the use of an external dealers, sometimes in the form of a
signle trusted entity to generate the correlated randomness
during the preprocessing phase [59]. This approach has
proven beneficial in improving the efficiency of complex
tasks such as PPML inference, as demonstrated in works
like Chameleon [55] and Crypten [36]. More recently, works
like LLAMA [25] have also leveraged this setting in their
2PC protocols, which are designed using the Function Secret
Sharing (FSS) paradigm and have demonstrated practicality.

Three-party (3PC): The 2PC setting has a couple of
significant drawbacks. First, there is a substantial amount
of computation and communication involved. Second, these
protocols have a high overhead for ensuring security against
malicious corruptions. This typically involves computation-
ally expensive operations like cut-and-choose and message
authentication codes (MAC). Furthermore, when operating
in a dishonest majority setting like 2PC, the level of security
achieved by these protocols is limited to malicious security
with abort, as indicated in Table 1.

In response to these limitations, subsequent works like
ABY3 [46] and ASTRA [15] focused on a 3-party honest
majority, demonstrating improvements over the 2PC pro-
tocols. Later on, the 3PC protocol in SWIFT [37] uti-
lized function-dependent preprocessing and distributed zero-
knowledge proofs to enhance communication and achieve
the strongest output guarantee, i.e. GOD. These protocols
assume a more flexible trust setting where only one party can
be maliciously corrupt (¢ < n/2). Thus, they relax the trust
setting to achieve higher efficiency or delivery guarantees.

1. XONN’s method can be generalized to the malicious setting, but its
underlying cut-and-choose method is expensive for practical use.



In parallel, works like SecureNN [61] and Falcon [62]
concentrated on enhancing the efficiency of underlying
PPML primitives like Maxpool, normalization and division.
They achieved this by utilizing MPC-friendly counterparts
for these operations. Through these improvements and clever
engineering, these works were able to support private train-
ing of deep neural networks like ResNet-18.

Four-party (4PC): Although 3PC could enhance the
efficiency of 2PC counterparts, they faced challenges such
as high computation caused by distributed zero-knowledge
proofs and communication requirements due to cut-and-
choose techniques for either generating the correlated ran-
domness or performing verification of the computation.
These overheads become impractical when considering the
PPML training of deep ML models like ResNet-18. Con-
sequently, Trident [16] and FLASH [11] aimed to address
these issues by focusing on a super honest majority setting
involving 4 parties (¢t < n/3). These approaches eliminated
costly distributed zero-knowledge proofs and reduced com-
putation to cheap symmetric key operations.

In later work, the authors of Fantastic Four [19] intro-
duced an online-only robust protocol, building on the 4PC
protocol in SWIFT. They also demonstrated techniques for
private robustness, guaranteeing that the function output
is correctly delivered to honest parties without revealing
any other party’s input. Recently, Tetrad [39] enhanced
the communication of existing 4PC protocols and show-
cased protocols in the function-dependent and online-only
paradigms, all with the same communication complexity.

n-party (MPC): While several works explore small
parties (n < 5), there are only a few that specifically address
the support for more than four parties in the domain of
PPML. One such work is Cerebro [64], which introduced an
end-to-end collaborative learning platform by developing a
compiler based on SCALE MAMBA (SM) and EMP-Toolkit
(EMP). Essentially, this platform converts ML-friendly APIs
into either SM or EMP code, enabling the execution of
various protocols supported by these frameworks. However,
Cerebro lacks ML-specific optimization for SM and inherits
the limitations of SM when compiling large programs.

In an orthogonal direction, MPClan [38] focused on
PPML inference in n-party scenarios by utilizing function-
dependent preprocessing. Nonetheless, their technique is
limited to n < 11 parties due to the exponential growth
of computation and storage with the number of parties.

1.2. Our Contributions

In this work, we introduce FANNG-MPC, a versatile
framework designed for efficient protocols using secure
multi-party computation (MPC) techniques. Referred to as
FANNG in short, our framework is an independent fork
derived from SCALE-MAMBA [3]. It maintains the diverse
set of protocols included in SCALE-MAMBA, which oper-
ates over various fields (IF,), including binary. Concerning
the threat model, FANNG accommodates both honest and
dishonest majority settings, ensuring active security.

While FANNG serves as a general-purpose MPC frame-
work, its design is specifically tailored to enable private
ML inference in a two-party scenario, involving a model
owner and a client as illustrated in Figure 1. To the best of
our knowledge, FANNG is the first framework exclusively
supporting private ML inference in a dishonest majority
setting with active security.
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Figure 1: Private inference between a client in possession of private
data and a cloud server owning the model in FANNG-MPC.

FANNG extends the functionality of SCALE-MAMBA by
separating pre-processing from the online phase and intro-
ducing a dealer model. This model enables the generation
of offline elements by a distinct set of parties, facilitated by
an I/O API connecting the MPC engine to a file system
or a database. This capability supports the storage and
loading of gabled circuits for comparisons, random masks
for probabilistic truncation, and matrix and convolutional
triples. FANNG features an extended instruction set to ac-
commodate the dealer model, along with a separate engine
for matrix triple generation based on BGV, executable by
external dealers. Matrix triples generated externally can be
converted into a 2PC version using an MPC-2PC converter.
Moreover, FANNG includes specialized implementations to
enhance the performance of neural network (NN) operations.
This encompasses convolutions, fully connected layers, and
dedicated libraries for folding and normalization, ensuring
optimal communication rounds.

Unlike a mere prototype, FANNG delves deeper into
system-level details, identifies challenges, and addresses
them using novel protocols and considerable engineering
effort. This approach positions FANNG closer to a real-
world implementation, facilitating more accurate perfor-
mance results. For example, SCALE-MAMBA faces limita-
tions in compiling large programs with the default optimizer
for communication rounds (the —-0O3 flag). Similarly, the
MAMBA compiler within SCALE-MAMBA cannot process
programs exceeding 232 bytecodes, posing challenges for
implementing large neural networks like VGG16 [58], as
considered in this work. FANNG addresses these issues
through the application of novel engineering techniques.



To summarize, we have the following contributions:

- Introduction of a novel MPC-based framework designed
for private machine learning (ML) inference in a two-party
setting with active security.

- Design and implementation of a dedicated Dealers Mod-
ule, utilizing state-of-the-art FHE-based protocols to pre-
process matrix triples, and the associated Converter Module.

- Support for a dedicated Preprocessing Unit capable of
handling various types of input-independent data, including
support for offline garbling, and incorporating efficient stor-
age mechanisms for persistent sharing of values.

- Novel protocol for combining ReLU with truncations,
resulting in improved instruction size and efficiency.

- Specialized ML libraries for designed for efficient linear
transformations and an enriched set of instructions.

- Open-sourced implementation with detailed evaluations,
including private inference of large NNs like VGG16 [58].

2. Framework Design

In this section, we discuss the design of our FANNG-
MPC framework. Our framework prioritizes private machine
learning (ML) inference within a 2-party context, emphasiz-
ing active security. Instead of merely designing a prototype,
our focus extends to intricate system-level aspects such as
instruction size, storage requirements, support for vectoriza-
tion, and I/O handling (cf. §3.7). This approach allows us to
emulate an MPC framework that closely resembles a real-
world implementation. Our objective is to demonstrate the
practicality of actively-secure MPC in a dishonest majority
setting, a scenario still considered costly in the existing
literature. Inherited from SCALE-MAMBA, FANNG operates
over prime-order fields (IF,) that encompass binary (IF3),
with plans for future work to include support for rings.

We chose SCALE-MAMBA as our baseline among ex-
isting MPC frameworks because it supports various pro-
tocols with active security, including full-threshold Se-
cret Sharing (SS) [7], [32], [56], and honest majority se-
tups via Shamir SS, replicated SS, and generic monotone
span programs [33], [60]. We would like to stress that
SCALE-MAMBA is the only framework in existence that
allows us to combine those protocols with Boolean circuit
evaluation via [HSS17] [27] whilst providing active secu-
rity. However, SCALE-MAMBA, designed as a versatile solu-
tion for implementing circuits, lacks optimizations necessary
for the practical evaluation of complex applications like
privacy-preserving Machine Learning. For instance, it pri-
oritizes flexibility over performance and lacks a decoupled
pre-processing phase, which happens in parallel with the
online execution. Moreover, SCALE-MAMBA is no longer
maintained with the last update in June 20222, Our primary
objective is to enhance the functionality of this widely
used MPC framework, ensuring compatibility with real-
world setups and better suited for concrete machine learning
applications, essentially revitalizing the framework.

2. https://homes.esat.kuleuven.be/~nsmart/SCALE/

Figure 2 depicts the comprehensive design of FANNG,
comprising primarily of five components. A brief overview
of these components, in the context of our ML inference
application (cf. Figure 1), is provided next, with detailed
descriptions provided in §3.

1. Dealer Module (§3.1): In a two-party scenario, out-
sourcing the pre-processing-phase computations (input-
independent) to a trusted helper can significantly enhance
the efficiency of the online phase [25], [36], [55]. However,
the existence of such a helper contradicts the main axiom
of actively secure setting with dishonest majority, i.e.“the
parties do not need to trust anyone”, and thus may not align
with real deployments. To circumvent this, we incorporated
a dealer module which replaces the trusted helper with a
group of untrusted dealers. These dealers engage in an MPC
protocol to generate correlated randomness, reducing the
trust requirement from a single trusted helper to one party
selected from many. Both the client and model owner can
make the dealer selection, thus mitigating the trust concern.

The dealer module currently generates matrix triples
for fully connected and convolutional layers, addressing
complex operations in ML model pre-processing. It will
eventually expand its support to include other pre-processed
materials like authenticated bits and oblivious transfer. The
design is flexible enough to accommodate multiple dealer
modules, reflecting our anticipation of dedicated services
replacing these modules in the future. For example, we are
actively working on FPGA hardware acceleration to support
matrix triple generation. This adaptable design enables the
integration of various dedicated services for efficient pre-
processing within FANNG.

2. Converter Unit (§3.2): The dealer module is designed
to be adaptable in various scenarios involving different
numbers of parties. To enable the two-party execution of the
machine learning inference between the model owner and
the client, we need to convert the pre-processed material into
a state that is compatible with this setup. The converter unit
is specifically created to ease this transition, converting pre-
processed materials from one type to another that is suitable
for online evaluation involving a different set of parties. In
this work, we focus on dealers in the dishonest majority
setting and the subsequent conversions needed for online
evaluation in a two-party scenario.

3. Pre-processing Unit (§3.3): This unit is responsible for
generating input-independent data essential for the online
evaluation of the MPC protocol. This approach has proven
to significantly enhance the efficiency of the online phase,
leading to practical runtimes [22], [26], [30], [32]. The
unit currently covers Garbled Circuits (GCs), truncation
masks, daBits, beaver triples, and authenticated singles. In
the FANNG roadmap, we aim to extend dealer support for
generating all these data types, except for beaver triples and
authenticated singles.

4. Storage Support (§3.4): A modular component within
FANNG, dedicated to persisting information shared among
its various units. It revamps the legacy SCALE-MAMBA /O
by introducing a novel controller-based approach, enabling
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Figure 2: System design of FANNG-MPC framework.

the storage and retrieval of pre-processed material from files
or databases, whilst maintaining backwards compatibility.
Unlike its predecessor, it offers enhanced customization,
allowing users to select the persistence mode via a configu-
ration file. The current version of FANNG provides support
for MySQL 8.0 and the File System (FS), with added
PostgreSQL support in the Converter Unit, highlighting
its adaptability to various database engines.

5. Evaluation Engine (§3.5): This engine is responsible
for performing the protocol evaluation, private ML inference
in our case, serving as the interface between the client
and model owner. It orchestrates all other components in
FANNG to facilitate the entire evaluation pipeline. This
involves signaling dealers in the dealer module for data pro-
cessing, performing its own preprocessing, utilizing storage
support for storing the resulting data, and subsequently re-
trieving the stored preprocessed data for protocol evaluation.
Finally, it performs the evaluation using private inputs from
both parties utilizing the preprocessed data.

3. Framework Details

In this section, we discuss the technical details of
our framework’s components. We explore the integra-
tion of new functionalities and optimizations built upon
SCALE-MAMBRA, facilitating private evaluations of large
neural networks like ResNet and VGG16. While we have
categorized these new functionalities under distinct com-
ponents, achieving a clear-cut separation is challenging, as

many functionalities necessitate the collaborative function-
ing of multiple components. We start by describing our
experimental setup, which we used to obtain the benchmarks
for our evaluations.

Experimental setup: For our experiments, we have
provided two different hardware test beds:

1. Our General Purpose MPC testbed includes 5 servers
connected via Gigabit connections with a ping latency of
0.15ms. Each server has 512 GB of RAM and Intel (R)
Xeon (R) Silver 4208 Q@ 2.10GHz processors.
They all share a common /home directory and are
installed with /sbin/tc to simulate latency.

2. Our Machine Learning testbed comprises a single server
equipped with 2TB of RAM and an Intel (R) Xeon (R)
Gold 6250L CPU @ 3.90GHz processor.

Regarding communications, we conduct all our experi-
mentation considering three relevant setups:

1. Local: All parties are emulated on the same machine
with no communication cost. Albeit unrealistic, it is typi-
cally used as a baseline.

2. Ping: Parties run on different machines at point-to-
point connection speed of = 0.3ms, suitable for highly
dedicated setups such as in Triples-as-a-Service (TaaS) [59]
with Dealers sharing the same data center.

3. WAN: Parties run on different machines, considering
achievable common ping times for cloud service providers,
which is &= 20ms.



From an MPC perspective, we explore three settings,
each with active/malicious security:

1. Full Threshold (2p): Two-party setting in the dishonest
majority setting, tolerating at most 1 corruption.

2. Full Threshold (3p): Three-party setting in the dishon-
est majority setting, tolerating at most 2 corruptions.

3. Shamir (3p): Three-party setting in the honest majority
setting, tolerating at most 1 corruption.

3.1. Dealer Module

In FANNG, the dealer module generates random matrix
triples and convolutional triples required for supporting ma-
trix multiplication and convolutions in private ML inference,
as illustrated in Figure 3.
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Triples
FHE
engine
(+ ZKP) L
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E %
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Figure 3: FANNG’s dealer model for matrix triple generation.

In FANNG, we opted for Fully Homomorphic Encryp-
tion (FHE) [44] techniques to instantiate the dealers, in-
spired by SCALE-MAMBA’s use of the FHE-based SPDZ
protocol to generate traditional beaver triples in the offline
phase. Specifically, we adopt a levelled version of the BGV
scheme [9] to instantiate the FHE. Towards this, we im-
plemented three state-of-the-art protocols, each serving a
distinct purpose:

- Iprep: This protocol depends on leveled homomorphic
encryption and serves as a crucial component for generating
SPDZ-like matrix triples. We implemented the protocol by
Chen et al. [17, Fig. 1], which avoids sacrificing a triple at
the expense of an additional multiplicative depth.

- FHE-based matrix multiplication: To generate matrix
triples instead of traditional beaver triples, Ilpre, relies on an
algorithm for homomorphically multiplying encrypted ma-
trices. Towards this, we implemented the optimized protocol
proposed by Mono et al. [48], which allows the reuse of
key-switching keys and eliminates constant multiplications.

- Ilzkpok: To achieve active security, Ilp,, uses zero-
knowledge proof of knowledge (ZKPoK) techniques, which
establish a global proof of knowledge for a set of ciphertexts.
We implemented the approach proposed by Baum et al. [7,
Fig. 1], where the authors designed an n-prover protocol,
providing the capability to prove the validity of the sum of
n ciphertexts instead of proving each one individually.

FHE possesses an inherent characteristic where the error
employed in encryption, essential for upholding FHE secu-
rity properties, increases with each homomorphic operation.
Notably, this growth becomes exponential when homomor-
phic multiplications are executed (see [49] for a detailed
analysis of error growth across operations in BGV). As
a result, only a finite number of homomorphic operations
can be carried out before the error level starts impacting
the decryption operation. Hence, it is essential to evaluate
error growth within the circuit and choose the FHE scheme
parameters accordingly.

This section provides a detailed analysis of param-
eter estimation, focusing on homomorphic error, partic-
ularly within the most complex circuit across all our
protocols—matrix multiplication depicted in [48, Fig. 6].
Although Mono et al. [48] offer parameter estimation for
BGV schemes, we observe that their protocol overlooks
ZKPoK (IIzkpok). Consequently, their analysis of matrix
triple, starting with a fresh ciphertext, leads to an un-
derestimation of the correct parameters and hence proves
insufficient for our scenario. We begin our analysis with a
brief recap of all the necessary fundamental concepts.

3.1.1. Mathematical background. Let R denote the poly-
nomial ring R = Z[z]/{z" + 1) and R, = Z,[z]/{z" + 1),
where n is a power of two and p is an integer. Let ¢
and ¢ indicate the plaintext and the ciphertext modulus
respectively, where ¢ = 1 mod 2n. Moreover, ¢ = qr,_1
denotes a chain of primes, i.e., ¢y = Hﬁ:o p; where p; =1
mod 2n and ¢/ < L — 1 [23].

For z € R, [z], € [-p/2,p/2) denotes the centered
representative of z mod p. For a random polynomial a € R
and probabilistic distribution y, we use a < X to denote
the sampling of coefficients independently from y. We use
Xe to represent the RLWE error distribution and s for the
secret key distribution. We also define two parameters, ZKg.
and DDg, related to the simulation-based security of the
ZKPoK protocol [7]. ZKs. measures the statistical distance
between the coefficients of the ring elements (represented
as polynomials) in an honest ZKPoK transcript and one
generated through simulation. Likewise, DDg.. denotes the
statistical distance between the distributions of honest and
simulated transcripts in the distributed decryption protocol.

Canonical embedding and norms: For a random poly-
nomial a € R, the infinity norm of a is defined as
la]|cc = max{ja;] : 0 <i<mn—1}.

The canonical embedding of a is the vector obtained
by evaluating a at all primitive 2n-th roots of unity. The
canonical embedding norm of a is defined as

al|®" = max |a(Z)],

™" = max |a(c)

where ( is a fixed complex primitive 2n-th root of unity.
Consider a random polynomial a € R with coefficients

independently sampled from one of the following zero-mean

distributions:

- DG(c?), the discrete Gaussian distribution with standard
deviation o.



- B, the centered binomial distribution of width k.
- Uy, the uniform distribution over Z,.

Then, the random variable a(() is well approximated by
centred Gaussian distribution with variance n-V,, where V,
is the variance of each coefficient in a [21]. Moreover, we
can bound the canonical norm of a as ||a[|®" < Dy/n-V,
with probability > 1 — n - e~P” [8]. Thus, we set D = 8,
so that the probability of failure is limited to 2776,

To compute ||a||*®", we have to study the variance V,, of
each coefficient of a. Specifically,

o? if a < DG(a?)
Vo={k/2 ifa+ By (1)
/12 ifa+ U,

In the following, x. denotes the discrete Gaussian dis-
tribution DG (0?), and, as in [1], we approximate DG (o?)
with a centered binomial distribution By, with k& = 21.
Thus, the variance of each element of the error vector is
Ve = 21/2 = 10.5 and its standard deviation is 3.24.
Moreover, we set xs = By, and thus V; = 0.5.

3.1.2. 4-Leveled BGV scheme. Let g be an integer product
of 4 primes, i.e., ¢ = po - p1 - p2 - p3. We recall that
g0 = [lj_op;. for any £ < 3. A BGV ciphertext is a
vector of polynomials ¢ € Rz, with the following three
basic algorithms:

- KeyGen(\): Key generation algorithm samples s < B,
a < Uy and eg), < DG(a?), outputs the secret key sk and
the public key pk, where

sk = s and pk = (b,a) = [(—a - s + tesk, a)]q,-

- Encpk(m): Encryption algorithm takes as input a plain-
text m € R; and the public key pk. It samples u < B,
eo, e1 < DG(a?) and outputs the ¢ = (c, /,v), where

c=(co,c1) =[(b-u+teg+m,a-u+ter) E’Rg,

is a ciphertext, ¢ denotes the level and v the critical quantity
of ¢ (see below).

- Dece(¢): Decryption algorithm takes as input the secret
key sk and the ciphertext ¢ = (cg, ¢1) and outputs

m = [[co +c1 - slg, e -

Ciphertext noise: Let ¢ = (c,¢,v) be the extended
ciphertext. The critical quantity v of c (for the associated
level ¢) is defined as the polynomial v = [cy + ¢; - §]4,, and
it determines whether ¢ can be correctly decrypted [18].
Specifically, if the error does not wrap around the modulus
qe, namely ||v||®" < q¢/2, the decryption algorithm works.
Otherwise, the plaintext cannot be recovered due to exces-
sive noise growth.

To understand the error growth and analyze the criti-
cal quantity for any homomorphic operation in the BGV
scheme, we refer the readers to [49].

Homomorphic operations: Let ¢ = (¢, 4,v) and ¢ =
(c’,4,1") be two extended ciphertexts at the same level £
and o € R; be a constant polynomial. Then,

- Add(c,¢'): Addition algorithm outputs
([(co + cvye1 + e))]ges v +1/).
- Mul(c, ¢'): Multiplication algorithm outputs
([(co-ch, co-ch+er-chy, er-c)lg,bv-v).

Note that the output of the multiplication is a vector
d = (do,d1,d2) € Rg ,. To convert the ciphertext d back
to a ciphertext T = (¢p,¢1) € Rg , We use a relinearization
procedure called key-switching.
- MulConst(a, ¢): Plaintext-ciphertext multiplication al-
gorithm outputs
(CV, -G, ga l/const)v

with HVconst”can < Beonst HyHcan and Beonst & ty n/12 [49].

Modulus switching: The modulus switching procedure
allows sacrificing one (or more) of the primes p; that com-
pose the ciphertext moduli g to obtain a noise reduction. As
mentioned before, in our case, we switch from a ciphertext
modulus ¢, to g¢—1. Let ¢ = (c, ¢, v), then

- ModSwitch(c): Modulus switching algorithm over ¢ sets
8 = t-[—c-t1],, and outputs ([p%(c + 04 .01, ums) ,

where [|1ms[|" < - [[v[|" + Bocate [49], with

n
Becale = Dt\/ E(l + n‘/s) 2)

Key switching: The key-switching technique is used
for either reducing the degree of a ciphertext polynomial,
usually the output of a multiplication, or changing the key
after a rotation. There are different variants of the key-
switching procedure. In this work, we used the Hybrid-RNS
which combines the RNS adaptations of BV [10] and GHS
[23] variant. The BV variant decomposes do with respect
to a base b to reduce the error growth and the GHS variant
switches to a bigger ciphertext modulus @0y, = g¢ - P. Then,
key switching takes place in R, and, by modulus switching
back down to gy, the error is reduced again. As a trade-off,
we have to make sure that our RLWE instances are secure
with respect to Q.

However, in the Hybrid-RNS variant, instead of de-
composing with respect to each single RNS prime, we
group the primes into w chunks. Specifically, the modulus
¢ = po---pr—1 is split in a smaller numbers G; = Hk i)

: i=1"4
of k elements by gathering the rgj ) in w chunks:

qe:p0"'pé:’I“El)"'7“](@1)'“-'7"%&))"'7'](;):(jl'---'qw

Hence, we do not apply the decomposition to the base b but
to the base ¢;. Thus, we define D and P as

()] )]
G (R

D(a) =



Thus, if d = (do,d1,ds) € R}, is the output of multiplica-
tion, we have to extend dy from each g; to Q. So, the key
switching algorithms are defined as
- KeySwitchGen(s): Sample a <~ Ug, , e < x¢. Output
key switching key
ks = (ksg,ks1) = (—a-s+t-e+ P-P(s%),a)
- KeySwitch(ks, ?): Compute:
c = (P ~do + <D(d2), kSO>, P-dy+ <D(d2), k51>) mod Q.
Set § = t-[—c’-t71]p, modulus switch back and output
([%(C/"’_é)]qw&yks)‘ )
The division is done considering either P ~ ¢/q if the rfﬂ )
has the same size or P = ¢, supposing that ¢, is the biggest
among the ¢;. So P = H§:1 P;. Note that, before scaling

down with the modulus switching, the noise is v/ = v+ P +
w(l + 1) - max(q;) - Bks [49], where

Bis = D -t-ny/V./12. 3)

Thus, the Hybrid-RNS key switching noise after the modu-
lus switching is bounded by %HV’HC"’” + Bscale, that is,

mod QL

w(l+ 1)%@3)&5 +VE - Bocale-

Distributed Decryption: The SPDZ offline phase uti-
lizes a form of distributed decryption, which is also sup-
ported in the BGV scheme. A secret key s € R, can be
additively distributed among N parties by assigning each
party a value s;, such that s = s;+...4+sy. As explained in
[7], the BGV parameter grows during distributed decryption.
Indeed, in the usual BGV case, for the bottom modulus
Po = qo, we do not apply either the key switching or
the modulus switching afterwards. Thus, to ensure correct
decryption, we require that ||v||" < go/2. Instead, in the
case of distributed decryption, we have

qo > 2 (14 N -2PDsc) . ||p|can, 4)

See [7] for more details.

Dishonest Encryption: In the BGV scheme, as shown
in [49], the noise after a fresh encryption is bounded by

lfeo +c1-slac ™" < Dv/m Vortiespusernten

However, using the ZKPoK protocol, we are only able to
guarantee that

sl =" < flw][ " +

N
12> " millee < N -2@F2) . 1/2 and
=1

N
12 ejilloe < N -2t
i=1
where psx = 1 and pg = p1 = 21 [7]. Thus,
N
leo —ex sl <D N2 mall ™"+ - (12 e
i=1
+ 112 en |7 Is[|" + [|2 - eo,i ")

can can
[

Since [|a]|®" < n - [|a|«, we have
llco —cp - 8| <t-n- N - 2ZKseetD)
+D't-n.N.2ZKsec+2.psk\/m

+ D~t~n'N~22K5“+2~p1\/nVS
+ton.N.2%Keet2 0

Because V,, = V; = 1/2, we set

Blishonest ¢ .. N . 2(ZKect2) (21 411 - DV2n).  (5)
3.1.3. Noise analysis of matrix triple generation. To
compute a valid and secure set of BGV parameters for the
multiplication of matrices A and B, we analyze each stage
of the Ilp, protocol, focusing on the operations outlined
by Chen et al. [17, Fig. 1]. Note that we instantiate matrix
multiplication in [17] using the protocol from [48]. For
consistency, we adopt the same notation as Chen et al. [17].

Top Modulus p3: In Ilp., protocol, the error of c Ajy
(and cg,,) is bounded by Bsherest (Equation 5). Before
performing the matrix multiplication of matrices c4,, and
CB;,, We reduce the error down to a threshold B, using
the modulus switching procedure. Thus, the error is scaled
by ps and the additional modulus-switching error Bscle

(Equation 2) is added. Hence, we have

Bdishonest dishonest
clean + Bscale <B > pg > clean .
P3 B — Bscale

Middle Modulus ps: During the FHE-based matrix
multiplication, parties compute

d—1

ca®ep =) (¢"(ca) Ky (cp)),

k=0

where X denotes homomorphic multiplication of two ci-
phertexts. As detailed in [48, Fig. 6], the computation of
¢"(c4) involves addition of two special ciphertexts. These
special ciphertexts are constructed by first rotating c4 by &
positions, followed by multiplying the result of any rotation
by a scalar, where 1 < x < d. Also, rotation operation
involves key-switching procedure as well. On the other hand,
1" (cp) is obtained via simple rotation by x positions.

While the rotations themselves do not influence the noise
directly, switching the key back to the original adds key
switching noise wvys, which depends on the key switching
method [49]. In our case, we have

V3w - max(q;)
P

where Bgc,le and Bys are as in Equations 2 and 3. Thus, if B
is the starting noise of ¢4 and cp, then after 7 rotations, the
bounded error of each ciphertext grows from B to B+ 7 - vyes.

The next step for ¢(c4) involves a ciphertext-scalar
multiplication, increasing the error to Beonst - (B + 7 - vks)-
Similarly, the subsequent addition with a similar ciphertext
doubles the error. A modulus switching is performed next

: Bks + \/E Bscalea

Vks =



to reduce the noise magnitude down to B. Hence, the noise
at this stage (from ¢*(c4)) is at most

2Bconst - (B + 7 (M - Bis + \/E Bscale))
b2

Bscale .

Since we want ps to be as small as possible, we use a
larger B and P such that,

D2 > 2Bconst - (B +7- \/E : Bscale)/(B - Bscale)~

Thus, we set B ~ « - Bgale, for a > 2, and we have py ~
2Bconst + (v + 7 - \/E)/(a —1).

Middle Modulus p;: Note that the noise magnitude
grows from B to d - B? while computing Zi;(l)(gb“(c,q) X
¥"(cp)). Since the product of two ciphertexts results in a
3-dimensional vector, key-switching is necessary. Moreover,
we want the noise to be reduced to B, and thus require
the modulus switching procedure as well. In FANNG, we
employ hybrid key switching that allows for merging key
switching with the modulus switching, enabling a direct
switch to a smaller modulus, i.e., from ;1 = P - ¢; to
qo, decreasing the noise by ¢o/Q1 = 1/(P - p1). Also, the
error before scaling down using the modulus switching is

V' =d-B-P++V2w- max(q;) - Bs.

Thus, the error after the modulus switching procedure is
bounded by %m V' +Vk 4+ 1 Bgaie [49, Sec. 3.2]. Since
we want to reduce the noise back to B, we set

d- B2 n V2w - max(q;)

-Brs + VEk 4+ 1-Bsaale < B. (6)
D1 P-p

For large values of P, Equation 6 becomes aB®
P1

vk 4+ 1 Bscale < B, which (in the variable B) must have a
positive discriminant. Namely p; > 4d - vk + 1 - Bgcale, and
thus, we can set P ~ 10 - v3w - max(§g;) - (Bs/Bscate)-

Bottom Modulus pg: Note that modulus reduction is
not required at level zero (cf. [48, Fig. 6]). However, since
we execute AddMacs(c), the error grows from B to B2. To
ensure a correct distributed decryption, we require that the
noise bounded by B? is smaller than 2- (1 + N - 2PPs) . B2
(cf. Equation (4)). Thus, pp > 2-(1+ N -2PP=c). (a-Bgeate)?.

All the parameters together: Since we require ¢ to be
as small as possible, we set o = 2. Moreover, we have only
2 parties in our case (N = 2) and 7 = d. Thus, we have:

pO ~ QDDsec+4 . Bszca|e7 pl =~ 4 ‘-d : \/E : BSCa|E)
pr=2-d- \/E Beonsts p3 = Bf:jlles::gneSt/Bscale'

Finally, setting our parameters as t = 228, d = 64, w = 3,
k =5 and DDgc = ZKsee = 80, we have log g ~ 760 and
security level A = 128.

3.2. Converter Unit

This section describes FANNG’s mechanism for trans-
ferring the data produced by a set of Np dealers, denoted
by the set D (typically with Np = |D| > 2) to the two
parties running the private inference: i) the client C; and ii)
the model owner M. Given that multiple clients engage in
private inference on the ML model owned by M, and the
identity of M is known beforehand, in contrast to the clients,
we leverage this aspect in our design. When necessary to
differentiate between various clients in a set C with size
Nc, we denote them as {C;};en.]. Also, x denotes the
computational security parameter.

General re-sharing strategy: Consider a value z € I,
additively secret-shared among the dealers {D; };c[ny]s i-€.
T = ZZ_G[ND] x; with D; holding z;. They aim to redistribute
this value to a fresh sharing among the parties {M,C,}.
The naive method for achieving this involves each dealer
D; generating a 2-out-of-2 sharing of x; and sending one
share to each of M and C;. This approach incurs a cost of
Np - 2 - p bits of communication, where p is the bit length
of . When p > «, we can optimize the cost using a pseudo-
random function F' : {0,1}* — {0, 1}?, as follows:

1) For i € [Np], dealer D, does as follows:

a) Sample random keys k,f,'l)c, « {0,1}", for j € [N¢],
where N¢ is the bound on the number of clients that
the model owner M expects.

b) Send x,(\f,)’cj =z — F(k,ﬁ},?cj) to M, who defines its
share of @ as Tm.c, = > ;cnp) 33|(\j|),cj~

c) When the specific identity of the client C; becomes

known, send the key k&?cj to C;.

1€[Np] F(kl(vzl)cj)

Note that the output shares satisfy the equation x =
xc; M + Tm,c;. The approach above is described for only
one value for ease of presentation, but the same key can
be used for all the values re-shared to the same client. In
terms of communication, this approach incurs a total of
Np - (p+ k) bits. Notably, a significant portion of the com-
munication (Np - p) occurs before the specific identity of C;
is known. This improves the online latency of the protocol
in scenarios where the size of the combined messages to
be communicated (say m bits) significantly outweighs x,
allowing M and C; to commence the online phase faster.
This is advantageous compared to waiting for C; to receive
Np messages, each of length m bits, which would take
several rounds if the resulting communication exceeds the
network bandwidth.

Re-sharing SPDZ values: Currently in FANNG, deal-
ers operate in a dishonest majority setting, using SPDZs
Topgear [7] for computation. In this context, every value z
is associated with a message authentication code (MAC),
denoted as MAC(z). Additionally, there exists a global
MAC key, denoted as A, which the dealers collectively agree
upon to generate all associated MAC values for a given
computation. To simplify, the process of re-sharing a value

2) C; defines its share of x as xc, m = )



from dealers to {M,C;} in FANNG involves re-sharing a
triple (z, MAC(z), A). To achieve this, dealers employ the
PRF-based approach outlined earlier for each of the three
values. This approach is illustrated in Figure 4 below.

CLIENT T

Z {ze, a0 MAC(X)ic‘,M}
f
‘- | |
t G

secure
comms

([2]]2pc = {”v'fM.c,’ MAC(X):\A,c‘v KiM,cJ}

_ | PRG Kire,

[[z]]mpe = {zi, MAC(x)i}

DEALER D;

Figure 4: MPC-2PC Converter for SPDZ values in FANNG.

We remark that this approach allows a corrupted dealer
in D to introduce an additive error in the re-shared value
by sending inconsistent values. Nevertheless, since we use
additive secret-sharing, this kind of error remains possible
from a corrupted party during reconstruction in any case.
However, our incorporation of information-theoretic MACs
during the execution of the online phase effectively prevents
such errors.

MAC key strategy: Note that the dealers will use differ-
ent MAC keys based on the trust relations among different
clients. Specifically, if a client C; lacks trust in another client
C, to potentially collude with the model owner M, C; cannot
use the same MAC keys as Co. Hence, the dealers must
take this into account when generating the pre-processing
material. This is due to the fact that {M, C5} possess a 2-out-
of-2 sharing of the MAC key, which will get compromised
upon collusion. In the extreme case where no client trusts
any other client to be non-colluding with M, the dealers
should use a different MAC key for each {M, C;} pair.

3.3. Pre-processing Unit

This unit is responsible for performing all input-
independent pre-processing tasks that are not carried out
by the dealers. We dedicate this section mainly to pro-
vide details regarding moving the garbling operation in
SCALE-MAMBA to the pre-processing stage, which signifi-
cantly enhanced the online performance of the framework.
We begin with the details of offline garbling.
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3.3.1. Offline Garbling. For the distributed computation of
garbling circuits (GCs) among n parties, SCALE-MAMBA
incorporates the garbling schemes proposed by Hazay et
al. [27] and Wang et al. [63]. Furthermore, it utilizes
techniques from Zaphod [5] to facilitate interaction be-
tween Arithmetic (Full Threshold) and Boolean Circuits
(Distributed GCs) through field conversion. Notably, the
entire garbling procedure in SCALE-MAMBA occurs online,
signifying that circuit garbling takes place just before the
evaluation of the garbled circuit, in parallel with the online
execution. This way, SCALE-MAMBA guarantees reactivity,
enabling parties to decide on the protocol’s progression
based on intermediate and public values.

The computational model based on the disassocia-
tion/independence of the offline and online phases is dif-
ficult to materialize in general-purpose frameworks like
SCALE-MAMBA and MP-SPDZ, especially if there is no
previous knowledge of the function. Moreover, there are
several technical aspects that limit the adaptation of offline
garbling in SCALE-MAMBA, especially when considering
active security:

1. From a cryptographic perspective, the inputs from the
online phase require masking with authenticated bits (aBits)
generated via a chain of different Oblivious Transfer (OT)
protocols that start from a set of choicebits selected by each
party (cf. [31] for details). The circuits themselves depend
on similar processes to generate the keys that are embedded
in each circuit. In that sense, both need to come from the
same set of choicebits.

2. From an engineering point of view, current versions of
SCALE-MAMBA are not built to handle circuits offline. More
specifically, there is no trivial way to parameterize the type
and quantity of circuits needed online, as we can do with
the triples (via the —max flag). Additionally, for architectural
reasons, there are no mechanisms on SCALE—-MAMBA that
would allow us to trivially interact with them.

To decouple the garbling procedure from the online
phase, FANNG introduces a set of new instructions capable
of Garbling/Storage, Loading and Executing Gabled Circuits
for the dishonest majority setting:

- OGC (circuit_id, amount): Garbles a given
amount of the specified circuit and stores the result to a
database/file system.

- LOADGC (circuit_id, amount): Loads specific
amount of persisted circuit_id instances to memory.

- EGC (circuit_id): Executes the next specific circuit
on the pile, using the same interaction method as with GC,
the instruction for garbling in SCALE-MAMBA.

To garble offline, the parties need to know the type
and amount of GCs they require beforehand. They can
produce, store and load these circuits with the instructions
above. FANNG also includes architectural components to
support Database/File System connectivity for uploading a
specified number of circuits of a given type. It is worth
highlighting that GCs are processed offline using a specific
set of choicebits. We then verify that the choicebits held by
each client/online party for the circuits match with the ones



being used to generate authenticated bits for the masks. In
the case of ML inference, GCs are generally used for private
comparisons required in activation and pooling layers, but
FANNG can handle any type of circuit.

Garbling Offline Data Flow: Though FANNG treats
the garbling functionality of SCALE-MAMBA as a black box,
moving the garbling process to offline requires manipulating
the process necessary to create the keys embedded in the
circuits. For instance, if a protocol requires aBits, daBits,
and GCs altogether (for instance, in Aly et al. [4]), then
the keys corresponding to all these materials should be
generated from the same set of choicebits, as implemented in
SCALE-MAMBA. Furthermore, in SCALE-MAMBA, a fresh
set of choicebits is selected at every run. FANNG makes
it possible to parameterize the choicebits, as illustrated in
Figure 5. This slight change in the flow above (replacing
the fresh selection of choicebits), implies the persistence of
the choicebits used to garble the circuits and the way they
are consumed by the framework.
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Figure 5: Offline Garbling in FANNG.

Note that FANNG currently supports offline garbling
only by computing parties, not dealers. We provide further
insights to offload this task to the dealers in §A. Addition-
ally, for larger circuits, circuit sizes can be notably high (e.g.
~ 10MB per party for float multiplication). As a result, the
execution times of instructions like LOADGC heavily de-
pend on the File System reading speed or Database response
time. Therefore, we decided to design our DB support in
a modular fashion, decoupled from the old I/O support in
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SCALE-MAMBA. New features introduced by FANNG for
databases and file systems are specifically integrated into
our modular data connectivity support.

Experimentation and Discussion: We conducted ex-
periments in this section using our General Purpose MPC
testbed. We evaluated performance in a two-party scenario
using the basic less-than-or-equal (LTZEQ) circuit [43], with
a size of ~ 800KB, running in batches of up to 1000 circuits.
As shown in Table 2, we obtain improvements for online
runtime in the range 2.4x-4.2x .

TABLE 2: Offline Garbling Timings (seconds) per 1000 operations.

Offline Garbling Online Garbling

Stage Local [ Ping | Wan | Local | Ping [ WAN
offline

Garbling: 291 4.7 86 == == ==

Storage: 17.86 | 17.86 | 17.86 == == ==

Loading: 14.88 | 14.88 | 14.88 == == ==
online

Execution [ 097 [ 21 ] 626 [ 389 [ 6.83 | 148.66

In reference to Table 2, we also explore FANNG’s up-
coming support for a dealer’s model. In this scenario, dealers
operate in a LAN or faster data centres, such as point-to-
point connections, in contrast to the online environment like
cloud service providers. Consequently, the more probable
deployment scenario involves an offline phase with ping
distance cost (roughly 3—5x the cost of local computations)
and an online phase over WAN, assuming an average ping
time between cloud providers. In this setup, online garbling
takes 148.66 seconds, while our offline garbling requires
37.45 seconds in the offline phase and 62 seconds in the
online phase. This results in a 2.4x improvement in online
runtime, with a reduction in an overall runtime.

Finally, regarding Loading and Storage times, while they
can be amortized, they ultimately depend on the underlying
user’s DB engine. We use a My SQL 8. 0 Vanilla Dockerized
installation. The timings in both cases are linked to the speed
at which we can process two classic SQL commands, namely
INSERT and SELECT. Advanced use cases may involve
modern DB setups, such as in-memory DBs and other Big
Data processing engines.

3.4. Storage Support

I/O is crucial for any modern application requiring
persistence. Furthermore, real-life implementations demand
flexibility in handling secret-shared/public inputs. While
SCALE-MAMBA initially provided I/O capabilities, they
were limited to console access, necessitating manual code
intervention for file system support [3]. FANNG addresses
this requirement in a modular and adaptable way, via a novel
Controller-Based 10. Furthermore, we introduced backward-
compatible extensions to the existing I/O, incorporating
under the hood flexible and maintainable components. This
ensures current SCALE-MAMBA users can continue relying
on the framework’s I/O, while providing future users with
the option to leverage our novel storage support.



Legacy 1/0: SCALE-MAMBA I/O consists of two sec-
tions: 1) instructions for private and public I/O invoked
via. MAMBA code, and ii) interfaces implementing I/O
functionality directly in SCALE, with these interfaces being
programmatically exchanged in the code. FANNG retains
the instructions but broadens the set of interfaces, facili-
tating connections to file systems (FS) or databases (DBs)
for storage (e.g., pre-processed materials generated by the
framework) and loading during the online phase.

Controller-Based I/O: FANNG adds a parametrizable
I/O controller, customizable through a configuration file.
Users can configure their instances to utilize any available
I/O mediums via the controller. Currently, the framework
supports two options: general FS and MySQL. This elimi-
nates the need for users to recompile the framework for I/O
changes. All database connections, including those used by
the revamped Legacy 1/O, rely on the controller. This cen-
tralized configuration enables users to manage the database
settings in a single text file, regardless of the chosen I/O
model. The Controller-Based I/O is employed across all
new functionalities dedicated to producing or retrieving pre-
processed material.

Currently, FANNG supports only MySQL 8.0. How-
ever, it is designed with flexibility, allowing seamless ex-
tension of both legacy and new I/O functionalities to other
DB engines like SQLite and PostgreSQL. We have have
included some configuration examples in Appendix B.

3.5. Evaluation Engine

This section outlines FANNG’s contributions to an effi-
cient online phase of protocols for privately evaluating NNs.
FANNG introduces a novel way of integrating private com-
parison protocol with a state-of-the-art probabilistic trunca-
tion protocol to reduce communication rounds. Furthermore,
FANNG introduces several libraries for implementing ML
blocks, facilitating convolutional, fully connected and fold-
ing layers, among others.

3.5.1. Protocols for private comparisons. Activation func-
tions are fundamental in NN models, with the Rectified Lin-
ear Unit (ReLU) being one of the most popular. Essentially,
ReLU can be implemented through comparison and mul-
tiplication. FANNG integrates practical privacy-preserving
comparisons, leveraging contributions from the current
SoTA [4]. This involves applying mixed circuits to construc-
tions introduced by Catrina and De Hoogh [13], and Rab-
bit [43]. Our library includes an interface (rabbit_sint),
returning the following for any (z), the secret-shares of
2 € Zgr over prime-order field IF):

1 ifz <0,
0 otherwise.

LTZ((z)) : Z, — {0,1} = { @)

The interface invokes constructions implemented as
described in [4], performing boolean operations via Za-
phod [5]. It can be parameterized with the following evalu-
ation options:
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- rabbit_slack: Integrates Zaphod [5] with the logic
from Rabbit [43], providing statistical security for acceler-
ated computing.

- rabbit_list: Implements the original Rabbit [43]
with a rejection list.

- rabbit_fp: Similar to rabbit_1ist but assumes a
bounded prime-order domain close to a power of 2.

- rabbit_conv: Utilizes the conversion circuits from
SCALE-MAMBA to transform (x) on ), to Zqx.

- rabbit_less_than: Takes 2 modulo Z,x inputs and
directly evaluates the binary circuit from Rabbit [43] using
logical gates from SCALE-MAMBA.

- dabits_1ltz: Instantiates the main contribution
from [4], combining the original Catrina and de Hoogh [13]
construction with Boolean evaluation from Zaphod using
daBits for random bit sampling.

The library is integrated into several NN modules within
the FANNG compiler, including relu_lib.py, which
implements several variations of ReLU’s . According to [4],
dabits_1ltz remains the fastest operation mode in the
library, particularly when garbling is conducted offline, a
capability supported by FANNG. Our results for private
comparisons are presented in Table 3.

TABLE 3: Private comparisons using rabbit_1ib in a 2 party
setting. Time is measured in seconds per 1000 operations (*Online

Garbling; TOffline Garbling).
Mode Local Ping WAN
rabbit_slack 6.41 13.46 | 295.76
rabbit_list 120 457 | 33,365
rabbit_fp 64 138 | 18,315
rabbit_conv 12.8 19 300
rabbit_less_than 11.81 60.50 5,225
Default Mode
dabits_ltz* 3.89 8.43 | 148.66
dabits_ltz' 097 | 207 | 6252

The library also includes two VHDL versions of the
underlying Boolean circuits, detailed in [4]. The difference
lies in the presence or absence of XOR gates, with the
former incurring an increase in the number of gates. While
the former allows us to benefit from typical garbled circuit
optimizations, the latter provides more parallelism and can
be advantageous when employing replicated secret sharing
for Boolean evaluation.

3.5.2. Combining ReLU’s with n Truncations. FANNG
supports Fixed Point Arithmetic (FPA) in the same way as
SCALE-MAMBA and MP-SPDZ, specifically implementing
the approach outlined in [14]. The challenge of truncation
in fixed point arithmetic is a widespread issue in ML ap-
plications (see for instance [6]). This section elaborates on
the combination of a predetermined number of truncation
operations with a comparison operation.

In FPA, for a fixed point value x represented with
mantissa «, and precision d, we have z = « .24 Then, the
multiplication of two fixed-point values = and y produces



the following:

92d, (8)

To prevent the scaling factor from quickly saturating the
domain space, it is necessary to truncate it by a factor of 2¢
after each multiplication. The probabilistic truncation mech-
anism proposed in [14] is commonly used in the literature.
It involves a single round of communication and utilizes
pre-processed authenticated material, hereafter referred to
as truncation masks.

In recent works (e.g., [53]), it was noted that ReLU and
truncation can be effectively combined in a single call. The
truncation protocol bears some similarities with the compar-
ison protocol in [13] and its extensions in [4]. Both protocols
involve random sampling in the pre-processing phase and
necessitate a much smaller word space compared to the
domain size. Leveraging these observations, we present a
protocol that concurrently performs truncation and the com-
parison protocol from [4]. Notably, this truncation addresses
scaling issues arising from multiple multiplications. This
enables the batching of truncations from multiple multipli-
cations in a single execution, allowing parallel processing
with private comparisons in the activation layers.

Figure 6 illustrates parallel execution of comparison and
truncation of value c resulted after n sequential multipli-
cations, with k£ as the domain size and s as the security
parameter [4]. Pre-processing involves using contributions
from [20] for authenticated bits (aBits) and Zaphod [5] for
daBits. The main idea is that random sampling for trunca-
tion and comparison occurs in the same domain and over the
same input. Therefore, we can use masked outputs from the
comparison directly for truncation. The mask is utilized once
for executing both protocols. Following this, we multiply the
truncated value with the output bit from the comparison,
similar to a traditional ReLU implementation. Notably, the
generation of the 2k secret shared bounded randomness [20]
takes place during pre-processing in FANNG. On the other
hand, SCALE-MAMBA does not separate this process from
the online phase, resulting in a slower truncation process.

Concerning the number of batched truncation operations,
the size of mantissa (v) plus n-d (representing the quantity of
performed multiplications) is restricted by the value of k. In
practice, FANNG and SCALE-MAMBA assume a word size
of 64 bits. This upper bound be attributed to the limitations
of the GC processor, which was designed to support 64-bit
words. This limitation can be viewed as a trade-off between
precision and the size of n or batched truncations.

Experimentation and Discussion: Consider a CNN
setup where the network involves multiplication in the con-
volution layer, followed by another in the batch normal-
ization layer. With quantization during normalization, if no
truncation is applied, the precision expands to 3-d bits. In our
experiments, we fixed d at 20 and restricted the represented
values to not exceed 8 (3 bits), ensuring compatibility with
64-bit words in our experimentation.

To establish a comparable baseline, we provide equiva-
lent running times and the number of instructions generated
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using the classical fixed-point truncation [14] and compari-
son [13] protocols. Given that the use of circuit optimizers
results in a substantial increase in the number of instructions
for the baseline, we also refrain from employing them in our
evaluations. In our setup, we utilized our General Purpose
MPC testbed and evaluated results across Local, Ping, and
WAN setups (cf. §3). We distinguish between two types
of executions: with and without vectorized inputs. Table 4
showcases the performance of the trunc_ltz operation,
representing the evaluation of a comparison operation along
with either one (1-T) or two (2-T) truncations.

TABLE 4: Performance of comparison in conjunction with trunca-
tion (trunc_1ltz) in seconds per 1000 operations. (TVectorized).

Mode \ Optimized \ Non-Optimized
| Local | Ping [ WAN [ Local [ Ping [ WAN
Full Threshold (2p)

[13] + 1-T 1.61 2.71 114 4.66 18.1 793
[13] + 2-T 1.68 3.15 135 4.69 19 814
trunc_1tz(1-T) 335 | 33| 170 — — =
trunc_1tz(2-T) 43 | 3.37 190 == == =
trunc_ltz(1-T)T 0.84 2.1 62 = == ==
trunc_1tz(2-T)T 0.86 22 | 627 == == ==
Full Threshold (3p)

[13] + 1-T 2.69 4.46 116 8.4 23.1 798
[13] + 2-T 3.09 | 5.09 136 8.56 232 820
trunc_ltz(1-T) 53 3.67 265 == == ==
trunc_1tz(2-T) 8.6 | 3.77 276 == == =
trunc_ltz(1-T)T 134 | 244 103 == = =
trunc_1tz(2-T)T 1.35 29 | 103.8 == == ==
Shamir (3p)

[13] + 1-T 1.37 3.93 115 5.52 | 17.02 792
[13] + 2-T 1.61 | 448 136 6.02 | 17.07 814
trunc_ltz(1-T) 1.27 4.89 339 == == ==
trunc_1tz(2-T) 1.5 | 5.13 349 == == =
trunc_ltz(1- T)Jr 1.23 4.1 306 == = ==
trunc_ltz(2-T)T 1.25 4.2 308 == == ==

We observe that vectorization is crucial for optimizing
TCP-based communications, as large data structures can be
segmented into TCP packets, maximizing the allowed packet
size. This explains the performance degradation in the non-
vectorized case when ping time increases. Additionally, as
pointed out by Aly et al. [4], the network size somewhat con-
strains the effectiveness of circuit optimizers. Therefore, any
practical scenario utilizing SCALE-MAMBA has to depend
on non-optimized circuits, leading to limited performance
as indicated by the times in red.

FANNG addresses this issue by providing a vectorized
version of trunc_1tz, and the best timings are annotated
in green. The results demonstrate that vectorization signifi-
cantly improves both latency and throughput. For instance,
our protocols can perform 1000 comparisons 13x faster
in the two-party full threshold (FT) setting over a WAN
setup. In this context, we have also quantified the number
of instructions generated by the compiler in Table 5.

Compared to SCALE-MAMBA, we’ve significantly re-
duced the total number of instructions for compilation.
Besides vectorization, this reduction is attributed to a series
of optimizations implemented for generating aBits, batched
truncation, and our dabits_1tz protocol. This reduction
benefits RAM usage and compilation time, especially in
average/large neural networks.
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Figure 6: Protocol for batching secure truncation in parallel with private comparison.

TABLE 5: Number of instructions per ReLU Mode (f Vectorized).

Instructions
Mode 1T 5T
[13] + [14] 2,638,000 | 3,028,000
trunc_ltz 480,000 482,000
trunc_ltz| 76,000 76,000

There is a performance gap between the evaluation of
trunc_ltz, when executed on Shamir or FT. This differ-
ence arises from our reliance on offline garbling for FT,
which is not possible on Shamir due to the absence of
garbling in the evaluation of the Boolean circuit [5]. Lastly,
transitioning from 1 to 2 batched truncations has a mini-
mal impact on performance across all setups, a significant
improvement considering the typical impact of truncation
execution on quantized networks [34].

3.5.3. ML libraries. The framework includes specialized
libraries to perform efficient linear transformations, specif-
ically in convolutional and fully connected layers. FANNG
also encompasses libraries for folding (average and max
pooling), normalization and standardization, and output lay-
ers (e.g., softmax). The main contribution of these new
libraries lies in their integration of FANNG’s novel func-
tionalities, such as matrix and convolutional triples, pre-
processing of truncation masks, and novel private compar-
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ison protocols. Moreover, these libraries are implemented
with optimal communication rounds, eliminating the need
for an optimizer during compilation.

3.6. Handling pre-processed materials

FANNG introduces a set of new instructions designed to
handle the generation and loading of pre-processed materials
for use in the online phase. In the following, we discuss
details of the most relevant ones.

Bounded Randomness: Protocols, such as compar-
isons, are based on statistical security, and rely on masking
bounded by some power of 2, say 2¥. SCALE-MAMBA
generates masks programmatically, and for instance, a 40-
bit mask necessitates 148 instruction lines per invocation
in the bytecode. In applications such as machine learning,
a substantial number of these masks are required, signifi-
cantly affecting the amount of RAM needed for program
compilation and loading into memory. To address this, we
introduce three new instructions that not only transition the
process entirely from the online phase but also reduce the
number of instructions per invocation to one, independent
of the size of the bound.

- OSRAND (kx, amount): Generate and persist any
specified amount of random masks bounded by 2% using
our DB Support.



- LOADSRAND (k, amount): Load into memory a
specified amount of random masks bounded by 2.

- SRAND (output, k): Extract a random mask
bounded by 2* from memory and assign it to the register
amount. In SCALE-MAMBA language, this vectorizable
instruction can fill multiple registers in a single call.

daBits: In order to use the daBits generated in the pre-
processing, we introduce two new instructions:

- ODABIT (amount) : Persists any specified amount of
daBits using the pre-existing daBits factory.

- LOADDABIT (amount): Loads a specified amount
of daBits into memory. Note that the choicebits used for
generating the loaded daBits must be the same as those
used for the Garbled Circuits and for FANNG execution.

We also modified existing DABIT instruction to now
retrieve the next available daBits from memory. This vec-
torizable instruction can return multiple daBits if necessary.
In cases where none are available, FANNG will resort to the
daBits factory, a principle applicable to all instructions in
FANNG that consume pre-process material.

Matrix Triples: To enable the client and model owner to
utilize the specialized convolutional and matrix triples [17],
[48], generated by the dealers, during the online phase, we
need a mechanism to load them into memory once persisted.
FANNG introduces two new instructions for this purpose.

- LOADCT (type_id, amount): Loads any amount
of Matrix Triple of specified type_id into memory.

- CT_DYN(a,B,C, type_id): Extracts a Matrix
Triple of specified type_id from memory and assigns it
to the vectorized registers 2, B, C.

Test Modes for Pre-processed Material: FANNG fo-
cuses on a Dealer/pre-processing model, offering users prac-
tical implementations of both. However, for development
and simulation purposes, users may prefer to simulate these
models. Following SCALE-MAMBA practices, we offer var-
ious testing modes in the config.h file. For example, the
test mode for bounded randomness, daBits and GCs can be
activated or deactivated as shown in Listing 1.

/* Ignores shares in memory for SRAND when
set to 1. Used for testing to avoid
consuming shares in DB. */

#define return_shares_zero 1

/+ Ignores shares in memory for dabits.
When set to 1, returns only 0’s. x/
#define return_dabit_zero 1

/+ Ignores share counters for LOADCT,
* LOADSRAND, and LOADGC when set to 1.
*/

#define ignore_share_db_count 1

Listing 1: Test Mode configurations in FANNG.
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3.7. General Optimizations

In addition to the mentioned features, FANNG prior-
itizes usability by minimizing compiler-generated instruc-
tions, introducing novel functionality, and enhancing the
online phase inherited from SCALE-MAMBA. We explore
some of the most relevant items below:

- Summation Instructions SUMS and SUMC: Machine
operations relying on matrices often involve constant sum-
mations. While local users can perform these operations,
SCALE-MAMBA’s implementation involves instructions that
can be significant for a large set of values {z;, -+ ,x,}.
This can lead to slower compilation times and increased
RAM consumption. To mitigate this, we introduced two
novel instructions, SUMS and SUMC, providing outputs of
>i, x; for private and public inputs, respectively. These
instructions simplify development and reduce the entropy of
the instruction file, accelerating development time.

- Communication Bottlenecks: We observed a limitation
in SCALE-MAMBA related to the number of elements it can
send per message, specifically through the instructions open-
ing ]Fp inputs (START_OPEN and START_CLOSE). For
instance, our experiments showed that it can only support
up to 100 thousand elements per invocation, constraining
the parallelization of instructions per round. To overcome
this limitation, FANNG allows for a configurable number
of SSL connections. When a user intends to open multiple
elements in a single round, FANNG can navigate around this
constraint by utilizing as many connections as configured or
provided by the user.

- Graph Theory Library: We have extended the function-
ality of the framework beyond machine learning and towards
generic MPC, incorporating a novel Graph Theory library.
Currently, this library includes SOTA methods in shortest
path [2], with plans for additional expansion in the future.

4. Evaluation

This section provides details regarding private ML in-
ference using our FANNG framework. We chose to eval-
uate three different neural network (NN) architectures to
accommodate varying complexities (see §C for additional
architectural details).

- LeNet [40]: 5-layer network with 60K parameters, over
MNIST dataset.

- A generic CNN: 8-layer network with 1.5 million pa-
rameters, over CIFAR10 dataset.

- VGG16 [58]: 16-layer network with 37 million parame-
ters, over CIFAR10 dataset.

We chose to benchmark only the online phase, as the pre-
processing phase is executed separately earlier and stored
using storage support. Timings for offline operations are
provided in previous sections. FANNG is, to our knowledge,
the first framework to fully support private ML inference in
the dishonest-majority setting with active security. Our fully
open-sourced code will be made publicly available upon
publication.



Table 6 provides our results for performing private ML
inference using our Machine Learning testbed evaluated
across Local, Ping, and WAN setups (cf. §3). In these
tests, pre-processing was disabled using FANNG?’s test mode
support (cf.§3.6). This included simulating the generation
of matrix and convolutional triples, GCs, and truncation
masks by activating the relevant testing flags. Timings for
generating other pre-processing elements, such as beaver
triples, daBits, and singles, were not included in the results.

TABLE 6: Timings for private ML inference using FANNG. Values
are reported in seconds.

- [ LeNet [ CIFAR10 CNN [ VGGI16
Full-Threshold (2p)
Local 10 109 534
Ping 20 516 1,159
WAN 410 12,175 18,074
Shamir (3p)
Local 11 459 979
Ping 48 1,490 2,561
WAN 1,996 60,384 87,632
Full-Threshold (2p) - Without Activation
Local 0.62 43 440
Ping 0.62 44 472
WAN 0.86 44 483

Although we achieve impressive runtimes for both Local
and Ping setups, we note that the runtimes increase signif-
icantly over a WAN when transitioning from LeNet to the
more complex VGGI16. This is attributed to the absence
of support for parallelizing Boolean circuit evaluations in
SCALE-MAMBA affecting activation layers. Despite FANNG
incorporating support for vectorization at various stages in
ReLU computation, it relies on the Boolean circuit eval-
uation inherited as a black box from SCALE-MAMBA for
activation functions. To be more specific, the sequential
evaluation of garbled circuits in the case of full threshold and
boolean circuits for Shamir contributes to this slowdown.

We plan to address this limitation in the future. However,
to offer insight into its impact on our performance results,
we have also included the evaluation results in Table 6
for the two-party full threshold setting after excluding the
activation layers. In this scenario, we observe that the time
complexity for Ping and WAN setups is comparable to
that of a Local setup. This is reasonable, as the commu-
nication rounds for the three networks without activation
layers are only 22 (LeNet), 44 (CNN for CIFAR10), and
577 (VGG16).

The performance gap between the full-threshold setting
and Shamir is attributed to the absence of parallelization
in the activation layer. In SCALE-MAMBA, Shamir utilizes
replicated secret sharing over Zs for Boolean circuit eval-
uation, a process inherited by FANNG. In contrast, full-
threshold employs [HSS17] [27] for Boolean circuits in
both SCALE-MAMBA and FANNG, with the difference that
FANNG can push the garbling phase to pre-processing as
described in §3.3.1. The private comparison circuit over Zy
incurs 16 communication rounds, whereas the online phase
in [HSS17] requires only 2 rounds. These communication
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rounds are sequential per ReLU, making full-threshold sig-
nificantly faster than Shamir for activation layers.

The similar performance of two networks trained on
CIFARI10, despite a significant difference in size, can be
attributed also to the dominance of activation layers. Specif-
ically, the CIFAR10 CNN has 1.5 million parameters and
196,640 ReLLUs, whereas the larger VGG16 has 37 million
parameters but only 285,672 ReLUs.

Analytical Evaluation: Due to the absence of support
for the parallelization of comparison circuits in FANNG, the
current runtime obtained may not accurately represent the
achievable performance. Rather, they constitute an overes-
timation, resulting in timings that are much higher than the
potential achievable values, particularly for communication-
dominant setups such as WAN. To address this limita-
tion, we conduct a theoretical analysis by focusing on two
key parameters: i) Batch size, representing the number of
comparison circuits that FANNG could parallelize in its
anticipated capability, and ii) Overhead Factor, indicating
the increase in runtime when handling a batch of circuits
in parallel compared to a single execution. The results are
plotted in Figure 7.
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Figure 7: Analytical evaluation of VGG16 inference using FANNG
over a WAN setup with batch sizes (Batch) € {10, 100, 1000} and
Overhead Factor € {1,2,3,4,5}. ‘Sequential’ denotes the baseline
evaluation without parallelization.

As shown in Figure 7, parallelizing the comparisons
within activation layers can substantially enhance the run-
time. For example, when the batch size is set to 100 and the
overhead factor is set to 4, FANNG will require less than
20 minutes to execute a private inference on the VGG16
network over a WAN setup. This time can be further reduced
to less than 10 minutes by using a higher batch size of 1000.

Summary: The results highlight FANNG’s remarkable
capability to achieve private inference for MNIST within
seconds and for CIFAR10 within minutes, considering both
Local and Ping times. This performance can be considered
as state-of-the-art for Full-Threshold settings, as, to the best



of the authors’ knowledge, no other implementation in this
setting has provided better metrics. The potential for achiev-
ing comparable performance in WAN setups is evident by
parallelizing activation layers, a goal set for future work.
Furthermore, the evaluation, excluding ReLUs, reveals the
potential to classify MNIST in under a second and CIFAR10
in under a minute, emphasizing the need for ongoing efforts
to enhance the efficiency of activation layers.

5. Conclusion & Future Work

In this work, we present FANNG-MPC, an MPC frame-
work developed with a focus on private machine learn-
ing (ML) inference. FANNG extends the capabilities of
the well-established SCALE-MAMBA framework, which sup-
ports various actively secure MPC protocols over fields.
After identifying limitations in SCALE-MAMBA concerning
ML inference, we introduce several innovations. These in-
clude dealer support for preprocessing and storage support
to streamline the preprocessing phase. Our contributions,
both in theory and engineering, are substantiated through a
comprehensive evaluation that closely simulates real-world
execution rather than a simple prototype. The results demon-
strate the practicality of private ML inference within the
actively secure setting in MPC with a dishonest majority.

In our future work, FANNG will evolve to provide a
more capable pre-processing engine for private ML infer-
ence. While FANNG currently features a comprehensive
instruction set for storing and loading all pre-processing
materials, this functionality has not yet been implemented
in the dealers. The current version of FANNG supports
only matrix triple generation within the dealers, leaving the
generation and storage of the remaining offline elements to
be handled directly by the client and model owner.

In upcoming iterations, FANNG is set to extend its
dealer support to include garbling, along with the gener-
ation of truncation masks, Beaver triples, and authenticated
singles. Additionally, FANNG dealers will benefit from
hardware acceleration through FPGA support. Moreover, as
identified in our evaluations, the lack of parallelization for
comparisons in SCALE-MAMBA significantly affects overall
performance, and this issue will be addressed in the next
iterations of FANNG. These enhancements will collectively
fortify FANNG?’s capabilities in facilitating various aspects
of privacy-preserving machine learning.

References

[11 E. Alkim, L. Ducas, T. Poppelmann, and P. Schwabe, “Post-quantum
Key Exchange - A New Hope,” in USENIX Security Symposium

(USENIX Security), 2016.

[2] A. Aly and S. Cleemput, “A Fast, Practical and Simple Shortest Path
Protocol for Multiparty Computation,” in European Symposium on

Research in Computer Security (ESORICS), 2022.

A. Aly, K. Cong, D. Cozzo, M. Keller, E. Orsini, D. Rotaru,
O. Scherer, P. Scholl, N. P. Smart, T. Tanguy, and T. Wood, “SCALE-
MAMBA vl. 14: Documentation,” Documentation. pdf, 2021, https:
//homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf.

[3]

17

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. Aly, K. Nawaz, E. Salazar, and V. Sucasas, “Through the Looking-
Glass: Benchmarking Secure Multi-party Computation Comparisons
for ReLU ’s,” in Cryptology and Network Security (CANS), 2022.

A. Aly, E. Orsini, D. Rotaru, N. P. Smart, and T. Wood, “Zaphod:
Efficiently Combining LSSS and Garbled Circuits in SCALE,” in
Workshop on Encrypted Computing & Applied Homomorphic Cryp-
tography (WAHC@CCS), 2019.

W. Ao and V. Boddeti, “AutoFHE: Automated Adaption of CNNs for
Efficient Evaluation over FHE,” Cryptology ePrint Archive, 2023.

C. Baum, D. Cozzo, and N. P. Smart, “Using TopGear in Overdrive: A
More Efficient ZKPoK for SPDZ,” in Selected Areas in Cryptography
(SAC), 2020.

B. Biasioli, C. Marcolla, M. Calderini, and J. Mono, “Improving and
Automating BFV Parameters Selection: An Average-Case Approach,”
Cryptology ePrint Archive, 2023.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) Fully
Homomorphic Encryption without Bootstrapping,” ACM Transactions
on Computer Theory, 2014.

Z. Brakerski and V. Vaikuntanathan, “Fully Homomorphic Encryption
from Ring-LWE and Security for Key Dependent Messages,” in
Annual International Cryptology Conference (CRYPTO), 2011.

M. Byali, H. Chaudhari, A. Patra, and A. Suresh, “FLASH: Fast
and Robust Framework for Privacy-preserving Machine Learning,”
Proceedings of Privacy Enhancing Technologies (PoPETs), 2020.

J. Cabrero-Holgueras and S. Pastrana, “SoK: Privacy-Preserving
Computation Techniques for Deep Learning,” Proceedings of Privacy
Enhancing Technologies (PoPETs), 2021.

O. Catrina and S. de Hoogh, “Improved Primitives for Secure Mul-
tiparty Integer Computation,” in Security and Cryptography for Net-
works (SCN), 2010.

O. Catrina and A. Saxena, “Secure Computation with Fixed-Point
Numbers,” in Financial Cryptography and Data Security (FC), 2010.

H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “ASTRA: High
Throughput 3PC over Rings with Application to Secure Prediction,”
in ACM SIGSAC Conference on Cloud Computing Security Workshop
(CCSW@CCS), 2019.

H. Chaudhari, R. Rachuri, and A. Suresh, “Trident: Efficient 4PC
Framework for Privacy Preserving Machine Learning,” in Annual
Network and Distributed System Security Symposium (NDSS), 2020.

H. Chen, M. Kim, I. Razenshteyn, D. Rotaru, Y. Song, and S. Wagh,
“Maliciously Secure Matrix Multiplication with Applications to Pri-
vate Deep Learning,” in International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT),
2020.

A. Costache and N. P. Smart, “Which Ring Based Somewhat Homo-
morphic Encryption Scheme is Best?” in The Cryptographers’ Track
at the RSA Conference (CT-RSA), 2016.

A. P. K. Dalskov, D. Escudero, and M. Keller, “Fantastic Four:
Honest-Majority Four-Party Secure Computation With Malicious Se-
curity,” in USENIX Security Symposium (USENIX Security), 2021.

1. Damgard, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Uncondi-
tionally Secure Constant-Rounds Multi-party Computation for Equal-
ity, Comparison, Bits and Exponentiation,” in Theory of Cryptography
Conference (TCC), 2006.

A. Di Giusto and C. Marcolla, “Breaking the power-of-two barrier:
noise estimation for BGV in NTT-friendly rings,” Cryptology ePrint
Archive, 2023.

J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein, “High-Throughput
Secure Three-Party Computation for Malicious Adversaries and an
Honest Majority,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), 2017.

C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic Evaluation
of the AES Circuit,” in Annual International Cryptology Conference
(CRYPTO), 2012.


https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf

(24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig,
and J. Wernsing, “CryptoNets: Applying Neural Networks to En-
crypted Data with High Throughput and Accuracy,” in International
Conference on Machine Learning (ICML), 2016.

K. Gupta, D. Kumaraswamy, N. Chandran, and D. Gupta, “LLAMA:
A Low Latency Math Library for Secure Inference,” Proceedings of
Privacy Enhancing Technologies (PoPETs), 2022.

M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “SoK:
General Purpose Compilers for Secure Multi-Party Computation,” in
IEEE Symposium on Security and Privacy (IEEE S&P), 2019.

C. Hazay, P. Scholl, and E. Soria-Vazquez, “Low Cost Constant
Round MPC Combining BMR and Oblivious Transfer,” in Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT), 2017.

Z. Huang, W. jie Lu, C. Hong, and J. Ding, “Cheetah: Lean and
Fast Secure Two-Party Deep Neural Network Inference,” in USENIX
Security Symposium (USENIX Security), 2022.

C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A Low Latency Framework for Secure Neural Network Inference,”
in USENIX Security Symposium (USENIX Security), 2018.

M. Keller, “MP-SPDZ: A Versatile Framework for Multi-Party Com-
putation,” in ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), 2020.

M. Keller, E. Orsini, and P. Scholl, “Actively Secure OT Extension
with Optimal Overhead,” in Annual International Cryptology Confer-
ence (CRYPTO), 2015.

M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making SPDZ
Great Again,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), 2018.

M. Keller, D. Rotaru, N. P. Smart, and T. Wood, “Reducing Communi-
cation Channels in MPC,” in Security and Cryptography for Networks
(SCN), 2018.

M. Keller and K. Sun, “Secure Quantized Training for Deep Learn-
ing,” in International Conference on Machine Learning (ICML), 2022.

K. Kim and H. C. Tanuwidjaja, Privacy-Preserving Deep Learning -
A Comprehensive Survey. Springer, 2021.

B. Knott, S. Venkataraman, A. Y. Hannun, S. Sengupta, M. Ibrahim,
and L. van der Maaten, “CrypTen: Secure Multi-Party Computation
Meets Machine Learning,” in Annual Conference on Neural Informa-
tion Processing Systems (NeurIPS), 2021.

N. Koti, M. Pancholi, A. Patra, and A. Suresh, “SWIFT: Super-
fast and Robust Privacy-Preserving Machine Learning,” in USENIX
Security Symposium (USENIX Security), 2021.

N. Koti, S. M. Patil, A. Patra, and A. Suresh, “MPClan: Protocol

Suite for Privacy-Conscious Computations,” Journal of Cryptology,
2023.

N. Koti, A. Patra, R. Rachuri, and A. Suresh, “Tetrad: Actively Secure
4PC for Secure Training and Inference,” in Annual Network and
Distributed System Security Symposium (NDSS), 2022.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
1998.

Y. Lindell and B. Pinkas, “Privacy Preserving Data Mining,” in
Annual International Cryptology Conference (CRYPTO), 2000.

J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious Neural Network
Predictions via MiniONN Transformations,” in ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), 2017.

E. Makri, D. Rotaru, F. Vercauteren, and S. Wagh, “Rabbit: Effi-
cient Comparison for Secure Multi-Party Computation,” in Financial
Cryptography and Data Security (FC), 2021.

C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. Fitzek, and
N. Aaraj, “Survey on Fully Homomorphic Encryption, Theory, and
Applications,” Proceedings of the IEEE, 2022.

18

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A Cryptographic Inference Service for Neural Networks,”
in USENIX Security Symposium (USENIX Security), 2020.

P. Mohassel and P. Rindal, “ABY3: A Mixed Protocol Framework
for Machine Learning,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2018.

P. Mohassel and Y. Zhang, “SecureML: A System for Scalable
Privacy-Preserving Machine Learning,” in I[EEE Symposium on Secu-
rity and Privacy (IEEE S&P), 2017.

J. Mono and T. Giineysu, “Implementing and Optimizing Matrix
Triples with Homomorphic Encryption,” in Asia Conference on Com-
puter and Communications Security (ASIACCS), 2023.

J. Mono, C. Marcolla, G. Land, T. Giineysu, and N. Aaraj, “Finding
and evaluating parameters for BGV,” in International Conference on
Cryptology in Africa (AFRICACRYPT), 2023.

L.K.L.NgandS. S. M. Chow, “SoK: Cryptographic Neural-Network
Computation,” in [EEE Symposium on Security and Privacy (IEEE
S&P), 2023.

J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra, “A New
Approach to Practical Active-Secure Two-Party Computation,” in
Annual International Cryptology Conference (CRYPTO), 2012.

A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: Im-
proved Mixed-Protocol Secure Two-Party Computation,” in USENIX
Security Symposium (USENIX Security), 2021.

D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow2: Practical 2-Party Secure Inference,”
in ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2020.

M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter, and
F. Koushanfar, “XONN: XNOR-based Oblivious Deep Neural Net-
work Inference,” in USENIX Security Symposium (USENIX Security),
2019.

M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schnei-
der, and F. Koushanfar, “Chameleon: A Hybrid Secure Computation
Framework for Machine Learning Applications,” in Asia Conference
on Computer and Communications Security (ASIACCS), 2018.

D. Rotaru, N. P. Smart, T. Tanguy, F. Vercauteren, and T. Wood,
“Actively Secure Setup for SPDZ,” Journal of Cryptology, 2021.

B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: scal-
able provably-secure deep learning,” in Annual Design Automation
Conference (DAC), 2018.

K. Simonyan and A. Zisserman, ‘“Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in International Conference on
Learning Representations (ICLR), 2015.

N. P. Smart and T. Tanguy, “TaaS: Commodity MPC via Triples-as-a-
Service,” in ACM SIGSAC Conference on Cloud Computing Security
Workshop (CCSW@CCS), 2019.

N. P. Smart and T. Wood, “Error Detection in Monotone Span
Programs with Application to Communication-Efficient Multi-party
Computation,” in The Cryptographers’ Track at the RSA Conference
(CT-RSA), 2019.

S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-Party Secure
Computation for Neural Network Training,” Proceedings of Privacy
Enhancing Technologies (PoPETs), 2019.

S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “Falcon: Honest-Majority Maliciously Secure Framework
for Private Deep Learning,” Proceedings of Privacy Enhancing Tech-
nologies (PoPETs), 2021.

X. Wang, S. Ranellucci, and J. Katz, “Global-Scale Secure Multi-
party Computation,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017.

W. Zheng, R. Deng, W. Chen, R. A. Popa, A. Panda, and I. Stoica,
“Cerebro: A Platform for Multi-Party Cryptographic Collaborative
Learning,” in USENIX Security Symposium (USENIX Security), 2021.



Appendix A.
MPC-2PC conversion for TinyOT values

Currently, FANNG covers the conversion of n-party
to 2-party SPDZ-like MACs. This suffices for transferring
matrix triples and will also be used for transferring beaver
triples, authentication singles, and truncation masks when
this functionality is incorporated into the dealers. However,
to convert GCs, resharing of TinyOT values is required.
We consider the following options to move part of the pre-
processing to the dealers:

- Run TinyOT in the dealers to generate aBits and aANDs,
then convert pairwise MACs for {D; }jcn) into SPDZ-like
MAC:s for model owner M and client C.

- Run TinyOT in the dealers to generate aBits and aANDs,
then convert pairwise MACs for {D;};cnp) into pairwise
MAC:s for model owner M and client C.

The first option caters to a simple conversion mechanism
but would involve modifying how aBits/aANDs are treated
in SCALE-MAMBA, as the authentication process would
change. The second option allows using aBits/aANDs with-
out any modification in SCALE-MAMBA, but the reshar-
ing protocol requires Oblivious Transfer (OT) between the
model owner M and the client C, making it more time-
consuming. The two following sections demonstrate how to
perform the different MAC conversions.

Recap: Pairwise MACs in TinyOT: For 27 € 5 held
by P;, define the following two-party MAC representation,
as used in 2-party TinyOT [51]:

[2] = (xj7Mj’i,Ki’j), M3 = K6 4 g9 . Al
where P; holds z7 and a MAC M7, and P; holds a local
MAC key K*J as well as the fixed, global MAC key A°.

Similarly, we define the n-party representation of an

additively shared value = z! +--- + 2™

[l‘] = ('rjv {]V[jyi’ Ki’j)}i?éj)je[nb

Pairwise MAC to single MAC: Resharing TinyOT
(@AND) values used in daBits: To reshare the pairwise
values M7%, K*J and the global keys A’ recombine the
pairwise reshared values accordingly as shares of the new
single global mac key A = >, A’. It is worth highlighting
that for each client, we may need a different global MAC
key A. This could be potentially pose an issue for com-
binatorial parameters in the pre-processing material, such
as the bucketing parameter in the TinyOT pre-processing.
However, given that our concrete application involves the
order of millions of aBits, this already allows us to choose
B = 3 for bucketing.

Pairwise MAC to pairwise MAC: Resharing TinyOT
values for garbling: Pairwise MACs pose a greater chal-
lenge and are more expensive. Implementing any of these
options as a stepping stone could not only be more costly but
also more challenging than transitioning the Garbled Circuit
implementation to the pre-processing phase.

MY = K83 g0 Al

In the following, we assume that the values that are
reshared are the result of the function-dependent phase of
[HSS17], rather than simply TinyOT triples. As we will
see, even in this case things are already far from ideal. If
we were to reshare the aAND triples and then perform the
function-dependent phase of [HSS17] in the online phase
of our implementation, the complexity only increases.

Given an n-party representation of a TinyOT value, the
dealers can execute the resharing of 7 into 27 = /M4 27:C
and A% into A* = AM 1 A%C in parallel, as described
in §3.2. Note that we want the model owner M and client C
to hold a 2-party TinyOT value share of the following form:

[¢] = (2, M7" K5, MMC = KM 42 A

and MM = gMC 4 ¢ . AM

Since z™ =377 | a7M and AY =371 | ABC, what is
missing is the generation of the values MM:¢ and KM,
These values are not easily obtained through resharing the
n-party TinyOT representation of x. At this point, M and
C can obtain MM¢ and KM by engaging in a correlated
OT protocol, with the input being the choice bit 2™ and a
fixed correlation AC.

Appendix B.
I/O Configuration File

Storage_type = MySQLDatabase
MySQL_url = tcp://my.dbserver.ae:3306
MySQL_user = my_user

MySQL_password = x#*%*x*
MySQL_database = mpclib-database-dealer

Listing 2: Configuration file tuned for My SQL access.

Storage_type = FileSystem
File_system_storage_directory = Data

Listing 3: Configuration file tuned for File System access.

Appendix C.
Network Architectures

[ Layer [ Input Size [ Description [ Output |
. . Window size 5 x 5, Stride (1, 1),
Convolution 32x32x1 Padding (0,0), output channels 6 28 x 28 x 6
ReLU Activation 28 x 28 x 6 | ReLU(:) on each input 28 X 28 X 6
Max Pooling 28 x 28 x 6 | Window size 2 x 2, Stride (2,2) 14 x 14 x 6
. .| Window size 5 x 5, Stride (1,1), N
Convolution 14 x 14 x 6 Padding (0,0), output channels 16 10 x 10 x 16
ReLU Activation 10 X 10 x 16 | ReLU(:) on each input 10 x 10 x 16
Max Pooling 10 x 10 x 16 | Window size 2 x 2, Stride (2,2) 5 x5 x 16
. Window size 5 x 5, Stride (1, 1),
5
Convolution 5x5x 16 Padding (0,0), output channels 120 1x1x120
ReLU Activation 1x1x120 | ReLU(") on each input 1x1x120
Fully Connected Layer | 120 Fully connected layer 84
ReLU Activation 84 ReLU(+) on each input 84
Fully Connected Layer | 84 Fully connected layer 10

Figure 8: LeNet network architecture [40] for training over MNIST
dataset.



[ Layer [ Input Size [ Description [ Output
. Window size 3 x 3, Stride (1, 1), P
Convolution 32x32x3 Padding|(11))outputlchannels 3 32 x 32 x 32
Batch Normalization | 32 x 32 x 32| BN(-) on each input 32 x 32 x 32
ReLU Activation ‘ 32 x 32 x 32 | ReLU(-) on each input 32 x32x 32
. Window size 3 x 3, Stride (1, 1),
Convolution 32 x 32 x 32 Padding (1, 1), output channels 64 32 x 32 x 64
Batch Normalization 32 x32x 64 | BN(-) on each input 32 X 32 x 64
ReLU Activation 32 x 32 x 64 ReLU(") on each input 32 x 32 x 64
Max Pooling 32x32x 64 | Window size 2 X 2, Stride (2,2) 16 x 16 x 64
. Window size 3 x 3, Stride (1, 1),
Convolution 16 x 16 x 64 Padding)(1, 1), outputlchannels 198 16 x 16 x 128
Batch Normalization | 16 x 16 x 128 | BN(-) on each input 16 x 16 x 128
ReLU Activation ‘ 16 x 16 x 128 | ReLU(:) on each input 16 x 16 x 128
. Window size 3 x 3, Stride (1, 1),
Convolution 16 x 16 x 128 Padding (1, 1), output channels 128 16 x 16 x 128
Batch Normalization 16 x 16 x 128 | BN(:) on each input 16 x 16 x 128
ReLU Activation 16 x 16 x 128 | ReLU(") on each input 16 x 16 x 128
Max Pooling 16 x 16 x 128 | Window size 2 x 2, Stride (2,2) 8 x 8 x 128
. Window size 3 x 3, Stride (1, 1), -
Convolution 8 x 8 x 128 Padding)(1, 1), outputlchannels 956 8 x 8 x 256
Batch Normalization | 8 x 8 x 256 BN(-) on each input 8 x 8 x 256
ReLU Activation ‘ 8 x 8 x 256 ReLU(-) on each input 8 x 8 x 256
. Window size 3 x 3, Stride (1, 1),
Convolution 8 x 8 x 256 Padding (1, 1), output channels 256 8 x 8 x 256
Batch Normalization 8 x 8 x 256 BN(-) on each input 8 x 8 x 256
ReLU Activation 8 x 8 x 256 ReLU(-) on each input 8 x 8 x 256
Max Pooling 8 x 8 x 256 Window size 2 x 2, Stride (2,2) 4% 4% 256
Fully Connected Layer 4096 Fully connected layer 32
ReLU Activation [32 ReLU(-) on each input 32
Fully Connected Layer 32 Fully connected layer 10

Figure 9: CNN network architecture for private classification over

CIFAR-10 dataset. It contains 1.5 million paramerters

[ Layer [ Input Size [ Description [ Output
. Window size 3 x 3, Stride (1, 1),
Convolution 32x32x3 Padding (1, 1), output channels 64 32 x 32 x 64
ReLU Activation 32 x 32 x 64 ReLU(-) on each input 32 x 32 x 64
. . . Window size 3 x 3, Stride (1, 1), N
Convolution 32 x 32 x 64 Padding (L, 1), output channels 64 32 x 32 x 64
ReLU Activation 32 x 32 x 64 ReLU() on each input [ 32 x32x64
Max Pooling 32 x 32 x 64 Window size 2 x 2, Stride (2,2) ‘ 16 x 16 x 64
. Window size 3 x 3, Stride (1,1),
Convolution 16 x 16 x 64 Padding (L, 1), output channels 128 16 x 16 x 128
ReLU Activation 16 x 16 x 128 | ReLU(-) on each input [ 16 x 16 x 128
q N 2 Window size 3 x 3, Stride (1, 1), ) A
Convolution 16 x 16 x 128 il (1, 1), et @irrell 125 16 x 16 x 128
ReLU Activation 16 x 16 x 128 | ReLU(") on each input [ 16 x 16 x 128
Max Pooling 16 x 16 x 128 | Window size 2 x 2, Stride (2,2) [ 8x8x128
. Window size 3 x 3, Stride (1,1), -
Convolution 8 x 8 x 128 Padding (L, 1), output channels 256 8 x 8 x 256
ReLU Activation 8 x 8 % 256 ReLU(+) on each input ] 8 %8 x 256
3 Window size 3 x 3, Stride (1, 1), a
Convolution 8 x 8 x 256 Padding (1, 1), output channels 256 8 x 8 x 256
ReLU Activation 8 x 8 x 256 ReLU(-) on each input [ 8% 8 x 256
. Window size 3 x 3, Stride (1, 1),
Convolution 8 x 8 x 256 Padding (1, 1), output channels 256 8 x 8 x 256
ReLU Activation 8 x 8 x 256 ReLU(:) on each input [ 8 X8 x 256
Max Pooling 8 x 8 x 256 Window size 2 x 2, Stride (2,2) ‘ 4 x 4 x 256
. Window size 3 x 3, Stride (1, 1),
Convolution 4 x 4 x 256 Padding (1, 1), output channels 512 4 x4 x 512
ReLU Activation 4 x4 x 512 ReLU() on each input [4x4x512
. Window size 3 x 3, Stride (1,1),
5 45
Convolution 4 x4 x 512 Prdding)({31)§oulpuchannels|512 4 x4 x512
ReLU Activation 4 x4 %512 ReLU(+) on each input [ 4x4x512
. Window size 3 x 3, Stride (1,1),
5 ) 5
Convolution 4 x4 x512 Padding (1, 1), output channels 512 4 x4 x512
ReLU Activation 4 x4 %512 ReLU() on each input [4x4x512
Max Pooling 4 x4 %512 Window size 2 x 2, Stride (2,2) | 2x2 %512
. Window size 3 x 3, Stride (1, 1),
Convolution 2% 2x 512 Padding (1, 1), output channels 512 2% 2x512
ReLU Activation 2 x2x512 ReLU() on each input [2x2x512
. Window size 3 x 3, Stride (1,1),
Convolution 2 x2x512 Padding (1, 1), output channels 512 2 x2x512
ReLU Activation 2 x2x512 ReLU(:) on each input [2x2x512
. Window size 3 x 3, Stride (1,1), s
Convolution 2% 2x512 Paddling|(LhL)joutputichannels|512 2% 2x512
ReLU Activation 2 x 2 x512 ReLU(:) on each input [2x2x512
Max Pooling 2 x2x512 Window size 2 x 2, Stride (2,2) [ Tx1Tx512
Fully Connected Layer | 512 Fully connected layer 4096
ReLU Activation 4096 ReLU(+) on each input [ 4096
Fully Connected Layer | 4096 Fully connected layer 4096
ReLU Activation 4096 ReLU(") on each input [ 4096
Fully Connected Layer | 4096 Fully connected layer 1000
ReLU Activation 1000 ReLU(+) on each input [ 1000

Figure 10: VGG16 network architecture [58] for training over
CIFAR-10 dataset. It contains 37 million parameters.
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