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1 Introduction
In this report, we perform an in-depth analysis of the RSA authentication feature used in the secure boot
procedure of Xilinx Zynq-7000 SoC device. The First Stage Boot Loader (FSBL) is a critical piece of software
executed during secure boot, which utilizes the RSA authentication feature to validate all the hardware and
software partitions to be mounted on the device. We analyzed the implementation of FSBL (provided by
Xilinx) for the Zynq-7000 SoC and identified a critical security flaw, whose exploitation makes it possible to
load an unauthenticated application onto the Zynq device, thereby bypassing RSA authentication [5]. We
also experimentally validated the presence of the vulnerability through a Proof of Concept (PoC) attack to
successfully mount an unauthenticated software application on an RSA authenticated Zynq device. The identified
flaw is only present in the FSBL software and thus can be easily fixed through appropriate modification of the
FSBL software. Thus, the first contribution of our work is the identification of a critical security flaw in the
FSBL software to bypass RSA authentication.

Upon bypassing RSA authentication, an attacker can mount any unauthenticated software application on the
target device to mount a variety of attacks. Among the several possible attacks, we are interested to perform
recovery of the encrypted bitstream in the target boot image of the Zynq-7000 device. To the best of our
knowledge, there does not exist any prior work that has reported a practical bitstream recovery attack on the
Zynq-7000 device. In the context of bitstream recovery, Ender et al. [1] in 2020 proposed the Starbleed attack
that is applicable to standalone Virtex-6 and 7-series Xilinx FPGAs. The design advisory provided by Xilinx as
a response to the Starbleed attack claims that the Zynq-7000 SoC is resistant “due to the use of asymmetric
and/or symmetric authentication in the boot/configuration process that ensures configuration is authenticated
prior to use" [2]. Due to the security flaw found in the FSBL, we managed to identify a novel approach to mount
the Starbleed attack on the Zynq-7000 device for full bitstream recovery. Thus, as a second contribution of our
work, we present the first practical demonstration of the Starbleed attack on the Zynq-7000 SoC. We perform
experimental validation of our proposed attacks on the PYNQ-Z1 platform based on the Zynq-7000 SoC.

While Xilinx’s design advisory claims that the Zynq-7000 SoC is "resistant" to the Starbleed attack [2], the
critical security flaw identified in the FSBL software (first contribution) allows to bypass RSA authentication
and subsequently use our novel approach (second contribution) allows to mount the Starbleed attack for full
bitstream recovery on an RSA authenticated Zynq-7000 device.

We communicated our findings to Xilinx in a vulnerability disclosure on March 8, 2022 and started cooperating
on the issue. Xilinx quickly confirmed the vulnerability on March 24, 2022 and also published a patch for
the FSBL software on March 25, 2022 [4]. Information about the vulnerability was also published as a design
advisory by Xilinx on April 28, 2022 [3].

1.1 Threat Model
We consider a victim Zynq-7000 SoC device securely booting using a secure boot image stored in a Non-Volatile
Memory (NVM) accessible to an attacker. In our experiments with the PYNQ-Z1 platform, we store the victim
boot image in the SD card. For the sake of explanation, we consider the case where the victim boot image has
three partitions - FBSL, PL partition and PS partition. The target device mandates RSA authentication of the
boot image (i.e.) the RSA eFUSE is enabled within the device and all the partitions are encrypted as well as
authenticated. The hash of the RSA PPK is programmed into the corresponding eFUSE registers. The AES
key used for the secure boot is also programmed into the eFUSE of the Zynq SoC. However, we note that the
key source (eFUSE or BBRAM) does not affect the attack methodology in any way. Please refer Fig.1 for the
structure of the victim boot image we consider for our attack.
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The attacker’s objective is to mount an unauthorized application (unauthenticated) onto the Zynq device.
We assume that the attacker has access to the boot image as it is stored on the NVM (SD card). We also assume
that the attacker neither has access to the RSA key nor the AES key.

Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

- Unencrypted

- Encrypted

PHT Authenticate 
Certificate

FSBL Authenticate 
Certificate

Bitstream Authenticate 
Certificate

SW Application

SW Application 
Authenticate Certificate

Figure 1: Authenticated victim boot image

2 Background
In this section, we will provide a brief background on secure boot as well as the RSA authentication feature of
the Zynq-7000 SoC device, to establish a few necessary concepts which will facilitate the understanding of our
attack, described later in Sections 3-6.

2.1 Secure Boot of Zynq-7000 device
The central component of secure boot is the secure boot image which consists of various partitions that will
be sequentially loaded in a secure manner into the appropriate locations within the Zynq device (either DDR,
On-Chip Memory (OCM) or FPGA). The important components of a boot image are as follows:

1. Boot Image header (BIH)

2. Partition Header Table (PHT)

3. First Stage Boot Loader (FSBL)

4. Programmable Logic (PL) partition/s (bitstream)

5. Programmable System (PS) partition/s (Standalone Application or Operating System)
We now explain the main components of the boot image, which are relevant to carry out our RSA bypass

attack on the Zynq-7000 device.

2.1.1 Partition Header Table (PHT)

The partition harder table (PHT) is a critical component which contains information about the characteristics
of the individual partitions of the boot image. Each partition is associated with an entry in the PHT, which
contains metadata information about the corresponding partition. Some of the important fields in a PHT entry
are encrypted partition size (at offset 0x00), decrypted partition size (0x04), total partition size including the
RSA signature (0x08), address to be loaded and executed (0x0C), location of partition in the boot image (0x14)
and attribute bits (0x18) which contain the encryption and authentication status of the partition.

The PHT is utilized by the FSBL to get information about each partition during the boot procedure. It
is important to note that the PHT is present unencrypted within the boot image. So, an attacker can gain
information about the metadata of each partition as well as the entire boot image.
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2.1.2 First Stage Boot Loader (FSBL)

The FSBL is the first software executable to be run on the Zynq-7000 device, which loads some or all partitions
within the boot image into the appropriate locations within the device. The first significant operation performed
by the FSBL is to retrieve the PHT from the boot image and authenticate the PHT. If successful, then the
FSBL starts loading the different PS and PL partitions based on information present in the PHT. Upon failure,
the FSBL simply aborts the secure boot procedure.

The FSBL reads the PHT one entry at a time and for each authenticated partition, there is an Authentication
Certificate (AC) appended right next to the partition in the boot image. The AC contains the partition signature
which is verified by the FSBL. Upon successful verification, the FSBL decrypts the partition data (if required)
and loads it in the appropriate location before moving onto the next partition. It is important to note that
mandating RSA authentication through the eFUSE only requires the FSBL to be authenticated. All the other
PS/PL executable partitions need not be authenticated in an RSA authenticated boot image. The authentication
status of each partition is determined from the authentication status bit in the PHT entry.

After loading the required number of partitions, the FSBL can either transfer control to a Second Stage
Boot Loader (SSBL) which further takes care of the loading process or handover control to a final application
executable. While one can use a custom FSBL, we in this work utilize the official FSBL code for the Zynq-7000
SoC provided by Xilinx (FSBL version 2018.1).

2.2 RSA Authentication in Zynq-7000 SoC
The Zynq device uses the well-known RSA-2048 based signature scheme for authentication. It is carried out
using two keys: Primary Key and Secondary Key. They form an authentication chain wherein the primary
keys authenticate the secondary keys, and then the secondary keys authenticate the partition. The primary key
consists of the Primary Public Key (PPK) and a Primary Secret Key (PSK) and the secondary key consists of
the Secondary Public Key (SPK) and a Secondary Secret Key (SSK).

The primary key remains fixed for a given device and a SHA-256 hash value of the PPK is burnt in the
eFUSE of the Zynq device. The BootROM upon reset, loads the PPK from the boot image and then calculates a
SHA-256 signature of the PPK and matches it with the hash value stored in the eFuse. The boot only continues
it the match is successful. However upon failure, the Zynq device goes into a secure lockdown. While the primary
key is fixed for a given device, each partition can have its own secondary key, which of course needs to be signed
by the primary key. Since the understanding of the intricate details about RSA authentication is not required
for our attack, we refer the reader to [6] for more details.

The RSA authentication process is carried out by the BootROM code as well as the FSBL. While the
BootROM code authenticates the FSBL, the FSBL authenticates the PHT along with all the listed partitions
within the PHT. The BootROM code is present in the secure on-chip BootROM and is not accessible. However,
the FSBL is open-source and is a modifiable piece of software. In the following section, we therefore analyze the
FSBL source code to understand the implementation of the authentication procedure of all partitions by the
FSBL.

3 Analyzing the RSA Authentication Procedure within FSBL
The FSBL starts by authenticating the PHT. If an attacker is able to bypass PHT authentication, he/she can
mount a tampered PHT that can be used to execute an unauthenticated application on the Zynq device. Thus,
we identify PHT authentication as a single point of failure to defeat RSA authentication. We analyzed the PHT
authentication by FSBL, which is done in the following manner. This is implemented within the image_mover.c
source file in the embeddedsw project which can be found in [5]. Refer Fig.2 for a pictorial illustration of the
authentication procedure of the PHT by the FSBL.

1. The FSBL first retrieves the PHT (without its AC) from the NVM and stores it into a global variable
denoted as GVAR. The GVAR variable is a structure that can house different partitions as well as the fields
within each entry of the PHT. We denote the retreived PHT as PHT1. We note that this data transfer is
performed between the NVM and the Zynq device since the PHT is present in the NVM within the boot
image.

2. The FSBL then checks the status of the RSA eFUSE. If enabled, the FSBL again queries the NVM to
retrieve the PHT along with its AC, which contains the PHT signature. The retrieved PHT signature is
verified by the FSBL. We denote the PHT retrieved in the second data exchange as PHT2. Though the
PHT retrieved in the first and second exchange are the same (i.e.) PHT1 = PHT2, they are retrieved at
two different time instances and thus we refer to them as two different data sets.
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Save PHT1 in GVAR

FSBL
Queries for the PHT from NVM

Receive PHT1 from NVM

Queries for PHT with AC from NVM

Receive PHT2 and AC from NVM

Validate AC and PHT2

Checks if RSA is Enabled, 
If Yes,

If Success, Use PHT1 in 
GVAR for SecureBoot

NVM
(SD Card)

Figure 2: Authentication of the PHT by the FSBL

3. If the signature of PHT2 is successfully authenticated, the FSBL then uses the PHT data contained in the
GVAR variable (corresponding to PHT1), to load the other PS/PL partitions in the boot image.

In other words, the FSBL authenticates PHT2, but uses the unauthenticated PHT1 within the GVAR variable
for secure boot. Thus, we observe in the FSBL source code that, the unauthenticated PHT1 is used for secure
boot. Both PHT1 and PHT2 are retrieved from the NVM (in our case, SD card) and can therefore be actively
tampered by an attacker. In the following section, we demonstrate a simple and practical Proof of Concept
(PoC) attack which tampers this repeated PHT data transfer to boot the Zynq device with a tampered PHT,
which allows us to execute an unauthenticated application on the target device. While our observations were
made on the FSBL version 2018.1, we confirm that our observations also apply to the current FSBL version
dated 23 Apr 2020 available in the GitHub page1.

4 Exploiting the RSA Security Flaw in FSBL
4.1 Attack Methodology
We formulate an attack methodology whose central component is an NVM emulator, for instance, an SD card
emulator implemented using FPGA or a dedicated ASIC. We replace the SD card with an SD card emulator
and thus the Zynq device communicates with an SD card emulator through the SD card interface. The NVM
emulator is configured to behave like a typical NVM most of the time, providing the valid boot image contents.
We consider NVM emulator as a black box component and the designer/adversary is free to choose how to
implement it. The NVM emulator is configured to behave in the following manner during PHT authentication.

1. When the FSBL tries to retrieve PHT1, the NVM emulator provides a tampered PHT. This tampered
PHT contains an entry corresponding to a unauthenticated PS partition. So, the tampered PHT1 is loaded
into the GVAR variable, stored in the DDR of the Zynq device.

2. The FSBL then checks for the status of RSA eFUSE and if enabled, again retrieves the PHT along with its
AC. The NVM emulator now provides the valid PHT (PHT2) and its signature, as present in the victim
boot image.

3. The FSBL successfully authenticates PHT2 but now uses the tampered PHT1 for secure boot present in
GVAR. Based on the tampered PHT1, the FSBL queries the NVM for a unauthenticated application. The
NVM emulator can simply hand over the unauthenticated application to the Zynq device, which will be
successfully executed on the Zynq device after secure boot.

Refer Fig.3 for a pictorial illustration of our attack carried out using the NVM emulator. Thus, we can utilize
an NVM emulator to externally tamper the PHT data and successfully execute an unauthenticated application
on an RSA authenticated Zynq-7000 device.

4.2 Proof of Concept (PoC) Implementation
We validated our attack methodology using a Proof of Concept (PoC) attack to demonstrate bypass of RSA
authentication on the Zynq-7000 device. We did not implement an SD card emulator for our PoC, however made
manual modifications to the FSBL, to replicate the behaviour of an SD card emulator. We manually modify

1https://github.com/Xilinx/embeddedsw/blob/master/lib/sw_apps/zynq_fsbl/src/image_mover.c
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Figure 3: Attack of the PHT authentication procedure using an NVM emulator

the PHT data in the global variable GVAR which is equivalent to sending a tampered PHT using an SD card
emulator. The tampered PHT contains a PHT entry corresponding to an unauthenticated and unencrypted PS
partition (malicious attack application) on the Zynq device. However, the valid PHT in the victim boot image
corresponds to all authenticated partitions. The unauthenticated PS partition requires to be unencrypted as
well, since the attacker does not have access to the AES key. We reiterate that that the modifications done to
the FSBL only tamper the first PHT retrieval to replicate the behaviour of an SD card emulator. Thus, it does
not aid our attack is any other manner. In the presence of an SD card emulator, this modification of the FSBL
would not be required.

We create a malicious software application and replace it with the authenticated application in the boot
image. We denote the modified boot image as our attack boot image. So, the attack boot image is essentially
the victim boot image with a modified application partition. Please refer Fig.4 for the attack boot image. It is
important to note that the FSBL in the attack boot image is same as one in the victim boot image.

4.2.1 Experimental Observations on PoC Implementation

Upon reset, the FSBL is executed and loads the valid PHT in the global variable GVAR from the SD card.
However, the modification in FSBL ensures that the PHT data in GVAR is corrupted. Upon checking the status
of the RSA eFUSE, the FSBL again retrieves the valid PHT and its AC from the attack boot image, which
is successfully authenticated. Subsequently, the tampered PHT present within the GVAR variable is used for
secure boot. We were then able to successfully execute our malicious unauthenticated attack application on the
Zynq device.

Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

- Unencrypted

- Encrypted

PHT Authenticate 
Certificate

FSBL Authenticate 
Certificate

Bitstream Authenticate 
Certificate

Attack Application
- Modified but valid FSBL (Used for attack emulation)

FSBL modifies GVAR which 
contains PHT1

Loaded as 
unencrypted PS Partition 

(as directed by tampered PHT1)

Figure 4: Attack boot image (with modified FSBL) used to replicate the behaviour of the NVM emulator

Though the attack exposes the flaw in the PHT authentication by the FSBL, it does not qualify as a real
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attack for the following reasons: (1) The PHT data is manually tampered within the FSBL (2) Any modification
to the FSBL is not possible, since the FSBL is encrypted using an unknown key and signed within the target boot
image. So, a real attack should be ideally performed without any modifications to the FSBL. In the following,
our objective is to mount a practical attack to bypass RSA, which does not require any modifications to the
FSBL software. In the following section, we will present an almost practical instantiation of our attack using our
custom SD card switcher board.

4.3 Improved Attack using SD-Card Switcher Board
Upon analysing the flow of the PoC attack, we observed that the PHT data is sent twice to the Zynq device
from the NVM. To realize the attack, we want to tamper only the first PHT transfer (PHT1), while the second
PHT data transfer (PHT2) and all the other data transfers from then on, need not be corrupted. One trivial
technique to achieve this would be to simply implement the entire SD card on an FPGA/ASIC, and designing
the required logic to tamper the first PHT data transfer. However, implementing the entire SD card on the
FPGA/ASIC is an arduous task that would require a significant engineering effort, considering the complex
intricacies of the SD card protocol.

Figure 5: SD Card Switcher Board

We however attempted to utilize a much simpler approach, which relies on existing hardware to implement
the SD card emulator. The basic idea is to build a multiplexer which can switch between multiple SD cards
to communicate with the Zynq device. If it can be realized, then we can utilize say SD Card 1, to sent the
tampered PHT as PHT1, while another SD Card 2, can be used to send the correct PHT as PHT2 in the second
PHT transfer. However, this should be done in a manner that is oblivious to the target Zynq device, as the
target assumes that it only communicates with a single SD card.

Refer Fig.5 for the designed SD card switcher board. It has slots for two SD cards, and there are manual
switches (at the bottom of the board) to select the SD card to be connected to the target. The board however
also allows to choose the SD card based on the logic level of a GPIO pin. The switching action is performed by
simply switching the 4 DATA lines (DAT0-DAT3) and the CMD lines of the SD card interface from one SD
card to another. The other lines such as the CLK, VDD and GND lines are common for the two SD cards. The
board also facilitates to keep the SD cards powered on from an external power source. This ensures that the SD
card once initialized by the target device is powered on, even if the target device is powered off.

4.3.1 Attack Methodology

To carry out our attack, we utilize two SD cards. The first SD card contains a boot image with a tampered PHT,
while the second SD card contains a boot image with a valid PHT. Please refer to Fig.6 for the boot images
present in the two SD cards denoted as SD card 1 and SD card 2. The SD card 1 image, contains the tampered
PHT, corresponding to an unauthenticated attack application. The unauthenticated attack application is present
as the PS partition, after the bitstream in the boot image. The SD card 2 image, contains a valid PHT, similar
to the one present in the victim boot image (Fig.1). All the other partitions are same as the boot image of SD
card 1. We load both the SD cards onto the SD card switcher board, and connect the SD card switcher to the
Zynq device. The switcher is also powered externally using an external power supply. This is done to ensure
power to the SD cards even when the target is switched off. This keeps the SD cards in a good state, once
initialized. Please refer to Fig.7 for the attack setup. The attack is carried out in the following manner:
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- Tampered PHT

- Minor Modified FSBL (valid)

Figure 6: Boot Images of SD card 1 and SD card 2 within the SD switcher board

1. The switcher initially connects SD card 2 to the target Zynq device. The Zynq device is booted up using
the SD Card 2 image. This is done to initialize SD card 2.

2. Once SD card 2 is initialized, we now power off the target Zynq device and switch to SD card 1. This is
done while maintaining power to both the SD cards in the switcher.

3. Now, we boot the Zynq device with the image in SD card 1. Once the FSBL retrieves the tampered PHT
(PHT1) from SD card 1, we turn off the Zynq device and use the manual switch on the board to switch
from SD card 1 to SD card 2. For our demonstration, we add a suitable delay in the FSBL to enable the
manual switch. However, this can be automated as the timing of switch is constant for the Zynq device
upon power up.

4. The FSBL now checks the RSA eFuse value and if enabled, retrieves the PHT again (PHT2) along with its
signature. But, since the Zynq device is connected to SD card 2 with a valid PHT, the PHT should be
authenticated successfully by the FSBL. The flaw in the FSBL software ensures that the tampered PHT1
is used for secure boot. This should ensure that the attack application is mounted in an unauthenticated
manner on the Zynq device.

SD Card Switcher
PYNQ Platform (Target)

External Power Supply
(STM32F4 Board)

Figure 7: Attack Setup with SD Card Switcher
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4.3.2 Experimental Observations of Attack using SD Card Switcher Board

Upon performing the practical experiments, we observe that the Zynq device halts operation after the switch
from SD card 1 to SD card 2 in Step 3, during the operation of the FSBL. We use our knowledge of the FSBL
operation to hypothesize reasons for the observed behaviour. The FSBL typically initializes the SD card using a
certain InitSD function. At the end of Step-2, the SD card 2 is initialized and powered up. In the following Step
3, the target device now boots from SD card 1, and the FSBL thus initializes SD card 1. After retrieval of PHT1
from SD card 1, we switch to SD card 2, but the FSBL is unable to retrieve data from SD card 2, though it is
intialized.

We hypothesize that the SD card controller on Zynq, which is oblivious to the switch, tries to communicate
with commands pertaining to SD card 1, while SD card 2 is connected. Every connected SD card has a Unique
Identifier provided by the Zynq device, and we hypothesize that the Zynq device uses the UID of SD card 1 to
communicate with SD card 2, which fails. We can overcome this behaviour by simply modifying the memory
read command from the controller using an external hardware, realized using FPGA/ASIC. But, for our attack
demonstration, we modify the FSBL to add an additional call to the InitSD function, to initialize SD card 2
after the switch (i.e.) before the second read of PHT with its signature from the NVM. We however note that
such modification to the signed FSBL is not possible in a real attack scneario. Nevertheless, we present results
of our attack with this minor modification in the FSBL.

Using the modified FSBL with just a single additional InitSD function, we are able to successfully demonstrate
bypass of PHT authentication. This enabled us to mount an unauthenticated application on the target Zynq
device. While our PoC attack (presented in SecNext-D4) involved manual tampering of the PHT data within the
FSBL, our improved attack using the SD card switcher board enables manipulation of PHT data, fully external
to the Zynq device. Please refer to Fig.8 for a pictorial illustration of our improved attack using the SD card
switcher. The normal operations carried out by the FSBL are colored in orange, while the additional call of the
InitSD function in the FSBL (added by us) is colored in red.

Save PHT1 in GVAR

FSBL 
(Zynq)

Queries for the PHT from SD1

Receive Tampered PHT as PHT1 from SD1

Queries for PHT2 with AC from SD2

Receive valid PHT2 and AC from SD2

Validate AC and PHT2

Checks if RSA is Enabled, 
If Yes,

If Success, Use PHT1 in 
GVAR for SecureBoot

SD Card
Switcher

SD Card 1
Initialize SD Card

SD Card 2

SWITCH From SD1 to SD2

Initialize SD Card

Figure 8: Improved Attack on the Zynq device using SD card switcher. The operations of the FSBL are indicated
in orange, while the modifications done to the FSBL to facilitate the attack are denoted in red.

Our current attack setup still cannot be used for a practical attack, and demonstration of a practical attack
would require a specialized hardware to initialize the SD card 2 after the switch. Our improved attack however
concretely exposes the flaw in the FSBL software, since manipulated data from an external NVM can successfully
bypass the RSA authentication procedure. We therefore concretely believe that this limitation can be easily
overcome using a additional specialized hardware (FPGA/ASIC) capable to tampering the data transfer over
the SD card interface at precise time instances.

4.4 Fixing the Flaw in PHT Authentication within FSBL
The vulnerability mainly arises due to retrieval of the same PHT data twice from the NVM and subsequently
utilizing the unauthenticated PHT data. Thus, the flaw can be easily fixed by changing the FSBL implementation
such that the PHT is only retrieved once from the NVM and that the authenticated PHT data is used for the
secure boot. This fix is in fact implemented as part of the patched FSBL (dated March 25th, 2022) [4], and
our manual analysis of the patched FSBL source code reveals that the redundant fetch of the PHT has been
removed, and thus the aforementioned attack is not possible to be mounted.
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Upon bypass of RSA authentication, an attacker can mount a malicious software or hardware application to
mount a variety of attacks. We analyze the possibility of performing bitstream recovery on such a compromized
Zynq-7000 device. The attacker’s main intention is to decrypt the encrypted bitstream stored in the target
victim boot image. In the following section, we also demonstrate a practical bitstream recovery attack using a
malicious and unauthenticated software application on the Zynq-7000 device.

5 Starbleed Attack for Bitstream Recovery
Ender et al. [1] in 2020 proposed the Starbleed attack that is applicable to standalone Virtex-6 and 7-series Xilinx
FPGAs. The attack does not require use of side-channels and merely exploits a design flaw in the Xilinx FPGAs
for bitstream recovery. The only requirement is that the attacker requires access to the configuration interface of
the FPGA (PL). Since this requirement is satisfied in our scenario, due to the presence of the internal PCAP
interface, we attempt to adapt the Starbleed attack to the Zynq-7000 device for bitstream recovery.

5.1 Attack Methodology
The adversary makes malicious changes to the encrypted bitstream (as proposed in the Starbleed attack), such
that upon decryption, a targeted decrypted bitstream word is written into the WBSTAR register. The WBSTAR
register retains its value even upon FPGA reset and thus an adversary can access the decrypted word from
the WBSTAR register. In a similar manner, full bitstream recovery can be performed one word at a time. We
therefore utilized the internally available PCAP (Processor Configuration Access Port) interface accessible to the
PS to feed the AES/HMAC module with the malicious tampered bitstreams.

We observed that our attack application was able to push the tampered bitstreams through the PCAP
interface in a straightforward manner and trigger an HMAC error. However, the reference manual of the
Zynq-7000 SoC claims that readback of the WBSTAR register through the PCAP interface is not possible unless
the PL is configured with a valid bitstream (i.e.) configuration DONE signal is high. Thus, readback of the
WBSTAR register containing the decrypted bitstream word was not trivially possible. However, we overcame
the limitation using the following technique.

5.1.1 PL readback through PCAP Interface:

As stated earlier, the main limitation with respect to performing PL readback through PCAP is to ensure that
the configuration DONE signal stays high. We identified a hack to ensure that the configuration DONE signal
can be artificially maintained high in the following manner:

1. Program PL with a valid encrypted bitstream (target bitstream) which raises DONE signal to high.

2. Without initializing the PL, we push the tampered Starbleed attack bitstream through the PCAP interface.
We observe that the DONE signal still stays high even though HMAC error is triggered due to the tampered
bitstream.

3. We provide commands through the PCAP interface to readback the WBSTAR register. We were able to
successfully readback the decrypted bitstream word from the WBSTAR register.

This technique of pushing bitstreams through the PCAP interface without initializing the PL (step 2) is not
recommended practice. Moreover, we expect that the FPGA does not accept bitstreams for configuration unless
the FPGA is properly initialized (i.e.) pulsing the PROG_B pin and waiting for INIT_B signal to indicate that
PL is ready for programming. But, we observed that the handcrafted bitstreams were still decrypted by the
AES/HMAC unit in the PL ensuring that the decrypted bitstream word is present in the WBSTAR register.

Zynq-7000
SoC

USB-UART Adapter
TX

RX

USB

USB-UART Adapter
TX

RX

USB Arduino
based
Relay

Power GND

PYNQ Platform

General 
Purpose 

PC

Figure 9: Attack Setup for Automation of Starbleed Attack through PCAP readback on Zynq-7000 SoC
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After readback of the bitstream word from the WBSTAR register, the PCAP interface becomes unresponsive
and only a Power On Reset (POR) could revive the PCAP interface to normal working condition. In particular,
it is the final PCAP readback operation to retrieve the WBSTAR register, that pushes the PCAP into an
unresponsive state. Hence, in a single boot, it is only possible to recover a single bitstream word with our current
attack. Thus, we need to do a power cycle of the Zynq device to recover every bitstream word when only using
the PCAP interface for the attack.

Refer Fig.9 for our attack setup to perform the Starbleed attack on the Zynq-7000 SoC which relies on PL
readback using the PCAP interface. We use an arduino controlled relay shield to do an automatic POR reset of
the Zynq device. The UART interface on the Zynq device is used to receive the handcrafted Starbleed bitstreams
from the PC, as well as communicate the decrypted bitstream word from the Zynq device to the PC.

With our current setup, we are able to perform full bitstream recovery at the speed of 32-bits per second.
Thus, recovery of a sample bitstream of size 3.85 MB takes roughly about 46 days. Performing repeated POR
reset and going through the secure boot for recovery of every bitstream word serves as the main bottleneck with
respect to speeding up bitstream recovery. We see that it is trivially possible to automate it and reduce the
overall time with some off the shelf low-cost hardware. However, performance acceleration is out of scope.

5.1.2 PL readback through JTAG Interface:

While PCAP readback is possible, we observed that PL readback is also possible through the JTAG interface. We
were able to successfully validate recovery of the decrypted bitstream through a JTAG readback. Unlike PCAP
readback, we observe that the PCAP interface remains in a working condition even after reading the WBSTAR
register through the JTAG interface. Thus, a POR reset is not required after recovery of every bitstream word.
This can significantly improve the speed of bitstream recovery compared to our earlier attack which only relies
on the internal PCAP interface. Thus, much faster bitstream recovery is possible (potentially in a matter of few
hours) when the JTAG interface is exposed on the target device.

However, there are scenarios where JTAG interface might not be exposed to an adversary. This is possible
when JTAG is intentionally disabled by blowing the appropriate eFUSE bits in the PS or PL. As long as the
JTAG is not permanently disabled, it is possible for an adversary to rely on JTAG readback for full bitstream
recovery.

5.2 Countermeasure against Bitstream Recovery
We were able to carry out the Starbleed attack using a malicious and unauthorized software partition, mainly
through exploitation of the RSA authentication flaw in the FSBL. Thus, using the patched version of the FSBL
(dated March 25, 2022) [4], that is devoid of this vulnerability can serve as a strong mitigation against the
bitstream recovery attack. Evaluating whether Starbleed could be applied successfully to other interfaces is an
area of future research but is out of scope for our work.

6 Conclusion
In this work, we have identified a critical security flaw in the FSBL software whose exploitation makes it possible
to bypass RSA authentication and load an unauthenticated and unencrypted application onto the Zynq device.
The vulnerability is present in the FSBL software, and mainly arises due to mishandling of the PHT data.
We also experimentally validated the presence of the vulnerability through a Proof of Concept (PoC) attack
to successfully mount an unauthenticated software application on an authenticated Zynq-7000 device. The
identified flaw is only present in the FSBL software and thus can be easily fixed. We also demonstrated the first
successful bitstream recovery attack on the Zynq-7000 SoC by mounting the Starbleed attack using a malicious
software application.
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