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Abstract—Integrating traditional Internet (web2) identities
with blockchain (web3) identities presents considerable obstacles.
Conventional solutions typically employ a mapping strategy,
linking web2 identities directly to specific blockchain addresses.
However, this method can lead to complications such as frag-
mentation of identifiers across disparate networks.

To address these challenges, we propose a novel scheme,
Address Abstraction (AA), that circumvents the need for direct
mapping. AA scheme replaces the existing blockchain address
system while maintaining essential properties including a unique
identifier, immutability of requests, and privacy preservation.
This capability allows users to interact with the blockchain
via their web2 identities, irrespective of the specific blockchain
address, thereby eliminating limitations tied to a blockchain-
specific address system. This mechanism fosters the seamless
integration of web2 identities within the web3, in addition,
promotes cross-chain compatibility.

We also provide an application of AA, denoted as zero-
knowledge Address Abstraction (zkAA). It mainly leverages the
zero-knowledge proofs to ensure the properties of AA. zkAA has
been implemented as a smart contract — compatible with any
existing contract-enabled blockchains. Our evaluation of zkAA
on Ethereum demonstrates its efficiency. The average cost for
registering an abstracted identity is approximate $7.66, whereas
publishing an abstracted transaction costs around $4.75. In
contrast, on Polygon, the associated costs are markedly lower:
$0.02 for registration and $0.01 for publication, as of January
13, 2023. This empirical evaluation substantiates the feasibility
of our proposed solution.

Keywords—digital identity; identity management; blockchain;
decentralized applications; zero-knowledge proofs;

I. INTRODUCTION

The rapid growth of blockchain technology has driven an
explosion in the development of decentralized applications
(dApps), whose core ethos rests on decentralization principles.
Interestingly, despite their decentralized pursuit, certain dApps
integrate centralized identification mechanisms to ensure effi-
cient operation. These include the utilization of social login
systems and Know-Your-Customer (KYC) procedures [63],
[29], which are particularly crucial in fortifying the security in-
frastructure against harmful actions, such as Sybil attacks [12].

A. Related Work and Challenges

The centralized identification strategies stem from web2
companies and technologies. Unfortunately, previous attempts
at integrating web2 identities into the web3 blockchain milieu
have encountered numerous challenges.

A basic strategy to merge web2 and web3 identities is
by creating a bi-directional mapping between them. Several
approaches have been proposed to do this, most of which
fundamentally depend on linking web2 identities to their
corresponding blockchain addresses [65], [47], [56], [64], [33],
[30], [35]. However, this approach necessitates meticulous
management of secrets related to both web2 and web3 iden-
tities. This twofold responsibility obliges users to safeguard
their passwords (web2) and private keys (web3), while ser-
vice providers have to handle both identity types securely.
The problem escalates in the context of multi-chain dApps,
where managing multiple chain-specific addresses can result
in fragmented digital identifiers, given each blockchain’s own
address system.

Web3Auth employs Shamir’s Secret Sharing [51] and
Threshold Cryptography [11] to divide the private key into
several key shares, thereby enhancing private key security
management. On the other hand, Ramper integrates a third-
party Key Management System (KMS) and a Hardware Secu-
rity Module (HSM) [49], [24]. Here, transactions gain autho-
rization within a Trusted Execution Environment (TEE) [10],
ensuring that Ramper neither retains nor accesses the private
key at any point. Despite these advancements, they remain
tethered to the blockchain-specific address system. As a re-
sult, even with a robust underlying system, the provision of
non-uniform addresses across diverse blockchains remains a
challenge.

Several studies have employed zero-knowledge proofs
(ZKPs) to preserve privacy in systems. For instance, [47],
[64], [33] leveraged ZKPs to ensure the confidentiality of
credentials. Holonym [30] validates the hashes of web2s
— JSON Web Tokens [27] — via ZKP. Notebook [35]
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TABLE I: Comparing zkAA with existing web2-web3 identity
integration approaches.

Easy Secret Unified Data
Management Identifier Privacy

WebttCom [65] ✓† ✗ ✓†

ZEBRA [47] ✗ ✗ ✓ZKP
ZKBID [56] ✗ ✗ ✓ZKP
BZDIMS [64] ✗ ✗ ✓ZKP
DA Luong [33] ✗‡ ✗ ✓ZKP
Holonym [30] ✗ ✗ ✓ZKP
Notebook [35] ✗ ✗ ✓ZKP
Web3Auth [32] ✗‡ ✗ Not Related
Ramper [46] ✓KMS/HSM ✗ Not Related
POAP [25] ✗ ✗ ✗
SBT [57] ✗ ✗ ✗/✓ZKP
zkAA (Ours) ✓ ✓ ✓ZKP
† Private data are stored in a separate private data repository.
‡ A user needs to store share(s) instead of private key.

verifies credentials signed by third-party entities and other
constraints via ZKP. Yet, these methods still rely on the
original blockchain address as the identifier, thereby leading
to potential management limitations.

B. Contributions
To address the aforementioned challenges, we propose a

novel scheme termed Address Abstraction (AA), along with its
implementation, zero-knowledge Address Abstraction (zkAA).
The AA scheme enables the direct usage of web2 identities as
blockchain identifiers, obviating the need for their mapping
to blockchain-specific addresses. This not only eliminates
private key management but also facilitates the utilization of a
single identifier across various blockchains. Table I provides a
detailed comparison between existing methods for integrating
web2-web3 identities and the zkAA system proposed in this
paper. Further, Table II carries out a comparative analysis of
the AA and the existing blockchain address system, with a
focus on Ethereum [61].

The paper’s primary goal is to introduce a cutting-edge
approach to address abstraction in blockchain systems. The
key contributions are as follows:
• We propose a novel identity system, the Address Abstraction

(AA), devised to surmount the limitations of traditional
chain-specific identifier and signature systems.

• The paper describes the implementation of AA, named
zero-knowledge Address Abstraction (zkAA). This system
leverages the zero-knowledge proofs to maintain privacy and
practicality.

• We conduct an empirical evaluation of zkAA on
Ethereum [61] and Polygon [53]. This analysis provides
valuable insights into its performance and efficiency, un-
derlining the utility of our proposed solution.

• Lastly, the paper illustrates the application of zkAA in the
realm of decentralized applications, with particular emphasis
on multi-chain and web2-web3 hybrid systems.

II. BACKGROUND

This section provides background knowledge for our pro-
posed scheme. We place primary emphasis on blockchain tech-

TABLE II: Comparing the Ethereum address with the ab-
stracted address scheme (ours). ”Pre-Reg” stands for ”Pre-
Registration” requirement, indicating that a registration pro-
cess is required prior to the publication of transactions.

Blockchain Abstracted
Address/Transaction Address/Transaction

Secret The secret key is denoted as
sk.

The certificate is repre-
sented as cert, akin to a
JSON Web Token.

Issuing
Authority

sks are user-generated, with
no centralized authority in-
volved.

certs can be issued by
trusted web2 certificate in-
stitutes.

Pre-Reg No. Any randomly gener-
ated 256-bits number can
function as the sk without
any specific usage limita-
tions.

Yes. The cert must be
checked once and then reg-
istered, for verifying its is-
sue by the authenticating in-
stitute.

Chain-
Agnostic

No. This is contingent upon
the underlying cryptography
and the blockchain protocol.

Yes. Identifiers remain
consistent across multiple
chains.

nology, particularly platforms amenable to smart contracts, and
succinctly discuss decentralized identity management methods
prevalent in the blockchain.

A. Blockchain and Address System

1) Blockchain: Blockchain, a revolutionary construct for
secure data storage and executing smart contracts [52],
has drastically altered the digital landscape. Among its
most prominent platforms is Ethereum [61], which uses the
Ethereum Virtual Machine (EVM) to execute contracts across
a global network of public nodes, with the Ether (ETH)
cryptocurrency serving as transaction fees.

Our implementation, zkAA, utilizes contracts to register and
employ web2 identities. Relying solely on EVM functionality,
this implementation integrates effortlessly without necessitat-
ing a hardfork, thereby significantly enhancing its practicality.

2) Address System: Ethereum consists of two account
categories: External Owned Accounts (EOAs) and Contract
Accounts (CAs). EOAs are traditional blockchain accounts
controlled via a private key that enables users to sign transac-
tions, while CAs carry program codes and storage but lack a
corresponding private key. In both cases, the address serves
as the account’s identifier. However, different blockchains
use different address calculation schemes, leading to unique
addresses for each chain and consequently, a lack of unified
identifiers in a multi-chain environment.

To mitigate this issue, we propose an innovative paradigm
shift in the blockchain sphere: address abstraction. This con-
cept disentangles the user identifier from the conventional
blockchain address, transitioning it into an abstract, unified
identifier not reliant on the specific blockchain address system.
This strategy greatly simplifies identity management and im-
proves compatibility across multiple chains, as it allows users
to interact using a single credential.

Address abstraction can be perceived as a specialized ap-
plication of account abstraction [58], [7], given its function
in modifying the signature system linked with the account.
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Section VI-D delves further into the integration of smart
contracts within the address abstraction context, similar to the
account abstraction proposition in EIP-4337 [7].

B. Decentralized Identity Managements

Decentralized identity management refers to the generating,
storing, and managing of digital identities within a decentral-
ized environment. Notable examples of decentralized identity
management systems operating on blockchain include the
Proof of Attendance Protocol (POAP) [25] and SoulBound
Tokens (SBTs) [57]. POAP uses blockchain to create unique
tokens representing personal experiences, while SBTs, non-
transferable Non-Fungible Tokens (NFTs), represent the traits
or achievements that make up a soul.

Despite these advancements, these solutions are rooted in
the web3 identifier, also known as the blockchain address. In
contrast, our novel identity system, address abstraction, allows
direct application of the web2 identity on the blockchain,
eliminating the necessity for mapping to a web3 identifier.

III. NOTATION

Throughout this paper, we employ the following notations.
We represent a relation as R. Given that (io, w) ∈ R, we refer
to io as the public input/output, and w is defined as the witness.
The symbol crs denotes a public parameter, referred to as
the Common Reference String (CRS). The term A signifies
a non-uniform polynomial time adversary. The output of this
adversary is designated as y ← A(x), where x represents the
input and y is the output. An extractor, denoted by XA, can
compute a corresponding witness whenever the adversary A
generates a valid argument.

We use the notation M to signify the complete set of
executable messages (msgs), and P is used to denote the
entire set of potential passwords (pwds). The notation x

$← X
denotes that x is a value randomly sampled from the set
X . The order-related symbol, a ≻ b indicates that a cannot
precede b. Lastly, the symbol ⊥ specifies that a value is
undefined or not considered.

IV. CRYPTOGRAPHIC PRELIMINARIES

This section introduces the core cryptographic concepts that
form the foundation of the zkAA architecture. Specifically,
we focus on zero-knowledge proofs and digital signatures.
Additionally, we elaborate on the primary security assumptions
underpinning our proposed scheme.

A. Zero-Knowledge Proofs

Zero-knowledge proofs (ZKPs), first introduced in [20],
provide a method for verifying the authenticity of information
without disclosing the underlying data. Since their inception,
significant strides have been made in the field, notably the
development of zero-knowledge Succinct Non-Interactive Ar-
guments of Knowledge (zk-SNARK) [21]. This technology
allows for the succinct verification of information, rendering
it an ideal choice for blockchain. ZoKrates [13], a toolkit
designed for creating, compiling, and executing ZKP-based

smart contracts on Ethereum, is a commonly used resource
for implementing zero-knowledge systems.

The ZKP includes three operations: zkp.Setup, zkp.Prove,
and zkp.Verify.
• crs← zkp.Setup(R): This operation takes a relation R as

an argument and produces a common reference string crs,
which serves as a public parameter for proof generation and
verification processes.

• π ← zkp.Prove(crs, io;w): This operation generates a
proof π given the crs, input/output io, and witness w.

• 0/1 ← zkp.Verify(crs, io, π): This operation verifies the
proof π using the crs, input/output io, and trivially proof
π as arguments. The function returns a binary outcome
indicating whether the verification was successful (1) or not
(0).
Our scheme employs the zk-SNARKs protocol that satisfies

the properties outlined in [40], [3], [21], [17]:

Definition IV.1 (Completeness). For a relation R, every
(io, w) ∈ R satisfies the following.

Pr

crs← zkp.Setup(R);
π ← zkp.Prove(crs, io;w) :

zkp.Verify(crs, io, π) = 1


= 1 (Perfect Completeness)

This property implies that if a statement is true, a proof
constructed using the witness w will always be accepted by
an honest verifier.

Definition IV.2 (Knowledge Soundness). For all PPT ad-
versaries A there exists a PPT extractor XA satisfies the
following.

Pr

crs← zkp.Setup(R);
((io, π);w)← (A||XA)(crs) :

zkp.Verify(crs, io, π) = 1 ∧ (io, w) ̸∈ R


≈ 0 (Computational Knowledge Soundness)

This property is defined by the requirement that it should be
computationally infeasible for a prover to convince a verifier
of the truth of a false statement without the knowledge of the
witness.

Definition IV.3 (Zero-Knowledge). The following must be
satisfied for all PPT adversaries A and (io, w) ∈ R.

Pr

crs← zkp.Setup(R);
π ← zkp.Prove(crs, io;w) :
A(crs, τ, π) = 1

 =

Pr

(crs, τ)← zkp.SimSetup(R);
π ← zkp.SimProve(crs, τ, io) :
A(crs, τ, π) = 1


(Perfect Zero-Knowledge)
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This denotes that the distribution of a regular proof, gener-
ated with knowledge of the witness, is indistinguishable from
the distribution of a proof simulated by zkp.SimProve
without the witness. The simulator utilizes the trapdoor τ
incorporated during the crs generation via zkp.SimSetup.
This indicates that the proof does not leak any information
aside from the truth of the statement.

B. Digital Signatures

Digital signatures form a cornerstone in digital identity
verification, finding utility in technologies like JSON Web
Tokens [27]. Their primary function lies in authenticating
digital data, thereby vouching for its authenticity. Notably,
digital signatures extend their reach to the burgeoning field of
web3, particularly within blockchain technology, where they
certify the authenticity and nonrepudiation of transactions,
subsequently bolstering the overall reliability of the blockchain
system. For instance, Ethereum [61] employs the Elliptic
Curve Digital Signature Algorithm (ECDSA) [26] for transac-
tion signing, while Cardano [23] and Algorand [19] utilize the
Edwards-curve Digital Signature Algorithm (EdDSA) [28].

The digital signature protocol sig used in this work com-
prises three operations: sig.KeyGen, sig.Sign, and sig.Verify.
• (pk, sk) ← sig.KeyGen(): This operation generates a pair

of keys; a secret key sk and a corresponding public key pk.
• σ ← sig.Sign(sk,m): This operation takes the sender’s

secret key sk and a message m as inputs, and produces
a signature σ.

• 0/1 ← sig.Verify(pk,m, σ): This operation takes the
sender’s public key pk, message m, and signature σ as
inputs, and returns 1 if the signature is valid and 0 otherwise.
The digital signature scheme used in this work is unforge-

able under chosen message attacks.

Definition IV.4 (Unforgeability). The following must be sat-
isfied for all PPT adversaries A. M is the set of message-
queries that A has already seen valid signatures through
sig.Sign from sk.

Pr

(pk, sk)← sig.KeyGen();

(m,σ)← A(pk) :
sig.Verify(pk,m, σ) = 1 ∧m ̸∈ M


≈ 0 (Unforgeability)

An essential property of our digital signature scheme, un-
forgeability denotes that it should be computationally infea-
sible for an adversary to generate a valid signature for any
message without access to the secret key.

C. Security Assumptions

For the reliable operation of our proposed system, we
predicate its security on a number of fundamental assumptions:
• We rely on the security of the blockchain and the contracts

deployed on it. We assume these to be robust against security
vulnerabilities, including threats such as denial-of-service
(DoS) attacks [9], [37]. Furthermore, the potential for chain

reorganization through a fork is considered negligible within
our assumptions. This assumption essentially guarantees the
reliability of transaction execution and data storage within
our system.

• We assume the usage of a hash function H that is resistant
to collision and preimage attacks [36].

• We posit the secure and confidential transmission of web2
data, specifically, the certificate cert and sensitive data pwd
(e.g., a password). We assume these data to be transferred
over a secure channel.

• We assume that the public key pk of the certificate-issuing
organization is available and verifiable by anyone.

V. DEFINITIONS

This section presents an innovative scheme of address
abstraction, which proposes an alternative to the conventional
blockchain address and transaction signing system.

The core concept of address abstraction is the use of the
web2 certificate, denoted as cert, to generate a unified and
unique identifier, denoted as id. This identifier is designed to
be independent of the underlying cryptographic systems of the
blockchain. The identifiers id and cert play pivotal roles in
generating abstracted transactions, similar to how the original
blockchain address and its associated private key are utilized
in the signing of transactions.

A comparison between the Address Abstraction (AA) and
Ethereum’s address schemes can be found in Table III. This
comparison delves into several aspects such as the handling
of secrets, ordering of messages, and security and privacy
measures inherent to both schemes.

A. Address Abstraction

The Address Abstraction (AA) scheme is an abstraction
over the inherent identifier system of the blockchain. It sepa-
rates identity handling from the specific characteristics of the
blockchain protocol, facilitating registration and utilization of
identities independently of the blockchain’s unique features.

For the elucidation, RR and RP are defined as the relations
symbolizing registration and publication, respectively. The reg-
istration relation RR is expressed by the tuple ((id, pk), cert),
where id signifies the abstracted identifier, pk is the public
key assigned by a trusted certificate authority, and cert is
the certificate issued by this authority. The identifier id is
derived from cert via the hash function H, i.e., id← H(cert).
Alternatively, the publication relation RP comprises the tuple
((id,msg,m), cert), where msg is the abstracted transaction
that the user intends to perform, and m is akin to the nonce
in blockchain accounts, indicating the sequence of requests.

Definition V.1 (Address Abstraction). To govern the regis-
tration of an abstracted identity id and the publication of
abstracted transaction msgs, the system requires six functions
(SETUP, CERTIFICATE, REGISTERPROVE, REGISTERVERIFY,
PUBLISHPROVE, PUBLISHVERIFY).
• (crsR, crsP ) ← SETUP(RR,RP ): This function generates

public parameters crsR and crsP for registration and pub-
lication, respectively, from the relations.
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TABLE III: Comparison of properties between the Ethereum address and our proposed abstracted address scheme.

Blockchain Address/Transaction Abstracted Address/Transaction
Unique Injectiveness The same address should have the same sk. The same id should have the same cert.
Identifier Unforgeability Transaction signing cannot be achieved without knowing

the secret key sk.
id registration and msg publication cannot occur without
knowing the cert.

Correctness A user with a valid sk always generates valid signatures. A user with a valid cert always generates valid proofs π.
Immutable Chronicle Each transaction order is set by account nonce. Each msg order is set by an increasing value m.
Request Tamper Resis-

tance
A signature cannot be reused and the signed transaction
cannot be modified.

Proofs π cannot be reused and the corresponding msg
cannot be modified.

Privacy-Preserving sk is not leaked during transaction signing and publishing. cert is not leaked during the registration and publications.

• cert ← CERTIFICATE(pwd): This function allows users to
obtain a certificate from a trusted authority by providing
their web2 secret pwd. In response, the authority issues a
certificate cert signed with its secret key.

• πR ← REGISTERPROVE(crsR, id, pk; cert): This function
generates a proof πR, validating that the abstracted iden-
tifier id is derived from the certificate cert (confirmed by
id← H(cert)), and that the certificate is issued by a trusted
authority associated with the public key pk.

• 0/1 ← REGISTERVERIFY(crsR, id, pk, πR): This function
enables the registration of a unique id upon successful
verification, returning a binary outcome that denotes the
validation status of the identifier id. 0 represents invalidity,
and 1 signifies validity.

• πP ← PUBLISHPROVE(crsP , id,msg,m; cert): This func-
tion generates a proof πP , attesting that the user has a
certificate cert and can calculate the corresponding hash id.
The id should be a previously registered identifier via the
REGISTERVERIFY function. Within generating proof, also
considers the abstracted transaction msg and the transaction
sequence order m as constraints.

• (0/1, res) ← PUBLISHVERIFY(crsP , id,msg,m, πP ):
This function enables the execution of a requested m-th
abstracted transaction msg when provided with a valid proof
πP related to an identifier id. The result is denoted as res. It
includes a monotonically increasing counter m to ensure the
chronological processing of submitted msg. If successful, it
returns (1, res), or (0, ∅) otherwise.

B. Properties

The address abstraction must conform to three properties to
ensure its functionality: Unique Identifier (V.2), Immutable
Request (V.3), and Privacy-Preserving (V.4). Preserving
these properties is vital for successfully transitioning from
the traditional blockchain address to the proposed address
abstraction scheme.

1) Unique Identifier: The Unique Identifier property as-
sures the singularity of a user’s identity (Injectiveness), and is
solely controlled by the user who owns the secret (Unforge-
ability), and is publicly verifiable (Correctness).

Definition V.2 (Unique Identifier). System (SETUP, CER-
TIFICATE, REGISTERPROVE, REGISTERVERIFY, PUBLISH-
PROVE, PUBLISHVERIFY) has unique identifier idk for
userk, if idk meets the Injectiveness, Unforgeability, and
Correctness.

for all (certx, certy), certx ̸= certy =⇒ idx ̸= idy

(Injectiveness)

Under the injectiveness condition, two distinct certificates
would not map to the same identifier, ensuring that each
certificate cert and its derived identifier id remain unique
within the system.

for all PPT adversaries A there exists a PPT extractor XA,

Pr


(crsR,⊥)← SETUP(RR,RP );

((idR, pk, πR); certR)← (A||XA)(crsR);

sR ← REGISTERVERIFY(crsR, idR, pk, πR) :

sR = 1 ∧ ((idR, pk), certR) ̸∈ RR

 ≈ 0,

and

Pr



(crsR, crsP )← SETUP(RR,RP );

cert← CERTIFICATE(pwd); id← H(cert);
πR ← REGISTERPROVE(crsR, id, pk; cert);

sR ← REGISTERVERIFY(crsR, id, pk, πR);

((idP ,msg,m, πP ); certP )← (A||XA)(crsP );

(sP ,⊥)← PUBLISHVERIFY(crsP , idP ,msg,m, πP ) :

sR ∧ sP = 1 ∧ ((idP ,msg,m), certP ) ̸∈ RP


≈ 0 (Unforgeability)

The unforgeability property confirms the legitimacy of the
identifier id, the authenticity of the m-th message msg, and
asserts the knowledge of the related secret cert. This ensures
that valid identifier registration and abstracted transaction
publications cannot be accomplished without the creator pos-
sessing the necessary secret.

Pr



(crsR, crsP )← SETUP(RR,RP );

cert← CERTIFICATE(pwd); id← H(cert);
πR ← REGISTERPROVE(crsR, id, pk; cert);

sR ← REGISTERVERIFY(crsR, id, pk, πR);

πP ← PUBLISHPROVE(crsP , id,msg,m; cert);

(sP ,⊥)← PUBLISHVERIFY(crsP , id,msg,m, πP ) :

sR ∧ sP = 1

∧ ((id, pk), cert) ∈ RR ∧ ((id,msg,m), cert) ∈ RP


= 1 (Correctness)

A user with a valid cert can always generate a proof πR for
registration and πP for publication to validate to the verifier.
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2) Immutable Request: This property guarantees that any
proof-coupled request can solely execute the prescribed ac-
tions, and is impervious to modifications during transit. This
characteristic is vital for mitigating the threat of front-running
attacks [34]. Such attacks are characterized by malicious
entities taking advantage of transaction observability, often
exploiting publicly accessible proofs via transactions in the
mempool, then manipulating requests for their gain.

Definition V.3 (Immutable Request). Requests on the system
(SETUP, CERTIFICATE, REGISTERPROVE, REGISTERVERIFY,
PUBLISHPROVE, PUBLISHVERIFY) is immutable, if the sys-
tem ensures the constraints Chronicle and Tamper Resistance.

for all m ≥ 0,msgm+1 ≻ msgm (Chronicle)

It establishes a chronological sequence of the abstracted
transactions in the system. Each message succeeds its pre-
decessor in a strictly increasing order.

for all PPT adversaries A,

Pr



(crsR,⊥)← SETUP(RR,RP );

(pwd, pwdA)
$← P s.t. pwdA ̸= pwd;

cert← CERTIFICATE(pwd); id← H(cert);
certA ← CERTIFICATE(pwdA); idA ← H(certA);
πR ← REGISTERPROVE(crsR, id, pk; cert);

sR ← REGISTERVERIFY(crsR, id
A, pk, πR) :

sR = 1 ∧ ((idA, pk), cert) ̸∈ RR


≈ 0,

and

Pr



(crsR, crsP )← SETUP(RR,RP );

cert← CERTIFICATE(pwd); id← H(cert);
πR ← REGISTERPROVE(crsR, id, pk; cert);

sR ← REGISTERVERIFY(crsR, id, pk, πR);

(msg,msgA)
$←M s.t. msgA ̸= msg;

πP ← PUBLISHPROVE(crsP , id,msg,m; cert);

(sP ,⊥)← PUBLISHVERIFY(crsP , id,msgA,m, πP ) :

sR ∧ sP = 1

∧ ((id, pk), cert) ∈ RR ∧ ((id,msgA,m), cert) ̸∈ RP


≈ 0 (Tamper Resistance)

This property indicates the robustness of the cryptographic
system against unauthorized modifications. It asserts that the
probability of an adversary successfully tampering with the
registration of an identifier id or the publication of an ab-
stracted transaction msg, while simultaneously preserving the
original proof, is negligible.

The Unforgeability ensures the authenticity, asserting that
only users with the correct secret can create valid registrations
and transactions. On the other hand, Tamper Resistance, main-
tains the integrity of the registered identifiers and published
transactions, asserting that once a proof has been published,
it cannot be altered by any adversary.

3) Privacy-Preserving: This property pertains to the ca-
pacity of a system to safeguard user personal information,
denoted as cert, from public exposure, thereby preserving its
confidentiality.

Definition V.4 (Privacy-Preserving). System (SETUP, CER-
TIFICATE, REGISTERPROVE, REGISTERVERIFY, PUBLISH-
PROVE, PUBLISHVERIFY) can be classified as privacy-
preserving, if the secret cert associated with the identifier id
remains undisclosed both prior to and following the execution
of any procedure.

for all PPT adversaries A,

Pr


(crsR,⊥)← SETUP(RR,RP );

cert← CERTIFICATE(pwd); id← H(cert);
πR ← REGISTERPROVE(crsR, id, pk; cert) :

A(crsR, τR, πR) = 1

 =

Pr


(crsR,⊥, τR,⊥)← SIMSETUP(RR,RP );

cert← CERTIFICATE(pwd); id← H(cert);
πR ← SIMREGISTERPROVE(crsR, τR, id, pk) :

A(crsR, τR, πR) = 1

 ,

and

Pr



(crsR, crsP )← SETUP(RR,RP );

cert← CERTIFICATE(pwd); id← H(cert);
πR ← REGISTERPROVE(crsR, id, pk; cert) :

sR ← REGISTERVERIFY(crsR, id, pk, πR);

πP ← PUBLISHPROVE(crsP , id,msg,m; cert);

sR = 1 ∧ A(crsP , τP , πP ) = 1


=

Pr



(crsR, crsP , τR, τP )← SIMSETUP(RR,RP );

cert← CERTIFICATE(pwd); id← H(cert);
πR ← REGISTERPROVE(crsR, id, pk; cert) :

sR ← REGISTERVERIFY(crsR, id, pk, πR);

πP ← SIMPUBLISHPROVE(crsP , τP , id,msg,m);

sR = 1 ∧ A(crsP , τP , πP ) = 1


(Privacy-Preserving)

The proofs simulated by SIMREGISTERPROVE and SIM-
PUBLISHPROVE, which utilize the trapdoors τR and τP gener-
ated through SIMSETUP, are generated without a witness. The
distributions of πR and πP remain indistinguishable whether
the witness cert is known or not.

VI. ZK ADDRESS ABSTRACTION

We introduce an implementation of Address Abstraction,
named zero-knowledge Address Abstraction (zkAA), which
leverages zk-SNARKs to preserve user confidentiality while
enabling the registration and utilization of identities on a
blockchain. The application of zk-SNARKs engenders zkAA’s
efficiency and succinctness, thereby rendering it suitable for
integration within smart contracts. In zkAA, proofs are ver-
ified on the contract, providing an incorruptible method for
managing and verifying user identities.
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Fig. 1: The figure illustrates the process flow of zkAA. 0⃝
Public parameters used in ZKP are generated. 1⃝ The user
obtains a certificate, denoted as cert, from the institute through
a secure channel. 2⃝ The user calculates the hash of the
certificate as id ← H(cert), and proceeds to register it on
the smart contract. 3⃝ The user utilizes the registered id to
publish abstracted transactions, denoted as msgs.

Our implementation is based on Ethereum [61], thereby
grounding the context of the message msg and the handling
methodology of the identifier id within the Ethereum proto-
col’s structure. Specifically, msg comprises four parameters:
msg ← (target, funcsig, calldata, value). Here, funcsig
denotes the function identifier that executes on the target ad-
dress with calldata serving as arguments, and value signifies
the quantity of ETH involved. Though zkAA is presented
in the context of Ethereum, it is designed with broader
applicability in mind. It can be adapted to any blockchains
that support the execution of smart contracts.

A. Design of zkAA

The zkAA design is a concrete framework consisting of
functions in the domain of address abstraction: SETUP, CER-
TIFICATE, REGISTERPROVE, REGISTERVERIFY, PUBLISH-
PROVE, PUBLISHVERIFY.
• (crsR, crsP )← SETUP(RR,RP ): The setups generate the

public parameters crsR ← zkp.Setup(RR) and crsP ←
zkp.Setup(RP ).

• cert ← CERTIFICATE(pwd): A user obtains a JSON Web
Token (JWT) [27], referred to as a cert, from an institution
using their personal web2 data, denoted as pwd. This
institution authorizes the cert by applying its secret key
sk via sig.Sign of EdDSA [28]. The user derives the
identifier id from the cert by invoking the hash function H,
SHA256 [45].

• πR ← REGISTERPROVE(crsR, id, pk; cert): A proof πR

is produced via πR ← zkp.Prove(crsR, (id, pk); cert) to
validate two claims: Firstly, that the identifier id is computed
as id = H(cert). Secondly, the cert has been signed using
the secret key correlated to the public key pk, thereby
passing sig.Verify validation.

• 0/1 ← REGISTERVERIFY(crsR, id, pk, πR): The user reg-
isters the identifier id and proof πR on the blockchain, where
the zkAA contract applies zkp.Verify(crsR, (id, pk), πR)
to check their validity. Upon successful verification and

Fig. 2: Various explicit identities and their respective uses. The
smart contracts zkAA, wallet, and dApp are deployed on the
same blockchain.

confirmation of the identifier id as being previously unreg-
istered, it is appended to the contract’s map data structure
of valid identifiers. The determination of registration status
relies on the evaluation of nonce[id] == 0, indicative of
an unregistered state. Should the id have been registered
previously, its corresponding nonce[id] would satisfy the
condition nonce[id] ≥ 1, since the nonce for a newly
registered id begins at 1. It imitates the nonce configuration
used in contract accounts according to EIP-161 [59].

• πP ← PUBLISHPROVE(crsP , id,msg,m; cert): The user
generates πP ← zkp.Prove(crsP , (id,H(msg),m); cert),
asserting that the identifier id is obtained from the cert,
without revealing cert. This proof is distinctly associated
with a specific message msg, thwarting its potential reuse
and mitigating potential attacks[34]. For efficiency, H(msg)
is employed rather than the raw msg to neglect concerns
about msg’s length.

• (0/1, res) ← PUBLISHVERIFY(crsP , id,msg,m, πP ): In
alignment with the PUBLISHPROVE function, the contract
verifies πP through zkp.Verify(crsP , (id,H(msg),m), πP )
to confirm that the sender is the legitimate owner of the
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identity denoted by id for the specific message msg. The
identifier id is expected to have been previously registered
using the REGISTERVERIFY function. The sequence number
m acts as a counter analogous to an account’s nonce. Hence
the value should exceed the current nonce[id] by more
than 1. If πP , msg, and its sequence m pass validation,
the intended message is executed, yielding a result labeled
as res. After successful execution, nonce[id] is updated to
match the value of m.

The necessity of performing registration prior to publication
arises from the complexity of the registration process. This
process involves the usage of EdDSA sig.Verify logic,
which in turn can result in a lengthier generation time for the
proofs, as depicted in Section VII. Consequently, our protocol
follows a sequential approach by first registering the identifier
id and subsequently utilizing it in the subsequent phases. The
latter merely checks that id matches with the hashed value of
the certificate cert.

Moreover, by distinctly separating the registration and pub-
lication, our smart contract gains the capability to effectively
manage the registration statuses of entities. This separation
affords the flexibility to impose various conditions and criteria.
For instance, the system can enforce time-based expiration
conditions, ensure compliance with regulatory requirements
such as the Office of Foreign Assets Control (OFAC) regula-
tions [54], [41], and compliance with data protection standards
such as the General Data Protection Regulation (GDPR) [55].

B. Algorithms of zkAA

Figure 1 offers an overview of zkAA, highlighting the
distinct phases, each of which is reliant on the successful
execution of the preceding one. The detailed SETUP, CERTIFI-
CATE, REGISTER and PUBLISH phase’s processes are written
in Algorithms 1, 2, 3, and 4.

0) Setup Phase: Smart Contract Side: The primary
objective of the function SETUP is to generate two Com-
mon Reference Strings (CRSs) crsR and crsP . Each CRS
comprises a unique pair of a proving key and a verification
key, whose generation is governed by a specific circuit. The
two CRSs serve distinct purposes within the zkAA system.
The first CRS, crsR, is utilized in the registration circuit,
playing a significant role in the user registration process. The
second CRS, crsP , is leveraged to facilitate the publication of
abstracted transactions.

1) Certificate Phase: Client Side: The user makes a
request for a cert from the institute using their password
(pwd). Institute Side: Then the institute, through the
ISSUE procedure, constructs a certheader, specifying the type
and hashing algorithm, followed by the certpayload with
the appropriate claims based on the provided pwd. After-
ward, the institute generates a certsig by signing the combi-
nation of encoded certheader and certpayload with its secret
key (sk). The final cert is then assembled by concatenating
certheader, certpayload, and certsig , in the form of a JWT.

Algorithm 1 0⃝ SETUP

[zkAA Smart Contract]

1: function SETUP(RR, RP )
2: crsR ← zkp.Setup(RR)
3: crsP ← zkp.Setup(RP )
4: return (crsR, crsP )

Algorithm 2 1⃝ CERTIFICATE

1: institute has the pair of (pk, sk)← sig.KeyGen()

[zkAA Client]

2: function CERTIFICATE(pwd)
3: cert← call ISSUE(pwd)
4: return cert

[Institute]

5: procedure ISSUE(pwd)
6: construct certheader with the type and algorithm
7: construct certpayload with claims by pwd
8: certsig ← sig.Sign(sk, (certheader||certpayload))
9: cert = (certheader||certpayload||certsig)

10: return cert

Upon successful authentication, the requested certificate is
issued to the user. This process transpires off-chain between
the user and the institute, through a secure channel, thus
ensuring the confidentiality and integrity of the pwd and cert.

2) Register Phase: Client Side: At this stage, the
client generates a proof πR that authenticates the user’s iden-
tifier. Following this, the client initiates the REGISTER trans-
action, thereby commencing the registration process. Smart
Contract Side: Upon receipt of the REGISTER transac-
tion, the REGISTERVERIFY function examines the proof’s
validity and the identifier’s uniqueness. If the checks pass, the
contract assigns a nonce of 1 to the identifier and conducts
actions in accordance with the registration type, denoted by τ .
For further details regarding τ , refer to Section VI-D.

3) Publish Phase: Client Side: The client constructs a
proof, noted as πP , which affirms the legitimacy of the user’s
identifier associated with a specific message. Subsequently, the
client initiates a PUBLISH transaction. Smart Contract
Side: Based on the registration type τ , the PUBLISH trans-
action either calls the PUBLISHVERIFY function or executes
the message via a normal transaction. The PUBLISHVERIFY
function scrutinizes the proof, confirms the registration status
of the identifier, and checks that the sequence number m is
incremented correctly. Upon successful validation, the smart
contract proceeds with the message execution, returning the
result along with a success status.

8



Algorithm 3 2⃝ REGISTER

1: pre-defined registration type τ ∈ {τid, τCA, τEOA}
2: id← H(cert)

[zkAA Client]

3: function REGISTERPROVE(crsR, id, pk; cert)
4: πR ← zkp.prove(crsR, (id, pk); cert)
5: initiate REGISTER(crsR, id, pk, πR)

6: transaction REGISTER(crsR, id, pk, πR)
7: call REGISTERVERIFY(crsR, id, pk, πR)

[zkAA Smart Contract]

8: function REGISTERVERIFY(crsR, id, pk, πR)
9: assert(nonce[id] == 0)

10: assert(zkp.Verify(crsR, (id, pk), πR))
11: nonce[id]← 1
12: switch τ do
13: case τid then return 1 ▷ (id)
14: case τCA then ▷ (id 7→ CA)
15: create contract wallet controlled by id
16: map id into address of contract wallet CA
17: return 1
18: case τEOA then ▷ (id 7→ EOA)
19: create NFT contains id
20: give ownership to msg.sender
21: return 1

C. Properties of zkAA

The zkAA process is designed to ensure three fundamental
properties of address abstraction, namely Unique Identifier,
Immutable Requests, and Privacy-Preserving. The follow-
ing is a brief exposition proving that the zkAA protocol indeed
meets these requisite properties. Detailed security proofs can
be found in Appendix A.
• Unique Identifier. The zkAA protocol produces a unique

identifier, id, representing a user’s identity. The employed
hash function H is resistant to collision and preimage
attacks, thereby ensuring injectivity under our security as-
sumptions. The protocol’s privacy-preserving characteristic,
made possible by zk-SNARK, guarantees that neither reg-
istration nor publication can take place without the knowl-
edge of the cert. This effectively guarantees unforgeability.
Additionally, generating valid proofs and verifying them is
consistent, thereby ensuring correctness.

• Immutable Request. The user request, represented as msg,
is included in the proof πP , enhancing its resistance to
tampering. The sequential number m functions as a nonce,
preserving the sequence of abstracted transactions by en-
suring that they execute in the correct order without modi-
fications or omissions. This feature ensures the transaction
chronology.

Algorithm 4 3⃝ PUBLISH

1: pre-defined registration type τ ∈ {τid, τCA, τEOA}
2: id← H(cert)
3: msg ← (target, funcsig, calldata, value)

[zkAA Client]

4: function PUBLISHPROVE(crsP , id, msg, m; cert)
5: πP ← zkp.Prove(crsP , (id,H(msg),m); cert)
6: initiate PUBLISH(crsP , id, msg, m, πP )

7: transaction PUBLISH(crsP , id, msg, m, πP )
8: if τ ∈ {τid, τCA} then ▷ (id) or (id 7→ CA)
9: call PUBLISHVERIFY(crsP , id, msg, m, πP )

10: else ▷ (id 7→ EOA)
11: execute msg through normal transaction

[zkAA Smart Contract]

12: transaction PUBLISHVERIFY(crsP , id, msg, m, πP )
13: assert(nonce[id] ≥ 1)
14: assert(m == nonce[id] + 1)
15: assert(zkp.Verify(crsP , (id,H(msg),m), πP ))
16: nonce[id]← m
17: switch τ do
18: case τid then ▷ (id)
19: res← execute msg with identifier id
20: return (1, res)

21: case τCA then ▷ (id 7→ CA)
22: res← call ExecuteMsg(msg)
23: return (1, res)

[Contract Wallet]

24: function EXECUTEMSG(msg)
25: assert(msg.sender == address(zkAA contract))
26: res← execute msg
27: return res

• Privacy-Preserving. Privacy is a fundamental aspect of
the zkAA protocol, enabled by zk-SNARK. The protocol
ensures that public information does not reveal the original
cert, thereby safeguarding user privacy.

D. Explicit Identifier

This paper proposes the use of cert-based identifiers for
improved identity management. By hashing a cert to create
the identifier, i.e., H(cert), we provide a unified solution
to handle the variability in address systems across different
chains. However, existing decentralized applications (dApps)
that are primarily built around the address system may not be
directly compatible with our approach.

To resolve this issue, we introduce the concept of explicit
identifiers. Except for the type τid, which does not utilize
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the explicit identifier, explicit identifiers facilitate the usage
of dApps (τCA) or enhance efficiency (τEOA). As outlined
in Algorithm 3 and 4, functions REGISTERVERIFY, PUB-
LISHVERITY, and the transaction PUBLISH of zkAA encom-
pass a conditional branch based on the explicit identifier type
τ . This τ is predefined during contract deployment, hence, it
is not required as an input parameter. Figure 2 illustrates the
flow of explicit identifier usage for each type.

1) τid (id): In this method, id← H(cert) itself acts as the
explicit identifier. While this method may not be compatible
with traditional dApps (since the msg.sender is always
the address of zkAA, necessitating specific dApp logic to
distinguish users), it facilitates simpler secret management, as
πR and πP are generated solely based on the cert without
involving the blockchain address.

2) τCA (id 7→ CA): During the registration, as depicted in
line 14 of Algorithm 3, a new contract wallet is created and
linked to the id. Here, the explicit identifier is the contract
wallet’s address (CA). This method supports compatibility
with existing dApps that rely on the traditional address system.
For forwarding a request msg to a target, the contract wallet
must have a ExecuteMsg(msg) function, which can be
called by the zkAA contract as shown in Algorithm 4, line
22. This approach mirrors Account Abstraction [7] as allowing
users to utilize contract wallets containing codes.

3) τEOA (id 7→ EOA): In this variant, a user acquires
a Non-Fungible Token (NFT) [14] that represents the id. It
links the id to a specific Externally Owned Account (EOA)
by ownership. This method reflects the traditional mapping
approach employed for integrating web2 identities into web3.
This approach permits users to interact with dApps using
normal transactions instead of abstracted transactions con-
taining proof. However, it requires the execution of NFT
ownership verification logic, potentially introducing an ad-
ditional sequence within the dApp, depicted as B-2 under
τEOA in Figure 2. This method offers a balance between
cost and convenience, with normal transactions costing less
than abstracted transactions as they do not necessitate proof
verification. Nevertheless, it also shares the drawbacks of the
mapping approach in achieving seamless dApps integration,
as discussed in Section I-A.

VII. EXPERIMENTS

To evaluate the effectiveness and efficiency of our proposed
zero-knowledge address abstraction implementation, we con-
ducted experiments to measure the gas costs for verification on
Ethereum [61] and Polygon [53], as well as the time required
to generate proofs. The average gas price on Ethereum was
14 gwei (14 ∗ 10−9 ETH), with an ETH price of 1412.49
USD. The average gas price on Polygon was 51.6 gwei
(51.6 ∗ 10−9 MATIC), with a MATIC price of 0.91 USD.
These measurements were as of January 13, 2023.

Experiments were carried out on a local machine — an
Apple M1 Pro with 16GB of memory.

TABLE IV: Gas cost on Ethereum and Polygon (gas/$)

Methods min max avg USD (avg)
Ethereum Polygon

Registration
verifyTx 387456 387516 387494 $ 7.6626 $ 0.0182
Deploy - - 1410472 $ 27.8919 $ 0.0662

Publication
verifyTx 239906 239966 239953 $ 4.7450 $ 0.0113
Deploy - - 921902 $ 18.2305 $ 0.0433

TABLE V: Time taken for generating proofs (sec)

Methods min max avg (sd) med
Registration

witness 3.7511 3.9998 3.8381 (0.0474) 3.8300
proof 5.4607 11.8173 5.7365 (0.6323) 5.6348

Publication
witness 1.7636 1.9181 0.8132 (0.0285) 1.8098
proof 2.5685 2.9915 2.6759 (0.0640) 2.6668

A. Implementations

We utilized EdDSA [2] to sign the certificate cert. To
generate the signature, we used the SHA512 [45] digest of
the cert. The resultant signature was then used to compute
the identifier id from cert, applying the SHA256 [45] hash
function via the 1024-bit padded. The registration phase in-
volved the verification of EdDSA and SHA256 through the
proof πR, whereas the publication phase used the proof πP to
verify SHA256 on the cert.

We implemented the proposed scheme using ZoKrates [13],
based on the Groth16 [21]. The ALT-BN128 curve was utilized
for efficient on-chain verification via pre-compiled contracts
in Ethereum at addresses 0x6 for ADD, 0x7 for MUL, and
0x8 for pairing check [48], [6]. The contract was optimized
using Solidity 0.8.17 version with the option (200 runs). Our
implementation consisted of two circuits: the registration with
169188 constraints and the publication with 75945 constraints.

In an effort to contribute to the research community, we have
made the implementation and experimental codes publicly
available on GitHub1 for replication and further examination.

B. Verification Costs

Table IV examines the costs associated with on-chain
verification. Deploying the registration verification contract
requires 1410472 gas, which amounts to approximately $27.89
on Ethereum. Similarly, the publication verification contract
deployment necessitates 921902 gas, costing around $18.23 on
Ethereum. Despite its initial cost, it is a one-time expenditure.

The verification of the identifier id incurs costs during regis-
tration and publication. The average gas cost for registering is
387494, translating to about $7.66 on Ethereum. The publish-
ing cost is 239953 gas, approximately $4.75 on Ethereum. The
verification cost during publication is reasonably economical,

1https://github.com/lukepark327/zkAA
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particularly on cost-efficient blockchains like Polygon, with
$0.02 and $0.01 for registration and publication, respectively.

C. Overhead on Generating Proofs

Table V showcases the average time required to generate
witnesses and proofs. During the registration phase, the pro-
cess of creating both witness and proof took an average of
9.5746 seconds. Conversely, for the publication of abstracted
transactions, it took an average of 3.4891 seconds. The proof
generation of registration takes longer than publication as it
involves more logic about validating the EdDSA signature.

While this time overhead is noticeable, it remains within
an acceptable limit, given that Ethereum’s block interval is
approximately 12 seconds, providing sufficient computation
and broadcasting time.

VIII. APPLICATIONS

The Address Abstraction (AA) scheme we proposed unveils
a wealth of potential applications. By decoupling the identifier
from the private key, AA streamlines identity management
across both web2 and web3 platforms, facilitating seamless
user interactions, as illustrated in Figure 3.

A. Web2-Web3 Hybrid Applications

Hybrid applications that amalgamate the advantages of both
traditional web2 and emergent web3 systems are has emerged,
particularly in resource-demanding sectors such as Artificial
Intelligence (AI) [42] and gaming. These applications marry
the high-performance and user-friendly aspects of centralized
systems with the robust security and decentralization offered
by blockchain, resulting in an enhanced user experience.

However, one notable hurdle in realizing these hybrid appli-
cations is the fragmented user identity management due to the
distinct identifier systems of web2 and web3. AA overcomes
this impediment, ensuring a consistent identifier representation
across both systems. Based on the same certificate cert,
AA eradicates the need for users and service providers to
manage multiple identities across various networks, thereby
simplifying identity management.

B. Multi-chain Decentralized Applications

Managing user identities across multiple blockchains is tra-
ditionally a formidable challenge, largely due to the incompat-
ible address systems employed by various blockchains, such as
Ethereum [61], Cosmos [31], and Polkadot [60], among others.
This incompatibility often leads to complications when trying
to identify users across different decentralized applications.

AA presents a viable solution to this challenge. It establishes
a consistent, blockchain-agnostic identifier by leveraging a
non-revealing certificate cert and its hash value H(cert),
thereby eliminating the complications posed by heterogeneous
address systems. This approach not only enables interoperabil-
ity among different blockchains, but also paves the way for de-
veloping decentralized cross-chain applications while ensuring
secure user identification. For example, in conventional asset
transfer procedures between different blockchain networks,

Fig. 3: The invariant pair (secret, identifier) facilitates seamless
usability for web2-web3 hybrid and multi-chain dApps.

which rely on a bridge like [62], [38], users are required to
input a receiver’s address. Given the potential incompatibility
of the address with the current blockchain, this process can
result in input errors, heightening the risk of asset loss. The AA
scheme circumvents this issue by providing each user with a
consistent identifier, mitigating the risk of address input errors
and reducing the need for managing multiple private keys for
various blockchains.

IX. CONCLUSION

This paper introduces a novel solution to identity manage-
ment in blockchain: the Address Abstraction (AA) scheme. It
enables users to securely unify their web2 identities with their
web3 presence, eliminating the need to store additional secrets
and effectively protecting sensitive information.

Our proposed implementation of AA, zero-knowledge Ad-
dress Abstraction (zkAA), stands out from the previous works
through its unique advantages. Users are only required to
maintain their web2 identities, thereby negating the necessity
for managing their private keys. The same identifier can be
applied across various blockchains, negating the need for
managing multiple addresses. A seamless integration between
web2 and web3 services is achieved, owing to the utilization
of the same secret.

Looking to the future, there are multiple potential im-
provements to the zkAA implementation. Current zk-SNARK
tools such as [13], [39] typically utilize Quadratic Arithmetic
Programs (QAPs) [21], [22], [16], [43], which necessitate a
trusted setup. However, emerging research in zero-knowledge
proofs [50], [1], [5], [4] aims to eliminate this requirement,
bolstering decentralization and trust. We plan to incorporate
these developments into zkAA, with the goal of obviating
the SETUP phase. Moreover, the incorporation of commit-and-
prove (CP) schemes [15], [8] into zkAA is a promising future
direction. CP-SNARKs facilitate hash verification through pre-
uploaded commitments such as Pedersen commitments [44],
potentially enhancing proof generation efficiency at the ex-
pense of a slight increase in verification costs. We intend to
explore CP-SNARKs in future work, evaluating their potential
benefits and trade-offs.
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APPENDIX

The security model adheres to the simulation-based def-
inition proposed by [18]. In this section, the ideal-world
execution, denoted as IdealT,S , and the real world execution,
denoted as RealzkAA,A, for Address Abstraction are defined.

A. Ideal-world Execution

Definition A.1 (IdealT,S ). IdealT,S denotes the ideal
implementation of the AA scheme with the trusted party T
and simulator S, wherein all cryptographic operations are
substituted to T . The simulator S in ideal-world execution
is assumed to be incapable of forging the function output
generated by T and distinguishing the data — hash value
and signature — from a unique random value. In the ideal-
world execution, participants only interact with the T through
an interface outlined in Algorithms 5, 6, 7, and 8.

0⃝ At the function IDEALSETUP in Algorithm 5, the trusted
party T is responsible for initializing the foundational data
structures of the protocol. Specifically, T creates three

Algorithm 5 0⃝ IDEALSETUP

1: function IDEALSETUP(·)
2: T creates empty private table PrivTabc

3: T creates empty private table PrivTabr

4: T creates empty private table PrivTabp

5: T creates empty public table PubTabr

6: T creates empty public table PubTabp

Algorithm 6 1⃝ IDEALCERTIFICATE

1: function IDEALCERTIFICATE(pwd)
2: Participant sends pwd to T
3: if pwd ∈ PrivTabc.keys then
4: T selects (id, cert) from PrivTabc by pwd
5: else
6: T generates a unique random value id
7: T generates another unique random value cert
8: T inserts (id, cert) in PrivTabc by pwd

9: T sends (id, cert) to participant

empty private tables, namely PrivTabc, PrivTabr, and
PrivTabp, alongside two empty public tables, PubTabr

and PubTabp. The tables are structured as key-value pairs.
In addition, keys and values can be independently accessed
using the Tab.keys and Tab.values functions, re-
spectively. We assume that only T holds the authority to
write values into the append-only tables. Access to the
private tables is strictly limited to T , even read operations
are not permissible for any other party. Conversely, the
public tables are accessible for reading to all participants.

1⃝ At the function IDEALCERTIFICATE in Algorithm 6, a
participant send their password pwd to T . Upon receipt,
T verifies its presence in the PrivTabc. If the password
is already present, T retrieves and provides the associated
unique identifier and certificate to the participant. However,
if the password is unrecognized, T generates a unique
identifier and certificate, stores this data in the PrivTabc,
and communicates this information to the participant.

2⃝ Algorithm 7 is bifurcated into two separate functions: IDE-
ALREGISTERPROVE and IDEALREGISTERVERIFY. The
IDEALREGISTERPROVE function enables participants to
obtain a proof, designated as πR. This is achieved by
sending their unique identifier id, the publicly-known
public key of an institution pk, and a certificate cert
to the trusted entity, T . Upon receipt of these compo-
nents, T executes a validation process to authenticate the
id and cert. Once these components are confirmed as
legitimate, T then forwards πR back to the participant.
The IDEALREGISTERVERIFY function allows participants
to register their id by sending id, pk, and πR to T . T
verifies their validity and checks their previous registration
status. If these components pass the verification process,
the registration is successful and reflected in the PubTabr.

3⃝ Algorithm 8 encompasses two functions: IDEALPUBLISH-
PROVE and IDEALPUBLISHVERIFY. In the IDEALPUB-
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Algorithm 7 2⃝ IDEALREGISTER

1: function IDEALREGISTERPROVE(id, pk, cert)
2: Participant sends (id, pk, cert) to T
3: if (id, cert) ̸∈ PrivTabc.value then
4: abort ▷ invalid id and/or cert
5: if (id, pk, cert) ∈ PrivTabr.keys then
6: T selects πR from PrivTabr by (id, pk, cert)
7: else
8: T generates a unique random value πR

9: T inserts πR in PrivTabr by (id, pk, cert)

10: T sends πR to participant

11: function IDEALREGISTERVERIFY(id, pk, πR)
12: Participant sends (id, pk, πR) to T
13: if (id, pk) ∈ PubTabr.keys then
14: T sends 0 to participant ▷ already registered
15: else if πR ̸∈ PrivTabr.value then
16: T sends 0 to participant ▷ invalid πR

17: else
18: T inserts (πR, 1) in PubTabr by (id, pk)
19: T sends 1 to participant

LISHPROVE function, T generates a proof πP for pub-
lication of a m-th message msg then sends it to the
participant, provided the id and cert is valid. The IDE-
ALPUBLISHVERIFY function enables participants to con-
firm the success of their publication, which includes their
id, msg, message sequence number m, and πP . Moreover,
the participant must be registered prior to the publication.
The function then executes msg and returns the result res
to the participant, along with the publication status. If these
components pass the verification process, the publication
is successful and reflected in the tables, PubTabr and
PubTabp.

The ideal-world execution (IDEALSETUP, IDEALCER-
TIFICATE, IDEALREGISTERPROVE, IDEALREGISTERVER-
IFY, IDEALPUBLISHPROVE, IDEALPUBLISHVERIFY) satis-
fies the properties of Injectiveness, Unforgeability, Cor-
rectness, Chronicle, Tamper resistance, and Privacy-
Preserving. These properties contribute to establishing three
fundamental properties of address abstraction, Unique Identi-
fier, Immutable Requests, and Privacy-Preserving, as defined
in Section V-B.
• Injectiveness. Within this system’s context, injectiveness is

secured through the generation of unique random values
assigned as identifiers (id) and certificates (cert).

• Unforgeability. Unforgeability guarantees that only legiti-
mate participants have the capability to register and publish.
Consequently, only legitimate participants are eligible to
receive proofs. In Algorithms 7 and 8, the trusted third party,
denoted as T , generates unique proofs linked specifically
to individual credentials. These proofs cannot be forged
without accessing the original data securely stored in private

Algorithm 8 3⃝ IDEALPUBLISH

1: function IDEALPUBLISHPROVE(id,msg,m, cert)
2: Participant sends (id,msg,m, cert) to T
3: if (id, cert) ̸∈ PrivTabc.value then
4: abort ▷ invalid id and/or cert
5: k ← (id,msg,m, cert)
6: if k ∈ PrivTabp.keys then
7: T selects πP from PrivTabp by k
8: else
9: T generates a unique random value πP

10: T inserts πP in PrivTabp by k

11: T sends πP to participant

12: function IDEALPUBLISHVERIFY(id,msg,m, πP )
13: Participant sends (id,msg,m, πP ) to T
14: kr ← (id, pk)
15: if kr ̸∈ PubTabr.keys then
16: T sends (0,⊥) to participant ▷ unregistered id
17: else
18: T selects (πR, nonce) from PubTabr by kr
19: if nonce < 1 then
20: T sends (0,⊥) to participant ▷ invalid nonce
21: else if m ̸= nonce+ 1 then
22: T sends (0,⊥) to participant ▷ invalid m
23: else
24: kp ← (id,msg,m)
25: vr ← (πR, nonce+ 1)
26: res← execute msg with identifier id
27: if kp ∈ PubTabp.keys then
28: T sends (0,⊥) to participant ▷ passed m
29: else if πP ̸∈ PrivTabp.value then
30: T sends (0,⊥) to participant ▷ invalid πP

31: else
32: T inserts πP in PubTabp by kp
33: T updates PubTabr with kr and vr
34: T sends (1, res) to participant

tables accessible only to T .
• Correctness. The algorithms’ correctness is validated

through the functionality of public and private tables that
operate precisely as intended. Additionally, by definition,
the S is incapable of forging the function output generated
by T .

• Chronicle. The IDEALPUBLISHVERIFY algorithm supports
this principle by requiring the message sequence order m
to equal the nonce+1, thereby enforcing the chronological
order of msgs.

• Tamper Resistance. Tamper resistance, which assures that
an adversary cannot alter the message, is achieved through
data segregation into private and public tables. In addition,
write permissions are exclusively reserved for T .

• Privacy-Preserving. This property ensures the user’s private
information is not disclosed during the protocol execution.
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Privacy is directly preserved by the private tables. The fact
that all communication is intermediated by T , performing
only predefined actions, ensures that users’ private informa-
tion is never exposed to other participants.

B. Real-world Execution

Conversely, in the real-world execution, participants engage
with zkAA through algorithms as detailed in Section VI-A.

Definition A.2 (RealzkAA,A). RealzkAA,A designates the
real-world implementation of zkAA with the probabilistic
polynomial time (PPT) adversaries A. The actions of honest
participants align precisely with Algorithms 1, 2, 3, and 4.

C. Security Proof

We assert that the probability of an adversary compromising
a real-world execution is, at most, equivalent to the probability
of an adversary compromising an ideal-world execution.

Definition A.3. The real-world execution RealzkAA,A is said
to securely emulate the ideal-world execution IdealT,S if the
following is satisfied:

for all PPT adversaries A there exists a simulator S s.t.

for any PPT distinguisher D,

Pr
[
D(IdealT,S(·)) = 1

]
≈ Pr

[
D(RealzkAA,A(·)) = 1

]
Theorem A.1. Considering zk-SNARK, signature scheme,
collision-resistant hash primitives, and the assumption of
the smart contract functioning as a trustworthy computation
engine and data storage, zkAA fulfills the security requirement
stated in Definition A.3.

We prove Theorem A.1 by employing the hybrid game
methodology, which demonstrates that the distribution of the
simulator is computationally indistinguishable from the distri-
bution of real-world experiments. In essence, we show that the
adversary A in real-world execution can forge inputs/outputs
and extract cert no more effectively than the simulator S, and
all distributions in real-world execution are computationally
identical to the ideal-world execution. This signifies that it is
improbable for the adversary A to forge and extract in real-
world execution if an attack in the ideal-world execution is
deemed impossible.
G0. This game corresponds to a real-world execution experi-

ment.
G1. In this game, we substitute the proofs πR and πP from

honest participants with simulated proofs generated by
the simulator. By applying Lemma A.1, we demon-
strate that if the proof system exhibits computationally
knowledge-soundness, then G1 ≈ G0.

G2. In this game, we run the knowledge extractor on the
function output and abort if the extraction fails. By
applying Lemma A.2, we demonstrate that the extractor
fails with negligible probability, then G2 ≈ G1.

G3. In this game, we substitute all output of the hash function
H with a unique random value. By applying Lemma A.3,

we demonstrate that if the hash function is secure, then
G3 ≈ G2.

G4. In this game, we substitute all signatures with a random
unique value. By applying Lemma A.4, we demonstrate
that if the signature scheme satisfies unforgeability, then
G4 ≈ G3.

G5. In this game, we substitute all data storage with the
trusted and verifiable storage provided by T . By applying
Lemma A.5, we demonstrate that if the probability of fork
of the chain is negligible, then G5 ≈ G4.

In conclusion, through the proposed hybrid games, we
demonstrate that G5 ≈ G0. This implies that our real-world
execution, or the zkAA implementation, is identical to the
ideal implementation of the AA scheme.

Lemma A.1. For all PPT adversaries A, if a simulator on
zk-SNARK exists, then the advantage of distinguishing G0 and
G1 is negligible, as is the simulation failure rate.

Proof. As outlined in Section IV-A, a simulator
zkp.SimProve exists in zk-SNARK and will fail with
a negligible probability. This assures that the distinction
between G0 and G1 is negligibly small.

Lemma A.2. For all PPT adversaries A, if zk-SNARK is
knowledge extractable, then the advantage of distinguishing
G1 and G2 is negligible, as is the extraction failure rate.

Proof. As outlined in Section IV-A, an extractor XA exists
in zk-SNARK and will fail with a negligible probability. This
assures that the distinction between G1 and G2 is negligibly
small.

Lemma A.3. For all PPT adversaries A, the advantage of
distinguishing G2 and G3 is negligible.

Proof. As outlined in Section IV-C, we utilize a hash algo-
rithm resistant to collision and preimage attacks. In the real
zkAA implementation, we utilize SHA512 and SHA256 [45],
which satisfy these requirements. This assures that the likeli-
hood of an adversary A detecting the difference between the
hash output and the substitution into a unique random value
is negligible.

Lemma A.4. For all PPT adversaries A, if the signature
scheme has unforgeability, then the advantage of distinguish-
ing G3 and G4 is negligible.

Proof. As outlined in Section IV-B, we employ a digital
signature scheme that satisfies the unforgeability. In the real
zkAA implementation, we utilize EdDSA [28], which meets
this requirement. This assures that the likelihood that an
adversary A can detect the difference between the signature
and the substituted unique random value is negligible.

Lemma A.5. If the data storage is reliable and durable, then
the advantage of distinguishing G4 and G5 is negligible.

Proof. As outlined in Section IV-B, we use the blockchain and
the contracts deployed on it with robustness against attacks

15



and reorganization. In the real zkAA implementation, we can
use any contract-executable blockchains which satisfy these
conditions. Although Ethereum [61] can be reorganized since
the finality of blocks is given after several block confirmations,
it is not high as much and can be practically negligible as
many dApps do. On the other hand, we can use instant-
finality blockchains, which mean that forks never occur, such
as Cosmos [31] or Algorand [19], which gives us a zero
fork-probability. Therefore the probability that anyone can
recognize the difference between the smart contract and the
storage by T is negligible.
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