
Cryptanalysis of Lattice-Based Sequentiality Assumptions
and Proofs of Sequential Work

Chris Peikert∗ Yi Tang†

June 7, 2024

Abstract

This work completely breaks the sequentiality assumption (and broad generalizations thereof)
underlying the candidate lattice-based proof of sequential work (PoSW) recently proposed by Lai and
Malavolta at CRYPTO 2023. In addition, it breaks an essentially identical variant of the PoSW, which
differs from the original in only an arbitrary choice that is immaterial to the design and security proof
(under the falsified assumption). This suggests that whatever security the original PoSW may have is
fragile, and further motivates the search for a construction based on a sound lattice-based assumption.

Specifically, for sequentiality parameter T and SIS parameters n, q,m = n log q, the attack on the
sequentiality assumption finds a solution of quasipolynomial norm m⌈log T⌉ (or norm O(

√
m)⌈log T⌉ with

high probability) in only logarithmic Õn,q(log T) depth; this strongly falsifies the assumption that finding
such a solution requires depth linear in T . (The Õ notation hides polylogarithmic factors in the variables
appearing in its subscript.) Alternatively, the attack finds a solution of polynomial norm m1/ε in depth
Õn,q(T

ε), for any constant ε > 0. Similarly, the attack on the (slightly modified) PoSW constructs a
valid proof in polylogarithmic Õn,q(log

2 T) depth, thus strongly falsifying the expectation that doing so
requires linear sequential work.

1 Introduction

The notion of timed (or timed-release) cryptography was formally introduced and realized in 1996 by Rivest,
Shamir, and Wagner [RSW96], following initial concepts due to May [May93] and related ideas of Cai,
Lipton, Sedgewick, and Yao [CLSY93]. The general thrust of this area is to devise “puzzles” that require
(roughly) a prespecified amount of time to solve—even for solvers that have a large amount of computing
power. More precisely, solving the puzzle should be inherently sequential (i.e., high computation depth) in
nature, so that using many processors in parallel does not lead to any major speedup in finding a solution,
versus using just one processor. (Of course, using a faster sequential processor will unavoidably result in a
speedup, but the range of available processor speeds is substantially narrower than the ability to purchase
huge numbers of parallel processors.)

Several variations on this theme have emerged in the literature. The focus of this work is on one of the
most basic timed primitives, called a proof of sequential work (PoSW) [MMV13, CP18, AKK+19]. Here
the goal is simply to quickly convince a skeptical verifier that a sequential computation of some significant
desired length has been performed. In other words, the computation should be inherently sequential and

∗University of Michigan, cpeikert@umich.edu.
†University of Michigan, yit@umich.edu.

1

tunable, but the result of such a computation should be publicly and very quickly verifiable. (No secret
message is encrypted or decrypted, however.) Applications of PoSW include anti-spam and denial-of-service
measures [DN92], and reducing the wasteful energy consumption of proof-of-work blockchains like Bitcoin
(because using large-scale parallel computation is of little marginal benefit).

1.1 (In)Security in a Quantum World

Unfortunately, most prior timed-cryptography constructions will become completely insecure in the presence
of general-purpose quantum computers. This is because the security of these constructions relies on the
conjectured hardness of problems that are in fact easy for quantum computers. As some of the most notable
examples, the constructions of [RSW96, Pie19, Wes19] rely on the presumed hardness of factoring integers,
but the breakthrough work of Shor [Sho94] gave an efficient quantum algorithm for this problem. Therefore,
quantum computers would be able to completely circumvent the (conjectured) classical sequentiality of these
puzzles, and solve them in relatively low quantum depth.

In this light, it is important to find constructions of timed cryptography that are quantum-secure, or “post
quantum”—i.e., that can be run on today’s computers, but are believed to remain secure against attacks
by future quantum computers. In other parts of cryptography, the most promising post-quantum systems
are based on lattice problems, particularly short integer solution (SIS) [Ajt96] and learning with errors
(LWE) [Reg05], and their variants. Over the past two decades, countless efficient and powerful cryptographic
concepts have been realized from these lattice foundations.

Yet despite so much progress in general, post-quantum timed cryptography is still in its infancy, with
very few and limited constructions. In particular, for proofs of sequential work we know of only two
types of post-quantum constructions: ones in the idealized random-oracle model (or under a closely related
sequential-hashing assumption) [MMV13, CP18], and a very interesting “algebraic” proposal by Lai and
Malavolta [LM23] from CRYPTO 2023 that is related to lattices, and does not require random oracles.

As a foundation for their PoSW candidate, Lai and Malavolta introduced a new SIS-related problem
and sequentiality assumption, for which they gave some credible evidence. Essentially, the problem is to
evaluate a long chain of iterated SIS hash functions, and the assumption is that doing so requires computation
depth roughly proportional to the length of the chain. Their elegant PoSW protocol works analogously to the
factoring-based construction of [Pie19] by exploiting the homomorphic properties of the SIS hash function,
and they proved its security under the new sequentiality assumption.

1.2 Contributions

Our first main contribution is to strongly falsify the lattice-based sequentiality assumption proposed in [LM23],
and broad generalizations thereof. In a bit more detail, the conjecture is that finding a “somewhat short”
solution to a certain regular linear system (corresponding to iterated hash evaluations) requires nearly linear
depth in the sequentiality parameter T ; see Section 2.3 for details. For typical parameters, we instead solve this
problem in depth only polylogarithmic in T . Also, other parameterizations of our attack find asymptotically
much shorter solutions in small polynomial depth T ε, for any constant ε > 0. So, tightening the quantitative
definition of “short” offers limited hope for salvaging the assumption, unless the norm bound is made quite
small; see Section 1.3 below for a discussion.

Interestingly, while our attack breaks the assumption underlying the security proof for the PoSW protocol
of [LM23], it does not break the PoSW itself as originally defined—and so far we have not found an attack
that does so. However, we do manage to break two slight variants of the PoSW from [LM23], by employing
our core techniques in more sophisticated ways (see Figure 4 for an illustration). These variants are supported

2

by essentially identical security proofs (under the same kind of falsified assumption) as the original PoSW.
Indeed, one of the variants differs from the original in only an arbitrary choice in the core “folding” operation,
so we consider it to be effectively identical to the original.

Our specific contributions are organized as follows.
• In Section 3 we give a suite of very general and modular tools for efficiently computing, combining,

and using lattice “trapdoors” in low computation depth. As we showcase in the rest of the paper, these
tools can be combined in various ways to yield attacks on lattice-based timed cryptography proposals,
and may also be of independent interest for other applications.

• In Section 4 we use our tools to give a low-depth recursive attack that strongly falsifies the sequentiality
assumption from [LM23].

• Finally, in Section 5 we extend the attack to break two slight variants of the PoSW protocol from [LM23].
We refer to each individual section for further background and context for the results and techniques given
therein.

1.3 Discussion and Future Work

As noted above, while we have not managed to break the PoSW from [LM23] exactly as it is written, we
did break a variant that differs only in one minor and arbitrary choice, which has no effect on its underlying
assumption or security proof. This state of affairs suggests that whatever security the original PoSW may have
is quite fragile, and not due to any intentional design choice or technique in the security proof. Additional
ideas might lead to a successful attack against the original PoSW; alternatively, it might actually be secure,
perhaps with a different security proof under some other plausible assumption. We leave these topics for
future work.

The effectiveness of our attacks hinges on the following key feature of the assumption and PoSW protocols
following [LM23]: solutions are allowed to be “somewhat short,” even though the “honest” computation
generates a “very short” solution. More specifically, the norm (in ℓ∞, say) of a solution is allowed to be
quasipolynomial in the sequentiality parameter T , whereas the honestly computed solution has constant ℓ∞
norm. The reason for this gap is that in the protocol, the honest solution is repeatedly “folded” into one having
smaller dimension but larger norm, so the verifier needs to use more permissive norm checks. (Additionally,
the knowledge extractor in the security proof incurs another quasipolynomial blowup in the norm of its
extracted solution, relative to the norm bounds used by the verifier.)

Our attacks crucially exploit this gap by computing a “somewhat short” solution of quasipolynomial
norm in only polylogarithmic depth polylog(T), or even a “short” one of some polynomial norm in small
polynomial depth T ε, for any constant ε > 0. However, we do not see how to compute a “very short” solution
having constant ℓ∞ norm (like the honestly computed one) in depth sublinear in T . So, a much weaker
version of the sequentiality assumption from [LM23] corresponding to these parameters, still seems plausible.
Constructing a proof system that quickly proves knowledge of such a short solution is an interesting and
worthwhile open problem.

2 Preliminaries

2.1 Vector and Matrix Norms

For a real vector x and p ≥ 1, define its ℓp norm as ∥x∥p :=
(∑

i|xi|p
)1/p, and its ℓ∞ norm as ∥x∥∞ :=

maxi|xi|. Observe that the Euclidean norm is simply the ℓ2 norm. For any n-dimensional vector x and any

3

1 ≤ p ≤ r ≤ ∞, a standard bound is

∥x∥r ≤ ∥x∥p ≤ ∥x∥r · n1/p−1/r ,

where we adopt the convention that a1/∞ = 1 for any a > 0. We extend any ℓp norm ∥·∥p on vectors to
matrices X by taking the maximum over its columns xj , i.e., ∥X∥p := maxj∥xj∥p.

For matrices it will be convenient to use the operator norm ∥X∥r←p := maxy ̸=0∥Xy∥r/∥y∥p for
p, r ∈ [1,∞]. In words, the operator norm bounds the factor by which left-multiplication by X can expand
norms, going from ℓp to ℓr:

∥X ·Y∥r ≤ ∥X∥r←p · ∥Y∥p . (2.1)

It is immediate that ∥XY∥r←p ≤ ∥X∥r←q · ∥Y∥q←p. For any p, r ∈ [1,∞], observe that the identity
matrix In satisfies ∥In∥r←p = max(n1/r−1/p, 1), and in particular ∥In∥p←p = 1; and for any X ∈ Rn×m,

∥X∥r←p ≤ n1/r · ∥X∥∞←p ≤ n1/r · ∥X∥∞ ·m1−1/p . (2.2)

Random matrices. For tighter bounds, it is convenient in some cases to rely on standard results from
random matrix theory; see, e.g., [Ver12]. For example, if X ∈ Rm×m is a random matrix with independent
columns drawn from subgaussian distributions (which may vary from column to column), then it will satisfy
∥X∥2←2 = O(

√
m) except with probability 2−Ω(m). (We refer to [Ver12] for the definition of subgaussian,

which we do not need in this work.) For simplicity, we simply say “high probability” to represent 1− 2−Ω(m).
Observe that by the union bound, any T = 2o(m) events that individually occur with high probability will also
all occur with high probability; we often implicitly use this fact in our high-probability statements.

Block-wise norms. For some of our purposes it will be important to have finer-grained bounds on the
(operator) norms of the row blocks of a vector or matrix. Let ∥·∥ be a norm on vectors or matrices, such as the
ones defined above. When X is seen as being made up of row blocks Xi (whose definition will always be
clear from context), we take ∥X∥ to be the column vector of norms ∥Xi∥, i.e., ∥X∥ := (∥Xi∥)i. For vectors
of norms having the same dimension, we use the partial ordering given by a ≤ b if ai ≤ bi for all i. So, for
any matrices X,Y where now X is seen as being made up of row blocks (but Y is not), Equation (2.1) still
holds, but now both sides are vectors (and ∥Y∥p is a scalar).

2.2 Computational Model

For simplicity, when describing and analyzing our attacks we mainly use the following abstract arithmetic-
circuit model, with a focus on circuit depth. Each wire has “type” either Z or Zq (for some fixed integer q),
which is the set of its possible values.1 The set of available gates is: addition with arbitrary fan-in, where
all input and output wires have the same type; multiplication with fan-in two, where the output wire has
type Zq if either input does, and type Z otherwise; and “(bit) decomposition,” which maps from Zq to Zℓ for
ℓ = ⌈log2 q⌉ (see Section 2.3 below for further details). In particular, multiplication of matrices of any size
(each over Z or Zq) can be implemented by a polynomial-size, depth-two arithmetic circuit, by computing
each row-column inner product in parallel.

As is typical, to deal with varying input and output sizes we consider families of circuits, which are
parameterized by the input size(s) and possibly some other values, which will always be clear from context.

1In our instantiations, the set of possible values for any Z-wire will be a subset of Z ∩ [−q/2, q/2), so we can alternatively
consider having just Zq-wires.

4

Every circuit family in this work is implicitly logspace uniform, i.e., there is a logspace Turing machine that
outputs the circuit description given its parameters (in unary). In particular, the circuits can be computed
in polylogarithmic depth, and their size is polynomial. (Logspace uniformity is widely seen as the most
appropriate one for complexity classes defined by polylogarithmic depth.)

Any circuit family in our arithmetic model can be compiled (in uniform logspace) to, e.g., the standard
model of Boolean circuits with bounded fan-in, with multiplicative depth overhead that is logarithmic in the
maximum fan-in, and polylogarithmic in q. The former overhead comes from the fan-in of addition gates,
and the latter comes from implementing integer and modular arithmetic using Boolean operations on binary
representations. (In this representation, the decomposition gate becomes a null operation.)

2.3 Sequentiality Assumption

Here we recall the lattice-based candidate sequentiality assumption recently proposed by Lai and Mala-
volta [LM23] (with some slight differences in the notation). This assumption was used as the foundation for a
candidate proof of sequential work (PoSW); see Section 5 for further details.

Let q be a positive integer modulus and g ∈ Zℓ
q be a suitable “gadget” vector; for concreteness, we use the

standard powers-of-two gadget defined by gt = (1, 2, 4, . . . , 2ℓ−1) for ℓ = ⌈log2 q⌉, but all of our results easily
adapt to other choices of gadgets (see [MP12] for further details). Let g−1 : Zq → Zℓ be the corresponding
“(bit) decomposition” function: g−1(u) is binary and hence “short,” and ⟨g,g−1(u)⟩ = gt · g−1(u) = u
for any u ∈ Zq. Finally, extend the gadget and its decomposition operation to work on matrices (including
vectors) as follows: for any positive integer n, let Gn := In ⊗ gt ∈ Zn×nℓ

q denote the block-wise application
of gt to each ℓ-dimensional column block, and let G−1n (·) denote the entry-wise application of g−1 on any
matrix U having n rows, so that Gn ·G−1n (U) = U.

For dimensions n and m = nℓ, matrix Ā ∈ Zn×m
q , vector u0 ∈ Zn

q , and sequentiality parameter T , Lai
and Malavolta [LM23] consider the following linear system, where G = Gn ∈ Zn×m

q :2

G
Ā G

Ā
. . .
. . . G

Ā G

︸ ︷︷ ︸

ĀT∈ZTn×Tm
q

·

x1

x2
...
xT

︸ ︷︷ ︸
x∈ZTm

=

u0

0
...
0
0

 ∈ ZTn
q . (2.3)

As the foundation of their PoSW candidate, they pose the following sequentiality assumption. (They
actually give a general family of assumptions with various parameters, but in this work we mainly focus on
the instantiation underlying the PoSW.)

Conjecture 2.1. For sufficiently large q, given uniformly random (Ā,u0), computing a “somewhat short”
solution x ∈ ZTm to Equation (2.3)—specifically, one having ℓ∞ norm ∥x∥∞ ≤ (Cn)2 log T for a certain

2For convenience, we have made a slight but immaterial tweak to the system appearing in [LM23], by dropping the Ā matrix in
the bottom-right block (that appears below our bottom-right G matrix) and dropping the bottom-most block uT on the right-hand
side (below our zero blocks). It is easy to see that the two systems are equivalent.

In addition, [LM23] considers a more compact and “algebraically structured” version of the system over a certain polynomial ring,
where each d-by-d block of Ā is the (structured) multiplication matrix of a random ring element. Our attack works for arbitrary Ā, so
for generality we adopt the above presentation. For simplicity, we adopt a typical instantiation where d = Ω(n), though we note that
all our attacks also work for any d = nΩ(1), at the cost of O(1)- and (logO(1) T)-factor larger depths in Sections 4 and 5, respectively.

5

constant C > 0—requires depth (1− o(1)) · T .3

Notice that a “very short” binary solution, which has ℓ∞ norm ∥x∥∞ ≤ 1, can be computed in depth
proportional to T , as x1 = G−1n (u0) ∈ Zm and then xi = −G−1n (Āxi−1) ∈ Zm for i = 2, . . . , T . This
works because

Āxi−1 +Gxi = Āxi−1 − Āxi−1 = 0 .

The reason for the gap between the “very short” bound obtained by the above computation, versus the
“somewhat short” bound in the assumption, is the O(n)2 log T “slack factor” in the proof of sequential work
from [LM23]. More specifically, the honest prover can use a “very short” solution to convince the verifier, but
the knowledge extractor can extract only a “somewhat short” solution from any (possibly malicious) prover
that manages to convince the verifier. Looking ahead, the attacks we give in Section 4 crucially exploit this
gap, using a low-depth computation to find a solution that is significantly longer than the “very short” one, but
still below the “somewhat short” threshold.

3 Attack Framework

Here we develop a suite of general tools that can be combined in various ways to yield attacks on sequentiality
assumptions and proofs of sequential work.

3.1 Gadget Trapdoors

We first recall from [MP12] the notion of a (gadget) trapdoor for a matrix A ∈ ZN×W
q , for any dimen-

sions N,W . This is any “short” matrix R ∈ ZW×M , where M = Nℓ, for which

AR = GN = IN ⊗ gt ∈ ZN×M
q . (3.1)

More precisely, R should have suitably bounded operator norm ∥R∥r←p for whatever p, r are most appropriate
for the application. For example, when bounds on the Euclidean ℓ2 norm are desired, the spectral norm
∥R∥2←2 is usually most useful. In this work we will also frequently use the ℓ∞ norm, and also finer-grained
block-wise norm bounds, as defined in Section 2. Observe that GN itself has IM as a trapdoor.

Using such a trapdoor, it is easy to compute, in low depth, a comparably short solution x ∈ ZW to
Ax = u, for any syndrome u ∈ ZN

q : simply let x = R ·G−1N (u). This works because both R and G−1N (u)
are short, and

Ax = AR ·G−1N (u) = GN ·G−1N (u) = u .

Recall that G−1N applies g−1 to each entry of u independently, so x can be computed in depth O(1). And
because G−1N (u) is binary, for any r ∈ [1,∞] we have that x satisfies the (potentially block-wise) norm bound

∥x∥r ≤ ∥R∥r←∞ . (3.2)

For example, by Equation (2.2) this is at most W 1/r · ∥R∥∞ ·M , but tighter bounds may be available in
specific circumstances.

3More specifically, the base of the exponential is γ = 2d, where again d = Ω(n) is the dimension of the structured blocks of Ā.
Naturally, one can consider other norms as well, like the Euclidean ℓ2 norm.

6

Subspace trapdoors. More generally, for some relations (including the specific one from [LM23]) it
suffices, and will yield better bounds, to have a limited trapdoor with respect to just the top s rows for some
s ≪ N , which we call an s-subspace trapdoor.4 For convenience of usage later on, we allow s to be arbitrary,
including s > N . An s-subspace trapdoor of A is a short matrix R ∈ ZW×sℓ for which

AR = GN,sℓ := IN,s ⊗ gt ∈ ZN×sℓ
q , (3.3)

where Ia,b is the a-by-bmatrix whose diagonal entries are 1 and all other entries are 0; equivalently, it is obtained
by padding Imin(a,b) with zeros on the right or the bottom, as appropriate. So, ∥Ia,b∥r←p = ∥Imin(a,b)∥r←p.
Notice that the gadget matrix GN itself has the matrix IM,sℓ as an s-subspace trapdoor.

Similarly, we define the “left zero-padded” matrices

IN,[r]s :=
(
0N,min(r,s) IN,s−min(r,s)

)
and GN,[rℓ]sℓ := IN,[r]s ⊗ gt .

Then observe that IN,[0]s = IN,s and IN0+N1,s =
(

IN0, s

IN1,[N0]s

)
, and similarly for GN0+N1,[rℓ]sℓ.

Definition 3.1 (s-admissible vector). For a positive integer s, a vector u ∈ ZN
q is s-admissible if all its

entries below the first min(s,N) are zero.

Using an s-subspace trapdoor R for A, for any s-admissible syndrome u ∈ ZN
q , it is easy to compute, in

depth O(1), a solution to Ax = u that satisfies the norm bound in Equation (3.2). Let us := Is,N ·u ∈ Zs
q be

the truncation or padding by zeros (as appropriate) of u; observe that IN,s ·us = u because u is s-admissible.
Take x = R ·G−1s (us) ∈ ZW . Then we have that, as needed,

Ax = GN,sℓ ·G−1s (us) = IN,s · us = u .

3.2 Trapdoor Combiners

The core idea underlying our attacks is to recursively compute, in fairly low depth, a trapdoor for the
block-triangular matrix of the linear system in question, using trapdoors for sub-matrices of the system. This
trapdoor can then be used to find a short solution for any desired syndrome, as described above. In this section
we give a variety of low-depth, non-recursive combiner algorithms for constructing trapdoors and finding
short solutions using sub-trapdoors. Sections 4 and 5 then give parallel recursive “driver” algorithms that use
these combiners for specific attacks.

The base case is where the system’s matrix is simply the gadget matrix Gn for some (typically small) n—
which trivially has the identity matrix Inℓ as a trapdoor—or some other matrix having a known trapdoor. For
the recursive case, suppose that the system’s matrix A has N = N0 +N1 rows and block lower-triangular
form

A =

(
A0

W A1

)
, (3.4)

where A0 and A1 respectively have N0 and N1 rows; typically, one would have N0 ≈ N1. Note that the
matrix ĀT from the system in Equation (2.3) has this form, where A0 = A1 = ĀT/2 for even T (and
similarly for odd T) and W is all zeros except in its upper-rightmost n-by-m block.

As an initial result, we show in the following lemma how to get a trapdoor for A by combining individual
trapdoors for A0,A1. (We actually will not use the lemma as stated here in this work.)

4This definition and the associated techniques naturally generalize to any particular set of rows, or even to any subspace of the
column space.

7

Lemma 3.2. Let A have the form given in Equation (3.4). There is a depth-O(1) arithmetic circuit CombTrap
that, given A and a trapdoor Ri (having Mi = Niℓ columns) for each Ai, outputs a trapdoor R (having
M = Nℓ columns) for A satisfying for all p, r ∈ [1,∞] the block-wise bound

∥R∥r←p ≤

(
∥R0∥r←p

∥R1∥r←p · (M1−1/p
0 ·M1/p

1 + 1)

)
(3.5)

Moreover, for p = 2, the bound holds with O(
√
M) in place of (M1−1/p

0 ·M1/p
1 + 1), with high probability.

Proof. Observe that

A ·
(
R0

R1

)
=

(
GN0

WR0 GN1

)
.

Therefore, a trapdoor R for A is

R =

(
R0

R1

)(
IM0

R′ IM1

)
=

(
R0

R1R
′ R1

)
where R′ = G−1N1

(−WR0) ∈ ZM1×M0 . (3.6)

This is because

AR =

(
GN0

WR0 GN1

)(
IM0

R′ IM1

)
=

(
GN0

WR0 −WR0 GN1

)
= GN .

Note that R can be computed (given R0,R1,W) in depth O(1) in our model (see Section 2.2), by first
computing WR0, then R′, then R1R

′.
For the norm bound, first observe that R′ ∈ ZM1×M0 has binary entries, so ∥R′∥∞ ≤ 1. From

Equation (3.6), and sub-additivity and transitivity of the operator norm, we get the block-wise bound

∥R∥r←p ≤
(
∥R0∥r←p

∥R1∥r←p · (∥R′∥p←p + 1)

)
.

The bound ∥R′∥p←p ≤ M
1−1/p
0 ·M1/p

1 follows from Equation (2.2). Moreover, if we use a randomized,
subgaussian variant of g−1, we get that ∥R′∥2←2 = O(

√
M) with high probability.

3.2.1 Subspace Trapdoors

To attack the specific relation from [LM23] (see Equation (2.3)), because the syndrome is n-admissible it
suffices to compute an n-subspace trapdoor, regardless of how large N = Tn is. This can be done by a
simple optimization of the above approach, which yields much better matrix-norm bounds, and somewhat
better computation-depth bounds (for models with bounded fan-in).

Definition 3.3 (s-admissible matrix). For a positive integer s, we say that a matrix A having the form given
in Equation (3.4) is s-admissible if all the columns of W are s-admissible vectors (Definition 3.1), i.e., all
their entries below the first min(s,N1) are zero.

More generally (looking ahead to Section 3.2.3), for positive integers s1, . . . , sk−1, we say that a matrix A
having the form given in Equation (3.10) below is (s1, . . . , sk−1)-admissible if all the columns of all the Wi,j

are si-admissible vectors. When s1 = · · · = sk−1 = s, for brevity we typically just say that such a matrix is
s-admissible.

8

For example, observe that the matrix ĀT from [LM23] (see Equation (2.3)) is n-admissible.
For s-admissible matrices, we generalize Lemma 3.2 as follows.5 To simplify the statement, the reader

may take s and all the si to be equal, and at most N0 and N1, which is the only parameterization we use in
this work.

Lemma 3.4. Let s, s0, s1 be positive integers such that s0 ≥ min(N0, s) and s1 ≥ min(N1, s−N0), and
let A have the form given in Equation (3.4) and be s1-admissible. There is a depth-O(1) arithmetic circuit
CombTrap that, given input A and an si-subspace trapdoor Ri (having siℓ columns) for each Ai, outputs an
s-subspace trapdoor R (having sℓ columns) for A satisfying for all p, r ∈ [1,∞] the block-wise bound

∥R∥r←p ≤

(
∥R0∥r←p

∥R1∥r←p · s1−1/p · s1/p1 · ℓ

)
, (3.7)

and for p = 2, the bound holds with O(
√

max(s, s1)ℓ) in place of s1−1/p · s1/p1 · ℓ, with high probability.
More generally, the above claim holds with the following changes:

• s, s0, s1, . . . , sk−1 are positive integers such that si ≥ min(Ni, s−
∑

j<iNj) for all i, and A has the
form given in Equation (3.10) below and is (s1, . . . , sk−1)-admissible;

• the arithmetic circuit depth is O(k);

• the block-wise norm bound on ∥R∥r←p has ∥R0∥r←p for block 0 and ∥Ri∥r←p · s1−1/p · s1/pi · ℓ for
every block i > 0, and for p = 2, factor O(

√
max(s, si)ℓ) in place of s1−1/p · s1/pi · ℓ.

For clarity, we sometimes include the s and si parameters, or just s when they all are equal, as a subscript
to CombTrap. We point out that unlike the bound (3.5) in Lemma 3.2, the matrix norm bound (3.7) in
Lemma 3.4 does not have an additive +1 term, due to a difference in how the subspace trapdoor is constructed.

Proof. For simplicity of exposition, we prove the special case k = 2 in full detail, and describe the
straightforward generalization to arbitrary k in Section 3.2.3 below.

The CombTrap algorithm works as follows:

1. Express GN,sℓ =
(

GN0, sℓ

GN1,[N0ℓ]sℓ

)
.

2. Let R̃0 be the truncation or zero-padding (as appropriate) of R0 to sℓ columns, i.e., R̃0 = R0 · Is0ℓ,sℓ.

3. LetWs1 andHs1 respectively be the truncations or zero-paddings (as appropriate) ofW andGN1,[N0ℓ]sℓ

to s1 rows, i.e., Ws1 = Is1,N1 ·W and Hs1 = Is1,N1 ·GN1,[N0ℓ]sℓ = Gs1,[N0ℓ]sℓ.

4. Output

R =

(
R0

R1

)(
Is0ℓ,sℓ
R′

)
=

(
R̃0

R1R
′

)
where R′ = G−1s1 (Hs1 −Ws1R̃0) ∈ Zs1ℓ×sℓ . (3.8)

We first prove correctness, i.e., that the above output R is an s-subspace trapdoor of A. For the top block,
we have that

A0R̃0 = A0R0 · Is0ℓ,sℓ = (IN0,s0 ⊗ gt) · (Is0,s ⊗ Iℓ,ℓ) = IN0,s ⊗ gt = GN0,sℓ ,

5As with subspace trapdoors themselves, this modification naturally generalizes to any linear subspace of the column space.

9

where the penultimate equality follows from the mixed-product property and the fact that s0 ≥ min(N0, s).
For the bottom block, first observe that the columns of GN,sℓ are min(N, s)-admissible, and hence the
columns of GN1,[N0ℓ]sℓ are s1-admissible, since s1 ≥ min(N1, s −N0) = min(N, s) −N0. Because the
columns of W are also s1-admissible, we have that IN1,s1 ·Hs1 = GN1,[N0ℓ]sℓ and IN1,s1 ·Ws1 = W. Then
the correctness of the bottom block can be verified by the following calculation, similar to the one in the proof
of Lemma 3.2:

A1R1 ·R′ = GN1,s1ℓ ·G−1s1 (Hs1 −Ws1R̃0) = IN1,s1 · (Hs1 −Ws1R̃0) = GN1,[N0ℓ]sℓ −WR̃0 .

Finally, the depth bound of O(1) holds by inspection, and bounds on ∥R′∥p←p analogous to the ones in
the proof of Lemma 3.2 hold, with s1ℓ in place of M1 and sℓ in place of M0.

Remark 3.5. By setting s = N and si = Ni, we can recover Lemma 3.2 as a special case of Lemma 3.4,
though with a worse guaranteed norm bound. (For p = 2, the high-probability bounds match.) However, it is
possible to refine the bound in Lemma 3.4 to match the one in Lemma 3.2, using the following factor in place
of s1−1/p · s1/p1 · ℓ: (

min(N0, s)
1−1/p · s1/p1 · ℓ+ sign(max(s−N0, 0))

)
.

This factor can be obtained by inspecting more carefully the structure of Hs1 − Ws1R̃0: for s > N0,
Hs1 = Gs1,[N0ℓ]sℓ has a submatrix Gs1,(s−N0)ℓ on the right and R̃0 has zero-padding for these columns, and
then for this submatrix, G−1s1 (Gs1,(s−N0)ℓ) = Is1ℓ,(s−N0)ℓ.

3.2.2 Combining Solver

Here we describe a slightly optimized solution finder, which is important for our attack on the PoSW protocol
with its original norm bounds (see Section 5). Instead of building a full trapdoor from sub-trapdoors and then
using it to find a comparably short solution for a desired syndrome, we can instead directly use the sub-trapdoors
to get a somewhat shorter solution. Essentially, this optimization corresponds to solving the system “slightly
honestly,” where we sequentially compute a solution one block at a time, using the sub-trapdoors to compute
each block of the solution in low depth. Comparing the combination of Equations (3.2) and (3.7) above with
Equation (3.9) below, this method yields better block-wise norm bounds for (say) the ℓ∞ norm by at least
an sℓ factor for an s-subspace trapdoor. (Here as in Lemma 3.4, the reader may take all the si to be equal and
at most N0 and N1, which is the only parameterization we will use in this work.)

Lemma 3.6. Let s0, s1 be positive integers, let A have the form given in Equation (3.4) and be s1-admissible,
and let u = (u0

u1) ∈ ZN
q be a syndrome where each ui ∈ ZNi

q and is si-admissible. There is a depth-O(1)
arithmetic circuit CombSolve that, given A, u, and an si-subspace trapdoor Ri (having siℓ columns) for
each Ai, outputs a solution to Ax = u satisfying for any p, r ∈ [1,∞] the block-wise norm bound

∥x∥r ≤
(
∥R0∥r←p · (s0ℓ)1/p
∥R1∥r←p · (s1ℓ)1/p

)
. (3.9)

More generally, the above claim holds with the following changes:

• s0, s1, . . . , sk−1 are positive integers, A has the form given in Equation (3.10) below and is
(s1, . . . , sk−1)-admissible, and u = (ui)

k−1
i=0 ∈ ZN

q and each ui is si-admissible;

• the arithmetic circuit depth is O(k);

10

• the block-wise norm bound on ∥x∥r has ∥Ri∥r←p · (siℓ)1/p for every block i ≥ 0.

Proof. As in the proof of Lemma 3.4, we prove the special case k = 2 in full detail, and describe the
immediate generalization to arbitrary k in Section 3.2.3.

For our purposes in Section 5.3 it is convenient to define CombSolve in terms of a “helper” function
CombSolveHelper that has a slightly different interface. Given:

• A and an initial solution block x0 that is meant to satisfy A0x0 = u0,
• the remaining syndrome u1 ∈ ZN1

q , and
• an s1-subspace trapdoor R1 for A1 (so R0 is not needed),

it outputs a full solution x = (x0
x1) to Ax = u, by computing a solution to A1x1 = u′1 := u1 − Wx0,

namely, x1 = R1 ·G−1s1 (Is1,N1 · u′1). Note that x1 is correct because R1 is an s1-subspace trapdoor for A1,
and u1 and the columns of W are s1-admissible. By inspection, the depth of CombSolveHelper is O(1).

We now define CombSolve. It computes the initial solution block as x0 = R0 ·G−1s0 (Is0,N0 ·u0), and then
outputs the full solution CombSolveHelper(A,x0,u1,R1). The correctness of x0 (i.e., that A0x0 = u0)
follows from the hypotheses that R0 is an s0-subspace trapdoor for A0, and that u0 is s0-admissible. Observe
that the output is computed in depth O(1), and satisfies ∥xi∥r ≤ ∥Ri∥r←p · (siℓ)1/p because the output of
G−1si is binary.

3.2.3 Larger Arity

We now describe how all of the above easily generalizes to the case where A can be split into larger numbers
of blocks, as claimed in Lemmas 3.4 and 3.6. This will be needed for our attacks on PoSW variants in
Section 5. Specifically, suppose that for some k ≥ 2, the matrix A has the form

A =

A0

W1,0 A1
...

... . . .
Wk−1,0 Wk−1,1 · · · Ak−1

 , (3.10)

where Ai has Ni rows.
The claimed generalization of CombTrap from Lemma 3.4 is as follows. It can be verified that under the

hypotheses of Lemma 3.4, if Ri is an si-subspace trapdoor (having siℓ columns) for Ai, then an s-subspace
trapdoor for A is

R =

R0

R1

. . .
Rk−1

Is0ℓ,sℓ
R′1

...
R′k−1

 =

R̃0

R̃1
...

R̃k−1

 , (3.11)

where letting N ′i′ =
∑

i<i′ Ni, we express

GN,sℓ =

GN0,[N ′

0ℓ]sℓ

GN1,[N ′
1ℓ]sℓ...

GNk−1,[N
′
k−1ℓ]sℓ

11

and set

Hsi;i = Isi,Ni ·GNi,[N ′
iℓ]sℓ

= Gsi,[N ′
iℓ]sℓ

,

Wsi;i,j = Isi,Ni ·Wi,j ,

R′i = G−1si

(
Hsi;i −

∑
j<i

Wsi;i,j · R̃j

)
. (3.12)

The matrices R′j and R̃j can be computed in k sequential stages for j = 0, . . . , k − 1, accumulating the
Wsi;i,j · R̃j terms in parallel over all i > j in the jth stage. So, R can be computed in arithmetic depth O(k).
The claimed block-wise matrix norm bound on R follows immediately from operator-norm bounds on the
binary matrices R′i, as in the proof of Lemma 3.4.

The optimized solver CombSolve from Lemma 3.6 generalizes in a very similar way. Namely, the “helper”
function CombSolveHelper sequentially computes solution blocks

xi = Ri ·G−1si

(
Isi,Ni · ui −

∑
j<i

Wsi;i,j · xj

)
for i = 1, . . . , k − 1, where the summations are accumulated in parallel in each stage.

4 Attack on the Assumption

Here we use the tools from Section 3 to give a recursive attack on the sequentiality assumption underlying the
PoSW from [LM23] (see Section 2.3). Our ultimate result in this respect is as follows.

Theorem 4.1 (Attack on the sequentiality assumption). Let Ā ∈ Zn×m
q , T and k ∈ [2, T] be positive

integers, and ĀT be the matrix given in Equation (2.3). Given Ā, T , and k, an n-subspace trapdoor R̄T

for ĀT satisfying the following (scalar) norm bound for any p, r ∈ [1,∞] can be computed by a depth-
Õn,q(k logk T) Boolean circuit:

∥R̄T ∥r←p ≤ (k1/r ·m)⌈logk T ⌉ · ∥Im∥r←p .

Moreover, for p = 2 and T = 2o(m), the bound holds with
√
m in place of m in the factor on the left, with

high probability.
As a result, a solution x to Equation (2.3) satisfying the following (scalar) norm bound for any p ∈ [1,∞]

can be computed by a depth-Õn,q(k logk T) Boolean circuit:

∥x∥p ≤ (k1/p ·m)⌈logk T ⌉ ·m1/p ,

and for p = 2 and T = 2o(m) the bound holds with
√
m in place of m in the factor on the left, with high

probability.

We prove this theorem below as a corollary of a much more general setup and attack. As a couple of
examples, we can get the following parameterizations of Theorem 4.1:

• For k = 2, in depth just Õn,q(log T) we get a solution having ℓ∞ norm bounded by m⌈log2 T ⌉, or ℓ2
norm (and hence ℓ∞ norm as well) bounded by (2m)(⌈log2 T ⌉+1)/2 with high probability.

12

RecTraps(A)

if A = Gn : return Inℓ,sℓ

foreach i in parallel : Ri = RecTraps(Ai)

return CombTraps(A, [Ri]i)

Figure 1: Algorithm that computes a subspace trapdoor for any recursively s-admissible matrix A.

• By setting k ≈ T ε for an arbitrarily small constant ε > 0, in depth Õn,q(T
ε) we get a solution of just

polynomially bounded ℓ∞ norm m1/ε.

Regarding the the assumption made in [LM23] (Conjecture 2.1), under the (very mild) condition q = 2o(n)

and hence m = o(n2), the ℓ∞ norm of our attack’s solution is less than the bound of Θ(n)2 log2 T from
the assumption. So, in a typical parameterization where T ≫ n (or even just log T = logΩ(1) n) and
log q = Õn,T (1) = ÕT (1), the attack’s polylogarithmic ÕT (1) depth falsifies (even a major weakening of)
the assumption, which posits that finding such a solution requires linear depth (1− o(1)) · T (or in weaker
form, polynomial depth T ε for some constant ε > 0).

General attack. Our attack applies to a broad generalization of the system in Equation (2.3), namely, any
one in which the matrix is block lower-triangular and has “gadget” matrices G (or any other matrices having
known trapdoors) as the diagonal blocks. For simplicity of presentation, throughout this section and Section 5,
our general attack algorithms assume that the system’s matrix A is implicitly given in block form following
Equation (3.4) (or more generally, Equation (3.10)), and similarly for its component Ai matrices, recursively.
Then, an attack against a specific assumption or protocol is obtained as an instantiation of the general attack,
by specifying a recursive block structure for the proposal in question.

Definition 4.2 (Recursively s-admissible). For a positive integer s, a matrix A is recursively s-admissible
if A = Gn for some n (the base case), or if it has the form given in Equation (3.4) (or more generally,
Equation (3.10)), it is s-admissible, and all its Ai submatrices are recursively s-admissible.

For example, notice that the matrix ĀT from Equation (2.3) is recursively n-admissible for any choice of
arity k ∈ [2, T], with a recursive block structure of depth ⌈logk T ⌉.

In the rest of this section, we define and analyze a simple recursive “driver” RecTrap of the trapdoor
combiner CombTrap from Lemma 3.4; see Figure 1 for its formal definition. Then we show that a
straightforward instantiation of this driver yields Theorem 4.1 as corollary.

Lemma 4.3. Let A be a recursively s-admissible matrix that recursively has the form given in Equation (3.10)
for some arity k and recursion depth at most d (where d = 0 is the base case). There is a depth-O(kd)
arithmetic circuit RecTraps that, given A, computes an s-subspace trapdoor R for A satisfying for any
p, r ∈ [1,∞] the (scalar) norm bound

∥R∥r←p ≤ (k1/r · sℓ)d · ∥Isℓ∥r←p .

Moreover, for p = 2 and kd = 2o(sℓ), the bound holds with
√
sℓ in place of sℓ in the factor on the left, with

high probability. In particular, for r = ∞ we have that ∥R∥∞←p ≤ (sℓ)d, and ∥R∥∞←2 ≤ (sℓ)d/2 with
high probability.

13

Proof. At each level of the recursion, by Lemma 3.4, CombTrap has arithmetic depth O(k). Hence the
overall arithmetic depth of RecTraps(A) is O(kd).

For the operator norm of R, again by Lemma 3.4, we have the recurrence

∥R∥r←p ≤

∥∥∥∥∥∥∥∥∥

∥R0∥r←p

∥R1∥r←p · sℓ
...

∥Rk−1∥r←p · sℓ

∥∥∥∥∥∥∥∥∥
r

≤ k1/r ·max
i

∥Ri∥r←p · sℓ .

For p = 2, the recurrence holds with
√
sℓ in place of sℓ, with high probability. The base case of this

recurrence is ∥Inℓ,sℓ∥r←p ≤ ∥Isℓ∥r←p, and the recursion has depth at most d. This yields the claimed bound
on ∥R∥r←p.

Proof of Theorem 4.1. Recall that the matrix ĀT from Equation (2.3) is recursively n-admissible for any
choice of arity k ∈ [2, T], with a corresponding depth of d = ⌈logk T ⌉. The bound on ∥R̄T ∥r←p then follows
immediately from Lemma 4.3 and the fact that m = nℓ. The lemma also says that the arithmetic circuit
computing R̄T has depth O(kd) = O(k logk T) in our model (see Section 2.2).

For compiling the arithmetic circuit to a Boolean circuit, observe that the main computations in RecTrap
are the CombTrap calls, and in the latter (see Equations (3.11) and (3.12)), the fan-in of the addition gates is
at most nℓ = O(n log q): the computation of Ri ·R′i uses inner products of dimension siℓ = nℓ, and for
the computation of Wn;i,j · R̃j , by the structure of ĀT , all but the rightmost nℓ columns of Wn;i,j are zero.
Hence the Boolean circuit has depth Õn,q(k logk T), as claimed.

For the particular solution x, we use the subspace-trapdoor solver (see Section 3.1), letting x =
R̄T ·G−1n (u0). Then

∥x∥p ≤ ∥R̄T ∥p←p · ∥G−1n (u0)∥p ≤ (k1/p ·m)⌈logk T ⌉ ·m1/p .

Remark 4.4 (Relation to preprocessing attack). We note that [LM23, Section 3.2] describes a preprocessing
attack on a variant of the assumption from Section 2.3 in which Ā is fixed in advance. (Recall that in the
actual proposed assumption, Ā is sampled as part of the instance.) This attack uses depth at least T during
the preprocessing, but arithmetic depth only O(1) once a desired right-hand side of Equation (2.3) is decided.

In the language of our attack, the preprocessing can be seen as naı̈vely computing a (very short) n-subspace
trapdoor for ĀT in large depth, by just honestly computing a solution for each column of GTn,nℓ. Our
attack exponentially improves on the depth (but with a worse norm) by recursively computing an n-subspace
trapdoor from such a trapdoor for a multiplicatively smaller value of T (instead of using honest evaluations).
This falsifies the assumption underlying the PoSW protocol from [LM23], without using any preprocessing.

5 Attacks on Proofs of Sequential Work

Lai and Malavolta [LM23] also gave a candidate proof of sequential work (PoSW) protocol and proved its
security based on the sequentiality assumption stated in Section 2.3. While the attack from Section 4 strongly
falsifies the assumption, and thus renders the security proof vacuous, it does not immediately follow that the
PoSW itself is broken. Indeed, the attack as stated does not break the protocol, because it produces a solution
vector whose components have much larger norms than the “honestly computed” ones, so running the (honest)
prover with this vector would not yield short enough component vectors to convince the verifier.

14

Prover(Ā, T,u0, {ui}i∈[T], {xi}i∈[T])

if T = 1 :

send x1

return

T ′ = (T − 1)/2

send xT ′+1

receive c

u′
i = c · ui + ui+T ′+1

x′
i = c · xi + xi+T ′+1

Prover(Ā, T ′,u′
0, {u′

i}i∈[T ′], {x′
i}i∈[T ′])

Verifier(Ā ∈ Zn×nℓ
q , T,u0,uT ∈ Zn

q , β)

if T = 1 :

receive x1

return [∥x1∥∞ ≤ β

∧Gx1 = u0 ∧ −Āx1 = u1]

T ′ = (T − 1)/2

receive xT ′+1

if ∥xT ′+1∥∞ > β : return 0

send random c with |c| ≤ γ

u′
0 = c · u0 + (−ĀxT ′+1)

u′
T ′ = c · GxT ′+1 + uT

return Verifier(Ā, T ′,u′
0,u

′
T ′ , 2 γ′ · β)

Figure 2: The core algorithms of the PoSW from [LM23], with boxed modifications. For simplicity, we
give the code only for T of the form T = 2t − 1. The original PoSW applies the challenge factor c to the
second term in each sum (instead of the first), and it uses γ′ = γ := Ω(n).

In this section we give attacks that use the tools from Section 3 in a more sophisticated way, to break two
PoSWs that are very similar (but not quite identical) to the one given in [LM23]; see Figure 2 for the formal
definition. Both variants tweak the core “folding” operation to multiply the verifier’s random challenge by the
first, rather than the second, half of the prover’s solution vector. In the design of the protocol the choice is
arbitrary, since the analysis and security proof apply equally well to either version, but the choice seems to
have significant implications for attacks, as we explain below. In addition, in our first variant protocol, the
verifier checks the prover’s responses using somewhat relaxed norm bounds (which are polynomially related
to the original ones). Our second variant uses the original norm bounds from [LM23]; the only change is the
tweaked folding operation.

The rest of this section is organized as follows. In Section 5.1 we describe some of the challenges that
arise in attacking the PoSW protocol of [LM23]. In Section 5.2 we break the first variant protocol using the
simple RecTrap algorithm from Section 4, but with a slightly different recursive block decomposition of the
system’s matrix. Then in Section 5.3 we break the second variant using a much more sophisticated recursive
strategy.

5.1 Challenges in Attacking PoSWs

We start by describing some of the additional challenges that arise in attacking the PoSW protocol of [LM23],
which motivate our protocol tweaks and enhanced attacks. See Figure 2 for a formal definition of the protocol,
with our tweaks highlighted.

Structure of the PoSW. In the PoSW, the honest prover computes a short solution x to Equation (2.3), then
engages in an interactive public-coin protocol to convince the verifier that it knows such a solution. (The
protocol can be made non-interactive in the usual way via the Fiat–Shamir transform.) To do this, it uses the
verifier’s small random challenge to linearly “fold” the first and second halves of x together, which yields a
somewhat longer solution of half the dimension, then recursively proves knowledge of this folded solution.

15

More precisely, the prover first announces uT = −ĀxT (or alternatively, announces xT and has the
verifier compute uT itself) as its claimed result of the sequential computation. Then it gives a proof of
knowledge of its solution x to Equation (2.3): it announces x(T+1)/2 (assume that T is odd for simplicity),
which the verifier checks is short enough, and the verifier announces a small random challenge c.6 Observe
that the remaining halves of x form two solutions to reduced-dimension instances of Equation (2.3), with
known right-hand sides of the appropriate form. So, the prover linearly combines these solutions using c,
and recursively proves knowledge of the resulting (somewhat longer) solution in the same manner, until the
dimension is small enough to simply reveal and check the solution. Note that with each successive stage of
the recursion, the verifier must apply a more relaxed norm check on the prover’s announced value, because
folding increases the norm of the solution by some fixed factor (independent of T).

The difficulty. The key challenge in attacking the PoSW seems to be as follows: (1) the prover must first
announce some uT to the verifier, so (2) the prover can know at most one short solution for whatever value
it announces, and (3) the only way we see to convince the verifier is by knowing a solution whose middle
component x(T+1)/2, along with all subsequent middle components under the recursive folding, are nearly as
short as what the honest prover would compute. We elaborate on each of these points next.

The announced value of uT represents the claimed result of the sequential computation that the prover
supposedly performed to get a solution to Equation (2.3). It is straightforward to show that computing distinct
short solutions, for any fixed and possibly adversarially chosen right-hand side, is at least as hard as solving
the corresponding SIS problem for the random matrix Ā. So, under the standard assumption that SIS is
intractable (see, e.g., [Ajt96, MR04]), once an efficient prover (of any depth) reveals some uT , it can know
at most one short solution for it. The same goes for the later stages of the protocol with lower-dimensional
instances of Equation (2.3), where the first and last components of the right-hand side are determined by the
previous stages.7

With these constraints, the only way we see to convince the verifier is by proceeding exactly as the honest
(specified) prover would, using a single known solution. This means that the middle component of the solution
vector, and all subsequent middle components under recursive folding, need to satisfy the verifier’s norm
checks. In particular, it seems that whichever half of the solution is multiplied by the verifier’s challenge
needs to be nearly as short as what the honest prover would compute. The PoSW from [LM23] multiplies
by the second half, and we do not see a way to generate such a short second half in depth significantly less
than T . This is because our techniques yield trapdoors and solutions whose second halves are larger than their
first halves by some polynomial factor. Again we stress that the attack from Section 4 achieves low depth by
exploiting the moderately large slack factor: the solution is merely “somewhat short” in its second half (and
fourth quarter, etc.), but not nearly as short as what the honest computation produces.

6As mentioned before, [LM23] considers an “algebraically structured” version of the system Equation (2.3) over a certain
commutative polynomial ring, and the challenge c is a ring element. In our treatment, we actually need to model the challenge c as a
matrix, and measure its shortness by some suitable operator norm. The norm bound on c used in [LM23] translates to γ = 2d = Ω(n)
in our setting; see the latter part of Footnote 2. Moreover, because the ring is commutative, c commutes with other matrix factors,
and in particular with Ā. For simplicity, we still write c as a scalar, and we give more details about treating c as a matrix in the
analysis below.

7This state of affairs is quite different from the context of the attack from Section 4, where the adversary is not bound to any
particular right-hand side of Equation (2.3), and knows short solutions to many different right-hand sides via its trapdoor.

16

5.2 Breaking a Relaxed PoSW

The above discussion motivates a natural alternative folding operation: multiply the verifier’s random
challenge c by the first, rather than the second, half of the solution. That is, instead of folding a solution x into
the lower-dimensional one xfirst + c · xlast, use c · xfirst + xlast. The security proof from [LM23] (modified in
the obvious way) holds equally well for this option, because the two halves are treated symmetrically.8

Interestingly, this trivial modification makes the PoSW breakable using our attack framework. In this
subsection, as a warmup we break this tweaked protocol with a verifier that also uses somewhat relaxed norm
checks. The precise statement is as follows; we prove it below after introducing the definitions and tools
needed to do so.

Theorem 5.1 (Attack on the PoSW with relaxed parameters). There is a depth-Õn,q(log T) malicious
prover (modeled as a Boolean circuit) that, given any Ā ∈ Zn×m

q , u0 ∈ Zn
q , and positive integer T , convinces

the verifier in the modified PoSW, where in the folding operation the challenge is multiplied by the first half of
the solution, and parameters γ′ ≥ (γ +m)/2 and β ≥ m are used.

The attack simply uses the RecTrap algorithm from Section 4, but with a slightly different recursive
block decomposition of the matrix ĀT . Essentially, this works because the xlast constructed by the attack is a
small factor longer than xfirst, so the two summands c · xfirst,xlast in the tweaked folding operation are more
“balanced,” hence their sum passes the appropriately relaxed norm checks. However, we also need to ensure
that the revealed middle component is sufficiently short, at every stage of the recursion. For this we impose a
suitable recursive block structure on ĀT , which treats the middle components specially, as base cases.

Definition 5.2 (PoSW topology). A block vector or matrix has PoSW topology of depth d and base rows n if
for the base case d = 0 it has n rows, and if for d > 0 it has three row blocks, respectively having PoSW
topologies of depths d− 1, 0, d− 1 (all with base rows n).

Observe that by induction, a vector or matrix having PoSW topology has T = 2d+1 − 1 row blocks, of n
rows each. In particular, for such T the recursively n-admissible matrix (Definition 4.2) ĀT from the system
in Equation (2.3) can be given this PoSW topology. Note that ĀT , like any recursively s-admissible matrix
having PoSW topology with base rows n, is simply Gn in the base case d = 0.

Remark 5.3. In Definition 5.2, for simplicity of presentation, we define the PoSW topology only for matrices
having exactly T = 2d+1 − 1 row blocks. Our attacks, analyses, and results in Sections 5.2 and 5.3 rely on
the PoSW topology, and consequently work for T of this form. However, it is easy to generalize the recursive
definition to work for an even number of blocks, following what is done in the original definition of the PoSW
of [LM23]. This defines a PoSW topology for any positive integer T , and our attacks, analyses, and results
immediately generalize analogously.

To aid in the analysis, we define the following operations on a vector or matrix M having PoSW topology
of depth d > 0 and base rows n, whose three row blocks are denoted M0,M1,M2. The middle block, and
folding operation with multiplier c, are respectively defined as

mid(M) := M1 =
(
0n,N ′ In 0n,N ′

)
·M (5.1)

foldc(M) := cM0 +M2 =
(
cIN ′ 0N ′,n IN ′

)
·M , (5.2)

8As far as we can tell, in [LM23] the specific choice of folding operation between these two options was made arbitrarily.

17

where N ′ = T ′n for T ′ = (T − 1)/2 = 2d − 1 is the number of rows in each of M0,M2. For convenience,
for M having depth d = 0 also define mid(M) := M = In ·M.

Observe that for a vector or matrix having a PoSW topology, its corresponding recursive block-wise vector
of (vector or matrix) norms also has a PoSW topology of the same depth, with one row in the base case. In
particular, if |c| ≤ γ, then by the triangle inequality,

∥foldc(M)∥r←p ≤ foldγ(∥M∥r←p) . (5.3)

This can be applied iteratively: for any ci with |ci| ≤ γ for all 1 ≤ i ≤ τ where τ ≤ d, we have that

∥foldcτ (· · · foldc1(M) · · ·)∥r←p ≤ fold(τ)γ (∥M∥r←p) . (5.4)

More generally, our treatment (which treats polynomial-ring elements as vectors and matrices) actually
models the multiplier c as a square matrix having the same dimension as the base-case number of rows n.
Then the folding is defined as

foldc(M) :=
(
IT ′ ⊗ c 0N ′,n IN ′

)
·M ,

and for any c with ∥c∥r←r ≤ γ, Equation (5.3) still holds, and similarly for its iterated version Equation (5.4).

Lemma 5.4. Let A be a recursively s-admissible matrix with PoSW topology of depth d and base rows n.
There is a depth-O(d) arithmetic circuit RecTraps that, given A, computes an s-subspace trapdoor R for A
satisfying the following bound for any p, r ∈ [1,∞] and any integer τ ∈ [0, d]:

mid(fold(τ)γ (∥R∥r←p)) ≤ (γ + sℓ)τ · ∥Inℓ,sℓ∥r←p · sℓ .

Proof. At each level of the recursion, by Lemma 3.4, CombTrap has arithmetic depth O(1). Hence the
overall arithmetic depth of RecTraps(A) is O(d).

For the operator norm of R, again by Lemma 3.4, we have the recurrence

∥R∥r←p ≤

 ∥R0∥r←p

∥Inℓ,sℓ∥r←p · sℓ
∥R2∥r←p · sℓ

 ,

and the base case d = 0 has ∥R∥r←p = ∥Inℓ,sℓ∥r←p. Hence ∥R∥r←p ≤ pf(d), a block vector recursively
defined as

pf(d) :=

 pf(d− 1)
∥Inℓ,sℓ∥r←p · sℓ
pf(d− 1) · sℓ

 , (5.5)

with base case pf(0) = ∥Inℓ,sℓ∥r←p. Therefore,

foldγ(pf(d)) =
(
γI 0 I

)
·

 pf(d− 1)
∥Inℓ,sℓ∥r←p · sℓ
pf(d− 1) · sℓ

 = (γ + sℓ) · pf(d− 1) .

By iterating, for any integer τ ∈ [0, d], we get that fold(τ)γ (pf(d)) = (γ + sℓ)τ · pf(d − τ). Therefore, as
desired,

mid(fold(τ)γ (∥R∥r←p)) ≤ mid(fold(τ)γ (pf(d)))

= (γ + sℓ)τ ·mid(pf(d− τ))

≤ (γ + sℓ)τ · ∥Inℓ,sℓ∥r←p · sℓ .
(Note that mid(pf(d− τ)) = ∥Inℓ,sℓ∥r←p in the base case τ = d, but ∥Inℓ,sℓ∥r←p · sℓ is still a valid upper
bound.)

18

Proof of Theorem 5.1. For simplicity of presentation we assume that T has the form T = 2d+1 − 1, as
required by Definition 5.2; for other T , we can use a generalized PoSW topology as described in Remark 5.3.

The matrix ĀT from Equation (2.3) is recursivelyn-admissible with PoSW topology of depth d = ⌊log2 T ⌋
and base rows n. The malicious prover computes an n-subspace trapdoor R̄T of ĀT following Lemma 5.4,
uses the subspace-trapdoor solver (see Section 3.1) to get a solution x = R̄T ·G−1n (u0) to Equation (2.3),
and then proceeds in the same way as the honest prover. By Lemma 5.4, this prover has arithmetic depth
O(d) = O(log T). Then similar to the proof of Theorem 4.1, by the structure of ĀT , this arithmetic circuit
compiles to a Boolean circuit of depth Õn,q(log T).

Note that acting as the honest prover using a valid solution (of any norm) ensures that the verifier’s
“linear” checks are satisfied, so it just remains to confirm that the verifier’s norm checks are also satisfied. By
Lemma 5.4 again, for all τ ∈ [0, d] the block-wise norm of the solution x satisfies

mid(fold(τ)γ (∥x∥∞)) ≤ mid(fold(τ)γ (∥R∥∞←∞)) · 1 ≤ (γ +m)τ ·m ≤ (2γ′)τ · β .

So, considering Equation (5.4) and the fact that the verifier’s challenges c all satisfy |c| ≤ γ (or more precisely,
∥c∥∞←∞ ≤ γ), the verifier’s norm checks on the folded solution x itself are indeed satisfied.

5.3 Breaking a PoSW with the Original Norm Bounds

The prior subsection breaks the PoSW with tweaked folding operation and relaxed norm bounds. Here we
break a PoSW whose only modification from [LM23] is the tweaked folding operation (the norm bounds
remain unchanged). This attack uses much more sophisticated recursive strategy, which we summarize below,
and present formally in Figure 3; see also Figure 4 for a visual illustration. Our main result in this subsection
is as follows; as in the previous subsection, we prove it below after introducing the needed tools.

Theorem 5.5 (Attack on the PoSW with original norm bounds). For log q = o(n), there is a depth-
Õn,q(log

2 T) malicious prover (modeled as Boolean circuit) that, given any Ā ∈ Zn×m
q , u0 ∈ Zn

q , and
positive integer T , convinces the verifier in the modified PoSW where in the folding operation the challenge is
multiplied by the first half of the solution, and the original parameters γ′ = γ and β = 1 are used.

Recall that our previous attack breaks the PoSW with parameters γ′ = (γ + m)/2 and β = m
(Theorem 5.1). Our goal in the improved attack is to handle γ′ = γ and β = 1. At a high level, we improve the
parameter β by applying the “direct solution” technique from Section 3.2.2, and we improve γ′ by designing
a more sophisticated block decomposition of ĀT (in a finer-grained version of the PoSW topology).

Obtaining β = 1. To see the idea behind our new strategy, consider the concrete example of (the core
recursive part of) the PoSW for T = 15. In the first round, the prover sends the “middle” component x8 to the
verifier, which checks that ∥x8∥∞ ≤ β. Our previous attack constructs the solution as x = R̄T ·G−1n (u0),
where R̄T is a n-subspace trapdoor for ĀT generated by RecTrap. As a result, our previous attack can ensure
only that ∥x8∥∞ ≤ ∥R8∥∞←∞ (where R8 is the corresponding row block of R̄T), and by construction, this
is bounded by ∥I∥∞←∞ ·m = m, which is why we took β = m.

The factor m above comes from Lemma 3.4, but notice that in its “direct solution” counterpart Lemma 3.6,
the expansion factor is m1/∞ = 1 instead of m. So, if x is constructed using CombSolve instead, we would
have ∥x8∥∞ ≤ 1, which allows us to take β = 1, at least for the first round. To get an attack that works
for every round, we apply this idea recursively, solving for the first half of x recursively, and in parallel
computing suitable trapdoor(s) for the second-half block. We then use CombSolveHelper to construct an
entire solution from these pieces. See the definition of RecSolvevec in Figure 3 for the precise definition; also

19

RecSolvevec
s (A,u)

if A = Gn : return CombSolve(A,u, [Im,sℓ])

in parallel:
x0 = RecSolvevec

s (A0,u0)

L = RecSolvelist
s (A2)

return CombSolveHelper(A,x0,u
′, [Im,sℓ;L])

RecSolvetrap
s (A)

if A = Gn : return Im,sℓ

in parallel:
R0 = RecSolvetrap

s (A0)

L = RecSolvelist
s (A2)

return CombTraps(A, [R0, Im,sℓ;L])

RecSolvelist
s (A)

if A = Gn : return [Im,sℓ]

in parallel:

L = RecSolvelist
s (A0)

R2 = RecSolvetrap
s (A2)

return [L; Im,sℓ,R2]

Figure 3: Algorithm RecSolvevec that solves Ax = u for any recursively s-admissible matrix A having
PoSW topology with base rows n, and any s-admissible syndrome u. It parses u =

(u0

u′
)

where u0 ∈ ZN0
q

for N0 = (N − n)/2. Throughout, m = nℓ.

see Figure 4 for an illustration, where the solid lines represent recursive calls to RecSolvevec (ignore the other
types of lines for now).

Obtaining γ′ = γ. Now let us resume the example. After the norm check in the first round, the prover
receives a challenge c1 from the verifier. Then in the second round, the prover sends x′4 = c1 ·x4 +x12 to the
verifier, which tests whether ∥x′4∥∞ ≤ 2γ′ · β. Once the above “direct solution” idea is applied recursively,
we can similarly get ∥x4∥∞ ≤ 1. However, the ∥x12∥∞ term in the second half still picks up an m factor
when the trapdoor for the second-half block is constructed using CombTrap. This results in no improvement
to the parameter γ′ = (γ +m)/2.

Our key new idea here is to partly “sequentialize” the solving within the second half: instead of constructing
a combined, longer trapdoor for the entire second-half block from trapdoors for its sub-blocks, we just directly
use those trapdoors; see RecSolvelist in Figure 3. (Recall that CombSolveHelper works for an arbitrary block
decomposition.) Specifically, the sub-blocks in the second-half block are the third-quarter block, a singleton
block Gn, and the last-quarter block. We then simply use this list of trapdoors in CombSolveHelper to get
the final solution x. This leads to ∥x12∥∞ ≤ 1, thus allowing the use of γ′ = γ in the second round.

Continuing the example, we see that the “(2τ + 1)/2τ+1-points” (e.g., the “3/4-point” x12 we just
considered, the “5/8-point” x10, etc.) are the only places where we need to apply the “sequentialization”
idea in order to obtain γ′ = γ. Trapdoors for other groups of sub-blocks can be safely combined into one
trapdoor without violating the norm bounds; see RecSolvetrap in Figure 3. Importantly, therefore, the lengths
of the lists of trapdoors remain linear in the recursion depth d, so the depths of the sequential solving steps
remain low. See Figure 4 for an illustration of the entire example, where the thick and thin dashed lines
represent recursive calls to RecSolvelist and RecSolvetrap, respectively; note that these recursive calls alternate
in a way that exactly traces the “(2τ + 1)/2τ+1-points.” Altogether, combining the “direct solution” and the
“sequentialization” idea, we manage to get our new attack to work for the original parameters γ′ = γ and
β = 1.

20

1
2

3

4

5
6

7

8

9
10

11

12

13
14

15

x

Figure 4: An example recursion tree for RecSolvevec on a matrix with PoSW topology of depth d = 3.
Recursive calls to RecSolve in the “modes” vec, list, trap are represented by solid lines, thick dashed lines,
and thin dashed lines, respectively; singleton identity matrices are marked by thin dotted lines. The thickness
of each (thick dashed) line for a list-mode call roughly depicts the number of returned trapdoors, and the
width of each internal recursion node roughly depicts the amount of sequential work at that node. Each
number i marks the vector/trapdoor corresponding to the block xi in the solution x.

Lemma 5.6. Suppose that sℓ ≤ γ2. Let A be a recursively s-admissible matrix with PoSW topology of
depth d and base rows n, and let u be an s-admissible vector. There is a depth-O(d2) arithmetic circuit
RecSolvevec

s that, given A, computes a solution to Ax = u satisfying the following bound for any p ∈ [1,∞]
and any integer τ ∈ [0, d]:

mid(fold(τ)γ (∥x∥p)) ≤ (2γ)τ · (sℓ)1/p .

In particular, for p = ∞, we have that mid(fold
(τ)
γ (∥x∥∞)) ≤ (2γ)τ .

Remark 5.7. In Lemma 5.6 we assume that sℓ ≤ γ2. It is possible to relax the assumption to sℓ ≤ γ2+a for
any integer a ≥ 0, at the cost of increasing the arithmetic depth from O(d2) to O(d2+a). Note that for any
polynomial relationship between sℓ and γ, this a will be a constant and so the extra factor da in the arithmetic
depth will be polynomial in the depth of the PoSW topology.

The generalization is to introduce a parameter α in RecSolvelist and form RecSolvelist[α]. RecSolvevec and
RecSolvetrap now make recursive calls to RecSolvelist[a] instead. For α = 0, RecSolvelist[0] makes recursive
calls to RecSolvelist[0] and RecSolvetrap as before, while for α > 0, RecSolvelist[α] makes recursive calls to
RecSolvelist[α] and RecSolvelist[α− 1] instead (and combines by simply concatenating the returned lists, still
with an Im,sℓ in the middle).

Proof. Again we assume that T has the form T = 2d+1−1; the case of general T can be handled as described
in Remark 5.3.

We first bound the arithmetic depth of RecSolve, in any of its three “modes” (vec, trap, list), when given a
recursively s-admissible matrix having PoSW topology of depth d. It makes two parallel recursive calls (with
varying modes) on submatrices that follow the PoSW topology (with the same base case), so its total recursion
depth is d. Then because RecSolvetrap returns a single trapdoor, RecSolvelist returns a list having O(d)
trapdoors. So, by Lemmas 3.4 and 3.6, the arithmetic depth of the non-recursive work in RecSolve—namely,
CombSolveHelper or CombTrap—is O(d), and hence the overall arithmetic depth is O(d2).

21

For the (block-wise) norm of x, we analyze more generally the norms of the outputs of RecSolve{vec,list,trap}

when given an arbitrary recursively s-admissible matrix with PoSW topology. For an (arbitrary) vector x
returned by RecSolvevec, again by Lemma 3.6, we have the recurrence

∥x∥p ≤

 ∥x0∥p
∥Im,sℓ∥p←p · (sℓ)1/p
∥R̂2∥p←p · (sℓ)1/p

 =

 ∥x0∥p
(sℓ)1/p

∥R̂2∥p←p · (sℓ)1/p

 ,

and the base case is ∥x∥p = ∥G−1s (⋆)∥p ≤ (sℓ)1/p. Here R̂2 is the block matrix whose row blocks are
the vertically stacked s-subspace trapdoors (which, to recall, all have sℓ columns) from the list L returned
by RecSolvelist; we similarly stack other outputs of RecSolvelist below. For a trapdoor stack R̂ returned by
RecSolvelist, straightforwardly,

∥R̂∥p←p =

 ∥R̂0∥p←p

∥Im,sℓ∥p←p

∥R2∥p←p

 =

∥R̂0∥p←p

1
∥R2∥p←p

 ;

and for a trapdoor R returned by RecSolvetrap, again by Lemma 3.4, we have that

∥R∥p←p ≤

 ∥R0∥p←p

∥Im,sℓ∥p←p · sℓ
∥R̂2∥p←p · sℓ

 =

∥R0∥p←p

sℓ

∥R̂2∥p←p · sℓ

 ≤

∥R0∥p←p

γ2

∥R̂2∥p←p · γ2

 ,

where for the last inequality we use the hypothesis sℓ ≤ γ2. Both ∥R̂∥p←p and ∥R∥p←p have the same base
case ∥Im,sℓ∥p←p = 1.

So, following the recurrence pattern, when the input to RecSolve has PoSW topology of depth d, we
have that

(
∥R∥p←p ∥R̂∥p←p ∥x∥p

)
is bounded from above by the matrix

(
pf trap(d) pf list(d) pfvec(d)

)
,

which is recursively defined as follows:

(
pf trap(d) pf list(d) pfvec(d)

)
:=

pf trap(d− 1) pf list(d− 1) pfvec(d− 1)

γ2 1 (sℓ)1/p

pf list(d− 1) · γ2 pf trap(d− 1) pf list(d− 1) · (sℓ)1/p

 .

For convenience, we denote profile(d) :=
(
pf trap(d) pf list(d) pfvec(d)

)
. The base case of the recursion is

profile(0) =
(
1 1 (sℓ)1/p

)
.

From these definitions it can be verified that

foldγ(profile(d)) =
(
γI 0 I

)
·

pf trap(d− 1) pf list(d− 1) pfvec(d− 1)

γ2 1 (sℓ)1/p

pf list(d− 1) · γ2 pf trap(d− 1) pf list(d− 1) · (sℓ)1/p

= profile(d− 1) ·

 γ 1 0

γ2 γ (sℓ)1/p

0 0 γ

 .

Hence by iterating, for any τ , we get that

fold(τ)γ (profile(d)) = profile(d− τ) ·

 γ 1 0

γ2 γ (sℓ)1/p

0 0 γ

τ

.

22

It can be verified by induction that this matrix power expands to γ 1 0

γ2 γ (sℓ)1/p

0 0 γ

τ

=

 (2γ)τ−1 · γ (2γ)τ−1 (2τ−1 − 1) · γτ−2 · (sℓ)1/p
(2γ)τ−1 · γ2 (2γ)τ−1 · γ (2γ)τ−1 · (sℓ)1/p

0 0 γτ

 .

Then we get, as desired,

mid(fold(τ)γ (∥x∥p)) ≤ mid(fold(τ)γ (pfvec(d)))

= mid(profile(d− τ)) ·

(2τ−1 − 1) · γτ−2 · (sℓ)1/p
(2γ)τ−1 · (sℓ)1/p

γτ

≤
(
γ2 1 (sℓ)1/p

)
·

(2τ−1 − 1) · γτ−2 · (sℓ)1/p
(2γ)τ−1 · (sℓ)1/p

γτ

= 2τ−1(γτ + γτ−1) · (sℓ)1/p

≤ (2γ)τ · (sℓ)1/p .

Here note that mid(pf(d − τ)) =
(
1 1 (sℓ)1/p

)
in the base case τ = d, but

(
γ2 1 (sℓ)1/p

)
is still a

valid upper bound.

Proof of Theorem 5.5. Because log q = o(n), we have that m = nℓ = o(n2) = o(γ2), and thus m ≤ γ2

holds (for all sufficiently large n). Recall that the matrix ĀT from Equation (2.3) is recursively n-admissible
with PoSW topology of depth d = ⌊log2 T ⌋ and base rows n. The malicious prover computes a solution x to
Equation (2.3) following Lemma 5.6, and then proceeds in the same way as the honest prover. By Lemma 5.6,
this prover has arithmetic depth O(d2) = O(log2 T). Similarly to the proof of Theorem 4.1, by the structure
of ĀT , this compiles to a Boolean circuit of depth Õn,q(log

2 T).
It remains to confirm that this will satisfy the verifier’s norm checks, and in particular to analyze the

γ-folding of the block-wise norms of the solution x. Similar to the proof of Theorem 5.1, by Lemma 5.6
again, for all τ ∈ [0, d] the block-wise norm of the solution x satisfies

mid(fold(τ)γ (∥x∥∞)) ≤ (2γ)τ · 1 ,

so the verifier’s norm checks are indeed satisfied with bound (2γ′)τ · β for parameters γ′ = γ and β = 1.

References

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32, 2004.
Preliminary version in STOC 1996. Pages 2 and 16.

[AKK+19] H. Abusalah, C. Kamath, K. Klein, K. Pietrzak, and M. Walter. Reversible proofs of sequential
work. In EUROCRYPT, pages 277–291. 2019. Page 1.

[CLSY93] J. Cai, R. J. Lipton, R. Sedgewick, and A. C. Yao. Towards uncheatable benchmarks. In Structure
in Complexity Theory Conference, pages 2–11. 1993. Page 1.

23

[CP18] B. Cohen and K. Pietrzak. Simple proofs of sequential work. In EUROCRYPT, pages 451–467.
2018. Pages 1 and 2.

[DN92] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In CRYPTO, volume
740, pages 139–147. 1992. Page 2.

[LM23] R. W. F. Lai and G. Malavolta. Lattice-based timed cryptography. In CRYPTO, pages 782–804.
2023. Pages 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, and 19.

[May93] T. C. May. Timed-release crypto, February 1993. http://cypherpunks.venona.com/date/
1993/02/msg00129.html. Page 1.

[MMV13] M. Mahmoody, T. Moran, and S. P. Vadhan. Publicly verifiable proofs of sequential work. In
Innovations in Theoretical Computer Science (ITCS), pages 373–388. 2013. Pages 1 and 2.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT, pages 700–718. 2012. Pages 5 and 6.

[MR04] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures.
SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in FOCS 2004. Page 16.

[Pie19] K. Pietrzak. Simple verifiable delay functions. In Innovations in Theoretical Computer Science
Conference (ITCS), volume 124 of LIPIcs, pages 60:1–60:15. 2019. Page 2.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):1–40, 2009. Preliminary version in STOC 2005. Page 2.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto. Technical
report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1996. Pages 1 and 2.

[Sho94] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997. Preliminary version in FOCS
1994. Page 2.

[Ver12] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices, chapter 5, pages
210–268. Cambridge University Press, 2012. Available at http://www-personal.umich.
edu/˜romanv/papers/non-asymptotic-rmt-plain.pdf. Page 4.

[Wes19] B. Wesolowski. Efficient verifiable delay functions. J. Cryptol., 33(4):2113–2147, 2020.
Preliminary version in EUROCRYPT 2019. Page 2.

24

http://cypherpunks.venona.com/date/1993/02/msg00129.html
http://cypherpunks.venona.com/date/1993/02/msg00129.html
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf

	Introduction
	(In)Security in a Quantum World
	Contributions
	Discussion and Future Work

	Preliminaries
	Vector and Matrix Norms
	Computational Model
	Sequentiality Assumption

	Attack Framework
	Gadget Trapdoors
	Trapdoor Combiners
	Subspace Trapdoors
	Combining Solver
	Larger Arity

	Attack on the Assumption
	Attacks on Proofs of Sequential Work
	Challenges in Attacking PoSWs
	Breaking a Relaxed PoSW
	Breaking a PoSW with the Original Norm Bounds

