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Abstract. We present the first concurrently-secure blind signatures making black-box use of a pairing-
free group for which unforgeability, in the random oracle model, can be proved without relying on the
algebraic group model (AGM), thus resolving a long-standing open question. Prior pairing-free blind
signatures without AGM proofs have only been proved secure for bounded concurrency, relied on
computationally expensive non-black-box use of NIZKs, or had complexity growing with the number
of signing sessions due to the use of boosting techniques.
Our most efficient constructions rely on the chosen-target CDH assumption and can be seen as blind
versions of signatures by Goh and Jarecki (EUROCRYPT ’03) and Chevallier-Mames (CRYPTO ’05).
We also give a less efficient scheme with security based on (plain) CDH. The underlying signing protocols
consist of four (in order to achieve regular unforgeability) or five moves (for strong unforgeability). All
schemes are proved statistically blind in the random oracle model.

1 Introduction

Blind signatures [Cha82] are interactive protocols that allow a user to obtain a signature on a message in a way
that does not reveal anything about the message-signature pair to the signer. They are a fundamental building
block to achieve anonymity in e-cash [Cha82, CFN90, OO92], e-voting [FOO93], and credentials [Bra94,
BL13]. They have also come into use in a number of recent industry applications, such as privacy-preserving
ad-click measurement [PCM], Apple’s iCloud Private Relay [App], Google One’s VPN Service [Goo], and
various forms of anonymous tokens [HIP`21, Tru].

Pairing-free blind signatures. There are at least two reasons that make it desirable to design blind
signatures in pairing-free groups. On the one hand, widely adopted signatures, such as Schnorr signa-
tures [Sch90], EdDSA [BDL`12], and ECDSA [Ame05] rely on such curves. On the other hand, many of
the aforementioned applications are implemented in environments such as Internet browsers where pairing-
friendly curves are usually not part of the available cryptographic libraries (such as NSS and BoringSSL).

The question of designing blind signatures in pairing-free groups has turned out to be extremely challeng-
ing. The main difficulty is finding schemes secure in the sense of one-more unforgeability [JLO97], even when
a malicious user can run several concurrent signing interactions with the signer. Pointcheval and Stern [PS00]
were the first to prove security of blind Okamoto-Schnorr signatures [Oka94] under bounded concurrency,
in the random oracle model (ROM) [BR93], assuming the hardness of the discrete logarithm (DL) problem.
Their approach was later abstracted in [HKL19]. Blind Schnorr signatures [CP93] have also only been proved
secure under bounded concurrency [FPS20, KLX22], in this case additionally assuming the Algebraic Group
Model (AGM) [FKL18], along with the stronger one-more discrete logarithm (OMDL) assumption [BNPS03].
These results are also in some sense best possible, as recent ROS attacks [BLL`21] yield polynomial-time
forgery attacks against these schemes using log p concurrent signing sessions, where p is the group order.

One can rely on boosting techniques [Poi98, KLR21, CAHL`22] to increase the number of concurrent
sessions where a scheme such as Okamoto-Schnorr remains secure. The current state of the art [CAHL`22]
requires a 7-move protocol of which the communication and computational complexity grow logarithmically
and linearly, respectively, in the number of signing sessions, which still has to be fixed a priori.

A concurrently secure scheme, i.e., one supporting arbitrary concurrent adversarial signing sessions, was
given by Abe [Abe01], but its proof (in the ROM, assuming the hardness of DL) later turned out to be
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incorrect, and was only recently re-stablished in the AGM [KLX22]. Similarly, all other provably secure
solutions [FPS20, TZ22, CKM`23b] fundamentally rely on the AGM. Therefore, this paper aims to address
the following central question.

Can we give blind signatures in pairing-free groups whose concurrent security, in the ROM, can be
proved without the AGM?

Non-black-box baselines. It is however often overlooked that, in principle, we can provide an affirmative
answer to this question by relying on expensive non-black-box techniques. For example, we can instantiate
Fischlin’s transform [Fis06] using generic NIZKs with online extractability in the ROM, such as those from
the MPC-in-the-head paradigm [IKOS07]. The signer uses a hash-based signature scheme (which exists under
the hardness of the DL problem) [NY89] to sign a Pedersen commitment to the message, and the actual
signature for a message is a proof of knowledge of a signature on a commitment to this message. The recent
work by Fuchsbauer and Wolf [FW24] also relies on generic NIZKs, and assumes Schnorr signatures to be
secure for a given fixed (non random oracle) hash function. The resulting protocol has four moves, and is
non-black-box as well.

We point out here that concurrent work [KNR24] made progress in instantiating a variant of Fischlin’s
transform without generic NIZKs while relying on the Strong RSA assumption and the DDH assumption in
pairing-free groups. However, their construction does not fundamentally leverage pairing-free elliptic curves,
as it is built on top of an RSA-based signature while using DDH to instantiate components which have
no RSA-based instantiation. Here, we aim for a solution purely based on black-box use of groups, without
additional external assumptions.

Our contribution. We propose the first blind signatures making black-box use of a pairing-free group
whose concurrent security is proved without relying on the AGM. We assume the ROM as well as variants of
the Computational Diffie-Hellman (CDH) assumption. In particular, unlike the aforementioned pairing-free
instantiations, we do not rely on implementing group operations as part of a relation verified by a NIZK
proof.

Our results are summarized in Table 1. Our most efficient constructions are based on the chosen target
CDH (CT-CDH) assumption, a falsifiable assumption introduced by Boldyreva [Bol03] to prove security
(in the pairing setting) of Blind BLS [BLS01], which is a one-more version of CDH.1 The signing pro-
tocols take four and five moves, respectively, with the difference being that the latter protocol achieves
strong unforgeability. The starting points of these schemes are the Goh-Jarecki [GJ03] and the Chevallier-
Mames [Che05, KLP17] signature schemes, respectively, with a number of modifications based on witness
indistinguishable OR-proofs [CDS94] to be able to prove concurrent security. Our third, more complex,
scheme dispenses entirely with interactive assumptions, and solely relies on (plain) CDH, and the signing
protocol requires four moves.

One-more unforgeability. Our CT-CDH schemes BS1 and BS2 achieve a weaker than usual notion of
one-more (strong) unforgeability (which we refer to as OM(S)UF-1) where a malicious user cannot come up
with more signatures than the number of sessions it engages in, regardless of whether these terminate or not.
In constrast, our CDH-based scheme BS3 achieves the standard notion [JLO97] that only counts terminating
sessions (we refer to this as OMUF-2).

Some applications inherently require OMUF-2 (e.g., the atomic swap construction from [HLTW24]).
Nonetheless, we consider both BS1 and BS2 to be valuable, despite the weaker security they achieve. First of
all, they are simpler and serve as stepping stones towards BS3. Moreover, while this calls for a more careful
analysis, OM(S)UF-1 appears sufficient for many applications. For example, in constructions of anonymous
tokens [HIP`21, Tru], the weaker OMUF-1 notion means that the server needs to regard a token as issued
as long as the first-round message to the user is sent. The advantage of OMUF-2 is that it guarantees that
if the signing protocol aborts, the user will not come up with a valid token, but this does not appear to be
important in this context, as the decision to issue a token has been made prior to starting the protocol.

This weaker form of accounting for sessions is also common in the definition of unforgeability used to
prove security of many prominent threshold signatures, such as e.g., SPARKLE [CKM23a].

1 We avoid the naming “one-more CDH” to avoid ambiguity, as an alternative interpretation is used e.g. in [BLT`24].
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Table 1. Overview of our results and comparison with existing schemes in the AGM with provable
security notions, number of moves, signature size, communication cost (note: p “ |G|), and assumptions required for
each security notion.

Scheme Security* Mvs. Sig. size Comm.
Blind
Asmp.

OMUF
Asmp.**

BS1

(Sec. 3):

comp./stat.
blindness

& OMUF-1
4 1 G + 4 Zp 5 G + 5(or 7) Zp

DL(comp.)/
ROM(stat.)

CT-CDH

BS2 (Sec. 4)
comp./stat.
blindness

& OMSUF-1
5 1 G + 4 Zp 5 G + 5(or 7) Zp

DL(comp.)/
ROM(stat.)

CT-CDH

BS3

(Sec. 5);
stat. blind
& OMUF-2

4
pλ` 1q G +
pλ` 7q Zp +

λ2 bits

p3λ` 6q G +
p2λ` 9q Zp +

pλ` 3λ2
q bits

ROM CDH

Abe [Abe01,
KLX22]

comp. blind
& OMSUF-2

3 2 G` 6 Zp 3 G`6 Zp`λ bits DDH DL + AGM

Clause Blind
Schnorr
[FPS20]

perf. blind
& OMSUF-2

3 1 G` 1 Zp 2 G` 4 Zp -
DL + AGM

+ mROS

Snowblind
[CKM`23b]

perf. blind
& OMSUF-2

3 1 G` 2 Zp 2 G` 4 Zp - DL + AGM

(*): OMUF-X security (for X “ 1, 2) guarantees that no adversary can output ` ` 1 message-signature pairs with
distinct messages (with distinct pairs for OMSUF-X), where ` denotes the number of started (for X “ 1) or com-
pleted (for X “ 2) signing sessions. (**): All OMUF guarantees assume the ROM. (:): For BS1 and BS2, we give a
computationally blind version and a less efficient statistically blind one. (;): The efficiencies of BS3 depend on two
parameters set to N “ 2 and K “ λ.

Blindness. For all schemes, we prove statistical blindness assuming bounded queries to a random oracle.
We also give a slightly more efficient version of the first two schemes which is computationally blind under
the discrete logarithm assumption. For the first two schemes, our random oracle proofs only require the
Fiat-Shamir heuristic [FS87] to be sound for proofs (hence, there is no rewinding). While we do not prove
this formally, we expect blindness of our first two schemes to also hold against quantum adversaries in the
QROM [BDF`11], following e.g. [Unr17].

Open problems: DLOG & round reduction.An elusive open problem is to give blind signatures based
solely on the hardness of the DL problem (or the stronger OMDL assumption), without resorting to NIZKs.
Indeed, techniques from recent works in the AGM [KLX22, TZ22, CKM`23b] are not robust to rewinding in
several subtle ways. One may argue the qualitative improvement is not significant (for several curves, indeed,
DL and CDH are somewhat equivalent [Mau94, MS23]), but even in the non-blind setting, signatures with
security based on DL tend to be actually more efficient. For example, it seems unlikely that we can obtain
a three-move scheme without considering DL-based schemes. It should also be noted that we do not expect
two-move schemes to be possible even in the AGM.

Recent work by Barreto and Zanon [BZ23] (expanded in [BRSJZ23]) claims a solution with concurrent
security under the OMDL assumption, which hinges upon a reduction of concurrent security under imper-
sonation attacks (IMP-CA) to the (concurrent) one-more unforgeability of the associated blind signature
scheme. The proof appears to have some gaps, and we note that in general IMP-CA security does not yield
concurrently secure blind signatures. For instance, Schnorr identification [BP02] achieves IMP-CA but does
not yield secure blind signatures.

Paper outline. Section 2 introduces the basic preliminaries. We then discuss the two schemes based on the
CT-CDH assumption, BS1 (achieving OMUF-1) and BS2 (achieving OMSUF-1), in Sections 3 and 4 respec-
tively. Lastly, we discuss the scheme BS3 achieving OMUF-2 based on the CDH assumption in Section 5.

1.1 Technical Overview

CT-CDH based schemes. The starting point of our first and simplest scheme BS1 is the signature by
Goh and Jarecki [GJ03], which can also be thought of as a “pairing-free” variant of BLS signatures [BLS04].
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Given a cyclic group G with prime order p and generator g, a secret key sk is a random scalar in Zp, and
the corresponding public key is pk Ð gsk. The signature of a message m is Z Ð Hpmqsk, where H is a
hash function, along with a non-interactive proof π of discrete logarithm equality (DLEQ), showing that
logg pk “ logHpmq Z.

The generation of such a signature can be seen as an interactive protocol. The user first sends hÐ Hpmq
to the signer. The signer then sends Z Ð hsk back and initiates an interactive version of the standard DLEQ
proof [Sch91]. In particular, along with Z, the signer sends two nonces Rg Ð gr and Rh Ð hr to the user,
where rÐ$ Zp; upon receiving pRg, Rhq, the user picks a challenge c Ð H1pm,h,Z,Rg, Rhq to send to the
signer, and the signer replies with z Ð r`c¨sk. The user accepts if and only if Rg “ gzpk´c and Rh “ hzZ´c,
and the signature is σ Ð pZ, π “ pc, zqq. To verify the signature, with h Ð Hpmq, we recover Rg Ð gzpk´c

and Rh Ð hzZ´c and check whether c “ H1pm,h,Z,Rg, Rhq.

One-more unforgeability. Our first goal is to prove that the above scheme achieves the weaker variant
of one-more unforgeabability (OMUF-1), i.e., the adversary cannot produce signatures for ` ` 1 distinct
messages after initiating at most ` signing sessions. To do so, we rely on the hardness of the chosen-target
computational Diffie-Hellman (CT-CDH) problem [Bol03], where, given gx for a uniformly random x P Zp
and `-time access to a DH oracle that takes any group element Y as input and outputs Y x, the adversary’s
goal is to compute Y xi for at least `` 1 randomly sampled challenges tYi P Gu. (Here, we assume an oracle
which supplies as many challenges as needed, but the attacker just needs to solve `` 1 of these.)

The reduction idea appears simple: Given an adversary A that breaks OMUF-1, we construct an adversary
B playing the CT-CDH game that runs A with pkÐ gx. Random-oracle queries Hpmiq for a message mi are
answered with a challenge Yi. When A starts a signing session with h as the first-round message, B computes
Z Ð hx by querying the DH oracle and simulates the rest of the signing session by itself. (Note that a DH
query here is necessary, because h can be any group element.) For a valid signature pZi, πiq of a message mi,
by the soundness property of πi, Zi “ Hpmiq

x is a solution to the challenge Yi “ Hpmiq with overwhelming
probability. Therefore, if the adversary A forges valid signatures for ` ` 1 distinct messages, B solves the
CT-CDH problem.

The challenge here is that the DLEQ proof is merely honest-verifier zero-knowledge, and the adversary
A sends an arbitrary challenge c to the signer, for which B needs to simulate a response. This cannot
be done efficiently without knowing the secret key. To address this, we transform the DLEQ proof into a
witness indistinguishable (WI) OR proof [CDS94] that proves the existence of a witness sk for the DLEQ
proof or knowledge of a witness w “ loggW for a public parameter W P G. (This parameter would be
generated transparently in actual implementation.) Now the proof can be generated, indistinguishably, both
with knowledge of sk or with knowledge of w. The former is what the actual protocol does, but the latter is
what the reduction B would do. (The reduction clearly chooses W with a known discrete logarithm w.) The
challenge of this proof will be chosen as before as a hash, and the resulting non-interactive proof π will be
included in the signature σ “ pZ, πq.

However, this brings a new issue. Namely, the soundness of the OR proof π does not guarantee that
Z “ hsk, as it is possible, in principle, to use the witness w to generate a valid signature pZ, πq for m
where Z ‰ Hpmqsk. Our key observation here is that any adversary producing such a signature can be used
to compute w, and thus, to break the discrete logarithm assumption. This argument is rather involved as
it requires a careful use of the Forking Lemma [PS00]. In essence, π gives us two valid proof transcripts
pRg, Rh, d, zq and pA, e, tq, where the former verifies as a valid DLEQ proof for Z “ Hpmqsk, and the latter
attests knowledge of w. Further, we have that d` e “ H1pm,h,Z,Rg, Rh, Aq. If we fork on this hash query,
we can obtain two extra transcripts pRg, Rh, d

1, z1q and pA, e1, t1q such that d1 ` e1 ‰ d` e. Still, we succeed
in extracting w only if e ‰ e1, but this is not necessarily guaranteed if we also have d ‰ d1.

Here, we crucially rely on a property of the DLEQ proof: by fixing pRg, Rhq and since Z ‰ Hpmqsk, there
exists at most one d that can generate an accepting pRg, Rh, d, zq. Therefore, d “ d1 must hold, and hence
e ‰ e1.

Blindness.To make the signing protocol of BS1 blind, the user additionally samples a random scalar β and
computes h Ð Hpmqgβ . After receiving Z “ hsk, the user computes Z 1 Ð Zpk´β . It is easy to verify that
Z 1 “ Hpmqsk. Then, the user blinds the OR proof in a way similar to Abe-Okamoto blind signatures [AO00],
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such that after the interaction, the user generates a proof π1, the distribution of which is independent of the
transcript of the proof.

However, a malicious signer can send an incorrect Z (i.e., Z ‰ hsk) in one of the signing sessions, and
later identify the blinded signature pZ 1, π1q by checking whether Z 1 ‰ Hpmqsk. Fortunately, for the attack to
work, the signer also needs to let the user accept the OR proof during the session where Z ‰ hsk. Using a
similar argument as the above, by the soundness of the OR proof, the probability that this occurs is bounded
by the advantage of computing loggW .

If we do not want blindness to rely on the discrete logarithm assumption, we can alternatively let the
signer send a non-interactive proof that Z “ hsk in the second move. For example, if we use the non-interactive
version of the DLEQ proof, we can show blindness of BS1 in the random oracle model. Crucially, this proof
does not need to be blind.

Strong unforgeability. BS1 is not strongly unforgeable, i.e., we cannot guarantee that the adversary
cannot produce p` ` 1q distinct valid message-signature pairs after ` signing sessions. Indeed, suppose all
signing sessions start with the same first-round message h “ Hpmq for some m. Then, BS1 shares the
structure of Abe-Okamoto blind signatures [AO00], and a variant of the recent ROS attacks [BLL`21] yields
an adversary that starts rlog ps signing sessions and outputs rlog ps ` 1 distinct signatures for the message
m. To transform BS1 into a strongly unforgeable scheme, referred to as BS2, the idea is to let H also take
pRg, Aq as input, i.e., the group elements from the OR proof which are independent of h. In particular, we
let the signer send pRg, Aq to the user before h is sent, adding an extra move to the signing protocol. The
user then computes hÐ Hpm,Rg, Aq and the rest of the protocol remains as in BS1. The resulting signature
is the same as the Chevallier-Mames signature scheme [Che05, KLP17] except that we replace the DLEQ
proof with the OR proof.

Achieving OMUF-2 from CDH. Our security proof of BS1 fails to show the usual one-more unforgeability
notion, i.e. OMUF-2, which guarantees that the adversary cannot output more message-signature pairs than
the number of completed signing sessions. Indeed, the reduction queries its DH oracle to obtain Z “ hsk in
order to answer the first-round query for each signing session, and thus, needs to output more solutions than
the number of started sessions.

One possible fix is that instead of sending Z and Rh in the clear, we let the signer send commitments
of Z and Rh, denoted by comZ and comRh respectively, in the first round. Later in the second round, the
signer opens these commitments accordingly. If the commitment scheme is homomorphic (with respect to the
group operation) and equivocable, then, we can adapt the security reduction to simulate the signing protocol
given w “ loggW as follows: (1) in the first signing round, generate hcomZ as a random commitment and
compute hcomRh from hcomZ using the homomorphic property of the commitment scheme (the original
reduction computed Rh from Z), (2) in the second signing round, query the DH oracle for Z “ hsk and use
equivocation to open comZ to Z. The interactive proof can still be simulated using w as in the proof of BS1.
Notice that the number of DH oracle queries is now the number of completed signing sessions, as we only
query the oracle when completing the last round.

Unfortunately, all existing homomorphic equivocal commitments based on pairing-free groups [BCJ08,
PW23, PW24] can only equivocate a random commitment to a group element of which the discrete logarithm
to some pre-established base is known. This is not the case for Z obtained from the DH oracle, as h is
adversarially chosen and the reduction does not know sk. To address this, we instead realize that a better
starting point is to rely on a scheme which is secure under the CDH assumption directly. In particular, to
obtain our third scheme BS3, we go through the following two steps, which we explain below:

1. We apply ideas similar to those used for BS1 above to a recently proposed pairing-based blind signature
scheme, called Rai-Choo [HLW23], which only relies on the plain CDH assumption. Doing so, we obtain
a pairing-free OMUF-1-secure blind signature scheme based on CDH.

2. We then realize that the structure of the resulting scheme and its security proof will allow us to upgrade
its security to OMUF-2 using pairing-free homomorphic equivocal commitments.

Pairing-free Rai-Choo.Abstractly, one can interpret the CT-CDH assumption as stating the unforgeabil-
ity of an interactive version of BLS signatures implemented in a pairing-free setting where efficient verification
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is not possible (the DH oracle is the signing oracle, and the challenge oracle corresponds to the random or-
acle). Similarly, as an intermediate abstraction, we can think of a game that captures the unforgeability of
(non-blind) Rai-Choo in a pairing-free setting (where, again, efficient verifiability is lost). Its signing protocol
proceeds as follows (where pk “ gsk):

‚ On an input message m, the user computes, for pi, jq P rKs ˆ rN s, a commitment µi,j Ð Hµpm,ϕi,jq to
m and a random value ϕi,j , a commitment comi,j Ð Hcompµi,jq, and a group element hi,j Ð Hpµi,jq.

Then, it computes ~J Ð Hccppcomi,j , hi,jqiPrKs,jPrNsq P rN s
K , describing cut-and-choose indices for which

the user has to reveal µi,j for all i P rKs and j ‰ ~Ji. Finally, the message sent to the signer is

p ~J, ppµi,jqj‰ ~Ji , hi, ~Ji , comi, ~Ji
qiPrKsq.

‚ The signer then recomputes pcomi,j , hi,jqiPrKs,j‰ ~Ji and checks that ~J “ Hccppcomi,j , hi,jqi,jq. If the check

passes, it uniformly samples pskiqiPrKs conditioning on
řK
i“1 ski “ sk and sends pppki Ð gskiqiPrKs, S̄ Ð

śK
i“1 h

ski
i, ~Ji
q.

‚ The final signature is σ “ pppki, ϕi, ~JiqiPrKs, S̄q and inefficient verification checks whether pk “
śK
i“1 pki

and S̄ “
śK
i“1 HpHµpm,ϕi, ~Jiqq

logg pki .

Similar to BS1, to translate this signing protocol into a blind signature scheme with efficient verifica-
tion, we extend it to have the signer interact with the user to generate a non-interactive proof π that
shows the knowledge of either the witness loggW or the witness tskiuiPrKs such that pki “ gski and

S̄ “
śK
i“1 HpHµpm,ϕi, ~Jiqq

ski . The final signature consists of σ and π.

One can show that if there exists an adversary that breaks OMUF-1 for this scheme, then either (1) the
adversary outputs one more valid Rai-Choo signatures than the number of signing sessions, which breaks
the OMUF of Rai-Choo (and in turns this can be reduced to breaking the CDH assumption), or (2) the
adversary outputs an invalid Rai-Choo signature but with a valid OR proof (and this can be reduced to
finding the discrete logarithm of W ).

Upgrading to OMUF-2. Still, this approach can only show OMUF-1 security for the scheme. The rather
technical reason is due to how the random-oracle programming of HpHµpm,ϕqq is carried out in the reduction
to CDH behind Step 1. Essentially, if the user signs honestly, the first-round message sent in the k-th session
uniquely links this session with a message mpkq, which can be extracted from the prior random-oracle queries.
To properly simulate the signer’s response to the first message in the k-th session, the reduction needs to
ensure that, with sufficiently high probability, the random oracles are set up so that the discrete logarithm

of HpHµpm
pkq, ϕ

pkq

i, ~Ji
qq is known for some i P rKs. For this reason, no CDH solution can be extracted from

a signature on any of the messages associated with such a session. Therefore, for the reduction to succeed,
a forgery needs to contain a signature for a message which was not associated with one of the sessions,
regardless of whether these sessions were actually concluded.

To upgrade to OMUF-2 security, we instead use a homomorphic commitment scheme HECom with spe-
cial equivocation (formally defined in Section 5.1) derived from the commitment scheme in [BCJ08]. More
precisely, the scheme can embed a base X ‰ 1G into the commitment key, which then allows opening a
commitment of a group element S to another element S1 “ SXc for any c thanks to a trapdoor generated
along with the key. Then, instead of sending S̄ in clear, we let the signer send the commitment hcomS̄ of S̄.
Then, in the second round, the signer sends the opening of the commitment along with the same OR proof
response.

While we defer the rather involved details to the body of the paper, the crucial point is that this will

enable a new reduction which only needs to know the discrete logarithm of the HpHµpm
pkq, ϕ

pkq

i, ~Ji
qq’s if the

k-th session indeed reaches the final message and terminates.

2 Preliminaries

Notation. For a positive integer n, we write rns for t1, . . . , nu. We use λ to denote the security parameter.
A group parameter generator is a probabilistic polynomial time algorithm GGen that takes an input 1λ and
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Game DLOGA
GGenpλq :

pG, p, gq Ð$ GGenp1λq ; X Ð$ G
xÐ ApG, p, g,Xq
If gx “ X then return 1
Return 0

Game CDHA
GGenpλq :

pG, p, gq Ð$ GGenp1λq ; x, yÐ$ Zp
Z Ð ApG, p, g, gx, gyq
If gxy “ Z then return 1
Return 0

Game CT-CDHA
GGenpλq :

pG, p, gq Ð$ GGenp1λq ; xÐ$ Zp
cid Ð 0 ; `Ð 0
pji, ẐiqiPr``1s Ð AChal,Dh

pG, p, g, gxq
If |tj1, . . . , j``1u| “ `` 1 and @ i P r`` 1s : Ẑi “ Y xji

then

return 1
Return 0

Oracle Chal :
cid Ð cid` 1
Ycid Ð$ G
Return Ycid

Oracle DhpY q :

`Ð `` 1
Return Y x

Fig. 1. The DLOG,CDH and CT-CDH games.

outputs a cyclic group G of λ-bit prime order p and a generator g of the group. We tacitly assume standard
group operations in G can be performed in time polynomial in λ and adopt multiplicative notation. We will
often compute over the finite field Zp (for a prime p) and do not write modular reduction explicitly when it
is clear from the context. Also, we write a “ logg A P Zp for a group element A P G where A “ ga.

Throughout this paper, we adopt a variant of the “Game-Playing Framework” by Bellare and Rog-
away [BR06] for both definitions and proofs.

Cryptographic assumptions. In this paper, we rely on the assumed hardness of the discrete logarithm
(DL), the computational Diffie-Hellman (CDH), and the chosen-target computational Diffie-Hellman (CT-
CDH) [Bol03] problems. To capture these, for any adversary A, we define the advantage of A playing the
games tDLOG,CDH,CT-CDHu (these games are defined in Figure 1) as

Adv
dlog{cdh{ct-cdh
GGen pA, λq :“ PrrpDLOG{CDH{CT-CDHqAGGenpλq “ 1s .

We note that the hardness of the CT-CDH problem implies the hardness of the CDH problem, which in
turns implies the hardness of the DL problem.

Blind signatures. This paper focuses on four-move and five-move blind signature schemes. Formally, a
four-move (and five-move respectively) blind signature scheme BS is a tuple of efficient (randomized) algo-
rithms

BS “ pBS.Setup,BS.KG,BS.S1,BS.S2,BS.U1,BS.U2,BS.U3,BS.Verq;

BS “ pBS.Setup,BS.KG,BS.S1,BS.S2,BS.S3,BS.U1,BS.U2,BS.U3,BS.Verq;

with the following behavior:

‚ The parameter generation algorithm BS.Setupp1λq outputs a string of public parameters par, whereas the
key generation algorithm BS.KGpparq outputs a key-pair psk, pkq, where sk is the secret (or signing) key
and pk is the public (or verification) key.2 All other algorithms of BS implicitly take par as input.

‚ The interaction between the user and the signer to sign a message m P t0, 1u˚ with a key-pair ppk, skq is
defined by the following experiments (1) for four-move and (2) for five-move blind signatures:

pstu1 , umsg1q Ð BS.U1ppk,mq, pst
s, smsg1q Ð BS.S1psk, umsg1q,

pstu2 , umsg2q Ð BS.U2pst
u
1 , smsg1q, smsg2 Ð BS.S2pst

s, umsg2q,

σ Ð BS.U3pst
u
2 , smsg2q .

,

/

.

/

-

(1)

psts1, smsg1q Ð BS.S1pskq, pst
u
1 , umsg1q Ð BS.U1ppk,m, smsg1q,

psts2, smsg2q Ð BS.S2pst
s
1, umsg1q, pst

u
2 , umsg2q Ð BS.U2pst

u
1 , smsg2q,

smsg3 Ð BS.S3pst
s
2, umsg2q, σ Ð BS.U3pst

u
2 , smsg3q .

,

/

.

/

-

(2)

2 We note that all of our schemes also admits an alternative definition without the setup algorithm (see some recent
works with this definition [KRS23, KNR24]), by hashing a constant to generate the public parameters.
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Game OMUF-XA
BSpλq , OMSUF-XA

BSpλq :

par Ð BS.Setupp1λq
psk, pkq Ð BS.KGpparq
`Ð 0 ; I1, . . . , Ir Ð H

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,...,Sr ppar, pkq

If D k1 ‰ k2, m˚k1
“ m˚k2

then

If D k1 ‰ k2, pm
˚
k1
, σ˚k1

q “ pm˚k2
, σ˚k2

q then

return 0
If D k P r`` 1s such that

BS.Verppk,m˚k , σ
˚
k q “ 0 then

return 0
Return 1

Oracle Sjpsid, umsgq : // j “ 1, . . . , r

// If BS is 5-move and j “ 1,
// the input umsg is set as an empty string

If sid R I1, . . . , Ij´1 or
sid P Ij then return K

Ij Ð Ij Y tsidu
If j “ 1 then

`Ð `` 1 // For X “ 1

pstssid, smsgq Ð BS.S1psk, umsgq
If j ą 1 then

If j “ r then `Ð `` 1 // For X “ 2

pstssid, smsgq Ð BS.Sjpst
s
sid, umsgq

// for j “ r, stssid “ K
Return smsg

Fig. 2. The OMUF-X and OMSUF-X security games for a 4-move or 5-move blind signature scheme BS, where r “ 2
if BS is 4-move and r “ 3 if BS is 5-move. The input umsg of S1 is set as an empty string if BS is 5-move. The
highlighted boxes along with the commented X value indicating how ` is counted in OMUF-X and OMSUF-X. The
OMUF-X game contains everything but the solid boxes, and the OMSUF-X game contains everything but the dashed
boxes.

Here, σ is either the resulting signature or an error message K.
‚ The (deterministic) verification algorithm outputs a bit BS.Verppk,m, σq.

We say that BS is (perfectly) correct if for every message m P t0, 1u˚, with probability one over the sampling
of parameters and the key pair ppk, skq, the corresponding experiment (either (1) or (2)) returns σ such that
BS.Verppk,m, σq “ 1. All of our schemes are perfectly correct.

Note that since this work exclusively consider four-move and five-move blind signatures, we only give the
syntax and security definitions for these objects for the sake of simplicity. However, the definition for k-move
blind signatures can easily be obtained by generalizing the given definitions.

One-more unforgeability. We consider variants of one-more (strong) unforgeability, denoted OMUF-X
and OMSUF-X for X P t1, 2u. OMUF-1 ensures that no adversary playing the role of a user and starting `
signing interactions with the signer, in an arbitrarily concurrent fashion, can issue `` 1 signatures (or more)
for distinct messages. For OMSUF-1, we instead only require the adversary to output ``1 distinct message-
signature pairs. For the OMUF-2 and OMSUF-2 notions, ` is defined as the number of completed signing
interactions instead, which is the more standard notion of one-more unforgeability used in the literature.
The OMUF-XA

BS and OMSUF-XA
BS games for a blind signature scheme BS are defined in Figure 2. The

corresponding advantage of A is defined as Adv
omuf-X{omsuf-X
BS pA, λq :“ PrrpOMUF-X{OMSUF-XqABSpλq “ 1s.

Blindness.We also consider the standard notion of blindness against a malicious server that can, in partic-
ular, attempt to publish a malformed public key. The corresponding game BLINDA

BS is defined in Figure 3,
and for any adversary A, we define its advantage as Advblind

BS pA, λq :“
ˇ

ˇPrrBLINDA
BSpλq “ 1s ´ 1

2

ˇ

ˇ .

Random oracles. We note that most of our analyses further assume one or more random oracles, and we
will clearly indicate so in the theorem statements. The random oracles are modeled as additional oracles to
which the adversary A is given access.

Forking lemma. In our proof, we utilize the general forking lemma in the version introduced by Bellare
and Neven [BN06] stated below:

Lemma 2.1 (General Forking Lemma [BN06]). Fix an integer q ě 1 and a set H of size h ě 2. Let
A be a randomized algorithm that on input x, h1, . . . , hq returns a pair pI, auxq, the first element of which is
an integer in the range 1, . . . , q or K and the second element of which we refer to as a side output. Let IG
be a randomized algorithm that we call the input generator. The accepting probability of A, denoted acc, is
defined as the probability that I ‰ K in the following experiment

xÐ$ IG; h1, . . . , hqÐ$ H; pI, auxq Ð$ Apx, h1, . . . , hqq

8



Game BLINDA
BSpλq :

par Ð BS.Setupp1λq
bÐ$ t0, 1u
b0 Ð b ; b1 Ð 1´ b
b1Ð$ AInit,U1,U2,U3 pparq
If b1 “ b then return 1
Return 0

Oracle Initpp̃k, m̃0, m̃1q :

sess0 Ð 1 ; sess1 Ð 1
pkÐ p̃k
m0 Ð m̃0 ; m1 Ð m̃1

Oracle Ujpi, smsgpiqq : // j “ 1, . . . , 3

// If BS is 4-move and j “ 1,

// the input smsgpiq is set as an empty string
If i R t0, 1u or sessi ‰ j then return K
sessi Ð sessi ` 1
If j “ 1 then

pstui , umsgpiqq Ð BS.U1ppk,mbi , smsgpiqq

Return umsgpiq

If j “ 2 then

pstui , umsgpiqq Ð BS.U2pst
u
i , smsgpiqq

Return umsgpiq

σbi Ð BS.U3pst
u
i , smsgpiqq // j “ 3

If sess0 “ sess1 “ 4 then
If σ0 ‰ K and σ1 ‰ K then return pσ0, σ1q

Return pK,Kq
Return pi, closedq

Fig. 3. The BLIND security game for a 4-move or 5-move blind signature scheme BS. The only difference between
the game defined for 4-move schemes and the game defined for 5-move schemes is that if BS is a 4-move scheme, the
input smsg of U1 is set as an empty string.

The forking algorithm FApxq associated with A is a randomized algorithm on input x defined as follows:

‚ Pick a random tape ρ for A and sample h1, . . . , hqÐ$ H.
‚ Run pI, auxq Ð Apx, h1, . . . , hq; ρq.
‚ If I “ K, return 0.
‚ Sample h1I , . . . , h

1
qÐ$ H, run pI 1, aux1q Ð Apx, h1, . . . , hI´1, h

1
I , . . . , h

1
q; ρq.

‚ If I “ I 1 and hI ‰ h1I , return 1. Otherwise, return 0.

Let frk “ Prrb “ 1 : xÐ$ IG; bÐ$ FApxqs. Then,

frk ě acc

ˆ

acc

q
´

1

h

˙

, or alternatively, acc ď
a

q ¨ frk`
q

h
.

3 Four-Move Blind Signatures from CT-CDH

We present a four-move blind signature scheme BS1, described in Figure 4. (A protocol diagram is also
presented in Figure 13). The scheme can be viewed as a blind version of the signature scheme by Goh and
Jarecki [GJ03], where a signature consists of an element Z “ Hpmqsk with a discrete-log equality (DLEQ)
proof proving that the discrete logarithms of ppk, Zq are equal with respect to the base pg,Hpmqq. However,
we replace this proof with a witness-indistinguishable OR proof, which additionally accepts the discrete
logarithm of a public random parameter W as a witness. Needless to say, this parameter is meant to be
generated transparently, e.g., by hashing a constant, and nobody is meant to know this second witness. It is
easy to show that the scheme satisfies correctness, and we prove this in Section 3.1.

Blindness. The following theorem, proved in Section 3.2, shows that BS1 is statistically blind when H2 is
modeled as a random oracle. This property relies on the NIZK proof highlighted in Figure 4 to show equality
of discrete logarithms of ppk, Zq to the base pg, hq. In Section 3.3, we also show that if we omit this NIZK
proof, we still achieve computational blindness under the discrete logarithm assumption, without random
oracles.

Theorem 3.1 (Blindness of BS1). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BS1 “ BS1rGGens. For any adversary A for the game BLIND making at most QH2 “ QH2pλq
queries to H2, modeled as a random oracle, we have

Advblind
BS1

pA, λq ď 2QH2 ` 2

p
.

9



Algorithm BS1.Setupp1
λ
q :

pG, p, gq Ð$ GGenp1λq ; W Ð$ G
Select H : t0, 1u˚ Ñ G
Select H1, H2 : t0, 1u˚ Ñ Zp
Return par Ð pG, p, g,W,H,H1, H2 q

Algorithm BS1.KGpparq :

pG, p, g,W,H,H1, H2 q Ð par

skÐ$ Zp ; pkÐ gsk

Return psk, pkq

Algorithm BS1.U1ppk,mq :

βÐ$ Zp
h1 Ð Hpmq ; hÐ h1gβ

stu1 Ð pm,β, pk, h1, hq
Return pstu1 , hq

Algorithm BS1.U2pst
u
1 , smsg1q :

pm,β, pk, h1, hq Ð stu1
pZ,Rg, Rh, A, π ) Ð smsg1 ; pδ, s1q Ð π

If δ ‰ H2ph, pk, Z, gs
1
pk´δ, hs

1
Z´δq then

return K
α0, α1, γ0, γ1 Ð$ Zp
Z1 Ð Zpk´β ; R1g Ð Rgpk

´γ0gα0

R1h Ð RhR
´β
g Z1´γ0h1α0

A1 Ð AW´γ1gα1

c1 Ð H1pm,h1, Z1, R1g, R
1
h, A

1
q

cÐ c1 ´ γ0 ´ γ1

stu2 Ð pc, α0, α1, γ0, γ1, Z, Z
1, A,Rg, Rh, st

u
1 q

Return pstu2 , cq

Algorithm BS1.U3pst
u
2 , smsg2q :

pc, α0, α1, γ0, γ1, Z, Z
1, A,Rg, Rh, st

u
1 q Ð stu2

pm,β, pk, h1, hq Ð stu1 ; pd, e, z0, z1q Ð smsg2
If c ‰ d` e or
pRgpk

d, RhZ
d
q ‰ pgz0 , hz0 q or

AW e
‰ gz1 then

return K
d1 Ð d` γ0 ; e1 Ð e` γ1

z10 Ð z0 ` α0 ; z11 Ð z1 ` α1

Return σ Ð pZ1, d1, e1, z10, z
1
1q

Algorithm BS1.S1psk, hq :

Z Ð hsk

z1, e, r0, s Ð$ Zp
Rg Ð gr0 ; Rh Ð hr0 ; AÐ gz1W´e

δ Ð H2ph, gsk, Z, gs, hsq

π Ð pδ, s` δ ¨ skq

sts Ð psk, z1, e, r0q; smsg1 Ð pZ,Rg, Rh, A, π )
Return psts, smsg1q

Algorithm BS1.S2pst
s, cq :

psk, z1, e, r0q Ð sts

dÐ c´ e ; z0 Ð r0 ` d ¨ sk
Return pd, e, z0, z1q

Algorithm BS1.Verppk,m, σq :

pZ, d, e, z0, z1q Ð σ

hÐ Hpmq ; AÐ gz1W´e

Rg Ð gz0pk´d ; Rh Ð hz0Z´d

If d` e ‰ H1pm,h, Z,Rg, Rh, Aq then
return 0

Return 1

Fig. 4. The blind signature scheme BS1 “ BS1rGGens. The public parameters par, as stated before, are implicit
input to every algorithms except BS1.KG. The highlighted boxes denote the NIZK proof used to show the equality of
discrete logarithm of ppk, Zq to the base pg, hq. We also give a protocol diagram of BS1 in Figure 13.

One-more unforgeability.The following theorem establishes the OMUF-1 security of BS1 in the random
oracle model under the CT-CDH assumption. We refer to Section 1.1 for a proof sketch, whereas the full
proof is in Section 3.4.

Theorem 3.2 (OMUF-1 of BS1). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BS1 “ BS1rGGens. For any adversary A for the game OMUF-1 with running time tA “
tApλq, making at most ` “ `pλq queries to S1 and QH‹ “ QH‹pλq queries to H‹ P tH,H

1,H2u, modeled as
random oracles, there exist adversaries B and B1 for the games DLOG and CT-CDH, respectively, such that

Advomuf-1
BS1

pA, λq ď `p``QH2q

p
` p`` 1q

˜

b

pQH1Adv
dlog
GGenpB, λq `

pQH1

p

¸

` Advct-cdh
GGen pB1, λq ,

where pQH1 “ QH1 ` ` ` 1. Furthermore, B runs in time tB « 2tA, and B1 runs in time tB1 « tA, makes
QH ` `` 1 challenge queries to Chal and ` queries to Dh.

3.1 Correctness of BS1

Theorem 3.3. BS1 satisfies correctness.

Proof. Consider an honestly generated signature σ “ pZ 1, d1, e1, z10, z
1
1q for a message m. We use variables as

defined in the signing protocol.
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First, we argue that the checks in BS1.U2 and BS1.U3 verifies. For the check in BS1.U2, since s1 “ s`δ ¨sk
and pk “ gsk, Z “ hsk, we have gs

1

pk´δ “ gs and hs
1

Z´δ “ hs. Thus, H2ph, pk, Z, gs
1

pk´δ, hs
1

Z´δq “
H2ph, gsk, Z, gs, hsq “ δ.

For the check in BS1.U3, c “ d` e by how the signer computes e, AW e “ gz1 by how A is generated, and
lastly pRgpk

d, RhZ
dq “ pgr0`d¨sk, hr0`d¨skq “ pgz0 , hz0q, where the first equality follows from Rg “ gr0 , Rh “

hr0 , pk “ gsk, Z “ hsk and the second equality follows from z0 “ r0 ` d ¨ sk.
Now, to argue the validity of the signature, let h1 “ Hpmq. Then, we argue the following to say that the

signature is valid:

1. c1 “ d1 ` e1. This follows from c “ d` e as c1 “ c` γ0 ` γ1 “ d` e` γ0 ` γ1 “ d1 ` e1.
2. gz

1
1W´e1 “ A1. This follows from z11 “ z1 ` α1 and e1 “ e` γ1, as

gz
1
1W´e1 “ pgz1W´eqpgα1W´γ1q “ AW´γ1gα1 “ A1 .

3. gz
1
0pk´d

1

“ R1g. This follows from z10 “ z0 ` α0 and d1 “ d` γ0, as

gz
1
0pk´d

1

“ pgz0pk´dqpgα0pk´γ0q “ Rgpk
´γ0gα0 “ R1g ,

where the second equality follows from the check Rgpk
d
“ gz0 in BS1.U3.

4. h1z
1
0Z 1´e

1

“ R1h. This follows from z10 “ z0 ` α0, d
1 “ d` γ0, h

1 “ hg´β , and Z 1 “ Zpk´β as

h1z
1
0Z 1´d

1

“ ph1z0Z 1´dqph1α0Z 1´γ0q

“ phz0Z´dqpgz0pk´dq´βph1α0Z 1´γ0q

“ RhR
´β
g Z 1´γ0h1α0 “ R1h ,

where the second to last equality follows from the checks RhZ
d “ gz0 and Rgpk

d
“ gz0 in BS1.U3.

By all of the above, we have

H1pm,h1, Z 1, gz
1
0pk´d

1

, h1z
1
0Z 1´d

1

, gz
1
1W´e1q “ H1pm,h1, Z 1, R1g, R

1
h, A

1q

“ c1 “ d1 ` e1 ,

proving the scheme’s correctness. [\

3.2 Proof of Theorem 3.1 (Blindness of BS1)

To prove blindness, we consider the following sequence of games.
Game GA

0 : This game is the BLIND game of BS1 where A has QH2 queries access to the random oracle H2.
Game GA

1 : This game made the following changes:

‚ The oracle Initppk,m0,m1q additionally computes skÐ logg pk by exhaustive search.

‚ For each signing session i P t0, 1u, when the oracle U2pi, smsg
piq
1 q receives smsg

piq
1 from A, it parses

pZi, Rg,i, Rh,i, Ai, πi “ pδi, siqq Ð smsg
piq
1 . Then, it computes Sg,i “ gsipk´δi , Sh,i “ hsii Z

´δi
i , where hi

is the message returned by U1piq, and checks whether δi “ H2phi, pk, Zi, Sg,i, Sh,iq. If this check passes,
the game now aborts if Zi ‰ hski .

The success probability of A only changes when the new abort occurs in either signing sessions, which
corresponds to the following event:

Zi ‰ hski ^ δi “ H2phi, pk, Zi, Sg,i, Sh,iq .

We will argue that this event occurs with negligible probability. Specifically, with how Sg,i, Sh,i is defined,

we have pSg,iq
´ logg hi Sh,i “ ph

´si
i hδiski qhsii Z

´δi
i “

`

h´sk
i Zi

˘´δi
. Since h´sk

i Zi ‰ 1G, there is only one value
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of δi P Zp that satisfies such equation. Note that A makes at most QH2 queries to H2, and if the query
H2phi, pk, Zi, Sg,i, Sh,iq was not made beforehand, the game makes this query when checking validity of π.
Since δi is sampled uniformly at random after fixing the query, the probability of the abort occurring in a
session is bounded by pQH2 ` 1q{p. By the union bound over the two signing sessions,

ˇ

ˇPrrGA
0 “ 1s ´ PrrGA

1 “ 1s
ˇ

ˇ ď
2QH2 ` 2

p
.

For the last step, we show that the transcript and returned signatures are distributed identically between
both cases of b “ 0 and b “ 1, which implies PrrGA

1 “ 1s “ 1
2 concluding the proof.

To show this, first, assume w.l.o.g. that the randomness of A is fixed and A only outputs messages in the
transcript where neither the game nor the user oracles abort; thus, A receives valid signatures pσ0, σ1q. (If a
user oracle aborts, for each signing session, the adversary will only see hi and ci which are both blinded to
be uniformly random over G and Zp respectively.)

Let ViewA denote the set of all possible views of A in the game GA
1 . A view ∆ P ViewA is of the

form ∆ “ pW, pk,m0,m1, T0, T1, σ0, σ1q where for i P t0, 1u, Ti “ phi, Zi, Rg,i, Rh,i, Ai, ci, di, ei, z0,i, z1,iq

denotes the transcript of the interaction between A and the user oracles in signing session i (we omitted
πi as it is distributed independently of pm0,m1q given phi, Ziq), and σi “ pZ 1i, d

1
i, e

1
i, z

1
0,i, z

1
1,iq denotes the

valid signature for the message mi. We need to show that the actual adversarial view, denoted as vA, is
distributed identically between b “ 0 and b “ 1. Since the randomness of A is fixed, vA only depends on the
user randomness η “ pβi, α0,i, α1,i, γ0,i, γ1,iqiPt0,1u. We write vApηq to make this explicit.

Since we assume A does not make the game abort, for the signatures σbi “ pZ
1
bi
, d1bi , e

1
bi
, z10,bi , z

1
1,bi
q in

any view ∆ P ViewA, we have that Z 1bi “ h1bi
sk

where h1bi “ Hpmbiq. This is because of the abort introduced

in GA
1 that induces Zi “ hski leading to Z 1bi “ Zipk

´βi “ phig
´βiqsk “ h1bi

sk
.

To show that the distribution of vA is identical between b “ 0 and b “ 1, consider a view ∆ P ViewA.
We now show that there exists a unique η such that vApηq “ ∆, regardless of whether b “ 0 or b “ 1. More
specifically, we claim that for both b “ 0 and b “ 1, vApηq “ ∆ if and only if for i P t0, 1u, η satisfies

βi “ logg hi ´ logg h
1
bi
,

α0,i “ z10,bi ´ z0,i, α1,i “ z11,bi ´ z1,i ,

γ0,i “ d1bi ´ di, γ1,i “ e1bi ´ ei .

,

/

.

/

-

(3)

For the “only if” direction, i.e., if vApηq “ ∆, then η satisfies Equation (3), this is true by how the user
algorithm of BS1 is defined.

To show the “if” direction, suppose η satisfies Equation (3), we show that vApηq “ ∆. Particularly, we
have to show that the user messages and signatures from oracles U1,U2 and U3 are ph0, h1q, pc0, c1q, and
pσ0, σ1q respectively.

Again, since we only consider a view ∆ where neither the game nor the oracle aborts, we have the
following guarantees for i P t0, 1u:

Zi “ hski , Z
1
bi “ h1bi

sk
, (4)

ci “ di ` ei, Rg,ipk
di “ gz0,i , Rh,iZ

di
i “ h

z0,i
i , AiW

ei “ gz1,i , (5)

d1bi ` e
1
bi “ H1pmbi , h

1
bi , Z

1
bi , pk

´d1bi gz
1
0,bi , Z 1bi

´d1bih1bi
z10,bi ,W´e1bi gz

1
1,bi q , (6)

where Equation (4) follows from the discussion above, Equation (5) follows from the checks in BS1.U3, and
Equation (6) follows from the validity of the signatures.

First, we argue that hi is the user message from U1piq for i P t0, 1u: recall that the user oracle outputs
Hpmbiqg

βi and by the value of βi from Equation (3), Hpmbiqg
βi “ h1big

βi “ hi, so the user’s first message is
consistent with ∆. Thus, the next message from A will be pZi, Rg,i, Rh,i, Aiq from the view ∆.
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Next, we argue that the user’s second message from U2pi, ¨q is ci. To do this, we consider the blinded
values of Zi, Rg,i, Rh,i, and Ai.

Zipk
´βi “ hski g

´βisk “ phig
´βiqsk “ h1bi

sk
“ Z 1bi , Last equality by equation (4)

R1g,i “ Rg,ipk
´γ0,igα0,i “ ppk´digz0,iqpk´γ0,igα0,i ; By equation (5)

“ pk´di´γ0,igz0,i`α0,i “ pk´d
1
bi gz

1
0,bi , By equation (3)

R1h,i “ Rh,iR
´βi
g,i Z

1
bi

´γ0,ih1i
α0,i

“ pZ´dih
z0,i
i qppk´digz0,iq´βiZ 1bi

´γ0,ih1bi
α0,i ; By equation (5)

“ pZpk´βiq´diphig
´βiqz0,iZ 1bi

´γ0,ih1bi
α0,i

“ Z 1bi
´di´γ0,ih1bi

z0,i`α0,i
“ Z 1bi

´d1bih1bi
z10,bi , By equation (3)

A1i “ AW´γ1,igα1,i “ pW´eigz1,iqW´γ1,igα1,i ; By equation (5)

“W´ei´γ1,igz1,i`α1,i “W´e1bi gz
1
1,bi , By equation (3) .

Therefore, the message returned from U2pi, ¨q is

H1pmbi , h
1
bi , Zipk

´βi , R1g,i, R
1
h,i, A

1
iq ´ γ0,i ´ γ1,i

“ H1pmbi , h
1
bi , Z

1
bi , pk

´d1bi gz
1
0,bi , Z 1bi

´d1bih1bi
z10,bi ,W´e1bi gz

1
1,bi q ´ γ0,i ´ γ1,i

“ d1bi ` e
1
bi ´ γ0,i ´ γ1,i “ di ` ei “ ci ,

which is consistent with ∆. Thus, the next message from A will be pdi, ei, z0,i, z1,iq from the view ∆. Lastly,
the signatures from the oracle U3, for i P t0, 1u, are as follows

pZipk
´βi , di ` γ0,i, ei ` γ1,i, z0,i ` α0,i, z1,i ` α1,iq “ pZ

1
bi , d

1
bi , e

1
bi , z

1
0,bi , z

1
1,biq “ σbi ,

which are exactly the signatures in ∆. [\

3.3 Computational Blindness of BS1 without NIZK

As mentioned earlier, we can remove the NIZK proof from our scheme BS1 (resulting in a scheme which we
will call BS11 in this subsection to distinguish from the scheme with NIZK) and still achieve computational
blindness according to the following theorem. We stress that here we make no assumptions on the hash
functions used by BS11.

Theorem 3.4 (Computational Blindness of BS11). Assume that GGen outputs the description of a group
of prime order p “ ppλq, and let BS11 “ BS11rGGens. For any adversary A for the game BLIND running in
time tA “ tApλq, there exists an adversary B for the game DLOG running in time tB « 2tA such that

Advblind
BS11

pA, λq ď 2

b

Advdlog
GGenpB, λq `

2

p
.

Proof. The proof for this theorem mainly follows the proof of Theorem 3.1 with the only difference being
the game GA

1 and its transition from GA
0 . We define the game GA

1 as follows:
Game GA

1 : This game made the following changes:

‚ The oracle Initppk,m0,m1q additionally computes skÐ logg pk by exhaustive search.

‚ For each signing session i P t0, 1u, when the oracle U3pi, smsg
piq
2 q is queried, it parses the signer’s first

and second messages as pZi, Rg,i, Rh,i, Aiq Ð smsg
piq
1 and pdi, ei, z0,i, z1,iq Ð smsg

piq
2 . Then, if the user

algorithm BS11.U3 does not abort but Zi ‰ hski where hi is the message returned by U1piq, the game
aborts.
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Fix a signing session i P t0, 1u and let Badi be the event where the abort described occurs in signing
session i, i.e., Zi ‰ hski but the user algorithm does not abort. This gives

|PrrGA
1 “ 1s ´ PrrGA

0 “ 1s| ď PrrBad0 _ Bad1s .

Note that the event Badi only depends on the user messages in the signing protocol, i.e., phi, ciq (since the
event occurs before the signatures are returned).

To bound the probability of event Badi occurring, we will construct a reduction B rewinding the adversary
A and argue that if Badi occurs in both runs, B can extract loggW .

Before describing B, we make the following observation that hi and ci are uniformly random in G and Zp
respectively. First, denote pβi, α0,i, α1,i, γ0,i, γ1,iq as the user randomness for signing session i P t0, 1u. To see
this, consider that, as computed in the user algorithm, hi “ h1ig

βi and ci “ H1pmbi , h
1
i, Z

1
i, R

1
g,i, R

1
h,i, A

1
iq ´

γ0,i ´ γ1,i where h1i “ Hpmbiq and Z 1i, R
1
g,i, R

1
h,i, A

1
i are the blinded values of Zi, Rg,i, Rh,i, Ai respectively.

We specifically note that A1i “ Aig
α1,iW´γ1,i is uniform over G and is independent of γ1,i. This is because

conditioning on a value of γ1,i, A
1
i takes on any element in G with probability 1{p due to α1,i being uniform

over Zp and independent of γ1,i. Then, the distribution of phi, ciq can now be seen as dependent only on the
signer messages Rg,i, Ai, Rh,i, Zi, the randomness βi, α0,i, γ0,i, γ1,i and a uniformly random A1i. Conditioning
on every values other than βi and γ1,i, we can see that hi is uniform over G as βi is uniform over Zp, and ci
is uniform over Zp as γ1,i is uniform over Zp. This means that the probability of Badi stays the same even
if hi and ci are uniformly randomly sampled instead of generated by following the protocol.

Then, using the above observation, consider the following reduction B playing the DLOG game and
running A.

1. The reduction B takes as input pG, p, g,W q and runs A on input par Ð pG, p, g,W q. It also fixes the
randomness to be used in the signing session 1´ i and the user’s first message hi of signing session i in
advance.

2. The oracles Init, U1p1 ´ iq,U2p1 ´ i, ¨q, and U3p1 ´ i, ¨q are simulated as in the game GA
0 . The oracle

U1piq instead of computing the values as usual answers with hi instead. While for U2pi, ¨q, B returns
ciÐ$ Zp.

3. For the call to U3pi, smsg
piq
2 q, if the user algorithm does not abort B rewinds the adversary A to when

it queries U2pi, smsg
piq
1 q and returns c1iÐ$ Zp. The oracles for the signing session 1´ i still use the same

randomness from the previous run.

4. After the rewinding, for the call to U3pi, smsg12
piq
q, if the user algorithm does not abort, we can parse

pdi, ei, z0,i, z1,iq Ð smsg
piq
2 and pd1i, e

1
i, z

1
0,i, z

1
1,iq Ð smsg12

piq
. If ei ‰ e1i, the reduction returns pz1,i ´

z11,iqpei ´ e
1
iq
´1. Otherwise, abort.

It is clear that the running time of B is about twice of A’s. Then, we argue the success probability of the
reduction B by considering the event Badi. We note that the event Badi cannot be detected efficiently;
however, here we show that if such event occurs in both runs (even without B detecting Badi), the reduction
B will find loggW . More specifically, we consider the following event frk where Badi occurs in both the first
and the rewound run of A in the reduction B and that the outputs of U2pi, ¨q over the two runs are different
(i.e., c1i ‰ ci). If this event occurs, then A has sent pZi, Rg,i, Rh,i, Aiq and pdi, ei, z0,i, z1,iq, pd

1
i, e

1
i, z

1
0,i, z

1
1,iq

such that

(i) Zi ‰ hski .
(ii) di ` ei “ ci ‰ c1i “ d1i ` e

1
i.

(iii) pRg,i, Rh,iq “ pg
z0,ipk´di , h

z0,i
i Z´dii q “ pgz

1
0,ipk´d

1
i , h

z10,i
i Z

´d1i
i q.

(iv) Ai “ gz1,iW´ei “ gz
1
1,iW´e1i .

By considering (iii),

Z
di´d

1
i

i “ h
z0,i´z

1
0,i

i “ gpz0,i´z
1
0,iq logg hi “ pkpdi´d

1
iq logg hi “ h

skpdi´d
1
iq

i .
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Game GA
0 , GA

1 , GA
2 , GA

3 , GA
4 :

pG, p, gq Ð$ GGenp1λq

W Ð$ G // GA
0 ´GA

1

wÐ$ Zp ; W Ð gw // GA
2 ´GA

4

par Ð pG, p, g,W q
skÐ$ Zp ; pkÐ gsk

`Ð 0 ; I1, I2 Ð H

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2 ppar, pkq

If D k1 ‰ k2 such that m˚k1
“ m˚k2

then

return 0
If D k P r`` 1s such that

BS1.Verppk,m
˚
k , σ

˚
k q “ 0 then

return 0
For k P r`` 1s:

pZ˚k , d
˚
k , e

˚
k , z

˚
0,k, z

˚
1,kq Ð σ˚k

If Z˚k ‰ Hpm˚k q
sk then

return 0 // GA
1 ´GA

5

Return 1

Oracle H‹pstrq for H‹ P tH,H
1,H2u:

If H‹pstrq ‰ K then
return H‹pstrq

H‹pstrq Ð$ G // If H‹ “ H
H‹pstrq Ð$ Zp // If H‹ P tH

1,H2u
Return H‹pstrq

Oracle S1psid, hq:

If sid P I1 then return K
`Ð `` 1 ; I1 Ð I1 Y tsidu

Z Ð hsk

z1, e, r0 Ð$ Zp
Rg Ð gr0 ; Rh Ð hr0

AÐ gz1W´e // GA
0 ´GA

3

z0, d, r1 Ð$ Zp
Rg Ð gz0pk´d

Rh Ð hz0Z´d

AÐ gr1 // GA
4

sÐ$ Zp ; δ Ð H2ph, pk, Z, gs, hsq

π Ð pδ, δ ¨ sk` sq // GA
0 ´GA

2

δ, s1Ð$ Zp ; π Ð pδ, s1q // GA
3 ´GA

4

If H2ph, pk, Z, gs
1
pk´δ, hsZ´δq ‰ K then

abort game

H2ph, pk, Z, gs
1
pk´δ, hsZ´δq Ð δ

Return pZ,Rg, Rh, A, πq

Oracle S2psid, cq :

If sid R I1 or sid P I2 then return K
I2 Ð I2 Y tsidu

dÐ c´ e
z0 Ð r0 ` d ¨ sk // GA

0 ´GA
3

eÐ c´ d
z1 Ð r1 ` e ¨ w // GA

4

Return pd, e, z0, z1q

Fig. 5. The OMUF-1 “ GA
0 security game for BS1 and the subsequent games GA

1 ´GA
4 . We remark that H,H1 and

H2 are modeled as random oracles to which A has access. Each box type indicates the changes made in the game
name contained in the box. Also, to make things clearer, for each box, the comments indicate which game the changes
in the boxes correspond to. Moreover, the signer state is omitted and we assume that each variable initialized in S1

of the same sid can be accessed in S2.

Then, di “ d1i follows from Zi ‰ hski . Thus, ei ‰ e1i and pz1,i ´ z
1
1,iqpei ´ e

1
iq
´1 “ loggW by (iv). This shows

that if frk occurs, then B succeeds in the DLOG game. Thus, Prrfrks ď Advdlog
GGenpB, λq.

Now, we bound Prrfrks using the forking lemma (Lemma 2.1). To this end, we define a wrapper Ai over
A where Ai takes as input the instance pG, p, g,W q, the challenge ci, and a randomness ρ which is used to
derive the random tape for A, hi, and the randomness used in signing session 1 ´ i. The wrapper Ai then
simulates the user oracles as B does and returns I “ 1 when Badi occurs. Otherwise Ai returns K. This
means that the probability that I “ 1 ‰ K is PrrBadis. Also, we can see that the event frk corresponds to
the event where Ai is run twice with the same inputs except the two different ci ‰ c1i, and both runs return
I and I 1 such that I “ I 1 ‰ K. Thus by the forking lemma, we have

PrrBadis ď
a

Prrfrks `
1

p
ď

b

Advdlog
GGenpB, λq `

1

p
.

Applying the union bound over i P t0, 1u concludes the proof. [\

3.4 Proof of Theorem 3.2 (OMUF-1 of BS1)

To prove one-more unforgeability of BS1, we consider the following sequence of games. Here, we describe the
sequence of games in text, while the pseudocode version of the games can be found in Figure 5.

15



Game GA
0 : The game first generates the public parameters and the secret and public keys as parÐ$

BS1.Setupp1
λq and psk, pkq Ð$ BS1.KGpparq. Then, the game interacts with an adversary Appar, pkq with

access to the signing oracles S1,S2 and the random oracles H,H1,H2 which are simulated by lazy sampling.
The adversary A queries the signing oracle S1 for ` times and the random oracles H,H1 and H2 for QH, QH1

and QH2 times respectively. At the end of the game, A outputs ``1 message-signature pairs pm˚k , σ
˚
k qkPr``1s.

The adversary A succeeds if for all k1 ‰ k2,m
˚
k1
‰ m˚k2

and for all k P r`` 1s, BS1.Verppk,m
˚
k , σ

˚
k q “ 1. We

w.l.o.g. assume that A does not make the same random oracle query twice. Also, we assume that A makes
the random oracle queries that would be made in BS1.Ver when verifying the forgeries. This adds at most
``1 queries to H and H1, making the total query count pQH “ QH` ``1 and pQH1 “ QH1 ` ``1, respectively.
The success probability of A in game GA

0 is exactly its advantage in the game OMUF-1, i.e.,

Advomuf-1
BS1

pA, λq “ PrrGA
0 “ 1s .

Game GA
1 : This game is identical to GA

0 except that for the message-signature pairs pm˚k , σ
˚
k qkPr``1s output

by the adversary A, for k P r`` 1s, after parsing pZ˚k , d
˚
k , e

˚
k , z

˚
0,k, z

˚
1,kq Ð σ˚k , the game additionally requires

that Z˚k “ Hpm˚kq
sk.

Then, by Lemma 3.5, there exists an adversary B for the game DLOG, running in time tB « 2tA, such
that

PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´ p`` 1q

˜

b

pQH1Adv
dlog
GGenpB, λq `

pQH1

p

¸

.

Game GA
2 : This game is identical to GA

1 except that when generating the group element W in par, the
game generates wÐ$ Zp and sets W Ð gw. Since W still has the same distribution, the success probability
of A is exactly as in GA

1 .

PrrGA
2 “ 1s “ PrrGA

1 “ 1s .

Game GA
3 : This game is identical to GA

2 except that the signing oracle S1 generates π by sampling
s1, δÐ$ Zp and programming H2ph, pk, Z, gs

1

pk´δ, hs
1

Z´δq as δ. The game aborts if H2 is already defined at

ph, pk, Z, gs
1

pk´δ, hs
1

Z´δq.
The view of A is identical to its view in GA

2 if the game does not abort. Moreover, the game only aborts
if ph, pk, Z, gs

1

pk´δ, hs
1

Z´δq has been queried or programmed beforehand, but gs
1

pk´δ is uniformly random
and independent of the view of A and previous programming attempts of H2 as s1 is uniformly random
and independent at the time that the oracle tries to program H2. Thus, by applying the union bound over
possible collision events, i.e., all pairs of queries to oracle S1 and queries to both H2 and S1 (accounting for
attempts to program H2),

PrrGA
3 “ 1s ě PrrGA

2 “ 1s ´
`p``QH2q

p
.

Game GA
4 : This game is identical to GA

3 except that the signing oracles are simulated by using w instead
of sk. More specifically, pA,Rg, Rh, d, e, z0, z1q are now generated as follows:

1. Sample r1, d, z0 Ð$ Zp and set AÐ gr1 , pRg, Rhq Ð pgz0pk´d, hz0Z´dq.
2. After receiving c, set eÐ c´ d and z1 Ð r1 ` e ¨ w.

Since the joint distributions of pA,Rg, Rh, d, e, z0, z1q in the games GA
3 and GA

4 are identical, the view of A
remains the same. Thus,

PrrGA
4 “ 1s “ PrrGA

3 “ 1s .

Lastly, we give a reduction B1 playing the CT-CDH game using the adversary A as a subroutine. The
reduction B1 is defined as follows:

1. The reduction B1 takes as input a CT-CDH instance pG, p, g,Xq, samples wÐ$ Zp, and sets W Ð gw.
It then sends parÐ pG, p, g,W q, pkÐ X to A.
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2. The simulations of H1 and H2 are done as in GA
4 . However, for queries to H (labeling each with j P r pQHs),

the reduction B1 queries the challenge oracle Chal and receives a random group element Yj which it

returns as the random oracle output. (This means that B1 makes pQH “ QH ` `` 1 queries to Chal.)
3. The signing oracles are also simulated as in GA

4 except for the computation of Z “ hsk in S1 which is
done by querying its Dh oracle instead, i.e., Z Ð Dhphq.

4. After receiving the message-signature pairs pm˚k , σ
˚
k qkPr``1s from A, B1 checks if all the messages are

distinct and all the pairs are valid. If not, it aborts. Next, B1 identifies jk for each k P r` ` 1s where jk
is the index of the hash query Hpm˚kq made by A. Since m˚k are distinct, there are exactly `` 1 distinct
jk. Lastly, B1 returns pjk, Z

˚
k qkPr``1s where Z˚k is the corresponding value in σ˚k .

It is clear that the running time of B1 is about that of A. For the success probability of the reduction, we
can see that B1 simulates the oracles identically to the game GA

4 . Then, if A succeeds in the game GA
4 , then

A returns Z˚k “ Hpm˚kq
sk “ Y

logg X

jk
for all k P r`` 1s where sk “ logg pk “ loggX. Thus, B1 succeeds in the

game CT-CDH, as it returns `` 1 correct CT-CDH solutions while only querying Dh for ` times. Therefore,
PrrGA

4 “ 1s ď Advct-cdh
GGen pB1, λq. Then, by combining all the advantage changes,

Advomuf-1
BS1

pA, λq ď `p``QH2q

p
` p`` 1q

˜

b

pQH1Adv
dlog
GGenpB, λq `

pQH1

p

¸

` Advct-cdh
GGen pB1, λq .[\

Lemma 3.5. There exists an adversary B for the game DLOG, running in time tB « 2tA, such that

PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´ p`` 1q

˜

b

pQH1Adv
dlog
GGenpB, λq `

pQH1

p

¸

.

Proof. Let Bad be the event where GA
0 outputs 1 but GA

1 outputs 0. This corresponds to the following event:
A outputs ` ` 1 message-signature pairs pm˚k , σ

˚
k qkPr``1s such that (1) for all k1 ‰ k2,m

˚
k1
‰ m˚k2

, (2) for
all k P r` ` 1s, BS1.Verppk,m

˚
k , σ

˚
k q “ 1, and (3) there exists some k P r` ` 1s where parsing the signature

pZ˚k , d
˚
k , e

˚
k , z

˚
0,k, z

˚
1,kq Ð σ˚k , we have that Z˚k ‰ Hpm˚kq

sk. Then, we can write PrrGA
1 “ 1s ě PrrGA

0 “

1s ´ PrrBads.
Also, define the event Badk for k P r` ` 1s which is event Bad with the condition (3) specified only for

the k-th pair pm˚k , σ
˚
k q. This gives Bad “

Ť``1
k“1 Badk.

Now, define a wrapper Ak over the adversary A where Ak receives the following inputs: an instance
pG, p, g,W q, the output tape pc1, . . . , c pQH1

q of H1, and a random tape ρ.

1. Extract psk P Zp, psi P Zp, r0,i P Zp, ei P Zp, z1,i P ZpqiPr`s, phi P GqiPr pQHs
, pδi P ZpqiPrQH2``s

, ρ1q from the

random tape ρ.
2. Set parÐ pG, p, g,W q, pkÐ gsk.
3. Run pm˚k , σ

˚
k qkPr``1s Ð AS1,S2,H,H

1,H2ppar, pk; ρ1q where each oracle is simulated as follows:
‚ For the signing query with session ID j (j P r`s) to S1 and S2, use psk, si, r0,i, ei, z1,iq to answer the

query as in BS1.S1 and BS1.S2 respectively.
‚ For the i-th query (i P r pQHs) to H, return hi.

‚ For the i-th query (i P r pQH1s) to H1, return ci.
‚ For the i-th query (i P rQH2 ` `s) to H2, return δi. (Note: In these queries, we accounted for the

queries that the wrapper made to generate π in each query to S1.)
4. If the event Badk does not occur, return pK,Kq. Otherwise, return pI, pm˚k , σ

˚
k qq where I is the index

of the query to H1 that corresponds to the verification of pm˚k , σ
˚
k q. More specifically, after parsing

pZ˚k , d
˚
k , e

˚
k , z

˚
0,k, z

˚
1,kq Ð σ˚k , I is the index corresponding to the query pm,h,Z,Rg, Rh, Aq to H1 where

m “ m˚k , h “ Hpmq, Z “ Z˚k , Rg “ gz
˚
0,kpk´d

˚
k , Rh “ hz

˚
0,kZ´d

˚
k , A “ gz

˚
1,kW´e˚k . Note that I is well-

defined as we assume that all random oracle queries in forgery verification are made by A beforehand.
Also, it is easy to see that the running time of Ak is roughly the running time of A.

Next, we consider the following reduction B playing the discrete logarithm game defined as follows:
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1. On the input pG, p, g,W q, B samples c1, . . . , c pQH1
Ð$ Zp along with the random tape ρ of Ak.

2. Run pI, pm,σqq Ð$ AkppG, p, g,W q, pc1, . . . , c pQH1
q; ρq.

3. If I “ K, abort. If not, sample c1I , . . . , c
1
pQH1
Ð$ Zp and

run pI 1, pm1, σ1qq Ð$ AkppG, p, g,W q, pc1, . . . , cI´1, c
1
I , . . . , c

1
pQH1
q; ρq.

4. If I “ I 1 and c1I ‰ cI , parse pZ, d, e, z0, z1q Ð σ, pZ 1, d1, e1, z10, z
1
1q Ð σ1, and return pz1 ´ z11qpe ´ e1q´1.

Otherwise, abort.

Since B runs Ak twice and the running time of Ak is about that of A, tB « 2tA. Next, we show that if B does
not abort (i.e., I “ I 1 ‰ K and cI ‰ c1I), then it returns a discrete logarithm of W . Since I “ I 1 ‰ K, the
message-signature pairs pm,σq and pm1, σ1q: (a) are valid signatures corresponding to the I-th query from A
to H1 of the form pm,h,Z,Rg, Rh, Aq and (b) satisfy Z ‰ Hpmqsk and Z 1 ‰ Hpm1qsk. By (a), we know the
following

(i) m “ m1, h “ Hpmq “ Hpm1q, Z “ Z 1.
(ii) cI “ d` e, c1I “ d1 ` e1.

(iii) Rg “ gz0pk´d “ gz
1
0pk´d

1

, Rh “ hz0Z´d “ hz
1
0Z´d

1

.
(iv) A “ gz1W´e “ gz

1
1W´e1 .

We will argue that d “ d1. First, the equations in (iii) give Zd´d
1

“ hz0´z
1
0 “ gpz0´z

1
0q logg h “ pkpd´d

1
q logg h “

hskpd´d
1
q. Since Z ‰ hsk, only d “ d1 satisfies the equation. Since d ` e “ cI ‰ c1I “ d1 ` e1, we have e ‰ e1.

Thus, by (iv), B returns pz1 ´ z
1
1qpe´ e

1q´1 “ loggW . Hence,

Advdlog
GGenpB, λq “ PrrB does not aborts “ PrrI “ I 1 ^ I ‰ K^ cI ‰ c1I s .

Lastly, by the fact that B rewinds Ak which only outputs I ‰ K when Badk occurs, we can apply the forking
lemma (Lemma 2.1),

PrrBadks ď

b

pQH1Adv
dlog
GGenpB, λq `

pQH1

p
.

The lemma statement follows from the union bound over Badk for k P r`` 1s. [\

4 Strong Unforgeability from CT-CDH

It turns out that the scheme BS1 from Section 3 is not one-more strongly unforgeable. We omit a formal proof,
but the basic idea is to consider an adversary attempting to produce `` 1 signatures on the same message
m by starting ` signing sessions with h “ Hpmq, fixing h and Z “ hsk in all of them. After this, the structure
of the signing protocol becomes essentially equivalent to that of the Abe-Okamoto blind signature [AO00],
which is subject to a variant of ROS attacks [BLL`21].

To obtain a strongly unforgeable scheme, we modify BS1 by adding a first move where the signer sends
the nonces Rg and A (note that these do not depend on h in BS1), and the user then sets hÐ Hpm,Rg, Aq
instead of Hpmq as in BS1. The resulting five-move scheme BS2 is presented in Figure 6 (a protocol diagram is
also presented in Figure 14), and we will show it indeed satisfies OMSUF-1 under the CT-CDH assumption.
This scheme can be seen as a blind version of Chevallier-Mames signatures [Che05, KLP17]. It is easy to
show that the scheme satisfies correctness (see Section 4.1 for a proof).

Blindness.As with BS1, the scheme can be shown computationally blind under the DL assumption, without
any further assumption on the hash functions used by the scheme, or statistically blind by modeling H2 as
a random oracle, once again using the highlighted NIZK proof. Below, we state a theorem for the latter
property and prove it in Section 4.2. While for the version of the scheme without the NIZK, we give the
proof for computational blindness in Section 4.3.

Theorem 4.1 (Blindness of BS2). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BS2 “ BS2rGGens. For any adversary A for the game BLIND making at most QH2 “ QH2pλq
queries to H2, modeled as a random oracle, we have

Advblind
BS2

pA, λq ď 2QH2 ` 2

p
.
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Algorithm BS2.Setupp1
λ
q :

pG, p, gq Ð$ GGenp1λq ; W Ð$ G
Select H : t0, 1u˚ Ñ G
Select H1, H2 : t0, 1u˚ Ñ Zp
Return par “ pG, p, g,W,H,H1, H2 q

Algorithm BS2.KGpparq :

pG, p, g,W,H,H1, H2 q Ð par

skÐ$ Zp ; pkÐ gsk

Return psk, pkq

Algorithm BS2.S1pskq :

z1, e, r0 Ð$ Zp
Rg Ð gr0 ; AÐ gz1W´e

sts1 Ð psk, z1, e, r0q ; smsg1 Ð pRg, Aq
Return psts1, smsg1q

Algorithm BS2.S2pst
s
1, hq :

psk, z1, e, r0q Ð sts1
Z Ð hsk ; Rh Ð hr0

sÐ$ Zp ; δ Ð H2ph, gsk, Z, gs, hsq

π Ð pδ, s` δ ¨ skq

smsg2 Ð pZ,Rh, π q
Return psts1, smsg2q

Algorithm BS2.S3pst
s
2, cq :

psk, z1, e, r0q Ð sts2
dÐ c´ e ; z0 Ð r0 ` d ¨ sk
Return pd, e, z0, z1q

Algorithm BS2.Verppk,m, σq :

pZ, d, e, z0, z1q Ð σ

Rg Ð gz0pk´d ; AÐ gz1W´e

hÐ Hpm,Rg, Aq ; Rh Ð hz0Z´d

If d` e ‰ H1pm,h, Z,Rg, Rh, Aq then
return 0

Return 1

Algorithm BS2.U1ppk,m, smsg1q :

pRg, Aq Ð smsg1
β, α0, α1, γ0, γ1 Ð$ Zp
R1g Ð Rgpk

´γ0gα0

A1 Ð AW´γ1gα1

h1 Ð Hpm,R1g, A
1
q

hÐ h1gβ

stu1 Ð pm,β, α0, α1, γ0, γ1, pk, h
1, h, Rg, R

1
g, A,A

1
q

Return pstu1 , hq

Algorithm BS2.U2pst
u
1 , smsg2q :

pm,β, α0, α1, γ0, γ1, pk, h
1, h, Rg, R

1
g, A,A

1
q Ð stu1

pZ,Rh, π q Ð smsg2 ; pδ, s1q Ð π

If δ ‰ H2ph, pk, Z, gs
1
pk´δ, hs

1
Z´δq then

return K

Z1 Ð Zpk´β

R1h Ð RhR
´β
g Z1´γ0h1α0

c1 Ð H1pm,h1, Z1, R1g, R
1
h, A

1
q

cÐ c1 ´ γ0 ´ γ1

stu2 Ð pc, Z, Z1, Rh, st
u
1 q

Return pstu2 , cq

Algorithm BS2.U3pst
u
2 , smsg3q :

pc, Z, Z1, Rh, st
u
1 q Ð stu2

pm,β, α0, α1, γ0, γ1, pk, h
1, h, Rg, R

1
g, A,A

1
q Ð stu1

pd, e, z0, z1q Ð smsg3
If c ‰ d` e or
pRgpk

d, RhZ
d
q ‰ pgz0 , hz0 q or

AW e
‰ gz1 then

return K
d1 Ð d` γ0 ; e1 Ð e` γ1

z10 Ð z0 ` α0 ; z11 Ð z1 ` α1

Return σ Ð pZ1, d1, e1, z10, z
1
1q

Fig. 6. The blind signature scheme BS2 “ BS2rGGens. The public parameters par, as stated before, are implicit
input to every algorithms except BS2.KG. The highlighted boxes denote the NIZK proof used to show the equality of
discrete logarithm of ppk, Zq to the base pg, hq. We also give a protocol diagram of BS2 in Figure 14.

One-more unforgeability. The following theorem establishes the OMSUF-1 security of BS2 in the ran-
dom oracle model under the CT-CDH assumption. We give a proof sketch below, whereas the full proof can
be found in Section 4.4.

Theorem 4.2 (OMSUF-1 of BS2). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BS2 “ BS2rGGens. For any adversary A for the game OMSUF-1 with running time
tA “ tApλq, making at most ` “ `pλq queries to S1, QH‹ “ QH‹pλq queries to H‹ P tH,H

1,H2u, modeled as
random oracles, there exist adversaries B and B1 for the game DLOG, and adversaries B1 and B2 for the
game CT-CDH, such that

Advomsuf-1
BS2

pA, λq ď `p``QH2q

p
` p`` 1q

˜

b

pQH1Adv
dlog
GGenpB, λq `

pQH1

p

¸

` Advdlog
GGenpB1, λq ` Advct-cdh

GGen pB2, λq ` Advct-cdh
GGen pB1, λq ,

where pQH1 “ QH1 ` ` ` 1. Furthermore, B and B1 run in time tB « 2tA and tB1 « tA respectively, whereas
B1 runs in time tB1 « tA, makes QH ` ` ` 1 queries to Chal, and ` queries to Dh, and lastly, B2 runs in
time tB2

« tA, and makes `` 1 queries to Chal, and ` queries to Dh.
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The proof builds on top of the approach for proving OMUF-1 of BS1. Specifically, we show that after start-
ing ` signing sessions, no adversary can forge `` 1 valid message-signature pairs tpmi, pZi, di, ei, z0,i, z1,iqqu

with distinct pmi, Rg,i, Aiq, where Rg,i “ gz0,ipk´di and Ai “ gz1,iW´ei . To see that this implies the
OMSUF-1 security of BS2, we only need to show that no adversary can output two distinct pairs pmi, pZi, di,
ei, z0,i, z1,iqq and pmj , pZj , dj , ej , z0,j , z1,jqq with pmi, Rg,i, Aiq “ pmj , Rg,j , Ajq. Suppose such an adversary
exists. Then, there are three cases: (1) Zi ‰ Zj , (2) pdi, z0,iq ‰ pdj , z0,jq, and (3) pei, z1,iq ‰ pej , z1,jq. If
Zi ‰ Zj , one of Zi and Zj is not equal to Hpmi, Rg,i, Aiq

sk and thus, we can follow the same argument as

BS1 to extract the discrete logarithm of W . If pdi, ziq ‰ pdj , zjq, since gzipk´di “ Rg,i “ Rg,j “ gzjpk´dj , we
can extract sk. If pei, tiq ‰ pej , tjq, since gtiW´ei “ Ai “ Aj “ gtjW´ej , we can extract loggW . Therefore,
such an adversary contradicts the discrete logarithm assumption.

4.1 Correctness of BS2

Theorem 4.3. BS2 satisfies correctness.

Proof. Consider an honestly generated signature σ “ pZ 1, d1, e1, z10, z
1
1q for a message m and the variables as

defined in the signing protocol.

First, we argue that the checks in BS2.U2 and BS2.U3 verifies. For the check in BS2.U2, since s1 “ s`δ ¨sk
and pk “ gsk, Z “ hsk, we have gs

1

pk´δ “ gs and hs
1

Z´δ “ hs. Thus, H2ph, pk, Z, gs
1

pk´δ, hs
1

Z´δq “
H2ph, gsk, Z, gs, hsq “ δ.

For the check in BS2.U3, c “ d` e by how the signer computes e, AW e “ gz1 by how A is generated, and
lastly pRgpk

d, RhZ
dq “ pgr0`d¨sk, hr0`d¨skq “ pgz0 , hz0q, where the first equality follows from Rg “ gr0 , Rh “

hr0 , pk “ gsk, Z “ hsk and the second equality follows from z0 “ r0 ` d ¨ sk.

Now, to argue the validity of the signature, let h1 “ Hpm,R1g, A
1q where R1g “ Rgpk

´γ0gα0 , A1 “
AW´γ1gα1 . Then, we have to argue the following to say that the signature is valid:

1. c1 “ d1 ` e1. This follows from c “ d` e as c1 “ c` γ0 ` γ1 “ d` e` γ0 ` γ1 “ d1 ` e1.

2. gz
1
1W´e1 “ A1. This follows from z11 “ z1 ` α1 and e1 “ e` γ1, as

gz
1
1W´e1 “ pgz1W´eqpW´γ1gα1q “ ApW´γ1gα1q “ A1 .

3. gz
1
0pk´d

1

“ R1g. This follows from z10 “ z0 ` α0 and d1 “ d` γ0, as

gz
1
0pk´d

1

“ pgz0pk´dqppk´γ0gα0q “ Rgppk
´γ0gα0q “ R1g ,

where the second equality follows from the check Rgpk
d
“ gz0 in BS2.U3.

4. h1z
1
0Z 1´e

1

“ R1h. This follows from z10 “ z0 ` α0, d
1 “ d` γ0, h

1 “ hg´β , and Z 1 “ Zpk´β

h1z
1
0Z 1´d

1

“ h1z0Z 1´dph1α0Z 1´γ0q

“ hz0Z´dpgz0pk´dq´βph1α0Z 1´γ0q

“ RhR
´β
g ph1α0Z 1´γ0q “ R1h ,

where the second to last equality follows from the check RhZ
d “ gz0 and Rgpk

d
“ gz0 in BS2.U3.

By the points above, we have Hpm, gz
1
0pk´d

1

, gz
1
1W´e1q “ Hpm,R1g, A

1q “ h1 and

H1pm,h1, Z 1, gz
1
0pk´d

1

, h1z
1
0Z 1´d

1

, gz
1
1W´e1q “ H1pm,h1, Z 1, R1g, R

1
h, A

1q “ c1 “ d1 ` e1 ,

proving the scheme’s correctness. [\
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4.2 Proof of Theorem 4.1 (Blindness of BS2)

To prove blindness, we consider the following sequence of games.
Game GA

0 : This game is the BLIND game of BS2 where A has QH2 queries access to the random oracle H2.
Game GA

1 : This game made the following changes:

‚ The oracle Initppk,m0,m1q additionally computes skÐ logg pk by exhaustive search.

‚ For each signing session i P t0, 1u, when the oracle U2pi, smsg
piq
2 q receives smsg

piq
2 from A, it parses

pZi, Rh,i, πi “ pδi, siqq Ð smsg
piq
2 . Then, it computes Sg,i “ gsipk´δi , Sh,i “ hsii Z

´δi
i where hi is the

message returned by U1pi, ¨q, and checks whether δi “ H2phi, pk, Zi, Sg,i, Sh,iq. If this check passes, the
game now aborts if Zi ‰ hski .

The success probability of A only changes when the new abort occurs in either signing sessions which
corresponds to the following event:

Zi ‰ hski ^ δi “ H2phi, pk, Zi, Sg,i, Sh,iq.

We will argue that this event occurs with negligible probability. Specifically, with how Sg,i and Sh,i are

defined and that Zi ‰ hski “ pklogg hi , we have pSg,iq
´ logg hi Sh,i “ ph

´si
i hδiski qhsii Z

´δi
i “

`

h´sk
i Zi

˘´δi
. Since

h´sk
i Zi ‰ 1G, there is only one value of δi P Zp that satisfies such equation. Note that A makes at most QH2

queries to H2, and if the query H2phi, pk, Zi, Sg,i, Sh,iq was not made beforehand, the game makes this query
when checking validity of π. Since δi is sampled uniformly at random after fixing the query, the probability
of the abort occurring in a session is bounded by pQH2 ` 1q{p. By the union bound over the two signing
sessions,

ˇ

ˇPrrGA
0 “ 1s ´ PrrGA

1 “ 1s
ˇ

ˇ ď
2QH2 ` 2

p
.

For the last step, we show that the transcript and returned signatures are distributed identically between
both cases of b “ 0 and b “ 1, which implies PrrGA

1 “ 1s “ 1
2 concluding the proof.

To show this, first, assume w.l.o.g. that the randomness of A is fixed and A only outputs messages in the
transcript where neither the game nor the user oracles abort; thus, A receives valid signatures pσ0, σ1q. (If a
user oracle aborts, for each signing session, the adversary will only see hi and ci which are both blinded to
be uniformly random over G and Zp respectively.)

Let ViewA denote the set of all possible views of A that can occur in the game GA
1 . A view ∆ P ViewA is of

the form ∆ “ pW, pk,m0,m1, T0, T1, σ0, σ1q where for i P t0, 1u, Ti “ phi, Zi, Rg,i, Rh,i, Ai, ci, di, ei, z0,i, z1,iq

denotes the transcript of the interaction between A and the user oracles in signing session i (we omitted
πi as it is distributed independently of pm0,m1q given phi, Ziq), and σi “ pZ 1i, d

1
i, e

1
i, z

1
0,i, z

1
1,iq denotes the

valid signature for the message mi. We need to show that the distribution of the actual adversarial view,
denoted as vA, is distributed identically between b “ 0 and b “ 1. Since the randomness of A is fixed, vA
only depends on the user randomness η “ pβi, α0,i, α1,i, γ0,i, γ1,iqiPt0,1u. We write vApηq to make this explicit.

Since we assume A does not make the game abort, for the signatures σbi “ pZ
1
bi
, d1bi , e

1
bi
, z10,bi , z

1
1,bi
q in

any view ∆ P ViewA, we have that Z 1bi “ h1bi
sk

where h1bi “ Hpmbi , pk
´d1bi gz

1
0,bi ,W´e1bi gz

1
1,bi q. This is because

of the abort introduced in GA
1 that induces Zi “ hski leading to Z 1bi “ Zipk

´βi “ phig
´βiqsk “ h1bi

sk
.

To show that the distribution of vA is identical between b “ 0 and b “ 1, consider a view ∆ P ViewA.
We now show that there exists a unique η such that vApηq “ ∆, regardless of whether b “ 0 or b “ 1. More
specifically, we claim that for both b “ 0 and b “ 1, vApηq “ ∆ if and only if for i P t0, 1u, η satisfies

βi “ logg hi ´ logg h
1
bi

α0,i “ z10,bi ´ z0,i, α1,i “ z11,bi ´ z1,i

γ0,i “ d1bi ´ di, γ1,i “ e1bi ´ ei .

,

/

.

/

-

(7)

For the “only if” direction, i.e., if vApηq “ ∆, then η satisfies Equation (7), this is true by how the user
algorithm of BS2 is defined.
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To show the “if” direction, suppose η satisfies Equation (7), we need to show that vApηq “ ∆. Partic-
ularly, we have to show that the user messages from oracles U1,U2 and the signatures from oracle U3 are
ph0, h1q, pc0, c1q, and pσ0, σ1q respectively.

Again, since we only consider a view ∆ where neither the game nor the oracle aborts, we have the
following guarantees for i P t0, 1u:

Zi “ hski , Z
1
bi “ h1bi

sk
, (8)

ci “ di ` ei, Rg,ipk
di “ gz0,i , Rh,iZ

di
i “ h

z0,i
i , AiW

ei “ gz1,i (9)

d1bi ` e
1
bi “ H1pmbi , h

1
bi , Z

1
bi , pk

´d1bi gz
1
0,bi , Z 1bi

´d1bih1bi
z10,bi ,W´e1bi gz

1
1,bi q , (10)

where Equation (8) follows from the discussion above, Equation (9) follows from the checks in BS2.U3, and
Equation (10) follows from the validity of the signatures.

First, we argue that hi is the user message from U1pi, ¨q for i P t0, 1u. Since the randomness of A is fixed,
A’s first message will be pRg,i, Aiq from the view ∆. Consider the blinded values of Rg,i and Ai

R1g,i “ Rg,ipk
´γ0,igα0,i

“ ppk´digz0,iqpk´γ0,igα0,i ; By equation (9)

“ pk´di´γ0,igz0,i`α0,i “ pk´d
1
bi gz

1
0,bi , By equation (7)

A1i “ AW´γ1,igα1,i

“ pW´eigz1,iqW´γ1,igα1,i ; By equation (9)

“W´ei´γ1,igz1,i`α1,i “W´e1bi gz
1
1,bi , By equation (7)

Then, by the value of βi from Equation (7), the user’s first message is

Hpmbi , R
1
g,i, A

1
iqg

βi “ Hpmbi , pk
´d1bi gz

1
0,bi ,W´e1bi gz

1
1,bi qgβi

“ h1big
βi “ hi ,

which is consistent with ∆. Thus, the next message from A will be pZi, Rh,iq from the view ∆.
Next, we argue that the user’s second message from U2pi, ¨q will be ci. To do this, we consider the blinded

values of Zi and Rh,i (the blinded values of Rg,i and Ai are already argued above).

Zipk
´βi “ hski g

´βisk “ phig
´βiqsk “ h1bi

sk
“ Z 1bi , Last equality by equation (8)

R1h,i “ Rh,iR
´βi
g,i Z

1
bi

´γ0,ih1i
α0,i

“ pZ´dih
z0,i
i qppk´digz0,iq´βiZ 1bi

´γ0,ih1bi
α0,i ; By equation (9)

“ pZpk´βiq´diphig
´βiqz0,iZ 1bi

´γ0,ih1bi
α0,i

“ Z 1bi
´di´γ0,ih1bi

z0,i`α0,i
“ Z 1bi

´d1bih1bi
z10,bi , By equation (7)

Therefore, the message returned from U2pi, ¨q is

H1pmbi , h
1
bi , Zipk

´βi , R1g,i, R
1
h,i, A

1
iq ´ γ0,i ´ γ1,i

“ H1pmbi , h
1
bi , Z

1
bi , pk

´d1bi gz
1
0,bi , Z 1bi

´d1bih1bi
z10,bi ,W´e1bi gz

1
1,bi q ´ γ0,i ´ γ1,i

“ d1bi ` e
1
bi ´ γ0,i ´ γ1,i “ di ` ei “ ci ,

so the user’s second message is consistent with ∆. Thus, the next message from A will be pdi, ei, z0,i, z1,iq

from the view ∆. Lastly, the signatures from the oracle U3, for i P t0, 1u, are as follows

pZipk
´βi , di ` γ0,i, ei ` γ1,i, z0,i ` α0,i, z1,i ` α1,iq “ pZ

1
bi , d

1
bi , e

1
bi , z

1
0,bi , z

1
1,biq “ σbi ,

which are exactly the signatures in ∆. [\
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4.3 Computational Blindness of BS2 without NIZK

As mentioned earlier, we can remove the NIZK proof from our scheme BS2 (resulting in a scheme which we
will call BS12 in this subsection to distinguish from the scheme with NIZK) and still achieve computational
blindness according to the following theorem. We stress that here we make no assumptions on the hash
functions used by BS12.

Theorem 4.4 (Computational Blindness of BS12). Assume that GGen outputs the description of a group
of prime order p “ ppλq, and let BS12 “ BS12rGGens. For any adversary A for the game BLIND running in
time tA “ tApλq, there exists an adversary B for DLOG with tB « 2tA such that

Advblind
BS12

pA, λq ď 2

b

Advdlog
GGenpB, λq `

2

p
.

Proof. The proof for this theorem mainly follows the proof for Theorem 4.1 with the only difference being
the game GA

1 and its transition from GA
0 . We define the game GA

1 as follows:
Game GA

1 : This game made the following changes:

‚ The oracle Initppk,m0,m1q additionally computes skÐ logg pk by exhaustive search.

‚ For each signing session i P t0, 1u, when the oracle U3pi, smsg
piq
3 q is queried, it parses all the signer

messages as pRg,i, Aiq Ð smsg
piq
1 , pZi, Rh,iq Ð smsg

piq
2 and pdi, ei, z0,i, z1,iq Ð smsg

piq
3 . Then, if the user

algorithm BS12.U3 does not abort but Zi ‰ hski where hi is the message returned by U1pi, ¨q, the game
aborts.

Fix a signing session i P t0, 1u and let Badi be the event where the abort described occurs in signing session
i, i.e., Zi ‰ hski but the user algorithm does not abort. This gives

|PrrGA
1 “ 1s ´ PrrGA

0 “ 1s| ď PrrBad0 _ Bad1s .

Note that the event Badi only depends on the user messages in the signing protocol, i.e., phi, ciq (since the
event occurs before the signatures are returned).

To bound the probability of event Badi occurring, we will construct a reduction B rewinding the adversary
A and argue that if Badi occurs in both runs, B can extract loggW .

Before describing B, we make the following observation that hi and ci are uniformly random in G and
Zp respectively. First, denote pβi, α0,i, α1,i, γ0,i, γ1,iq as the user randomness for signing session i P t0, 1u. To
see this, consider that, as computed in the user algorithm, hi “ h1ig

βi and ci “ H1pmbi , h
1
i, Z

1
i, R

1
g,i, R

1
h,i, A

1
iq

´γ0,i ´ γ1,i, where Z 1i, R
1
g,i, R

1
h,i, A

1
i are the blinded values of Zi, Rg,i, Rh,i, Ai respectively, and h1i “ Hpmbi ,

R1g,i, A
1
iq. We specifically note that A1i “ Aig

α1,iW´γ1,i is uniform over G and is independent of γ1,i. This is
because conditioning on a value of γ1,i, A

1
i takes on any element in G with probability 1{p due to α1,i being

uniform over Zp and independent of γ1,i. Then, the distribution of phi, ciq can now be seen as dependent
only on the signer messages Rg,i, Ai, Rh,i, Zi, the randomness βi, α0,i, γ0,i, γ1,i and A1i. Conditioning on every
values other than βi and γ1,i, we can see that hi is uniform over G as βi is uniform over Zp, and ci is uniform
over Zp as γ1,i is uniform over Zp. This means that the probability of Badi stays the same even if hi and ci
are uniformly randomly sampled instead of generated by following the protocol.

Then, using the above observation, consider the following reduction B playing the DLOG game and
running A twice.

1. The reduction B takes as input pG, p, g,W q and runs A on input par Ð pG, p, g,W q. It also fixes the
randomness to be used in the signing session 1´ i and the user’s first message hi of signing session i in
advance.

2. The oracles Init, U1p1´ i, ¨q,U2p1´ i, ¨q, and U3p1´ i, ¨q are simulated as in the game GA
0 . The oracle

U1pi, ¨q instead of computing the values as usual answers with hi instead. While for U2pi, ¨q, B returns
ciÐ$ Zp.
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3. For the call to U3pi, smsg
piq
3 q, if the user algorithm does not abort B rewinds the adversary A to when

it queries U2pi, smsg
piq
2 q and returns c1iÐ$ Zp. The oracles for the signing session 1´ i still use the same

randomness from the previous run.

4. For the call (after the rewinding) to U3pi, smsg13
piq
q, if the user algorithm does not abort, we can parse

pdi, ei, z0,i, z1,iq Ð smsg
piq
3 and pd1i, e

1
i, z

1
0,i, z

1
1,iq Ð smsg13

piq
. If ei ‰ e1i, the reduction returns pz1,i ´

z11,iqpei ´ e
1
iq
´1. Otherwise, abort.

It is clear that the running time of B is about twice of A’s. Then, we argue the success probability of the re-
duction B by considering the event Badi. We note that the event Badi cannot be detected efficiently; however,
here we show that if such event occurs in both runs (even without B detecting Badi), the reduction B will find
loggW . More specifically, we consider the following event frk such that the event Badi occurs in both the first
and the rewound run of A in the reduction B and that the outputs of U2pi, ¨q over the two runs are different
(i.e., c1i ‰ ci). If this event occurs, then A has sent pZi, Rg,i, Rh,i, Aiq and pdi, ei, z0,i, z1,iq, pd

1
i, e

1
i, z

1
0,i, z

1
1,iq

such that

(i) Zi ‰ hski .
(ii) di ` ei “ ci ‰ c1i “ d1i ` e

1
i.

(iii) pRg,i, Rh,iq “ pg
z0,ipk´di , h

z0,i
i Z´dii q “ pgz

1
0,ipk´d

1
i , h

z10,i
i Z

´d1i
i q

(iv) Ai “ gz1,iW´ei “ gz
1
1,iW´e1i

By considering (iii),

Z
di´d

1
i

i “ h
z0,i´z

1
0,i

i “ gpz0,i´z
1
0,iq logg hi “ pkpdi´d

1
iq logg hi “ h

skpdi´d
1
iq

i

Then, di “ d1i follows from Zi ‰ hski . Thus, ei ‰ e1i and pz1,i ´ z
1
1,iqpei ´ e

1
iq
´1 “ loggW by (iv). This shows

that if frk occurs, B succeeds in the DLOG game, i.e., Prrfrks ď Advdlog
GGenpB, λq.

Now, we bound Prrfrks using the forking lemma (Lemma 2.1). To this end, we define a wrapper Ai over
A where Ai takes as input the instance pG, p, g,W q, the challenge ci, and a randomness ρ which is used to
derive the random tape for A, hi, and the randomness used in signing session 1 ´ i. The wrapper Ai then
simulates the signing oracles as B does and returns I “ 1 when Badi occurs. Otherwise Ai returns K. This
means that the probability that I “ 1 ‰ K is PrrBadis. Also, we can see that the event frk corresponds to
the event where Ai is run twice with the same inputs except the two different ci ‰ c1i, and both runs return
I and I 1 such that I “ I 1 ‰ K. Thus by the forking lemma, we have

PrrBadis ď
a

Prrfrks `
1

p
ď

b

Advdlog
GGenpB, λq `

1

p
.

Applying the union bound over i P t0, 1u concludes the proof. [\

4.4 Proof of Theorem 4.2 (OMSUF-1 of BS2)

To prove one-more strong unforgeability (OMSUF-1) for BS2, we consider the following sequence of games
(pseudocode description of the games can be found in Figure 7).

Game GA
0 : The game first generates the public parameters parÐ$ BS2.Setupp1

λq and the secret and public
keys psk, pkq Ð$ BS2.KGpparq. Then, the game interacts with an adversary Appar, pkq with access to the signing
oracles S1,S2,S3 and the random oracles H,H1,H2 which are simulated by lazy sampling. The adversary A
queries the signing oracle S1 for ` times and the random oracles H,H1 and H2 for QH, QH1 and QH2 times
respectively. At the end of the game, A outputs ``1 message-signature pairs pm˚k , σ

˚
k qkPr``1s. The adversary

A succeeds if for all k1 ‰ k2, pm
˚
k1
, σ˚k1

q ‰ pm˚k2
, σ˚k2

q and for all k P r` ` 1s, BS2.Verppk,m
˚
k , σ

˚
k q “ 1. We

w.l.o.g. assume that A does not make the same random oracle query twice. Also, we assume that A makes
the random oracle queries that would be made in BS2.Ver when verifying the forgeries. This adds at most
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Game GA
0 ,GA

1 ,GA
2 ,GA

3 ,GA
4 ,GA

5 :

pG, p, gq Ð$ GGenp1λq

W Ð$ G // GA
0 ´GA

3

wÐ$ Zp ; W Ð gw // GA
4 ´GA

5

par Ð pG, p, g,W q
skÐ$ Zp ; pkÐ gsk

`Ð 0 ; I1, I2, I3 Ð H

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2,S3 ppar, pkq

For k P r`` 1s: // parsing

pZ˚k , d
˚
k , e

˚
k , z

˚
0,k, z

˚
1,kq Ð σ˚k

R˚g,k Ð g
z˚
0,kpk´d

˚
k

A˚k Ð g
z˚
1,kW´e˚

k // GA
1 ´GA

5

If D k1 ‰ k2, pm˚k1
, σ˚k1

q “ pm˚k2
, σ˚k2

q

or pm˚k1
, R˚g,k1

, A˚k1
q “ pm˚k2

, R˚g,k2
, A˚k2

q

// GA
3 ´GA

5
then return 0

If D k P r`` 1s such that

BS2.Verppk,m
˚
k , σ

˚
k q “ 0

or Z˚k ‰ Hpm˚k , R
˚
g,k, A

˚
k q

sk // GA
1 ´GA

5

then return 0
Return 1

Oracle H‹pstrq for H‹ P tH,H
1,H2u:

If H‹pstrq ‰ K then
return H‹pstrq

H‹pstrq Ð$ G // If H‹ “ H
H‹pstrq Ð$ Zp // If H‹ P tH

1,H2u
Return H‹pstrq

Oracle S1psidq:

If sid P I1 then return K
`Ð `` 1 ; I1 Ð I1 Y tsidu

z1, e, r0 Ð$ Zp
Rg Ð gr0

AÐ gz1W´e // GA
0 ´GA

4

z0, d, r1 Ð$ Zp
Rg Ð gz0pk´d

AÐ gr1 // GA
5

Return pRg, Aq

Oracle S2psid, hq :

If sid R I1 or sid P I2 then return K
I2 Ð I2 Y tsidu

Z Ð hsk

Rh Ð hr0 // GA
0 ´GA

4

Rh Ð hz0Z´d // GA
5

sÐ$ Zp ; δ Ð H2ph, pk, Z, gs, hsq

π Ð pδ, s` δ ¨ skq // GA
0 ´GA

1

δ, s1Ð$ Zp ; π Ð pδ, s1q // GA
2 ´GA

5

If H2ph, pk, Z, gs
1
pk´δ, hsZ´δq ‰ K

then abort game

H2ph, pk, Z, gs
1
pk´δ, hsZ´δq Ð δ

Return pZ,Rh, πq

Oracle S3psid, cq :

If sid R I1 or sid R I2 or sid P I3 then return K
I3 Ð I3 Y tsidu

dÐ c´ e
z0 Ð r0 ` d ¨ sk // GA

0 ´GA
4

eÐ c´ d
z1 Ð r1 ` e ¨ w // GA

5

Return pd, e, z0, z1q

Fig. 7. The OMSUF-1 “ GA
0 security game for BS2 and the subsequent games GA

1 ´ GA
5 . We remark that H,H1

and H2 are modeled as random oracles to which A has access. Each box type indicates the changes made in the
game name contained in the box. Also, to make things clearer, for each box, the comments indicate which game the
changes in the boxes correspond to. Moreover, the signer state is omitted and we assume that each variable initialized
in signing oracles of earlier round can be accessed by the signing oracles of the same sid in later rounds.

``1 queries to H and H1, making the total query count pQH “ QH` ``1 and pQH1 “ QH1 ` ``1, respectively.
The success probability of A in game GA

0 is exactly its advantage in game OMSUF-1, i.e.,

Advomsuf-1
BS2

pA, λq “ PrrGA
0 “ 1s .

Game GA
1 : This game is identical to GA

0 except that for the message-signature pairs pm˚k , σ
˚
k qkPr``1s output

by the adversary A, for k P r` ` 1s, after parsing the signature pZ˚k , d
˚
k , e

˚
k , z

˚
0,k, z

˚
1,kq Ð σ˚k and setting

R˚g,k Ð gz
˚
0,kpk´d

˚
k , A˚k Ð gz

˚
1,kW´e˚k , the game additionally requires that Z˚k “ Hpm˚k , R

˚
g,k, A

˚
kq

sk.
By Lemma 4.5, there exists an adversary B playing the game DLOG, running in time tB « 2tA, such

that

PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´ p`` 1q

˜

b

pQH1Adv
dlog
GGenpB, λq `

pQH1

p

¸

.

Game GA
2 : This game is identical to GA

1 except that the signing oracle S2 generates the proof π by
programming the random oracle H2, i.e., it samples s1, δÐ$ Zp and programs H2 at ph, pk, Z, gs

1

pk´δ, hs
1

Z´δq

as δ. The game aborts if H2 is already defined at ph, pk, Z, gs
1

pk´δ, hs
1

Z´δq.
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The view of A is identical to its view in GA
1 if the game does not abort. Moreover, the game only aborts

if ph, pk, Z, gs
1

pk´δ, hs
1

Z´δq has been queried or programmed beforehand, but gs
1

pk´δ is uniformly random
and independent of the view of A and previous programming attempts of H2 as s1 is uniformly random and
independent at the time that the oracle tries to program H2. Thus, by applying the union bound over possible
collision events, i.e., all pairs of queries to S2 and queries to both H2 and S2 (accounting for attempts to
program H2).

PrrGA
2 “ 1s ě PrrGA

1 “ 1s ´
`p``QH2q

p
.

Game GA
3 : This game is identical to GA

2 except that for A to succeed, the game additionally requires that
each random oracle call to H corresponding to the verification of pm˚k , σ

˚
k q for k P r``1s are all distinct. More

specifically, this means that after parsing pZ˚k , d
˚
k , e

˚
k , z

˚
0,k, z

˚
1,kq Ð σ˚k and setting R˚g,k Ð gz

˚
0,kpk´d

˚
k , A˚k Ð

gz
˚
1,kW´e˚k for all k P r`` 1s, for any k1 ‰ k2,

pm˚k1
, R˚g,k1

, A˚k1
q ‰ pm˚k2

, R˚g,k2
, A˚k2

q .

The change in success probability of A corresponds to the event where A outputs ` ` 1 distinct and valid
message-signature pairs, but there exists k1 ‰ k2 such that pm˚k1

, R˚g,k1
, A˚k1

q “ pm˚k2
, R˚g,k2

, A˚k2
q. Consider

all the cases where this occurs:

1. Case E1: e˚k1
‰ e˚k2

. As a result of A˚k1
“ A˚k2

, we can extract the discrete logarithm of W as pz˚1,k2
´

z˚1,k1
qpe˚k2

´ e˚k1
q´1. Then, we can bound the probability of event E1, by a direct reduction B1 receiving

inputs pG, p, g,W q, simulating the game GA
2 against A and returning pz˚1,k2

´ z˚1,k1
qpe˚k2

´ e˚k1
q´1 when

E1 occurs. Thus, the probability of E1 occurring is bounded by Advdlog
GGenpB1, λq. We can also see that the

running time of B1 is about that of A.
2. Case E2: d˚k1

‰ d˚k2
. With the same argument and R˚g,k1

“ R˚g,k2
, this allows us to extract the discrete

logarithm of pk. However, the reduction here would need to send Z “ hsk to the adversary without
knowing sk. To achieve this, we give the following reduction B2 to CT-CDH assumption instead.

‚ At the beginning, B2 receives the CT-CDH instance pG, p, g,Xq and queries Chal for ``1 challenges
Y1, . . . , Y``1. It then computes W Ð gw where wÐ$ Zp and sends parÐ pG, p, g,W q, pkÐ X to A.
The random oracles are simulated with lazy sampling as in GA

3 .
‚ For each S1 query, B2 samples z0, d, r1 Ð$ Zp and returns pRg Ð gz0pk´d, AÐ gr1q.
‚ For each S2 query, B2 forwards its query h to its own Dh oracle and receives Z “ hlogg X , instead of

using the secret key sk “ logg pk “ loggX to compute Z, and simulates the protocol on by setting

Rh Ð hz0Z´d (using z0, d initialized in S1 query of the same session ID). It then returns pZ,Rhq.
‚ Lastly, for each S3 query, B2 returns pd, e Ð c ´ d, z0, z1 Ð r1 ` e ¨ wq (using z0, d initialized in S1

query of the same session ID). Note here that the simulations of the oracle S1,S2,S3 do not require
the reduction to know sk “ logg pk.

‚ At the end when E2 occurs, B2 extracts the discrete logarithm of X as x “ pz˚0,k2
´z˚0,k1

qpd˚k2
´d˚k1

q´1

and returns the CT-CDH solutions as pk, Y xk qkPr``1s.

Since the distribution of pA,Rg, Rh, d, e, z0, z1q in this reduction is still identical to signing with sk, the
probability of E2 occurring in the game simulated by B2 is exactly the same as in GA

3 . With x “ loggX,
B2 succeeds in the CT-CDH game if E2 occurs. Thus, the probability of the event E2 is bounded by
Advct-cdh

GGen pB2, λq. We can also see that the running time of B2 is about that of A.
3. Case E3: pd˚k1

, e˚k1
q “ pd˚k2

, e˚k2
q. Consider that R˚g,k1

“ R˚g,k2
and A˚k1

“ A˚k2
. By how R˚g,k and A˚k are

defined and that pd˚k1
, e˚k1

q “ pd˚k2
, e˚k2

q, we can infer that z˚0,k1
“ z˚0,k2

and z˚1,k1
“ z˚1,k2

. Moreover, since

pm˚k1
, σ˚k1

q ‰ pm˚k2
, σ˚k2

q and m˚k1
“ m˚k2

, we have Z˚k1
‰ Z˚k2

. However, by the change in GA
1 ,

Z˚k1
“ Hpm˚k1

, R˚g,k1
, A˚k1

qsk “ Hpm˚k2
, R˚g,k2

, A˚k2
qsk “ Z˚k2

.

Thus, this event cannot occur.
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Hence, applying the union bound on the three cases,

PrrGA
3 “ 1s ě PrrGA

2 “ 1s ´ Advdlog
GGenpB1, λq ´ Advct-cdh

GGen pB2, λq .

Game GA
4 : This game is identical to GA

3 except that when generating the component W in par, the game
generates the discrete logarithm wÐ$ Zp and sets W Ð gw.

Since the game runs the oracles in the same way and W still has the same distribution as in GA
3 , we have

PrrGA
4 “ 1s “ PrrGA

3 “ 1s .

Game GA
5 : This game is identical to GA

4 except that the signing oracles are modified to use w instead of sk
in the signing protocol. More specifically, the values pA,Rg, Rh, d, e, z0, z1q are now generated as follows:

1. Sample r1, d, z0 Ð$ Zp and set AÐ gr1 , Rg Ð gz0pk´d. Later, after receiving h, set Rh Ð hz0Z´d.
2. After receiving c, set eÐ c´ d and z1 Ð r1 ` e ¨ w.

Since the joint distributions of pA,Rg, Rh, d, e, z0, z1q in the games GA
4 and GA

5 are identical, the view of A
remains the same. Thus,

PrrGA
5 “ 1s “ PrrGA

4 “ 1s .

Lastly, we give a reduction B1 playing the CT-CDH game using the adversary A as a subroutine. The
reduction B1 is defined as follows:

1. The reduction B1 takes as input a CT-CDH instance pG, p, g,Xq, samples wÐ$ Zp, and sets W Ð gw.
It then sends parÐ pG, p, g,W q, pkÐ X to A.

2. The simulations of H1 and H2 are done as in GA
5 . However, for queries to H (labeling each with j P r pQHs),

the reduction B1 queries the challenge oracle Chal and receives a random group element Yj which it

returns as the random oracle output. (This means that B1 makes pQH “ QH ` `` 1 queries to Chal.)
3. The signing oracles are also simulated as in GA

5 except for the computation of Z “ hsk in S2 which is
done by querying its Dh oracle instead, i.e., Z Ð Dhphq.

4. After receiving the message-signature pairs pm˚k , σ
˚
k qkPr``1s from A, B1 parses pZ˚k , e

˚
k , d

˚
k , z

˚
0,k, z

˚
1,kq Ð σ˚k ,

sets R˚g,k Ð gz
˚
0,kpk´d

˚
k , A˚k Ð gz

˚
1,kW´e˚k , and checks if pm˚k , σ

˚
k q and pm˚k , R

˚
g,k, A

˚
kq are distinct for all

k P r`` 1s and that all the message-signature pairs are valid. If not, it aborts.
Next, B1 identifies jk for k P r` ` 1s such that jk is the index of the hash query Hpm˚k , R

˚
g,k, A

˚
kq made

by A. Since pm˚k , R
˚
g,k, A

˚
kq are distinct, jk are all distinct, meaning there are exactly `` 1 such indices.

Lastly, B1 returns the CT-CDH solutions pjk, Z
˚
k qkPr``1s.

It is clear that the running time of B1 is about that of A. For the success probability of the reduction, we
can see that B1 simulates the oracles identically to the game GA

5 . Then, if A succeeds in game GA
5 , then A

returns Z˚k “ Hpm˚k , R
˚
g,k, A

˚
kq

sk “ Y
logg X

jk
for all k P r` ` 1s where sk “ logg pk “ loggX. Thus, B1 returns

`` 1 correct CT-CDH solutions while only querying the oracle Dh for at most ` times. Hence, if A succeeds
in the game GA

5 , B1 succeeds in the game CT-CDH. Thus,

PrrGA
5 “ 1s ď Advct-cdh

GGen pB1, λq .

By combining all the advantage changes,

Advomsuf-1
BS2

pA, λq ď `p``QH2q

p
` p`` 1q

˜

b

pQH1Adv
dlog
GGenpB, λq `

pQH1

p

¸

` Advdlog
GGenpB1, λq ` Advct-cdh

GGen pB2, λq ` Advct-cdh
GGen pB1, λq .

[\
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Lemma 4.5. There exists an adversary B for the game DLOG, running in time tB « 2tA, such that

PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´ p`` 1q

˜

b

pQH1Adv
dlog
GGenpB, λq `

pQH1

p

¸

.

Proof. Let event Bad be the event where GA
0 outputs 1 but GA

1 outputs 0. This corresponds to the
following event: A outputs ` ` 1 message-signature pairs pm˚k , σ

˚
k qkPr``1s which we parse for each k P

r` ` 1s, pZ˚k , d
˚
k , e

˚
k , z

˚
0,k, z

˚
1,kq Ð σ˚k and set R˚g,k Ð gz

˚
0,kpk´d

˚
k , A˚k Ð gz

˚
1,kW´e˚k ; then, (1) for all k1 ‰

k2, pm
˚
k1
, σ˚k1

q ‰ pm˚k2
, σ˚k2

q, (2) for all k P r` ` 1s, BS2.Verppk,m
˚
k , σ

˚
k q “ 1, and (3) there exists some

k P r`` 1s where Z˚k ‰ Hpm˚k , R
˚
g,k, A

˚
kq

sk. Then, we can write

PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´ PrrBads .

Also, define the event Badk for k P r`` 1s which is event Bad with the condition (3) modified to be for only

the k-th pair pm˚k , σ
˚
k q where we have Z˚k ‰ Hpm˚k , R

˚
g,k, A

˚
kq

sk. This gives Bad “
Ť``1
k“1 Badk.

Now, define a wrapper Ak over the adversary A where Ak receives the following inputs: instance
pG, p, g,W q, outputs pc1, . . . , c pQH1

q of H1, and a random tape ρ. Ak is defined as follows:

1. Extract psk P Zp, psi P Zp, r0,i P Zp, ei P Zp, z1,i P ZpqiPr`s, phi P GqiPr pQHs
, pδi P ZpqiPrQH2``s

, ρ1q from the

random tape ρ.
2. Set parÐ pG, p, g,W q, pkÐ gsk.
3. Run pm˚k , σ

˚
k qkPr``1s Ð AS1,S2,S3,H,H

1,H2ppar, pk; ρ1q where each oracle is answered as follows:
‚ For the signing query with session ID j (j P r`s) to S1,S2, and S3, use psk, r0,i, ei, z1,i, siq to answer

the query as in BS2.S1,BS2.S2 and BS2.S3 respectively.
‚ For the i-th query (i P r pQHs) to H, return hi.

‚ For the i-th query (i P r pQH1s) to H1, return ci.
‚ For the i-th query (i P rQH2 ` `s) to H2, return δi. (Note: In these queries, we accounted for the

queries that the wrapper made to generate π in each query to S1.)
4. If the event Badk does not occur, return pK,Kq. Otherwise, return pI, pm˚k , σ

˚
k qq where I is the index of

the query to H1 from A that corresponds to the verification of pm˚k , σ
˚
k q. More specifically, after parsing

pZ˚k , d
˚
k , e

˚
k , z

˚
0,k, z

˚
1,kq Ð σ˚k , I is the index that corresponds to the query pm,h,Z,Rg, Rh, Aq to H1 where

m “ m˚k , Rg “ gz
˚
0,kpk´d

˚
k , A “ gz

˚
1,kW´e˚k , h “ Hpm,Rg, Aq, Z “ Z˚k , Rh “ hz

˚
0,kZ´d

˚
k . Note that I

is well-defined as we assume that all random oracle queries made during verification are made by A
beforehand. Also, it is easy to see that the running time of Ak is roughly the running time of A.

Next, we consider the following reduction B playing the discrete logarithm game defined as follows:

1. On the input pG, p, g,W q, B samples c1, . . . , c pQH1
Ð$ Zp along with the random tape ρ for Ak.

2. Run pI, pm,σqq Ð$ AkppG, p, g,W q, pc1, . . . , c pQH1
q; ρq.

3. If I “ K, abort. If not, sample c1I , . . . , c
1
pQH1
Ð$ Zp and

run pI 1, pm1, σ1qq Ð$ AkppG, p, g,W q, pc1, . . . , cI´1, c
1
I , . . . , c

1
pQH1
q; ρq.

4. If I “ I 1 and c1I ‰ cI , parse pZ, d, e, z0, z1q Ð σ, pZ 1, d1, e1, z10, z
1
1q Ð σ1, and return pz1 ´ z11qpe ´ e1q´1.

Otherwise, abort.

Since B runs Ak twice and the running time of Ak is about that of A, tB « 2tA. Next, we show that if B does
not abort (i.e., I “ I 1 ‰ K and cI ‰ c1I), then it returns a discrete logarithm of W . Since I “ I 1 ‰ K, the
message-signature pairs pm,σq and pm1, σ1q: (a) are valid signatures corresponding to the I-th query from
A to H1 of the form pm,h,Z,Rg, Rh, Aq and (b) satisfy Z ‰ Hpm,Rg, Aq

sk and Z 1 ‰ Hpm1, R1g, A
1qsk where

Rg “ gz0pk´d, A “ gz1W´e, R1g “ gz
1
0pk´d

1

, and A1 “ gz
1
1W´e1 . By (a), we know the following

(i) m “ m1, h “ Hpm,Rg, Aq “ Hpm1, R1g, A
1q, Z “ Z 1.
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(ii) cI “ d` e, c1I “ d1 ` e1.

(iii) gz0pk´d “ gz
1
0pk´d

1

, hz0Z´d “ hz
1
0Z´d

1

.
(iv) A “ gz1W´e “ gz

1
1W´e1 .

We will argue that d “ d1. First, the equations in (iii) give Zd´d
1

“ hz0´z
1
0 “ gpz0´z

1
0q logg h “ pkpd´d

1
q logg h “

hskpd´d
1
q. Since Z ‰ Hpm,Rg, Aq

sk “ hsk, only d “ d1 satisfies the equation. Since d` e “ cI ‰ c1I “ d1 ` e1,
we have e ‰ e1. Thus, by (iv), B returns pz1 ´ z

1
1qpe´ e

1q´1 “ loggW . Hence,

Advdlog
GGenpB, λq “ PrrB does not aborts “ PrrI “ I 1 ^ I ‰ K^ cI ‰ c1I s .

Lastly, by the fact that B rewinds Ak which only outputs I ‰ K when Badk occurs, we can apply the forking
lemma (Lemma 2.1),

PrrBadks ď

b

pQH1Adv
dlog
GGenpB, λq `

pQH1

p
.

The lemma statement follows from the union bound over Badk for k P r`` 1s. [\

5 Achieving OMUF-2 security from CDH

In this section, we present a four-move blind signature scheme BS3, described in Section 5.3, achieving the
OMUF-2 security based on the CDH assumption. The key ingredients used in this construction are the
homomorphic equivocal commitment HECom, given in Section 5.1, and a non-interactive proof system Π
(for guaranteeing blindness), given in Section 5.2.

5.1 Homomorphic Equivocal Commitment Scheme

In this section, we present the commitment scheme HECom which is a tuple of algorithms pGen,TGen,Com,
TCom,TOpenq, described in Figure 8. The algorithm Gen generates a uniform commitment key ckÐ$ G2ˆ2,
which can be done transparently. For the rest of the scheme, one can view our commitment as a variant of
the commitment scheme of [BCJ08]. Both commitments commit to a group element, and are additively ho-
momorphic and computationally binding based on the DLOG assumption. For equivocation, we can generate
the commitment key with a base X P G embedded, allowing us to open a commitment of S1 to S “ S1Xc

for any c P Zp. On the other hand, their equivocation allows opening a commitment to gaXc for a uniformly
random a P Zp and any c P Zp. The following theorem summarizes the properties of our commitment scheme.

Theorem 5.1. Assume that GGen outputs the description of a group G of prime order p “ ppλq. The
commitment HECom “ HEComrGGens satisfies the following properties:

‚ Additive Homomorphism. For hcom0, hcom1 P G2, denote hcom0 ¨ hcom1 as element-wise application
of group operation. For all pG, p, gq Ð$ GGenp1λq, ck P G2ˆ2, S0, S1 P G, and crnd0, crnd1 P Z2

p,

Compck, S0; crnd0q ¨ Compck, S1; crnd1q “ Compck, S0S1; crnd0 ` crnd1q .

‚ Special Equivocation. For all parÐ$ GGenp1λq, X ‰ 1G and pck, tdq Ð$ TGenppar, Xq such that D
contained in td “ pD, Xq is invertible, and for any group element S “ XcS1, the following distributions
D0 and D1 are identical:

D0 :“ tphcom, S, crndq : phcom, stq Ð$ TComptd, S1q ; pS, crndq Ð$ TOpenpst, cqu ,

D1 :“
 

phcom, S, crndq : crndÐ$ Z2
p ; hcomÐ Compck, S; crndq

(

.

‚ Uniform Keys. For all parÐ$ GGenp1λq and X ‰ 1G, ck generated by pck, tdq Ð$ TGenppar, Xq is
uniformly distributed in G2ˆ2 (i.e., distributed identically to ckÐ$ Genpparq).
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Algorithm Genppar “ pG, p, gqq:
Return ckÐ$ G2ˆ2

Algorithm TGenppar “ pG, p, gq, Xq:
d11, d12, d21, d22 Ð$ Zp

DÐ

ˆ

d11 d12

d21 d22

˙

ckÐ

ˆ

gd11 gd12

Xd21 Xd22

˙

Return pck, tdÐ pD, Xqq

Algorithm Compck “ A P G2ˆ2, S P G; crnd P Z2
pq:

Return hcomÐ pA
crnd1
11 A

crnd2
12 , S ¨ A

crnd1
21 A

crnd2
22 q

Algorithm TComptd “ pD, Xq, S1 P Gq:
τ, ρÐ$ Zp ; hcomÐ pgτ , S1 ¨Xρq ; stÐ pD, X, S1, τ, ρq
Return phcom, stq

Algorithm TOpenpst “ pD, X, S1, τ, ρq, c P Zpq:
If D is not invertible, then return K
Return pS Ð S1 ¨Xc, crndÐ D´1

pτ, ρ´ cqT q

Game BindingA
HECompλq:

parÐ$ GGenp1λq
ckÐ$ Genpparq ; pS, S1, crnd, crnd1q Ð$ Appar, ckq
If Compck, S; crndq ‰ Compck, S1; crnd1q or S “ S1

then return 0
Return 1

Fig. 8. Description of the special commitment scheme HECom “ HEComrGGens and its binding game. For the
algorithms Com,TCom, and TOpen, par “ pG, p, gq is taken as an implicit input.

‚ Computationally Binding. For any adversary A for the game Binding (described in Figure 8) with
running time tA “ tApλq, there exists an adversary B for the game DLOG with running time tB « tA
such that the advantage of A in the game is bounded by

Advbinding
HECom pA, λq “ PrrBindingA

HECompλq “ 1s ď Advdlog
GGenpB, λq `

1

p
.

Proof. We consider each property as follows:

‚ Additive Homomorphism. Consider ck “ A P G2ˆ2, S0, S1 P G and crnd0, crnd1 P Z2
p.

Compck, S0; crnd0q ¨ Compck, S1; crnd1q

“ pA
crnd0,1

11 A
crnd0,2

12 , S0A
crnd0,1

21 A
crnd0,2

22 q ¨ pA
crnd1,1

11 A
crnd1,2

12 , S1A
crnd1,1

21 A
crnd1,2

22 q

“ pA
crnd0,1`crnd1,1

11 A
crnd0,2`crnd1,2

12 , S0S1 ¨A
crnd0,1`crnd1,1

21 A
crnd0,2`crnd1,2

22 q

“ Compck, S0S1; crnd0 ` crnd1q .

‚ Special Equivocation. To show this, suppose X ‰ 1G and the trapdoor D is invertible. Let S “ S1Xc

for S1 P G and c P Zp. Then, we will argue that the crnd generated using the trapdoor is uniformly
random and the commitment hcom is exactly Compck, S; crndq. By the algorithms TCom and TOpen,
we have that crnd “ D´1pτ, ρ ´ cqT for uniformly random τ, ρÐ$ Zp. Because D is invertible, crnd is
uniformly random in Z2

p. Moreover,

hcom “ pgτ , S1 ¨Xρq “ pgτ , S1Xc ¨Xρ´cq “ pgτ , S ¨Xρ´cq

Then, by how crnd is defined, we have that Compck, S; crndq “ pgτ , S ¨Xρ´cq.
‚ Uniform Keys. Consider when X ‰ 1G, meaning X is a generator of G. Then, for uniformly random

d11, d12, d21, d22 Ð$ Zp, we have that ck “

ˆ

gd11 gd12

Xd21 Xd22

˙

is uniformly distributed in G2ˆ2.

‚ Computational Binding.

Consider a reduction B which on input pG, p, g,Xq generates the commitment key ckÐ

ˆ

gr X
A B

˙

where

rÐ$ Zp, A,BÐ$ G, it aborts if r “ 0. Otherwise, it runs A on the input ppG, p, gq, ckq. After A returns
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Π.ProveHΠ ppg, phi, pkiqiPrKs, S̄q, pskiqiPrKsq :

~rÐ$ ZKp
For i P rKs: Ri Ð g~ri

R̄Ð
śK
i“1 h

~ri
i

cÐ HΠpg, phi, pkiqiPrKs, S̄, pRiqiPrKs, R̄q
For i P rKs : ~si Ð ~ri ` c ¨ ski
Return π Ð pc, ~sq

Π.VerHΠ ppg, phi, pkiqiPrKs, S̄q, πq :

pc, ~sq Ð π

For i P rKs: Ri Ð g~sipk´ci
R̄Ð S̄´c

śK
i“1 h

~si
i

If c ‰ HΠpg, phi, pkiqiPrKs, S̄, pRiqiPrKs, R̄q then
return 0

Return 1

Fig. 9. Description of the proof system Π with access to the hash function HΠ : t0, 1u˚ Ñ Zp

pS, S1, crnd, crnd1q, it checks if A succeeds in the game, i.e., Compck, S; crndq “ Compck, S1; crnd1q and
S ‰ S1. Finally, B returns rpcrnd11 ´ crnd1qpcrnd2 ´ crnd12q

´1.
First, the distribution of ck that B generates is exactly uniform in G2ˆ2 except when the reduction
aborts (which occurs with probability at most 1{p). Consider the output of A. Since Compck, S; crndq “
Compck, S1; crnd1q, we have that

grpcrnd
1
1´crnd1qXcrnd12´crnd2 “ S1S´1Acrnd11´crnd1Bcrnd12´crnd2 “ 1G .

Then, with r ‰ 0 and g being a generator, if crnd12 “ crnd2, we have crnd11 “ crnd1 and S “ S1. Hence,

crnd12 ‰ crnd2 and rpcrnd11 ´ crnd1qpcrnd2 ´ crnd12q
´1 is well-defined as loggX. Thus, Advbinding

HECom pA, λq ď
Advdlog

GGenpB, λq `
1
p . [\

5.2 Proof System Π

In this section, we present a non-interactive proof system Π, described in Figure 9, with access to a hash
function HΠ : t0, 1u˚ Ñ Zp. The proof system Π attests membership of the language LG,K , defined for a
group G of prime order p with a generator g, and a positive integer K as follows:

LG,K :“

#

pg, phi, pkiqiPrKs, S̄q : S̄ “
K
ź

i“1

h
logg pki
i

+

.

We require that Π satisfies completeness, soundness, and zero-knowledge as established by the following
lemma with the hash function HΠ : t0, 1u˚ Ñ Zp modeled as a random oracle.

Lemma 5.2. Let G be a group of prime order p “ ppλq with generator g and K “ Kpλq be a positive integer.
The proof system Π (defined in Figure 9) satisfies the following properties with respect to LG,K where the
corresponding security games are defined in Figure 10:

‚ Completeness: For any st “ pg, phi, pkiqiPrKs, S̄q P LG,K and ski “ logg pki for i P rKs,

PrrΠ.VerHΠ pst, πq “ 1|πÐ$ Π.ProveHΠ pst, pskiqiPrKsqs “ 1 .

‚ Soundness: For any adversary A for the game Sound and making QHΠ “ QHΠ pλq queries to the random
oracle HΠ , we have

PrrSoundA
Πpλq “ 1s ď

QHΠ ` 1

p
.

‚ Zero-Knowledge: There exists a simulator Sim, which can program the random oracle HΠ , such that
for any adversary A for the game ZK, making QHΠ “ QHΠ pλq queries to the random oracle HΠ and
QChal “ QChalpλq queries to Chal, we have

ˇ

ˇ

ˇ

ˇ

PrrZKA
Πpλq “ 1s ´

1

2

ˇ

ˇ

ˇ

ˇ

ď
QChalpQChal `QHΠ q

p
.
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Game SoundA
Πpλq

pG, p, gq Ð$ GGenp1λq

pg, phi, pkiqiPrKs, S̄, πq Ð$ AHΠ pG, p, gq
If Π.Verppg, phi, pkiqiPrKs, S̄q, πq “ 1

and pg, phi, pkiqiPrKs, S̄q R LG,K then
return 1

Return 0

Game ZKA
Πpλq

pG, p, gq Ð$ GGenp1λq ; bÐ$ t0, 1u

b1Ð$ AChal,HΠ pG, p, gq
If b “ b1 then return 1
Return 0

Oracle HΠpstrq :

If HΠpstrq ‰ K then return HΠpstrq
HΠpstrq Ð$ Zp
Return HΠpstrq

Oracle Chalpg, phi, pkiqiPrKs, S̄, pskiqiPrKsq :

If Di P rKs, pki ‰ gski or S̄ ‰
śK
i“1 h

ski
i then

return K
If b “ 0 then
πÐ$Π.ProveHΠ ppg, phi, pkiqiPrKs, S̄q, pskiqiPrKsq

If b “ 1 then
πÐ$ Simpg, phi, pkiqiPrKs, S̄q

Return π

Algorithm Simpg, phi, pkiqiPrKs, S̄q :

cÐ$ Zp, ~sÐ$ ZKp
For i P rKs: Ri Ð g~sipk´ci
R̄Ð S̄´c

śK
i“1 h

~si
i

If HΠpg, phi, pkiqiPrKs, S̄, pRiqiPrKs, R̄q ‰ K then
return K

Program HΠpg, phi, pkiqiPrKs, S̄, pRiqiPrKs, R̄q Ð c
Return π Ð pc, ~sq

Fig. 10. The security games SoundA
Π and ZKA

Π,b for the proof system Π.

Proof. We consider each of the listed properties.

‚ Completeness. Completeness follows by inspection.
‚ Soundness. Let A be an adversary playing the soundness game and outputting pg, phi, pkiqiPrKs, S̄q R

LG,K and a proof π “ pc, ~sq where ~s P ZKp . Since the statement is not in the language, S̄ ‰
śK
i“1 h

logg pki
i .

Also, because π is a valid proof for pg, phi, pkiqiPrKs, S̄q,

c “ HΠ

˜

g, phi, pkiqiPrKs, S̄, pg
~sipk´ci qiPrKs, S̄

´c
K
ź

i“1

h~sii

¸

.

Here, assume that A already made this query, adding the query count by 1 (i.e., the game can make the
query when checking the validity of π). Then, consider any query pg, phi, pkiqiPrKs, S̄, pRiqiPrKs, R̄q to

HΠ where S̄ ‰
śK
i“1 h

logg pki
i . We will show that there is exactly one c P Zp which allows the existence

of ~s P ZKp such that

pkciRi “ g~si for i P rKs, and S̄cR̄ “
K
ź

i“1

h~sii .

We consider such c, which gives us the above equations. Then, by raising pkciRi “ g~si to logg hi, we have

h
c logg pki
i R

logg hi
i “ h~sii for all i P rKs. Thus, we have that

śK
i“1 h

c logg pki
i R

logg hi
i “

śK
i“1 h

~si
i “ S̄cR̄,

implying R̄
śK
i“1R

´ logg hi
i “

´

śK
i“1 h

logg pki
i S̄´1

¯c

. Since
śK
i“1 h

logg pki
i S̄´1 ‰ 1G, there exists only one

c satisfying this equation. Then, for any query to HΠ involving a statement not in the language, the
probability of getting c which allows the adversary to give a valid proof is at most 1{p. Since at most
QHΠ ` 1 queries are made to HΠ ,

PrrSoundA
Πpλq “ 1s ď

QHΠ ` 1

p
.

‚ Zero-knowledge. Consider the simulator Sim as described in Figure 10 which programs the random
oracle HΠ . First, we can see that if the simulator Sim does not abort, then the adversary’s view is exactly
the same as when the proofs are generated honestly. Then, to bound the abort probability, the simulator
aborts if it tries to program the oracle at a point which was queried or programmed before. Since the
simulator programs at a tuple which includes R1 “ g~s1pk´c1 for ~s1 Ð$ Zp which is uniformly random over
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G, the probability that a tuple including R1 has been initialized on HΠ before is at most pQHΠ`QChalq{p
(counting the random oracle queries and the programming attempts). Thus, bounding this over QChal

queries to Chal,
ˇ

ˇ

ˇ

ˇ

PrrZKA
Πpλq “ 1s ´

1

2

ˇ

ˇ

ˇ

ˇ

ď
QChalpQChal `QHΠ q

p
.

[\

5.3 Four-Move Blind Signatures from CDH

The scheme BS3 is described across Figures 11 and 12. (A protocol diagram is also presented in Figure 15.)
Our starting point is Rai-Choo [HLW23], a two-move blind signature scheme which is OMUF secure based
on the CDH assumption in a pairing group. To better abstract our ideas, we consider a pairing-free analogue
of Rai-Choo producing signatures of the form pppki, ϕiqiPrKs, S̄q with inefficient verification checking

pk “
K
ź

i“1

pki and S̄ “
K
ź

i“1

HpHµpm,ϕiqq
logg pki .

To make the scheme efficiently verifiable, we apply a witness-indistinguishable OR proof showing that the
signature is valid, i.e., pppkiqiPrKs, S̄q satisfies the verification equation with regard to pHpHµpm,ϕiqqqiPrKs,
or that we know the discrete logarithm of a public parameter W . Finally, using the homomorphic equivocal
commitment HECom from Section 5.1, the signer commits to the group element S̄ from the Rai-Choo protocol
and the nonce R̄ in the OR proof as hcomS̄ and hcomR̄ respectively. These commitments are sent in the
second move instead of S̄ and R̄ and opened later in the last move. The final signature consists of a Rai-Choo
signature pppki, ϕiqiPrKs, S̄q, the OR proof response pd, e, ~z0, z1q, and the commitment randomness used to
compute hcomS̄ and hcomR̄. It is easy to show that this scheme satisfies correctness, and we prove this in
Section 5.4.

As mentioned in the prior section, the commitment key of HECom can be generated transparently; thus,
so are the public parameters of BS3. We also remark that the complexity of the scheme depends on two
parameters N and K of which N´K needs to be negligible for the OMUF proof. To achieve the signature
size and communication in Table 1, we set N “ 2 and K “ λ.

Blindness. The blindness of BS3 can be guaranteed by the following steps:

‚ We apply the blinding procedure from Rai-Choo (as described in U1,U2 and ReRa) to make the distri-
bution of pppk1iqiPrKs, S̄

1q in the signature independent of the transcript.
‚ We then blind the OR proof (as described in U2 and U3) to make the the distribution of pd1, e1, ~z10, z

1
1q in

the signature independent of the transcript.
‚ To blind S̄ and R̄ according to the above points, we use the homomorphic property of HECom and blind
hcomS̄ and hcomR̄ instead. We also rerandomize the commitments as the commitment randomness is
included in the final signature.

‚ Finally, we need to ensure that the signer cannot send pppkiqiPrKs, S̄q such that S̄ ‰
śK
i“1 h

logg pki

i, ~Ji
where

hi, ~Ji for i P rKs are group elements contained in the user’s first message. Otherwise, a malicious signer
can link the signatures back to the signing sessions by checking whether one of the signatures contains
the values pppk1i, ϕiqiPrKs, S̄

1q with S̄1 ‰
śK
i“1 HpHµpm,ϕiqq

logg pk1i . To avoid this, we include a proof π
in the signer’s second response attesting that pppkiqiPrKs, S̄q is honestly generated. For this, we use the

non-interactive proof system Π “ pΠ.ProveHΠ , Π.VerHΠ q, described in Figure 9, with access to the
hash function HΠ : t0, 1u˚ Ñ Zp modeled as a random oracle in the security proofs. As established in
Section 5.2, Π satisfies completeness, soundness, and zero-knowledge in the random oracle model.

Similar to BS1 and BS2, one could also not include Π in the protocol, and show computational blindness based
on the DL assumption. Still, this proof would depend on the random oracle model since the original blindness
proof of Rai-Choo also required random oracles. Thus, we only consider the variant with Π included, and
prove the following theorem in Section 5.5.
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Algorithm BS3.Setupp1
λ, K,Nq :

pG, p, gq Ð$ GGenp1λq
W Ð$ G ; ckÐ$ HECom.GenppG, p, gqq
Select Hµ,Hcom : t0, 1u˚ Ñ t0, 1uλ

Select H : t0, 1u˚ Ñ G
Select Hβ ,H

1,HΠ : t0, 1u˚ Ñ Zp
Select Hcc : t0, 1u˚ Ñ rNsK

par Ð pG, p, g,W, ck, K,N ,
Hµ,Hcom,H,Hβ ,H

1,HΠ ,Hccq
Return par

Algorithm BS3.KGpparq :

pG, p, g,W, ck, K,N ,
Hµ,Hcom,H,Hβ ,H

1,HΠ ,Hccq Ð par

skÐ$ Zp ; pkÐ gsk

Return psk, pkq

Algorithm BS3.S1psk, umsg1q :

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq

Ð umsg1
If Checkpumsg1q “ 0

then return K
For i P rK ´ 1s:

skiÐ$ Zp ; pki Ð gski

skK Ð sk´
řK´1
i“1 ski

pkK Ð gskK

z1, eÐ$ Zp, ~r0 Ð$ ZKp
S̄ Ð

śK
i“1 h

ski
i, ~Ji

AÐ gz1W´e

~RÐ pg~r0,1 , . . . , g~r0,K q

R̄Ð
śK
i“1 h

~r0,i

i, ~Ji

crndS̄ , crndR̄Ð$ Z2
p

hcomS̄ Ð CompS̄; crndS̄q
hcomR̄ Ð CompR̄; crndR̄q

Return pppkiqiPrK´1s, hcomS̄ , ~R, hcomR̄, Aq

Algorithm BS3.S2pcq :

dÐ c´ e
For i P rKs:
~z0,i Ð ~r0,i ` d ¨ ski

inputÐ pg, phi, ~Ji
, pkiqiPrKs, S̄q

π Ð ProveHΠ pinput, pskiqiPrKsq

Return pd, e, ~z0, z1, S̄, R̄, crndS̄ , crndR̄, πq

Algorithm BS3.U1ppk,mq :

For pi, jq P rKs ˆ rNs:

ϕi,j Ð$ t0, 1uλ ; µi,j Ð Hµpm,ϕi,jq

εi,j Ð$ t0, 1uλ ; βi,j Ð Hβpεi,jq
ri,j Ð pµi,j , εi,jq ; comi,j Ð Hcompri,jq

h1i,j Ð Hpµi,jq ; hi,j Ð h1i,jg
βi,j

comÐ pcomi,jqiPrKs,jPrNs ; hÐ phi,jqiPrKs,jPrNs
~J Ð Hccpcom, hq

Return p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq

Algorithm BS3.U2psmsg1q :

pppkiqiPrK´1s, hcomS̄ , ~R, hcomR̄, Aq Ð smsg1

pkK Ð pk
ś

iPrKs pk
´1
i

α1, γ0, γ1 Ð$ Zp ; ~α0 Ð$ ZKp ; δS , δRÐ$ Z2
p

{hcomS̄ Ð hcomS̄ ¨ Compck,
śK
i“1 pk

´β
i, ~Ji

i ; δSq

pppk1iqiPrKs, hcom
1
S̄
, ~τq Ð$ ReRapppki, h

1

i, ~Ji
qiPrKs,{hcomS̄q

For i P rKs : ~R1i Ð
~Ripk

1
i
´γ0g~α0,i

{hcomR̄ Ð Comp
śK
i“1

~R
´β
i, ~Ji

i h1
i, ~Ji

~α0,i ; δRq

hcom1
R̄
Ð hcomR̄ ¨ hcom

1
S̄
´γ0 ¨{hcomR̄

A1 Ð AW´γ1gα1

c1 Ð H1pm, ph1
i, ~Ji

, pk1iqiPrKs, hcom
1
S̄
, ~R1, hcom1

R̄
, A1q

cÐ c1 ´ γ0 ´ γ1

Return c

Algorithm BS3.U3psmsg2q :

pd, e, ~z0, z1, S̄, R̄, crndS̄ , crndR̄, πq Ð smsg2
If c ‰ d` e or AW e

‰ gz1 or

Di P rKs, ~Ripk
d
i ‰ g~z0,i or

R̄S̄d ‰
śK
i“1 h

~z0,i

i, ~Ji
or

hcomS̄ ‰ CompS̄; crndS̄q or
hcomR̄ ‰ CompR̄; crndR̄q or

VerHΠ ppg, phi, ~Ji
, pkiqiPrKs, S̄q, πq “ 0 then

return K

S̄1 Ð S̄
śK
i“1 pk

´β
i, ~Ji

i h1
i, ~Ji

~τi

d1 Ð d` γ0 ; e1 Ð e` γ1

~z10 Ð ~z0 ` ~α0 ` d ¨ ~τ ; z11 Ð z1 ` α1

crnd1
S̄
Ð crndS̄ ` δS

crnd1
R̄
Ð crndR̄ ´ γ0 ¨ crnd

1
S̄
` δR

σ Ð pppk1i, ϕi, ~Ji
qiPrKs, S̄1, d

1, e1, ~z10, z
1
1, crnd

1
S̄
, crnd1

R̄
q

Return σ

Fig. 11. The setup and key generation algorithms along with the signing protocol of the blind signature scheme BS3 “

BS3rGGens. The verification algorithm BS3.Ver, the algorithms Check and ReRa are given separately in Figure 12,
while the proof system Π “ pΠ.ProveHΠ , Π.VerHΠ q is given in Figure 9. For the ease of understanding, we omitted the
states of both the user and signer algorithms and assume that any values initialized in the prior rounds are accessible
to the later rounds. The public parameters par, as stated before, are implicit input to every algorithms except BS3.KG.
The notation Comp¨ ; ¨q denotes HECom.Compck, ¨ ; ¨q for the commitment scheme HECom from Section 5.1. Similarly,
we write pProveHΠ ,VerHΠ q instead of pΠ.ProveHΠ , Π.VerHΠ q. We also give a protocol diagram of BS3 in Figure 15.
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Algorithm BS3.Verppk,m, σq :

pppki, ϕiqiPrKs, S̄, d, e, ~z0, z1, crndS̄ , crndR̄q Ð σ
For i P rKs :
hi Ð HpHµpm,ϕiqq
~Ri Ð g~z0,ipk´di

R̄Ð S̄´d
śK
i“1 h

~z0,i
i

AÐ gz1W´e

hcomS̄ Ð CompS̄; crndS̄q
hcomR̄ Ð CompR̄; crndR̄q

cÐ H1pm, phi, pkiqiPrKs, hcomS̄ ,
~R, hcomR̄, Aq

If pk ‰
ś

iPrKs pki or d` e ‰ c then

return 0
Return 1

Algorithm Checkpopenq:

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq Ð open

For i P rKs and j P rNszt ~Jiu:
comi,j Ð Hcompri,jq
pµi,j , εi,jq Ð ri,j ; βi,j Ð Hβpεi,jq

hi,j Ð Hpµi,jqg
βi,j

comÐ pcomi,jqiPrKs,jPrNs ; hÐ phi,jqiPrKs,jPrNs

If ~J ‰ Hccpcom, hq then return 0.
Return 1

Algorithm ReRapppki, hiqiPrKs, hcomS̄q:

Let ~τ P ZKp
~τ1, . . . , ~τK´1 Ð$ Zp; ~τK Ð ´

řK´1
i“1 ~τi

For i P rKs: pk1i Ð pkig
~τi

hcom1
S̄
Ð hcomS̄ ¨ Comp

śK
i“1 h

~τi
i ; 0q

Return pppkiqiPrKs, hcom
1
S̄
, ~τq

Fig. 12. The verification algorithm BS3.Ver and the algorithms Check and ReRa used in the signing protocol of BS3.
The public parameters par are implicit input to BS3.Ver.

Theorem 5.3 (Blindness of BS3). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BS3 “ BS3rGGens and K “ Kpλq, N “ Npλq be positive integer inputs to BS3.Setup. For
any adversary A for the game BLIND making at most QH‹ “ QH‹pλq queries to H‹ P tHµ,Hβ ,Hcom,HΠu,
modeled as random oracles, we have

Advblind
BS3

pA, λq ď 2QHΠ ` 2

p
`

2KNQHµ

2λ
`

2KQHβ

2λ
`

2KQHcom

2λ
.

One-more unforgeability.The following theorem, proved in Section 5.6, establishes the OMUF-2 security
of BS3 in the random oracle model under the CDH assumption.

Theorem 5.4 (OMUF-2 of BS3). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BS3 “ BS3rGGens and K “ Kpλq, N “ Npλq be positive integer inputs to BS3.Setup. For
any adversary A for the game OMUF-2 with running time tA “ tApλq, making at most QS1

“ QS1
pλq and

` “ `pλq queries to S1 and S2, respectively, and QH‹ “ QH‹pλq queries to H‹ P tH,H
1,Hµ,Hcom,Hcc,HΠu,

modeled as random oracles, there exist adversaries B for the game Binding of HECom, B1 for the game
DLOG, and B2 for the game CDH, such that

Advomuf-2
BS3

pA, λq ďp`` 1q

˜

c

pQH1

´

Advbinding
HECom pB, λq ` Advdlog

GGenpB1, λq
¯

`
pQH1

p

¸

`
`p``QHΠ ` 12q

p

`
QS1

NK
`
Q2

Hcom
` pQ2

Hµ
`QHcomQHcc `

pQH
pQHµ

2λ
` 4` ¨ Advcdh

GGenpB2, λq .

where pQH “ QH ` p`` 1qK, pQH1 “ QH1 ` `` 1, and pQHµ “ QHµ ` p`` 1qK. Furthermore, B, B1 and B2 run
in time tB, tB1 « 2tA, and tB2 « tA respectively.

The proof in Section 5.6 consists of the game sequence G0 ´G13 which is split into the following parts,
with G0 corresponding to the OMUF-2 game:

‚ Game G1 forbids the adversary from returning a message-signature pair that contains pppki, ϕiqiPrKs, S̄q

with S̄ ‰
śK
i“1 HpHµpm,ϕiqq

logg pki . If such event occurs, we rewind A to either break the binding of
HECom or extract the discrete logarithm of W in the public parameters.

‚ Games G2 ´G4 change the simulation of the interactive proof in the protocol to now use w “ loggW
instead of tskiuiPrKs.
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‚ Games G5 ´G10 follow the security proof of Rai-Choo [HLW23] and program the random oracles such
that, in any signing session where the signer’s second response is requested, logg hi˚, ~Ji˚

for some i˚ P rKs

is known, and that there is still a message-signature pair output by the adversary from which one can
extract a CDH solution. Essentially, the proof does the following:
1. First, the proof argues that for each of the user’s first message, there exists some i˚ P rKs where
hi˚, ~Ji˚

is computed honestly, i.e. hi˚, ~Ji˚
“ HpHµpm,ϕqq for some pm,ϕq (extractable from the

random oracle transcript). This then binds each signing session with some message.
2. Then, it programs the random oracles such that, still with non-negligible probability, the discrete

logarithm of HpHµpm,ϕqq is known for the sessions where the adversary requested the signer’s second
response. Since there is at most ` such sessions, it is still possible to program the oracles to extract
CDH solution from one of the ` ` 1 forgeries. Note that for the sessions where only the user’s first
message is received, it does not matter whether such discrete logarithm is known.

‚ Games G11 ´G13 generate the commitment key ck with the base X “ pk embedded and simulate the
rest of each signing session (i.e., ppkiqiPrKs, hcomS̄ , and S̄) without the secret key. More specifically, one

can sample skiÐ$ Zp for i ‰ i˚, set pki Ð gski and compute pki˚ such that pk “
śK
i“1 pki. Then, observe

that S̄ as computed in the protocol can be written as

S̄ “
K
ź

i“1

hski
i, ~Ji

“ h
sk´

ř

i‰i˚ ski

i˚, ~Ji˚

ź

i‰i˚

hski
i, ~Ji

“ pk
logg hi˚, ~J

i˚

ź

i‰i˚

hski
i, ~Ji

h´ski
i˚, ~Ji˚

.

Since we know logg hi˚, ~Ji˚
only for sessions where the signer’s second response is requested, we cannot

compute S̄ without sk for every first signer’s response. However, using the special equivocation property,

we can send hcomS̄ as a commitment to S1 “
ś

i‰i˚ h
ski
i, ~Ji

h´ski
i˚, ~Ji˚

and open it later to S̄ “ pk
logg hi˚, ~J

i˚ S1.

‚ Finally, we construct a reduction to CDH using an adversary playing the game G13.

5.4 Correctness of BS3

Theorem 5.5. BS3 satisfies correctness.

Proof. To show correctness, we show that the signing protocol does not abort and that the final signature
is valid via the verification algorithm BS3.Ver. Hence, we consider each step in the signing protocol and the
signature verification as follows:

‚ The first user algorithm BS3.U1: For i P rKs, j P rN s, we have the following values defined
´ µi,j “ Hµpm,ϕi,jq
´ βi,j “ Hβpεi,jq
´ ri,j “ pµi,j , εi,jq and comi,j “ Hcompri,jq
´ h1i,j “ Hpµi,jq, hi,j “ h1i,jg

βi,j

Also, ~J “ Hccpcom, hq where com “ pcomi,jqiPrKs,jPrNs, h “ phi,jqiPrKs,jPrNs.
‚ The first signer algorithm BS3.S1: The algorithm runs Check, retracing the same computation in BS3.U1

for i P rKs and j P rN szt ~Jiu, and getting the same com and h which pass the check ~J “ Hccpcom, hq.

Then, the signer first message consists of pppkiqiPrK´1s, hcomS̄ , ~R, hcomR̄, A,Bq each defined as follows:

´ pki “ gski for i P rKs and skK “ sk´
řK´1
i“1 ski.

´ hcomS̄ “ CompS̄; crndS̄q with S̄ “
śK
i“1 h

ski
i, ~Ji

.

´ ~R “ pg~r0,1 , . . . , g~r0,K q, hcomR̄ “ CompR̄; crndR̄q with R̄ “
śK
i“1 h

~r0,i

i, ~Ji
for ~r0 Ð$ ZKp .

´ A “ gz1W´e for z1, eÐ$ Zp.
‚ The second user algorithm BS3.U2: Then, the blinded values of pki, hcomS̄ , Ri, hcomR̄, A are as follows:

´ By the definition of ReRa, pk1i “ pkig
~τi for i P rKs,

śK
i“1 pk

1
i “ pk and

hcom1S̄ “ CompS̄
śK
i“1 pk

´βi, ~Ji
i h1

i, ~Ji

~τi ; crndS̄ ` δSq.

36



´ ~R1i “
~Ripk

1
i
´γ0g~α0,i for i P rKs and

hcom1R̄ “ CompR̄S̄1
´γ0

śK
i“1

~R
´βi, ~Ji
i h1

i, ~Ji

~α0,i ; crndR̄ ´ γ0 ¨ crnd
1
S̄ ` δRq

´ A1 “ Agα1W´γ1

‚ The third user algorithm BS3.U3: On the signer message pS̄, R̄, d, e, ~z0, z1, crndS̄ , crndR̄, πq, the following
checks pass:
´ c “ d` e because d is defined as c´ e by the second signer algorithm.
´ For all i P rKs, ~Ripk

d
i “ g~r0,i`d¨ski “ g~z0,i

´ Also, R̄S̄d “
śK
i“1 h

~r0,i`d¨ski

i, ~Ji
“
śK
i“1 h

~z0,i

i, ~Ji
.

´ The checks on A and hcomS̄ , hcomR̄ trivially pass because of how the values are defined.
´ The algorithm checks that the Π.VerHΠ on π returns 1 which is always true by the completeness of
Π.

‚ Signature verification: The final signature is σ “ pppk1i, ϕi, ~JiqiPrKs, S̄
1, d1, e1, ~z10, z

1
1, crnd

1
S̄ , crnd

1
R̄q, and

following from the checks in the third user algorithm, we have
´ d1 ` e1 “ d` e` γ0 ` γ1 “ c` γ0 ` γ1 “ c1.
´ For i P rKs,

g~z
1
0,ipk1i

´d1

“ g~z0,i`~α0,i`d¨~τippkig
~τiq´dpk1i

´γ0
“ ~Rig

~α0,ipk1i
´γ0

“ ~R1i .

´ Also,

S̄1
´d1

K
ź

i“1

h1
i, ~Ji

~z10,i “ pS̄
K
ź

i“1

pk
´βi, ~Ji
i h1

i, ~Ji

~τi
q´dS̄1

´γ0

K
ź

i“1

h1
i, ~Ji

~z0,i`~α0,i`d¨~τi

“ S̄´d
K
ź

i“1

pk
dβi, ~Ji
i h1

i, ~Ji

~z0,i S̄1
´γ0

K
ź

i“1

h1
i, ~Ji

~α0,i

“ S̄´d
K
ź

i“1

pk
dβi, ~Ji
i phi, ~Jig

´βi, ~Ji q~z0,i S̄1
´γ0

K
ź

i“1

h1
i, ~Ji

~α0,i

“ S̄´d
K
ź

i“1

h
~z0,i

i, ~Ji
ppk´di g~z0,iq

´βi, ~Ji S̄1
´γ0

K
ź

i“1

h1
i, ~Ji

~α0,i

“ R̄S̄1
´γ0

K
ź

i“1

~R
´βi, ~Ji
i h1

i, ~Ji

~α0,i

´ A1 “ Agα1W´γ1 “ gz1`α1W´e´γ1 “ gz
1
1W´e1 .

´ crnd1S̄ “ crndS̄ ` δS , crnd1R̄ “ crndR̄ ´ γ0 ¨ crnd
1
S̄ ` δR, which gives

hcom1S̄ “ CompS̄1; crnd1S̄q and hcom1R̄ “ CompR̄1; crnd1R̄q with

R̄1 “ R̄S̄1
´γ0

śK
i“1

~R
´βi, ~Ji
i h1

i, ~Ji

~α0,i .

Thus, the verification algorithm returns 1, because
śK
i“1 pk

1
i “ pk and

d1 ` e1 “ c1 “ H1pm, ph1
i, ~Ji

, pk1iqiPrKs, hcom
1
S̄ ,
~R1, hcom1R̄, A

1q

“ H1pm, ph1
i, ~Ji

, pk1iqiPrKs,CompS̄
1; crnd1S̄q, pg

~z10,ipk1i
´d1

qiPrKs,CompR̄
1; crnd1R̄q, g

z11W´e1q .

[\

5.5 Proof of Theorem 5.3 (Blindness of BS3)

To show blindness of BS3, we consider the following sequence of games.
Game GA

0 : This game is identical to the game BLIND of BS3 where A makes at most QH‹ queries to the
random oracles H‹ P tHµ,Hβ ,Hcom,HΠu. For k P t0, 1u, we denote the superscript p¨qpkq as the corresponding
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value in the user oracles Ujpk, ¨q, j “ 1, 2, 3. (The superscript notation is chosen for readability of the proof
as the scheme BS3 contains many values with subscripts, in contrast to BS1 and BS2.)
Game GA

1 : In this game, we introduce an abort in the oracle U3pk, ¨q (for both k “ 0, 1) such that on input

pd, e, ~z0, z1, S̄, R̄, crndS̄ , crndR̄, πq Ð smsg2: the oracle aborts if the proof π verifies, but S̄ ‰
śK
i“1 h

logg pki

i, ~Ji

where hi, ~Ji , pki for i P rKs are the corresponding values from the user’s and signer’s first messages in that

particular signing session k P t0, 1u (omitting the superscripts).
Notice that the view of A only changes when the abort occurs, i.e., the event where A queries U3 for

k P t0, 1u with a valid proof π for a statement pg, phi, ~Ji , pkiqiPrKs, S̄q with S̄ ‰
śK
i“1phi, ~Jiq

logg pki . This
corresponds to breaking the soundness property of Π. By Lemma 5.2, any adversary with QHΠ -query access
to HΠ breaks the soundness of Π only with probability pQHΠ ` 1q{p. Thus, bounding over both signing
sessions k P t0, 1u, we have

|PrrGA
0 “ 1s ´ PrrGA

1 “ 1s| ď
2QHΠ ` 2

p
.

Game GA
2 : This game adds another abort such that for all k P t0, 1u, i P rKs, and j P rN szt ~J

pkq
i u, if

Hµp¨, ϕ
pkq
i,j q has been queried by A at any point throughout the game, the game aborts. Since ϕ

pkq
i,j for

j ‰ ~J
pkq
i is uniformly random in t0, 1uλ and hidden from the view of A throughout the game,

|PrrGA
2 “ 1s ´ PrrGA

2 “ 1s| ď
2KNQHµ

2λ
.

Game GA
3 : This game adds another abort such that for all k P t0, 1u, i P rKs, if Hβpε

pkq

i, ~J
pkq
i

q or Hcomp¨, ε
pkq

i, ~J
pkq
i

q

has been queried by A at any point throughout the game, the game aborts. Since ε
pkq

i, ~J
pkq
i

is uniformly random

in t0, 1uλ and hidden from the view of A throughout the game,

|PrrGA
2 “ 1s ´ PrrGA

3 “ 1s| ď
2KQHβ

2λ
`

2KQHcom

2λ
.

Game GA
4 : In this game, the game samples ~̂J pkqÐ$ rN sK for both k P t0, 1u at the start of the game and

aborts if ~̂J pkq ‰ ~J pkq later in the game. The view of A does not change unless the game aborts, so conditioning
on the event that the game does not abort, we have

PrrGA
4 “ 1s “

1

N2K
PrrGA

3 “ 1s .

Game GA
5 : This game changes how µ

pkq
i,j is computed for k P t0, 1u, i P rKs, j P rN szt ~̂J

pkq
i u. Previously, it

was defined as Hµpmbk , ϕ
pkq
i,j q, however, now it is only sampled uniformly at random from t0, 1uλ. By the

changes in games GA
2 and GA

4 , ~̂J
pkq
i “ ~J

pkq
i and Hµp¨, ϕ

pkq
i,j q is never queried by A. Therefore, since µ

pkq
i,j is

distributed identically as before,

PrrGA
5 “ 1s “ PrrGA

4 “ 1s .

Game GA
6 : This game changes how β

pkq

i, ~J
pkq
i

and com
pkq

i, ~J
pkq
i

are computed for k P t0, 1u, i P rKs. Previously, it

was defined as Hβpε
pkq

i, ~J
pkq
i

q and Hcompr
pkq

i, ~J
pkq
i

q; however, now it is only sampled uniformly at random from Zp

and t0, 1uλ respectively. By the changes in games GA
3 and GA

4 , ~̂J
pkq
i “ ~J

pkq
i and Hβpε

pkq

i, ~J
pkq
i

q nor Hcomp¨, ε
pkq

i, ~J
pkq
i

q

has been queried by A. Since β
pkq

i, ~J
pkq
i

and com
pkq

i, ~J
pkq
i

are distributed identically as before,

PrrGA
6 “ 1s “ PrrGA

5 “ 1s .
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Lastly, we claim (in the following lemma) that when GA
6 does not abort, the view of A is identical for

both cases b “ 0 and b “ 1. This results in PrrGA
6 “ 1s “ 1{p2N2Kq (as there is only 1{N2K chance of the

game not aborting from the change in GA
6 ). By combining the advantage changes

|PrrBLINDA
BS3
pλq “ 1s ´

1

2
| ď

2pQHΠ ` 1q

p
`

2KNQHµ

2λ
`

2KQHβ

2λ
`

2KQHcom

2λ
,

concluding the proof.

Lemma 5.6. In GA
6 , if the game does not abort, the view of A is identical between both cases of b “ 0 and

b “ 1.

Proof. To show this, first, assume w.l.o.g. that the randomness of A is fixed and that A only outputs messages
in the transcript where neither the game nor the user oracles abort which makes A receives valid signatures
pσ0, σ1q. Also, let ViewA denote the set of all possible views of A that can occur in the game GA

6 . A view
∆ P ViewA is of the form

∆ “ pW, pk,m0,m1, T0, T1, σ0, σ1q ,

where for k P t0, 1u: Tk denotes the transcript of the interaction between A and the user oracle in signing
session k and σk denotes the valid signature for message mk. They are of the form:

Tk “ pph
pkq

i, ~J
pkq
i

, pk
pkq
i qiPrKs, hcom

pkq

S̄
, hcom

pkq

R̄
, S̄pkq, ~Rpkq, R̄pkq, Apkq, cpkq, dpkq, epkq, ~z

pkq
0 , z

pkq
1 , crnd

pkq

S̄
, crnd

pkq

R̄
q ,

σk “ pppk
1
i
pkq
, ϕ1i

pkq
qiPrKs, S̄1

pkq
, d1

pkq
, e1
pkq
, ~z1
pkq

0 , z11
pkq
, crnd1S̄

pkq
, crnd1R̄

pkq
q .

Note that we omitted the p ~J pkq, ppr
pkq
i,j qj‰ ~Jpkqi

, com
pkq

i, ~J
pkq
i

qiPrKsq portion of umsg
pkq
1 because they are now inde-

pendent of the messages pm0,m1q by the changes introduced to the games GA
2 ´GA

6 . Also, we rename some
variables from the signing protocol as follows,

β
pkq
i “ β

pkq

i, ~J
pkq
i

, ϕ
pkq
i “ ϕ

pkq

i, ~J
pkq
i

, µ
pkq
i “ µ

pkq

i, ~J
pkq
i

“ Hµpmbk , ϕ
pkq
i q ,

h
pkq
i “ h

i, ~J
pkq
i

pkq, h1i
pkq
“ h1

i, ~J
pkq
i

pkq
“ Hpµ

pkq
i q .

(11)

We need to show that the distribution of the actual adversarial view, which we denote as vA, is the same
between b “ 0 and b “ 1. Since we fix the randomness of A, vA only depends on the user randomness,
denoted

η “ ppβ
pkq
i , ϕ

pkq
i qiPrKs, ~τ

pkq, ~α
pkq
0 , α

pkq
1 , γ

pkq
0 , γ

pkq
1 , δ

pkq

S̄
, δ
pkq

R̄
qkPt0,1u ,

and we write vApηq to make this explicit.

Before continuing, we note that because of the change in GA
1 any non-aborting view should contain

S̄pkq “
śK
i“1

´

h
pkq
i

¯sk
pkq
i

which induces

S̄1
pbkq

“ S̄pkq
śK
i“1ppk

pkq
i q´β

pkq
i ph1i

pkq
q~τ
pkq
i

“
śK
i“1ph

pkq
i g´β

pkq
i qsk

pkq
i ph1i

pkq
q~τ
pkq
i

“
śK
i“1ph

1
i
pkq
qsk

pkq
i `~τ

pkq
i .

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

(12)

for sk
pkq
i “ logg pk

pkq
i .

To show that the distribution of vA is identical between b “ 0 and b “ 1, consider a view ∆ P ViewA.
We now show that there exists a unique η such that vApηq “ ∆, regardless of whether b “ 0 or b “ 1. More
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specifically, we claim that for both b “ 0 and b “ 1, vApηq “ ∆ if and only if for i P t0, 1u, η satisfies

ϕ
pkq
i “ ϕ1i

pbkq

β
pkq
i “ logg h

pkq
i ´ logg h

1
i
pkq

~τ
pkq
i “ logg pk

1
i
pbkq

´ logg pk
pkq
i

,

/

/

.

/

/

-

for i P rKs,

~α
pkq
0 “ ~z1

pbkq

0 ´ ~z
pkq
0 ´ dpkq ¨ ~τ pkq, α

pkq
1 “ z1

pbkq
1 ´ z

pkq
1 ,

γ
pkq
0 “ d1

pbkq ´ dpkq, γ
pkq
1 “ e1

pbkq ´ epkq

δ
pkq

S̄
“ crnd1S̄

pbkq
´ crnd

pkq

S̄
, δ
pkq

R̄
“ crnd1R̄

pbkq
´ crnd

pkq

R̄
` γ

pkq
0 ¨ crnd1S̄

pbkq,

(13)

For the “only if” direction, i.e., if vApηq “ ∆, then η satisfies Equation (13), this is true by how the user
algorithm of BS3 is defined.

To show the “if” direction, suppose η satisfies Equation (13), we need to show that vApηq “ ∆. Partic-
ularly, we have to show that the user messages from oracles U1,U2 and the signatures from oracle U3 are

pph
p0q
i qiPrKs, ph

p1q
i qiPrKsq, pc

p0q, cp1qq, and pσ0, σ1q respectively.
Again, since we only consider non-aborting view ∆, we have the following guarantees for k P t0, 1u:

~R
pkq
i “ ppk

pkq
i q´d

pkq

g~z
pkq
0,i for i P rKs,

R̄pkq “ pS̄pkqq´d
pkq śK

i“1 h
pkq
i

~z
pkq
0,i
,

Apkq “W´epkqgz
pkq
1 , cpkq “ dpkq ` epkq,

hcom
pkq

S̄
“ Compck, S̄pkq; crnd

pkq

S̄
q, hcom

pkq

R̄
“ Compck, R̄pkq; crnd

pkq

R̄
q,

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

(14)

Then, by defining the intermediate values hcom1S̄
pbkq and hcom1R̄

pbkq used in the verification of σbk as

hcom1S̄
pbkq

“ Compck, S̄1
pbkq; crnd1S̄

pbkq
q ,

hcom1R̄
pbkq

“ Compck, pS̄1
pkq
q´d

1pkq
K
ź

i“1

h1i
pkq

~z1
pkq

0,i

; crnd1R̄
pbkq
q ,

we have

d1
pbkq

` e1
pbkq

“ H1pmbk , ph
1
i
pkq
, pk1i

pbkq
qiPrKs, hcom

1
S̄

pbkq, pg~z
pbkq

0,i pk1i
pbkq

´d1pbkq

qiPrKs, (15)

hcom1R̄
pbkq,W´e1pbkqgz

1
1
pbkq

q , (16)

where Equation (14) follows from the checks in BS3.U3, and Equation (16) follows from the validity of the
signatures.

First, we argue that the user’s first message h
pkq
i of both signing sessions corresponds to the values in ∆.

This is due to

h
pkq
i “ h1i

pkq
gβ
pkq
i “ Hpµ

pkq
i qgβ

pkq
i “ HpHµpmbk , ϕ

pkq
i qqgβ

pkq
i .

The first equality is from the value of β
pkq
i in Equation (13). The other equalities follow from how we renamed

the values in Equation (11). The right-hand side of the equation is exactly the value in umsg
pkq
1 . Thus, the

next message from A will be pppk
pkq
i qiPrKs, hcom

pkq

S̄
, ~Rpkq, hcom

pkq

R̄
, Apkq, Bpkqq from the view ∆ (we included

pk
pkq
K as well just for simplicity, as it can be recomputed from pk and ppk

pkq
i qiPrK´1s.).

Next, we argue that the user’s second message from U2pk, ¨q will be cpkq. To do this, we consider the

blinded values of ppk
pkq
i , R

pkq
i qiPrKs, A

pkq, hcom
pkq

S̄
, hcom

pkq

R̄
which will be the inputs to H1 when computing

cpkq. Note that below we also consider the blinded values of S̄pkq, R̄pkq which are the values committed by

40



hcom
pkq

S̄
, hcom

pkq

R̄
respectively.

pk
pkq
i g~τ

pkq
i “ pk1i

pbkq for i P rKs, By ~τ pkq in Equation (13)

S̄1
pbkq

“ S̄pkq
K
ź

i“1

ppk
pkq
i q´β

pkq
i ph1i

pkq
q~τ
pkq
i , By Equation (12)

~R1
pkq

i “ ~R
pkq
i pk1

pbkq
i

´γ
pkq
0

g~α
pkq
0,i

“ ppk
pkq
i q´d

pkq

g~z
pkq
0,i pk1

pbkq
i

´γ
pkq
0

g~α
pkq
0,i By Equation (14)

“ ppk1i
pbkq
q´d

pkq

g~z
pkq
0,i`α

pkq
0,i`d

pkq~τ
pkq
i pk1

pbkq
i

´γ
pkq
0

“ g
~z1
pbkq

0,i pk1i
pbkq

´d1pbkq

, By ~α
pkq
0 in Equation (13)

A1
pkq
“ ApkqW´γ

pkq
1 gα

pkq
1 “ pW´epkqgz

pkq
1 qW´γ

pkq
1 gα

pkq
1 , By Equation (14)

“W´e1pbkqgz
1
1
pbkq

, By α
pkq
1 in Equation (13)

R̄1
pkq
“ R̄pkqpS̄1

pbkq
q´γ

pkq
0

K
ź

i“1

p~R
pkq
i q´β

pkq
i ph1i

pkq
q~α0,i

“

˜

pS̄pkqq´d
pkq

K
ź

i“1

h
pkq
i

~z
pkq
0,i

¸

pS̄1
pbkq
q´γ

pkq
0

K
ź

i“1

p~R
pkq
i q´β

pkq
i ph1i

pkq
q
~α
pkq
0,i

“

˜

S̄1
pbkq

K
ź

i“1

ppk
pkq
i qβ

pkq
i ph1i

pkq
q´~τ

pkq
i

¸´dpkq K
ź

i“1

h
pkq
i

~z
pkq
0,i

pS̄1
pbkq
q´γ

pkq
0

K
ź

i“1

p~R
pkq
i q´β

pkq
i ph1i

pkq
q
~α
pkq
0,i

“ pS̄1
pbkq
q´γ

pkq
0

˜

S̄1
pbkq

K
ź

i“1

ppk
pkq
i qβ

pkq
i ph1i

pkq
q´~τ

pkq
i

¸´dpkq

K
ź

i“1

p~R
pkq
i q´β

pkq
i ph1i

pkq
q
~α
pkq
0,i ph1i

pkq
gβ
pkq
i q

~z
pkq
0,i

“ pS̄1
pbkq
q´d

1pbkq
K
ź

i“1

p~R
pkq
i ppk

pkq
i qd

pkq

g´~z
pkq
0,i q´β

pkq
i ph1i

pkq
q
~z1
pbkq

0,i

“ pS̄1
pbkq
q´d

1pbkq
K
ź

i“1

h1i
pkq

~z1
pbkq

0,i

.

For the value of R̄1
pkq

: the first equality follows from how the value is defined; the second equality follows from
Equation (14); the third equality follows from Equation (12); the fourth equality follows from rearranging the

terms and h
pkq
i “ h1i

pkq
gβ
pkq
i ; the fifth equality follows from rearranging the terms and the values of γ

pkq
0 and

~α
pkq
0 in Equation (13); and the last equality follows from the value of ~R

pkq
i in Equation (14). Then, we argue

that the blinded commitments hcom1S̄
pkq

and hcom1R̄
pkq

are exactly hcom1S̄
pbkq and hcom1R̄

pbkq respectively.

hcom1S̄
pkq
“ hcomS̄

pkq
¨ Compck,

K
ź

i“1

pk
pkq
i

´β
pkq
i

; δ
pkq

S̄
q ¨ Compck,

K
ź

i“1

ph1i
pkq
q~τ
pkq
i ; 0q

“ Compck, S̄1
pbkq; crnd

pkq

S̄
` δ

pkq

S̄
q “ Compck, S̄1

pbkq; crnd1S̄
pbkq
q “ hcom1S̄

pbkq
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hcom1R̄
pkq
“ hcom

pkq

R̄
¨ hcom1S̄

pkqγ0

¨ Compck,
K
ź

i“1

p~R
pkq
i q´β

pkq
i ph1i

pkq
q~α0,i ; δ

pkq

R̄
q

“ Compck, R̄1
pkq

; crnd
pkq

R̄
´ γ

pkq
0 ¨ crnd1S̄

pbkq
` δ

pkq

R̄
q “ hcom1R̄

pbkq

With these equalities, we have

H1pmbk , ph
1
i
bk , pk1i

pbkq
qiPrKs, hcom

1
S̄

pkq
, ~R1

pkq
, hcom1R̄

pkq
, A1

pkq
q ´ γ

pkq
0 ´ γ

pkq
1

“ d1
pbkq

` e1
pbkq

´ γ
pkq
0 ´ γ

pkq
1 “ dpkq ` epkq “ cpkq,

where the first equality follows from Equation (16), the second to last equality follows from the values of

γ
pkq
0 , γ

pkq
1 in Equation (13), and the last equality follows from Equation (14). Thus, the next message from

A will be S̄pkq, R̄pkq, dpkq, epkq, ~z
pkq
0 , z

pkq
1 , crnd

pkq

S̄
, crnd

pkq

R̄
, from the transcript ∆. Lastly, the final signatures

output by the oracle U3 will be σ0, σ1 by how the randomness η is defined in Equation (13). [\

5.6 Proof of Theorem 5.4 (OMUF-2 of BS3)

Let A be an adversary playing the OMUF-2 game of BS3. We consider the following sequence of games (with
the pseudocode description given in Figures 16 to 18).

Game GA
0 : The game first generates the public parameters parÐ$ BS3.Setupp1

λ, N,Kq and the secret
and public keys psk, pkq Ð$ BS3.KGpparq. Then, the game interacts with an adversary Appar, pkq with access
to the signing oracles S1,S2 and the hash functions H,H1,Hµ,Hcom,Hcc,HΠ , modeled as random oracles
and simulated via lazy sampling. The adversary A queries the signing oracles S1 and S2 for QS1

and `
times respectively, and the random oracles H‹ for QH‹ times for H‹ P tH,H

1,Hµ,Hcom,Hcc,HΠu. At the
end of the game, A outputs ` ` 1 message-signature pairs pm˚k , σ

˚
k qkPr``1s. The adversary A succeeds if

for all k1 ‰ k2,m
˚
k1
‰ m˚k2

and for all k P r` ` 1s,BS3.Verppk,m
˚
k , σ

˚
k q “ 1. We w.l.o.g. assume that A

does not make the same random oracle query twice. Also, we assume that A makes the random oracle
queries that would be made in BS3.Ver when verifying the forgeries. Thus, the total query counts become
pQH “ QH ` p` ` 1qK, pQH1 “ QH1 ` ` ` 1, and pQHµ “ QHµ ` p` ` 1qK for H,H1, and Hµ, respectively. The
success probability of A in the game GA

0 is exactly its advantage in OMUF-2 i.e.

Advomuf-2
BS3

pA, λq “ PrrGA
0 “ 1s .

Game GA
1 : In this game, in addition to the adversary A outputting ` ` 1 valid message-signature pairs

pm˚k , σ
˚
k q, the game requires that for each k P r` ` 1s, after parsing pppk˚i,k, ϕ

˚
i,kqiPrKs, S̄

˚
k , d

˚
k , e

˚
k , ~z

˚
0,k, z

˚
1,k,

crnd˚S̄,k, crnd
˚

R̄,kq Ð σ˚k , the game checks that

S̄˚k “
K
ź

i“1

Hpµ˚i,kq
sk˚i,k .

where µ˚i,k “ Hµpm
˚
k , ϕ

˚
i,kq, sk

˚
i,k “ logg pk

˚
i,k. If this check fails, the game aborts. We note that if the game

knows logg Hpµ
˚
i,kq, the game can efficiently check if S̄˚k “

śK
i“1 pk

˚
i,k

logg Hpµ˚i,kq instead.

Let Bad denote the event that A succeeds in game GA
0 but not GA

1 , which gives PrrGA
1 “ 1s ě PrrGA

0 “

1s ´ PrrBads. Then, by Lemma 5.7, there exist adversaries B and B1 for the games Binding of HECom and
DLOG, respectively, both running in time tB, tB1 « 2tA, such that

PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´ p`` 1q

˜

c

pQH1

´

Advbinding
HECom pB, λq ` Advdlog

GGenpB1, λq
¯

`
pQH1

p

¸

.

Game GA
2 : In this game, the game generates W in par as W Ð gw for wÐ$ Zp. Then, the signing oracles

S1 and S2 now generate p~R, R̄, A, d, e, ~z0, z1q as follows:
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‚ Sample r1, dÐ$ Zp, ~z0 Ð$ ZKp .

‚ Set AÐ gr1 , ~RÐ pg~z0,1pk´d1 , . . . , g~z0,Kpk´dK q, R̄Ð S̄´d
śK
i“1 h

~z0,i

i, ~Ji
.

‚ After receiving c, set eÐ c´ d and z1 Ð r1 ` e ¨ w.

Since the joint distributions of p~R, R̄, A, d, e, ~z0, z1q in this game and the game GA
1 are identical, we have

PrrGA
2 “ 1s “ PrrGA

1 “ 1s .

Game GA
3 : In this game, hcomR̄ is generated as hcom´d

S̄
¨ Compck,

śK
i“1 h

~z0,i

i, ~Ji
; δR̄q with δR̄Ð$ Z2

p, and the

game now sets crndR̄ Ð δR̄´d ¨crndS̄ . Here, crndR̄ is still uniformly random over Z2
p and hcomR̄ still commits

to the same R̄. Thus,
PrrGA

3 “ 1s “ PrrGA
2 “ 1s .

Note that in GA
3 , we only need S̄ and crndS̄ when opening hcomR̄ in S2, while computing hcomR̄ in S1 only

requires hcomS̄ .

Game GA
4 : In this game, the signing oracle S2 now generates the proof π by using a simulator Sim (of

which existence is implied by Lemma 5.2) on the input pg, phi, ~Ji , pkiqiPrKs, S̄q. Following Lemma 5.2, by the
zero-knowledge property of Π, and the fact that A makes ` and QHΠ queries to S2 and HΠ respectively, we
have

PrrGA
4 “ 1s ě PrrGA

3 “ 1s ´
`p``QHΠ q

p
.

Game GA
5 : In this game, the game aborts if one of the following occurs.

(a) For each H‹ P tHcom,Hµu, there exist two queries x ‰ x1 to H‹ such that H‹pxq “ H‹px
1q.

(b) The game additionally keeps track of a mapping r̂r¨s : t0, 1uλ Ñ t0, 1u2λ. Then, for each query pcom, hq
to Hcc where com “ pcomi,jqiPrKs,jPrNs and h “ phi,jqiPrKs,jPrNs the game does the following: For each
i P rKs and j P rN s, check if there exists a query r1 to Hcom such that Hcompr

1q “ comi,j , then if there is
one, set r̂rcomi,js Ð r1; otherwise, set r̂rcomi,js Ð K and abort if later there is a query r1 to Hcom where
Hcompr

1q “ comi,j .

The view of A in this game only differs from its view in GA
5 if the game aborts. The abort probability

for (a) corresponds to the probability of collisions in the outputs of Hcom and Hµ which is bounded by

pQ2
Hcom

` pQ2
Hµ
q{2λ. Also, since the output of Hcom is uniformly random in t0, 1uλ, the abort probability for

(b) is bounded by QHcomQHcc{2
λ, considering all pairs of queries to Hcom and Hcc. Thus,

PrrGA
5 “ 1s ě PrrGA

4 “ 1s ´
Q2

Hcom
` pQ2

Hµ
`QHcomQHcc

2λ
.

Before proceeding to the next game, we consider an event where A queries S1 with the input umsg1 “

p ~J, ppri,jqj‰ ~Ji , comi, ~Ji
, hi, ~JiqiPrKsq. We consider the case where Checkpumsg1q “ 1 which would define values

com “ pcomi,jqiPrKs,jPrNs and h “ phi,jqiPrKs,jPrNs such that Hccpcom, hq “ ~J . Also, consider the values

r̂rcomi,js related to the query Hccpcom, hq defined in GA
5 . For each instance i P rKs, we have the following

observations:

‚ If for some j P rN s, r̂rcomi,js “ K, then j “ ~Ji. For other j1 ‰ ~Ji, since ri,j1 is revealed in umsg1 and
Checkpumsg1q “ 1, comi,j1 “ Hcompri,j1q, by the abort (b) introduced in GA

5 , r̂rcomi,j1s ‰ K.

‚ If for some j P rN s, r̂rcomi,js “ pµ, εq ‰ K, but hi,j ‰ Hpµqgβ where β Ð Hβpεi,jq, then j “ ~Ji. This

is because of the no collision condition (abort (a)) in Hcom introduced in GA
5 , meaning for j1 ‰ ~Ji,

r̂rcomi,j1s “ ri,j1 “ pµi,j1 , εi,j1q. Then, with Checkpumsg1q “ 1, we have hi,j “ Hpµi,j1qg
Hβpεi,j1 q.

We say the adversary A successfully cheats in instance i P rKs if one of the two cases above occurs while

Checkpumsg1q “ 1. Since the values r̂rcomi,js are fixed when ~J :“ Hccpcom, hq is queried and ~J is uniformly
random, the probability which A successfully cheats in instance i P rKs is at most 1{N . Then, the probability
in which A successfully cheats in all instance is at most 1{NK .
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Game GA
6 : In this game, if A successfully cheats in all instance i P rKs in some signing query to S1, the

game aborts. By the above discussion and applying the union-bound over all queries to S1,

PrrGA
6 “ 1s ě PrrGA

5 “ 1s ´
QS1

NK
.

Game GA
7 : In this game, the game aborts if A queries H with µ such that there is no x where Hµpxq “ µ

at the time, but later on there is a query x to Hµ where Hµpxq “ µ. The view of A only changes if the game
aborts. Then, since the outputs to Hµp¨q is uniformly random, we can bound the probability of the abort by
considering all pairs of queries to H and Hµ. Thus,

PrrGA
7 “ 1s ě PrrGA

6 “ 1s ´
pQH

pQHµ

2λ
.

Game GA
8 : In this game, the game introduces two mappings b̂r¨s, br¨s such that when A queries Hµpm,ϕq and

no query of the form pm, ¨q has been made before, b̂rms is set to 1 with probability 1{p``1q and 0 otherwise.
Moreover, when there is a query Hpµq of which the value is not defined, the game searches for a previous

query pm,ϕq such that Hµpm,ϕq “ µ and set brµs Ð b̂rms. If such query does not exist, set brµs Ð 0. Since

both b and b̂ are hidden from the view of A, the view of A remains the same. Thus,

PrrGA
8 “ 1s “ PrrGA

7 “ 1s .

Note that by the change in GA
7 , it cannot be the case that b̂rms “ 1 but brµs “ 0 for some m and µ “ Hµpm, ¨q,

since this means that the query Hpµq is made before Hµpm, ¨q.
Game GA

9 : In this game, we made the following changes to GA
8 as follows:

‚ The game introduce a list L.
‚ Recall that by the change in GA

6 , for each signing session, there exists an instance i˚ P rKs where A
does not successfully cheat. Thus, the game can extract r “ pµ, εq such that Hcomprq “ comi˚, ~Ji˚

and

HpµqgHβpεq “ hi˚, ~Ji˚
. Then, for each query to S2, the game aborts if brµs “ 1. Otherwise, the game

tries to find a previous query pm, ¨q such that µ “ Hµpm, ¨q and sets LÐ LY tpµ,mqu, if such m exists.
‚ When A returns ``1 forgeries for distinct messages, since A queries S2 for ` times, there exists m‹ from

one of the message-signature pairs such that p¨,m‹q R L. The game aborts if b̂rm‹s “ 0.

Consider the success probability of A.

PrrGA
9 “ 1s “ PrrA succeeds|GA

9 does not abortsPrrGA
9 does not aborts .

Notice that the view of A, if the game does not abort, is exactly as in GA
8 . Thus, we consider the probability

that GA
9 does not abort, which corresponds to the event that for all pµ,mq P L, brµs “ 0 and b̂rm‹s “ 1.

Hence, we can bound

Prrb̂rm‹s “ 1^ @pµ,mq P L : brµs “ 0s

“ Prrb̂rm‹s “ 1sPrr@pµ,mq P L : b̂rms “ 0s

ě
1

`` 1

ˆ

1´
1

`` 1

˙`

“
1

`

ˆ

1´
1

`` 1

˙``1

ě
1

4`
.

The first equality follows from the independence of sampling each b̂ and that brµs “ b̂rms. The next inequality

follows from |L| ď ` (since the game appends to L only in S2) and b̂rms for distinct m being independently
sampled. The last inequality follows from p1´ 1{xqx ě 1{4 for x ě 2. Therefore, we have

PrrGA
9 “ 1s ě

1

4`
PrrGA

8 “ 1s .
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Game GA
10: In this game, the game keeps track of a mapping tr¨s : t0, 1uλ Ñ Zp and initialize a Y Ð$ G at

the start of the game. Then, for each new query Hpµq, the game returns Hpµq Ð Y brµsgtrµs where trµs Ð$ Zp
and brµs is as defined in GA

8 . The view of A is the same as in GA
9 since Hpµq is still uniformly random over

G. Thus,
PrrGA

10 “ 1s “ PrrGA
9 “ 1s .

Game GA
11: In this game, the game generates tskiuiPrKs in each signing session as follows: recall the non-

cheating instance i˚ from GA
6 , the game now generates skiÐ$ Zp for i ‰ i˚ and sets ski˚ Ð sk´

ř

i‰i˚ ski,

along with pki˚ Ð pk
ś

i‰i˚ pk
´1
i . This is only a syntactical change and the view of A stays the same.

PrrGA
11 “ 1s “ PrrGA

10 “ 1s .

GameGA
12: In this game, the game now aborts if sk “ 0, and if this abort does not occur, the commitment key

ck is now generated along with a trapdoor td with a base pk embedded i.e., pck, tdq Ð$ HECom.TGenppG, p, gq,
pkq. The probability of the abort occurring is at most 1{p. Also, by the uniform key property of HECom, ck
generated with pk ‰ 1G is distributed identically to ckÐ$ HECom.GenppG, p, gqq. Thus,

PrrGA
12 “ 1s ě PrrGA

11 “ 1s ´
1

p
.

Game GA
13: In this game, the game does not compute ski˚ in each signing session anymore and changes the

way hcomS̄ is computed and opened as follows:

‚ First, observe that we can write S̄ as

S̄ “ h
ski˚

i˚, ~Ji˚

ź

i‰i˚

hski
i, ~Ji

“ h
sk´

ř

i‰i˚ ski

i˚, ~Ji˚

ź

i‰i˚

hski
i, ~Ji

“ pk
logg hi˚, ~J

i˚

ź

i‰i˚

hski
i, ~Ji

h´ski
i˚, ~Ji˚

.

Then, in S1, the game now computes phcomS̄ , stcomq Ð$ HECom.TComptd, S1q for S1 “
ś

i‰i˚ h
ski
i, ~Ji

h´ski
i˚, ~Ji˚

.

‚ When S2 of the same session is queried, by the change in GA
9 , we know that hi˚, ~Ji˚

“ Hpµqgβ for some

pµ, εq with β “ Hβpεq and that brµs “ 0 (otherwise, the game aborts). Then, by the change in GA
10, the

game knows logg hi˚, ~Ji˚
“ β` trµs. Thus, the game opens hcomS̄ as pS̄, crndS̄q Ð$ HECom.TOpenpstcom,

β ` trµsq.

By the special equivocation property of HECom, the view of A stays the same, unless the matrix D P Z2ˆ2
p

contained in td is not invertible, which occurs with probability at most 2{p by the Schwartz-Zippel lemma.
Thus,

PrrGA
13 “ 1s ě PrrGA

12 “ 1s ´
2

p
.

Lastly, we give a reduction B2 playing the CDH game as follows:

‚ The reduction B2 takes input pG, p, g,X, Y q. If X “ 1G, B2 returns 1G. Otherwise, the game sets pkÐ X,
parÐ pG, p, g,W, ck,K,Nq, with W and ck generated as in GA

13, and runs Appar, pkq.
‚ The random oracles Hµ,Hcc,Hcom,H

1,HΠ are simulated as in GA
13; however, for H, the game uses the

CDH input Y in place of the Y used in GA
10.

‚ The signing oracles are simulated without sk as in GA
13.

‚ When the adversary returns ``1 message-signature pairs, the reduction checks if all the pairs are valid and
the messages are distinct. If not, B2 aborts. Then, the reduction identifies m‹ as in GA

9 and let σ‹ be the
corresponding signature for m‹. The reduction parses pppk‹i , ϕ

‹
i qiPrKs, S̄

‹, d‹, e‹, ~z‹0 , z
‹
1 , crnd

‹
S̄ , crnd

‹
R̄q Ð

σ‹, computes µ‹i “ Hµpm
‹, ϕ‹i q, and returns

Z “ S̄‹ ¨
K
ź

i“1

pk‹i
´trµ‹i s .
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First, we can see that the running time of B2 is about that of A. Next, we will show the correctness of the
reduction. We can see that if X “ 1G, the game is trivial for B2; otherwise, B2 simulates the game GA

13

perfectly. Then, suppose A succeeds in GA
13. By the change in GA

1 , this means that for pm‹, σ‹q, we have

S̄‹ “
śK
i“1 pk

‹
i
logg Hpµ‹i q. Thus,

S̄‹ “
K
ź

i“1

pk‹i
logg Hpµ‹i q “

K
ź

i“1

pk‹i
brµ‹i s¨logg Y`trµ

‹
i s “ pklogg Y

K
ź

i“1

pk‹i
trµ‹i s ,

where the third equality follows from brµ‹i s “ b̂rm‹s “ 1 for any i P rKs (due to the changes in games
GA

7 ´GA
9 and that Hµpm

‹, ϕ‹i q “ µ‹i ). Hence, B2 succeeds in the CDH game as Z “ pklogg Y “ X logg Y ,

implying PrrGA
13 “ 1s ď Advcdh

GGenpB2, λq. Finally, combining all the advantage changes,

Advomuf-2
BS3

pA, λq ďp`` 1q

˜

c

pQH1

´

Advbinding
HECom pB, λq ` Advdlog

GGenpB1, λq
¯

`
pQH1

p

¸

`
`p``QHΠ ` 12q

p

`
QS1

NK
`
Q2

Hcom
` pQ2

Hµ
`QHcomQHcc `

pQH
pQHµ

2λ
` 4` ¨ Advcdh

GGenpB2, λq .[\

Lemma 5.7. Let Bad be the event where A succeeds in game GA
0 but not GA

1 . Then, there exist adversaries
B for the game Binding of HECom and B1 for the game DLOG both with running time tB, tB1 « 2tA such
that

PrrBads ď p`` 1q

˜

c

pQH1

´

Advbinding
HECom pB, λq ` Advdlog

GGenpB1, λq
¯

`
pQH1

p

¸

.

Proof. First, observe that Bad corresponds to the following event: A outputs ` ` 1 message-signature pairs
pm˚k , σ

˚
k qkPr``1s such that (1) for all k1 ‰ k2,m

˚
k1
‰ m˚k2

, (2) for all k P r` ` 1s, BS3.Verppk, σ
˚
k ,m

˚
kq “ 1,

and (3) there exists k P r` ` 1s such that after parsing the signature pppk˚i,k, ϕ
˚
i,kqiPrKs, S̄

˚
k , d

˚
k , e

˚
k , ~z

˚
0,k, z

˚
1,k,

crnd˚S̄,k, crnd
˚

R̄,kq Ð σ˚k , and setting µ˚i,k Ð Hµpm
˚
k , ϕ

˚
i,kq, we have S̄˚k ‰

śK
i“1 Hpµ

˚
i,kq

logg pk˚i,k . Also, define

the event Badk for k P r`` 1s which is event Bad with the condition (3) specified only for the k-th message-

signature pair pm˚k , σ
˚
k q. We can see that Bad “

Ť``1
k“1 Badk.

To bound Badk, define the following wrapper Ak over A, which takes inputs: the instance pG, p, g,W, ck,K,
Nq, the outputs pc1, . . . , c pQH1

q of H1, and a random tape ρ.

1. Extract from the random tape ρ, the following

psk, ppskj,iqiPrK´1s, ~r0,j , ej , z1,j , ρΠ,j , crndS̄,j , crndR̄,jqjPrQS1
s, ptiqiPr pQHs

,Hµ,Hcom,HΠ ,Hcc, ρ
1q

where sk P Zp and for i P rKs, j P rQS1
s, ski,j , ej , z1,j P Zp, ~r0,j P ZKp , while ρΠ,j denotes the randomness

used to generate π in the j-th signing session, crndS̄,j , crndR̄,j P Z2
p denote the randomness for the

commitments in the j-th signing session, ptiqiPr pQHs
denotes a list of values from Zp which will be used to

program H, H‹ P tHµ,Hcom,Hccu denote a lists of QH‹ values ( pQHµ values for H‹ “ Hµ) in the codomain
of H‹, and HΠ denotes a list of QHΠ ` ` values in Zp. Additionally, we denote H‹ris as the i-th entry in
the list for H‹ P tHµ,Hcom,Hcc,HΠu.

2. Set parÐ pG, p, g,W, ckq and pkÐ gsk.
3. Run pm˚k , σ

˚
k qkPr``1s Ð AS1,S2,H,H

1,HΠ ,Hµ,Hcom,Hccppar, pk; ρ1q where each oracle is answered as follows:

‚ For the signing query with session ID j (j P rQS1
s) to S1 and S2, use psk, pskj,iqiPrK´1s, ~r0,j , ej , z1,j ,

ρΠ,j , crndS̄,j , crndR̄,jq to answer the query as in BS3.S1 and BS3.S2 respectively.

‚ For the i-th query to H (i P r pQHs), return gti and set tr¨s Ð ti accordingly.

‚ For the i-th query to H1 (i P r pQH1s), return ci.

‚ For the i-th query to H‹ P tHµ,Hcom,Hccu (i P rQH‹s and i P r pQHµs for H‹ “ Hµ), return H‹ris.
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‚ For the i-th query to HΠ (i P rQHΠ``s), return HΠ ris. (In these queries, we accounted for the queries
that the wrapper made to generate π in each query to S2.)

4. If the event Badk does not occur, return pK,Kq.
Otherwise, return pI, pm˚k , σ

˚
k qq where I is the index of the query to H1 from A corresponding to the

verification of pm˚k , σ
˚
k q. More specifically, I is the index of a query of the form pm, phi, pkiqiPrKs, hcomS̄ , ~R,

hcomR̄, Aq, where each value is defined as:
‚ m “ m˚k .

‚ For i P rKs, pki “ pk˚i,k, hi “ HpHµpm
˚
k , ϕ

˚
i,kqq, and ~Ri “ g~z

˚
0,k,ipk

´d˚k
i .

‚ hcomS̄ “ Compck, S̄˚k ; crnd˚S̄,kq

‚ hcomR̄ “ Compck, R̄; crnd˚S̄,kq where R̄ “ pS̄˚k q
´d˚k

śK
i“1 h

~z˚0,k,i
i .

‚ A “W´e˚k gz
˚
1,k .

Note that I and all the values above are well-defined as we assume that all RO queries done in forgery
verification are made by A beforehand. Also, the way we program H in Ak allows us to check for event

Badk efficiently, i.e., by checking S̄˚k ‰
śK
i“1 pk

˚
i,k
trµ˚i,ks, which means that the running time of Ak is

roughly that of A.

Now, consider another wrapper ForkAk taking the input pG, p, g,W, ckq defined as follows:

1. First, ForkAk samples c1, . . . , c pQH1
Ð$ Zp along with the random tape ρ.

2. Run pI, pm,σqq Ð$ AkppG, p, g,W, ck,K,Nq, pc1, . . . , c pQH1
q; ρq.

3. If I “ 0, abort. If not, sample c1I , . . . , c
1
pQH1
Ð$ Zp and

run pI 1, pm1, σ1qq Ð$ AkppG, p, g,W, ck,K,Nq, pc1, . . . , cI´1, c
1
I , . . . , c

1
pQH1
q; ρq.

4. If I ‰ I 1 or c1I “ cI , abort. Otherwise, parse

pppki, ϕiqiPrKs, S̄, d, e, ~z0, z1, crndS̄ , crndR̄q Ð σ ,

pppk1i, ϕ
1
iqiPrKs, S̄

1, d1, e1, ~z10, z
1
1, crnd

1
S̄ , crnd

1
R̄q Ð σ1 .

Then, compute R̄ “ S̄´d
śK
i“1 hi

~z0,i and R̄1 “ S̄1
´d1 śK

i“1 h
1
i
~z10,i and return

pS̄, S̄1, R̄, R̄1, crndS̄ , crndR̄, crnd
1
S̄ , crnd

1
R̄, z1 ´ z

1
1, e´ e

1q .

Since ForkAk runs Ak twice and the running time of Ak is about that of A, we have tForkAk « 2tA. Next,
we consider the event where ForkAk does not abort (i.e., I “ I 1 ‰ K and cI ‰ c1I). Notice that I “ I 1 ‰ K,
so the message-signature pairs pm,σq and pm1, σ1q: (a) are valid signatures corresponding to the I-th query

of A to H1, and (b) for i P rKs, let µi Ð Hµpm,ϕiq, µ
1
i Ð Hµpm

1, ϕ1iq, we have S̄ ‰
śK
i“1 Hpµiq

logg pki and

S̄1 ‰
śK
i“1 Hpµ

1
iq

logg pk1i . Consider two events: (E1) S̄ ‰ S̄1 or R̄ ‰ R̄1, and (E2) S̄ “ S̄1 and R̄ “ R̄1. We can
see that

PrrI “ I 1 ‰ K^ cI ‰ c1I s “ PrrForkAk does not aborts ď PrrE1s ` PrrE2s .

For the event E1, by the observation (a), we have that Compck, S̄; crndS̄q “ Compck, S̄1; crnd1S̄q and
Compck, R̄; crndR̄q “ Compck, R̄1; crnd1R̄q. Thus, we can construct a reduction B playing the binding game of

HECom and using ForkAk , with running time tB « tForkAk , such that PrrE1s ď Advbinding
HECom pB, λq.

For the event E2 (S̄ “ S̄1 and R̄ “ R̄1), we have that

(i) S̄´d
śK
i“1 hi

~z0,i “ R̄ “ R̄1 “ S̄1
´d1 śK

i“1 h
1
i
~z10,i

(ii) For i P rKs, pki “ pk1i, and Hpµiq “ hi “ h1i “ Hpµ1iq.
(iii) cI “ d` e, c1I “ d1 ` e1.

(iv) For i P rKs, pki
´dg~z0,i “ pk1i

´d1

g~z
1
0,i .

(v) A “ gz1W´e “ gz
1
1W´e1 .
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Next, we will argue that d “ d1. As a result from (i, ii, iv), for all i P rKs, we have pk
pd´d1q log hi
i “

ppkdi pk
1
i
´d1

qlogg hi “ gp~z0,i´~z
1
0,iq logg hi “ h

~z0,i´~z
1
0,i

i . Then,

S̄d´d
1

“ S̄dS̄1
´d1

“

K
ź

i“1

hi
~z0,ih1i

´~z10,i “

K
ź

i“1

h
~z0,i´~z

1
0,i

i “

K
ź

i“1

pk
pd´d1q log hi
i .

Since S̄ ‰
śK
i“1 pk

logg hi
i , only d “ d1 satisfies the equation. Since d` e “ cI ‰ c1I “ d1 ` e1, we have e ‰ e1.

Therefore, we have that pz1 ´ z11qpe ´ e1q´1 “ loggW . Hence, we can construct a reduction B1 playing the

DLOG game and using ForkAk , with running time tB1 « tForkAk , such that PrrE2s ď Advdlog
GGenpB1, λq.

Finally, by the forking lemma (Lemma 2.1) and that Ak only outputs I ‰ K when Badk occurs,

PrrBadks ď

b

pQH1PrrI “ I 1 ‰ K^ cI ‰ c1I s `
pQH1

p

ď

c

pQH1

´

Advbinding
HECom pB, λq ` Advdlog

GGenpB1, λq
¯

`
pQH1

p
.

The lemma statement follows from the union bound over Badk for k P r`` 1s. [\
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A Deferred Figures

BS1.Sppar, skq BS1.Uppar “ pG, p, g,W,H,H1,H2q, pk,mq

βÐ$ Zp

Z Ð h
sk h h

1
Ð Hpmq;hÐ h

1
g
β

z1, e, r0, sÐ$ Zp
Rg Ð g

r0 ;Rh Ð h
r0

AÐ g
z1W

´e

δ Ð H2ph, gsk, Z, gs, hsq if δ ‰ H2ph, pk, Z, gs
1
pk´δ, hs

1
Z
´δ
q :

π Ð pδ, s
1
“ δ ¨ sk` sq return K

pZ,Rg, Rh, A, πq α0, α1, γ0, γ1 Ð$ Zp

Z
1
Ð Zpk´β ;R

1
g Ð Rgpk

´γ0g
α0

R
1
h Ð RhR

´β
g Z

1´γ0h
1α0

A
1
Ð AW

´γ1g
α1

c
1
Ð H1pm,h1, Z1, R1g, R

1
h, A

1
q

dÐ c´ e c cÐ c
1
´ γ0 ´ γ1

z0 Ð r0 ` d ¨ sk pd, e, z0, z1q if c ‰ e` d or

pRgpk
d
, RhZ

d
q ‰ pg

z0 , h
z0 q or

AW
e
‰ g

z1 : return K

d
1
Ð d` γ0; e

1
Ð e` γ1

z
1
0 Ð z0 ` α0; z

1
1 Ð z1 ` α1

return σ Ð pZ
1
, d
1
, e
1
, z
1
0, z

1
1q

Fig. 13. Protocol diagram for the signing protocol of BS1
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BS2.Sppar, skq BS2.Uppar “ pG, p, g,W,H,H1,H2q, pk,mq

z1, e, r0, sÐ$ Zp

Rg Ð g
r0 ;AÐ g

z1W
´e

α0, α1, γ0, γ1, βÐ$ Zp

pRg, Aq R
1
g Ð Rgpk

´γ0g
α0 ;A

1
Ð AW

´γ1g
α1

Z Ð h
sk

;Rh Ð h
r0 h h

1
Ð Hpm,R1g, A

1
q;hÐ h

1
g
β

δ Ð H2ph, gsk, Z, gs, hsq

π Ð pδ, s
1
“ s` δ ¨ skq pZ,Rh, πq if δ ‰ H2ph, pk, Z, gs

1
pk´δ, hs

1
Z
´δ
q :

return K

Z
1
Ð Zpk´β

R
1
h Ð RhR

´β
g Z

1´γ0h
1α0

c
1
Ð H1pm,h1, Z1, R1g, R

1
h, A

1
q

dÐ c´ e c cÐ c
1
´ γ0 ´ γ1

z0 Ð r0 ` d ¨ sk pd, e, z0, z1q if c ‰ d` e or

pRgpk
d
, RhZ

d
q ‰ pg

z0 , h
z0 q or

AW
e
‰ g

z1 : return K

d
1
Ð d` γ0; e

1
Ð e` γ1

z
1
0 Ð z0 ` α0; z

1
1 Ð z1 ` α1

return σ Ð pZ
1
, d
1
, e
1
, z
1
0, z

1
1q

Fig. 14. Protocol diagram for the signing protocol of BS2
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BS3.Sppar, skq BS3.Uppar “ pG, p, g,W, ck, K,Nq, pk,mq

for i P rK ´ 1s : skiÐ$ Zp for pi, jq P rKs ˆ rNs :

skK Ð sk´
řK´1
i“1 ski ϕi,j Ð$ t0, 1u

λ
, µi,j Ð Hµpm,ϕi,jq

for i P rKs : pki Ð g
ski εi,j Ð$ t0, 1u

λ
, βi,j Ð Hβpεi,jq

z1, eÐ$ Zp;~r0 Ð$ ZKp ri,j Ð pµi,j , εi,jq, comi,j Ð Hcompri,jq

crndS̄ , crndR̄Ð$ Z2
p h

1
i,j Ð Hpµi,jq, hi,j Ð h

1
i,jg

βi,j

AÐ g
z1W

´e comÐ pcomi,jqiPrKs,jPrNs

hÐ phi,jqiPrKs,jPrNs; ~J Ð Hccpcom, hq

umsg1 Ð p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq

umsg1

if Checkpumsg1q “ 0 : abort

S̄ Ð
śK
i“1 h

ski
i, ~Ji

~RÐ pg~r0,1 , . . . , g~r0,K q

R̄Ð
śK
i“1 h

~r0,i

i, ~Ji

hcomS̄ Ð Compck, S̄; crndS̄q

hcomR̄ Ð Compck, R̄; crndR̄q

ppkiqiPrK´1s, hcomS̄ , ~R, hcomR̄, A

pkK Ð pk
śK´1
i“1 pk´1

i

α1, γ0, γ1 Ð$ Zp, ~α0 Ð$ ZKp ; δS , δRÐ$ Z2
p

{hcomÐ hcomS̄ ¨ Compck,
śK
i“1 pk

´β
i, ~Ji

i ; δSq

pppk1iqiPrKs, hcomS̄1 , ~τq Ð$

ReRapppki, h
1

i, ~Ji
qiPrKs,{hcomq

for i P rKs : ~R
1
i Ð

~Ripk
1
i
´γ0g

~α0,i

{hcomR̄ Ð Compck,
śK
i“1

~R
´β
i, ~Ji

i h1
i, ~Ji

~α0,i ; δRq

hcom1
R̄
Ð hcomR̄ ¨ hcom

1
S̄
´γ0 ¨{hcomR̄

A
1
Ð AW

´γ1g
α1

c
1
Ð H1pm, ph1

i, ~Ji
, pk1iqiPrKs, hcom

1
S̄ ,
~R1, hcom1R̄, A

1
q

cÐ c
1
´ γ0 ´ γ1

dÐ c´ e c

for i P rKs : ~z0,i Ð ~r0,i ` d ¨ ski

inputÐ pg, phi, ~Ji
, pkiqiPrKs, S̄q

π Ð ProveHΠ pinput, pskiqiPrKsq

S̄, R̄, d, e, ~z0, z1, crndS̄ , crndR̄, π

smsg2 Ð pS̄, R̄, d, e, ~z0, z1, crndS̄ , crndR̄, πq

return σ Ð BS3.U3psmsg2q

Fig. 15. Protocol diagram for the signing protocol of BS3. The algorithms Check,ReRa, and ProveHΠ are defined in
Figure 12, while the third user algorithm BS3.U3 is as defined in Figure 11. For readability, we omitted the hash
function descriptions from the public parameters par in this figure.
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Game GA
0 ,GA

1 ,GA
2 ,GA

3 ,GA
4 :

pG, p, gq Ð$ GGenp1λq

skÐ$ Zp ; pkÐ gsk

ckÐ$ HECom.GenpG, p, gq
W Ð$ G // GA

0 ´GA
1

wÐ$ Zp ; W Ð gw // GA
2 ´GA

4

par Ð pG, p, g,W, ck, K,Nq
`Ð 0 ; I1, I2 Ð H

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2 ppar, pkq

If D k1 ‰ k2,m
˚
k1
“ m˚k2

then

return 0
If D k P r`` 1s such that

BS3.Verppk,m
˚
k , σ

˚
k q “ 0 then

return 0
For k P r`` 1s:

pppk˚i,k, ϕ
˚
i,kqiPrKs, S̄

˚
k , d

˚
k , e

˚
k ,

~z˚0,k, z
˚
1,k, crnd

˚

S̄,k
, crnd˚

R̄,k
q Ð σ˚k

For i P rKs : µ˚i,k Ð Hµpm
˚
k , ϕ

˚
i,kq

If S̄˚k ‰
śK
i“1 Hpµ˚i,kq

logg pk˚
i,k

then return 0 // GA
1 ´GA

4

Return 1

Oracle S2psid, cq :

If sid R I1 or sid P I2 then return K
`Ð `` 1 ; I2 Ð I2 Y tsidu

dÐ c´ e // GA
0 ´GA

1

For i P rKs : ~z0,i Ð ~r0,i ` d ¨ ski

eÐ c´ d
z1 Ð r1 ` e ¨ w // GA

2 ´GA
4

π Ð ProveHΠ ppg, phi, ~Ji
, pkiqiPrKs, S̄q, pskiqiPrKsq

// GA
0 ´GA

3

π Ð Simppg, phi, ~Ji
, pkiqiPrKs, S̄qq

If π “ K then abort game // GA
4

R̄Ð S̄´d
śK
i“1 h

~z0,i

i, ~Ji

hcomR̄ Ð δR̄ ´ d ¨ crndS̄ // GA
3 ´GA

4

Return pS̄, R̄, d, e, ~z0, z1, crndS̄ , crndR̄, πq

Oracle S1psid, umsg1q:

If sid P I1 then return K
I1 Ð I1 Y tsidu

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq Ð umsg1

If Checkpumsg1q “ 0 then return K
For i P rK ´ 1s : skiÐ$ Zp
skK Ð sk´

řK´1
i“1 ski

For i P rKs : pki Ð gski

crndS̄ Ð$ Z2
p

S̄ Ð
śK
i“1 h

ski
i, ~Ji

hcomS̄ Ð CompS̄; crndS̄q

z1, eÐ$ Zp, ~r0 Ð$ ZKp
For i P rKs : ~Ri Ð g~r0,i

R̄Ð
śK
i“1 h

~r0,i

i, ~Ji

AÐ gz1W´e // GA
0 ´GA

1

d, r1 Ð$ Zp, ~z0 Ð$ ZKp
For i P rKs : ~Ri Ð pk´di g~z0,i

R̄Ð S̄´d
śK
i“1 h

~z0,i

i, ~Ji
// GA

2

AÐ gr1 // GA
2 ´GA

4

crndR̄Ð$ Z2
p // GA

0 ´GA
2

hcomR̄ Ð CompR̄; crndR̄q

δR̄Ð$ Z2
p // GA

3 ´GA
4

hcomR̄ Ð hcom´d
S̄
¨ Comp

śK
i“1 h

~z0,i

i, ~Ji
; δR̄q

Return pppkiqiPrK´1s, hcomS̄ , ~R, hcomR̄, Aq

Oracle H‹pstrq:

// H‹ P tH,H
1,HΠ ,Hµ,Hcom,Hccu

If H‹pstrq ‰ K then
return H‹pstrq

H‹pstrq Ð$ G // If H‹ “ H
H‹pstrq Ð$ Zp // If H‹ P tH

1,HΠu

H‹pstrq Ð$ t0, 1uλ // If H‹ P tHµ,Hcomu

H‹pstrq Ð$ rNsK // If H‹ “ Hcc
Return H‹pstrq

Fig. 16. The OMUF-2 “ GA
0 security game for BS3 and the subsequent games GA

1 ´GA
4 . The subsequent games

GA
5 ´GA

8 and GA
9 ´GA

13 can be found in Figures 17 and 18 respectively. We remark that H,H1,HΠ ,Hµ,Hcom,Hcc are
modeled as random oracles to which A has access. Each box type indicates the changes made in the game contained
in the box. Also, to make things clearer, for each box, the comments indicate which game the changes in the boxes
correspond to. The signer state is omitted and we assume that each variable initialized in S1 of the same sid can be
accessed in S2.
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Game GA
4 ,GA

5 ,GA
6 ,GA

7 ,GA
8 :

pG, p, gq Ð$ GGenp1λq

skÐ$ Zp ; pkÐ gsk

ckÐ$ HECom.GenpG, p, gq
wÐ$ Zp ; W Ð gw

par Ð pG, p, g,W, ck, K,Nq
Map r̂r¨s : t0, 1uλ Ñ t0, 1u2λ // GA

5 ´GA
8

Map b̂r¨s, br¨s : t0, 1u˚ Ñ t0, 1u // GA
6 ´GA

9

`Ð 0 ; I1, I2 Ð H

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2 ppar, pkq

If D k1 ‰ k2,m
˚
k1
“ m˚k2

then

return 0
If D k P r`` 1s such that

BS3.Verppk,m
˚
k , σ

˚
k q “ 0 then

return 0
For k P r`` 1s:

pppk˚i,k, ϕ
˚
i,kqiPrKs, S̄

˚
k , d

˚
k , e

˚
k ,

~z˚0,k, z
˚
1,k, crnd

˚

S̄,k
, crnd˚

R̄,k
q Ð σ˚k

For i P rKs : µ˚i,k Ð Hµpm
˚
k , ϕ

˚
i,kq

If S̄˚k ‰
śK
i“1 Hpµ˚i,kq

logg pk˚
i,k

then return 0
Return 1

Oracle Hµpstrq:

If Hµpstrq ‰ K then return Hµpstrq

Hµpstrq Ð$ t0, 1uλ

If Dstr1 ‰ str,Hµpstrq “ Hµpstr
1
q

or HpHµpstrqq ‰ K // GA
7 ´GA

8

then abort game. // GA
5 ´GA

8

If str “ pm,ϕq and // GA
8

Epm, ¨q,Hµpm, ¨q ‰ K

then b̂rms Ð

#

1 w.p. 1{p`` 1q

0 otherwise

Return Hµpstrq

Oracle Hcompstrq:

If Hcompstrq ‰ K then
return Hcompstrq

comÐ$ t0, 1uλ

If Dstr1 ‰ str, com “ Hcompstr
1
q

then abort game.

If r̂rcoms “ K and // GA
5 ´GA

8

Dpcom1, h1q, pHccpcom
1, h1q ‰ K

and Dpi, jq, com1i,j “ comq

then abort game.

Return Hcompstrq Ð com

Oracle S1psid, umsg1q:

If sid P I1 then return K
I1 Ð I1 Y tsidu

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq Ð umsg1

If Checkpumsg1q “ 0 then return K

i˚Ð$ DetectCheatpumsg1q // GA
6 ´GA

8

If i˚ “ K then abort game

For i P rK ´ 1s : skiÐ$ Zp
skK Ð sk´

řK´1
i“1 ski

For i P rKs : pki Ð gski

crndS̄ Ð$ Z2
p

S̄ Ð
śK
i“1 h

ski
i, ~Ji

hcomS̄ Ð CompS̄; crndS̄q

d, r1 Ð$ Zp, ~z0 Ð$ ZKp , δR̄Ð$ Z2
p

For i P rKs : ~Ri Ð pk´di g~z0,i

AÐ gr1

hcomR̄ Ð hcom´d
S̄
¨ Comp

śK
i“1 h

~z0,i

i, ~Ji
; δR̄q

Return pppkiqiPrK´1s, hcomS̄ , ~R, hcomR̄, Aq

Algorithm DetectCheatpumsg1q:

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq Ð umsg1

For i P rKs:

If r̂rcomi, ~Ji
s “ pµ, εq ‰ K and

hi, ~Ji
“ HpµqgHβpεq

then return i

Return K // GA
6 ´GA

8

Oracle Hccpcom, hq:

If Hccpcom, hq ‰ K then return Hccpcom, hq

For pi, jq P rKs ˆ rNs:

If Dr1 “ pµ, εq,Hcompr
1
q “ comi,j then

r̂rcomi,js “ r1

Else, r̂rcomi,js “ K // GA
5 ´GA

8

Hccpcom, hq Ð$ rNsK

Return Hccpcom, hq

Oracle Hpµq:

If Hpµq ‰ K then return Hpµq

If Dpm, ¨q,Hpm, ¨q “ µ

then brµs Ð b̂rms

Else, brµs Ð 0 // GA
8

Return Hpµq Ð$ G

Fig. 17. The games GA
4 ´GA

8 for the proof of Theorem 5.4 continued from Figure 16. We omitted the description of
the oracles S2,H

1 and HΠ as they are unchanged in the games GA
4 ´GA

8 . Each box type indicates the changes made
in the game contained in the box. Also, to make things clearer, for each box, the comments indicate which game the
changes in the boxes correspond to. Note: the subroutine DetectCheat is introduced to S1 in game GA

6 .
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Game GA
8 ,GA

9 ,GA
10 ,GA

11 ,GA
12 ,GA

13 :

pG, p, gq Ð$ GGenp1λq

skÐ$ Zp ; pkÐ gsk

ckÐ$ HECom.GenpG, p, gq // GA
8 ´GA

11

pck, tdq Ð$ HECom.TGenppG, p, gq, pkq // GA
12 ´GA

13

wÐ$ Zp ; W Ð gw

par Ð pG, p, g,W, ck, K,Nq
Map r̂r¨s : t0, 1uλ Ñ t0, 1u2λ

Map b̂r¨s, br¨s : t0, 1u˚ Ñ t0, 1u

LÐ H // GA
9 ´GA

13

tr¨s : t0, 1uλ Ñ Zp
Y Ð$ G // GA

10 ´GA
13

`Ð 0 ; I1, I2 Ð H

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2 ppar, pkq

If D k1 ‰ k2,m
˚
k1
“ m˚k2

then

return 0
If D k P r`` 1s such that

BS3.Verppk,m
˚
k , σ

˚
k q “ 0 then

return 0
For k P r`` 1s:

pppk˚i,k, ϕ
˚
i,kqiPrKs, S̄

˚
k , d

˚
k , e

˚
k ,

~z˚0,k, z
˚
1,k, crnd

˚

S̄,k
, crnd˚

R̄,k
q Ð σ˚k

For i P rKs : µ˚i,k Ð Hµpm
˚
k , ϕ

˚
i,kq

If S̄˚k ‰
śK
i“1 Hpµ˚i,kq

logg pk˚
i,k

then return 0

m‹ Ð m˚
arg mintkPr``1s:p¨,m˚

k
qRLu

If b̂rm‹s “ 0

then return 0 // GA
9 ´GA

13

Return 1

Oracle Hpµq:

If Hpµq ‰ K then return Hpµq
If Dpm, ¨q,Hpm, ¨q “ µ

then brµs Ð b̂rms
Else, brµs Ð 0

Hpµq Ð$ G // GA
8 ´GA

9

trµs Ð$ Zp
Hpµq Ð Y brµsgtrµs // GA

10 ´GA
13

Return Hpmq

Oracle S1psid, umsg1q:

If sid P I1 then return K
I1 Ð I1 Y tsidu

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq Ð umsg1

If Checkpumsg1q “ 0 then return K

i˚Ð$ DetectCheatpumsg1q

If i˚ “ K then abort game

For i P rK ´ 1s : skiÐ$ Zp
skK Ð sk´

řK´1
i“1 ski

For i P rKs : pki Ð gski // GA
8 ´GA

10

For i P rKszti˚u: skiÐ$ Zp; pki Ð gski

pki˚ Ð pk
ś

i‰i˚ pk´1
i // GA

11 ´GA
13

crndS̄ Ð$ Z2
p ; S̄ Ð

śK
i“1 h

ski
i, ~Ji

hcomS̄ Ð CompS̄; crndS̄q // GA
8 ´GA

12

S1 Ð
ś

i‰i˚ h
ski
i, ~Ji

h
´ski
i˚, ~J

i˚
// GA

13

phcomS̄ , stcomq Ð HECom.TComptd, ck, S1q

d, r1 Ð$ Zp, ~z0 Ð$ ZKp , δR̄Ð$ Z2
p

For i P rKs : ~Ri Ð pk´di g~z0,i

AÐ gr1

hcomR̄ Ð hcom´d
S̄
¨ Comp

śK
i“1 h

~z0,i

i, ~Ji
; δR̄q

Return pppkiqiPrK´1s, hcomS̄ , ~R, hcomR̄, Aq

Oracle S2psid, cq :

If sid R I1 or sid P I2 then return K
`Ð `` 1 ; I2 Ð I2 Y tsidu

pµ, εq Ð r̂rcomi˚, ~J
i˚
s

If brµs “ 1 then abort game

If Dpm, ¨q,Hpm, ¨q “ µ

then LÐ LY tpµ,mqu // GA
9 ´GA

13

eÐ c´ d ; z1 Ð r1 ` e ¨ w
π Ð Simppg, phi, ~Ji

, pkiqiPrKs, S̄qq

If π “ K then abort game

pS̄, crndS̄q Ð HECom.TOpenpstcom, trµs ` Hβpεqq

// GA
13

R̄Ð S̄´d
śK
i“1 h

~z0,i

i, ~Ji
hcomR̄ Ð δR̄ ´ d ¨ crndS̄
Return pS̄, R̄, d, e, ~z0, z1, crndS̄ , crndR̄, πq

Fig. 18. The games GA
8 ´GA

13 for the proof of Theorem 5.4 continued from Figure 17. We omitted the description
of the oracles H1,Hµ,Hcom,Hcc and HΠ as they are unchanged in the games GA

8 ´GA
13. Each box type indicates the

changes made in the game contained in the box. Also, to make things clearer, for each box, the comments indicate
which game the changes in the boxes correspond to. Note: the subroutine DetectCheat is as described in GA

6 .
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