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Abstract. QCB is a proposal for a post-quantum secure, rate-one au-
thenticated encryption with associated data scheme (AEAD) based on
classical OCB3 and ΘCB, which are vulnerable against a quantum ad-
versary in the Q2 setting. The authors of QCB prove integrity under
plus-one unforgeability, whereas the proof of the stronger de�nition of
blind unforgeability has been left as an open problem. After a short
overview of QCB and the current state of security de�nitions for au-
thentication, this work proves blind unforgeability of QCB. Finally, the
strategy of using tweakable block ciphers in authenticated encryption is
generalised to a generic blindly unforgeable AEAD model.
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Note: In an earlier version of this paper [18], a claim from [2] was repeated,
that blind unforgeability (BU) implies plus-one unforgeability (PO) [8]. This
claim, which would have indicated that our result is strictly stronger than
the PO unforgeability result from [5], has been withdrawn in an updated
version of [2]. This withdrawal does not undermine the contribution of our
paper. On the contrary, both BU and PO seem to be important security
notions of independent importance. As it turns out, QCB satis�es both
notions: QCB is both PO unforgeable (proven in [5]) and BU unforgeable
(proven in our paper).

1 Introduction

Motivation. As it stands, many cryptographic algorithms currently in use are
weak or outright broken when challenged by an adversary using a quantum
computer [23,21]. The security of asymmetric cryptography is especially a�ected,
as mathematical problems like integer factorization or the discrete logarithm are
hardly a challenge for quantum computers. For example, integer factorization
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can be solved using Shor's algorithm [27,28] with an almost exponential speed-
up compared to a classical computer. While many asymmetric cryptographic
algorithms are broken by design, the impact on post-quantum security of most
symmetric cryptographic schemes is expected to be less dramatic. However, there
are symmetric-key constructions that are also vulnerable to certain quantum
algorithms. Simon's algorithm can render many symmetric cryptographic modes
that are secure in the classical sense broken in the quantum scenario [16,5].

The authors in [16] are able to show that, additionally to the Even-Mansour

and 3-Round Feistel construction, the Liskov-Rivest-Wagner (LRW) construc-
tion is also insecure against a quantum adversary. Furthermore, they describe
forgery attacks against currently standardized classical authentication and au-
thenticated encryption modes like CBC-MAC, PMAC, GMAC, GCM and OCB

and imply that some authentication and authenticated encryption schemes are
quantumly insecure even with an underlying post-quantum secure block cipher
[16, pp. 2-3].

Outline. After introducing the topic and de�ning notations, Section 2 brie�y
discusses the evolution and di�erence of unforgeability notions plus-one unforge-
ability and blind unforgeability. Next, Section 3 goes into detail about QCB, a
recent proposal for a post-quantum secure AEAD mode based on the quantumly
broken OCB. Section 4 follows up with a proof that blind unforgeability holds for
QCB. Afterwards, a generic construction for blindly unforgeable AEAD schemes
is given in Section 5. Section 6 concludes.

Preliminaries. Note that there exist symmetric and asymmetric encryption
algorithms for privacy, and message authentication codes (MACs) to guaran-
tee authenticity and integrity of communication. The combination of symmetric
encryption algorithms and message authentication codes form combined algo-
rithms for authenticated encryption (AE). The term AEAD refers to an AE
scheme with support for associated data that can be used to strengthen secu-
rity. In this work, security schemes and algorithms employed in current digital
computers will be referred to as classical schemes or algorithms (e.g., RSA [15],
AES-128 [24], OCB3 [6]). Security schemes that are designed for providing secu-
rity against an adversary with a quantum computer will be called post-quantum

(e.g., QCB [5], Saturnin [12]). Importantly, post-quantum secure security algo-
rithms have to be designed such that they are still secure and viable when used
in classical computers.

A common distinction of quantum adversary types is between a Q1 and Q2
adversary. A Q1 adversary may use a quantum computer for o�ine computa-
tions but is limited to classical queries to any oracle function. The stronger Q2
adversary is additionally allowed to perform superposition queries to the oracle
functions. Unless mentioned otherwise, the following results assume an adversary
in the Q2 model.
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Notation. Addition in GF(2n), XOR, is denoted as ⊕. The set of all possible
binary strings of length n will be described as {0, 1}n.

A block cipher accepts as inputs a secret key K ∈ {0, 1}k and a message
block M ∈ {0, 1}n to compute a ciphertext block C ∈ {0, 1}n:

E : {0, 1}k × {0, 1}n → {0, 1}n.

A block cipher E encrypting message M under key K into ciphertext C is
signalled with EK(M) = C while the decryption E−1

K (C) = M acts as the
inverse of the encryption under the same key K.

A tweakable block cipher (TBC) additionally accepts a tweak T ∈ {0, 1}t as
input. Tweaks can be used to de�ne distinct families of block ciphers under the
same key. It is a tool to introduce variability to many calls of a block cipher
where the key does not change throughout [19,20]. Consequently, the signature
of a TBC can be described as:

Ẽ : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n.

The length of a message or ciphertext X measured as the amount of bits will
be described with |X| ∈ N0.

For brevity, we will abbreviate authenticated encryption with associated data

to AEAD, plus-one unforgeability to PO and blind unforgeability to BU.

2 Evolution of Unforgeability Notions

Authentication. In classical computing, the notions of existential unforgeabil-
ity under chosen-message attacks (EUF-CMA) and strong existential unforge-

ability under chosen-message attacks (SUF-CMA) are prevalent to describe the
security of MACs. However, these notions are not applicable in the quantum
setting due to the properties of a quantum system [1, pp. 1-2][9]. E.g., the ad-
versary may query in superposition and due to no-cloning and measurement
behaviour, it is not possible to identify a correct prediction of the adversary in
the superposition state [2, p. 1]. To combat the lack of a notion like UF-CMA for
unforgeability in quantum computers, Boneh and Zhandry introduced plus-one

unforgeability [9,8]. Alagic et al. followed up with the idea of blind unforgeability

[2].

Plus-One Unforgeability. Plus-one unforgeability (PO) was proposed as a
candidate to classify unforgeability on quantum computers [8, p. 598]. An ad-
versary A makes q < |X | queries to an oracle O : X → Y. If A can produce
q + 1 valid input-output pairs with non-negligible probability, the plus-one un-
forgeability of the underlying algorithm is violated, and it is not post-quantum
secure [8, p. 593]. By utilizing the rank method, the authors in [8, p. 602] show
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that if the size of Y is large enough, no (quantum) algorithm can produce k+ 1
input-output pairs when given k queries. Furthermore, they prove that a post-
quantum secure pseudorandom function (qPRF) [32] is plus-one unforgeable
when used as a MAC [8, p. 604].

However, Alagic et al. show that PO su�ers from a weakness in its de�nition
that allows for e�cient quantum attacks on MACs that are plus-one unforge-
able [2, pp. 24-32]. They describe that one of the issues of the PO de�nition
is the inability to include adversaries which need to measure states after the
query phase to produce a forgery. Measuring a state would collapse the regis-
ter during the security game which the PO de�nition does not account for. In
the counterexample of Alagic et al., an adversary may perform a forgery with a
single query by utilizing quantum period-�nding. Importantly, due to quantum
period-�nding algorithms not collapsing the entire state, the adversary is able
to learn the period and a random input-output pair of the MAC at the same
time [2, p. 24].

Blind Unforgeability. Introduced in [2], blind unforgeability (BU) aims to
describe an improved notion to characterize (strong) existential unforgeability
of MACs when faced by a quantum adversary [2, pp. 8-10] by eliminating the
weaknesses of plus-one unforgeability. Blind unforgeability of a MAC is de�ned
through the blind forgery game [2, p. 3] which will also be revisited during the
proof in Chapter 4.

Before the game starts, a random blind set is constructed. I.e., for some
fraction of messages in the MAC's message space, the oracle OMAC will not
return a corresponding authentication tag τ = OMAC(M) when queried but
rather signal to the adversary A that this message M is in the blind set by
returning ⊥. A wins if they can create a message-tag pair (m, t) with t being a
valid tag for the message m and m being a member of the blind set. In other
words, if A succeeds, they forged a tag for a message that they were not able
to get any relevant information on by querying OMAC. Therefore, A was able to
generate an existential forgery.

In classical computation, blind unforgeability is equal to EUF-CMA and
strong blind unforgeability is equal to SUF-CMA [2, pp. 11-12]. Due to the
incompleteness of the PO notion as described above, the conjunction of PO and
BU provides a stronger security proof than only showing one or the other. BU
also implies quadratic PO [2, p. 14], and at the time of writing it remains an open
question if BU implies PO, which would render BU a strictly stronger security
notion than PO. A (pseudo)random function R : X → Y is considered a blindly
unforgeable MAC if 1/|Y | is negligible in n [2, p. 15]. Furthermore, as with PO,
post-quantum secure pseudorandom functions (qPRFs) are blindly unforgeable
MACs [2, p. 4].

Blind unforgeability is equivalent to generalised existential unforgeability (µ-
qGEU) where µ = 1 [13, p. 18].
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3 QCB: Post-Quantum Secure Authenticated Encryption

QCB, as introduced in [5], is a proposal for an authenticated encryption scheme
with associated data (AEAD). The authors describe it as a post-quantum se-
cure successor to the classically secure AEAD family OCB. Apart from being
parallelizable, OCB [6] is a rate-one authenticated encryption scheme. For each
message block being encrypted, approximately one call to the secure block ci-
pher is carried out. These properties make OCB a highly e�cient classical AEAD
mode and mark the motivation for the creation of QCB: De�ning a post-quantum
secure, rate-one, parallelizable AEAD scheme on the basis of OCB [5, p. 2]. The
authors acknowledge the similarity of the scheme to ΘCB [26] and the tweakable
authenticated encryption (TAE) mode [19, pp. 39-41].

As shown by Kaplan et al. [16] and being revisited in Appendix A, the OCB
family of authenticated encryption algorithms is not post-quantum secure. Im-
portantly, the underlying construction using o�sets is structurally broken by
applying Simon's algorithm and increasing key sizes does not act as an easy
remedy to this problem. As [5, pp. 9-11] point out, this does not only a�ect
OCB but a large family of OCB-like schemes.

Tweakable Block Ciphers in QCB. To instantiate QCB, Bhaumik et al.
de�ne a family of tweakable block ciphers (TBC) that is post-quantum secure
under the condition that tweaks may not be queried in superposition by the
adversary [5, pp. 11-15].

Note that there are TBCs which are considered secure even when A has the
ability to query tweaks in superposition, like LRWQ [14]. However, these TBCs
can be broken by decryption queries and have a rate of 1/3 as they use three
block cipher calls for each TBC call. This renders them unattractive for QCB,
as QCB tries to achieve rate-one e�ciency similar to OCB [5, p. 15].

In [5, pp. 16-17], QCB is proposed to be instantiated with the key-tweak in-
sertion TBC Saturnin [12]. The design of this block cipher was originally moti-
vated by the NIST Lightweight Cryptography Standardization Process [22,31,30]
and is the only candidate where its designers tried to achieve post-quantum se-
curity while remaining in the lightweight domain. Alternatives for Saturnin are
discussed brie�y in Appendix B. Saturnin uses 256-bit blocks and keys which
renders it as a potential candidate for usage as a post-quantum secure block
cipher. The authors borrow internal design ideas from AES which is heavily re-
searched with tight security bounds already in place. There exists a variant of
Saturnin denoted as Saturnin16 using 16 super-rounds increasing the resis-
tance of the underlying compression function against related-key attacks [12, p.
7][25].
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The TBC used in [5] for QCB is de�ned as:

Ẽk,(d,IV,i)(m) = Saturnin
d
16(k ⊕ (IV ||i),m)

with

Ẽ : K ×D × IV × I ×M→ C,

Ẽ : {0, 1}256 × {0, 1}4 × {0, 1}160 × {0, 1}96 × {0, 1}256 → {0, 1}256.

Here, the tweak is denoted as the triple (d, IV, i), whereas IV ∈ IV is an ini-
tialization vector or nonce of at most 160 bits which is concatenated with i ∈ I
describing the block number of the current block being encrypted (at most 296

blocks are allowed). Parameter d ∈ D is the domain separator that can theo-
retically take 4 bits at maximum when Saturnin is used. For QCB, however,
only 5 values in total are required [5, pp. 15-17]. k ∈ K denotes the secret key
while m ∈ M denotes the data block to be encrypted with C representing the
ciphertext space.

Structure of QCB. QCB is an AEAD mode that is instantiated with a post-
quantum secure TBC. In the following, the usage of the TBC Saturnin is
assumed. Figure 1 shows the encryption of ℓ plaintext blocks Mi ∈ {0, 1}n into
ℓ+1 ciphertext blocks Ci ∈ {0, 1}n. If the last block M∗ is of length 0 ≤ c < n, it
will get padded with bitstring 10n−c−1 producing ciphertext block C∗ ∈ {0, 1}n.
Note that M∗ will also be padded if it is empty (c = 0), which always leads to a
ciphertext that will be longer than the plaintext input by at least 1 and at most
n bits.

pad

Fig. 1. Encryption of messages in QCB [5, Fig. 2].

Figure 2 illustrates how QCB uses all message blocks M0, . . . ,Mℓ, all associ-
ated data blocks A0, . . . , Aj and corresponding padding to calculate the authen-
tication tag T . Padding of A∗ behaves identically to the padding of M∗ during
the encryption procedure described above. Combining encryption and genera-
tion of the authentication tag leads to the full algorithm. Given a message M ,
associated data A, an initialization vector IV and a secret key K, QCB returns
a ciphertext-tag pair C, T with C = (C0||C1|| . . . ||Cℓ||C∗).
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Fig. 2. Generation of the authentication tag and handling of associated data in QCB
[5, Fig. 3].

QCB is Plus-One Unforgeable. Adversary A makes q superposition queries
to QCB instantiated with the key-tweak insertion TBC Ẽ with ℓ blocks of mes-
sages or associated data at maximum. Furthermore, A makes q′ encryption or
decryption queries to the underlying block cipher E of the TBC Ẽ. A succeeds
in the plus-one unforgeability scenario if they output q + 1 valid quadruples
(A, IV,C, T ) with associated data A, initialization vector IV , ciphertext C and
tag T . Importantly, IV s are classical and cannot be queried in superposition.
Consequently, the advantage of A over QCB in the de�nition of plus-one un-
forgeability (see also Section 2) is upper bounded by

Pr[A succeeds] ≤ 8

√
5ℓqq′2

2n
+

3 + c

2n
. (1)

The constant c relates from the PRP-PRF distinguishing advantage and the

probability c q3

2n which describes an upper bound of A succeeding to produce q+1
valid input-output pairs when quantumly attacking an ideal random permutation
with q queries [5, p. 8].

Evidently, in each call to the TBC, the initialization vector IV is provided as
input. This fact and the requirement that no IV shall be used more than once
is critical for security. QCB is secure against period-�nding attacks as described
in the attack on OCB in Appendix A. QCB is also secure against quantum

linearization attacks [10] due to the continuous usage of the initialization vector
in tweaks of the TBC [5, p. 15]. Consider a weakened version of QCB where
the IV is not used during the processing of associated data. This algorithm can
be broken with application of Deutsch's algorithm as shown in [5, Appendix B].
After n queries, an adversary is able to fully recover certain values which allow
them to perform forgeries. More speci�cally, they are able to compute a valid tag
for any message with associated data A = 1 if they are provided the tag of the
same message with associated data A = 0. This attack is made possible since in
the weakened version of QCB, the associated data is encrypted independently
of the IV allowing an adversary to repeatedly use the encryption of blocks of
associated data made in prior queries. The full speci�cation of QCB, however,
denies this vulnerability by using the IV in each block as part of the tweak for
the TBC [5, Appendix B].
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4 QCB is Blindly Unforgeable

On the following pages, blind unforgeability of QCB will be proven by employing
a similar technique to the proof about QCB's plus-one unforgeability in [5, pp.
21-22]. The authors of QCB acknowledged the existence of blind unforgeability
and left the proof for QCB as an open problem [5, pp. 27-28].

BU Game. The blind forgery experiment or blind unforgeability (BU) game as
presented in [2, p. 3] can be adjusted to work with QCB (or any authenticated
encryption scheme).

To generate a random blinding Bϵ, start with the empty set Bϵ = ∅ and place
each triple (IV,A,M) into the set with probability ϵ. Here, IV represents the
initialization vector, A the associated data and M the message. The encryption
oracle blinded on Bϵ is subsequently de�ned as:

BϵQCBK(IV,A,M)

{
⊥ if (IV,A,M) ∈ Bϵ,

(C, T ) otherwise.

The decryption under key K will be denoted as QCB−1
K (·).

The BU game is then carried out as follows:

1. Adversary A selects 0 < ϵ < 1.

2. Key K is generated uniformly at random. A random blind set Bϵ is gener-
ated, whereas each triple (IV,A,M) is put into Bϵ with probability ϵ.

3. A asks q (superposition or classical) queries |IV1, A1,M1⟩ , . . . |IVq, Aq,Mq⟩
to the blinded oracle BϵQCBK(·).

4. A produces a classical candidate forgery (IV,A,C, T ), where C represents
the ciphertext and T the authentication tag.

5. Output win if QCB−1
K (IV,A,C, T ) ̸= ⊥ and M = QCB−1

K (IV,A,C, T ) is
such that (IV,A,M) ∈ Bϵ.

De�nition 1 ([2], De�nition 1). QCB is blindly unforgeable if for every ad-

versary (A, ϵ), the probability of winning the blind unforgeability game is negli-

gible.

Theorem 1. Let (A, ϵ) be a Q2 adversary making q superposition queries to

QCB with at most ℓ blocks of message and associated data combined and making

q′ queries to the block cipher E. Then QCB is blindly unforgeable on blind set

Bϵ with the success probability of (A, ϵ) being bounded as:

Pr[A succeeds] ≤ ϵ

2n − q
+ 8

√
5ℓqq′2

2n
. (2)
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Proof. Consider two BU games G0, G1. In G0, adversary A queries QCB con-
structed with TBC Ẽ and key K selected uniformly at random. G1 is the modi�-
cation of game G0 where the TBC Ẽ is replaced by a family of ideal independent
random permutations for all tweaks [5, p. 21]. We make use of Lemma 3 from
the PO-proof in the original QCB publication.

Lemma 1 ([5], Lemma 3).

PrG0
[A succeeds] ≤ PrG1

[A succeeds] +AdvTPRP
Ẽ±($,⊙)

(5qℓ, q′)

Next, identify a bound for PrG1
[A succeeds] to get a bound on A's advantage

against QCB as represented by PrG0
[A succeeds] on the left side of the inequation

in Lemma 1.

For clarity, the BU game will be split up. For A to be successful in the full
BU game, they need to be successful in both of the following events Ei:

E1: A generates (IV,A,C, T ) with QCB−1
K (IV,A,C, T ) ̸= ⊥.

E2: The corresponding (IV,A,M) is in the blind set.

Remember that, as game G1 is being investigated, the underlying block cipher
is an ideal random permutation.

After q queries to the oracle, the probability to generate a pair (C, T ) which
is valid, i.e., the decryption of (C, T ) with given IV and A does not return ⊥ is

PrG1 [A succeeds in E1] =
1

2|T | − q
, (3)

where |T | denotes the bit-length of authentication tag T . While ciphtertext C
can be of variable size for di�erent queries in an instance of QCB, the tag T is
required to be of �xed size for each query [5, p. 4].

The blind set Bϵ is of expected size ϵ · 2m with m = |IV | + |A| + |M |.
The probability of randomly selecting any triple (IV,A,M) from the set of all
possible triples is 1

2m . The expected probability of randomly hitting any item in
the blind set Bϵ is therefore

PrG1
[A succeeds in E2] =

|Bϵ|
2m

=
ϵ · 2m

2m
= ϵ. (4)

The probabilities for E1 and E2 can be treated as being independent as the
blind set had been generated independently of the encryption algorithm. Thus,
the expected probability that A successfully generates a valid forgery with the
corresponding triple (IV,A,M) being in the blind set is

PrG1
[A succeeds] = PrG1

[A succeeds in E1] · PrG1
[A succeeds in E2].
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Substituting observations from Equations 3 and 4 leads to

PrG1
[A succeeds] =

1

2|T | − q
· ϵ = ϵ

2|T | − q
=

ϵ

2n − q
. (5)

Length |T | of the �nal tag T is equal to the block size n of message or associated
data blocks. Subsequently, substituting Equation 5 into Lemma 1 yields

PrG0 [A succeeds] ≤ ϵ

2n − q
+AdvTPRP

Ẽ±($,⊙)
(5qℓ, q′). (6)

The advantage AdvTPRP
Ẽ±($,⊙)

(5qℓ, q′) of A against the tweakable pseudorandom

permutation (TPRP) security of Ẽ is de�ned in [5, pp. 12-14, 20]. Quantum
adversary A makes q queries with blocks of length ≤ ℓ and q′ queries to the
block cipher E that is the main building block of the TBC Ẽ. The set of tweaks
that may be queried has to be pre-declared (see also [5]) and may at most be of
size 5ℓq. Furthermore, tweaks are not allowed to be queried in superposition. As
described in [5, p. 20], this advantage is upper bounded by

AdvTPRP
Ẽ±($,⊙)

(5qℓ, q′) ≤ 8

√
5ℓqq′2

2n
. (7)

Finally, Equations 6 and 7 produce

PrG0
[A succeeds] ≤ ϵ

2n − q
+ 8

√
5ℓqq′2

2n
, (8)

which gives an upper bound for the probability of A to succeed in a forgery on
QCB. This bound depends on the size ϵ of the blind set, block size n = |T |, the
amount 5ℓq of pre-declared tweaks and the amount q, q′ of queries made by A
to Ẽ or E respectively.

⊓⊔

In the case of using Saturnin as the TBC Ẽ for QCB, a message block or
associated data block consists of 256 bits. As QCB generates the tag by XOR
of these blocks (see Figure 2), the resulting tag T is also of size |T | = 256 bits.
For reasonable parameters q, q′, this renders the advantage of A to succeed in
the blind unforgeability game G0 on QCB with Saturnin negligible. For an
example, consider A making q = q′ = 232 queries to Ẽ, E respectively with
ℓ = n = 256. The probability that A succeeds in creating a blind forgery is
therefore

PrG0
[A succeeds] ≤ ϵ

2256 − 232
+ 8

√
5 · 256 · 2322

2256

≤ ϵ

2224
+ 8

√
1

2149
,

which is negligible for any ϵ with 0 < ϵ < 1.
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5 General Blindly Unforgeable Authenticated Encryption

In QCB, the authentication procedure (Figure 2) makes use of a TBC ẼK,T

whereas for each block cipher call, the tweak Ti is ensured to be di�erent to the
tweaks Tj with j < i. Similar to PMAC, this construction is parallelizable.

This idea can be generalised to describe a generic AEAD construction that is
blindly unforgeable. For the security proof of blind unforgeability to hold, a set
of tweaks has to be pre-declared and each tweak used throughout the BU-game
needs to be inside the tweak set.

Initially, tweak space T and initialisation vector space IV are generated. Let

T
gen←−− T (X) denote tweak T being picked through some black box function

f(X) from T . Importantly, the initialisation vector needs to be included in the
(derivation of the) tweak of each TBC call to be secure against a quantum forgery
attack based on Deutsch's algorithm [10]. In other words, one input to f needs to
be but is not limited to an IV or nonce which is then used to generate a tweak.
Algorithm 1 describes an authenticated encryption scheme. Algorithms 2 and 3
denote the encryption and tag generation procedures respectively. Algorithm 4
chooses and returns a tweak from T . Importantly, the chosen tweak is removed
from T to ensure that no tweak is used more than once. Algorithm 5 performs
10∗ padding to pad a block to size n. If |M | or |A| respectively are a multiple of
n, the blocks M∗ or A∗ will be of length 0. Nevertheless, they are still needed for
further calculation and will be padded to length n. The Ciphertext C is therefore
always at least 1 bit longer than M .

Algorithm 1: AuthenticatedEncryption(M,A, IV,K)

Input: Message M , associated data A, initialisation vector IV , key K
1 Requirements: Initialisation vectors should not be reused;
Output: Ciphertext C, tag τ

2 C ← Encryption(M, IV,K);
3 τ ← generateTag(M,A, IV,K);
4 return (C, τ)

Algorithm 2: Encryption(M, IV,K)

Input: Message M , initialisation vector IV , key K
1 (M1, . . . ,Mℓ,M∗)←M with |Mi| = n ; // |M∗| can be 0.

2 for i = 1 to ℓ do
3 Ti ← genTweak(IV );

4 Ci ← ẼK,Ti
(Mi);

5 end
6 Tℓ+1 ← genTweak(IV );

7 C∗ ← ẼK,Tℓ+1
(pad(M∗, n));

8 C ← (C1, . . . , Cℓ, C∗);
9 return C
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Algorithm 3: generateTag(M,A, IV,K)

Input: Message M , associated data A, initialisation vector IV , key K
1 (A1, . . . , Aj , A∗)← A with |Ai| = n ; // |A∗| can be 0.

2 X0 ← 0n;
3 for i = 1 to j do
4 Ti ← genTweak(IV );

5 Xi ← Xi−1 ⊕ ẼK,Ti
(Ai);

6 end
7 Tj+1 → genTweak(IV );

8 Xj+1 ← Xj ⊕ ẼK,Tj+1
(pad(A∗, n));

9 M ′ ←
⊕

i Mi ⊕ pad(M∗, n);
10 Tj+2 ← genTweak(IV );

11 τ ← Xj+1 ⊕ ẼK,Tj+2(M
′);

12 return τ

Algorithm 4: genTweak(IV )

Input: Initialisation vector IV

1 T
gen←−− T (IV );

2 T = T \ {T};
3 return T

Algorithm 5: pad(X,n)

Input: Block X ∈ {0, 1}m, block size n
1 X ′ ← X||1;
2 while |X ′| < n do X ′ ← X ′||0 ;
3 return X ′

6 Conclusion and Future Work

It is apparent that there are popular classical AEAD constructions that are
structurally insecure when challenged by a quantum adversary. This means that
new techniques need to be established which can substitute or repair the broken
building blocks of the a�ected schemes and algorithms. The usage of a TBC
where each tweak contains the initialization vector provides a defence strategy
against quantum period �nding and quantum linearization attacks. This strat-
egy can �x vulnerabilities in known MACs and AEAD schemes like PMAC or
OCB, which provide parallelizable, e�cient authentication or authenticated en-
cryption. QCB, a proposed post-quantum successor of the OCB-family, utilizes
the TBC-strategy and seems to provide a post-quantum secure rate-one AEAD
scheme. This recipe for security under blind unforgeability can be generalized to
a more generic AEAD scheme.
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Other classical schemes su�er from the same vulnerabilities against a quan-
tum adversary like OCB. Enhancing those schemes with the aforementioned
structure may prove to be a viable method to eliminate attack vectors in the
quantum scenario.

A Quantum Attacks against Symmetric Cryptography

Simon's Algorithm for Period-Finding. Given a black-box function f :
{0, 1}n → {0, 1}n with some unknown period s ∈ {0, 1}n and f(x) = f(y) ⇔
((x = y) ∨ (x = y ⊕ s)) for all x, y ∈ {0, 1}n. I.e., there exist two distinct values
x, y for which f produces the same result. The di�erence x ⊕ y between these
values is s. In the context of this chapter, a function that satis�es this property
is also described as satisfying Simon's promise. Finding s on a classical computer
takes Θ(2n/2) queries to f . Simon's algorithm [29] can �nd s with O(n) queries
to the black-box function on a quantum computer. The following paragraphs
highlight some of the impactful attacks presented from Kaplan et al. against
CBC-MAC, LRW, PMAC and OCB [16].

CBC-MAC. Consider some adversary A who has access to the encryption
oracle Ek : {0, 1}n → {0, 1}n and a function f satisfying Simon's promise. Fur-
thermore, A can query f in superposition if they have quantum oracle access
to Ek. If A can �nd the hidden di�erence s, it is su�cient to break the crypto-
graphic scheme. In this attack, s = E(M1) ⊕ E(M2) for two distinct messages
M1,M2.

x0 = 0 xi = Ek(xi−1 ⊕m) CBC-MAC(M) = E′
k(xℓ)

Fig. 3. Encrypted CBC-MAC [16, Fig. 9]. Here, k, k′ denote two independent keys,
M = m1|| . . . ||mℓ is the message divided into ℓ blocks and τ the resulting authentication
tag.

Figure 3 shows the standardized encrypted CBC-MAC. Classically, it is con-
sidered secure (up to the birthday bound) [4]. According to the attack strategy
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described above, f is de�ned as

f : {0, 1} × {0, 1}n → {0, 1}n

b, x 7→ CBC-MAC(αb||x) = E′
k(Ek(x⊕ Ek(αb)))

with α0, α1 representing two distinct message blocks [16, p. 15]. This function f
satis�es Simon's promise with s = 1||Ek(α0) ⊕ Ek(α1). Consequently, applying
Simon's algorithm will return Ek(α0) ⊕ Ek(α1) which allows for the forgery
of messages. Query the oracle to receive tag τ0 = CBC-MAC(α0||m1) for an
arbitrary m1. Next, query the oracle for tag τ1 = CBC-MAC(α1||m1⊕ Ek(α0)⊕
Ek(α1)). It holds that τ1 = τ2 and a valid tag has been forged successfully [16,
pp. 15-16]. This attack directly violates plus-one unforgeability as well as blind
unforgeability, which are examined in Chapter 2. If adversary A repeats the
forgery step q + 1 times making 2q + 1 classical and quantum queries to the
oracle, they can produce 2(q + 1) messages with valid tags.

Liskov-Rivest-Wagner (LRW) Construction. By employing the LRW con-
struction, a block cipher E is transformed into a tweakable block cipher E∗,
whereas E∗ is a family of unrelated block ciphers. The construction is de�ned as

E∗
t,k(x) = Ek(x⊕ h(t))⊕ h(t)

with h being an (almost) universal hash function [19,20]. Here, h and k are both
part of the joint key. Furthermore, for two arbitrary tweaks t0 ̸= t1, the function
f is de�ned as [16, p. 13]

f : {0, 1}n → {0, 1}n

x 7→ E∗
t0,k(x)⊕ E∗

t1,k(x)

f(x) = Ek(x⊕ h(t0))⊕ h(t0)⊕ Ek(x⊕ h(t1))⊕ h(t1).

This function satis�es Simon's promise with f(x) = f(x ⊕ s) = f(x ⊕ h(t0) ⊕
h(t1)). Therefore, by running Simon's algorithm O(n) times, an attacker can
recover s = h(t0⊕h(t1)). The di�erence s is orthogonal to all the values measured
in Simon's algorithm and therefore appears O(n) times during the computation.
As this structure would not occur when f is a random function, it allows for an
e�cient distinguisher between an ideal random tweakable permutation and the
LRW construction for de�ning tweakable block ciphers [16, pp. 13-14].

PMAC. The attack on CBC-MAC can be used to attack other message au-
thentication codes as well. PMAC [26], for example, works as follows:

ci = Ek(mi ⊕∆i) PMAC(M) = E∗
k(mℓ ⊕

∑
i

ci)

with E∗ being a tweakable block cipher derived from E. PMAC has the same
internal structure as CBC-MAC when only messages consisting of two blocks
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are considered: PMAC(m1||m2) = E∗
k(m2 ⊕ Ek(m1 ⊕ ∆0)). A can therefore

execute the identical attack as used to break CBC-MAC. Query the tag τ0 =
PMAC(α0||m1||m2) for arbitrary message blocks m1,m2. Consequently, τ1 =
PMAC(α1||m1||m2⊕Ek(α0)⊕Ek(α1)) = τ0 and a valid forgery has been achieved
[16, pp. 16-17].

A di�erent attack can be carried out by utilizing the vulnerabilities of LRW
to gain knowledge of the di�erences ∆i. First, the function ful�lling Simon's
promise is de�ned as

f : {0, 1}n → {0, 1}n

m 7→ PMAC(m||m||0n) = E∗
k(Ek(m⊕∆0)⊕ Ek(m⊕∆1)).

The hidden di�erence s is given with f(m) = f(m ⊕ s) = f(m ⊕ ∆0 ⊕ ∆1).
Therefore, s = ∆0⊕∆1 can be recovered by an adversary e�ciently using Simon's
Algorithm in O(n) iterations. The adversary queries tag τ1 = PMAC(m1||m1)
for an arbitrary message block m1. It holds that τ1 is equal to τ2 = PMAC(m1⊕
∆0 ⊕∆1||m1 ⊕∆0 ⊕∆1) and therefore a valid forgery was generated.

PMAC is based on the XE construction, which is an instantiation of LRW.
In PMAC, the o�sets are calculated with ∆i = γ(i) ·L with γ(i) being the Gray
encoding of i and L = Ek(0) [26, p. 21]. This leads to an adversary being able to
learn L from the hidden period s = ∆0⊕∆1 with L = (∆0⊕∆1)·(γ(0)⊕γ(1))−1.
With this knowledge, the adversary can compute each∆i and forge any arbitrary
message.

OCB. Finally, to attack the authenticated encryption mode OCB, it can be
observed that OCB reduces to a randomized variant of PMAC when the mes-
sage is empty [16, p. 20]. Encrypted ciphertexts ci and authentication tag τ are
generated by OCB as

ci = Ek(mi ⊕∆N
i )⊕∆N

i ,

τ = Ek

(
∆′N

ℓ ⊕
∑
i

mi

)
⊕
∑
i

Ek(ai ⊕∆i)

with nonce N , message M = m1|| . . . ||mℓ and associated data A = ai|| . . . ||aℓ.
Using an empty message ϵ, OCB generates the tag τ with

PMACk(N, ε,A) = ϕk(N)⊕
∑
i

Ek(ai ⊕∆i).

Note that ϕk(N) denotes a permutation under key k whose speci�c description
is of no interest to us. This construction can be attacked as described by the
second attack on PMAC based on the LRW vulnerabilities. Consider a family
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of functions fN with

fN : {0, 1}n → {0, 1}n

x 7→ PMACk(N, ϵ, x||x)
fN (x) = Ek(x⊕∆0)⊕ Ek(x⊕∆1)⊕ ϕk(N).

Each function fN for any N satis�es Simon's promise: fN (a) = fN (a ⊕ s) =
fN (a ⊕ ∆0 ⊕ ∆1). This allows for the recovery of the hidden period s = ∆0 ⊕
∆1. An adversary can now query the authenticated encryption with ciphertext
and tag pair C1, τ1 = OCB(N,M, a||a) for arbitrary message M , an arbitrary
block a and random Nonce N . C1, τ1 is also a valid authenticated encryption of
OCB(N,M, a⊕∆0 ⊕∆1||a⊕∆0 ⊕∆1) with the same nonce N [16, p. 20].

B Instantiation of QCB with TRAX and Pholkos.

When using Saturnin as the TBC for QCB, due to the key-tweak-insertion

construction, each message or associated data block is encrypted with a separate
block-key based on the key k which is modi�ed by a distinct tweak for each
block cipher call. For an adversary A, it is therefore su�cient to �nd only one
of these block-keys to break the TBC and thus QCB. Consequently, there are
more chances of A breaking one of the TBC iterations than there would be for
a block cipher that uses the same key for each block. Keep in mind that the
latter construction would then be structurally vulnerable to quantum attacks
like quantum linearization.

However, the authors of QCB mention the scarcity of usable 256-bit block
ciphers. They do suggest to alternatively use the dedicated TBC TRAX-L-

17 [3] which is based on 256-bit message blocks and keys but a smaller tweak
than Saturnin with 128 bits. This would allow for IV s of 80 bits and at most
245 − 1 blocks of plaintext and associated data [5, p. 17]. An alternative that may
provide a better trade-o� between security and e�ciency is the TBC Pholkos

[11]. Pholkos is a recent proposal for a post-quantum-secure TBC with a tweak
size of 128 bits, block sizes of 256 or 512 bits and keys of size 256 bit. It is
a substitution-permutation network (SPN) inspired by AESQ [7] and Haraka
[17]. Any input plaintext block is encrypted in 8-14 steps depending on the
con�guration of block and key size. Initially, the n-bit plaintext block is split into
n

128 128-bit blocks which are then split into four 32-bit words each. Subsequently,
each step performs the similar rounds as found in the classical block cipher
AES [24]. A tweakey is used for the AddRoundKey step of AES, whereas a
round tweakey is generated by a schedule from the secret key and the tweak. An
advantage of Pholkos is that the block cipher AES is well researched in terms
of cryptanalysis and security. Furthermore, e�cient implementations in soft- and
hardware already exist. Pholkos-QCB provides a larger security margin than
Saturnin-QCB due to the larger tweak space.
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