
Signature-Free Atomic Broadcast with Optimal 𝑂 (𝑛2)
Messages and 𝑂 (1) Expected Time

Xiao Sui

Shandong University

suixiao@mail.sdu.edu.cn

Xin Wang

Tsinghua University

wangxin87@tsinghua.edu.cn

Sisi Duan
∗

Tsinghua University

duansisi@tsinghua.edu.cn

Abstract
Byzantine atomic broadcast (ABC) is at the heart of per-

missioned blockchains and various multi-party computa-

tion protocols. We resolve a long-standing open problem

in ABC, presenting the first information-theoretic (IT) and

signature-free asynchronous ABC protocol that achieves op-

timal 𝑂 (𝑛2) messages and 𝑂 (1) expected time. Our ABC

protocol adopts a new design, relying on a reduction from—

perhaps surprisingly—a somewhat neglected primitive called

multivalued Byzantine agreement (MBA).

1 Introduction
Byzantine atomic broadcast (ABC) protocols, or Byzantine

fault-tolerant (BFT) protocols, are at the core of state ma-

chine replication, permissioned blockchains, and various

cryptographic protocols such as multi-party computation

(MPC). Completely asynchronous protocols with no timing

assumptions [3, 8, 10, 16, 26, 31, 32, 40, 42, 54] have been

receiving considerable attention, due to their intrinsic ro-

bustness against performance and denial-of-service (DoS)

attacks.

IT and signature-free settings. The celebrated FLP im-

possibility result rules out the possibility of deterministic

asynchronous consensus protocols [28], so asynchronous

consensus protocols must be randomized to be probabilisti-

cally live. In practice, one can use either local coins (flipping

a coin locally and independently at each replica) or common

coins (using a common coin available for all replicas) [49].

Consensus protocols using local coins, however, terminate

in exponential expected time [19, 43, 55]. Thus, to avoid ex-

ponential running time, asynchronous consensus protocols

need to use common coins.

We follow a long line of work in consensus [8, 10, 19, 20,

41, 44–47, 54] and call the setting using common coins only

the information-theoretical (IT) setting, the signature-free

setting, or the cryptography-free setting (which we will use

interchangeably in the paper).

Known results in the signature-free setting. In the con-

sensus problem, every replica holds a message, and all repli-

cas want to agree on one (or a set of) message(s). Notable

asynchronous consensus primitives include asynchronous

binary agreement (ABA), asynchronous multivalued Byzan-

tine agreement (MBA), asynchronous common subset (ACS),

∗
Corresponding author

and asynchronous ABC. Informally speaking, ABA reaches

agreement on binary values, MBA reaches agreement on

values from an arbitrary domain, ACS reaches agreement

on a subset of values, while ABC reaches agreement on the

order of a sequence of messages. One can directly obtain an

ABC from ACS by running ACS instances sequentially, but

additional procedures need to be introduced to obtain ABC

from ABA or MBA.

As one of the most celebrated (and also surprising) re-

sults in consensus, Mostéfaoui, Moumen, and Raynal (MMR)

demonstrated that by relying on common coins only, one can

build a signature-free ABA protocol with optimal resilience,

optimal𝑂 (𝑛2)messages and𝑂 (1) expected time [44, 45]. The

work is enormously impactful in both theory and practice:

the state-of-the-art ABC protocols either use their ABA pro-

tocols or their derivatives (such as Cobalt ABA [41], Crain’s

ABA [20], Pillar [54]). In the same setting, Mostéfaoui and

Raynal (MR) presented the first signature-free asynchronous

multivalued Byzantine agreement (MBA) with optimal𝑂 (𝑛2)
messages and 𝑂 (1) expected time [47] by reducing MBA to

ABA.

The open problem. Unlike ABA and MBA, the following

problem remains open for ABC:

Does there exist a signature-free ABC protocol with the opti-

mal 𝑂 (𝑛2) messages and 𝑂 (1) expected time?

Note that the problem for ABC appears harder than that of

ABA and MBA. Intuitively, ABC is concerned about ordering

a sequence of messages, while ABA and MBA aim to achieve

consensus for one-shot messages.

To the best of our knowledge, no solutions are known for

the open problem for ABC, even if we relax it to consider

sublinear time complexity. This is in part because almost

all known asynchronous ABC protocols are directly built

from ACS. Indeed, as surveyed in Table 1, existing ABC pro-

tocols in the signature-free setting have𝑂 (𝑛3) messages, and

𝑂 (1) or 𝑂 (log𝑛) expected time. This is in sharp contrast to

the computational setting (that uses threshold signatures

and trusted setup). {For example,} the paradigm proposed

by Cachin, Kursawe, Petzold, and Shoup [16]—using mul-

tivalued validated Byzantine agreement (MVBA)—leads to

ABC protocols with 𝑂 (1) expected time and optimal 𝑂 (𝑛2)
messages.

This paper solves this long-standing open problem, demon-

strating the first signature-free ABC protocol called SQ with

the optimal 𝑂 (𝑛2) messages and 𝑂 (1) expected time.

1

paradigm protocol time message

Computational MVBA-based

CKPS [16] 𝑂 (1) 𝑂 (𝑛2)
Dumbo [32] 𝑂 (1) 𝑂 (𝑛3)

Speeding-Dumbo [31] 𝑂 (1) 𝑂 (𝑛2)
AMS [3] 𝑂 (1) 𝑂 (𝑛2)

Dumbo-MVBA [40] 𝑂 (1) 𝑂 (𝑛2)

Information-

Theoretic

(by design)

ABA-based

BKR [10] 𝑂 (log𝑛)/𝑂 (1) 𝑂 (𝑛3)/𝑂 (𝑛4)
HoneyBadger [42] 𝑂 (log𝑛) 𝑂 (𝑛3)

BEAT [26] 𝑂 (log𝑛) 𝑂 (𝑛3)
EPIC [38] 𝑂 (log𝑛) 𝑂 (𝑛3)

RABA-based

PACE [54] 𝑂 (log𝑛) 𝑂 (𝑛3)
FIN [27] 𝑂 (1) 𝑂 (𝑛3)

DAG-based DAG-Rider[34] 𝑂 (1) 𝑂 (𝑛3)
MBA-based SQ (this work) 𝑶 (1) 𝑶 (𝒏2)

Table 1. Comparison of ABC protocols with sublinear time complexity. RABA denotes reproposable ABA [27, 54]. DAG denotes

the directed acyclic graph. Note that the implemented systems in the information-theoretic (IT) category (HoneyBadger, BEAT,

EPIC, PACE, FIN) are not IT-secure systems, but they—"by design"—are IT-secure; here in this table, we mean the underlying,

"ideal" protocols in these systems by assuming ideal building blocks such as reliable broadcast (RBC), ABA, and common coins.

As mentioned in BKR [10], their protocol can have either 𝑂 (log𝑛) expected time and 𝑂 (𝑛3) messages, or 𝑂 (1) expected time

and 𝑂 (𝑛4) messages (if using the protocol of Ben-Or and El-Yaniv [9]).

Our approach: ABC from MBA. Despite being a natural
and classic primitive in consensus, multivalued Byzantine

agreement (MBA) does not seem to be as "useful" as its binary

counterpart (ABA). Indeed, while there exist transformations

from MBA to ABC [19, 43], these ABC protocols have 𝑂 (𝑛)
time and 𝑂 (𝑛4) messages (even if we instantiate them us-

ing best-available subprotocols)—far more expensive than

any of the ABC protocols in Table 1. Note that the situation

for MBA is also in sharp contrast to its computational and

validated version—multivalued validated Byzantine agree-

ment (MVBA) [16] which can be used to build various high-

level protocols such as state-of-the-art ABC protocols [3, 40].

Indeed, despite the similarities between MBA and MVBA,

they are fundamentally different primitives: MBA does not

directly imply MVBA, and MVBA does not directly imply

MBA either
1
.

In this paper, we challenge the conventional wisdom and

show that we can use MBA to build a signature-free ABC

protocol with optimal message and time complexity. Our

starting point, as illustrated in Figure 1a, is a toy construc-

tion attempting to reduce ABC to MBA. In this construction,

replicas proceed in epochs. In an epoch 𝑟 , each replica 𝑝𝑖
broadcasts its proposed message𝑚𝑖 . After receiving 𝑛 − 𝑓

proposed messages, replicas run a random leader election

protocol which outputs a random leader 𝑝𝑘𝑟 . If a replica

1
In particular, the non-validated versions of all MVBA protocols we are

aware of do not satisfy the validity property of MBA (see Sec. 2 for the

definition of validity). One can first use MVBA to build ACS, and then use

ACS to build MBA. However, additional procedures need to be introduced.

To the best of our knowledge, there does not exist any signature-free ACS

with𝑂 (𝑛2) messages so the transformation in the signature-free setting

has additional costs.

(a) Our toy construction. No liveness during failures.

(b) Overview of SQ.

Figure 1. Overview of our approach.

has previously received the proposed message from 𝑝𝑘𝑟 , it

provides the received proposed message as input to MBA.

Otherwise, the replica simply waits until it receives the pro-

posed message from 𝑝𝑘𝑟 . If MBA outputs some value𝑚, 𝑝𝑖
delivers𝑚 as the ABC output. Meanwhile, a replica can start

a new epoch before the MBA instance in the current epoch

terminates.

2

Note that if the leader 𝑝𝑘𝑟 is correct, every correct replica

eventually receives the proposed message from 𝑝𝑘𝑟 , provides

the same input to MBA, and MBA eventually outputs𝑚𝑘𝑟 .

However, if 𝑝𝑘𝑟 is faulty, we cannot guarantee the termina-

tion of the protocol. Indeed, under the scenario, correct repli-

cas in asynchronous environments cannot decide whether

they should input⊥ (and complete the epoch) or simply wait

for𝑚𝑘𝑟 (and stay in the epoch).

In our SQ protocol, we further develop the above idea,

as depicted in Figure 1b. At the core of our fully-fledged

protocol is ensuring the existence of a key set consisting of at

least 𝑓 + 1 correct replicas for each epoch 𝑟 , such that if any

replica in the key set is selected by the random leader elec-

tion protocol, MBA will output a non-⊥ value.
2
Meanwhile,

we ensure that if a replica outside the key set is selected,

every correct replica will provide some input to MBA, so

every MBA instance will terminate (and we are done). For

this purpose, we introduce a new primitive called parallel

consistent broadcast with weak agreed set (PCBW) and an ex-

change phase between the election phase and the MBA phase.

PCBW has a nice feature we need for building ABC: once

at least one correct replica terminates the PCBW instance

in epoch 𝑟 , a key set must have existed. If a replica in the

key set is elected as the leader, the exchange phase further

allows correct replicas that have not received the proposed

message from the leader to provide the correct input to MBA,

so MBA outputs a non-⊥ value!

In summary, we reduce the problem of ABC to PCBW and

MBA. By providing an efficient PCBW construction with

𝑂 (𝑛2) messages and 𝑂 (1) time and using the state-of-the-

art MBA construction, we are able to build an ABC protocol

with𝑂 (𝑛2) messages and𝑂 (1) time. Additionally, the PCBW

primitive itself might be of independent interest.

Communication complexity.By assuming the existence of

the common coin object (Rabin dealer), we provide two ABC

protocols: SQ and its hash-based variant SQℎ . We discuss the

communication complexity of the protocols.

• SQ achieves𝑂 (𝐿𝑛3) communication, where 𝐿 is the length

of a replica’s input. The cost is the same as all other

signature-free ABC protocols if instantiating the underly-

ing reliable broadcast (RBC) using Bracha’s RBC [13, 14]

(an IT-secure RBC).

• SQℎ achieves 𝑂 (𝐿𝑛2 + 𝜅𝑛3) communication, where 𝜅 is

the security parameter (i.e., the output length of hash

functions). The cost is the same as all signature-free ABC

protocols if instantiating the underlying RBC using the

most efficient hash-based RBC protocol—CCBRB [4].

Compared to the existing asynchronous signature-free

ABC protocol, we only optimize the message complexity and

2
Note here that we only need to ensure the existence of such a set instead

of finding such a set.

retain the same communication complexity. However, lower-

ingmessage complexity is both practically useful and theoret-

ically challenging. On the practical side, consider Speeding

Dumbo [31] as an example. Speeding Dumb achieves the

same communication complexity as Dumbo [32] but low-

ers the message complexity from 𝑂 (𝑛3) to 𝑂 (𝑛2). By doing

so, the throughput is significantly improved (up to 2x). On

the theoretical side, all known ABC protocols with 𝑂 (𝑛2)
messages are computationally secure by design. Our proto-

cols are thus the first signature-free protocols with optimal

messages.

Our contributions.We make the following contributions.

• We present SQ, the first IT-secure and signature-free asyn-

chronous ABC protocol that achieves optimal resilience,

𝑂 (𝑛2) messages, and 𝑂 (1) expected time (Sec. 4). In light

of the lower bound result [3], our protocol is optimal in

both time and message complexity.

• We also suggest a communication-efficient variant of our

SQ protocol, SQℎ , by additionally using hash functions

(Sec. 5). SQℎ achieves 𝑂 (𝑛2) messages and the same com-

munication complexity as the state-of-the-art asynchro-

nous BFT protocols.

• As a by-product, we introduced a warm-up protocol SQ0

(Sec. 3.2), an MBA-based ABC protocol with 𝑂 (𝑛3) mes-

sages and𝑂 (1) time, which already outperforms the state-

of-the-art MBA-based ABC that has 𝑂 (𝑛4) messages and

𝑂 (𝑛) time [19, 43]. SQ0 can also be used as an MVBA pro-

tocol with minor changes and might be of independent

interest.

• We implement a prototype of SQℎ and our experiments

on up to 61 Amazon EC2 instances show that SQℎ out-

performs FIN [27], the state-of-the-art asynchronous pro-

tocol. The drawback is that SQℎ can only be used as an

ABC protocol instead of an asynchronous common subset

protocol (i.e., FIN).

2 Model and Definitions
2.1 System and Threat Model
We consider protocols with 𝑛 replicas {𝑝1, · · · , 𝑝𝑛} running
over authenticated channels. Among the 𝑛 replicas, at most

𝑓 of them may fail arbitrarily (Byzantine failures). Replicas

that are not faulty are correct. We consider an asynchronous

network with no timing assumptions. We assume 𝑛 ≥ 3𝑓 + 1,
which is optimal in this setting. For simplicity, we may let

𝑛 = 3𝑓 + 1.
Our protocol is secure under an adaptive adversary, where

an adaptive adversary can choose the set of corrupted repli-

cas at any moment during the execution of the protocol (as

long as we assume an adaptively secure common coin proto-

col available or directly assume adaptively secure common

coins).

3

Throughout the paper, we use the term broadcast to rep-

resent best-effort broadcast, i.e., the sender sends a message

to all replicas.

2.2 Definitions and Building Blocks

Atomic Broadcast (ABC).Atomic broadcast allows replicas

to reach an agreement on the order of messages (values). An

atomic broadcast protocol Π is specified by a-broadcast and

a-deliver . When a replica is provided (by an adversary) with

a queue of payload messages of the form 𝑚 ∈ {0, 1}∗, we
say the replica a-broadcasts the messages. Correct replicas

should a-deliver the same sequence of messages in the same

order.

Definition 2.1 (ABC). Let Π be a protocol executed by repli-

cas 𝑝1, · · · , 𝑝𝑛 , where each replica a-broadcasts a queue of

payload messages and a-delivers messages in a particular

order. Π should achieve the following properties:

− Agreement: If any correct replica a-delivers a message

𝑚, then every correct replica a-delivers𝑚.

− Total order: If a correct replica a-delivers a message𝑚

before a-delivering𝑚′, then no correct replica a-delivers

𝑚′ without first a-delivering𝑚.

− Liveness: If a correct replica a-broadcasts a message𝑚,

then it eventually a-delivers𝑚.

− Integrity: Every correct replica a-delivers a message at

most once. If a correct replica a-delivers𝑚, then𝑚 was

previously a-broadcast by some replica.

The size of the a-delivered messages depends on the con-

crete constructions. In some protocols, every correct replica

a-delivers the message a-broadcast by one replica at a time. In

some other protocols, every correct replica a-delivers a union

of several payload messages a-broadcast by some replicas.

Our work considers the former case and we show how to

transform SQℎ to the latter case.

We may use the term value to denote the message some

replica a-broadcasts or a-delivers to differentiate it from the

messages in the protocol.

Multivalued Byzantine Agreement (MBA). MBA allows

replicas to reach an agreement on a value 𝑣 ∈ {0, 1}∗. An
MBA protocol is specified by mba-propose and mba-decide.

For a protocol instance, each replica is provided an input

value 𝑣 ∈ {0, 1}∗ or⊥ (a distinguished symbol), where we say

the replica mba-proposes 𝑣 or ⊥. When a replica terminates

the protocol and outputs a non-empty value 𝑣 or ⊥, we say
the replica mba-decides 𝑣 or ⊥.

Definition 2.2 (MBA). Let Π be a protocol executed by

replicas 𝑝1, · · · , 𝑝𝑛 , where each replica mba-proposes a value

𝑣 ∈ {0, 1}∗∪{⊥}, and each correct replicamba-decides a value

𝑣 ∈ {0, 1}∗ or ⊥. Π should satisfy the following properties:

− Agreement: If a correct replica mba-decides 𝑣 , then any

correct replica that terminates mba-decides 𝑣 .

− Termination: If all correct replicas mba-propose some

value, every correct replica eventually mba-decides.

− Integrity: Every correct replicamba-decides at most once.

− Validity: If all correct replicas mba-propose 𝑣 , then any

correct replica that terminates mba-decides 𝑣 .

− Non-intrusion: If a correct replica mba-decides 𝑣 such

that 𝑣 ≠ ⊥, then 𝑣 is mba-proposed by a correct replica.

Due to the validity property, if all correct replicas mba-

propose the same non-⊥ value, ⊥ cannot be decided. Mean-

while, the non-intrusion property is defined in [19, 46, 47]: a

decided value must be a value proposed by a correct replica

(possibly ⊥). The two properties prevent a value proposed
only by faulty replicas from being decided.

Common coins.We consider a common coin primitive, a no-

tion first introduced by Rabin [49]. Following the definitions

in prior works [15, 20, 45, 49], we distinguish low-threshold

common coins (𝑓 +1 threshold) from high-threshold common

coins (2𝑓 + 1 threshold). A low-threshold common coin prim-

itive is invoked by triggering a release event at every correct

replica. Here we say a correct replica “releases" the coin,

as we require that the coin’s value should be unpredictable

before the first replica invokes the coin. The common coin

protocol outputs a coin value 𝑏 ∈ B at each correct replica.

We define the common coin primitive as follows.

Definition 2.3 (Common coin). Let Π be a protocol exe-

cuted by replicas 𝑝1, · · · , 𝑝𝑛 , where each replica releases the

coin and outputs a coin value 𝑏 ∈ B. Π should satisfy the

following properties.

− Termination. Every correct replica eventually outputs a

coin value.

− Agreement. If a correct replica outputs 𝑏 and another

correct replica outputs 𝑏′, 𝑏 = 𝑏′.
− Bias-resistance. If any correct replica outputs 𝑏, the dis-

tribution of the coin is uniform over B.
− Unpredictability. Unless at least one correct replica has

released the coin, no replica has any information about

the coin output by a correct replica.

The definition of the high-threshold common coin differs

in the unpredictability only, requiring that unless at least

𝑓 + 1 correct replicas have released the coin, no replica has

any information about the coin output by a correct replica.

The common coin abstraction encapsulates various ways

of concrete implementations, e.g., by assuming a crypto-

graphic trusted setup, where a trusted dealer prepares a

one-time setup for a cryptographic threshold common coin

protocol (e.g., [17] for static security, [7, 37, 39] for adaptive

security). In this case, for each common coin instance, each

replica broadcasts a 𝜅-bit string and the total communication

is 𝜅𝑛2, where 𝜅 is a security parameter.

Leader election from common coins. Our protocol uses
a leader election protocol Election() that can be built from a

4

low-threshold common coin object or a high-threshold com-

mon coin object. When Election() is queried, the function
outputs a random leader 𝑝𝑘 ∈ {𝑝1, · · · , 𝑝𝑛}. When calcu-

lating the communication complexity, we assume that the

Election() function is instantiated from a Rabin dealer [49],

where the dealer sends a log𝑛-bit random coin to each replica.

The dealer in total sends at most 𝑛 log𝑛 bits.

Consistent Broadcast (CBC). In consistent broadcast (CBC) [16,
50, 52], a designated replica broadcasts a message to a group

of replicas. A CBC protocol is specified by c-broadcast and

c-deliver.

Definition 2.4 (CBC). Let Π be a protocol executed by

replicas 𝑝1, · · · , 𝑝𝑛 , where a replica 𝑝𝑠 c-broadcasts a mes-

sage 𝑚 ∈ {0, 1}∗ or ⊥, and each correct replica c-delivers

𝑚 ∈ {0, 1}∗ ∪ {⊥}. Π should satisfy the following proper-

ties:

− Validity: If a correct replica 𝑝𝑠 c-broadcasts a message𝑚,

then any correct replica 𝑝𝑖 eventually c-delivers𝑚.

− Consistency: If two correct replicas c-deliver two mes-

sages𝑚 and𝑚′, then𝑚 =𝑚′.
− Integrity: For any message𝑚, every correct replica 𝑝𝑖

c-delivers𝑚 at most once. Moreover, if 𝑝𝑖 c-delivers𝑚,𝑚

was previously c-broadcast by 𝑝𝑠 .

CBC guarantees only that the delivered message is the

same for all receivers, but it does not ensure totality (a prop-

erty requiring either all correct replicas to deliver some mes-

sage or none to deliver any message) needed for reliable

broadcast (RBC). Therefore, it is easier to implement CBC

than RBC. For instance, Bracha’s RBC [13, 14] requires three

communication rounds, while the corresponding CBC re-

quires two rounds only.

3 Review of Existing ABC Protocols and
Overview of Our Approach

3.1 Review of ABC Approaches
As depicted in Figure 2, we divide existing ABC protocols

into four categories: 1) MVBA-based; 2) ABA-based; 3) RABA-

based; and 4) DAG-based. From the security model perspec-

tive, MVBA-based ABC protocols are sharply distinguished

from the rest of ABC protocols: Most MVBA-based protocols

rely on threshold signatures that require trusted setup and

strong models such as random oracles, while the rest of them

assume common coins only.

MVBA-based (Figure 2a).Most MVBA-based ABC proto-

cols leverage (non-interactive) threshold signatures to achieve

𝑂 (𝑛2) messages and 𝑂 (1) expected time. However, thresh-

old signatures require the trusted setup, strong models (e.g.,

random oracles), and assume the hardness of computational

problems [7, 12, 37, 51].

ABA-based (Figure 2b). The BKR paradigm due to Ben-

Or, Kelmer, and Rabin relies on 𝑛 parallel reliable broadcast

(RBC) instances and 𝑛 parallel asynchronous binary agree-

ment (ABA) instances.
3
HoneyBadgerBFT [42], BEAT [26],

EPIC [38] follow the BKR paradigm. ABA-based ABC has

𝑂 (𝑛3) messages and 𝑂 (log𝑛) expected time (due to the 𝑛

parallel ABA instances).

RABA-based. Zhang and Duan [54] improved the BKR

framework and proposed PACE. As shown in Figure 2c, PACE

replaces ABA using a variant of the ABA primitive called

reproposable asynchronous binary agreement (RABA) and

makes the RABA instances fully parallel. Very recently, Duan,

Wang, and Zhang used (two consecutive) parallel RBC in-

stances and a constant number of RABA instances to build

a new ABC protocol achieving 𝑂 (𝑛3) messages and 𝑂 (1)
expected time, as illustrated in Figure 2d. Part of the protocol

is also an MVBA. Compared to MVBA in the computational

setting, the FIN MVBA has 𝑂 (𝑛3) messages.

DAG-based (Figure 2e). The DAG-Rider paradigm relies

on RBC and DAG-based data structures to build ABC [34].

The paradigm builds two layers. In the first layer, replicas

reliably broadcast their proposals and use DAG to store the

received proposals. In the second layer, replicas deliver the

proposals accordingly. DAG-Rider achieves 𝑂 (𝑛3) message

complexity and 𝑂 (1) time.

In summary, there is a mismatch in the message and

time complexity between the MVBA-based approach and the

other three signature-free approaches. The common char-

acteristic of all signature-free ABC approaches is that they

all use parallel RBC protocols, which leads to 𝑂 (𝑛3) mes-

sage complexity for these protocols. We aim to remove this

message complexity bottleneck.

3.2 Pathway to Our MBA-based ABC

A recap of our toy construction in Figure 1a. As de-
scribed in our toy construction in the introduction, the major

challenge is to handle the case where 𝑝𝑘𝑟 is faulty. Indeed,

if 𝑝𝑘𝑟 is faulty, we cannot guarantee that every epoch will

complete. It is possible that none of the correct replicas will

a-deliver any value, as the termination property of MBA

requires all correct replicas to mba-propose.

As an alternative, we could ask replicas that have not

received the proposed messages from 𝑝𝑘𝑟 to directly mba-

propose ⊥ for MBA after the election phase. However, this

alternative solution has a liveness issue as well: replicas may

a-deliver ⊥ in all epochs and make no progress. We demon-

strate the issue via an example in Figure 3 with four replicas,

where 𝑝4 is faulty and broadcasts inconsistent messages to

the replicas. In the figure, each element indexed by (𝑖, 𝑗)
represents whether 𝑝𝑖 has received the proposed message

from 𝑝 𝑗 right before the election phase, after receiving 𝑛 − 𝑓

messages. We observe from the figure that if any correct

3
Prior to the construction in BKR, Ben-Or, Canetti, and Goldreich proposed

an ABC protocol using 𝑛2 RBC instances and achieving 𝑂 (𝑛4) message

complexity [8].

5

(a) MVBA-based paradigm
★
(CKPS [16]). (b) ABA-Based paradigm (BKR [10]). (c) RABA-based paradigm (PACE [54]).

(d) RABA-based paradigm (FIN [27]). (e) DAG-based paradigm (DAG-Rider [34]).

Figure 2. Comparison of asynchronous atomic broadcast paradigms. The figures are best viewed in color. Primitives that are

computational are represented in bold boxes. Primitives that make the paradigm achieve 𝑂 (𝑛3) complexity are represented in

blue boxes.
★
One exception of MVBA-based paradigm is FIN [27], which is signature-free and has𝑂 (𝑛3) messages. We classify

FIN as a RABA-based paradigm.

replica 𝑝 𝑗 (i.e., 𝑝1, 𝑝2, or 𝑝3) is selected, at least one correct

replica fails to receive the message from 𝑝 𝑗 and provides ⊥
as input to MBA, and other replicas provide the same non-⊥
value as input. In this case, MBA may output ⊥. Meanwhile,

the same claim holds if the faulty replica 𝑝4 is selected: as

correct replicas provide inconsistent inputs to MBA, MBA

may output ⊥. In both cases, correct replicas may a-deliver

⊥ for all epochs.

p1

p2

p3

p4

√

√

√

√

√

√

√

√ √ √

√

√

√

p1 p2 p3 p4

Figure 3. A liveness issue for the alternative construction.

The crux: ensuring the existence of a key set for each
epoch. In SQ, based on our toy construction, we will ensure

the existence of a key set consisting of at least 𝑓 + 1 correct
replicas for each epoch. Our goal is that if any replica 𝑝𝑘𝑟 in

the key set is selected by the random leader election protocol,

any correct replica mba-proposes 𝑚𝑘𝑟 and hence epoch 𝑟

completes with a non-⊥ output. (In SQ, a correct replicamba-

proposes𝑚𝑘𝑟 , either because it has received𝑚𝑘𝑟 directly from

𝑝𝑘𝑟 , or has received𝑚𝑘𝑟 from other replicas.) Meanwhile, if

any replica outside the key set is selected, we need to ensure

that all correct replicas still mba-propose some values. Thus,

every MBA instance will terminate and our protocol is live.

Below we first introduce a warm-up protocol SQ0 and then

briefly describe how we transform it into our fully-fledged

protocol SQ.

A warm-up protocol SQ0 with𝑂 (𝑛3) messages and𝑂 (1)
time. In SQ0 (described in Figure 4), we introduce two new

building blocks: a new primitive called consistent broadcast

with weak agreed set (CBW) and an additional exchange phase.

We comment that SQ0 is of independent interest and (already)

outperforms the state-of-the-art MBA-based ABC protocol

that has 𝑂 (𝑛4) messages and 𝑂 (𝑛) time [19, 43].

Figure 4. The SQ0 protocol.

� Consistent broadcast with weak agreed set (CBW). As intro-

duced in Sec. 2.2, the classical CBC primitive is a weaker ver-

sion of reliable broadcast. CBW further extends CBC by intro-

ducing an additional output satisfying "weak agreement." The

6

primitive is specified by three events: cbw-broadcast, cbw-

deliver , and cbw-s-deliver . Specifically, a designated sender

𝑝𝑠 cbw-broadcasts a message𝑚. Every correct replica 𝑝𝑖 may

output two values: it cbw-delivers a primary output𝑚 and

cbw-s-delivers a secondary output 𝑣 . Correct replicas that

cbw-deliver some value always cbw-deliver the same value.

However, they do not necessarily cbw-s-deliver the same

value.

Definition 3.1 (CBW). LetΠ be a protocol executed by repli-

cas 𝑝1, · · · , 𝑝𝑛 , where a sender 𝑝𝑠 cbw-broadcasts a message

𝑚 ∈ {0, 1}∗ or ⊥ to all replicas. Every correct replica 𝑝𝑖 may

cbw-deliver 𝑚 ∈ {0, 1}∗ or ⊥ and cbw-s-deliver 𝑣 ∈ {0, 1}∗ or
⊥. Π should achieve the following properties:

− Validity: If a correct replica 𝑝𝑠 cbw-broadcasts a message

𝑚, then every correct replica 𝑝𝑖 eventually cbw-delivers

𝑚 and cbw-s-delivers𝑚.

− Consistency: If a correct replica 𝑝𝑖 cbw-delivers message

𝑚, another correct replica 𝑝 𝑗 cbw-delivers message 𝑚′,
then𝑚 =𝑚′.

− Weak agreement: If a correct replica 𝑝𝑖 cbw-delivers

message𝑚, then every correct replica 𝑝 𝑗 eventually cbw-

s-delivers some value.

− Integrity: Every correct replica cbw-delivers a message

at most once. If a correct replica cbw-delivers a message𝑚

or cbw-s-delivers𝑚, then𝑚 was previously cbw-broadcast

by some replica.

An IT-secure CBW protocol can be built as follows, as

shown in Figure 5b. First, the sender 𝑝𝑠 broadcasts a (Send,𝑚)

message. Second, upon receiving a (Send,𝑚) message from 𝑝𝑠 ,

a correct replica 𝑝𝑖 broadcasts an (Echo,𝑚) message. Upon

receiving 2𝑓 + 1 (Echo,𝑚) messages with the same 𝑚, 𝑝𝑖
cbw-delivers𝑚. Additionally, upon receiving 𝑓 + 1 (Echo,𝑚)

messages with the same𝑚 for the first time, 𝑝𝑖 cbw-s-delivers

𝑚.

For readers who are familiar with Bracha’s RBC (shown

in Figure 5a), our CBW protocol is a two-phase version of

RBC yet additionally has a secondary output. Also, our CBW

protocol can be viewed as a variant of (authenticated) CBC,

but carries "more information" that we need for our purpose.

� The SQ0 protocol. Based on CBW, we present SQ0 in Fig-

ure 6. The protocol proceeds as follows. Every replica 𝑝𝑖
first cbw-broadcasts its value𝑚𝑖 by starting a CBW instance

CBW𝑟,𝑖 . Upon cbw-delivering some value 𝑚 𝑗 for instance

CBW𝑟,𝑗 , 𝑝𝑖 sets a local parameter𝐶𝑉𝑟 [𝑗] as𝑚 𝑗 andwe say𝑚 𝑗

is confirmed by 𝑝𝑖 . Additionally, 𝑝𝑖 also sends 𝑝 𝑗 a (Confirm)
message. Meanwhile, 𝑝𝑖 waits for 𝑛− 𝑓 (Confirm) messages,

after which we say the value 𝑝𝑖 cbw-broadcasts is committed.

𝑝𝑖 then starts the election phase. Here, we use an Election(r)
function built from high-threshold common coins, where

the value 𝑘𝑟 is revealed after at least 𝑓 + 1 correct replicas
query Election(r).

(a) Bracha’s broadcast.

(b) Our CBW construction.

Figure 5. RBC vs. CBW.

After Election(r) outputs𝑘𝑟 , 𝑝𝑖 broadcasts (Send, 𝑟 , 𝑖,𝐶𝑉𝑟 [𝑘]).
𝑝𝑖 then either directly mba-proposes its 𝐶𝑉𝑟 [𝑘𝑟] to MBA in-

stance MBA𝑟 or waits until one of the three conditions oc-

curs: 1) 𝑝𝑖 receives 𝑓 + 1 (Send) messages with the same

𝑚 and then mba-proposes 𝑚; 2) 𝑝𝑖 receives 2𝑓 + 1 (Send)
message with ⊥ and then mba-proposes ⊥; 3) 𝑝𝑖 has cbw-s-
delivered some value𝑚 in instance CBW𝑟,𝑘𝑟 and then mba-

proposes 𝑣 . Finally, after MBA𝑟 outputs some value, 𝑝𝑖 a-

delivers the value output byMBA𝑟 .

� Analysis. We first argue that SQ0 is live. According to the

validity property of CBW, at least 𝑛 − 𝑓 CBW instances will

complete. Thus, all correct replicas eventually receive 𝑛 − 𝑓

(confirm) messages and enter the election phase. There are

two scenarios forCBW𝑟,𝑘𝑟 , as shown below. In each scenario,

we show that every correct replica eventually mba-proposes

some value to MBA𝑟 , so epoch 𝑟 eventually completes ac-

cording to the termination property of MBA.

• Scenario 1: No correct replica cbw-delivers any value in

CBW𝑟,𝑘𝑟 . In this case, condition 2) or 3) of Figure 6 will

eventually be triggered and every correct replica provides

some input to MBA𝑟 .

• Scenario 2: At least one correct replica cbw-delivers some

value in CBW𝑟,𝑘𝑟 and either condition 1) or 3) will eventu-

ally be triggered. Condition 1) will be triggered if at least

𝑓 + 1 correct replicas cbw-deliver the same value. Addi-

tionally, the weak agreement property of CBW ensures

that every correct replica eventually cbw-s-delivers some

value, i.e., condition 3) will be triggered and every correct

replica mba-proposes some value.

SQ0 achieves𝑂 (1) time because after 𝑓 +1 correct replicas
enter the election phase, a key set with at least 𝑓 + 1 cor-

rect replicas must exist. Specifically, every correct replica 𝑝𝑖
7

ABC with 𝑂 (𝑛3) messages and 𝑂 (1) expected time

− Initialize 𝑑 ← ∅ at the beginning of the protocol; initialize the confirmed values for each epoch 𝑟 : 𝐶𝑉𝑟 ← [⊥]𝑛 .

Epoch 𝑟

− (Propose) Upon a-broadcast(𝑚𝑖), cbw-broadcast 𝑚𝑖 for instance CBW𝑟,𝑖 .

− (Confirm) Upon cbw-deliver(𝑚 𝑗) for instance CBW𝑟, 𝑗 , set 𝐶𝑉𝑟 [𝑗] as𝑚 𝑗 . Send a (Confirm, 𝑖) message to 𝑝 𝑗 .

− (Commit) Upon receiving 𝑛 − 𝑓 (Confirm, 𝑗) messages from different 𝑝 𝑗 , start the election phase.

− Set 𝑟 as 𝑟 + 1 and start the next epoch.

Election, Exchange, and MBA phases
− (Election) Query the Election(r) function and obtain a random value 𝑘𝑟 such that 1 ≤ 𝑘𝑟 ≤ 𝑛.

− (Exchange) Broadcast (Send, 𝑟 , 𝑖,𝐶𝑉𝑟 [𝑘𝑟]).
− (MBA) If 𝐶𝑉𝑟 [𝑘𝑟] ≠ ⊥, mba-propose 𝐶𝑉𝑟 [𝑘𝑟] for instance MBA𝑟 . Otherwise, wait until one of the following

conditions is satisfied:

1) 𝑓 + 1 (Send, 𝑟 , ∗,𝑚) are received, then mba-propose𝑚 for instance MBA𝑟 ;

2) 2𝑓 + 1 (Send, 𝑟 , ∗,⊥) are received, then mba-propose ⊥ for instanceMBA𝑟 ;

3) 𝑚 is cbw-s-delivered in CBW𝑟,𝑘𝑟 , then mba-propose𝑚 for instanceMBA𝑟 .

Output conditions
(Event 1) IfMBA𝑟 outputs𝑚 ≠ ⊥ and𝑚 ∉ 𝑑 , then a-deliver 𝑚, set 𝑑 as 𝑑 ∪𝑚, and clear parameter 𝐶𝑉𝑟 .

(Event 2) IfMBA𝑟 outputs ⊥, then a-deliver ⊥ and clear parameter 𝐶𝑉𝑟 .

Figure 6. SQ0 that achieves 𝑂 (𝑛3) message complexity and 𝑂 (1) time complexity. The Election() function is built from

high-threshold common coins. Code for replica 𝑝𝑖 . We use ∗ to denote any value.

waits until 𝑛 − 𝑓 replicas have sent a (Confirm) message

to it before it enters the election phase. Each of the 𝑛 − 𝑓

replicas has cbw-delivered some value in CBW𝑟,𝑖 . Therefore,

after 𝑓 + 1 correct replicas 𝐼 enter the election phase, for any

𝑝𝑘𝑟 ∈ 𝐼 , at least 𝑓 +1 correct replicas have cbw-delivered some

value in CBW𝑟,𝑘𝑟 . They will send a (Send, 𝑟 , ∗,𝑚𝑘𝑟) message

with the same 𝑚𝑘𝑟 according to the consistency property

of CBW. Then condition 1) will be eventually satisfied. Ad-

ditionally, condition 2) will never be triggered. Indeed, as

at least 𝑓 + 1 correct replicas broadcast (Send, 𝑟 , ∗,𝑚𝑘𝑟) mes-

sages, no replica can collect more than 2𝑓 + 1 (Send, 𝑟 ,−,⊥)
messages as there are 3𝑓 + 1 replicas in total. Additionally,

correct replicas will never provide 𝑚′
𝑘𝑟

≠ 𝑚𝑘𝑟 as input to

MBA𝑟 after triggering condition 3) In particular, due to the

validity property and the integrity property of CBW, no

correct replica will cbw-s-deliver 𝑚′
𝑘𝑟

such that𝑚′
𝑘𝑟

≠ 𝑚𝑘𝑟 .

Thus, MBA𝑟 will output a non-⊥ value𝑚𝑘𝑟 with at least 1/3

probability.

From SQ0 to SQ. We transform SQ0 in Figure 6 to SQ with

𝑂 (𝑛2) messages and𝑂 (1) time. Additionally, SQ can be built

from a leader election object from low-threshold common

coins instead of the high-threshold common coins as that

in SQ0. This is achieved by defining a new primitive called

parallel consistent broadcast with weak agreed set (PCBW)

where each epoch 𝑟 includes one PCBW instance (that has

𝑂 (𝑛2) messages). Briefly speaking, PCBW can be viewed as

𝑛 parallel CBW instances with one additional feature that we

need for our final design: if any correct replica terminates

the PCBW instance for epoch 𝑟 , the replica has committed

𝑛 − 𝑓 values and each of the values has been confirmed by

𝑛 − 𝑓 replicas. Among the 𝑛 − 𝑓 committed values, at least

𝑓 + 1 of them are proposed by correct replicas which form a

key set!

We then provide a PCBW construction with 𝑂 (𝑛2) mes-

sages. Our PCBW protocol is instantiated using only one

(Propose) message and two local procedures: an update

procedure and a controlling procedure. As multiple PCBW

instances can be started concurrently (one for each epoch in

SQ), the (Propose) message, together with the update pro-

cedure, allows replicas to update their local state about the

PCBW instances that have not terminated yet. Each replica

further uses the controlling procedure to determine whether

a PCBW instance (in some epoch 𝑟) should terminate, after

which we confirm the existence of a key set for epoch 𝑟 .

4 The SQ Protocol
We are now ready to present the SQ protocol that achieves

optimal resilience, 𝑂 (1) expected time and 𝑂 (𝑛2) messages.

In this section, we begin with the new parallel consistent

broadcast with weak agreed set (PCBW) primitive and define

its security properties. We then use PCBW in a black-box

manner to build SQ. Finally, we present our PCBW construc-

tion.

8

4.1 Parallel Consistent Broadcast with Weak Agreed
Set (PCBW)

PCBW is specified by three events: pcbw-broadcast, pcbw-

deliver , and pcbw-s-deliver . Every correct replica 𝑝𝑖 pcbw-

broadcasts a message𝑚𝑖 . Meanwhile, every correct replica

pcbw-delivers a pair of values (®𝑚, ®𝑐𝑣), called primary outputs.

For each slot 𝑗 ∈ [𝑛], the values (®𝑚[𝑗], ®𝑐𝑣 [𝑗]) correspond
to the value pcbw-broadcast by replica 𝑝 𝑗 . Meanwhile, ®𝑣 is
the secondary output of PCBW. The primary outputs of

each slot 𝑗 (i.e., (®𝑚[𝑗], ®𝑐𝑣 [𝑗]) satisfy a crusader agreement [2,

24]: it is possible that some correct replicas outputs ®𝑚[𝑗] =
𝑚 𝑗 (resp. ®𝑐𝑣 [𝑗] = 𝑐𝑣 𝑗) while other correct replicas output

®𝑚[𝑗] = ⊥ (resp. ®𝑐𝑣 [𝑗] = ⊥), but for all correct replicas that
output non-⊥ values, they output the same value. Meanwhile,

correct replicas do not necessarily pcbw-s-deliver the same

value for each ®𝑣 [𝑗]. Informally speaking, each ®𝑐𝑣 [𝑗] and
®𝑣 [𝑗] correspond to the cbw-delivered value and the cbw-s-

delivered value in CBW, respectively. The ®𝑚[𝑗] captures the
committed values shown in Figure 6. We now specify the

security properties of PCBW as follows.

Definition 4.1 (PCBW). Let Π be a protocol executed by

replicas 𝑝1, · · · , 𝑝𝑛 . Each replica 𝑝𝑖 pcbw-broadcasts a mes-

sage𝑚𝑖 to all replicas. Every correct replica 𝑝𝑖 may pcbw-

deliver (®𝑚, ®𝑐𝑣) where | ®𝑚 | = 𝑛 and | ®𝑐𝑣 | = 𝑛. Additionally, 𝑝𝑖
may pcbw-s-delivers ®𝑣 where |®𝑣 | = 𝑛. Π should achieve the

following properties:

− Validity: If a correct replica 𝑝𝑖 pcbw-broadcasts a mes-

sage𝑚𝑖 , then every correct replica 𝑝 𝑗 eventually pcbw-

s-delivers ®𝑣 where ®𝑣 [𝑖] = 𝑚𝑖 . If 𝑝 𝑗 pcbw-delivers (®𝑚, ®𝑐𝑣)
where ®𝑚[𝑖] ≠ ⊥ and ®𝑐𝑣 [𝑖] ≠ ⊥, then ®𝑚[𝑖] = ®𝑐𝑣 [𝑖] =𝑚𝑖 .

− Consistency: Suppose that a correct replica 𝑝𝑖 pcbw-

delivers (®𝑚, ®𝑐𝑣) and ®𝑐𝑣 [𝑘] = 𝑚 ≠ ⊥ for slot 𝑘 . For any

correct replica 𝑝 𝑗 :

(1) if 𝑝 𝑗 pcbw-delivers (®𝑚′, ®𝑐𝑣 ′) and ®𝑐𝑣 ′ [𝑘] ≠ ⊥, then
®𝑐𝑣 ′ [𝑘] =𝑚;

(2) if 𝑝 𝑗 pcbw-delivers (®𝑚′, ®𝑐𝑣 ′) and ®𝑚′ [𝑘] ≠ ⊥, then
®𝑚′ [𝑘] =𝑚.

− Weak agreement I: If a correct replica 𝑝𝑖 pcbw-delivers
(®𝑚, ®𝑐𝑣) where ®𝑐𝑣 [𝑘] ≠ ⊥ for slot 𝑘 , then every correct

replica 𝑝 𝑗 eventually pcbw-s-delivers ®𝑣 where ®𝑣 [𝑘] ≠ ⊥.
− Weak agreement II: Let 𝑝𝑖 be the first replica that pcbw-

delivers and 𝑝𝑖 pcbw-delivers (®𝑚, ®𝑐𝑣). For any slot 𝑘 , if

®𝑚[𝑘] = 𝑚𝑘 ≠ ⊥, then there exists a set 𝐼 of at least

𝑓 + 1 correct replicas such that for any 𝑝 𝑗 ∈ 𝐼 , 𝑝 𝑗 either

never pcbw-deliver or pcbw-delivers (®𝑚′, ®𝑐𝑣 ′) such that

®𝑐𝑣 ′ [𝑘] =𝑚𝑘 .

− Integrity: Every correct replica pcbw-delivers at most

once. Every correct replica pcbw-s-delivers ®𝑣 at most𝑂 (𝑛)
times. For any correct replica 𝑝𝑖 :

(1) if 𝑝𝑖 pcbw-delivers (®𝑚, ®𝑐𝑣), then for any ®𝑚[𝑘] ≠ ⊥ (resp.,
®𝑐𝑣 [𝑘] ≠ ⊥), ®𝑚[𝑘] (resp., ®𝑐𝑣 [𝑘]) was previously pcbw-

broadcast by replica 𝑝𝑘 ; (2) if 𝑝𝑖 pcbw-s-delivers ®𝑣 , then

for any ®𝑣 [𝑘] ≠ ⊥, ®𝑣 [𝑘] was previously pcbw-broadcast by

replica 𝑝𝑘 .

− Termination: If every correct replica pcbw-broadcasts,

every correct replica eventually pcbw-delivers some val-

ues.

4.2 SQ
Using PCBW as a black-box, we show the pseudocode of SQ

in Figure 7. Compared to SQ0 presented in Figure 6, there

are two major changes. First, we replace the 𝑛 parallel CBW

instances and the confirm round with one PCBW instance

PCBW𝑟 . In particular, every replica 𝑝𝑖 starts a PCBW in-

stance PCBW𝑟 , using its𝑚𝑖 as input. After receiving 𝑛 − 𝑓

pcbw-broadcast values in PCBW𝑟 , 𝑝𝑖 can start the next epoch.

Additionally, after 𝑝𝑖 pcbw-delivers (®𝑚, ®𝑐𝑣), it starts the elec-
tion phase. Second, we modify the third condition in the

MBA phase, where 𝑝𝑖 pcbw-s-delivers ®𝑣 such that ®𝑣 [𝑘𝑟] is
non-⊥. In this case, 𝑝𝑖 mba-proposes ®𝑣 [𝑘𝑟] inMBA𝑟 . We now

describe SQ in detail.

Propose phase. Each replica 𝑝𝑖 pcbw-broadcasts𝑚𝑖 for in-

stance PCBW𝑟 , where𝑚𝑖 is the value it a-broadcasts in epoch

𝑟 . Here we assume eachmessage𝑚𝑖 is unique (and in practice,

𝑚𝑖 may consist of a batch of transactions). Upon receiving

𝑛 − 𝑓 messages in PCBW𝑟 , 𝑝𝑖 enters the next epoch before

the current epoch completes.

For the messages replicas a-broadcast in each epoch, we

follow the approach used in prior ABC protocols (e.g., [16]):

in addition to keeping track of the proposed messages, each

replica also stores the proposed messages from other replicas

in a buffer. After a proposed message is a-delivered, the pro-

posed message is removed from the buffer. We set a liveness

parameter 𝑙𝑝 . If some message in the buffer is proposed in

epoch 𝑟 and is not a-delivered by epoch 𝑟+𝑙𝑝 , each replica pro-
poses the message until the message is a-delivered. This ap-

proach ensures that a proposal will eventually be a-delivered.

Election phase. Every correct replica 𝑝𝑖 waits until it pcbw-

delivers (®𝑚𝑟 , ®𝑐𝑣𝑟) in PCBW𝑟 before querying the Election(r)
function.

Exchange phase and MBA phase. After Election(r) out-
puts 𝑘𝑟 , 𝑝𝑖 broadcasts a (Send, 𝑟 , 𝑖, ®𝑐𝑣 [𝑘𝑟]) message. 𝑝𝑖 then

either directly mba-proposes its ®𝑐𝑣 [𝑘𝑟] to MBA𝑟 or waits un-

til one of the three conditions occurs: 1) 𝑝𝑖 receives 𝑓 + 1
(Send) messages with the same𝑚 and thenmba-proposes𝑚;

2) 𝑝𝑖 receives 2𝑓 + 1 (Send) messages with ⊥ and then mba-

proposes ⊥; 3) 𝑝𝑖 has pcbw-s-delivered ®𝑣 in instance PCBW𝑟

such that ®𝑣 [𝑘𝑟] ≠ ⊥ and then mba-proposes ®𝑣 [𝑘𝑟]. Finally,
after MBA𝑟 outputs some value𝑚, 𝑝𝑖 a-delivers𝑚.

� Analysis. We now briefly argue why SQ is live. First

note that due to the termination condition of PCBW, every

correct replica eventually enters the election phase. We then

distinguish the following two cases:

9

SQ with 𝑂 (1) expected time and 𝑂 (𝑛2) messages

− Initialize 𝑑 ← ∅ at the beginning of the protocol.

Epoch 𝑟

− (Propose) Upon a-broadcast(𝑚𝑖), pcbw-broadcast 𝑚𝑖 for instance PCBW𝑟 .

− Upon receiving 𝑛 − 𝑓 values in PCBW𝑟 , set 𝑟 as 𝑟 + 1 and start epoch 𝑟 + 1.

Election, Exchange, and MBA phases
− Wait until 𝑝𝑖 pcbw-delivers (®𝑚, ®𝑐𝑣) in PCBW𝑟 .

− (Election) Query the Election(r) function and obtain a random value 𝑘𝑟 such that 1 ≤ 𝑘𝑟 ≤ 𝑛.

− (Exchange) Broadcast (Send, 𝑟 , 𝑖, ®𝑐𝑣 [𝑘𝑟]).
− (MBA) If ®𝑐𝑣 [𝑘𝑟] ≠ ⊥, mba-propose ®𝑐𝑣 [𝑘𝑟] forMBA𝑟 . Otherwise, wait until one of the following is satisfied:

1) 𝑓 + 1 (Send, 𝑟 , ∗,𝑚) messages are received such that𝑚 ≠ ⊥, then mba-propose𝑚 for instance MBA𝑟 .

2) 2𝑓 + 1 (Send, 𝑟 , ∗,⊥) messages are received, then mba-propose ⊥ for instance MBA𝑟 .

3) ®𝑣 is pcbw-s-delivered such that ®𝑣 [𝑘𝑟] ≠ ⊥, then mba-propose ®𝑣 [𝑘𝑟] for instanceMBA𝑟 .

Output conditions for epoch 𝑟

(Event 1) IfMBA𝑟 outputs𝑚 ≠ ⊥ and𝑚 ∉ 𝑑 , a-deliver 𝑚 and set 𝑑 as 𝑑 ∪𝑚.

(Event 2) IfMBA𝑟 outputs ⊥, then a-deliver ⊥.

Figure 7. The SQ protocol for epoch 𝑟 at replica 𝑝𝑖 . The Election() function is built from low-threshold common coins.

• No correct replica pcbw-delivers (®𝑚, ®𝑐𝑣) in PCBW𝑟 such

that ®𝑐𝑣 [𝑘𝑟] ≠ ⊥. In this case, condition 2) or 3) of Figure 7

will eventually be satisfied and replicas provide some

input toMBA𝑟 .

• At least one correct replica pcbw-delivers (®𝑚, ®𝑐𝑣) such that
®𝑐𝑣 [𝑘𝑟] ≠ ⊥. Then either condition 1) or 3) will eventually

be triggered. Condition 1) will be triggered if 𝑓 + 1 cor-
rect replicas pcbw-deliver (®𝑚′, ®𝑐𝑣 ′) such that ®𝑐𝑣 ′ [𝑘𝑟] ≠ ⊥.
Then due to the consistency property of PCBW, repli-

cas provide ®𝑐𝑣 [𝑘𝑟] as input to MBA𝑟 . Additionally, due

to the weak agreement I property of PCBW, every cor-

rect replica eventually pcbw-s-delivers ®𝑣 such that ®𝑣 [𝑘𝑟]
is non-⊥. Thus, condition 3) will be satisfied.

Thus, every correct replica provides some input to MBA𝑟 .

The termination property of MBA ensures that epoch 𝑟 com-

pletes.

Now we analyze why SQ achieves 𝑂 (1) time. Recall that

our goal is that if at least one correct replica queries the

Election(r) function, a key set 𝐼 exists. We consider the first

correct replica 𝑝𝑖 that queries Election(r) (after which 𝑘𝑟 is

revealed). Let (®𝑚, ®𝑐𝑣) be the values 𝑝𝑖 pcbw-delivers. If we
require that ®𝑚 has at least 𝑛 − 𝑓 non-⊥ values, at least 𝑓 + 1
components in ®𝑚 correspond to the values pcbw-broadcast

by correct replicas. Now we consider these correct repli-

cas forming the key set 𝐼 and explain why MBA𝑟 outputs

non-⊥ if 𝑝𝑘𝑟 ∈ 𝐼 . Let ®𝑚[𝑘𝑟] = 𝑚𝑘𝑟 . The weak agreement

property II of PCBW ensures that there exist 𝑓 + 1 correct
replicas and for any 𝑝 𝑗 among these correct replicas, 𝑝 𝑗 pcbw-

delivers (®𝑚′, ®𝑐𝑣 ′) and ®𝑐𝑣 ′ [𝑘𝑟] =𝑚𝑘𝑟 . Therefore, condition 2)

will never be triggered and condition 1) will be eventually

triggered. Additionally, the validity property of PCBW fur-

ther ensures that𝑚𝑘𝑟 is indeed sent by the correct replica

𝑝𝑘𝑟 and no other correct replicas will pcbw-delivers (−, ®𝑐𝑣 ′′)
where ®𝑐𝑣 ′′ [𝑘𝑟] = 𝑚′

𝑘𝑟
≠ ⊥ and 𝑚′

𝑘𝑟
≠ 𝑚𝑘𝑟 . Furthermore,

no correct replica will pcbw-s-deliver ®𝑣 ′ where ®𝑣 ′ [𝑘𝑟] =𝑚′
𝑘𝑟

and𝑚′
𝑘𝑟

≠𝑚𝑘𝑟 . Therefore, correct replicas will never trigger

condition 3) and use𝑚′
𝑘𝑟

≠𝑚𝑘𝑟 as input to MBA𝑟 . In all the

cases, if 𝑝𝑘𝑟 ∈ 𝐼 , all correct replicas will provide𝑚𝑘𝑟 as input

toMBA𝑟 . According to the validity property of MBA,MBA𝑟

outputs𝑚𝑘𝑟 . Therefore, SQ achieves 𝑂 (1) time.

Now, we are left to show a secure PCBW protocol and

additionally ensure that ®𝑚 has at least 𝑛 − 𝑓 non-⊥ values.

4.3 The PCBW Construction
We show the pseudocode of PCBW𝑟 in Figure 8. As men-

tioned in Sec. 3.2, our PCBW protocol involves only one

(Propose) message and two procedures: an update proce-

dure and a controlling procedure. Multiple PCBW instances

can be started in parallel. The information exchanged in the

(Propose) message in PCBW𝑟 may make prior PCBW in-

stances (that have not terminated yet) terminate with the

help of the update procedure. Additionally, for each PCBW𝑟 ,

the controlling procedure enables the termination of PCBW𝑟

while ensuring that the value ®𝑚 each correct replica pcbw-

delivers has at least 𝑛 − 𝑓 non-⊥ values.

Initialization. Each replica 𝑝𝑖 initializes parameters 𝐸𝑉 and

𝐶𝑉 at the beginning of the protocol. Here, the values stored

in 𝐸𝑉 are also called echo values and the values stored in𝐶𝑉

are also called confirmed values. Moreover, for each instance

PCBW𝑟 , 𝑝𝑖 initializes two parameters to keep track of the

10

Initialization:
− Initialize echo values 𝐸𝑉 ← ⊥ and confirmed values 𝐶𝑉 ← ⊥ at the beginning.

− Initialize the following parameters for each PCBW𝑟 : ®𝑚𝑟 , ®𝑐𝑣𝑟 ← [⊥]𝑛 , s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 ← [⊥]𝑛 , let the pcbw-delivered
values be 𝑜𝑢𝑡𝑝𝑢𝑡𝑟=(®𝑚𝑟 , ®𝑐𝑣𝑟), let the pcbw-s-delivered values be s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 .

let𝑤𝑖𝑡𝑛𝑒𝑠𝑠 (echo(𝑟, 𝑗, 𝑣)) = the number of different replicas from which echo(𝑟, 𝑗, 𝑣) was received.
let𝑤𝑖𝑡𝑛𝑒𝑠𝑠 (confirm(𝑟, 𝑗, 𝑣)) = the number of different replicas from which confirm(𝑟, 𝑗, 𝑣) was received.

− (Broadcast) Upon pcbw-broadcast(𝑚𝑖) in PCBW𝑟 : Broadcast (Propose, 𝑟 , 𝑖,𝑚𝑖 , 𝐸𝑉 ,𝐶𝑉) and clear parameters 𝐸𝑉

and 𝐶𝑉 .

Update procedure for PCBW𝑟

− Upon receiving (Propose, 𝑟 , 𝑗,𝑚 𝑗 , 𝐸𝑉𝑗 ,𝐶𝑉𝑗) from 𝑝 𝑗 :

if s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑗] = ⊥ then update 𝐸𝑉 ← 𝐸𝑉 ∪ echo(𝑟, 𝑗,𝑚 𝑗), s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑗] ←𝑚 𝑗 , pcbw-s-deliver s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 .

for echo(𝑟 ′, 𝑘, 𝑣) ∈ 𝐸𝑉𝑗 then
if 𝑤𝑖𝑡𝑛𝑒𝑠𝑠 (echo(𝑟 ′, 𝑘, 𝑣)) ≥ 𝑓 + 1 and s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 ′ [𝑘] = ⊥ then s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 ′ [𝑘] ← 𝑣 , pcbw-s-deliver s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 ′ .

if 𝑤𝑖𝑡𝑛𝑒𝑠𝑠 (echo(𝑟 ′, 𝑘, 𝑣)) ≥ 2𝑓 + 1 then update 𝐶𝑉 ← 𝐶𝑉 ∪ confirm(𝑟 ′, 𝑘, 𝑣), ®𝑐𝑣𝑟 ′ [𝑘] ← 𝑣 .

for confirm(𝑟 ′, 𝑘, 𝑣)∈ 𝐶𝑉𝑗 then
if 𝑤𝑖𝑡𝑛𝑒𝑠𝑠 (confirm(𝑟 ′, 𝑘, 𝑣)) ≥ 2𝑓 + 1 then ®𝑚𝑟 ′ [𝑘] ← 𝑣 .

Controlling procedure for PCBW𝑟

− if there exists a set 𝑆 of replicas s.t. |𝑆 | ≥ 2𝑓 + 1 and for every 𝑝𝑘 ∈ 𝑆 , ®𝑚𝑟 [𝑘] ≠ ⊥ then the controlling procedure

returns 1 and pcbw-deliver 𝑜𝑢𝑡𝑝𝑢𝑡𝑟 in PCBW𝑟 .

Figure 8. The PCBW𝑟 protocol at replica 𝑝𝑖 . PCBW events are highlighted in blue.

outputs: 𝑜𝑢𝑡𝑝𝑢𝑡𝑟 and s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 . The parameter 𝑜𝑢𝑡𝑝𝑢𝑡𝑟 con-

tains two vectors ®𝑚𝑟 and ®𝑐𝑣𝑟 and s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 is a vector. These
output parameters will be cleared when PCBW𝑟 terminates.

Broadcast phase. InPCBW𝑟 , each replica 𝑝𝑖 pcbw-broadcasts

𝑚𝑖 by broadcasting a (Propose, 𝑟 , 𝑖,𝑚𝑖 , 𝐸𝑉 ,𝐶𝑉) message to all

replicas. After sending the (Propose) message, 𝐸𝑉 and 𝐶𝑉

are cleared.

Theupdate procedure.Upon receiving (Propose, 𝑟 , 𝑗,𝑚 𝑗 , 𝐸𝑉𝑗 ,𝐶𝑉𝑗)

message from 𝑝 𝑗 , 𝑝𝑖 starts the update procedure. First, 𝑝𝑖
stores𝑚 𝑗 as an echo value in 𝐸𝑉 in the form of echo(𝑟, 𝑗,𝑚 𝑗).
Additionally, 𝑝𝑖 also sets s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑗] as 𝑚 𝑗 and pcbw-s-

delivers s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 . For any echo(𝑟 ′, 𝑘, 𝑣) contained in 𝐸𝑉𝑗 , 𝑝𝑖
checks whether it has received echo(𝑟 ′, 𝑘, 𝑣) from 𝑓 +1 repli-
cas and s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 ′ [𝑘] = ⊥. If so, 𝑝𝑖 sets s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 ′ [𝑘] as 𝑣
and pcbw-s-delivers s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 ′ . In addition, if 𝑝𝑖 has received

echo(𝑟 ′, 𝑘, 𝑣) from 2𝑓 + 1 replicas, the value 𝑣 is confirmed.

Then, 𝑝𝑖 stores 𝑣 in 𝐶𝑉 in the form of confirm(𝑟 ′, 𝑘, 𝑣) and
sets ®𝑐𝑣𝑟 ′ [𝑘] as 𝑣 . For any confirm(𝑟 ′, 𝑘, 𝑣) contained in 𝐶𝑉𝑗 ,

𝑝𝑖 checks whether it has received confirm(𝑟 ′, 𝑘, 𝑣) from
2𝑓 +1 replicas. If so, 𝑣 is a committed value and 𝑝𝑖 sets ®𝑚𝑟 ′ [𝑘]
as 𝑣 .

The controlling procedure. If PCBW𝑟 has not terminated

yet, every time replica 𝑝𝑖 modifies the parameter ®𝑚𝑟 for

PCBW𝑟 in the update procedure, 𝑝𝑖 also checks whether the

controlling procedure is satisfied. The controlling procedure

returns true if there exists a set 𝑆 of at least 2𝑓 + 1 replicas

such that for any 𝑝𝑘 ∈ 𝑆 , ®𝑚𝑟 [𝑘] is a non-⊥ committed value.

If so, 𝑝𝑖 pcbw-delivers (®𝑚𝑟 , ®𝑐𝑣𝑟) in PCBW𝑟 .

� Analysis. We sketch why our PCBW construction in Fig-

ure 8 meets all the properties defined in Sec. 4.1. Consider the

instance PCBW𝑟 . If a correct replica 𝑝𝑖 pcbw-delivers (®𝑚, ®𝑐𝑣),
according to the update procedure, any non-⊥ value in ®𝑐𝑣 has
been echoed by 2𝑓 + 1 replicas (i.e., they include the value in

their 𝐸𝑉) and any non-⊥ value in ®𝑚 has been confirmed by at

least 2𝑓 + 1 replicas (i.e., the 2𝑓 + 1 replicas include the value
in their 𝐶𝑉). Suppose another correct replica pcbw-delivers

(®𝑚′, ®𝑐𝑣 ′). According to the quorum intersection rule, for any

slot 𝑘 , ®𝑚′ [𝑘] and ®𝑚[𝑘] are either equal or one of them is ⊥.
The same applies to ®𝑐𝑣 ′ and ®𝑐𝑣 . Therefore, the consistency
property of PCBW holds.

We now discuss Weak agreement II. Consider 𝑝𝑖 as the

first replica that pcbw-delivers some (®𝑚, ®𝑐𝑣). We focus on

®𝑚[𝑘] = 𝑚𝑘 , where𝑚𝑘 ≠ ⊥. According to the protocol,𝑚𝑘

has been confirmed by 2𝑓 + 1 replicas before 𝑝𝑖 sets its ®𝑚[𝑘]
as some non-⊥ value. Therefore, at least 𝑓 +1 correct replicas
(let the set of replicas be 𝐼) have previously confirmed𝑚𝑘 .

Consider any 𝑝 𝑗 ∈ 𝐼 . Replica 𝑝 𝑗 may never pcbw-deliver . But

once 𝑝 𝑗 pcbw-delivers some values (®𝑚′, ®𝑐𝑣 ′), 𝑝 𝑗 must have

already confirmed 𝑚𝑘 . Therefore,
®𝑐𝑣 ′ [𝑘] = 𝑚𝑘 and Weak

agreement II holds.

ForWeak agreement I, 𝑝𝑖 pcbw-delivers a non-⊥ ®𝑐𝑣 [𝑘] after
®𝑐𝑣 [𝑘] has been confirmed by at least 2𝑓 +1 replicas. Let the set
of replicas be 𝑆 . According to the protocol, any correct replica

11

𝑝 𝑗 pcbw-s-delivers s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 such that s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑘] = 𝑚𝑘

under two conditions: 1) 𝑝 𝑗 has received𝑚𝑘 directly from

𝑝𝑘 ; 2) 𝑝 𝑗 receives𝑚𝑘 from 𝑓 + 1 replicas as echoed values. As
any correct replica in 𝑆 will include ®𝑐𝑣 [𝑘] in 𝐸𝑉 , condition

2) will eventually be satisfied by 𝑝 𝑗 soWeak agreement I is

satisfied.

We ignore the discussion on validity, integrity, and termi-

nation and show the proof in detail in Appendix A.1.

4.4 Discussion
We now discuss the communication complexity of SQ. In

our PCBW construction, the (Propose) message includes a

proposed value (length 𝐿), 𝐸𝑉 (echo values), and 𝐶𝑉 (con-

firmed values). For 𝐸𝑉 (resp. 𝐶𝑉), each 𝐸𝑉 [𝑘] (resp. 𝐶𝑉 [𝑘])
contains a constant number of 𝐿-bit values, where 𝑘 ∈ [1, 𝑛].
Our PCBW construction thus has 𝑂 (𝐿𝑛3) communication.

Assuming a Rabin dealer, the communication complexity

for the election phase is 𝑂 (𝑛 log𝑛). In the exchange phase,

each (Send) message includes at most two 𝐿-bit values, so

the communication complexity is𝑂 (𝐿𝑛2). In the MBA phase,

as the input to MBA is either a 𝐿-bit value or ⊥, the MBA

phase has 𝑂 (𝐿𝑛2) communication using the most efficient

MBA instantiation known so far [47]. Therefore, SQ achieves

𝑂 (𝐿𝑛3) communication complexity.

The "broadcast-echo-confirm-commit" paradigm used in

our PCBW construction is similar to the three-phase para-

digm for reliable broadcast [13, 14]. Accordingly, the com-

munication complexity of SQ can be further optimized using

techniques often employed by asynchronous verifiable in-

formation dispersal [5, 18] and reliable broadcast [4, 22]

protocols, e.g., erasure codes and online error correction.

SQ achieves 𝑂 (𝑛2) messages as only all-to-all communi-

cation is involved (and the MBA protocol we consider [47]

also achieves 𝑂 (𝑛2) messages).

For ease of understanding, in the PCBW construction,

every replica needs to include the 𝐿-bit value as echo values

and the confirmed values. Several optimizations can be used

to reduce the concrete cost of communication. For example,

we do not need to include the 𝐿-bit value in 𝐶𝑉 as each

replica eventually receives them from 𝐸𝑉 . We provide an

optimized PCBW construction with implementation-level

details in Appendix B.

5 A Communication-Efficient Variant of SQ
From Hash Functions

In this section, we present SQℎ , a communication-efficient

variant of SQ by additionally using hash functions. SQℎ

achieves 𝑂 (𝐿𝑛2 + 𝜅𝑛3) communication, where 𝜅 is the secu-

rity parameter (the length of a hash digest). We present the

pseudocode of the hash variant of PCBW in Figure 9, and we

also provide an implementation-level PCBW construction in

Appendix C. The main protocol remains the same as that in

Figure 7.

Recall that SQ has 𝑂 (𝐿𝑛3) communication complexity, as

every replica broadcasts its received values from all replicas

in the (propose) message. Briefly speaking, we can replace

the echoed values and confirmed values with the hashes of

the values to optimize the communication. We also modify

the update procedure accordingly.

Note that in the ABC protocol, each replica can still obtain

the proposed values in the exchange phase. The workflow

thus remains exactly the same as SQ. In Figure 9, we still use

𝑣 to denote s-𝑜𝑢𝑡𝑝𝑢𝑡 and 𝑜𝑢𝑡𝑝𝑢𝑡𝑟 whileℎ𝑎𝑠ℎ(𝑣) is exchanged
in the (Propose) message. If some replica has not previously

received 𝑣 when it updates s-𝑜𝑢𝑡𝑝𝑢𝑡 and 𝑜𝑢𝑡𝑝𝑢𝑡𝑟 , the replica

can obtain 𝑣 from the exchange phase.

As we only replace some values with their hashes, the cor-

rectness of SQℎ follows from SQ and the collision resistance

of the hash function. The message complexity of SQℎ is also

𝑂 (𝑛2). For the communication complexity, the (Propose)
message now includes the proposed value (length 𝐿), 𝐸𝐻 , and

𝐶𝐻 . Each 𝐸𝐻 [𝑘] (or 𝐶𝐻 [𝑘]) contains a constant number of

hash values, where 𝑘 ∈ [1, 𝑛]. Therefore, the communication

complexity of PCBW is 𝑂 (𝐿𝑛2 + 𝜅𝑛3). The communication

of other phases remains the same as that in SQ, i.e., 𝑂 (𝐿𝑛2).
Hence, SQℎ achieves 𝑂 (𝐿𝑛2 + 𝜅𝑛3) communication.

Batch processing optimization. SQℎ can be further op-

timized via batch processing, so 𝑂 (𝑛) proposed values are

expected to be a-delivered in each epoch. In particular, when

every replica sends a (Propose) message in PCBW in epoch

𝑟 , it includes the hash of its proposed value in epoch 𝑟 − 1.
Every replica 𝑝𝑖 accepts a (Propose) message from 𝑝 𝑗 in

epoch 𝑟 only after the (Propose) message from 𝑝 𝑗 for ev-

ery epoch lower than 𝑟 has been received. In addition, 𝑝𝑖
also locally stores the last epoch 𝑟 ′ in which the proposal of

𝑝 𝑗 has been delivered. The other workflow of the protocol

remains the same. In this way, onceMBA𝑟 outputs a value

𝑚 where𝑚 was proposed by 𝑝 𝑗 , replicas deliver the values

proposed by 𝑝 𝑗 between epoch 𝑟 ′ + 1 and 𝑟 . Accordingly,

𝑂 (𝑛) proposed values are expected to be delivered in each

epoch. Also, thanks to the agreement property of MBA, SQℎ

can be implemented using limited memory, unlike unlimited

memory required by previous works, e.g., DAG-Rider [34].

Note that replicas may also need to synchronize the pro-

posals between epoch 𝑟 ′ + 1 and 𝑟 − 1. We omit the details

in this work.

6 Implementation and Evaluation
We implement a prototype of SQℎ with batch processing op-

timization in Golang, the communication-efficient variant of

SQ. Our codebase involves around 7,000 LOC for the protocol

and about 1,000 LOC for evaluation. In our implementation,

we use gRPC as the communication library, HMAC to realize

the authenticated channel, and SHA256 as the hash function.

For leader election, we use threshold PRF instead, following

the practice of previous works [27, 42, 54].

12

Initialization:
− Initialize echo hashes 𝐸𝐻 ← ⊥ and confirmed hashes 𝐶𝐻 ← ⊥ at the beginning.

− Initialize the following parameters for each PCBW𝑟 : ®𝑚𝑟 , ®𝑐𝑣𝑟 ← [⊥]𝑛 , s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 ← [⊥]𝑛 , let the pcbw-delivered
values be 𝑜𝑢𝑡𝑝𝑢𝑡𝑟=(®𝑚𝑟 , ®𝑐𝑣𝑟), let the pcbw-s-delivered values be s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 .

let𝑤𝑖𝑡𝑛𝑒𝑠𝑠 (echo(𝑟, 𝑗, ℎ𝑎𝑠ℎ (𝑣))) = the number of different replicas from which echo(𝑟, 𝑗, ℎ𝑎𝑠ℎ (𝑣)) was received.
let𝑤𝑖𝑡𝑛𝑒𝑠𝑠 (confirm(𝑟, 𝑗, ℎ𝑎𝑠ℎ (𝑣))) = the number of different replicas fromwhich confirm(𝑟, 𝑗, ℎ𝑎𝑠ℎ (𝑣)) was received.

− (Broadcast) Upon pcbw-broadcast(𝑚𝑖) in PCBW𝑟 : Broadcast (Propose, 𝑟 , 𝑖,𝑚𝑖 , 𝐸𝐻,𝐶𝐻) and clear parameters 𝐸𝐻

and 𝐶𝐻 .

Update procedure for PCBW𝑟

− Upon receiving (Propose, 𝑟 , 𝑗,𝑚 𝑗 , 𝐸𝐻 𝑗 ,𝐶𝐻 𝑗) from 𝑝 𝑗 :

if s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑗] = ⊥ then update 𝐸𝐻 ← 𝐸𝐻 ∪ echo(𝑟, 𝑗, ℎ𝑎𝑠ℎ (𝑚 𝑗)) , s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑗] ← 𝑚 𝑗 , pcbw-s-deliver s-

𝑜𝑢𝑡𝑝𝑢𝑡𝑟 .

for echo(𝑟 ′, 𝑘, ℎ𝑎𝑠ℎ (𝑣)) ∈ 𝐸𝐻 𝑗 then
if 𝑤𝑖𝑡𝑛𝑒𝑠𝑠 (echo(𝑟 ′, 𝑘, ℎ𝑎𝑠ℎ (𝑣))) ≥ 𝑓 + 1 and s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 ′ [𝑘] = ⊥ then set s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 ′ [𝑘] as 𝑣 , pcbw-s-deliver

s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 ′ .

if 𝑤𝑖𝑡𝑛𝑒𝑠𝑠 (echo(𝑟 ′, 𝑘, ℎ𝑎𝑠ℎ (𝑣))) ≥ 2𝑓 + 1 then update 𝐶𝐻 ← 𝐶𝐻 ∪ confirm(𝑟 ′, 𝑘, ℎ𝑎𝑠ℎ (𝑣)) , ®𝑐𝑣𝑟 ′ [𝑘] ← 𝑣 .

for confirm(𝑟 ′, 𝑘, ℎ𝑎𝑠ℎ (𝑣)) ∈ 𝐶𝐻 𝑗 then
if 𝑤𝑖𝑡𝑛𝑒𝑠𝑠 (confirm(𝑟 ′, 𝑘, ℎ𝑎𝑠ℎ (𝑣))) ≥ 2𝑓 + 1 then ®𝑚𝑟 ′ [𝑘] ← 𝑣 .

Controlling procedure for PCBW𝑟

− if there exists a set 𝑆 of replicas s.t. |𝑆 | ≥ 2𝑓 + 1 and for every 𝑝𝑘 ∈ 𝑆 , ®𝑚𝑟 [𝑘] ≠ ⊥ then the controlling procedure

returns 1 and pcbw-deliver 𝑜𝑢𝑡𝑝𝑢𝑡𝑟 in PCBW𝑟 .

Figure 9. The hash variant of PCBW𝑟 protocol at replica 𝑝𝑖 . PCBW events are highlighted in blue. The changes on top of

Figure 8 are highlighted in gray .

𝑓 = 1 𝑓 = 5 𝑓 = 10 𝑓 = 20

0

50

100

150

38.71

56.52

108.32

100.08

53.12

114.78

148.3
146.64

P
e
a
k
t
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

FIN SQℎ

(a) Peak throughput of the protocols as 𝑓 grows.

0 1 2 3 4 5

SQℎ (b=10k)

SQℎ (peak)

Latency breakdown (Sec)

Propose Election Exchange MBA

(b) Latency breakdown for 𝑓 = 1.

0 1 2 3 4 5

SQℎ (b=10k)

SQℎ (peak)

Latency breakdown (Sec)

Propose Election Exchange MBA

(c) Latency breakdown for 𝑓 = 5.

0 1 2 3 4 5 6 7

SQℎ (b=10k)

SQℎ (peak)

Latency breakdown (Sec)

Propose Election Exchange MBA

(d) Latency breakdown for 𝑓 = 10.

0 1 2 3 4 5 6 7 8

SQℎ (b=10k)

SQℎ (peak)

Latency breakdown (Sec)

Propose Election Exchange MBA

(e) Latency breakdown for 𝑓 = 20.

Figure 10. Peak throughput of SQℎ vs. FIN [27] and latency breakdown of SQℎ .

13

We evaluate the performance of our protocols on Amazon

EC2 using up to 61 virtual machines (VMs). We compare

the performance of SQℎ with FIN [27], the state-of-the-art

asynchronous protocol.We usem5.xlarge instances, and each

instance has four vCPUs and 16GB of memory. We distribute

the replicas evenly in different regions: us-west-2 (Oregon,

US), us-east-2 (Ohio, US), ap-southeast-1 (Singapore), and eu-

west-1 (Ireland).We evaluate the performance using different

network sizes and batch sizes 𝑏. We use 𝑓 to denote the

network size where 𝑛 = 3𝑓 + 1 replicas are launched. We

focus on the peak throughput of different 𝑓 .

Peak throughput. We show the peak throughput of SQℎ

and FIN for 𝑓 = 1 to 𝑓 = 20 in Figure 10a. The peak through-

put of SQℎ is 36.90%-103.07% higher than that of FIN. This is

expected, and the performance gain of SQℎ is due to three

facts: 1) SQℎ can a-deliver 𝑂 (𝑛) proposals in each epoch,

same as that in FIN; 2) SQℎ and FIN achieve the same com-

munication complexity; 3) SQℎ has quadratic messages while

FIN achieves 𝑂 (𝑛3) messages. Note that as mentioned ear-

lier in the paper, we can execute sequential FIN (i.e., ACS)

instances to obtain an ABC protocol. SQℎ is an ABC protocol

and cannot be directly used as an ACS (i.e., FIN). The perfor-

mance gain of SQℎ is thus based on the fact that FIN is used

as an ABC protocol.

Latency breakdown. We report latency breakdown of SQℎ

in Figure 10b-10e. We report the results for the batch size

when SQℎ reaches its peak throughput and for 𝑏 = 10, 000. In

all experiments we launched, the propose phase is the bottle-

neck of the system. Indeed, the PCBW instance requires each

proposal to include several values (𝑂 (𝑛) hashes) in addition

to the batch of transactions. We believe our protocols can

be further optimized to reduce the overhead of the PCBW

construction, and we consider the optimization to be future

work.

7 Additional Related Works
Signature-free consensus. This and prior works [8, 10,

19, 20, 41, 44–47] assume the common coin object provid-

ing global random coins that are visible to all replicas. The

common coin object was originally proposed in Rabin’s pio-

neering work [49], where a trusted dealer distributes coins

to replicas. The common coin object can also be realized in

various other ways, such as threshold PRF [6, 17], threshold

signatures [7, 17, 51], randomness beacons [25, 33], dedicated

common coin protocols [11, 30], and ones based on trusted

execution environments (TEEs).

Recently, some signature-free MVBA protocols have been

proposed [1, 21, 23, 27], but they all have 𝑂 (𝑛3) message

complexity and the ABC protocols relying on them would

at least have 𝑂 (𝑛3) messages. For example, the FIN proto-

col [27] is a signature-free ACS protocol that can be directly

used as an ABC protocol. In contrast, our protocols are not

ACS, and we do not know how to transform our protocols

to ACS without increasing the time and message complexity.

Additionally, the underlying techniques are fundamentally

different. FIN reduces ACS to parallel RBC and MVBA while

we reduce ABC to MBA.

MBA.MBAwas first introduced in the synchronous assump-

tion [29, 35, 36, 48, 53], where there exists a known upper

bound for message transmission and processing. In MBA,

every replica holds an (supposedly the same) input and repli-

cas agree on some value or ⊥ (denoting correct replicas do

not hold the same input). In the asynchronous assumption,

Mostéfaoui and Raynal (MR) presented the first signature-

free MBA with 𝑂 (𝑛2) messages and 𝑂 (1) time [47].

8 Conclusion
We present SQ, the first information-theoretic and signature-

free asynchronous Byzantine atomic broadcast protocol with

optimal 𝑂 (𝑛2) messages and 𝑂 (1) time. We also show SQℎ ,

a hash variant of SQ that achieves the same complexities but

additionally assumes hashes. We show that the performance

of SQℎ is comparable with the state-of-the-art asynchronous

protocol FIN.

References
[1] Abraham, I., Asharov, G., Patra, A., Stern, G.: Perfectly secure asynchro-

nous agreement on a core set in constant expected time. Cryptology

ePrint Archive, Paper 2023/1130 (2023)

[2] Abraham, I., Ben-David, N., Yandamuri, S.: Efficient and adaptively se-

cure asynchronous binary agreement via binding crusader agreement.

PODC (2022)

[3] Abraham, I., Malkhi, D., Spiegelman, A.: Asymptotically optimal val-

idated asynchronous byzantine agreement. In: PODC. pp. 337–346.

ACM (2019)

[4] Alhaddad, N., Das, S., Duan, S., Ren, L., Varia, M., Xiang, Z., Zhang, H.:

Balanced byzantine reliable broadcast with near-optimal communica-

tion and improved computation. In: PODC. pp. 399–417 (2022)

[5] Alhaddad, N., Das, S., Duan, S., Ren, L., Varia, M., Xiang, Z., Zhang, H.:

Brief announcement: Asynchronous verifiable information dispersal

with near-optimal communication. In: PODC. pp. 418–420 (2022)

[6] B. Libert, M.J., Yung, M.: Born and raised distributively: Fully dis-

tributed non-interactive adaptively-secure threshold signatures with

short shares. In: Theoretical Computer Science (2016)

[7] Bacho, R., Loss, J.: On the adaptive security of the threshold bls signa-

ture scheme. In: CCS. pp. 193–207 (2022)

[8] Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computa-

tion. STOC (1993)

[9] Ben-Or, M., El-Yaniv, R.: Resilient-optimal interactive consistency in

constant time. Distrib. Comput. (2003)

[10] Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations

with optimal resilience. In: PODC. pp. 183–192. ACM (1994)

[11] Bhat, A., Shrestha, N., Luo, Z., Kate, A., Nayak, K.: Randpiper–

reconfiguration-friendly random beacons with quadratic communica-

tion. In: Proceedings of the 2021 ACM SIGSAC Conference on Com-

puter and Communications Security. pp. 3502–3524 (2021)

[12] Boldyreva, A.: Threshold signatures, multisignatures and blind sig-

natures based on the gap-diffie-hellman-group signature scheme. In:

PKC (2003)

[13] Bracha, G.: An asynchronous [(n-1)/3]-resilient consensus protocol.

In: PODC. pp. 154–162. ACM (1984)

14

[14] Bracha, G.: Asynchronous Byzantine agreement protocols. Information

and Computation 75(2), 130–143 (1987)
[15] Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to reliable and

secure distributed programming. Springer Science & Business Media

(2011)

[16] Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient

asynchronous broadcast protocols. In: CRYPTO. pp. 524–541. Springer

(2001)

[17] Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantino-

ple: Practical asynchronous Byzantine agreement using cryptography.

Journal of Cryptology 18(3), 219–246 (2005)
[18] Cachin, C., Tessaro, S.: Asynchronous verifiable information dispersal.

In: SRDS. pp. 191–201. IEEE (2005)

[19] Correia, M., Neves, N.F., Veríssimo, P.: From consensus to atomic

broadcast: Time-free byzantine-resistant protocols without signatures.

Comput. J. 49(1), 82–96 (2006)
[20] Crain, T.: Two more algorithms for randomized signature-free asyn-

chronous binary byzantine consensus with t<n/3 and o(n
2
) messages

and O(1) round expected termination. CoRR abs/2002.08765 (2020)

[21] Das, S., Xiang, Z., Kokoris-Kogias, L., Ren, L.: Practical asynchronous

high-threshold distributed key generation and distributed polynomial

sampling. Cryptology ePrint Archive (2022)

[22] Das, S., Xiang, Z., Ren, L.: Asynchronous data dissemination and its

applications. In: Proceedings of the 2021 ACM SIGSAC Conference on

Computer and Communications Security. pp. 2705–2721 (2021)

[23] Das, S., Yurek, T., Xiang, Z., Miller, A.K., Kokoris-Kogias, L., Ren, L.:

Practical asynchronous distributed key generation. In: IEEE Sympo-

sium on Security and Privacy. pp. 2518–2534. IEEE (2022)

[24] Dolev, D.: The byzantine generals strike again. Journal of Algorithms

3(1), 14–30 (1982)
[25] Drand: Drand - a distributed randomness beacon daemon. https://

github.com/drand/drand (accessed Oct 2023)

[26] Duan, S., Reiter, M.K., Zhang, H.: BEAT: Asynchronous bft made prac-

tical. In: CCS. pp. 2028–2041. ACM (2018)

[27] Duan, S., Wang, X., Zhang, H.: FIN: Practical signaturbe-free asynchro-

nous common subset in constant time. In: CCS (2023)

[28] Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed

consensus with one faulty process. Tech. rep., Massachusetts Inst of

Tech Cambridge lab for Computer Science (1982)

[29] Fitzi, M., Hirt, M.: Optimally efficient multi-valued byzantine agree-

ment. In: Proceedings of the twenty-fifth annual ACM symposium on

Principles of distributed computing. pp. 163–168 (2006)

[30] Galindo, D., Liu, J., Ordean, M., Wong, J.M.: Fully distributed verifiable

random functions and their application to decentralised random bea-

cons. In: European Symposium on Security and Privacy (EuroS&P).

pp. 88–102 (2021)

[31] Guo, B., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Speeding Dumbo:

Pushing asynchronous BFT closer to practice. In: NDSS (2022)

[32] Guo, B., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Dumbo: Faster asynchronous

bft protocols. In: CCS (2020)

[33] I. T. L. Computer Security Division: Interoperable randomness bea-

cons: Csrc. https://csrc.nist.gov/projects/interoperable-randomness-
beacons (accessed Oct 2023)

[34] Keidar, I., Kokoris-Kogias, E., Naor, O., Spiegelman, A.: All you need is

dag. PODC (2021)

[35] King, V., Saia, J.: Breaking the 𝑜 (𝑛2) bit barrier: scalable byzantine
agreement with an adaptive adversary. Journal of the ACM (JACM)

58(4), 18 (2011)
[36] Liang, G., Vaidya, N.: Error-freemulti-valued consensuswith byzantine

failures. In: PODC. pp. 11–20 (2011)

[37] Libert, B., Joye, M., Yung, M.: Born and raised distributively: Fully

distributed non-interactive adaptively-secure threshold signatures

with short shares. Theoretical Computer Science 645, 1–24 (2016)

[38] Liu, C., Duan, S., Zhang, H.: EPIC: Efficient asynchronous bft with

adaptive security. In: DSN (2020)

[39] Loss, J., Moran, T.: Combining asynchronous and synchronous Byzan-

tine agreement: The best of both worlds. IACR Cryptology ePrint

Archive 2018, 235 (2018)
[40] Lu, Y., Lu, Z., Tang, Q., Wang, G.: Dumbo-mvba: Optimal multi-valued

validated asynchronous byzantine agreement, revisited. In: Proceed-

ings of the 39th Symposium on Principles of Distributed Computing.

pp. 129–138 (2020)

[41] MacBrough, E.: Cobalt: BFT governance in open networks. arXiv

preprint arXiv:1802.07240 (2018)

[42] Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of

bft protocols. In: CCS. pp. 31–42. ACM (2016)

[43] Moniz, H., Neves, N.F., Correia, M., Verissimo, P.: Ritas: Services for

randomized intrusion tolerance. TDSC 8(1), 122–136 (2008)
[44] Mostefaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous

Byzantine consensus with 𝑡 ≤ 𝑛/3 and 𝑜 (𝑛2) messages. In: PODC.

pp. 2–9. ACM (2014)

[45] Mostéfaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous

binary byzantine consensus with t < n/3, o(n
2
) messages, and O(1)

expected time. J. ACM 62(4), 31:1–31:21 (2015)
[46] Mostéfaoui, A., Raynal, M.: Signature-free broadcast-based intrusion

tolerance: never decide a byzantine value. In: OPODIS. pp. 143–158.

Springer (2010)

[47] Mostéfaoui, A., Raynal, M.: Signature-free asynchronous byzantine

systems: from multivalued to binary consensus with t< n/3, o(n
2
)

messages, and constant time. Acta Informatica 54(5), 501–520 (2017)
[48] Patra, A.: Error-free multi-valued broadcast and byzantine agree-

ment with optimal communication complexity. In: OPODIS. pp. 34–49.

Springer (2011)

[49] Rabin, M.O.: Randomized byzantine generals. In: SFCS. pp. 403–409.

IEEE (1983)

[50] Reiter, M.K.: Secure agreement protocols: Reliable and atomic group

multicast in rampart. In: CCS. pp. 68–80 (1994)

[51] Shoup, V.: Practical threshold signatures. In: EUROCRYPT (2000)

[52] Toueg, S.: Randomized byzantine agreements. In: Proceedings of the

third annual ACM symposium on Principles of distributed computing.

pp. 163–178 (1984)

[53] Turpin, R., Coan, B.A.: Extending binary byzantine agreement to mul-

tivalued byzantine agreement. Information Processing Letters 18(2),
73–76 (1984)

[54] Zhang, H., Duan, S.: PACE: Fully parallelizable BFT from reproposable

byzantine agreement. ACM CCS (2022)

[55] Zhang, H., Duan, S., Zhao, B., Zhu, L.: Waterbear: Practical asynchro-

nous bft matching security guarantees of partially synchronous bft.

In: Usenix Security (2023)

15

https://github.com/drand/drand
https://github.com/drand/drand
https: //csrc.nist.gov/projects/interoperable-randomness-beacons
https: //csrc.nist.gov/projects/interoperable-randomness-beacons

A Proofs
We use 𝐶 to denote the set of correct replicas, where |𝐶 | ≥
2𝑓 + 1. Our proof consists of two parts. In Appendix A.1,

we show that our PCBW construction achieves the security

properties defined in Sec. 4.1. In Appendix A.2 We then show

that for each epoch, using PCBW in a black-box manner, our

SQ protocol achieves the security properties of ABC.

A.1 Proof of the PCBW Construction
LemmaA.1. In PCBW𝑟 , if a correct replica 𝑝𝑖 pcbw-s-delivers

®𝑣𝑟 , then for any slot 𝑘 such that ®𝑣𝑟 [𝑘] =𝑚𝑘 ≠ ⊥,𝑚𝑘 is pcbw-

broadcast by 𝑝𝑘 .

Proof. Based on the update procedure, we distinguish two

cases: (1) 𝑝𝑖 has received𝑚𝑘 from 𝑝𝑘 in a (Propose) message

in PCBW𝑟 ; (2) 𝑝𝑖 has received𝑚𝑘 from 𝑓 + 1 replicas as echo
values. In case (1), since 𝑝 𝑗 is a correct replica,𝑚𝑘 is pcbw-

broadcast by replica 𝑝𝑘 . In case (2), at least one correct replica

receives 𝑚𝑘 from 𝑝𝑘 and sends 𝑚𝑘 to 𝑝𝑖 as an echo value.

Then𝑚𝑘 is pcbw-broadcast by replica 𝑝𝑘 . □

Lemma A.2. In PCBW𝑟 , if a correct replica 𝑝 𝑗 pcbw-delivers

(®𝑚, ®𝑐𝑣) where ®𝑐𝑣 [𝑖] = 𝑚𝑖 ≠ ⊥, then at least 𝑓 + 1 correct

replicas have received𝑚𝑖 from replica 𝑝𝑖 and changed their

s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑖] parameters from ⊥ to𝑚𝑖 .

Proof. If 𝑝 𝑗 pcbw-delivers (®𝑚, ®𝑐𝑣) such that ®𝑐𝑣 [𝑖] = 𝑚𝑖 ≠ ⊥
for epoch 𝑟 , from the controlling procedure, we know that 𝑝 𝑗

must have confirmed ®𝑐𝑣 [𝑖] and set ®𝑐𝑣 [𝑖] as𝑚𝑖 before it pcbw-

delivers. According to the update procedure, 𝑝 𝑗 has received

echo(𝑟, 𝑖,𝑚𝑖) from 2𝑓 + 1 replicas. Therefore, at least 𝑓 + 1
correct replicas have included echo(𝑟, 𝑖,𝑚𝑖) in their 𝐸𝑉 and

broadcast their 𝐸𝑉 in Propose messages—indicating that

they have received𝑚𝑖 from 𝑝𝑖 for epoch 𝑟 . Therefore, by the

update procedure, at least 𝑓 +1 correct replicas have received
𝑚𝑖 from 𝑝𝑖 and changed their s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑖] parameters from

⊥ to𝑚𝑖 . □

Lemma A.3. In PCBW𝑟 , if a correct replica 𝑝𝑖 pcbw-delivers

(®𝑚𝑖 , ®𝑐𝑣𝑖), another correct replica 𝑝 𝑗 pcbw-delivers (®𝑚 𝑗 , ®𝑐𝑣 𝑗),
and for a slot 𝑘 ∈ [1, 𝑛], ®𝑐𝑣𝑖 [𝑘] ≠ ⊥ and ®𝑐𝑣 𝑗 [𝑘] ≠ ⊥, then
®𝑐𝑣𝑖 [𝑘] = ®𝑐𝑣 𝑗 [𝑘].

Proof. We prove the lemma by contradiction. Let ®𝑐𝑣𝑖 [𝑘] =
𝑚𝑖,𝑘 and ®𝑐𝑣 𝑗 [𝑘] =𝑚 𝑗,𝑘 . Assume, on the contrary, that𝑚𝑖,𝑘 ≠

𝑚 𝑗,𝑘 . As 𝑝𝑖 is a correct replica, at least 𝑓 + 1 correct replicas
have received𝑚𝑖,𝑘 from 𝑝𝑘 and changed their s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑘]
parameters from ⊥ to𝑚𝑖,𝑘 by Lemma A.2. Similarly, at least

𝑓 +1 correct replicas have received𝑚 𝑗,𝑘 from 𝑝𝑘 and changed

their s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑘] parameters from ⊥ to𝑚 𝑗,𝑘 . As there are

2𝑓 + 1 correct replicas, at least one correct replica has stored
both𝑚𝑖,𝑘 and𝑚 𝑗,𝑘 in s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑖], a contradiction. □

Lemma A.4. In PCBW𝑟 , if a correct replica 𝑝 𝑗 pcbw-delivers

(®𝑚, ®𝑐𝑣) where ®𝑚[𝑖] ≠ ⊥ (resp. ®𝑐𝑣 [𝑖] ≠ ⊥), then ®𝑚[𝑖] (resp.
®𝑐𝑣 [𝑖]) was previously pcbw-broadcast by replica 𝑝𝑖 .

Proof. Suppose 𝑝 𝑗 pcbw-delivers (®𝑚, ®𝑐𝑣) such that ®𝑐𝑣 [𝑖] ≠ ⊥
for epoch 𝑟 . Note 𝑝 𝑗 has confirmed ®𝑣 [𝑖]. By Lemma A.2, ®𝑐𝑣 [𝑖]
was pcbw-broadcast by 𝑝𝑖 .

Suppose 𝑝 𝑗 pcbw-delivers (®𝑚, ®𝑐𝑣) such that ®𝑚[𝑖] ≠ ⊥. Ac-
cording to the update procedure, 𝑝 𝑗 has received confirm(𝑟, 𝑖, ®𝑚[𝑖])
from at least 2𝑓 + 1 replicas. Then at least 𝑓 + 1 correct repli-
cas have confirmed ®𝑚[𝑖] and included confirm(𝑟, 𝑖, ®𝑚[𝑖]) in
their 𝐶𝑉 parameters. Similar to the discussion above, ®𝑚[𝑖]
was pcbw-broadcast by 𝑝𝑖 . This completes the proof. □

Theorem A.5. (PCBW-Validity): In PCBW𝑟 , if a correct

replica 𝑝𝑖 pcbw-broadcasts a message𝑚𝑖 , then every correct

replica 𝑝 𝑗 eventually pcbw-s-delivers ®𝑣 where ®𝑣 [𝑖] =𝑚𝑖 . If 𝑝 𝑗

pcbw-delivers (®𝑚, ®𝑐𝑣) where ®𝑚[𝑖] ≠ ⊥ and ®𝑐𝑣 [𝑖] ≠ ⊥, then
®𝑚[𝑖] = ®𝑐𝑣 [𝑖] =𝑚𝑖 .

Proof. For each epoch 𝑟 , if a correct replica 𝑝𝑖 pcbw-broadcasts

a message𝑚𝑖 , 𝑝𝑖 broadcasts𝑚𝑖 in a Propose message 𝑝𝑚𝑖 .

According to the assumption of the network, every correct

replica 𝑝 𝑗 eventually receives 𝑝𝑚𝑖 from 𝑝𝑖 . Then 𝑝𝑖 executes

the update procedure using 𝑝𝑚𝑖 as input and pcbw-s-delivers

®𝑣 such that ®𝑣 [𝑖] =𝑚𝑖 .

As 𝑝𝑖 is a correct replica which pcbw-broadcasts only one

message in epoch 𝑟 , the second part of the lemma follows

from Lemma A.4.

□

TheoremA.6. (PCBW-Consistency): Suppose that a correct
replica 𝑝𝑖 pcbw-delivers (®𝑚, ®𝑐𝑣) such that ®𝑐𝑣 [𝑘] =𝑚 ≠ ⊥ for

slot 𝑘 . For any correct replica 𝑝 𝑗 :

(1) if 𝑝 𝑗 pcbw-delivers (®𝑚′, ®𝑐𝑣 ′) where ®𝑐𝑣 ′ [𝑘] ≠ ⊥, then ®𝑐𝑣 ′ [𝑘] =
𝑚;

(2) if 𝑝 𝑗 pcbw-delivers (®𝑚′, ®𝑐𝑣 ′) where ®𝑚′ [𝑘] ≠ ⊥, then ®𝑚′ [𝑘] =
𝑚.

Proof. Property (1) follows from Lemma A.3. For (2), note

that when 𝑝 𝑗 pcbw-delivers (®𝑚′, ®𝑐𝑣 ′) where ®𝑚′ [𝑘] ≠ ⊥, 𝑝 𝑗

has received confirm(𝑟, 𝑘, ®𝑚′ [𝑘]) from 2𝑓 +1 replicas. Then
at least 𝑓 +1 correct replicas have confirmed ®𝑚′ [𝑘]. As𝑚 ≠ ⊥,
®𝑚′ [𝑘] =𝑚 by Lemma A.3. This completes the proof of the

lemma. □

Theorem A.7. (PCBW-Weak agreement I): In PCBW𝑟 , if

a correct replica 𝑝𝑖 pcbw-delivers (®𝑚, ®𝑐𝑣) where ®𝑐𝑣 [𝑘] ≠ ⊥ for

slot 𝑘 , then every correct replica 𝑝 𝑗 eventually pcbw-s-delivers

®𝑣 where ®𝑣 [𝑘] ≠ ⊥.

Proof. Let ®𝑐𝑣 [𝑘] =𝑚𝑘 . By Lemma A.2, at least 𝑓 + 1 correct
replicas have received𝑚𝑘 from 𝑝𝑘 in PCBW𝑟 andwill include

𝑚𝑘 in their (Propose) messages as echo values in PCBW𝑟 ′

where 𝑟 ′ > 𝑟 . Let 𝑆 denote the set of 𝑓 + 1 correct replicas.
After receiving the (Propose) messages from 𝑆 in epoch

𝑟 ′, every correct replica 𝑝 𝑗 executes the update procedure.

If 𝑝 𝑗 has not set s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑘] as a non-⊥ value before re-

ceiving these messages, 𝑝 𝑗 will update its s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑘] to
𝑚𝑘 and pcbw-s-delivers s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 according to our protocol.

16

Otherwise, if 𝑝 𝑗 sets s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑗] [𝑘] as𝑚′𝑘 and𝑚′
𝑘
≠ ⊥ be-

fore 𝑝 𝑗 receives the (Propose) messages from 𝑆 , then 𝑝 𝑗 also

has pcbw-s-delivered its s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 . In both cases, the lemma

holds. □

Theorem A.8. (PCBW-Weak agreement II): In PCBW𝑟 ,

considering the first correct replica 𝑝𝑖 that pcbw-delivers (®𝑚, ®𝑐𝑣).
For any slot 𝑘 , if ®𝑚[𝑘] = 𝑚𝑘 ≠ ⊥, then there exists a set 𝐼

of at least 𝑓 + 1 correct replicas such that for any 𝑝 𝑗 ∈ 𝐼 , 𝑝 𝑗

either never pcbw-deliver or pcbw-delivers (®𝑚′, ®𝑐𝑣 ′), where
®𝑐𝑣 ′ [𝑘] =𝑚𝑘 .

Proof. According to the controlling procedure, for any slot 𝑘 ,

if ®𝑚[𝑘] =𝑚𝑘 ≠ ⊥, then there exists a set 𝑆 of 2𝑓 + 1 replicas
such that for each 𝑝 𝑗 ∈ 𝑆 , 𝑝𝑖 has received confirm(𝑟, 𝑘,𝑚𝑘)
from 𝑝 𝑗 before 𝑝𝑖 pcbw-delivers (®𝑚, ®𝑐𝑣). Let 𝐼 denote a set of
all correct replicas in 𝑆 . We have 𝐼 ≥ 𝑓 + 1, as there are at
most 𝑓 faulty replicas.

Now we prove that for any 𝑝 𝑗 ∈ 𝐼 , if 𝑝 𝑗 pcbw-delivers

a (®𝑚′, ®𝑐𝑣 ′), then ®𝑐𝑣 ′ [𝑘] = 𝑚𝑘 . Note 𝑝 𝑗 is correct. Before 𝑝 𝑗

sends confirm(𝑟, 𝑘,𝑚𝑘) to 𝑝𝑖 , according to the update proce-
dure, 𝑝 𝑗 must have confirmed𝑚𝑘 as the pcbw-broadcast value

from 𝑝𝑘 in PCBW𝑟 . As 𝑝 𝑗 sent confirm(𝑟, 𝑘,𝑚𝑘) to 𝑝𝑖 be-

fore 𝑝𝑖 pcbw-delivers (®𝑚, ®𝑐𝑣) and 𝑝𝑖 is the first correct replica
that pcbw-delivers in PCBW𝑟 , 𝑝 𝑗 already sets its ®𝑐𝑣𝑟 [𝑘] as𝑚𝑘

before 𝑝 𝑗 pcbw-delivers. Therefore, when 𝑝 𝑗 pcbw-delivers a

(®𝑚′, ®𝑐𝑣 ′), then ®𝑐𝑣 ′ [𝑘] =𝑚𝑘 . The lemma thus holds. □

TheoremA.9. (PCBW-Integrity): Every correct replica pcbw-
delivers at most once. Every correct replica pcbw-s-delivers ®𝑣
at most 𝑂 (𝑛) times. For any correct replica𝑝𝑖 :

(1) if 𝑝𝑖 pcbw-delivers (®𝑚, ®𝑐𝑣), then for any ®𝑚[𝑘] ≠ ⊥ (resp.,
®𝑐𝑣 [𝑘] ≠ ⊥), ®𝑚[𝑘] (resp., ®𝑐𝑣 [𝑘]) was previously pcbw-broadcast
by replica 𝑝𝑘 .

(2) if 𝑝𝑖 pcbw-s-delivers ®𝑣 , then for any ®𝑣 [𝑘] ≠ ⊥, ®𝑣 [𝑘] was
previously pcbw-broadcast by replica 𝑝𝑘 .

Proof. For any PCBW instance PCBW𝑟 , the controlling pro-

cedure returns only once. Therefore, every correct replica

pcbw-delivers at most once. From the update procedure, each

correct replica 𝑝𝑖 pcbw-s-delivers ®𝑣 for epoch 𝑟 only after

𝑝𝑖 sets s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑘] as a non-⊥ value for some 𝑘 ∈ [1, 𝑛].
Note that once 𝑝𝑖 sets its s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑘] to a non-⊥ value, 𝑝𝑖
does not change s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑘] anymore. As |s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 | = 𝑛,

𝑝𝑖 pcbw-s-delivers ®𝑣 at most 𝑂 (𝑛) times.

The correctness of property (1) follows from Lemma A.4

and the correctness of property (2) follows from Lemma A.1.

This completes the proof. □

Theorem A.10. (PCBW-Termination): In PCBW𝑟 , if every

correct replica pcbw-broadcasts, every correct replica eventu-

ally pcbw-delivers some values.

Proof. If every correct replica pcbw-broadcasts, each correct

replica 𝑝𝑖 will eventually receive 𝑛 − 𝑓 (Propose) messages.

We now prove that every correct replica 𝑝𝑖 eventually pcbw-

delivers some values. According to our protocol in Figure 11,

𝑝𝑖 pcbw-delivers some values if there exists a set 𝑆 consisting

of at least 2𝑓 +1 replicas such that for any 𝑝𝑘 ∈ 𝑆 , ®𝑚𝑟 [𝑘] ≠ ⊥.
In the following, we prove that for each correct replica 𝑝𝑖 ,

eventually ®𝑚𝑟 [𝑘] ≠ ⊥ for any 𝑝𝑘 ∈ 𝐶 . As |𝐶 | ≥ 2𝑓 + 1, 𝑝𝑖
eventually pcbw-delivers some values.

First note that every correct replica 𝑝𝑖 eventually receives

the (Propose) messages from any replicas in𝐶 . In our proto-

col, after 𝑝𝑖 receives the (Propose, 𝑟 , 𝑘,𝑚𝑘 , ∗, ∗) message from

𝑝𝑘 ∈ 𝐶 , 𝑝𝑖 sets s-𝑜𝑢𝑡𝑝𝑢𝑡𝑟 [𝑘] as𝑚𝑘 and includes echo(𝑟, 𝑘,𝑚𝑘)
in its 𝐸𝑉 . The 𝐸𝑉 vector is included in the (Propose) mes-

sage in some epoch 𝑟 ′′ > 𝑟 . Therefore, every correct replica

in 𝐶 eventually receives the proposed messages for epoch 𝑟

from every other replica in𝐶 , includes them in its 𝐸𝑉 param-

eters, and then broadcasts 𝐸𝑉 to all replicas. Eventually, for

any 𝑝𝑘 ∈ 𝐶 , 𝑝𝑖 sets ®𝑐𝑣𝑟 [𝑘] as𝑚𝑘 , where𝑚𝑘 is proposed by 𝑝𝑘
in epoch 𝑟 . Then 𝑝𝑖 includes confirm(𝑟, 𝑘,𝑚𝑘) in its𝐶𝑉 and

broadcasts𝐶𝑉 in a (Propose) message in some epoch 𝑟 ∗ > 𝑟 .

Similarly, every correct replica in 𝐶 eventually receives the

proposed messages for epoch 𝑟 ∗ from every other replica in

𝐶 , then 𝑝𝑖 eventually sets its ®𝑚𝑟 [𝑘] as a non-⊥ value for any

𝑝𝑘 ∈ 𝐶 . Therefore, the controlling procedure returns 1 at

any correct replica 𝑝𝑖 and 𝑝𝑖 eventually pcbw-delivers some

values. □

A.2 Proof of SQ
Lemma A.11. In epoch 𝑟 , if Election(r) returns 𝑘 and a cor-

rect replica 𝑝𝑖 mba-proposes𝑚 forMBA𝑟 where𝑚 ≠ ⊥, then
𝑚 was a-broadcast by 𝑝𝑘 for epoch 𝑟 .

Proof. Every correct replica 𝑝𝑖 mba-proposes𝑚 if one of the

three cases occurs: (1) 𝑝𝑖 has pcbw-delivered (®𝑚, ®𝑐𝑣) and
®𝑐𝑣 [𝑘] =𝑚; (2) 𝑝𝑖 has received 𝑓 + 1 (Send, 𝑟 , ∗,𝑚) messages;

(3) 𝑝𝑖 has pcbw-s-delivers 𝑣𝑟 such that ®𝑣𝑟 [𝑘] = 𝑚. We show

that in any of the three cases,𝑚 was a-broadcast by 𝑝𝑘 .

− Case 1: In this case, the integrity property (1) of PCBW

ensures that𝑚 was pcbw-broadcast by 𝑝𝑘 . As every replica

pcbw-broadcasts its a-broadcast value,𝑚 was a-broadcast

by 𝑝𝑘 in epoch 𝑟 .

− Case 2: Among the 𝑓 + 1 (Send, 𝑟 , ∗,𝑚) messages, at least

one was sent by a correct replica. The correct replica must

have pcbw-delivered (®𝑚𝑟 , ®𝑐𝑣𝑟) such that ®𝑐𝑣𝑟 [𝑘] =𝑚. The

integrity property (1) of PCBW guarantees that𝑚 was

a-broadcast by 𝑝𝑘 in epoch 𝑟 .

− Case 3: The integrity property (2) of PCBW guarantees

that𝑚 was a-broadcast by 𝑝𝑘 in epoch 𝑟 .

□

Lemma A.12. In epoch 𝑟 , if Election(r) returns 𝑘 and a

correct replica 𝑝𝑖 broadcasts a (Send, 𝑟 , 𝑖,𝑚) message in epoch

𝑟 , then every correct replica eventually mba-proposes a value

or ⊥ for MBA𝑟 .

Proof. We show that condition 3) in the MBA phase is even-

tually satisfied. As 𝑝𝑖 broadcasts a (Send, 𝑟 , 𝑖,𝑚) message for

epoch 𝑟 , 𝑝𝑖 must have pcbw-delivered (®𝑚𝑟 , ®𝑐𝑣𝑟) such that

17

®𝑐𝑣𝑟 [𝑘] =𝑚. Due to the weak agreement I property of PCBW,

every correct replica eventually pcbw-s-delivers some value

in PCBW𝑟 . Therefore, condition 3) in the MBA phase for

epoch 𝑟 will eventually be satisfied. □

LemmaA.13. In epoch 𝑟 , assuming that the Election(r) func-
tion is queried by at least one correct replica and 𝑝𝑖 is the

first correct replica that queries Election(r). If Election(r) re-
turns 𝑘 and 𝑝𝑖 pcbw-delivers (®𝑚𝑟 , ®𝑐𝑣𝑟) in PCBW𝑟 such that

®𝑚𝑟 [𝑘] = 𝑚 ≠ ⊥, then all correct replicas mba-propose𝑚 for

MBA𝑟 .

Proof. Our proof consists of three parts. First, we show that

every correct replica mba-proposes some value for MBA𝑟 .

Second, we show that no correct replicas mba-proposes ⊥.
Last, we show that every correct replica mba-proposes𝑚.

We begin with the first part. Since Election(r) returns 𝑘
and 𝑝𝑖 pcbw-delivers (®𝑚𝑟 , ®𝑐𝑣𝑟) such that ®𝑚𝑟 [𝑘] = 𝑚 ≠ ⊥,
in the exchange phase, 𝑝𝑖 will broadcast (Send, 𝑟 , 𝑖,𝑚). By

Lemma A.12, every correct replica eventually mba-proposes

some value for MBA𝑟 .

We now show that no correct replica mba-proposes ⊥. As
𝑝𝑖 is the first correct replica that queries Election(r), 𝑝𝑖 is also
the first replica that pcbw-delivers a pair of output (®𝑚, ®𝑐𝑣) in
PCBW𝑟 where ®𝑚𝑟 [𝑘] =𝑚 ≠ ⊥. Due to the weak agreement

II and the termination properties of PCBW, there exists a set

𝐼 of 𝑓 + 1 correct replicas such that for any 𝑝 𝑗 ∈ 𝐼 , 𝑝 𝑗 pcbw-

delivers (®𝑚′, ®𝑐𝑣 ′) where ®𝑐𝑣 ′ [𝑘] = 𝑚. Hence, at least 𝑓 + 1
correct replicas will broadcast (Send, 𝑟 , ∗,𝑚) in the exchange

phase, and condition 2) for MBA𝑟 will never be satisfied.

Thus, no correct replica mba-proposes ⊥ forMBA𝑟 .

Last, from Lemma A.11, if a correct replica mba-proposes

𝑚,𝑚 is a-broadcast by 𝑝𝑘 . As 𝑝𝑘 is correct, all correct replicas

mba-propose the same value𝑚. □

Lemma A.14. In epoch 𝑟 , any correct replica eventually mba-

decides for MBA𝑟 .

Proof. Note there are 𝑛 − 𝑓 correct replicas and each correct

replica sends a (Propose) message in each epoch 𝑟 . Due

to the termination property of PCBW, every correct replica

eventually pcbw-delivers some values.

Then according to our protocol, correct replicas will query

the Election(r) function. After 𝑘 is returned by Election(r),
every correct replica broadcasts 𝐶𝑉𝑟 [𝑘] in its (Send) mes-

sages. We now show that every correct replica mba-proposes

some value.

After obtaining an output for Election(r), we distinguish
two cases: 1) at least one correct replica𝑝𝑖 broadcasts (Send, 𝑟 , 𝑖,𝑚);

2) every correct replica broadcasts (Send, 𝑟 , ∗,⊥) for epoch 𝑟 .
We show that every correct replica eventually mba-proposes

so eventually every correct replica mba-decides according to

the termination property of MBA.

− Case 1: In this case, according to Lemma A.12, any correct

replica eventually mba-proposes a value (or ⊥) for MBA𝑟 .

− Case 2: In this case, after receiving all the (Send)messages

from correct replicas for epoch 𝑟 , condition 2) in the MBA

phase will eventually be satisfied. Thus, every correct

replica will mba-proposes some value for MBA𝑟 .

□

Lemma A.15. In epoch 𝑟 , if a correct replica 𝑝𝑖 a-delivers𝑚

and another correct replica 𝑝 𝑗 a-delivers𝑚
′
, then𝑚 =𝑚′.

Proof. We prove the lemma by contradiction. Assume, on

the contrary, that𝑚 ≠ 𝑚′. According to our protocol, if 𝑝𝑖
a-delivers𝑚, it mba-decides𝑚 in MBA𝑟 . If 𝑝 𝑗 a-delivers𝑚

′
,

it mba-decides 𝑚′ ≠ 𝑚 in MBA𝑟 , violating the agreement

property of MBA. Therefore, it holds that𝑚 =𝑚′. □

Theorem A.16 (ABC-Agreement). If any correct replica a-

delivers a message𝑚, then every correct replica a-delivers𝑚.

Proof. If a correct replica a-delivers a message in epoch 𝑟 ,

then according to Lemma A.14, any correct replica will even-

tually mba-decide forMBA𝑟 and then a-deliver some value.

Moreover, if a correct replica 𝑝𝑖 a-delivers a message𝑚

in epoch 𝑟 , it has mba-decided 𝑚 in MBA𝑟 . The termination

and agreement properties of MBA thus guarantee that any

correct replica mba-decides𝑚 and then a-delivers𝑚. □

Theorem A.17 (ABC-Total order). If a correct replica a-

delivers a message𝑚 before a-delivering𝑚′, then no correct

replica a-delivers a message𝑚′ without first a-delivering𝑚.

Proof. We prove the theorem by contradiction. Every correct

replica a-delivers the messages according to the sequence of

epoch numbers.We assume that a correct replica 𝑝𝑖 a-delivers

𝑚 in epoch 𝑟1 and𝑚
′
in epoch 𝑟2 where 𝑟1 < 𝑟2. Meanwhile,

another correct replica 𝑝 𝑗 a-delivers𝑚
′
in epoch 𝑟3 and𝑚 in

epoch 𝑟4 where 𝑟3 < 𝑟4. We consider two cases: (1) 𝑟1 < 𝑟4
or 𝑟1 > 𝑟4; (2) 𝑟1 = 𝑟4.

− Case 1: Without loss of generality, assume that 𝑟1 < 𝑟4. 𝑝𝑖
a-delivers𝑚 in epoch 𝑟1 (andmba-decides𝑚 inMBA𝑟1) and

𝑝 𝑗 a-delivers𝑚 in epoch 𝑟4. Since 𝑝 𝑗 a-delivers𝑚 in epoch

𝑟4, it has not previously a-delivered𝑚 in any prior epochs

(due to the uniqueness of messages). Therefore, it must

have a-delivered 𝑚′′ in epoch 𝑟1 such that𝑚′′ ≠ 𝑚 and

mba-decided 𝑚′′ inMBA𝑟1 , a violation of the agreement

property of MBA.

− Case 2: Since 𝑟1 < 𝑟2 and 𝑟3 < 𝑟4, we know that 𝑟3 < 𝑟2.

Note that 𝑝𝑖 a-delivers𝑚
′
in epoch 𝑟2 and 𝑝 𝑗 a-delivers𝑚

′

in epoch 𝑟3. Similar to case (1), there is a contradiction.

□

TheoremA.18 (ABC-Integrity). Every correct replica a-delivers

a message at most once. If a correct replica a-delivers a message

𝑚, then𝑚 was previously a-broadcast by some replica.

Proof. We first prove the first part. Every correct replica a-

delivers a message after it mba-decides. According to the

18

integrity property of MBA, every correct replica a-delivers a

message once.

We now prove the second part. According to our pro-

tocol, if a correct replica a-delivers a message 𝑚 in epoch

𝑟 , then MBA𝑟 outputs 𝑚. The non-intrusion property of

MBA ensures that𝑚 is mba-proposed by a correct replica.

By Lemma A.11, 𝑚 was previously a-broadcast by some

replica. □

Lemma A.19. With a probability of at least 1/3, in every

epoch 𝑟 correct replicas a-deliver a value a-broadcast by a

correct replica.

Proof. According to Lemma A.10, for any 𝑟 , every correct

replica eventually pcbw-delivers some values and queries the

Election(r) function. Let 𝑝𝑖 denote the first correct replica
that pcbw-delivers (®𝑚, ®𝑐𝑣) and then queries Election(r).When

𝑝𝑖 queries Election(r), ®𝑚 has at least 2𝑓 + 1 non-⊥ values.

Let the replicas that propose these values in PCBW𝑟 be 𝑆 .

The probability that 𝑝𝑘 is a correct replica and 𝑝𝑘 ∈ 𝑆 is at

least 1/3, as

Pr[Election(r) ∈ 𝑆 ∩𝐶] ≥ 2𝑓 + 1 + 2𝑓 + 1 − (3𝑓 + 1)
𝑛

>
1

3

.

(1)

Additionally, according to Lemma A.13, if 𝑝𝑘 is a correct

replica and 𝑝𝑘 ∈ 𝑆 , all correct replicasmba-propose the value

proposed by 𝑝𝑘 . Then the validity property of MBA ensures

that any correct replica a-delivers a value proposed by 𝑝𝑘 in

epoch 𝑟 . Therefore, the correct replicas contained in 𝑆 form

a key set.

Let suc be the event that correct replicas a-deliver a value

a-broadcast by a correct replica in epoch 𝑟 . We have the

following:

Pr[suc] = Pr[suc|Election(r) ∈ 𝑆 ∩𝐶]Pr[Election(r) ∈ 𝑆 ∩𝐶]
+ Pr[suc|Election(r) ∈ 𝑆 ∩𝐶]Pr[Election(r) ∈ 𝑆 ∩𝐶]
≥ Pr[suc|Election(r) ∈ 𝑆 ∩𝐶]Pr[Election(r) ∈ 𝑆 ∩𝐶]

= Pr[Election(r) ∈ 𝑆 ∩𝐶] > 1

3

.

(2)

□

Thus, the probability that the success event occurs is at

least 1/3.

Lemma A.20 (Efficiency). If a correct replica a-delivers a

message𝑚, the probability that𝑚 is either ⊥ or a-broadcast

by a faulty replica is at most 2/3, i.e., SQ achieves 𝑂 (1) time

complexity.

Proof. According to Lemma A.19, for each epoch 𝑟 , with

a probability of at least 1/3, a correct replica a-delivers a

message𝑚 a-broadcast by a correct replica. Therefore, the

probability that 𝑚 is either ⊥ or a-broadcast by a faulty

replica is at most 2/3. □

Theorem A.21 (Liveness). If a correct replica a-broadcasts a

message𝑚, then it eventually a-delivers𝑚.

Proof. If a correct replica 𝑝𝑖 a-broadcasts𝑚 in epoch 𝑟 , then it

pcbw-broadcasts𝑚 in PCBW𝑟 . The validity property ensures

that every correct replica eventually pcbw-s-delivers ®𝑣 such
that ®𝑣 [𝑖] =𝑚. Furthermore, if a correct replica pcbw-delivers

(®𝑚, ®𝑐𝑚) such that ®𝑚[𝑖] = ®𝑐𝑚[𝑖] ≠ ⊥, ®𝑚[𝑖] = ®𝑐𝑚[𝑖] =𝑚.

Before 𝑚 is a-delivered, any correct replica stores 𝑚 in

its echo buffer in an epoch 𝑟1 ≥ 𝑟 . Recall that there exists

a predefined liveness parameter 𝑙𝑝 (epoch number). If all

the messages proposed in epochs lower than 𝑟 have been

a-delivered and𝑚 has not been a-delivered by epoch 𝑟 + 𝑙𝑝 ,
every replica that stores𝑚 in its echo buffer will propose𝑚.

We now prove the theorem by induction on epoch number

𝑟 . We start from 𝑟 = 1. Let 𝑟 ∗ be𝑚𝑎𝑥{𝑟 + 𝑙𝑝, 𝑟1}. Before𝑚 is

a-delivered, all correct replicas will a-broadcast 𝑚 in epochs

higher than 𝑟 ∗. According to Lemma A.20, 𝑝𝑖 will eventually

a-deliver 𝑚 in some epoch.

Assume the theorem holds from 𝑟 = 1 to 𝑟 = 𝑟 − 1. Then
any message proposed in an epoch lower than 𝑟 is eventually

a-delivered. Assume the messages proposed in epoch 1 to

epoch 𝑟 − 1 have been a-delivered by a correct replica when

it is in epoch 𝑟2. Let 𝑟
∗
be 𝑚𝑎𝑥{𝑟 + 𝑙𝑝, 𝑟1, 𝑟2}. Before 𝑚 is

a-delivered, all correct replicas will a-broadcast 𝑚 in epochs

larger than 𝑟 ∗. According to Lemma A.20, 𝑝𝑖 will eventually

a-deliver 𝑚 in some epoch.

□

Theorem A.22 (Complexity). SQ achieves 𝑂 (𝑛2) message

complexity,𝑂 (𝐿𝑛3) communication complexity, and𝑂 (1) time

complexity.

Proof. The first three phases in SQ all have 𝑂 (𝑛2) messages.

As the MBA phase can be also realized using 𝑂 (𝑛2) mes-

sages [47], SQ has 𝑂 (𝑛2) messages.

We now analyze the communication complexity. Our PCBW

construction has𝑂 (𝐿𝑛3) communication because the (Propose)
message includes a proposed value (length 𝐿), 𝐸𝑉 (echo val-

ues), and 𝐶𝑉 (confirmed values). For 𝐸𝑉 , each 𝐸𝑉 [𝑘] for
𝑘 ∈ [1, 𝑛] contains a constant number of 𝐿-bit values. Hence,

the communication of the propose phase is 𝑂 (𝐿𝑛3). For the
election phase, assuming a Rabin dealer, the communica-

tion complexity is 𝑂 (𝑛 log𝑛). In the exchange phase, each

(Send) message includes at most two proposed messages

so the communication complexity is 𝑂 (𝐿𝑛2). In the MBA

phase, as the input to MBA is either a proposed message or

⊥, the MBA phase has 𝑂 (𝐿𝑛2) communication. Therefore,

SQ achieves 𝑂 (𝐿𝑛3) communication complexity. Finally, SQ

achieves 𝑂 (1) time complexity according to Lemma A.19.

□
19

B Implementation-Level PCBW
Construction

We show the pseudocode of PCBW𝑟 with implementatio-

level details in Figure 11.

Notations. We use ∗ to denote any value. We use | | to de-

note the concatenation of values. For instance,𝑚 | |∗ repre-
sents𝑚 concatenating any value. For any matrix𝑀𝑚×𝑛

and

𝑖 ∈ [1,𝑚], we use𝑀 [𝑖] [−] to denote the 𝑖-th row of𝑀 , rep-

resented as a vector. For example, let ®𝑚 = 𝑀 [𝑖] [−]. Then
| ®𝑚 | = 𝑛 and ®𝑚[𝑗] = 𝑀 [𝑖] [𝑗] for any 𝑗 ∈ [1, 𝑛]. To facili-

tate the exposition of the protocol, we also introduce the

following two functions.

Definition B.1 (Col_Sum function). For any matrix𝑀𝑚×𝑛

of bits, if 𝑘 ∈ [1, 𝑛], then Col_Sum(𝑀,𝑘) = Σ𝑚𝑖=1𝑀 [𝑖] [𝑘].
Namely, Col_Sum(𝑀,𝑘) returns the sum of all the elements

in the 𝑘𝑡ℎ column of𝑀 .

DefinitionB.2 (Col_Comp function). For anymatrix𝑀𝑚×𝑛
,

the function Col_Comp(𝑀,𝑘, 𝑣) returns the number of ele-

ments in the𝑘𝑡ℎ column of𝑀 that have value 𝑣 , i.e., Σ𝑚𝑖=1 |𝑀 [𝑖] [𝑘] =
𝑣 |.

Initialization. Each replica 𝑝𝑖 initializes three parameters: 𝐸,

𝐸𝑉 , and 𝐿𝐸. Here, the values stored in 𝐸𝑉 are also called echo

values. Moreover, for each instance PCBW𝑟 , 𝑝𝑖 initializes

three parameters:𝑉𝑟 ,𝑀𝑟 , and𝐶𝑉𝑟 . The three parameters will

be cleared when PCBW𝑟 terminates. We call each element

in 𝐶𝑉𝑟 a confirmed value and𝑀𝑟 the state matrix.

Broadcast phase and update procedure. In PCBW𝑟 , each

replica𝑝𝑖 pcbw-broadcasts𝑚𝑖 by broadcasting a (Propose, 𝑟 , 𝑖,𝑚𝑖 , 𝐸, 𝐸𝑉 , 𝐿𝐸)

message to all replicas. Upon receiving (Propose, 𝑟 , 𝑗,𝑚 𝑗 , 𝐸
𝑗 , 𝐸𝑉 𝑗 , 𝐿𝐸 𝑗

)

message from 𝑝 𝑗 , 𝑝𝑖 starts the update procedure. Below we

describe the intuition behind each step in the procedure with

examples on how the local parameters are updated.

− (i) State update according to received values.𝑉𝑟 serves
two purposes: the 𝑖-th row stores the pcbw-broadcast mes-

sages 𝑝𝑖 directly receives from the replicas; the 𝑗-th row

stores the messages 𝑝 𝑗 claims to have received. We call

the values each replica claims to have received echo values.

Informally speaking, echo values serve the same purpose

as the values carried in the (Echo) messages in our CBW

construction. 𝑝𝑖 stores its echo values (the pcbw-broadcast

messages it receives) in 𝐸𝑉 .

� Example (Figure 12a). We show an example where 𝑝𝑖
updates the parameters using𝑚 𝑗 as input. 𝑝𝑖 sets𝑉𝑟 [𝑖] [𝑗]
as𝑚 𝑗 , and pcbw-s-delivers vector 𝑉𝑟 [𝑖] [−] in PCBW𝑟 . 𝑝𝑖
also sets 𝐸𝑉 [𝑗] as 𝐸𝑉 [𝑗] | |𝑚 𝑗 and 𝐸 [𝑗] [2] as 𝑟 .

− (ii) State update according to received echo values.
This step updates the 𝑗-th row in𝑉 according to the echo

values 𝐸𝑉 𝑗
(and the corresponding epoch numbers in 𝐸 𝑗

).

Note that the echo values in 𝐸𝑉 𝑗
are values 𝑝 𝑗 receives

in prior PCBW instances. Accordingly, for any PCBW𝑒

where 𝑒 < 𝑟 , if 𝑝𝑖 has seen 𝑓 + 1 matching echo values𝑚

(in column 𝑘 of 𝑉𝑒) corresponding to some replica 𝑝𝑘 , 𝑝𝑖
pcbw-s-delivers𝑚. Informally speaking, this matches the

cbw-s-deliver event in CBW𝑒,𝑘 .

� Example (Figure 12b). In the example, based on row 1

of 𝐸 𝑗
, 𝑒𝑘,1 = 𝑟 − 2 and 𝑒𝑘,2 = 𝑟 . Also, 𝐸𝑉 𝑗 [1] can be parsed

as𝑚𝑟−1,1 | |𝑚𝑟,1. 𝑝𝑖 sets 𝑉𝑟−1 [𝑗] [1] as𝑚𝑟−1,1 and 𝑉𝑟 [𝑗] [1]
as 𝑚𝑟,1. Then there exists a set 𝑆 of 𝑓 + 1 replicas (i.e.,

𝑝1 and 𝑝 𝑗) such that for any 𝑝 𝑗 ′ ∈ 𝑆 , 𝑉𝑟 [𝑗 ′] [𝑘] = 𝑚2. As

𝑉𝑟 [𝑖] [𝑘] = ⊥, 𝑝𝑖 sets 𝑉𝑟 [𝑖] [𝑘] as𝑚2.

− (iii) State refresh. This step further checks whether any

value(s) in prior PCBW instances can be confirmed, so𝐶𝑉

is updated. In particular, given PCBW𝑟 ′′ where 𝑟
′′ < 𝑟 ,

if there exist 2𝑓 + 1 matching values𝑚 in 𝑉𝑟 ′′ in column

𝑘 , 𝑚 is confirmed and 𝐶𝑉𝑟 ′′ [𝑘] is updated accordingly.

Informally speaking, thismatches the cbw-broadcast event

in CBW𝑟 ′′,𝑘 . We further update the state matrix 𝑀 and

use𝑀 to count the number of confirmed values for each

(𝑟 ′′, 𝑘) pair.
� Example (Figure 12c). Based on columns 1 and 2 of the

𝑉𝑟 ′′ matrix, values𝑚1 and𝑚2 are confirmed. Then 𝑝𝑖 sets

𝐶𝑉𝑟 ′′ [1] as𝑚1 and 𝐶𝑉𝑟 ′′ [2] as𝑚2. 𝑝𝑖 also sets 𝑀𝑟 ′′ [𝑖] [1]
and 𝑀𝑟 ′′ [𝑖] [2] as 1. Moreover, since 𝐿𝐸 [1] = 𝑟 ′′ − 1, 𝑝𝑖
sets 𝐿𝐸 [1] as 𝑟 ′′. For 𝐿𝐸 [2], as 𝐿𝐸 [2] = 𝑟 ′′ − 2, no value

from 𝑝2 for PCBW𝑟 ′′−1 has been confirmed by 𝑝𝑖 yet, so

𝑝𝑖 does not update 𝐿𝐸 [2].
− (iv) State matrix update. Finally, the state matrix𝑀𝑟 ′′

for each PCBW𝑟 ′′ (where 𝑟
′′ < 𝑟) is updated. With the

help of the state matrix, we can count the number of

replicas that have confirmed each value. As discussed in

Sec. 3.2, once 2𝑓 + 1 replicas have confirmed a value, the

value is committed. Our ultimate goal is to ensure that

2𝑓 + 1 values have been committed before any correct

replica pcbw-delivers.

� Example (Figure 12d). For each row 𝑘 = 1, 2, 3, we have

𝐿𝐸 𝑗 [𝑘] = 𝑟 . Then 𝑝𝑖 sets 𝑀𝑟 ′′ [𝑗] [𝑘] as 1 for any 𝑟 ′′ ∈
[𝑟 ′, 𝑟]. For 𝑘 = 𝑛, as 𝐿𝐸 𝑗 [𝑘] = 𝑟 − 1, 𝑝𝑖 sets𝑀𝑟 ′′ [𝑗] [𝑘] as
1 for 𝑟 ′′ ∈ [𝑟 ′, 𝑟 − 1].

The controlling procedure. If PCBW𝑟 has not termi-

nated yet, every time replica 𝑝𝑖 modifies the local parame-

ters 𝑉𝑟 ,𝐶𝑉𝑟 , and𝑀𝑟 in the update procedure, 𝑝𝑖 also checks

whether the controlling procedure is satisfied—after which

𝑝𝑖 pcbw-delivers (®𝑚𝑟 , ®𝑐𝑣𝑟) in PCBW𝑟 and ®𝑚 contains at least

𝑛 − 𝑓 non-⊥ values.

The rule of the controlling procedure is specified as fol-

lows: there exists a set 𝑆 of at least 2𝑓 + 1 replicas such that

for any 𝑝𝑘 ∈ 𝑆 , column 𝑘 in 𝑀𝑟 has at least 2𝑓 + 1 1’s and
𝑀𝑟 [𝑖] [𝑘] = 1 (indicating the corresponding value 𝐶𝑉𝑟 [𝑘]
is committed). Then 𝑝𝑖 pcbw-delivers (®𝑚𝑟 , ®𝑐𝑣𝑟) such that ®𝑐𝑣𝑟
contains all the confirmed value in 𝐶𝑉𝑟 , and ®𝑚 contains all

the committed values. Here, ®𝑚𝑟 and ®𝑐𝑣𝑟 are two vectors with
𝑛 components. For any 𝑘 ∈ [1, 𝑛], if 𝑝𝑘 ∈ 𝑆 , set both ®𝑚𝑟 [𝑘]
and ®𝑐𝑣𝑟 [𝑘] as 𝐶𝑉𝑟 [𝑘]. Otherwise, set ®𝑐𝑣𝑟 [𝑘] as 𝐶𝑉𝑟 [𝑘] and
®𝑚𝑟 as ⊥.

20

Initialization:
− 𝐸 ← [⊥]𝑛×2. Each element of 𝐸 stores a PCBW instance id.

− 𝐸𝑉 ← [⊥]𝑛 . Each element of 𝐸𝑉 stores a constant number of pcbw-broadcast messages.

− 𝐿𝐸 ← [⊥]𝑛 . Each element of 𝐿𝐸 stores a PCBW instance id.

− Initialize the following parameters for PCBW𝑟 :

− 𝑉𝑟 ← [⊥]𝑛×𝑛 . Each element of 𝑉𝑟 is a pcbw-broadcast message.

− 𝐶𝑉𝑟 ← [⊥]𝑛 . Each element of 𝐶𝑉𝑟 is a confirmed value.

− 𝑀𝑟 ← [⊥]𝑛×𝑛 . Each element of𝑀𝑟 is a binary value.

Let confirm(𝑟, 𝑘,𝑚𝑘) be the following predicate: confirm(𝑟, 𝑘,𝑚𝑘)≡ (𝑉𝑟 [𝑖] [𝑘] = 𝑚𝑘 ∧ 𝑚𝑘 ≠ ⊥ ∧
Col_Comp(𝑉𝑟 , 𝑘,𝑚𝑘) ≥ 2𝑓 + 1)

− (Broadcast) Upon pcbw-broadcast(𝑚𝑖) in PCBW𝑟 :

Broadcast (Propose, 𝑟 , 𝑖,𝑚𝑖 , 𝐸, 𝐸𝑉 , 𝐿𝐸). For every 𝑘 ∈ [1, 𝑛], set 𝐸 [𝑘] [1] as 𝐸 [𝑘] [2], and set 𝐸𝑉 [𝑘] as ⊥.
− Upon receiving (Propose, 𝑟 , 𝑗,𝑚 𝑗 , 𝐸

𝑗 , 𝐸𝑉 𝑗 , 𝐿𝐸 𝑗
) from 𝑝 𝑗 :

Let PCBW𝑟 ′ be the instance s.t. every PCBW𝑟 ′′ with 𝑟
′′ < 𝑟 ′ has completed. If 𝑉𝑟−1 [𝑖] [𝑗] ≠ ⊥ and 𝑉𝑟 [𝑖] [𝑗] = ⊥,

then start the update procedure for (Propose, 𝑟 , 𝑗,𝑚 𝑗 , 𝐸
𝑗 , 𝐸𝑉 𝑗 , 𝐿𝐸 𝑗

) as follows:

(State update according to received values)
− Set 𝑉𝑟 [𝑖] [𝑗] as𝑚 𝑗 and pcbw-s-deliver 𝑉𝑟 [𝑖] [−] in PCBW𝑟 .

− Set 𝐸𝑉 [𝑗] as 𝐸𝑉 [𝑗] | |𝑚 𝑗 , set 𝐸 [𝑗] [2] as 𝑟 .
(State update according to received echo values)
For 𝑘 ∈ [1, 𝑛], let 𝑒𝑘,1 be 𝐸 𝑗 [𝑘] [1] and 𝑒𝑘,2 be 𝐸 𝑗 [𝑘] [2]:
− Parse 𝐸𝑉 𝑗 [𝑘] as a set of values𝑚𝑒𝑘,1+1 | |...| |𝑚𝑒𝑘,2 .

− For every 𝑒 ∈ [𝑒𝑘,1 + 1, 𝑒𝑘,2], if 𝑉𝑒 [𝑗] [𝑘] = ⊥, then:
• set 𝑉𝑒 [𝑗] [𝑘] as𝑚𝑒 .

• if𝑉𝑒 [𝑖] [𝑘] = ⊥ and there exists a set 𝑆 s.t. |𝑆 | ≥ 𝑓 + 1 and for every 𝑝 𝑗 ′ ∈ 𝑆 ,𝑉𝑟 [𝑗 ′] [𝑘] =𝑚, then set𝑉𝑒 [𝑖] [𝑘]
as𝑚 and pcbw-s-deliver 𝑉𝑒 [𝑖] [−] in PCBW𝑒 .

(State refresh)
For 𝑘 ∈ [1, 𝑛], 𝑟 ′′ ∈ [𝑟 ′, 𝑟], if confirm(𝑟 ′′, 𝑘,𝑉𝑟 ′′ [𝑖] [𝑘])= 1, then

− Set 𝐶𝑉𝑟 ′′ [𝑘] as 𝑉𝑟 ′′ [𝑖] [𝑘] and set𝑀𝑟 ′′ [𝑖] [𝑘] as 1.
− Set 𝐿𝐸 [𝑘] as the largest 𝑟 ∗ s.t. for every 𝑟 ′′ ∈ [𝑟 ′, 𝑟 ∗],𝑀𝑟 ′′ [𝑖] [𝑘] = 1.

(State matrix update)
For 𝑘 ∈ [1, 𝑛], let 𝑒𝑘 denote 𝐿𝐸 𝑗 [𝑘]: for any𝑟 ′′ ∈ [𝑟 ′, 𝑒𝑘], set𝑀𝑟 ′′[𝑗] [𝑘] as1.

Controlling procedure for PCBW𝑟

− If there exists a set 𝑆 of replicas s.t. |𝑆 | ≥ 2𝑓 + 1 and for every 𝑝𝑘 ∈ 𝑆 , Col_Sum(𝑀𝑟 , 𝑘) ≥ 2𝑓 + 1 and𝑀𝑟 [𝑖] [𝑘] = 1,

then the controlling procedure returns 1 and 𝑝𝑖 pcbw-delivers (®𝑚𝑟 , ®𝑐𝑣𝑟) in PCBW𝑟 where:

− for any 𝑘 ∈ [1, 𝑛], if 𝑝𝑘 ∈𝑆 , then set both ®𝑚𝑟 [𝑘] and ®𝑐𝑣𝑟 [𝑘] as 𝐶𝑉𝑟 [𝑘]; otherwise set ®𝑐𝑣𝑟 [𝑘] as 𝐶𝑉𝑟 [𝑘] and set

®𝑚𝑟 [𝑘] as ⊥.

Figure 11. The PCBW𝑟 protocol at replica 𝑝𝑖 . PCBW events are highlighted in blue.

C Implementation-Level Hash-based
PCBW Construction

We present the pseudocode of the hash variant of PCBW in

Figure 13. Here we highlight the changes from Figure 11 to

Figure 13.

First, we modify the parameters. We re-define the 𝑉𝑟 pa-

rameter: 𝑉𝑟 is now a vector instead of a matrix that stores

only the proposedmessage directly received from each replica.

For example, 𝑉𝑟 [𝑘] stores the proposed message received

from 𝑝𝑘 in epoch 𝑟 . Moreover, we define a new vector 𝐸𝐻 for

storing hashes of the received messages (to replace 𝐸𝑉). We

also introduce a new parameter 𝐻𝑟 , an 𝑛 × 𝑛 matrix storing

hashes.

Among all the parameters in this variant, the 𝐸, 𝐸𝐻 , and

𝐿𝐸 parameters are initialized at the beginning of the protocol.

Meanwhile, for each PCBW𝑟 , each replica initializes the 𝑉𝑟 ,

21

Vr

i

Vr
 EV EVE E

j
r’ r-1

1

n

1 2

j r’ r

1

n

1 2

j evj’

1

n

1

j

j

mj

1

n

1 n

i

j

1

n

1 n

evj

1

n

1

j evj’=evj||mj

Vr [i][-]

(a) State update according to received values.

E
j =

j
r-1 r

1

n

1 2

j

r-2 r

r-2 r

EV
j =

ev11

n

1

ev2

ev3

ev4

pv1
 = m(r-1,1) || m(r,1)

pv2
 = m(r,2)

pv3
 = m(r-1,3) || m(r,3)

pv4
 = m(r-1,4) || m(r,4)

:

for Vr-1
 for Vr

j

r-2 r

Vr-1

j

1

n

1 n

 mj

j

j

1

n

1 n

Vr

Vr

j

1

n

1 n

m4m1 m2 m3

Vr-1

m4m1 mj m3j

1

n

1 n

m1
 = m(r-1,1)

m3
 = m(r-1,3)

m4
 = m(r-1,4)

m1
 = m(r,1)

m3
 = m(r,3)

m4
 = m(r,4)

m2
 = m(r,2)

j

i

m2m2

i m2

Vr [i][-]

k

(b) State update according to received echo values.

:

Mr’’

i 1

1

n

1 n

1 0 0

2

1

n

1

CVr’’

2

Mr’’

i 0

1

n

1 n

0 0 0

2

i

1

n

1 n

Vr’’ =

m1

m1

m1

m2

m2

m2

m2

m3

m3

m3‘

m4

m4

m4’

2

1

n

1

r’’-2

r’’

LE

2

1

n

1

r’’-1

LE

2 r’’-2

1

n

1

m2

m1

CVr’’

2

(c) State refresh.

Mr’’

j 0

1

n

1 n

0 0 0

Mr’’

j 1

1

n

1 n

1 1 1

Mr

j 0

1

n

1 n

0 0 0

Mr

j 1

1

n

1 n

1 1 0

LE
j =

r

1

n

1

r

r

r-1

:

(d) State matrix update. We use 𝑟 ′′ to denote any epoch in [𝑟 ′, 𝑟 − 1].

Figure 12. The update procedure at replica 𝑝𝑖 upon receiving a (propose, 𝑟 , 𝑗,𝑚 𝑗 , 𝐸
𝑗 , 𝐸𝑉 𝑗 , 𝐿𝐸 𝑗

) message from 𝑝 𝑗 . In this example,

𝑗 = 2.

𝐻𝑟 , 𝑀𝑟 , and 𝐶𝑉𝑟 parameters; these parameters are cleared

only after epoch 𝑟 completes.

We explain the two new parameters 𝐸𝐻 and 𝐻𝑟 in detail

below.

• 𝐸𝐻 is an 𝑛-value vector that stores the hashes of the

proposedmessages (also called echo hashes). For𝑘 ∈ [1, 𝑛],
𝐸𝐻 [𝑘] contains a constant number of hashes. Intuitively

22

Initialization:
− 𝐸 ← [⊥]𝑛×2. Each element of 𝐸 stores a PCBW instance id.

− 𝐸𝐻 ← [⊥]𝑛 . Each element of 𝑃𝐻 stores a constant number of hashes.

− 𝐿𝐸 ← [⊥]𝑛 . Each element of 𝐿𝐸 stores a PCBW instance id.

− Initialize the following parameters for PCBW𝑟 :

− 𝑉𝑟 ← [⊥]𝑛 . Each element of 𝑉𝑟 is a proposed message from a replica.

− 𝐻𝑟 ← [⊥]𝑛×𝑛 . Each element of 𝐻𝑟 is the hash of a proposed message.

− 𝑀𝑟 ← [⊥]𝑛×𝑛 . Each element of𝑀𝑟 is one bit.

− 𝐶𝑉𝑟 ← [⊥]𝑛 . Each element of 𝐶𝑉𝑟 is a confirmed value.

Let confirm(𝑟, 𝑘,𝑚𝑘) be the following predicate: confirm(𝑟,𝑚𝑘 , 𝑘) ≡ (𝑉𝑟 [𝑘] = 𝑚𝑘 ∧ 𝑚𝑘 ≠ ⊥ ∧ 𝐻𝑟 [𝑖] [𝑘] = ℎ𝑟 ∧
Col_Comp(𝐻𝑟 , 𝑘, ℎ𝑟) ≥ 2𝑓 + 1)

− (Broadcast) Upon pcbw-broadcast(𝑚𝑖) in PCBW𝑟 : Broadcast (Propose, 𝑟 , 𝑖,𝑚𝑖 ,

𝐸, 𝐸𝐻, 𝐿𝐸) For every 𝑘 ∈ [1, 𝑛], set 𝐸 [𝑘] [1] as 𝐸 [𝑘] [2], and set 𝐸𝐻 [𝑘] as ⊥.
− Upon receiving (Propose, 𝑟 , 𝑗,𝑚 𝑗 , 𝐸

𝑗 , 𝐸𝐻 𝑗 , 𝐿𝐸 𝑗
) from 𝑝 𝑗 :

Let PCBW𝑟 ′ be the instance such that every PCBW𝑟 ′′ with 𝑟 ′′ < 𝑟 ′ has completed. If 𝑉𝑟−1 [𝑖] [𝑗] ≠ ⊥ and

𝑉𝑟 [𝑖] [𝑗] = ⊥, then start the update procedure for (Propose, 𝑟 , 𝑗,𝑚 𝑗 , 𝐸
𝑗 , 𝐸𝐻 𝑗 , 𝐿𝐸 𝑗

) as follows:

(State update according to received values)
− Set 𝑉𝑟 [𝑗] as𝑚 𝑗 and pcbw-s-deliver 𝑉𝑟 in PCBW𝑟 .

− Set 𝐻𝑟 [𝑖] [𝑗] as ℎ𝑎𝑠ℎ(𝑚 𝑗), set 𝐸𝐻 [𝑗] as 𝐸𝐻 [𝑗] | |ℎ𝑎𝑠ℎ(𝑚 𝑗), and set 𝐸 [𝑗] [2] as 𝑟 .
(State update according to received echo values)
For 𝑘 ∈ [1, 𝑛], let 𝑒𝑘,1 be 𝐸 𝑗 [𝑘] [1] and 𝑒𝑘,2 be 𝐸 𝑗 [𝑘] [2]:
− Parse 𝑃𝐻 𝑗 [𝑘] as a vector of hashes ℎ𝑒𝑘,1+1 | |...| |ℎ𝑒𝑘,2 .
− For every 𝑒 ∈ [𝑒𝑘,1 + 1, 𝑒𝑘,2], if 𝐻𝑒 [𝑗] [𝑘] = ⊥, then:
• 𝐻𝑒 [𝑗] [𝑘] as ℎ𝑒 .
• if 𝐻𝑒 [𝑖] [𝑘] = ⊥ and there exists a set 𝑆 such that |𝑆 | ≥ 𝑓 + 1 and for every 𝑝 𝑗 ′ ∈ 𝑆 , 𝐻𝑒 [𝑗 ′] [𝑘] = ℎ𝑎𝑠ℎ(𝑚), then
set 𝐻𝑒 [𝑖] [𝑘] as ℎ𝑎𝑠ℎ(𝑚), set 𝑉𝑒 [𝑘] as𝑚, and pcbw-s-deliver 𝑉𝑒 in PCBW𝑒 .

(State refresh)
For 𝑘 ∈ [1, 𝑛], 𝑟 ′′ ∈ [𝑟 ′, 𝑟], if confirm(𝑟 ′′,𝑉𝑟 ′′ [𝑘], 𝑘)= 1, then

− Set 𝐶𝑉𝑟 ′′ [𝑘] as 𝑉𝑟 ′′ [𝑘] and set𝑀𝑟 ′′ [𝑖] [𝑘] as 1.
− Set 𝐿𝐸 [𝑘] as the largest 𝑟 ∗ such that for every 𝑟 ′′ ∈ [𝑟 ′, 𝑟 ∗],𝑀𝑟 ′′ [𝑖] [𝑘] = 1

(State matrix update)
For 𝑘 ∈ [1, 𝑛], let 𝑒𝑘 denote 𝐿𝐸 𝑗 [𝑘]: for any𝑟 ′′ ∈ [𝑟 ′, 𝑒𝑘], set𝑀𝑟 ′′ [𝑗] [𝑘] as1.

Controlling procedure for PCBW𝑟

− If there exists a set 𝑆 of replicas such that |𝑆 | ≥ 2𝑓 + 1 and for every 𝑝𝑘 ∈ 𝑆 , Col_Sum(𝑀𝑟 , 𝑘) ≥ 2𝑓 + 1 and

𝑀𝑟 [𝑖] [𝑘] = 1, then the controlling procedure returns 1 and 𝑝𝑖 pcbw-delivers (®𝑚𝑟 , ®𝑐𝑣𝑟) in PCBW𝑟 where:

− for any 𝑘 ∈ [1, 𝑛], if 𝑝𝑘 ∈𝑆 , then set both ®𝑚𝑟 [𝑘] and ®𝑐𝑣𝑟 [𝑘] as 𝐶𝑉𝑟 [𝑘]; otherwise set ®𝑐𝑣𝑟 [𝑘] as 𝐶𝑉𝑟 [𝑘] and set

®𝑚𝑟 [𝑘] as ⊥.

Figure 13. Implementation of hash variant of PCBW𝑟 protocol at replica 𝑝𝑖 . PCBW events are highlighted in blue.

speaking, echo hashes are hashes of the echo values 𝐸𝑉

used in SQ.

• 𝐻𝑟 is an 𝑛 × 𝑛 matrix and each element is an echo hash.

Informally speaking, 𝐻𝑟 is a matrix that stores the hashes

of the values in 𝑉𝑟 used in SQ. For replica 𝑝𝑖 , row 𝑖 stores

the hashes of the values 𝑝𝑖 receives from other replicas

and other rows store the hashes of the received values by

other replicas.

Second, wemodify the parameters included in the (Propose)
message. The (Propose) message now includes 𝐸, 𝐸𝐻 , and

𝐿𝐸. The update procedure differs slightly from that in SQ.

In particular, the step for state update according to received

values now updates 𝐻𝑟 and 𝐸𝐻 . The step for state update

according to echo hashes now updates the 𝐻𝑟 matrix using

the hashes included in the 𝐸𝐻 𝑗
parameter.

Finally, we change the definition of the confirm predicate.

In PCBW𝑟 , each replica 𝑝𝑖 confirms a value 𝑚𝑘 if 𝑝𝑖 has

23

stored a non-⊥ value 𝑚𝑘 in 𝑉𝑟 [𝑘], and there exists a set of at least 2𝑓 + 1 replicas such that for any 𝑝 𝑗 in the set,

𝐻𝑟 [𝑗] [𝑘𝑟] = ℎ𝑎𝑠ℎ(𝑚𝑘).

24

	Abstract
	1 Introduction
	2 Model and Definitions
	2.1 System and Threat Model
	2.2 Definitions and Building Blocks

	3 Review of Existing ABC Protocols and Overview of Our Approach
	3.1 Review of ABC Approaches
	3.2 Pathway to Our MBA-based ABC

	4 The 0.1ptSQ Protocol
	4.1 Parallel Consistent Broadcast with Weak Agreed Set (PCBW)
	4.2 0.1ptSQ
	4.3 The PCBW Construction
	4.4 Discussion

	5 A Communication-Efficient Variant of 0.1ptSQ From Hash Functions
	6 Implementation and Evaluation
	7 Additional Related Works
	8 Conclusion
	References
	A Proofs
	A.1 Proof of the PCBW Construction
	A.2 Proof of 0.1ptSQ

	B Implementation-Level PCBW Construction
	C Implementation-Level Hash-based PCBW Construction

