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ABSTRACT
Asynchronous common subset (ACS) is a powerful paradigm en-

abling applications such as Byzantine fault-tolerance (BFT) and

multi-party computation (MPC). The most efficient ACS framework

in the information-theoretic setting is due to Ben-Or, Kelmer, and

Rabin (BKR, 1994). The BKR ACS protocol has been both theoret-

ically and practically impactful. However, the BKR protocol has

an 𝑂 (log𝑛) running time (where 𝑛 is the number of replicas) due

to the usage of 𝑛 parallel asynchronous binary agreement (ABA)

instances, impacting both performance and scalability. Indeed, for

a network of 16∼64 replicas, the parallel ABA phase occupies about

95%∼97% of the total runtime in BKR. A long-standing open prob-

lem is whether we can build an ACS framework with 𝑂 (1) time

while not increasing the message or communication complexity of

the BKR protocol.

In this paper, we resolve the open problem, presenting the first

constant-timeACS protocol with𝑂 (𝑛3)messages in the information-

theoretic and signature-free settings. Moreover, as a key ingredient

of our new ACS framework and an interesting primitive in its

own right, we provide the first information-theoretic multivalued

validated Byzantine agreement (MVBA) protocol with 𝑂 (1) time

and 𝑂 (𝑛3) messages. Both results can improve—asymptotically

and concretely—various applications using ACS and MVBA in the

information-theoretic, quantum-safe, or signature-free settings. As

an example, we implement FIN, a BFT protocol instantiated using

our framework. Via a 121-server deployment on Amazon EC2, we

show FIN is significantly more efficient than PACE (CCS 2022), the

state-of-the-art asynchronous BFT protocol of the same type. In

particular, FIN reduces the overhead of the ABA phase to as low

as 1.23% of the total runtime, and FIN achieves up to 3.41x the

throughput of PACE. We also show that FIN outperforms other BFT

protocols with the standard liveness property such as Dumbo and

Speeding Dumbo.
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1 INTRODUCTION
Overview. This paper is about resolving a long-standing open

problem in fault-tolerant distributed computing and multi-party

computation (MPC). We present the first practical 𝑂 (1)-time and

𝑂 (𝑛3)-message asynchronous common subset (ACS) protocol [6,

8], while prior constructions have either 𝑂 (log𝑛) time and 𝑂 (𝑛3)
messages or have 𝑂 (1) time and 𝑂 (𝑛4) messages.

History. The concept of asynchronous common subset (ACS) is

due to Ben-Or, Canetti, and Goldreich (BCG) in the context of

asynchronous MPC—under a different name called agreement on

a core set [6]. BCG proposed an ACS construction using two core

building blocks in fault-tolerant distributed computing—reliable

broadcast (RBC) and asynchronous binary agreement (ABA). Soon

later, Ben-Or, Kelmer, and Rabin (BKR) presented a refined and

practical ACS construction using 𝑛 RBC and 𝑛 ABA instances [8].

Meanwhile, BKR renamed "agreement on a core set" as "agreement

on a common subset."

Information-theoretic and signature-free settings. The ACS
notion has been historically associatedwith the information-theoretic

setting: as emphasized by Cachin et al. [11, Section 4], "the primi-

tive of agreement on a core set (which) is used in the information-

theoretic model." Indeed, ACS constructions typically rely on ideal

building primitives in distributed computing such as RBC, ABA,

and common coins [10, 15].

An equivalent setting is the signature-free setting focusing on

protocols assuming the existence of common coins.
1
In particu-

lar, the line of work for signature-free ABA—which is at the core

of practical ACS constructions—begins with the seminal work by

Rabin [51] and is followed by [23, 43, 46, 47, 54].

1
Here we directly borrow the term from the line of work [46–48]; the setting may also

be called cryptography-free.

https://doi.org/10.1145/3576915.3616633
https://doi.org/10.1145/3576915.3616633
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The unique benefits of information-theoretic/signature-free
ACS. The information-theoretic ACS paradigm (BCG and BKR) has

been enormously impactful, empowering numerous applications

as well as implementations, such as MPC [5, 8, 9, 14, 18–21, 41],

Byzantine fault tolerence (BFT) [2, 9, 30, 40, 44, 56, 57], distributed

key generation [25, 28, 38], and proactive secret sharing [26, 35, 36].

For instance, we illustrate of benefits of information-theoretic ACS

using MPC applications:

• MPC. A more efficient information-theoretic ACS directly im-

proves a large number of asynchronous MPC protocols with

fairness and guaranteed output delivery that use information-

theoretic ACS (BCG and BKR) [5, 8, 9, 14, 18–21, 41]. In this

approach, one just replaces RBC with asynchronous complete

secret sharing [8].
2
The only MPC system with fairness and guar-

anteed output delivery falls into this category [41].

Even just being used for the BFT purpose, information-theoretic

ACS has unique benefits and features, when compared to the other

two main BFT approaches—multivalued validated Byzantine agree-

ment (MVBA) based BFT[11] and direct acyclic graph (DAG) based

BFT [37]:

• Quantumsafety. Information-theoretic ACS protocols andDAG-

based protocols can achieve the desirable quantum safety prop-

erty (but no quantum liveness) as defined in [37], where the safety

of the system is always achieved even in the presence of a quan-

tum adversary. In contrast, this is not the case for MVBA-based

approach.

• Weaker cryptographic assumptions. Information-theoretic

ACS and DAG-based BFT can be realized using the standard

Computational Diffie-Hellman (CDH) assumption; others would

need to use pairing assumptions to save communication costs.

• Liveness.Unlike information-theoretic ACS protocols that achieve

standard liveness, some other BFT protocols (including DAG-

based ones) either require unbounded memory for liveness (DAG-

Rider [37], Dumbo-NG [31]) or achieveweak liveness (Bullshark [32],

Tusk [24]).

The open problem. Almost all ACS implementations use the BKR

ACS construction, which runs 𝑛 parallel ABA instances, thereby

achieving 𝑂 (𝑛3) messages and 𝑂 (log𝑛) time. The ABA phase in-

volving 𝑛 parallel ABA instances is the well-known performance

and scalability bottleneck reported in various BFT implementa-

tions [30, 34, 54]. For example, the ABA phase in a network with

16∼64 replicas occupies about 95%∼97% of the total runtime in

BKR [34]. Recently, Zhang and Duan proposed a refined PACE ACS

framework [54] that offers up to 6x peak throughput of BEAT [30]

(that improved upon HoneyBadgerBFT [44]). In PACE ACS, the 𝑛

ABA instances are made fully parallelizable to gain in improved

performance, but the running time remains 𝑂 (log𝑛)—remaining

the critical bottleneck.

A long-standing open problem, ever since the 1990s, in ACS—or

generally in fault-tolerant distributed computing and cryptography—

is:

Canwe build ACS—in the information-theoretic setting or signature-

free setting—with 𝑂 (𝑛3) messages and 𝑂 (1) time?

2
In fact, the original BKR framework was presented as an asynchronous MPC frame-

work using asynchronous complete secret sharing and ABA.

protocol messages time # (R)ABA

BKR variants [30, 40, 44] 𝑂 (𝑛3) 𝑂 (log𝑛) 𝑛

PACE [54] 𝑂 (𝑛3) 𝑂 (log𝑛) 𝑛

FIN (§7; this paper) 𝑂 (𝑛3) 𝑂 (1) 𝑂 (1)
Table 1: Comparison among ACS implementations relying
on common coins.

Note that the only known such ACS construction terminating

in constant time is due to Ben-Or and El-Yaniv [7]. The construc-

tion uses 𝑛2
RBC instances with 𝑂 (𝑛4) messages; earlier works

such as HoneyBadger [44, Footnote 4] and Dumbo [34, Footnote

5] explained why [7] has lower throughput than BKR and that the

communication of [7] bottlenecks the system.

Our results and our approach. In this work, we resolve the open

problem, showing an ACS protocol with 𝑂 (𝑛3) messages and 𝑂 (1)
time. At a high level, we begin with a new multivalued validated

Byzantine agreement (MVBA) protocol [11] in the information-

theoretic setting with 𝑂 (𝑛3) and 𝑂 (1) time. Then we reduce the

ACS problem to MVBA and RBC.

Recall that the notion of MVBA is different from the conven-

tional multivalued Byzantine agreement in that MVBA assumes the

existence of a global predicate, and replicas only decide values satis-

fying the global predicate. To build an MVBA protocol towards our

goal, we use RBC, common coins, and reproposable ABA (RABA)—a

notion due to Zhang and Duan [54]. RABA, like ABA, can be readily

built from common coins and authenticated channels and termi-

nate in expected constant time. Our MVBA uses 𝑛 parallel RBC

instances and an expected constant number of RABA instances. Our

MVBA protocol is also the first information-theoretically secure

and signature-free MVBA protocol—by directly assuming common

coins—with 𝑂 (𝑛3) messages and 𝑂 (1) time.

We also show that one can use a weaker RBC primitive to realize

a computation and bandwidth more efficient MVBA protocol while

still achieving 𝑂 (𝑛3) messages and 𝑂 (1) time.

Our transformation from MVBA to ACS is simple and efficient,

consisting of 𝑛 parallel RBC instances and a single MVBA instance.

Both our MVBA and ACS constructions are efficient, inheriting

the fast path in RABA, enabling rapid termination.

Our contributions.We make the following contributions:

• Wepresent the first information-theoretically secure and signature-

free ACS protocol with𝑂 (1) time and𝑂 (𝑛3) messages, assuming

ideal building blocks only. In contrast to prior constructions,

our ACS protocol requires only an expected constant number of

binary agreement instances. Our protocol directly improves vari-

ous ACS-enabled applications such as asynchronous multi-party

computation [8, 14, 21, 41].

• As a core ingredient of our ACS construction and a primitive

that is interesting in its own right, we present the first signature-

free multivalued validated Byzantine agreement protocol with

𝑂 (1) time and 𝑂 (𝑛3) messages while existing such MVBA pro-

tocols have 𝑂 (log𝑛) time and 𝑂 (𝑛3) messages. Moreover, our

MVBA protocols lead to instantiations having lower communica-

tion than existing ones. We also show an efficient and tailored

MVBA construction, optimizing both communication cost and

computational efficiency.
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• To demonstrate the efficiency of our ACS protocol, we instan-

tiate it with a practical BFT system called FIN (see Table 1 for

a comparison). We implement FIN and PACE, the state-of-the-

art ACS protocol of the same kind. Additionally, we also assess

Dumbo [34] and Speeding Dumbo [33], two asynchronous and

computationally-secure BFT protocols with 𝑂 (1) time and the

standard liveness guarantee. Via a 121-instance deployment on

Amazon EC2, we show that for all metrics, FIN consistently and

drastically outperforms PACE when 𝑛 > 16 and all the above

protocols when 𝑛 > 22. Compared to PACE, FIN significantly

reduces the overhead of the ABA phase to only 1.23%-5.22% of the

total runtime, in contrast to the 15.10%-83.66% overhead in PACE.

Moreover, the performance difference between FIN and the other

three protocols becomes significantly higher as 𝑛 increases; for

instance, when 𝑛 = 121 (tolerating 40 failures), the peak through-

put of FIN is 3.41x that of PACE, 4.15x that of Speeding Dumbo,

and 8.79x that of Dumbo.

2 RELATEDWORK
Interactive consistency and vector consensus. The ACS prob-
lem can be viewed as an asynchronous version of the interactive

consistency problem defined for synchronous systems by Pease,

Shostak, and Lamport [50]. Replicas in asynchronous interactive

consistency reach an agreement on a vector with the values pro-

posed by all correct replicas.

In contrast, the ACS abstraction (also called asynchronous inter-

active consistency by Ben-Or and El-Yaniv [7]) naturally requires

that the output of each correct replica contains𝑛−𝑓 values such that
at least 𝑛 − 2𝑓 elements are proposed by correct replicas. Namely,

ACS requires only that the majority of the values were proposed by

correct replicas. Indeed, it is impossible to guarantee that the vector

has the values of all correct replicas in asynchronous settings.

ACS is also called vector consensus in some literature [22, 29,

45, 49]. Note that ACS is different from set agreement [17] that

provides only an approximation of agreement.

ACS constructions (in information-theoretic and signature-
free settings). BKR ACS reduces asynchronous BFT to reliable

broadcast (RBC) and asynchronous binary agreement (ABA) [8]. In

BKR ACS, all replicas run an RBC phase to reliably broadcast their

proposals. Then they run an ABA phase with 𝑛 parallel instances.

The 𝑖-th ABA instance agrees on if the proposal of 𝑝𝑖 has been de-

livered in the RBC phase. Upon RBC delivery of a proposal from 𝑝 𝑗 ,

the replica proposes 1 to the 𝑗-th ABA instance. If a correct replica

𝑝 𝑗 decides 1 for the 𝑖-th ABA instance, the proposal from 𝑝𝑖 is deliv-

ered. BKR ACS requires if a replica has not received some proposals

during the RBC phase, the replica abstains from proposing 0 until

𝑛− 𝑓 ABA instances terminate with 1. In PACE ACS, ABA instances

are replaced using RABA instances, and thus all RABA instances

can be run in a fully parallelizable manner [54]. Both BKR and PACE

ACS approaches require running 𝑛 (R)ABA instances terminating

in expected constant rounds, leading to expected 𝑂 (log𝑛) time in

total.

The ACS construction by Ben-Or and El-Yaniv [7] terminates

in expected constant time and uses 𝑛2
RBC instances with 𝑂 (𝑛4)

messages, which is prohibitively expensive.

Another line of ACS constructions reduces the ACS problem to

RBC and multivalued Byzantine agreement (MBA) [22, 45]. The

construction requires running 𝑂 (𝑓 ) sequential MBA instances, re-

sulting in 𝑂 (𝑛) running time.

Our ACS approach fundamentally differs from existing ones, re-

ducing the ACS problem to information-theoretically secure MVBA

and then to RBC with a constant number of RABA instances.

DispersedLedger.DispersedLedger [52] provides two general tech-
niques (allowing committing additional transactions from prior

epochs; using asynchronous verifiable information dispersal) to

improve the performance of the BKR framework. The techniques

equally work for PACE and FIN. Therefore, the DispersedLedger

techniques can be used to improve FIN, and FIN can be used in

DispersedLedger as its consensus engine for higher performance.

Separating message transmission from consensus. Tusk [24],

Bullshark [32], and Dumbo-NG [31] are BFT protocols that separate

data transmission from consensus for higher throughput. FIN can

use the technique to improve performance.

As mentioned in the introduction, Tusk, Bullshark, and Dumbo-

NG do not achieve standard liveness. We comment the fact that

they do not have standard liveness is not due to the framework that

separates the transmission from consensus.

RBC. We use RBC (abbreviated as BRB in some works) [10] to

build our MVBA and ACS construction. For both our MVBA and

ACS, RBC dominates their communication. One could use any RBC

constructions to instantiate them. In this paper, we discuss construc-

tions using CT RBC [13] (using hashes), EFBRB [3] (information-

theoretically secure), and CCBRB [3] (using hashes and online error

correction coding [6]).

For our ACS implementation, we use CT RBC [13]. Internally in

our MVBA implementation, we show that one can use a tailored,

weaker RBC construction (using collision-resistant hashes only) to

build a concretely more efficient protocol.

RABA. The notion of reproposable ABA (RABA) is due to Zhang

and Duan [54]. RABA was originally proposed to solve a BKR

bottleneck to allow all ABA instances to run in parallel and remove

the two-subphase bottleneck. Later, such a primitive was used to

develop a quantum secure and adaptively secure asynchronous BFT

protocol without trusted setup [56], and to build an asynchronous

distributed key generation protocol without random oracles or

PKI [55].

Zhang and Duan have argued that RABA could be useful as a

general and "first-class distributed computing primitive" [54]. Our

results bolster this point of view.

However, the way we use RABA in this paper is fundamentally

different from all these works. Indeed, existing protocols that use

RABA in the BKR framework need to run𝑛 parallel RABA instances;

in contrast, this paper only needs to run an expected constant

number of RABA instances.

MVBA. The notion of MVBA was introduced by Cachin, Kursawe,

Petzold, and Shoup [11].

In the computational model (assuming—in addition to common

coins—cryptographic tools such as threshold signatures), Abra-

ham, Malkhi, and Spiegelman proposed an MVBA protocol [1]

with 𝑂 (𝐿𝑛2 + 𝜅𝑛2) communication, optimal word complexity, and
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the quality property, where 𝐿 is the length of the input from each

replica. Lu et al. [42] reduced the communication from𝑂 (𝐿𝑛2+𝜅𝑛2)
to 𝑂 (𝐿𝑛 + 𝜅𝑛2) by additionally using constant-size vector commit-

ments [16].

In the information-theoretic and signature-free setting, the asyn-

chronous distributed key generation protocol by Das et al. [28]

implies an MVBA, as demonstrated in a recent work [25]. The

MVBA protocols [25, 28] are information-theoretically secure (as-

suming information-theoretically secure common coins or Rabin

dealer [51]), terminating in 𝑂 (log𝑛) time. In contrast, the MVBA

proposed in this paper has the same message complexity as those

in [25, 28], but terminates in 𝑂 (1) time. Also, our MVBA protocol

can lead to instantiations with lower communication than those

from [25, 28].

Our MVBA protocol may also be used—possibly in a non-trivial

manner—in certain (but not all) protocols in [26, 35, 36] without

increasing the communication or making stronger assumptions.

From atomic broadcast to ACS. There are asynchronous atomic

broadcast protocols without using ACS or MVBA (e.g., [37]). It is,

however, unclear how to efficiently transform an atomic broadcast

protocol to ACS, which has direct and practical applications beyond

just BFT state machine replication (e.g., multi-party computation,

asynchronous distributed key generation).

3 SYSTEM MODEL AND PROBLEM
STATEMENT

We consider a system with 𝑛 replicas, {𝑝1, · · · , 𝑝𝑛}, where 𝑓 out

of them may fail arbitrarily (Byzantine failures). A non-Byzantine

replica is called a correct replica. All protocols we consider assume

that 𝑓 ≤ ⌊𝑛−1

3
⌋, which is optimal. A (Byzantine) quorum is a set

of ⌈𝑛+𝑓 +1
2
⌉ replicas. Without loss of generality, this paper may

assume 𝑛 = 3𝑓 + 1 and a quorum size of 2𝑓 + 1. We assume the

existence of point-to-point authenticated channels between each

pair of replicas. We consider asynchronous networks making no

timing assumptions on message processing or transmission delays.

We consider both adaptive corruption and static corruption. In

adaptive corruption, the adversary can choose its set of corrupted

replicas at any moment during the execution of the protocol, based

on the information it has accumulated thus far. In contrast, in the

static adversary model, the adversary is restricted to choosing its set

of corrupted replicas at the beginning of the protocol. If all building

blocks satisfy adaptive security, then our protocol achieves adaptive

security. The ACS protocol implemented in this paper achieves

static security, just as in prior protocols [30, 41, 44, 54]; but it can

be made adaptively secure if using an adaptively secure common

coin protocol [4, 39].

Each protocol instance is associated with a unique tag 𝑖𝑑 . We

may omit the identifiers in the pseudocode when no ambiguity

arises. We may use subscripts to denote the instance identifier; for

instance, RBC𝑖 denotes the reliable broadcast instance tagged with

a unique identifier 𝑖 and initiated by replica 𝑝𝑖 .

We present in Appendix A the acronyms we use in this paper.

AsynchronousCommonSubset (ACS). In ACS [6, 8], each replica
holds an input, and correct replicas reach an agreement on a set of

values. An ACS protocol is specified by acs-propose and acs-decide

events. The value acs-proposed by a replica is called an input to the

ACS protocol, and the value acs-decided by a replica is called an

output of the protocol. ACS should satisfy the following properties:

• Validity: If a correct replica acs-decides a set v, then |v| ≥ 𝑛 − 𝑓

and v contains values acs-proposed by at least 𝑛 − 2𝑓 correct

replicas.

• Agreement: If a correct replica acs-decides v, then every correct

replicas acs-decides v.
• Termination: If all correct replicas acs-propose, then all correct

replicas acs-decide.

In this paper, we use the conventional validity notion. Note that

as argued in [54], for the validity property, the size of v (denoted |v|)
can be relaxed such that |v| ≥ 𝑓 + 1; namely, in many applications,

it suffices to ensure a weaker validity notion by requiring that v
contains values from at least one correct replica.

Multivalued validated Byzantine agreement (MVBA). MVBA

allows each replica that has an input to agree on a value that satisfies

a predicate𝑄 known by all replicas [11]. AnMVBAprotocol satisfies

the following properties:

• External validity: Every correct replica that terminates mvba-

decides 𝑣 such that 𝑄 (𝑣) holds.
• Agreement: If a correct replica mvba-decides 𝑣 , then any correct

replica that terminates mvba-decides 𝑣 .

• Integrity: If all replicas follow the protocol, and if a correct

replica mvba-decides 𝑣 such that 𝑄 (𝑣) holds, then some replica

mvba-proposed 𝑣 such that 𝑄 (𝑣) holds.
• Termination: If all correct replicas are activated and all messages

sent among correct replicas have been delivered, then all correct

replicas mvba-decide.

The quality property was introduced by Abraham, Malkhi, and

Spiegelman to bound the probability that the decided value was

proposed by a correct replica [1]:

• Quality: The probability of mvba-deciding a value that was pro-

posed by a correct replica is at least 1/2.

In this paper, we first present an MVBA protocol without the

quality property and then show how to modify it to achieve the

quality property additionally. For our ACS construction, we only

need an MVBA protocol without the quality property though.

The way we present our MVBA protocol follows that of [25].

In particular, the MVBA formalization in [25] requires that the

predicate additionally uses some variable depending on the state of

each node, a property needed in [25] and our MVBA protocols.

Byzantine fault tolerance (BFT). In a BFT protocol, clients submit

transactions (requests) and replicas deliver them. The client obtains

a final response to the submitted transaction from the replica re-

sponses. In a BFT system with 𝑛 replicas, it tolerates 𝑓 ≤ ⌊𝑛−1

3
⌋

Byzantine failures. The correctness of a BFT protocol is specified

as follows:

• Safety: If a correct replica delivers a transaction 𝑡𝑥 before deliver-

ing 𝑡𝑥 ′, then no correct replica delivers a transaction 𝑡𝑥 ′ without
first delivering 𝑡𝑥 .

• Liveness: If a transaction 𝑡𝑥 is submitted to all correct replicas,

then all correct replicas eventually deliver 𝑡𝑥 .
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4 BUILDING BLOCKS
We review the building blocks for our systems. To help understand

RABA [54], we first review the notion of ABA. If 𝑣 is a binary value,

we use 𝑣 to denote 1 − 𝑣 .
Asynchronous binary Byzantine agreement (ABA). An ABA

abstraction is specified by aba-propose and aba-decide. Each replica

proposes a binary value (aka a vote) and correct replicas will decide

on some value. ABA should satisfy the following properties:

• Validity: If all correct replicas aba-propose 𝑣 , then any correct

replica that terminates aba-decides 𝑣 .

• Agreement: If a correct replica aba-decides 𝑣 , then any correct

replica that terminates aba-decides 𝑣 .

• Termination: Every correct replica eventually aba-decides some

value.

• Integrity: No correct replica aba-decides twice.

ReproposableAsynchronousBinaryAgreement (RABA).RABA
is a new primitive introduced by Zhang and Duan [54]. In con-

trast to conventional ABA protocols, where replicas can vote once

only, RABA allows replicas to change their votes and vote twice.

A RABA protocol is specified by raba-propose, raba-repropose, and

raba-decide. For our purpose, RABA is “biased towards 1." A correct

replica that proposed 0 is allowed to change its mind and repro-

pose 1. A replica that proposed 1 is not allowed to repropose 0. If a

replica reproposes 1, it does so at most once. RABA (biased towards

1) satisfies the following properties:

• Validity: If all correct replicas raba-propose 𝑣 and never raba-

repropose 𝑣 , then any correct replica that terminates raba-decides 𝑣 .

• Unanimous termination: If all correct replicas raba-propose 𝑣
and never raba-repropose 𝑣 , then all correct replicas eventually

terminate.

• Agreement: If a correct replica raba-decides 𝑣 , then any correct

replica that terminates raba-decides 𝑣 .

• Biased validity: If 𝑓 + 1 correct replicas raba-propose 1, then

any correct replica that terminates raba-decides 1.

• Biased termination: Let 𝑄 be the set of correct replicas. Let

𝑄1 be the set of correct replicas that raba-propose 1 and never

raba-repropose 0. Let 𝑄2 be correct replicas that raba-propose 0

and later raba-repropose 1. If 𝑄2 ≠ ∅ and 𝑄 = 𝑄1 ∪𝑄2, then each

correct replica eventually terminates.

• Integrity: No correct replica raba-decides twice.

We explain some differences between ABA and RABA. Validity

in RABA is slightly different from that for ABA, as we need to

modify it to accommodate the RABA syntax. Integrity in RABA is

used to ensure that RABA decides only once (even though we have

an additional raba-repropose event).

Biased validity in RABA requires that if 𝑓 + 1 correct replicas,

not all correct replicas, propose 1, then a correct replica that ter-

minates decides 1. We emphasize that the biased validity property

was initially defined to build the PACE ACS protocol [54] such

that sufficient transactions are delivered (the ACS validity prop-

erty); however, in this paper, biased validity is essentially to ensure

constant-time termination for our ACS construction.

Unanimous termination and biased termination are defined to

ensure RABA termination in two different scenarios. Informally,

most RABA protocols terminate under three conditions, considering

the protocol is biased towards 1: 1) all correct replicas raba-propose

0 and never raba-repropose 1; 2) at least 𝑓 + 1 correct replicas raba-

propose 1; 3) at least one correct replica raba-propose 1 and later

those correct replicas that raba-propose 0 change their mind and

raba-repropose 1. In the first condition, unanimous termination is

satisfied. In the third condition, the biased termination property is

satisfied. Most RABA protocols known so far [54] can guarantee

termination in the second condition even if some correct replicas

do not raba-repropose. However, some protocols may terminate still

due to the fact that those correct replicas that raba-propose 0 change

their mind and raba-repropose 1.

For our implementation, we use the Pisa RABA protocol due to

Zhang and Duan [54] assuming common coins and authenticated

channels.

Byzantine reliable broadcast (RBC). The RBC abstraction allows

a sender 𝑝𝑠 to reliably broadcast a message to the replicas. An RBC

protocol is specified by two events r-broadcast and r-deliver such

that the following properties hold:

• Validity: If a correct replica 𝑝𝑠 r-broadcasts a message𝑚, then

𝑝𝑠 eventually r-delivers𝑚.

• Agreement: If some correct replica r-delivers a message𝑚, then

every correct replica eventually r-delivers𝑚.

• Integrity: For any message𝑚, every correct replica r-delivers𝑚

at most once. Moreover, if a replica r-delivers a message𝑚 with

sender 𝑝𝑠 , then𝑚 was previously broadcast by replica 𝑝𝑠 .

For our ACS implementation, we use CT RBC due to Cachin and

Tessaro [13] that uses hash functions (with output length 𝜅) and

has a communication of O(𝑛 |𝑚 | + 𝜅𝑛2
log𝑛).

Common coins. Following prior works [8, 23, 46, 47, 54], we as-
sume our protocols are supplied by a common coin, an object that

is introduced by Rabin [51], which delivers the same sequence of

random coins to replicas. We use the common coin protocol for the

underlying random leader election protocol (denoted by Election())
and use it in the underlying RABA protocol.

For our implementation, we use the threshold PRF scheme by

Cachin, Kursawe, and Shoup [12].

5 OUR MVBA APPROACH
5.1 Overview
We present our signature-free MVBA protocol with 𝑂 (1) time and

𝑂 (𝑛3) messages. In particular, we reduce MVBA to reliable broad-

cast, random leader election (via common coins), and reproposable

asynchronous binary agreement.

At a high level, our MVBA protocol works as follows. First,

each replica 𝑝𝑖 runs RBC𝑖 to disseminate its proposal, resulting

in 𝑛 parallel RBC instances. We aim to have replicas agree on the

value r-delivered by exactly one of the 𝑛 RBC instances. A crucial

observation is that if 𝑛 − 𝑓 correct replicas complete 𝑛 − 𝑓 RBC

instances, then at least 𝑓 + 1 correct replicas have r-delivered some

values for at least 𝑓 + 1 RBC instances. If we know this set 𝐼 of the

𝑓 + 1 RBC instances, then we are almost done. In particular, all we

need to do is to pick any of the RBC instances in 𝐼 , say, RBC𝑘 , and

correspondingly, replicas run a RABA instance by proposing 1 once

they r-deliver some value for the RBC𝑘 instance. To see why this

intuitively works, first note that the agreement property in RBC
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protocol

communication

(threshold PRF)

time assumption

CKPS [11] 𝑂 (𝐿𝑛2 + 𝜅𝑛2 + 𝑛3) 𝑂 (1) threshold sig

AMS [1] 𝑂 (𝐿𝑛2 + 𝜅𝑛2) 𝑂 (1) threshold sig

Dumbo-MVBA [42] 𝑂 (𝐿𝑛 + 𝜅𝑛2) 𝑂 (1) threshold sig; vc

DYX+ MVBA [28] 𝑂 (𝐿𝑛2 + 𝜅𝑛3
log𝑛) 𝑂 (log𝑛) hash

DXKR MVBA [25] 𝑂 (𝐿𝑛2 + 𝜅𝑛3
log𝑛) 𝑂 (log𝑛) hash

Our MVBA (Sec. 5.2) + CT RBC [13] 𝑂 (𝐿𝑛2 + 𝜅𝑛3
log𝑛) 𝑂 (1) hash

Our MVBA (Sec. 5.2) + EFBRB [3] 𝑂 (𝐿𝑛2 + 𝜅𝑛2 + 𝑛3
log𝑛) 𝑂 (1) none

Our MVBA (Sec. 5.2)+ CCBRB [3] 𝑂 (𝐿𝑛2 + 𝜅𝑛3) 𝑂 (1) hash

Our tailored MVBA (Sec. 5.4) 𝑂 (𝐿𝑛2 + 𝜅𝑛3) 𝑂 (1) hash

Table 2: Comparison of the MVBA protocols using common coins. Here we examine the communication cost of protocols by
using threshold PRF [12] to generate common coins. 𝐿 is the length of the input from each replica and 𝜅 is a security parameter.
The "assumption" column means the additional assumption besides common coins and authenticated channels. "vc" stands for
a constant-size vector commitment which typically requires trusted setup and pairing assumptions. Our protocols lead to the
first 𝑂 (1)-time MVBA protocols without threshold signatures. In addition, instantiating our MVBA (Sec. 5.2) with EFBRB [3]
leads to an MVBA protocol achieving lower communication than any instantiations from [25, 28], as our MVBA uses only 𝑂 (1)
RABA and 𝑂 (1) common coin instances—𝑂 (𝜅𝑛2) bits using threshold PRF.

(a) MVBA without the quality property. (b) MVBA with the quality property.

Figure 1: Our MVBA protocols.

and the biased termination property in RABA together guarantee

termination, and meanwhile, the biased validity property ensures

that even if only 𝑓 + 1 correct replicas, not all correct replicas,

propose 1, correct replicas that terminate will decide 1. Observing

|𝐼 | ≥ 𝑓 + 1, if we take a random guess among all 3𝑓 + 1 replicas,

then with a probability of at least 1/3, we can hit a good 𝑘 ∈ 𝐼 .

Thus, our MVBA protocol will terminate in expected constant time.

Throughout the process, we use ideal building blocks—RBC, RABA,

and common coins—no cryptographic primitives such as threshold

signatures.

We comment that external validity can be trivially enforced, as

long as the predicate is publicly verifiable. Namely, we have treated

it as a general predicate. Note, however, that if removing external

validity, our MVBA protocol does not directly lead to a multivalued

Byzantine agreement (MBA) protocol (e.g., [48]); this is because it

does not satisfy the validity property in MBA.
3

In this section, we first build MVBAwithout the quality property,

satisfying all the security properties defined in CKPS [11]. We will

show this MVBA protocol suffices to build our ACS protocol with

𝑂 (1) time and 𝑂 (𝑛3) messages. Then we show that by including

two additional communication rounds (using a variant of HotStuff

3
Validity in MBA requires that if all correct replicas propose 1, then all replicas that

terminate decide 1.

technique [1, 53]), we can build MVBA with the quality property.

Last, we demonstrate a highly efficient MVBA protocol that opti-

mizes concrete communication cost and computational efficiency.

Such an MVBA protocol benefits from a core observation that we

may not necessarily need a fully-fledged RBC to construct MVBA.

5.2 Our MVBA Protocol
We present the pseudocode of our MVBA protocol in Figure 2. As

illustrated in Figure 1a, the protocol has two phases: an RBC phase

with 𝑛 parallel RBC instances; an iteration phase with only one

RABA instance for each iteration.

RBC phase (lines 01-02). In the RBC phase, each replica 𝑝𝑖 holds

an input 𝑣𝑖 that it proposes for the MVBA protocol such that 𝑄 (𝑣𝑖 )
holds. Upon the event mvba-propose(𝑣𝑖 ), replica 𝑝𝑖 r-broadcasts 𝑣𝑖
for an RBC instance RBC𝑖 . Upon receiving value 𝑣𝑖 r-broadcast by 𝑝𝑖
in RBC𝑖 , every replica waits until 𝑄 (𝑣𝑖 ) holds before participating
in RBC𝑖 .

Note that there are up to 𝑛 parallel RBC instances, and every

correct replica 𝑝𝑖 verifies the predicate for all RBC instances run-

ning. As usual, we require that the predicate 𝑄 is verifiable across

all correct replicas. Meanwhile, in certain applications, we may also

require that the predicate 𝑄 depends on the internal state st of a

particular replica. Namely, it is possible that𝑄 (𝑣, st) for some 𝑣 and
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MVBA

Input: value 𝑣𝑖 such that a global predicate 𝑄 (𝑣𝑖 ) holds
Output: value 𝑣𝑘 (proposed by 𝑝𝑘 )

Initialization: 𝑟 ← 0

01 upon event mvba-propose(𝑣𝑖 )
02 r-broadcast 𝑣𝑖 for RBC𝑖 {� RBC phase}

{every replica verifies whether 𝑄 (𝑣𝑖 ) holds upon receiving 𝑣𝑖
before participating in RBC𝑖 }

03 wait for 𝑛 − 𝑓 RBC instances to complete {� Iteration phase}

04 repeat
05 𝑘 ← Election()
06 if some value is r-delivered in RBC𝑘

07 raba-propose 1 for RABA𝑟
08 else
09 raba-propose 0 for RABA𝑟
10 if later some value is r-delivered in RBC𝑘

11 raba-repropose 1 for RABA𝑟
12 if RABA𝑟 outputs 1
13 wait for RBC𝑘 to r-deliver value 𝑣𝑘
14 terminate the protocol and mvba-decide(𝑣𝑘 )
15 𝑟 ← 𝑟 + 1

Figure 2: Our MVBA protocol with a predicate𝑄 . Code for 𝑝𝑖 .

some replica fails to hold at the beginning, but 𝑄 (𝑣, st) will hold at

some point, all depending on st of the replica.

Iteration phase (lines 03-15). Each replica waits until it r-delivers

𝑛− 𝑓 RBC instances before it enters the iteration phase. In each iter-

ation, replicas iterate the Election() function and a RABA instance

until a RABA instance outputs 1.

Concretely, in each iteration 𝑟 , replicas query the Election()
function and obtain a random 𝑘 such that 1 ≤ 𝑘 ≤ 𝑛 (line 05). At

lines 06-07, if a replica has previously r-delivered some value in

RBC𝑘 , it raba-proposes 1 for the RABA instance denoted RABA𝑟 4

in iteration 𝑟 . Otherwise, at lines 08-09, the replica raba-proposes 0.

If a replica originally raba-proposes 0 but later r-delivers some value

in RBC𝑘 , 𝑝𝑖 raba-reproposes 1 (at lines 10-11), ensuring protocol

termination.

After each replica provides some input to RABA𝑟 , it waits for
the output of RABA𝑟 . If 𝑝𝑖 raba-decides 0, the replica continues to

the next iteration 𝑟 + 1 (line 15). If 𝑝𝑖 raba-decides 1, it waits for the

output of RBC𝑘 denoted as 𝑣𝑘 (line 13). Then it mvba-decides 𝑣𝑘
and terminates the protocol (line 14).

Complexity and instantiations. To understand the time com-

plexity of our MVBA protocol, we first observe that at the end of

the RBC phase, for at least 𝑓 + 1 instances, at least 𝑓 + 1 correct

replicas have r-delivered some values (see Lemma 5.4 in this sec-

tion). Second, the biased validity property of RABA guarantees that

for any of these 𝑓 + 1 instances, replicas will raba-decide 1. As the

Election() function selects any of the 𝑓 + 1 instances with at least

a probability of 1/3, the protocol terminates in expected 𝑂 (1) time.

4
Note that if we assume the Election( ) function is a random permutation instead of a

random function, then we can also use RABA𝑘 to uniquely and unambiguously denote

the RABA instance.

Unlike prior signature-free MVBA constructions [25, 28] that

terminate in expected 𝑂 (log𝑛) time (summarized in Table 2), our

MVBA protocols have expected 𝑂 (1) time.

Both the message complexity and the communication complexity

of our MVBA are bounded by the 𝑛 parallel RBC instances. As each

RBC instance has 𝑂 (𝑛2) messages, our MVBA construction has

𝑂 (𝑛3) messages.

Table 2 summarizes the communication cost of our protocols

assuming a threshold PRF [12]. For instance, if we use EFBRB [3]

(an information-theoretically secure RBC), we obtain an MVBA

protocol assuming common coins only. If we use CCBRB [3], we

obtain a protocol using hashes and common coins and having lower

communication than instantiations from [25, 28]. In particular, our

MVBA protocol with EFBRB results in a protocol with 𝑂 (𝐿𝑛2 +
𝜅𝑛2+𝑛3

log𝑛) communication (the term𝑂 (𝜅𝑛2) is due to the cost of
common coins in𝑂 (1) RABA and Election() instances); in contrast,

[25, 28] with EFBRB lead to MVBA protocols with 𝑂 (𝐿𝑛2 + 𝜅𝑛3 +
𝑛3

log𝑛) communication.

We comment that if the underlying RBC and common coin pro-

tocols are instantiated using information-theoretically secure pro-

tocols, then our MVBA protocols are also information-theoretically

secure.

Proof of our MVBA. We show that the MVBA protocol presented

in Sec. 5.2 achieves external validity, agreement, integrity, and

termination.

Theorem 5.1 (External validity). Every correct replica that

terminates mvba-decides 𝑣 such that 𝑄 (𝑣) holds.

Proof. If any correct replica mvba-decides 𝑣 , it has raba-decided

1. Hence, according to the validity property of RABA, at least one

correct replica has raba-proposed 1 or raba-reproposed 1. If the

correct replica raba-proposes 1 or raba-reproposes 1, it has r-delivered

𝑣 in the corresponding RBC instance. In the RBC instance, according

to our specification of MVBA, every replica verifies whether 𝑄 (𝑣)
holds upon receiving any value from another replica in the RBC

phase. If a correct replica r-delivered 𝑣 in an RBC instance, then

at least one correct replica has previously received 𝑣 and verified

that 𝑄 (𝑣) holds. Hence, if one correct replica mvba-decides 𝑣 , then

at least one correct replica has verified that 𝑄 (𝑣) holds. As 𝑄 (𝑣)
is verifiable across all correct replicas, every correct replica that

mvba-decides 𝑣 must have that 𝑄 (𝑣) holds. □

Theorem 5.2 (Agreement). If a correct replica mvba-decides 𝑣 ,

then any correct replica that terminates mvba-decides 𝑣 .

Proof. Assume a correct replica 𝑝𝑖 mvba-decides 𝑣 . Then 𝑝𝑖 must

have raba-decided 1 in some RABA𝑟 for iteration 𝑟 > 0, and for any

iteration 𝑟 < 𝑟 , it holds that RABA𝑟 outputs 0.
Now we assume another correct 𝑝 𝑗 mvba-decides 𝑣 ′. We now

prove by contradiction that 𝑣 ′ = 𝑣 . We distinguish two cases for

𝑝 𝑗 : 𝑝 𝑗 mvba-decides in iteration 𝑟 ′ = 𝑟 ; 𝑝 𝑗 mvba-decides in iteration

𝑟 ′ ≠ 𝑟 .

Case 1: 𝑝 𝑗 mvba-decides 𝑣 ′ in round 𝑟 . In this case, we assume that

𝑝 𝑗 obtains 𝑘
′
from the Election() function and RBC𝑘 ′ outputs 𝑣

′
.

As Election() outputs a common coin for the same input 𝑟 , it must

hold that 𝑘 = 𝑘′. Hence, if 𝑣 ≠ 𝑣 ′, the agreement property of RBC

would be violated.
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Case 2: If 𝑟 ′ > 𝑟 , then according to our protocol, 𝑝 𝑗 raba-decides 1

in RABA𝑟 ′ and raba-decides 0 for any lower iteration 𝑟 ′, including
𝑟 . This violates the agreement property of RABA𝑟 . Similarly, the

argument holds for the case 𝑟 ′ < 𝑟 . □

Theorem 5.3 (Integrity). If all replicas follow the protocol, and

if a correct replica mvba-decides 𝑣 such that 𝑄 (𝑣) holds, then some

replica mvba-proposed 𝑣 such that 𝑄 (𝑣) holds.

Proof. If a correct replica 𝑝𝑖 mvba-decides 𝑣 , it raba-decides 1 in

some RABA𝑟 and r-delivers 𝑣 in RBC𝑘 where 𝑘 is the corresponding

common coin. According to the integrity property of RBC, 𝑣 was

previously broadcast by replica 𝑝𝑘 . □

Lemma 5.4. If all correct replicas enter the iteration phase, then

for at least 𝑓 + 1 RBC instances, at least 𝑓 + 1 correct replicas have

r-delivered some values.

Proof. Instead of directly bounding the number of correct repli-

cas that have r-delivered some values, we bound the number of

instances where fewer than 𝑓 + 1 correct replicas have r-delivered

some values. First, we observe that all correct replicas r-deliver some

values for (2𝑓 + 1) (2𝑓 + 1) RBC instances in total. As there are at

most (3𝑓 +1) (2𝑓 +1) instances for correct replicas, the total number

of instances where correct replicas do not r-deliver some values are

upper bounded by (3𝑓 +1) (2𝑓 +1)−(2𝑓 +1) (2𝑓 +1) = 2𝑓 2+ 𝑓 . Hence,
the number of RBC instances where fewer than 𝑓 +1 correct replicas

have r-delivered some values is bounded by
2𝑓 2+𝑓
𝑓 +1 <

2𝑓 2+2𝑓
𝑓 +1 = 2𝑓 .

That is, the number of RBC instances where at least 𝑓 + 1 correct

replicas have r-delivered some values is at least 𝑓 + 1. □

We comment that PACE observed a similar claim that works in

a context with a different goal.

Lemma 5.5. After the first correct replica enters the election phase,

an adversary (i.e., network scheduler) can schedule the messages re-

ceived by correct replicas for at most a constant number of rounds,

after which Lemma 5.4 holds.

Proof. After one correct replica enters the election phase, the

network scheduler that corrupts 𝑓 replicas can learn the value of

𝑘0. To ensure that RABA0 terminates and outputs 0, at least 𝑓 + 1

correct replicas need to raba-propose 0, as otherwise the biased

validity property of RABA is violated. Starting from the second

iteration, the number of RBC instances completed by each of these

𝑓 + 1 correct replicas will only grow but the instances already

completed cannot be manipulated any more. We now show that,

within constant rounds and for each round 𝑟 ≥ 0, if RABA𝑟 outputs
0, another 𝑂 (𝑓 ) correct replicas will enter the election phase, so

Lemma 5.4 holds afterwards.

Let 𝑆𝑟 denote the set of correct replicas that have already started

the iteration phase. According to the discussion above, |𝑆𝑟 | ≥ 𝑓 + 1.

Let 𝑐𝑟 denote a value such that |𝑆𝑟 | = 𝑐𝑟 𝑓 . Obviously, 𝑐𝑟 ∈ [1 +
1

𝑓
, 2 + 1

𝑓
]. Assume that RABA𝑟 outputs 0, then we know that at

least 𝑓 + 1 correct replicas raba-propose 0 for 𝑅𝐴𝐵𝐴𝑟 as otherwise

the biased validity property or RABA is violated. If these correct

replicas belong to 𝑆𝑟 , we need to ensure that regardless of the

value of 𝑘𝑟 selected by the Election() function, with overwhelming

probability, 𝑂 (𝑓 ) replicas in 𝑆𝑟 will raba-propose 0.

Instead of directly showing the number replicas in 𝑆𝑟 that will

raba-propose 0, we show that if RABA𝑟 outputs 0, with a probability

of at least 1/9, more than
𝑓
4
new correct replicas will enter the

iteration phase so the size of 𝑆𝑟 grows by 𝑂 (𝑓 ), i.e., 𝑐𝑟+1 − 𝑐𝑟 >
𝑓
4

where |𝑆𝑟+1 | = 𝑐𝑟+1 𝑓 . We calculate the probability that 𝑐𝑟+1−𝑐𝑟 ≤ 𝑓
4

as follows. As 𝑐𝑟+1 − 𝑐𝑟 ≤ 𝑓
4
, fewer than

𝑓
4
new correct replicas

enter the election phase in iteration 𝑟 + 1. Therefore, for RABA𝑟+1
to output 0, at least

3𝑓
4
+ 1 correct replicas in 𝑆𝑟 raba-propose 0

for RABA𝑟+1. This is because 𝑓 + 1 correct replicas raba-propose 0

in RABA𝑟+1, as otherwise the biased validity property of RABA is

violated.

Now consider the status of replicas in 𝑆𝑟 in iteration 𝑟+1. As every

correct replica complete 2𝑓 + 1 RBC instances before entering the

election phase, replicas in 𝑆𝑟 completes |𝑆𝑟 | (2𝑓 + 1) RBC instances

in total. As there are 3𝑓 + 1 replicas in total, the upper bound of

RBC instances where replicas in 𝑆𝑟 have not r-delivered any value

is bounded by |𝑆𝑟 |𝑓 . As every correct replica raba-proposes 0 in

RABA𝑟+1 only if it has not r-delivered any value, the number of

instances (let the set of instances be 𝐿) that
3𝑓
4
+ 1 correct replicas

in 𝑆𝑟 could raba-propose 0 in RABA𝑟+1 is bounded by the following:

|𝐿 | = |𝑆𝑟 |𝑓
3𝑓
4
+ 1

=
𝑐𝑟 𝑓 · 𝑓
3𝑓
4
+ 1

≤ 𝑐𝑟 𝑓
2

3𝑓
4

=
4𝑐𝑟 𝑓

3

. (1)

Then according to our assumption, 𝑘𝑟+1 ∈ 𝐿 with a probability

of at most
8

9
as shown below:

Pr[𝑘𝑟+1 ∈ 𝐿] =
|𝐿 |
𝑛
≤

4𝑐𝑟 𝑓
3

3𝑓 + 1

≤
4𝑓 · (2+ 1

𝑓
)

3

3𝑓 + 1

(2)

lim

𝑓→∞
Pr[𝑘𝑟+1 ∈ 𝐿] ≤ lim

𝑓→∞

4𝑓 · (2+ 1

𝑓
)

3

3𝑓 + 1

=
8

9

Accordingly, at least
𝑓
4
will join the election phase with a proba-

bility of at least 1/9. It is then not difficult to see that after a constant

number of rounds, |𝑆𝑟 | ≈ 2𝑓 + 1. After that, Lemma 5.4 holds. □

Theorem 5.6 (Termination). If all correct replicas are activated

and all messages sent among correct replicas have been delivered, then

all correct replicas mvba-decide.

Proof. If all correct replicas start the protocol, then according

to the validity property of RBC, every correct replica completes at

least 𝑛 − 𝑓 RBC instances. During the iteration phase, we first show

that any iteration 𝑟 will complete and then show that eventually,

some RABA𝑟 will output 1. For each iteration 𝑟 , we assume that 𝑘

is returned by the Election() function in iteration 𝑟 .

We first show that every iteration 𝑟 will complete. For each

iteration 𝑟 , we distinguish three cases: 1) all correct replicas have

r-delivered some value in RBC𝑘 ; 2) at least one correct replica has

r-delivered some value in RBC𝑘 , and at least one correct replica has

not r-delivered any value in RBC𝑘 ; 3) none of the correct replicas

have r-delivered any value in RBC𝑘 .

Case 1: Due to the unanimous termination property, it holds that

RABA𝑟 terminates.
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Case 2: If at least one correct replica has r-delivered some value

in RBC𝑘 , then from the agreement property of RBC, any correct

replica eventually r-delivers some value. According to our protocol,

any correct replica that provides 0 as RABA input (in which case

it has not r-delivered any value in RBC𝑘 when the iteration be-

gins) will eventually raba-repropose 1. Thus, the biased termination

condition of RABA will eventually be satisfied. Hence, RABA𝑟 will
terminate, and iteration 𝑟 will eventually complete.

Case 3: If none of the correct replicas r-deliver any value in RBC𝑘 ,

iteration 𝑟 will complete due to the unanimous termination property

of RABA. Otherwise, if at least one correct replica later r-delivers

some value in RBC𝑘 , then according to case 2, iteration 𝑟 will

complete (due to the biased termination of RABA).

We now prove that eventually, in some iteration 𝑟 , RABA𝑟 out-
puts 1, so the protocol will terminate. From Lemma 5.4, for at least

𝑓 + 1 RBC instances, at least 𝑓 + 1 correct replicas have r-delivered

some value after they enter the iteration phase. Let 𝐼 be the set of the

𝑓 + 1 RBC instances. Due to the biased validity property of RABA,

RABA𝑟 outputs 1. As Election() outputs a uniformly random coin

for each iteration, we have that with probability
𝑓 +1

3𝑓 +1 ≈
1

3
, it holds

that 𝑘 ∈ 𝐼 .
After RABA𝑟 outputs 1, every correct replica waits for the out-

put of RBC𝑘 . If RABA𝑟 outputs 1, at least one correct replica has

raba-proposed 1 or raba-reproposed 1. (Otherwise, the unanimous

termination property of RABA would be violated.) Therefore, at

least one correct replica has r-delivered some value in RBC𝑘 . From

the agreement property of RBC, every correct replica eventually

r-delivers some value in RBC𝑘 and then mvba-decides. □

Theorem 5.7. Our MVBA protocol has expected 𝑂 (1) running
time.

Proof. From Lemma 5.5, we know that if at least one correct

replica enters the election phase, Lemma 5.4 eventually holds after

a constant number of rounds. From Lemma 5.4, for at least 𝑓 + 1

RBC instances, at least 𝑓 + 1 correct replicas have r-delivered some

value after they enter the iteration phase. Due to the biased validity

property of RABA, RABA𝑟 outputs 1. Since Election() outputs a
uniformly distributed random coin for each iteration, it holds that

with probability
𝑓 +1

3𝑓 +1 ≈
1

3
, we have 𝑘 ∈ 𝐼 . Therefore, the protocol

has expected 𝑂 (1) running time. □

5.3 MVBA with the Quality Property
We show that by adding two additional communication steps, we

can build MVBA with the quality property. As illustrated in Fig-

ure 1b, we introduce an echo and reply procedure between the RBC

phase and the iteration phase. In the pseudocode, all we need to

do is to replace line 03 in Figure 2 using the lines of code in Fig-

ure 3. Each replica 𝑝𝑖 now additionally maintains one vector𝑊𝑖

to track the set of completed RBC instances. After 𝑝𝑖 completes

RBC𝑗 , it sets𝑊𝑖 [ 𝑗] as 1 (lines 01-02). When 𝑝𝑖 completes 𝑛 − 𝑓

RBC instances, it broadcasts the𝑊𝑖 vector to all replicas (03-04).

It then expects to receive 𝑛 − 𝑓 (Rep) messages from the replicas,

representing that 𝑛 − 𝑓 replicas have also r-delivered some values

for the same 𝑛 − 𝑓 RBC instances. To achieve this goal, for each

replica 𝑝𝑖 , upon receiving𝑊𝑗 from 𝑝 𝑗 , 𝑝𝑖 first checks whether the

MVBA with the quality property

Initialization: 𝑊𝑖 ← [0]𝑛

replace line 03 in Figure 2 using the following lines:

01 upon r-delivering 𝑣 𝑗 for RBC𝑗

02 𝑊𝑖 [ 𝑗] ← 1

03 wait for 𝑛 − 𝑓 RBC instances to complete

04 send (Echo,𝑊𝑖 ) to all replicas

05 upon (Echo,𝑊𝑗 ) from 𝑝 𝑗 such that there are 𝑛 − 𝑓 1’s in𝑊𝑗

06 if for any𝑊𝑗 [𝑙] = 1, RBC𝑙 outputs some value

07 send (Rep, 𝑖) to 𝑝 𝑗
08 wait for 𝑛 − 𝑓 (Rep) messages

Figure 3: Our MVBA protocol with the quality property. The
code for 𝑝𝑖 .

vector contains 𝑛 − 𝑓 1’s. Then for each𝑊𝑗 [𝑙] = 1, 𝑝𝑖 waits until

some value is r-delivered in RBC𝑙 (lines 06-07). After that, 𝑝𝑖 sends

a (Rep) message to 𝑝 𝑗 (line 08). Upon receiving 𝑛− 𝑓 (Rep) messages,

𝑝𝑖 enters the iteration phase.

The protocol achieves quality, mainly because upon receiving

a vector𝑊𝑗 , each replica verifies whether it has r-delivered some

value in each RBC𝑙 instance for 𝑊𝑗 [𝑙] = 1. Hence, if a correct

replica 𝑝 𝑗 receives 𝑛 − 𝑓 (Rep) messages, at least 𝑛 − 𝑓 replicas

must have r-delivered the same values in the same set of 𝑛 − 𝑓

RBC instances due to the agreement property of RBC. Hence, with

probability
2𝑓 +1
3𝑓 +1 ≈

2

3
, replicas mvba-decide a value from a correct

replica. The protocol thus achieves quality.

The way of achieving quality can be viewed as using the tech-

nique from [1, 53] and using the agreement property in RBC. We

show the correctness of the MVBA in this subsection in Appen-

dix C.

5.4 Tailored MVBA fromWeak RBC
While we can use EFBRB and CCBRB for low communication cost

in our MVBA protocol, both of them rely on online error correcting

(OEC) code and may suffer some degraded performance during fail-

ures (due to the "trial-and-error" OEC pattern). Additionally, EFBRB

has significantly more steps than the classic RBC protocols [10, 13].

In this section, we provide a more practical MVBA construction

that achieves 𝑂 (𝐿𝑛2 + 𝜅𝑛3) communication. While its communi-

cation is the same as that of using CCBRB, our protocol in this

subsection outperforms the CCBRB instantiation (in Sec. 5.2) in

terms of both concrete communication cost and computational

efficiency. First, the construction in this subsection does not use

erasure coding or online error correcting code. Hence, the hidden

constant in the bulk data term 𝐿𝑛2
is 1 (namely 1𝐿𝑛2

) instead of 3

(at least 3𝐿𝑛2
or more if using erasure coding or error correcting

code). Namely, for a large 𝐿, the communication cost of this con-

struction is about 1/3 of that of CCBRB-based MVBA. Second, as

the construction in this subsection uses hashes only and does not

use online error correction, it is computationally more efficient in

both gracious and uncivil executions.

We show our tailored MVBA construction in Figure 4. The pro-

tocol relies on a weak RBC primitive, which we call WRBC. The

workflow of WRBC (lines 21-37) is similar to the 3-phase RBC (e.g.,
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A Practical MVBA Construction

Input: Value 𝑣𝑖 such that a global predicate 𝑄 (𝑣𝑖 ) holds
Output: Value 𝑣𝑘 proposed by 𝑝𝑘
Initialization: 𝑟 ← 0,𝑇𝑖 ← [⊥]𝑛

01 upon event mvba-propose(𝑣𝑖 )
02 wr-broadcast(𝑣𝑖 ) for WRBC𝑖 {�WRBC phase}

03 wait for 𝑛 − 𝑓 WRBC instances to complete {� Iteration phase}

04 repeat
05 𝑘 ← Election()
06 if some value is wr-delivered inWRBC𝑘

07 raba-propose 1 for RABA𝑟
08 else
09 raba-propose 0 for RABA𝑟
10 if later some value is r-delivered inWRBC𝑘

11 raba-repropose 1 for RABA𝑟
12 if RABA𝑟 outputs 1
13 wait forWRBC𝑘 to wr-deliver value ℎ𝑘
14 if 𝑇𝑖 [𝑘] ≠ ⊥
15 broadcast (Value,𝑇𝑖 [𝑘])
16 else
17 wait for (Value, 𝑣𝑘 ) such that 𝐻𝑎𝑠ℎ(𝑣𝑘 ) = ℎ𝑘
18 𝑇𝑖 [𝑘] ← 𝑣𝑘
19 terminate the protocol and mvba-decide(𝑇𝑖 [𝑘])
20 𝑟 ← 𝑟 + 1

21 upon event wr-broadcast(𝑣 𝑗 ) for instanceWRBC𝑗

22 {replica 𝑝 𝑗 broadcasts (Send, 𝑣 𝑗 )}

23 upon receiving (Send, 𝑣 𝑗 ) from 𝑝 𝑗
24 if 𝑄 (𝑣 𝑗 ) holds
25 𝑇𝑖 [ 𝑗] ← 𝑣

26 broadcast (Echo, 𝐻𝑎𝑠ℎ(𝑣 𝑗 ))
28 else
29 store the message until 𝑄 (𝑣 𝑗 ) holds
30 upon receiving 𝑛 − 𝑓 matching (Echo, ℎ)

31 broadcast (Ready, ℎ)

32 upon receiving 𝑓 + 1 matching (Ready, ℎ) and (Ready) message

has not been sent yet

33 broadcast (Ready, ℎ)

34 upon receiving 𝑛 − 𝑓 matching (Ready, ℎ)

35 if 𝐻𝑎𝑠ℎ(𝑇𝑖 [ 𝑗]) ≠ ℎ

36 𝑇𝑖 [ 𝑗] ← ⊥
37 wr-deliver ℎ

Figure 4: A Practical MVBA protocol. Code is for 𝑝𝑖 .

Bracha’s broadcast [10]), but we only use hashes in the second and

the third phases. As a result, when a replica successfully terminates

WRBC, all correct replicas will eventually obtain the hash of the

WRBC input message; when needed (later), all correct replicas can

retrieve the message based on the hash. (WRBC appears implicitly

and partly used in, e.g., [27], and we claim no novelty about WRBC

itself.)

Concretely, at lines 21-37, the sender 𝑝 𝑗 in each WRBC𝑗 first

broadcasts its input 𝑣 𝑗 in (send) messages. Upon receiving the

value 𝑣 𝑗 from 𝑝 𝑗 , each replica 𝑝𝑖 verifies whether the predicate

𝑄 (𝑣 𝑗 ) holds. If so, 𝑝𝑖 updates 𝑇𝑖 [ 𝑗] as 𝑣 𝑗 and then broadcasts a

(Echo, 𝐻𝑎𝑠ℎ(𝑣 𝑗 )) message (lines 25-26). Otherwise, 𝑝𝑖 stores the

(Send) message and processes it until 𝑄 (𝑣 𝑗 ) holds (lines 28-29).
Upon receiving 𝑛 − 𝑓 (Echo, ℎ) messages with the same hash value

ℎ, each replica broadcasts a (Ready, ℎ) message (lines 30-31). If a

replica 𝑝𝑖 receives 𝑓 + 1 (Ready, ℎ) messages but has not sent a

(Ready) message, 𝑝𝑖 also broadcasts a (Ready, ℎ) message (lines 32-

33). Upon receiving 2𝑓 + 1 (Ready, ℎ) messages, 𝑝𝑖 wr-delivers ℎ (line

37). If some ℎ is wr-delivered but the hash of 𝑇𝑖 [ 𝑗] is not ℎ, 𝑝 𝑗 sets
𝑇𝑖 [ 𝑗] as ⊥ (lines 35-36).

We now describe our tailored MVBA protocol. There are two

major changes on top of our MVBA protocol in Sec. 5.2. First, in the

RBC phase, we use WRBC instead of the standard RBC, where for

each WRBC𝑗 , the sender 𝑝 𝑗 wr-broadcasts a value 𝑣 𝑗 and correct

replicas wr-deliver ℎ 𝑗 = 𝐻𝑎𝑠ℎ(𝑣 𝑗 ). Second, as each WRBC instance

outputs the hash of the value instead of the original value broadcast

by the sender, we need to retrieve the value after replicas reach an

agreement in the iteration phase. In particular, in some iteration

𝑟 where 𝑘 is the output of the Election() function, after RABA𝑟
outputs 1, each replica first waits forWRBC𝑘 to output some value

ℎ𝑘 and then starts the retrieval (lines 13-18). If 𝑝𝑖 has some value in

𝑇𝑖 [𝑘], it broadcasts a (Value,𝑇𝑖 [𝑘]) to all replicas. If 𝑝𝑖 does not hold
a 𝑇𝑖 [𝑘] value, it waits to receive a (Value, 𝑣𝑘 ) such that 𝐻𝑎𝑠ℎ(𝑣𝑘 ) =
ℎ𝑘 and then sets𝑇𝑖 [𝑘] as 𝑣𝑘 . After 𝐻𝑎𝑠ℎ(𝑇𝑖 [𝑘]) = ℎ𝑘 , 𝑝𝑖 terminates

the protocol and mvba-decides 𝑇𝑖 [𝑘] (line 19).
The communication bottleneck of this protocol is the WRBC

phase, as the communication cost for other steps (including the

retrieval step) is𝑂 (𝜅𝑛2). For eachWRBC instance, the sender broad-

casts a message (length 𝐿), and replicas exchange hashes of val-

ues in the second phase and the third phase, so each instance has

𝑂 (𝑛2) messages and 𝑂 (𝐿𝑛 + 𝜅𝑛2) communication. As there are 𝑛

parallel WRBC instances, our practical MVBA construction has

𝑂 (𝐿𝑛2 + 𝜅𝑛3) communication. The correctness of our protocol is

similar to that of our MVBA in Sec. 5.2. In particular, each WRBC

protocol WRBC𝑗 can guarantee that if a correct replica wr-delivers

some value ℎ, every correct replica eventually wr-delivers ℎ. Fur-

thermore, at least 𝑓 + 1 correct replicas must set their𝑇𝑖 [ 𝑗] as value
𝑣 such that𝐻𝑎𝑠ℎ(𝑣) = ℎ. Hence, the value 𝑣 can be retrieved by any

correct replicas. We prove the correctness of this tailored MVBA

construction in Appendix D.

5.5 Tailored MVBA from Weak RBC with Fewer
Expected Rounds

Our MVBA protocol (without the quality property) presented in

Sec. 5.2 and the tailored MVBA presented in Sec. 5.4 require an

involved proof for constant time complexity, i.e., Lemma 5.5 is re-

quired to show that if at least one correct replica enters the iteration

phase, the protocol terminates in constant time. As a result, the

protocols are expected to terminate in a larger number of expected

rounds. In this section, we further revise our tailored MVBA pro-

tocol and build one with lower expected number of rounds. The

proof for the time complexity can also be simplified accordingly.

Our standard MVBA protocol can be revised in a similar way to

enjoy lower expected number of rounds.

The new MVBA protocol is shown in Figure 5. Compared to the

protocol shown in Figure 5.4, this protocol has only one change:

After each replica 𝑝𝑖 completeWRBC𝑗 , it sends a (Rep, 𝑖) message
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A Practical MVBA Construction with Fewer Expected Rounds

Input: Value 𝑣𝑖 such that a global predicate 𝑄 (𝑣𝑖 ) holds
Output: Value 𝑣𝑘 proposed by 𝑝𝑘
Initialization: 𝑟 ← 0,𝑇𝑖 ← [⊥]𝑛

01 upon event mvba-propose(𝑣𝑖 )
02 wr-broadcast(𝑣𝑖 ) for WRBC𝑖 {�WRBC phase}

03 upon event wr-delivering some value inWRBC𝑗

04 send (Rep, 𝑖) to 𝑝 𝑗
05 wait for 𝑛 − 𝑓 WRBC instances to complete and 𝑛 − 𝑓 (Rep)

messages {� Iteration phase}

06 repeat
07 𝑘 ← Election()
08 if some value is wr-delivered inWRBC𝑘

09 raba-propose 1 for RABA𝑟
10 else
11 raba-propose 0 for RABA𝑟
12 if later some value is r-delivered inWRBC𝑘

13 raba-repropose 1 for RABA𝑟
14 if RABA𝑟 outputs 1
15 wait forWRBC𝑘 to wr-deliver value ℎ𝑘
16 if 𝑇𝑖 [𝑘] ≠ ⊥
17 broadcast (Value,𝑇𝑖 [𝑘])
18 else
19 wait for (Value, 𝑣𝑘 ) such that 𝐻𝑎𝑠ℎ(𝑣𝑘 ) = ℎ𝑘
20 𝑇𝑖 [𝑘] ← 𝑣𝑘
21 terminate the protocol and mvba-decide(𝑇𝑖 [𝑘])
22 𝑟 ← 𝑟 + 1

23 upon event wr-broadcast(𝑣 𝑗 ) for instanceWRBC𝑗

24 {replica 𝑝 𝑗 broadcasts (Send, 𝑣 𝑗 )}

25 upon receiving (Send, 𝑣 𝑗 ) from 𝑝 𝑗
26 if 𝑄 (𝑣 𝑗 ) holds
27 𝑇𝑖 [ 𝑗] ← 𝑣

28 broadcast (Echo, 𝐻𝑎𝑠ℎ(𝑣 𝑗 ))
29 else
30 store the message until 𝑄 (𝑣 𝑗 ) holds
31 upon receiving 𝑛 − 𝑓 matching (Echo, ℎ)

32 broadcast (Ready, ℎ)

33 upon receiving 𝑓 + 1 matching (Ready, ℎ) and (Ready) message

has not been sent yet

34 broadcast (Ready, ℎ)

35 upon receiving 𝑛 − 𝑓 matching (Ready, ℎ)

36 if 𝐻𝑎𝑠ℎ(𝑇𝑖 [ 𝑗]) ≠ ℎ

37 𝑇𝑖 [ 𝑗] ← ⊥
38 wr-deliver ℎ

Figure 5: A Practical MVBA protocol with fewer rounds. Code
is for 𝑝𝑖 .

to 𝑝 𝑗 . Replica 𝑝𝑖 enters the iteration phase after it completes 𝑛 − 𝑓

WRBC instances and receives 𝑛 − 𝑓 (Rep) messages.

We now briefly discuss why this new MVBA protocol can sim-

plify the proof and reduce the expected number of rounds. First, at

least one correct replica enters the iteration phase to guarantee the

termination of the protocol. If the adversary learns the value of the

𝑘 where 𝑘 is the output of the Election() function in iteration 0, it

can manipulate the messages received by correct replicas and force

RABA0 ot output 0. However, to make RABA0 output 0, at least

𝑓 + 1 correct replicas must raba-propose 0 as otherwise the biased

validity of RABA is violated. Let the identities of these 𝑓 + 1 correct

replicas be 𝐼 . For any 𝑖 ∈ 𝐼 , 𝑝𝑖 receives 𝑛− 𝑓 (Rep) messages before it

enters the iteration phase. Among the 𝑛 − 𝑓 (Rep) messages, at least

𝑓 + 1 are sent by correct replicas and each of them has completed

WRBC𝑖 . If 𝑖 is selected by the Election() function in iteration 𝑟 , at

least 𝑓 + 1 correct replicas will raba-propose 1 so the biased validity

property of RABA ensures that RABA outputs 1. Therefore, with

𝑓 +1
3𝑓 +1 probability, RABA outputs 1 and the protocol terminates.

6 OUR ACS APPROACH
6.1 Overview
We now present our ACS protocol with 𝑂 (1) time and 𝑂 (𝑛3) mes-

sages. At the core of our ACS protocol is the reduction of ACS to our

MVBA construction with a specific predicate. In particular, we use 𝑛

parallel RBC instances for replicas to disseminate their acs-proposed

values. Then each replica mvba-proposes a vector of 𝑛 − 𝑓 bits, rep-

resenting the 𝑛 − 𝑓 completed RBC instances. Crucially, we define

the global predicate of MVBA as the following: given a proposal

with 𝑛 − 𝑓 bits, each replica considers the proposal valid only if it

has completed the same 𝑛 − 𝑓 RBC instances. (As we commented

earlier, the predicate depends on the state of a particular replica: it

is possible that the predicate does not hold at the beginning but will

hold at some point.) In this way, we can guarantee that the output

of ACS consists of at least 𝑛 − 𝑓 acs-proposed values, satisfying the

validity property of ACS. As our MVBA component completes in

expected 𝑂 (1) time, our ACS protocol also terminates in expected

constant time.

Figure 6: Our ACS protocol.

6.2 The ACS Protocol
We describe our ACS protocol in Figure 6 and the pseudocode in

Figure 7. Our ACS protocol has two phases: an RBC phase and an

MVBA phase.

RBC phase (lines 02-04). Each replica 𝑝𝑖 holds an input 𝑣𝑖 . Upon

the event acs-propose(𝑣𝑖 ), 𝑝𝑖 r-broadcasts 𝑣𝑖 . Upon completing an

RBC instance RBC𝑗 , 𝑝𝑖 sets𝑊 [ 𝑗] as 1 (lines 03-04), where𝑊 is a

global map used to track the status of the RBC instances.

MVBA phase (lines 05-12). Replica 𝑝𝑖 enters the MVBA phase

after completing 𝑛 − 𝑓 RBC instances. Each replica 𝑝𝑖 sets𝑊𝑖 as𝑊

and uses𝑊𝑖 as input for MVBA with a predicate 𝑄 (𝑊𝑗 ,𝑊 ) (lines
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ACS

Input: value 𝑣𝑖
Output: 𝑛 − 𝑓 values v, among which at least 𝑛 − 2𝑓 are proposed

by correct replicas

Initialization: 𝑟 ← 0,𝑊 ← [0]𝑛 , v← ⊥
Let 𝑄 be the following predicate for MVBA:

Given value𝑊𝑗 mvba-proposed by some replica 𝑝 𝑗 , 𝑄 (𝑊𝑗 ,𝑊 ) ≡
(|𝑊𝑗 | = 𝑛 and for at least 𝑛 − 𝑓 𝑙 such that 1 ≤ 𝑙 ≤ 𝑛,𝑊𝑗 [𝑙] = 1

and𝑊𝑗 ⊆𝑊 )

01 upon event acs-propose(𝑣𝑖 )
02 r-broadcast 𝑣𝑖 for RBC𝑖 {� RBC phase}

03 upon r-delivering 𝑣 𝑗 for RBC𝑗

04 𝑊 [ 𝑗] ← 1

05 wait for 𝑛 − 𝑓 RBC instances to complete {�MVBA phase}

06 𝑊𝑖 ←𝑊

07 mvba-propose(𝑊𝑖 ) with predicate 𝑄 (𝑊𝑗 ,𝑊 )
08 upon event mvba-decide(𝑊𝑘 )
09 for every𝑊𝑘 [ 𝑗] = 1

10 wait for RBC𝑗 to r-deliver value 𝑣 𝑗
11 v← v ∪ 𝑣 𝑗
12 terminate the protocol and acs-decide(v)

Figure 7: The ACS protocol. Code is for 𝑝𝑖 .

06-07). Note that the 1’s in𝑊 for each 𝑝𝑖 continue to grow as more

RBC instances complete. The value mvba-proposed by each 𝑝𝑖 is a

snapshot of𝑊𝑖 with at least 𝑛 − 𝑓 RBC instances completed.

We define a global predicate 𝑄 (𝑊𝑗 ,𝑊 ) for each value𝑊𝑗 mvba-

proposed by 𝑝 𝑗 as follows. First, each𝑊𝑗 is a 𝑛-bit vector. Second,

𝑊𝑗 consists of at least 𝑛− 𝑓 1’s, representing the 𝑛− 𝑓 RBC instances

that replica 𝑝 𝑗 has completed. Third,𝑊𝑗 ⊆ 𝑊 . Namely, for each

𝑊𝑗 [𝑙] = 1, replica 𝑝𝑖 must wait until it has r-delivered some value

in RBC𝑙 . Hence, in MVBA, every replica may need to wait until the

global predicate is satisfied for each mvba-proposed message. As

discussed previously in Sec. 5, the predicate depends on the internal

state𝑊 of each replica 𝑝𝑖 ; it is possible that 𝑄 (𝑊𝑗 ,𝑊 ) fails to hold

when 𝑝𝑖 receives themvba-proposed value by 𝑝 𝑗 , but𝑄 (𝑊𝑗 ,𝑊 ) will
hold at some point as 𝑝𝑖 r-delivers more RBC instances.

After 𝑝𝑖 provides some input to MVBA, it waits for the output

of MVBA (line 08). According to the integrity property of MVBA,

the output of MVBA𝑊𝑘 must be proposed by some replica such

that 𝑄 (𝑊𝑘 ,𝑊 ) is satisfied. At lines 09-11, for each𝑊𝑘 [ 𝑗] = 1, 𝑝𝑖
waits for the output of RBC𝑗 , 𝑣 𝑗 . Then 𝑣 𝑗 is added to a set v. After
all such RBC instances are complete, 𝑝𝑖 acs-decides v (line 12).

Complexity and discussion. Our ACS protocol terminates in

expected constant time, as the underlying MVBA protocol runs in

expected 𝑂 (1) time. Moreover, our ACS protocol clearly has 𝑂 (𝑛3)
messages. The communication cost of our ACS protocol depends on

the underlying RBC protocol, as the input length to MVBA is only 𝑛.

For instance, our ACS protocol with CT RBC has𝑂 (𝐿𝑛2 +𝜅𝑛3
log𝑛)

communication.

In contrast to BKR ACS and the state-of-the-art PACE ACS that

terminate in 𝑂 (log𝑛) time and need 𝑛 (R)ABA instances, our ACS

protocol has 𝑂 (1) time and uses only 𝑂 (1) RABA instances.

Note that as the input of MVBA indicates that at least 𝑛 − 2𝑓

acs-proposed values from correct replicas will eventually be acs-

decided, we do not need the quality property for the underlying

MVBA protocol.

6.3 Proof of our ACS Protocol
Theorem 6.1 (Validity). If a correct replica acs-decides a set v,

then |v| ≥ 𝑛− 𝑓 and v contains values acs-proposed by at least 𝑛− 2𝑓

correct replicas.

Proof. According to the protocol, every correct replica 𝑝𝑖 first

mvba-decide(𝑊𝑘 ) and then obtains v. The predicate of 𝑄 (𝑊𝑘 ,𝑊 )
specifies that there are at least 𝑛 − 𝑓 1’s in the𝑊𝑗 vector. Then

𝑝𝑖 waits for each RBC𝑗 to output some 𝑣 𝑗 for each𝑊𝑘 [ 𝑗] = 1 and

includes 𝑣 𝑗 in v. As there are 𝑛 − 𝑓 values in v, corresponding to

𝑛 − 𝑓 RBC instances, it holds that |v| ≥ 𝑛 − 𝑓 . Since there are at

most 𝑓 faulty replicas, at least 𝑛 − 2𝑓 values are acs-proposed by

correct replicas. □

Theorem 6.2 (Agreement). If a correct replica acs-decides v, then
every correct replicas outputs v.

Proof. If a correct replica 𝑝𝑖 acs-decides v, it first mvba-decides

𝑊𝑘 . Then for each𝑊𝑘 [ 𝑗] = 1, 𝑣 𝑗 is r-delivered by RBC𝑗 and 𝑣 𝑗 is

included in v. We assume that another correct replica 𝑝 𝑗 acs-decides

v′ ≠ v and then prove the theorem by contradiction.

If 𝑝 𝑗 acs-decides v′, it mvba-decides𝑊 ′
𝑘
. According to the agree-

ment property of MVBA, it must hold that𝑊𝑘 =𝑊 ′
𝑘
. Then for each

𝑊 ′
𝑘
[ 𝑗] = 1, 𝑝 𝑗 obtains the output of RBC𝑗 𝑣

′
𝑗
and includes 𝑣 ′

𝑗
in v′.

If for any 𝑗 , 𝑣 𝑗 ∈ v and 𝑣 ′
𝑗
∈ v′ and 𝑣 𝑗 ≠ 𝑣 ′

𝑗
, the agreement property

of RBC is violated. Hence, we have v = v′. □

Theorem 6.3 (Termination). If all correct replicas acs-propose,

then all correct replicas acs-decide.

Proof. If all correct replicas acs-propose, every correct replica

𝑝𝑖 starts RBC𝑖 . Due to the validity property of RBC, every correct

replica r-delivers in RBC𝑖 . Therefore, every correct replica eventu-

ally completes 𝑛 − 𝑓 RBC instances. Then each correct replica 𝑝𝑖
mvba-proposes𝑊𝑖 . For each𝑊𝑖 [ 𝑗] = 1, we know that 𝑝𝑖 r-delivers

some value in RBC𝑗 . From the agreement property of RBC, ev-

ery correct replica eventually r-delivers some value in RBC𝑗 . Thus,

the predicate 𝑄 (𝑊𝑖 ,𝑊 ) eventually holds at every correct replica.

Namely, for each 𝑊𝑖 [𝑙] = 1, each correct replica 𝑝 𝑗 eventually

r-delivers some value in RBC𝑙 , so 𝑄 (𝑊𝑖 ,𝑊 ) eventually holds at 𝑝 𝑗 .

According to the termination property of MVBA, every correct

replica eventually mvba-decides some value𝑊𝑘 . Furthermore, from

the integrity property and external validity property of MVBA,

𝑄 (𝑊𝑘 ,𝑊 ) eventually holds, so for each𝑊𝑘 [ 𝑗] = 1, at least one

correct replica r-delivers some value in RBC𝑗 . Due to the agreement

property of RBC, every correct replica eventually r-delivers some

value 𝑣 𝑗 for each RBC𝑗 . Thus, every correct replica includes each

𝑣 𝑗 in its output. □

7 A PRACTICAL ACS INSTANTIATION
We use CT RBC as the underlying RBC protocol in ACS. We use

our tailored MVBA protocol in Sec. 5.4 as our MVBA protocol. Our
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tailored MVBA protocol internally uses the hash-based WRBC pro-

tocol in Sec. 5.4 and Pisa RABA protocol [54]. We call the resulting

instantiation FIN.

8 IMPLEMENTATION AND EVALUATION
We implemented FIN in Golang. In the same library, we imple-

mented PACE [54], the most efficient ACS construction of the

same type. Our implementation involves around 9,000 LOC for

the two protocols and about 1,000 LOC for evaluation. Addition-

ally, we also assess Dumbo [34]
5
and Speeding Dumbo (denoted as

sDumbo) [33]
6
. Note Dumbo and sDumbo rely on threshold signa-

tures and use stronger pairing assumptions. We do not compare FIN

with BFT protocols with unbounded memory (e.g., Dumbo-NG [31])

or weaker liveness properties (e.g., Bullshark [32] and Tusk [24]).
7

In our implementation, we use gRPC as the communication

library. We use HMAC to realize the authenticated channel and use

SHA256 as the underlying hash function. We implement threshold

PRF [12] to realize common coins for RABA and the random leader

election protocol. We use a Golang-based erasure coding library
8

to implement CT RBC.

We evaluate the performance of our protocols onAmazon EC2 us-

ing up to 121 virtual machines (VMs).We usem5.xlarge instances for

our evaluation. The m5.xlarge instance has four virtual CPUs and

16GB memory. We deploy our protocols in the WAN setting, where

replicas are evenly distributed across different regions: us-west-2

(Oregon, US), us-east-2 (Ohio, US), ap-southeast-1 (Singapore), and

eu-west-1 (Ireland).

We conduct the experiments under different network sizes and

batch sizes.We use 𝑓 to denote the network size; in each experiment,

we use 𝑛 = 3𝑓 +1 replicas in total. We use 𝑏 to denote the batch size,

where each replica proposes 𝑏 transactions in each epoch (i.e., one

ACS instance). For each experiment, we run five epochs and report

the average performance (for both throughput and latency). The

default transaction size is 250 bytes. We also additionally evaluate

the performance using a transaction size of 100 bytes and report

the performance in Appendix B.

We summarize our main evaluation results as follows.

• We evaluate latency vs. throughput and the peak throughput

varying 𝑓 from 1 to 40. We demonstrate that for both metrics, FIN

consistently and drastically outperforms PACE when 𝑛 > 16 and

all the protocols we evaluated (PACE, Dumbo, sDumbo) when

𝑛 > 22. The performance difference between FIN and the other

protocols drastically increases as 𝑛 grows. For instance, when

𝑛 = 121 and 𝑓 = 40, the peak throughput of FIN is 3.41x that of

PACE, 4.15x that of sDumbo, and 8.79x that of Dumbo.

• We also assess the latency breakdown to analyze the improve-

ment of FIN over PACE. The experiments we carefully designed

explain well why FIN outperforms PACE. In particular, we show

that the RABA phase for FIN (with constant RABA instances)

occupies only 1.23%-5.22% of the overall latency, in sharp contrast

5
https://github.com/yylluu/dumbo

6
https://github.com/xygdys/Consensus

7
Dumbo-NG, Tusk, and Bullshark are BFT protocols that separate data transmission

from consensus for higher throughput, and FIN can also use the technique to improve

the performance.

8
https://github.com/klauspost/reedsolomon

to PACE, where its RABA phase (with 𝑛 parallel RABA instances)

occupies 15.10%-83.66% of the total runtime.

• We evaluate the performance of the protocols under different

failure scenarios. Our results show that FIN is highly robust

against various failures.

• We additionally evaluate the performance with a smaller trans-

action size of 100 bytes, where we find that FIN outperforms

PACE in a more significant manner. For instance, when 𝑓 = 20,

the throughput of FIN with 100-byte transactions is 2.14x that of

PACE.

Latency vs. throughput.We report latency vs. throughput and

peak throughput as 𝑓 increases. We first show the latency vs.

throughput of FIN, PACE, Dumbo, and sDumbo for 𝑓 = 1, 6, 8, 10, 20,

30, 40 in Figure 8a-8g. Each point represents one experiment for a

particular batch size. In each experiment, we begin with a small

batch size and assess its latency and throughput for the batch size.

We repeat the process until the throughput does not increase but

the latency keeps growing (i.e., when the throughput reaches its

peak—peak throughput).

For 𝑓 = 1, the performance of FIN is lower than sDumbo, but

only slightly lower than PACE; it is consistently higher than Dumbo.

The reason why PACE is slightly more efficient than FIN is that FIN

involves two phases of RBC (one for ACS and one inside MVBA),

while the parallel RABA instances in PACE do not bottleneck the

performance for such small 𝑓 ’s. Meanwhile, the reason why FIN

achieves lower performance than sDumbo is that sDumbo optimizes

the failure-free case where the expensive erasure-coded recovery

phase is not triggered; both PACE and FIN can use the same tech-

nique for higher failure-free performance. The drawback of using

the technique is that it will cause significant performance degrada-

tion under failures and attacks.

When 𝑓 = 6, FIN outpaces sDumbo for all points except the

ones where they attain their peaks; FIN starts to experience higher

performance than PACE from this point on. When 𝑓 ≥ 7, FIN

consistently outperforms all the other protocols we assessed in

terms of latency vs. throughput.

The performance gain for FIN over PACE is clearly due to the

constant-time termination and the constant number of RABA in-

stances.

Peak throughput. We report the peak throughput of all the four

protocols we evaluate in Figure 9 for 𝑓 = 1, 5, 6, 7, 8, 10, 20, 30, 40.

As shown in Figure 9, FIN outperforms Dumbo for all cases. When

𝑓 ≤ 5, FIN achieves a lower peak throughput than PACE and

sDumbo. When 𝑓 = 6, FIN starts to outperform PACE, but the peak

performance of FIN is slightly lower than sDumbo. For 𝑓 ≥ 8, FIN

consistently outperforms all the other three protocols in terms of

peak throughput. The performance difference between FIN and the

other protocols becomes increasingly significant as 𝑓 increases. For

instance, when 𝑓 = 30, the peak throughput of FIN is 2.42x that

of PACE, 3.40x that of sDumbo, and 6.20x that of Dumbo. When

𝑓 = 40, the peak throughput of FIN is 3.41x that of PACE, 4.15x that

of sDumbo, and 8.79x that of Dumbo.

Note that there are minor "inconsistencies" between the latency

vs. throughput evaluation and the peak throughput evaluation.

For example, when 𝑓 = 6, FIN outperforms sDumbo in terms of

latency vs. throughput for almost all points (experiments) but has
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(a) Latency vs. throughput for 𝑓 = 1.
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(b) Latency vs. throughput for 𝑓 = 6.
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(c) Latency vs. throughput for 𝑓 = 8.
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(d) Latency vs. throughput for 𝑓 = 10.
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(e) Latency vs. throughput for 𝑓 = 20.
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(f) Latency vs. throughput for 𝑓 = 30.
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(g) Latency vs. throughput for 𝑓 = 40.
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(h) Latency breakdown for 𝑓 = 1.
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(i) Latency breakdown for 𝑓 = 10.
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(j) Latency breakdown for 𝑓 = 20.

0 5 10 15 20 25 30 35

PACE (b=10k)

FIN (b=10k)

PACE (peak)

FIN (peak)

Latency breakdown (Sec)

RBC1 RBC2 RABA

(k) Latency breakdown for 𝑓 = 30.
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(l) Latency breakdown for 𝑓 = 40.

Figure 8: Latency vs. throughput and latency breakdown.

slightly lower peak throughput. We comment that these minor

inconsistencies are completely normal, and users should choose

their protocols according to their priorities.

We also observe that as 𝑓 increases, the peak throughput of

protocols of PACE and FIN first increases and decreases. Indeed, as

𝑓 increases, the number of transactions delivered for both protocols

increases, but when 𝑓 further increases, the network bandwidth

consumption dominates the performance. In our experiments, FIN

achieves the highest peak throughput when 𝑓 = 10 and PACE
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Figure 9: Peak throughput of all the four protocols as 𝑓 grows.
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(b) Failure scenarios for 𝑓 = 10.
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Figure 10: Evaluation results of FIN and PACE under failures and using different transaction sizes.

achieves its highest peak throughput when 𝑓 = 20. In contrast, the

performance of Dumbo and sDumbo degrades as 𝑓 increases.

Latency breakdown. To help understand why FIN outperforms

PACE, we report the latency breakdown for the experiments. In FIN,

there are three phases: the RBC phase for ACS (denoted as RBC1),

the RBC phase inside MVBA (denoted as RBC2), and the iteration

phase with a random leader election and one RABA instance at a

time (denoted as RABA). In contrast, PACE has an RBC phase (the

same as that in FIN, denoted as RBC1) and a RABA phase with 𝑛

parallel RABA instances (denoted as RABA). Here the latency of

the RBC phase is measured from the beginning of the first RBC

instance to the completion of the (𝑛 − 𝑓 )-th RBC instance. More-

over, the latency of the RABA phase for PACE is measured from the

beginning of the first RABA instance to the time ACS completes.

Finally, the latency of the RABA phase for FIN is measured from the

beginning of the iteration phase to the time when ACS completes.

The latency breakdown experiments can explain why FIN outper-

forms PACE, help identify the bottleneck of the two protocols, and

assist in understanding the scalability results.

Figure 8h-8l report the latency breakdown for FIN and PACE. We

test two settings: a fixed one with 𝑏 = 10,000, and the smallest batch

size where both protocols achieve their peak throughput. We first

observe that the RBC1 phases in the two protocols share almost

the same latency. This is not surprising, as the RBC1 phase is the

only phase that carries bulk data for both protocols, and we use

CT RBC for both of them. Additionally, the latency percentage for

the RBC2 phase in FIN is comparatively very low. This is because

the RBC2 phase does not have any bulk data, and its input size is

small (𝑛 bits). Hence, the RBC2 phase in FIN does not incur much

overhead to the protocol.

In all cases, the RABA latency in PACE is much higher than that

for FIN. For 𝑓 =1 to 40, the latency of the RABA phase in PACE is

15.10%-83.66% of the overall latency. In contrast, the RABA phase

in FIN occupies only 1.23%-5.22% of the total runtime.

Moreover, the latency percentage of the RABA phase within the

overall PACE latency becomes increasingly larger as 𝑓 increases,

but the RABA latency percentage in FIN remains steady despite an

increasing 𝑓 . Indeed, when 𝑓 = 40, the RABA phase occupies 83.66%

of the overall consensus latency for PACE. In contrast, the latency

of the RABA phase in FIN is only 1.23% of the overall latency. In

fact, even if we consider the latency caused by RBC2 and RABA (i.e.,

MVBA) in FIN, it only occupies 11.45% of the overall latency. This

observation explains well why the performance difference between

FIN and PACE becomes increasingly larger as 𝑓 increases. Indeed,

FIN only needs an expected constant number of RABA instances.

Performance under failures. To assess the robustness of FIN,

we report the performance of FIN and PACE under various failure

scenarios. Following prior works [54, 56], we consider the following
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scenarios, where the 𝑓 faulty replicas are evenly distributed in the

EC2 regions we use.

• 𝑆0: (failure-free) In this scenario, all replicas are correct.

• 𝑆1: (crash) In this scenario, we let 𝑓 replicas crash by not partici-

pating in the protocols.

• 𝑆2: (Byzantine; keep voting 0) In this scenario, we fail 𝑓 replicas
and let them keep voting for 0 in each step of RABA.

• 𝑆3: (Byzantine; flipping the RABA input) In this scenario, we

fail 𝑓 replicas and ask them to always vote for a flipped value in

RABA.

We fix 𝑏 to 30,000 and present the throughput for 𝑓 = 5 in Fig-

ure 10a and 𝑓 = 10 in Figure 10b. We choose these two settings

because they are the settings where the two protocols share similar

performance. First, for the crash failure scenario, the performance

of both protocols degrades only slightly. For both Byzantine scenar-

ios, the percentage for the performance degradation of FIN is lower

than that of PACE. The performance of FIN in Byzantine scenarios

degrades by 15.1%-30.2% compared to the failure-free scenario. In

contrast, the performance of PACE degrades by 24.39%-41.74%. No-

tably, for 𝑓 = 10, FIN under all failure scenarios outperforms PACE

in its failure-free scenario.

Performance with different transaction sizes. We additionally

evaluate the performance of FIN and PACE with a smaller transac-

tion size of 100 bytes as shown in Figure 10c. In this setting, FIN

outperforms PACE more significantly. For instance, when 𝑓 = 20,

the throughput of FIN with 100-byte transactions is 2.14x that of

PACE, while for 250-byte transactions, the throughput of FIN is

only 17.56% higher. We also find that the throughput of FIN with

100-byte transactions is roughly 2x that with 250-byte transactions.

9 CONCLUSION
We present the first signature-free ACS protocol with 𝑂 (1) time

and 𝑂 (𝑛3) messages, resolving a long-standing open problem in

fault-tolerant distributed computing and cryptography. As a core

ingredient in our ACS construction and a primitive of independent

interests, we present the first signature-free MVBA protocols with

𝑂 (1) time and 𝑂 (𝑛3) messages. In contrast, existing signature-free

MVBA protocols have𝑂 (log𝑛) time and𝑂 (𝑛3) messages. From the

practical side, we implement a practical ACS protocol called FIN.

We demonstrate that FIN significantly outperforms the state-of-the-

art BFT protocol of the same kind—PACE and outperforms other

BFT protocols with standard liveness guarantees.
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A ACRONYMS
We explain the acronyms used in this work in Table 3.

BFT Byzantine fault tolerance

ACS asynchronous common subset

MPC multi-party computation

MVBA multivalued validated Byzantine agreement

DAG direct acyclic graph

RBC reliable broadcast

WRBC weak reliable broadcast

ABA asynchronous binary agreement

RABA reproposable asynchronous binary agreement

Table 3: Acronyms

B ADDITIONAL EVALUATION RESULTS
In Figure 11, we present the throughput vs. latency results for the

transaction size of 100 bytes for 𝑓 = 1, 10, 20. While the trend in

this setting is similar to that with the transaction size of 250 bytes,

FIN outperforms PACE in a more drastic way. Despite the case for

𝑓 = 1 where the peak throughput of FIN is 17.4% lower than that of

PACE, FIN achieves 1.23x and 2.14x the peak throughput of PACE,

for 𝑓 = 10 and 𝑓 = 20, respectively.

C PROOF OF OUR MVBA PROTOCOLWITH
QUALITY

We show that the MVBA protocol presented in Sec. 5.3 addition-

ally achieves the quality property. All the other properties except

termination follow from our MVBA without the quality property.

Therefore, we prove quality and termination in this section.

Lemma C.1. If a correct replica enters the iteration phase, then

for at least 2𝑓 + 1 RBC instances, at least 𝑓 + 1 correct replicas have

r-delivered some values.

Proof. If a correct replica 𝑝𝑖 enters the iteration phase, it re-

ceives 𝑛 − 𝑓 (Rep) message. Prior to that, 𝑝𝑖 has broadcast (Echo,𝑊𝑖 )

where𝑊𝑖 consists of at least𝑛−𝑓 1’s, i.e., 𝑝𝑖 has completed𝑛−𝑓 RBC
instances. Each replica 𝑝 𝑗 replies with a (Rep) message only if for

any𝑊𝑖 [𝑙] = 1, 𝑝 𝑗 has also r-delivered some value in RBC𝑙 . Hence,

for any𝑊𝑖 [𝑙] = 1, at least 𝑓 + 1 correct replicas have r-delivered

some value. □

Theorem C.2 (Quality). The probability of mvba-deciding a

value that was proposed by a correct replica is at least 1/2.

Proof. According to LemmaC.1, for at least 2𝑓 +1 RBC instances,

at least 𝑓 + 1 correct replicas have r-delivered some value. From the

biased validity property of RABA, if any of the 2𝑓 +1 RBC instances

is selected by the Election() function, RABA will output 1. So every

correct replica then mvba-decides. Therefore, the probability that

the decided value was proposed by an adversary is bounded by

𝑓 +1
3𝑓 +1 . As the probability of deciding a value proposed by a faulty

replica is at most Σ∞
𝑘=1
(1/3)𝑘 = 1/2, the probability of deciding a

value that was proposed by a correct replica is at least 1/2. □
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(a) Latency vs. throughput for 𝑓 = 1.
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(b) Latency vs. throughput for 𝑓 = 10.

0 50 100 150 200

0

2

4

6

8

10

12

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

PACE FIN

(c) Latency vs. throughput for 𝑓 = 20.

Figure 11: Evaluation results for transaction size of 100 bytes.

Theorem C.3 (Termination). If all correct replicas are activated

and all messages sent among correct replicas have been delivered, then

all correct replicas mvba-decide.

Proof. If all correct replicas are activated, each correct replica

starts one RBC instance. According to the validity property of RBC,

at least 𝑛− 𝑓 RBC instances started by the 𝑛− 𝑓 correct replicas will
eventually complete. Then, each correct replica 𝑝𝑖 sends a (Echo,𝑊𝑖 )

message, every replica replies only if it has r-delivered some value

in RBC𝑙 for any𝑊𝑖 [𝑙] = 1. According to the agreement property

of RBC, we know that for the message sent by 𝑝𝑖 , every correct

replica eventually replies with a (Rep) message. Accordingly, every

correct replica eventually enters the iteration phase.

During the iteration phase, we first prove that every iteration 𝑟

completes and then show that eventually some RABA𝑟 outputs 1.
For each iteration 𝑟 , 𝑘 is returned by the Election() function.

The proof that every iteration 𝑟 completes is similar to that for

the protocol without quality. We include one additional echo-and-

reply procedure, where every replica sends its𝑊𝑖 to all replicas and

proceeds to the next phase if it receives 𝑛 − 𝑓 replies. According

to the agreement property of RBC, we know that every correct

replicas eventually r-delivers some values in the same set of RBC

instances in𝑊𝑖 . Thus, every correct replica completes each epoch.

We now prove that eventually, in some iteration 𝑟 , RABA𝑟 out-
puts 1, so the protocol terminates. From Lemma C.1, for at least

2𝑓 + 1 RBC instances, at least 𝑓 + 1 correct replicas have r-delivered

some value after they enter the iteration phase. Let 𝐼 be the set of

the 2𝑓 + 1 RBC instances. Due to the biased validity property of

RABA, RABA𝑟 outputs 1. So with probability
2𝑓 +1
3𝑓 +1 ≈

2

3
, it holds

that 𝑘 ∈ 𝐼 .
After RABA𝑟 outputs 1, every correct replica waits for the output

of RBC𝑘 . Note that if RABA𝑟 outputs 1, at least one correct replica

has raba-proposeed 1 or raba-reproposed 1. This is due to the unani-

mous termination property of RABA. Therefore, at least one correct

replica has r-delivered some value in RBC𝑘 . Due to the agreement

property of RBC, every correct replica eventually r-delivers some

value in RBC𝑘 and then mvba-decides. □

D PROOF OF OUR TAILORED MVBA
In this section, we prove the correctness of our tailored MVBA

protocol. We first show a few lemmas about WRBC and then show

the correctness of our tailored MVBA construction. As external

validity is the same as the MVBA protocol presented in Sec. 5.2, we

focus on agreement, integrity, and termination in this section.

Lemma D.1. If a correct replica wr-delivers ℎ and another correct

replica wr-delivers ℎ′, then ℎ = ℎ′.

Proof. If a correct replica 𝑝𝑖 wr-delivers ℎ, it receives 𝑛 − 𝑓

(Ready, ℎ). If another correct replica 𝑝 𝑗 wr-delivers ℎ
′
, it receives

𝑛 − 𝑓 (Ready, ℎ′). Therefore, at least one correct replica has sent
both (Ready, ℎ) and (Ready, ℎ′), a contradiction to the fact that every

correct replica only sends a (Ready) message once. □

Lemma D.2. If a correct replica wr-broadcasts a value 𝑣 , every

correct replica eventually wr-delivers ℎ such that ℎ = 𝐻𝑎𝑠ℎ(𝑣).

Proof. For any WRBC instance, if the sender is correct, it is

straightforward to see that every correct replica receives the same

(Send, 𝑣) message, broadcasts a (Echo,𝑚)essage, and receives 𝑛 − 𝑓

(Echo, 𝐻𝑎𝑠ℎ(𝑣)) messages. Then every correct replica eventually

sends (Ready, 𝐻𝑎𝑠ℎ(𝑣)) and will never receive 𝑓 +1 (Ready) messages

with a value different from 𝐻𝑎𝑠ℎ(𝑣). Hence, every correct replica

eventually wr-delivers ℎ = 𝐻𝑎𝑠ℎ(𝑣). □

LemmaD.3. For anyWRBC instance, if a correct replica wr-delivers

some value ℎ, any correct replica eventually wr-delivers some value.

Proof. If a correct replicawr-deliversℎ, it receives𝑛−𝑓 (Ready, ℎ)
messages, among which are least 𝑓 + 1 are sent by correct replicas.

Thus, any correct replica that receives 𝑓 + 1 (Ready, ℎ) messages

but has not sent any (Ready) message will also send a (Ready, ℎ).

Therefore, every correct replica eventually receives 𝑛 − 𝑓 (Ready, ℎ)

messages and wr-delivers. □

LemmaD.4. If a correct replica wr-delivers some valueℎ inWRBC𝑗 ,

at least 𝑓 + 1 correct replica receives (Send, 𝑣) such that 𝐻𝑎𝑠ℎ(𝑣).

Proof. If a correct replicawr-deliversℎ, it receives𝑛−𝑓 (Ready, ℎ),
among which are least 𝑓 + 1 are sent by correct replicas. Any of

the correct replicas receive 𝑛 − 𝑓 (Echo, ℎ), among which at least
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𝑓 + 1 are sent by correct replicas. The correct replicas must have

received (Send, 𝑣) from 𝑝 𝑗 such that 𝐻𝑎𝑠ℎ(𝑣) = ℎ. □

For completeness, below, we provide self-contained proof for

agreement, integrity, and termination. Note that the proof is very

similar to that for our MVBA protocol in Sec. 5.2.

Theorem D.5 (Agreement). If a correct replica mvba-decides 𝑣 ,

then any correct replica that terminates mvba-decides 𝑣 .

Proof. If a correct replica 𝑝𝑖 mvba-decides 𝑣 , we assume it has

raba-decided 1 in RABA𝑟 for some iteration 𝑟 > 0 and for any

iteration 𝑟 < 𝑟 , RABA𝑟 outputs 0. Furthermore, if 𝑘 is returned

by the Election() function in iteration 𝑟 , WRBC𝑘 outputs ℎ and

𝑝𝑖 receives some 𝑣 (from 𝑝𝑘 or from a (Value) message) such that

𝐻 (𝑣) = ℎ.

We assume that another correct replica 𝑝 𝑗 mvba-decides 𝑣 ′ ≠ 𝑣

and prove the theorem by contradiction. We consider two cases: 𝑝 𝑗
mvba-decides in iteration 𝑟 ; 𝑝 𝑗 mvba-decides in iteration 𝑟 ′ ≠ 𝑟 .

Case 1: If 𝑝 𝑗 mvba-decides 𝑣 ′ in round 𝑟 , it obtains 𝑘′ from Election()
function and WRBC𝑘 ′ outputs ℎ

′
. Then 𝑝 𝑗 either receives value

𝑣 ′ from 𝑝𝑘 ′ such that 𝐻𝑎𝑠ℎ(𝑣 ′) = ℎ′ or receives 𝑣 ′ from another

replica in a (Value) message. As Election() outputs a common coin,

it must hold that 𝑘 = 𝑘′. Thus, if 𝐻𝑎𝑠ℎ(𝑣) ≠ ℎ′, 𝑝 𝑗 wr-delivers
ℎ′ ≠ ℎ, a violation of Lemma D.1. Furthermore, if 𝑣 ≠ 𝑣 ′, the
collision resistance property of the hash function is violated.

Case 2: Without loss of generality, we assume 𝑟 ′ > 𝑟 . According

to our protocol, 𝑝 𝑗 raba-decides 1 in RABA𝑟 ′ and raba-decides 0

for any iteration lower than 𝑟 ′, including 𝑟 . This would violate the

agreement property of RABA. □

Theorem D.6 (Integrity). If all replicas follow the protocol, and

if a correct replica mvba-decides such that 𝑄 (𝑣) holds, then some

replica mvba-proposed such that 𝑄 (𝑣) holds.

Proof. If a correct replica 𝑝𝑖 mvba-decides 𝑣 , it raba-decides 1

in some RABA𝑟 and wr-delivers ℎ = 𝐻 (𝑣) in WRBC𝑘 where 𝑘 is

the output of the Election() function. According to our protocol,

at least 𝑛 − 𝑓 replicas have sent (Ready, ℎ) messages, among which

at least one is sent by a correct replica. The correct replica has

received 𝑛 − 𝑓 (Echo, ℎ) messages, where at least 𝑓 + 1 message are

sent by correct replicas. The correct replicas must have received a

(Send, 𝑣) message from 𝑝𝑖 such that 𝐻𝑎𝑠ℎ(𝑣) = ℎ. □

Lemma D.7. If all correct replica enter the iteration phase, then

for at least 𝑓 + 1 WRBC instances, at least 𝑓 + 1 correct replicas have

wr-delivered some values.

Proof. Correctness of the lemma is the same as that in Lemma 5.4,

except that RBC is now WRBC. □

Theorem D.8 (Termination). If all correct replicas are activated

and all messages sent among correct replicas have been delivered, then

all correct replicas mvba-decide.

Proof. If all correct replicas start the protocol, each correct

replica starts one WRBC instance. According to Lemma D.2, any

correct replica completes a WRBC instance started by a correct

replica. Thus, every correct replica completes at least 𝑛 − 𝑓 WRBC

instances.

During the iteration phase, we consider each iteration 𝑟 where

𝑘 is the corresponding output of the Election() function. We first

show that every iteration 𝑟 completes and then eventually some

RABA𝑟 outputs 1.
We first show that every iteration 𝑟 completes. For each iteration

𝑟 , there are three cases: 1) all correct replicas havewr-delivered some

value in WRBC𝑘 ; 2) at least one correct replica has wr-delivered

some value inWRBC𝑘 and at least one correct replica has not wr-

delivered any value inWRBC𝑘 ; 3) none of the correct replicas have

r-delivered any value in WRBC𝑘 .

Case 1: According to the unanimous termination property, RABA𝑟
terminates.

Case 2: If at least one correct replica has wr-delivered some value in

WRBC𝑘 , then according to Lemma D.3, any correct replica even-

tually wr-delivers some value. Note that any correct replica that

provides 0 as the RABA input (it has not wr-delivered any value in

WRBC𝑘 when the iteration begins) will eventually raba-repropose 1.

Thus, the biased termination condition of RABA is satisfied. RABA𝑟
will terminate and iteration 𝑟 will complete.

Case 3: If none of the correct replicas wr-deliver any value in

WRBC𝑘 , iteration 𝑟 completes due to the unanimous termination

property of RABA. Otherwise, if at least one correct replica laterwr-

delivers some value in WRBC𝑘 , then according to case 2, iteration

𝑟 completes due to the biased termination property of RABA.

We now prove that eventually, in some iteration 𝑟 , RABA𝑟 out-
puts 1 so the protocol terminates. From Lemma D.7, for at least

𝑓 + 1 WRBC instances, at least 𝑓 + 1 correct replicas have wr-

delivered some value after they enter the iteration phase. Let 𝐼 be

the 𝑓 +1 WRBC instances. According to the biased validity property

of RABA, RABA𝑟 outputs 1. So with probability
𝑓 +1

3𝑓 +1 ≈
1

3
, we have

𝑘 ∈ 𝐼 .
After RABA𝑟 outputs 1, every correct replica waits for the output

ofWRBC𝑘 . We also know that if RABA𝑟 outputs 1, then at least one

correct replica has raba-proposed 1 or raba-reproposed 1. Otherwise,

the unanimous termination of RABA is violated. Therefore, at least

one correct replica has wr-delivered some value ℎ inWRBC𝑘 . From

Lemma D.3 and Lemma D.1, every correct replica eventually r-

delivers ℎ inWRBC𝑘 . From Lemma D.4, at least 𝑓 +1 correct replicas

receive (Send, 𝑣) from 𝑝𝑖 and set their𝑇𝑖 [𝑘] as 𝑣 such that𝐻𝑎𝑠ℎ(𝑣) =
ℎ. The correct replicas will send (Value, 𝑣) to all replicas. Therefore,

any correct eventually receives 𝑣 and then mvba-decides. □

E PROOF OF MVBAWITH FEWER ROUNDS
In this section, we prove the correctness of our MVBA protocol

presented in Sec. 5.5. The protocol largely follows the tailored

MVBA. We thus reuse some proofs in Sec. D in this section.

Theorem E.1 (Agreement). If a correct replica mvba-decides 𝑣 ,

then any correct replica that terminates mvba-decides 𝑣 .

Proof. Proof for this theorem is the same as that for Theo-

rem D.5. □

Theorem E.2 (Integrity). If all replicas follow the protocol, and

if a correct replica mvba-decides such that 𝑄 (𝑣) holds, then some

replica mvba-proposed such that 𝑄 (𝑣) holds.
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Proof. Proof for this theorem is the same as that for Theo-

rem D.6. □

Lemma E.3. If the adversary makes RABA0 output 0, at least 𝑓 + 1

correct replicas have entered the iteration phase.

Proof. To make RABA0 output 0, at least 𝑓 + 1 correct replica

must raba-propose 0 in RABA0, as otherwise the biased validity

property of RABA is violated. The lemma thus holds. □

Lemma E.4. If at least 𝑓 + 1 correct replicas enter the iteration

phase, there exist at least 𝑓 + 1 WRBC instances 𝐼 , for any 𝑗 ∈ 𝐼 , at
least 𝑓 + 1 correct replicas have completedWRBC𝑗 .

Proof. Let the identities of the 𝑓 + 1 correct replicas be 𝐼 . Any

of the correct replicas 𝑝𝑖 enters the iteration phase after it receives

𝑛 − 𝑓 (Rep) message. As every correct replica 𝑝 𝑗 sends a (Rep, 𝑗 )

message to 𝑝𝑖 after 𝑝 𝑗 has wr-delivered some value in WRBC𝑖 , at

least 𝑓 + 1 correct replicas have completed WRBC𝑖 . Therefore, for

any 𝑗 ∈ 𝐼 , at least 𝑓 + 1 correct replicas have completed WRBC𝑗 ,

after 𝑝 𝑗 enters the iteration phase. □

Theorem E.5 (Termination). If all correct replicas are activated

and all messages sent among correct replicas have been delivered, then

all correct replicas mvba-decide.

Proof. If all correct replicas start the protocol, each correct

replica starts one WRBC instance. According to Lemma D.2, any

correct replica completes a WRBC instance started by a correct

replica. Thus, every correct replica completes at least 𝑛 − 𝑓 WRBC

instances. For each WRBC instance WRBC𝑖 started by a correct

replica 𝑝𝑖 , all correct replicas will send a (Rep) message to 𝑝𝑖 , so

every correct replica eventually enters the iteration phase.

During the iteration phase, we consider each iteration 𝑟 where

𝑘 is the corresponding output of the Election() function. We first

show that every iteration 𝑟 completes and then eventually some

RABA𝑟 outputs 1.
We first show that every iteration 𝑟 completes. Consider the

status of correct replicas when they enter the iteration, there are

three cases: 1) all correct replicas have wr-delivered some value in

WRBC𝑘 ; 2) at least one correct replica has wr-delivered some value

inWRBC𝑘 and at least one correct replica has not wr-delivered any

value in WRBC𝑘 ; 3) none of the correct replicas have r-delivered

any value in WRBC𝑘 .

Case 1: Every correct replica raba-proposes 1 for RABA𝑟 . According
to the unanimous termination property, RABA𝑟 terminates.

Case 2: If at least one correct replica has wr-delivered some value in

WRBC𝑘 , then according to Lemma D.3, any correct replica even-

tually wr-delivers some value. Note that any correct replica that

provides 0 as the RABA input (it has not wr-delivered any value in

WRBC𝑘 when the iteration begins) will eventually raba-repropose 1.

Thus, the biased termination condition of RABA is satisfied. RABA𝑟
will terminate and iteration 𝑟 will complete.

Case 3: If none of the correct replicas wr-deliver any value in

WRBC𝑘 , If none of the correct replicas wr-deliver any value in

WRBC𝑘 , iteration 𝑟 completes due to the unanimous termination

property of RABA. Otherwise, if at least one correct replica laterwr-

delivers some value in WRBC𝑘 , then according to case 2, iteration

𝑟 completes due to the biased termination property of RABA.

We now prove that eventually, in some iteration 𝑟 , RABA𝑟 out-
puts 1 so the protocol terminates. From Lemma E.3, we know that

at least 𝑓 + 1 correct replicas have entered the iteration phase if

the adversary makes RABA0 output 0. From Lemma E.4, after 𝑓 + 1

correct replicas enter the iteration phase, there exist at least 𝑓 + 1

WRBC instances 𝐼 such that for each 𝑗 ∈ 𝐼 , at least 𝑓 + 1 correct

replicas have completed WRBC𝑗 . According to the biased validity

property of RABA, RABA𝑟 outputs 1. So with probability
𝑓 +1

3𝑓 +1 ≈
1

3
,

we have 𝑘 ∈ 𝐼 .
After RABA𝑟 outputs 1, every correct replica waits for the output

ofWRBC𝑘 . We also know that if RABA𝑟 outputs 1, then at least one

correct replica has raba-proposed 1 or raba-reproposed 1. Otherwise,

the unanimous termination of RABA is violated. Therefore, at least

one correct replica has wr-delivered some value ℎ inWRBC𝑘 . From

Lemma D.3 and Lemma D.1, every correct replica eventually r-

delivers ℎ inWRBC𝑘 . From Lemma D.4, at least 𝑓 +1 correct replicas

receive (Send, 𝑣) from 𝑝𝑖 and set their𝑇𝑖 [𝑘] as 𝑣 such that𝐻𝑎𝑠ℎ(𝑣) =
ℎ. The correct replicas will send (Value, 𝑣) to all replicas. Therefore,

any correct eventually receives 𝑣 and then mvba-decides. □

Theorem E.6. Our MVBA protocol (with fewer rounds) has ex-

pected 𝑂 (1) running time.

Proof. From Lemma E.3, we know that at least 𝑓 + 1 correct

replicas have entered the iteration phase if the adversary makes

RABA0 output 0. From Lemma E.4, after 𝑓 + 1 correct replicas enter

the iteration phase, there exist at least 𝑓 + 1 WRBC instances 𝐼 such

that for each 𝑗 ∈ 𝐼 , at least 𝑓 + 1 correct replicas have completed

WRBC𝑗 . If the output of the Election() function 𝑘 ∈ 𝐼 , RABA will

output 1 according to the biased validity property of RABA. Since

Election() outputs a uniformly distributed random coin for each

iteration, it holds that with probability
𝑓 +1

3𝑓 +1 ≈
1

3
, we have 𝑘 ∈ 𝐼 .

Therefore, the protocol has expected 𝑂 (1) running time. □
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