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Abstract. We present SCALLOP-HD, a novel group action that builds
upon the recent SCALLOP group action introduced by De Feo, Fouotsa,
Kutas, Leroux, Merz, Panny and Wesolowski in 2023. While our group
action uses the same action of the class group C1(9) on O-oriented curves
where © = Z[fv/—d| for a large prime f and small d as SCALLOP,
we introduce a different orientation representation: The new represen-
tation embeds an endomorphism generating £ in a 2°-isogeny between
abelian varieties of dimension 2 with Kani’s Lemma, and this represen-
tation comes with a simple algorithm to compute the class group action.
Our new approach considerably simplifies the SCALLOP framework, po-
tentially surpassing it in efficiency —a claim supported by preliminary
implementation results in SageMath. Additionally, our approach stream-
lines parameter selection. The new representation allows us to select ef-
ficiently a class group Cl(O) of smooth order, enabling polynomial-time
generation of the lattice of relation, hence enhancing scalability in con-
trast to SCALLOP.

To instantiate our SCALLOP-HD group action, we introduce a new tech-
nique to apply Kani’s Lemma in dimension 2 with an isogeny diamond
obtained from commuting endomorphisms. This method allows one to
represent arbitrary endomorphisms with isogenies in dimension 2, and
may be of independent interest.

1 Introduction

The group action framework is a powerful abstract tool to build cryptographic
protocols such as non-interactive key exchange [CLM ™ 18], signatures [BKV19],
threshold schemes [CS20,DFM20], ring signatures [BKP20], group signatures
[BDK 23], partial-blind signatures [KLLQ23], updatable encryption [LR22], and,
among other things, various applications as discussed in [ADFMP20].

Isogenies provide the only known way to instantiate this framework in a
manner resistant to quantum computers. There are two achievable flavours of
group action: the “restricted” group action (REGA) such as the one introduced
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for the CSIDH key exchange in [CLM™18], and the “full” variant (EGA) in-
troduced for the CSI-FiSh signature scheme in [BKV19]. While the restricted
variant is already interesting, the full variant is required by the more elaborate
constructions.

Unfortunately, isogeny-based group actions suffer from various problems.
First, the underlying hard problem can be solved in subexponential time by
a quantum computer [Kup05] which renders their security hard to estimate and
reduces their efficiency. Second, current methods for instantiating the full variant
require superpolynomial precomputation as demonstrated in [BKV19,DFFK*23]
and reaffirmed in a recent blog post by Panny®. This makes it computationally
infeasible to obtain the full variant for group sizes of several thousands of bits.

The second obstacle is what motivated the introduction of the recent SCAL-
LOP scheme in [DFFK'23] where the precomputation (while still superpoly-
nomial) is much more practical than in the setting of CSI-FiSh [BKV19]. The
authors of SCALLOP demonstrated the interest of their constructions by scaling
the parameters to sizes known to be computationally unreachable in the setting
of CSI-FiSh. However, the efficiency of SCALLOP is much worse than CSIDH,
and the amount of precomputation required to reach the higher levels of security
(equivalent to the CSIDH-8192 variant of [CSCDJRH22]| for instance) promises
to be quite extensive.

The improvements in scalability achieved by SCALLOP, when compared to
CSI-FiSh, arise from using a distinct group and set in the group action. How-
ever, in order to define their group action, the set elements are no longer just
j-invariants of supersingular elliptic curves, but curves together with extra data
called “orientation”. The necessity of carrying the orientation and computing
the group action on the orientation is what renders the efficiency of SCALLOP
bad in comparison to CSI-FiSh.

Recently, the field of isogeny-based cryptography has seen a major break-
through with the successful cryptanalysis of the SIDH key exchange scheme
by [CD23,MMP*23,Rob23]. This result was obtained by embedding isogenies
between elliptic curves (isogenies of dimension 1) inside isogenies of higher di-
mension (2,4 and 8) using Kani’s Lemma [Kan97]. Since then, these novel ideas
have been used several times to build some post-quantum protocols such as
encryption [BMP23], signature [DLRW23], or VRF [Ler23]. In short, our new
construction SCALLOP-HD uses these ideas to represent orientations more ef-
ficiently and this leads to various improvements over SCALLOP that we list in
the next section.

1.1 Contribution.

In this work, we revisit the SCALLOP group action with the high dimensional
isogenies at the heart of the attacks against SIDH. We show that these new
techniques, and in particular, the idea of Robert [Rob22] that an arbitrary de-
gree isogeny can be efficiently represented using high dimension isogenies allows

® https://yx7.cc/blah/2023-04-14.html
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us to simplify the framework of SCALLOP. Concretely, the improvements of
SCALLOP-HD compared to the original SCALLOP can be summarized as fol-
lows:

1. A new orientation representation that uses the embedding techniques based
of higher dimensional isogenies.

2. A simplified algorithm to compute the group action using Kani’s Lemma in
dimension 2 that we expect will improve the efficiency.

3. The improvement from a merely subexponential to a polynomial complexity
of the computation of the class group’s lattice of relation: the bottleneck
in the precomputation required by SCALLOP. Hence, the reduction of the
lattice of relations remains the only superpolynomial-time part in the pre-
computation of the SCALLOP-HD group action.

In doing so, we introduce a novel way of applying Kani’s Lemma in dimension
2 by building isogeny diamonds from two endomorphisms lying in the same
quadratic order. This can be used to represent orientations and endomorphisms
in dimension 2. We believe this new technique is interesting in its own right,
and it was recently used in [Ler23] to provide a new algorithm to perform the
Deuring correspondence using isogenies in dimension 2. We also briefly discuss
another example where this new technique can be used in a recent endomorphism
division algorithm in Remark 14.

Organization of the paper. The rest of this paper is organized as follows.
In Section 2, we introduce necessary mathematical background. Then, Section 3
explains how to construct group action from isogenies and outlines the progress
towards obtaining a scalable EGA. In Section 4, we present the new orientation
representation alongside the resulting group action formula. Section 5 introduces
the SCALLOP-HD group action and provides example parameter choices. Sec-
tion 6 discusses some remarks on the secruity of SCALLOP-HD. We conclude
in Section 7 by summarizing the paper and discussing future work.

2 Preliminaries

2.1 Quaternion algebras, supersingular elliptic curves, isogenies and
the Deuring correspondence

Quaternion algebras. Let p be a prime and let B, o, denote the unique (up to
isomorphism) quaternion algebra ramified precisely at p and co. We fix a Q-basis
(1,1,j,k) of B, o that satisfies iZ = —¢q, j> = —p and k = ij = —ji for some
integer ¢q. A fractional ideal I in B,  is a Z-lattice of rank 4. We denote by n(I)
the norm of I as the largest rational number such that n(«) € n(I)Z for any
a € I. An order O is a subring of B o, that is also a fractional ideal. An order is
called mazimal when it is not contained in any other larger order. A fractional
ideal is integral if it is contained in its left order Op(I) = {a € By | oI C I},
or equivalently in its right order Ogr(I) = {a € Bpoo | Iav C I}.
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Supersingular elliptic curves and isogenies. Let E, Eq, E5 be elliptic curves de-
fined over a finite field of characteristic p. An isogeny from E; to Fs is a non-
constant rational map that is simultaneously a group homomorphism. An isogeny
from a curve E to itself is an endomorphism. The set End(FE) of all endomor-
phisms of E forms a ring under addition and composition. End(E) is either an
order in an imaginary quadratic field and E is called ordinary, or a maximal
order in By o, in which case E is called supersingular.

The Deuring correspondence. Fix a supersingular elliptic curve Fy, and an order
Op ~ End(Eyp). The curve/order correspondence allows one to associate to each
outgoing isogeny ¢ : Ey — F; an integral left Op-ideal, and every such ideal
arises in this way (see [Koh96] for instance). Through this correspondence, the
ring End(E}) is isomorphic to the right order of this ideal. This isogeny/ideal
correspondence is defined in [Wat69], and in the separable case, it is explicitly
given as follows.

Definition 1. Given I an integral left Og-ideal coprime to p, we define the I-
torsion Eo[I] = {P € Ey(F,2) : «(P) =0 for all « € I}. To I, we associate the
separable isogeny @; of kernel Eg[I]. Conversely given a separable isogeny p, the

corresponding ideal is defined as I, ={a € Oy : o(P) =0 for all P € ker(p)}.

‘We summarize properties of the Deuring correspondence in Table 1, borrowed
from [DFKL™20].

Supersingular j-invariants over I 2 Maximal orders in Bp, o

j(E) (up to Galois conjugacy) O = End(F) (up to isomorphism)

(Er, @) with ¢ : E — Ey I, integral left O-ideal and right O;-ideal
0 € End(Ey) Principal ideal 00

deg(y) n(ly)

Table 1. The Deuring correspondence, a summary [DFKL'20].

2.2 Quadratic orders and orientations on supersingular elliptic
curves

Let d be a positive square-free integer and K = Q(+v/—d) be an imaginary
quadratic field with discriminant Dy . Let © C K be an order with discrim-

inant Dg. Explicitly, © = Z[DD% VDo ] Any element o € O can be written as

T+ yljg% VDo with 2,y € Z, and {1,a} is a Z-basis of O if and only if y = 1.
One can compute the norm of a and thus derive the norm form fo of O:
Dy (Do — 1)

fo(z,y) = @? + Doxy + ff'
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For any order 9, the class group Cl(9) consists of the invertible fractional
ideals of 9 up to principal factors and is of order Dg(l). When O = O is the
maximal order with discriminant Dy, computing Cl(9 ) takes time Lp, (1/2)
classically [HM89] and polynomial time quantumly [BS16]. When © =Z+ fOg
where f is a prime and Cl(O ) = {1}, there is a simple characterization of C1(9O)
as discussed in [DFKT23, Appx. A]. Specifically, C1() satisfies the following
short exact sequence

1= O%/9" = (Ok /(1) /(O/(f))" = CUO) = 1,
and they showed that

I if f splits in K
O /(O =R ’
Ox/N)/O/) {F;z/Fj} if f is inert in K.
In particular, this suggests that Cl(9) is always cyclic for these orders as it
is isomorphic to a quotient of a cyclic group, and Cl(9D) is easy to compute.

Furthermore, this implies that #Cl(D) = (f — (DTK)) W
K

Quadratic orders and their class groups are playing an increasingly important

role in isogeny-based cryptography, in particular since Colo and Kohel introduced

orientations on supersingular elliptic curves in [CK20]. In what follows, we recall

the basic definitions and important properties regarding orientations.

Definition 2. Let E be a supersingular elliptic curve over Fp2, K be an imag-
inary quadratic field and © C K be a suborder. Then a K-orientation on E is
a ring homomorphism ¢« : K — End(F) ® Q. This K-orientation induces an
D-orientation on E if (D) = End(E) N u(K). In this case, the pair (E i) is
called a O-oriented curve and E is a D-orientable curve.

Note that here we use D-orientation to indicate the primitive O-orientation from
[CK20].

Let E’ be another supersingular curve and ¢ : F — E’ be an isogeny. Let ¢
be a K-orientation on E, then there is an induced K-orientation ¢ = ¢.(¢) on
E’ defined to be ¢.(1)(w) = mw otlw)op € End(E') ® Q. An isogeny of
K-oriented elliptic curves ¢ : (E,t) — (E’,!/) is an isogeny ¢ : E — E’ such
that ¢/ = @.«(1); we call this a K-oriented isogeny. A K-oriented isogeny is a
K-isomorphism if it is an isomorphism of the underlying curves.

For a fixed imaginary quadratic order O C K, we consider the collection of
all O-oriented curves and define the following set:

So(p) = {(E,v) | (E,¢) is an O-oriented curve}/ ~,

where two oriented curves are equivalent if they are K-isomorphic.
Here we recall the following conditions for the set So(p) to be non-empty.

Proposition 3 ([Onu2l, Proposition 3.2]). The set So(p) is not empty if
and only if p does not split in K and does not divide the conductor of 9.
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When So(p) is non-empty, the set of invertible D-ideals acts on it. Specifi-
cally, let a be an such an ideal and (E,tg) € So(p), then

a* (E,LE) = (Ea, LEa>,

where Ej is the codomain of the isogeny ¢, whose kernel is Ela] := Ngeq ker tg(a)
and tg, is the induced orientation on E4 by ¢4. Principal O-ideals act trivially
on (E,.g), therefore this action induces an action of CI(9) on Sp(p). It was
shown in [Onu21] that this is action is free and it has one or two orbits.

2.3 New isogeny representation in higher dimensions

An isogeny representation is a way to effectively represent the isogeny so that
there is an efficient algorithm for evaluating the isogeny on given points. Com-
mon representations include rational maps, isogeny chains, and kernel repre-
sentation. However, these methods are no longer compact or efficient when the
degree d of the isogeny is a large prime and the kernel points are defined over a
large degree extension field of Fy,.

The Deuring correspondence allows us to efficiently represent such isogenies
with their corresponding ideals in maximal quaternion orders, this is call the
ideal representation. This, however, reveals the endomorphism rings for both
the domain and codomain curve. To remedy the situation, Leroux in [Ler22a]
introduced another representation called the suborder representation which is not
strictly an isogeny representation but satisfies a weaker definition as introduced
in [CIT*23] and requires to reveal the endomorphism ring of the domain curve.

Finally, Robert [Rob22] suggested to use the techniques used in SIDH attacks
[CD23,MMP*23,Rob23] to obtain a new isogeny representation, by embedding
the desired isogeny between supersingular elliptic curves into an isogeny between
abelian varieties of higher dimension. While not named as such in Robert’s
paper, we refer to it as high dimension representation in our paper. This new
representation doesn’t reveal the endomorphism rings and is much more efficient
than suborder representation. It consists only of evaluation of the isogeny to be
represented on points of smooth order, and in the right setting it can be pretty
easy to compute. While used destructively at first, it has been recently used
constructively for building various protocols [DLRW23,Ler23, BMP23,DMS23].
For a detailed account of of the “old” isogeny representations, like the kernel or
ideal representation, see [Ler22b]. In what follows, we explain in more details the
idea of high dimension representation in dimension 2. The main result behind
this representation is Kani’s Lemma [Kan97] that we present below as Lemma 4.

Lemma 4 (Kani). Let us consider a commutative diagram of isogenies between
principally polarized abelian varieties of dimension g
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where ¢ and ¢’ are a-isogenies and v and ' are b-isogenies for integers a,b.
The isogeny F: A x B' — B x A’ given in matriz notation by

F = L @
- ¢

s a d-isogeny between abelian varieties of dimension 2g with d = a + b, for the
product polarisations.
If ker p Nker ¢’ = {0}, the kernel of F is

ker(F) = {(¢(2),9'(x)) | = € Bld]}.
Similarly, if ker ¢ Nkert = {0}, then

ker(F) = {(¢(2),9(2)) | = € Ald]}.

The commutative diagram in Lemma 4 is often called as an isogeny diamond.
Following the notations introduced in [Ler23], we call a 2dim-representation of
an isogeny ¢ : A — B between two elliptic curves A, B any data from which
the isogeny F' obtained by applying Lemma 4 with ¢ = 1 can be computed
efficiently. The idea is that ¢ can be recovered from F' by pre-composition with
any embedding A — A x B’ that acts as the identity on A, and post-composition
with the canonical projection B x A" — B.

To represent the orientation of our SCALLOP-HD group action in Sec-
tion 4.1, we will use the 2dim-representation of an endomorphism with a com-
mutative diagram obtained from two commuting endomorphisms.

Remark 5. One could also embed the isogeny ¢ in isogenies between abelian vari-
eties in dimension 4 or 8, as discussed for the SQISignHD protocol in [DLRW23].
The higher the dimension, the easier it is to generate the isogeny diamond, how-
ever, the complexity of computing isogenies between abelian varieties scales ex-
ponentially with the dimension. This is why it is generally better to use the small-
est possible dimension. In SQISignHD, it is argued that dimension 2 isogenies
do not provide a clear advantage over the original SQISign scheme [DFKL*20]
due to the complexity to set-up the isogeny diamond, which is the main reason
why SQISignHD works with dimension 4 and dimension 8. In our case, thanks
to the idea of using isogeny diamond built from commuting endomorphisms, we
will be able to work dimension 2 to achieve better efficiency.

3 Group action in isogeny-based cryptography

Informally, a group action is a map of the form x : G x X — X, where G is a
group and X is a set, such that for any ¢1,g92 € G and any = € X, we have

g1 % (g2 %) = (g192) * X.

We revisit here the concepts of effective group action (EGA) and restricted effec-
tive group action (REGA) from [ADFMP20], which capture the essence of two
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types of group actions used in isogeny-based cryptography. To clarify the distinc-
tion between the two and align with subsequent discussions, we exclude details
concerning the set X — specifically, membership testing, unique representation,
and the existence of the origin in X.

Definition 6. (FGA) A group action (G, X, *) is effective if the following prop-
erties are satisfied:

1. The group G is finite and there exist efficient (PPT) algorithms for:
(a) Membership testing, i.e., to decide if a given bit string represents a valid
group element in G.
(b) Equality testing, i.e., to decide if two bit strings represent the same group
element in G.
(c) Sampling, i.e., to sample an element g from a distribution Dg on G.
(d) Operation, i.e., to compute gh for any g,h € G.
(e) Inversion, i.e., to compute g~ for any g € G.
2. There exists an efficient algorithm that given (some bit-string representation
of) any g € G and any x € X, oulputs g x x.

Definition 7. (REGA) Let (G, X,*) be a group action and let g = {g1,...,9n}
be a (not necessarily minimal) generating set for G. The action is said to be
g-restricted effective if the following properties are satisfied:

1. G is finite and n = poly(log|G|).
2. There exists an efficient algorithm that given any i € [n] and any bit string
representation of x € X, outputs g; x x and g;l * T.

Existing instantiation of this definition from isogenies are all based on the
ideal class group action. Specifically, it’s the action of C1() on So(p) for some
imaginary quadratic O as defined in Section 2.2. This action can be made a
REGA immediately by choosing a generating set g = {[y,...,[,}, where each [;
is a prime ideal of small norm. To further convert this action into an EGA, chal-
lenges arise in sampling elements from a distribution Dg on G, and computing
the action gxx for g € G sampled from D¢ and x € X. In this paper, we restrict
our interest to the uniform distribution Ug.

In [BKV19], Beullens, Kleinjung, and Vercauteren laid out a general strategy
to turn the class group action from a REGA to an EGA as follows:

1. Offline phase:
1.1 Class group computation - Compute a generator g of the class group
C1(D), which is possible because generically Cl(D) is cyclic.
1.2 Construct the lattice of relations £ - This lattice is generated by the
column vectors of the following matrix

100...0 0
010...0 0
001...0 0

000O0...1 0
1T T3 ... Ty #CLO)
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where r/s are integers such that [[;] = [g"].
1.3 Lattice reduction - Compute a reduced basis of £ suitable for solving
approximate-CVP.
2. Online phase:
2.1 Solve approzimate-CVP - Given g¢ € Cl(9), solve approximate-CVP to

1=n (¢

find a decomposition g¢ = [, I;* with small exponents.

2.2 Group action evaluation - Compute the action ([['=7 ') x (E,tg) for
(B tp) € So(p)-

This strategy allowed Beullens, Kleinjung and Vercauteren to extend the
REGA behind the CSIDH key exchange [CLM™18] to an EGA, leading to the
construction of the signature scheme CSI-FiSh. They worked with the imaginary
quadratic order Z[/—p|] which has a discriminant of 154 digits. The primary
challenge for them was computing the class group Cl(Z[/—p]), and the remaining
steps were efficient, essentially due to the fact that they could use a relatively
small n and consequently, a lattice with rather small dimension. However, their
method can’t be scaled for bigger prime p due to the infeasibility of the class
group computations.

To address this, SCALLOP [DFFK™'23] proposed the use of a distinct class
of quadratic orders of the form O = Z[fy/—d], where f is a large prime and
d is a small positive integer. While this sidesteps the class group computation
challenges as discussed in Section 2.2 and enhances scalability, it introduces rep-
resentation complexities for the set elements —oriented curves (E,¢tg). In order
to achieve an efficient representation, an generator of O of smooth norm should
be found, constraining the choice of f and yielding a class group with a non-
smooth size. Consequently, the second step of precomputation — computing the
lattice of relation —remains subexponential in time due to the need to solve
discrete logarithms in groups with subexponential order sizes. Moreover, SCAL-
LOP demands more computations to perform the group action, rendering it
much slower than CSI-FiSh.

The security of CSIDH, CSI-FiSh and SCALLOP relies on the hardness of
the vectorization problem. Abstractly, for a transitive group action, this problem
is defined as follows.

Problem 8. (Vectorization) Given z,y € X, find g € G such that y = g x .

According to [Wes22, Proposition 3|, the fastest known generic classically
method to solve the vectorization problem associated to the group action has
complexity 10(1)|Dg|1/ 4 where [ denotes the length of the input. In the setting
of SCALLOP, this is log(p + | Do |)™ min(p!/2, 1/2) [DFFK*23, Section 4].

The main quantum approach to solve the vectorization problem is given by
Kuperberg’s abelian hidden-shift algorithm [Kup05] and descendants, where the
hidden “shift” corresponds to the secret group element g given z and y = g % x.
Even though it is known to take subexponential time L[1/2], determining the
precise quantum cost for concrete group actions appears difficult. Since 2020,
a series of papers [BLMP19,BS20,Pei20,CSCDJRH22] has been studying the
quantum security of CSIDH, with some authors claiming that CSIDH-512 and
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CSIDH-1024 fall far short of reaching NIST security level 1. Instead, [BS20]
recommended that the CSIDH prime p should be upgraded to at least 2260 or
5280 bits, according to what they named as aggressive and conservative modes,
respectively. [CSCDJRH22| recommended to use a CSIDH prime of 4096 bits for
the level 1 security and 6144 bits for level 2. These analyses, together with the
desire of obtaining EGAs from isogenies, have spurred the motivation to improve
the scaling of isogeny-based group actions to larger sizes. Since the known quan-
tum attacks work essentially the same for all CRS-style group actions, we will
also model the security of SCALLOP using the analyses for CSIDH. Specifically,
this means we match the size of the class group #Cl(9) with that of CSIDH
to estimate the quantum security level of SCALLOP. In this line of research,
CSI-FiSh was only able to scale to achieve the security level of CSIDH-512, and
SCALLOP managed to scale to achieve the security level of CSIDH-1024.

4 2dim-representation of orientations and endomorphisms

In this section, we introduce a new representation called 2dim-representation of
orientations and endomorphisms. Since representing an endomorphism € amounts
to representing any 6 + n € Z[#)], representing orientations and endomorphisms
are essentially the same thing in different languages. Therefore, even though the
results in this section are mostly stated with respect to orientations, they apply
to endomorphisms as well.

In Section 4.1, we introduce the definition of our 2dim-representation for ori-
entations and discuss how to recover the orientation from the 2dim-representation,
then in Section 4.2, we show that any orientation (endomorphism) admits a
2dim-representation that can be computed in polynomial time. Finally, in Sec-
tion 4.3, we conclude with a formula that computes the Cl(D)-action on the set
So(p) with set elements given by 2dim-representations.

While our 2dim-representation is introduced to represent orientations ap-
pearing in SCALLOP-HD, this technique also has other applications in isogeny-
based cryptography.

4.1 2dim-representation

Let (E,tg) be an D-oriented supersingular elliptic curve. Motivated by the idea
of 2dim representation of isogenies, we introduce the following definition.

Definition 9. Let O be an imaginary quadratic order with discriminant Dy
and odd conductor f. Given an O-oriented supersingular elliptic curve (E,(g),
take any w € O such that O = Zw] and define wg = tp(w). Let § € O such
that n(w) + n(B) = 2° and ged(n(B),n(w)) = 1. Let P,Q be a basis of E[2°].
Then the tuple (E,w, B, P,Q,wr(P),wr(Q)) is called a 2dim-representation of
(E, LE) .

Given a 2dim-representation (E,w, 8, P, Q,wg(P),wr(Q)) of (E,g), let fg :=
tg(B), we immediately have the following isogeny diamond.
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E-“2,
ﬁET ﬁET
E -, B

From here, we can define an isogeny Fg : E? — E? by the matrix

Fg = we BE) .

r (—ﬂE WE

And as discussed in Section 2.3, if kerwg Nker S5 = {0}, then
ker Fp = {(wg(R),Be(R)) | R € E[2°]}.

Since 3 is a translated scalar multiplication of wg, knowing the evaluation of wg
on E[2¢] suffices to compute ker F, and to compute the endomorphism wg.

4.2 Computing a 2dim-representation

Now, we explain how to compute a 2dim-representation for an -orientation
when the discriminant Dy is equal to 5 mod 8.

Proposition 10. Let O be an imaginary quadratic order of discriminant equal
to 5 mod 8, then any (E,tg) € Sp(p) admits a 2dim-representation as in Defi-
nition 9.

Proof. To prove this result, it suffices to show that we can always find e €
N,w, 8 € O such that

O =Z[w], ged(n(w),n(B)) =1, n(w)+n(B)=2"
Using the explicit representation of O given in Section 2.2, w = = + DD% VDo

and 8 =y + ZDD% VDo for some integers z,y, z. Therefore, the last condition
above translates to finding an integer solution to the following equation:

Do(Dgp —1) Do (Do —1) ,

22+ Doz + 1 +y2+DDyz+fz =2¢ (1)
Rewriting Eq. (1) and multiplying both sides by 4 gives rise to the following:
(22 4+ Do)? + (2y + Dp2)? = 272 + Do (22 +1). 2)

This equation can be solved efficiently by taking a random z and trying to
express 272 + Dy (1 + 22) as a sum of two-squares with Cornacchia’s algorithm.
When e is large enough, we will be able to try enough z that one will give a
solution. No matter what value of z we choose, we see that 272 + Dy (1 + 2?)
is either equal to 1 mod 4 or 2 times a number that is equal to 1 mod 4. As
all numbers that can be written as a sum of two squares satisfy this constraint,
we see that there is no obstacle there. Moreover, when Dy = 5 mod 8, we can
see that the norm of w = x + % is always odd. Thus, n(w) and n(B) are
coprime since they sum to a power of 2. a
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We now detail the resolution of Eq. (2) with the OrientDiamondDim2 algo-
rithm. The name suggests this algorithm is for building an isogeny diamond for
a 2dim-representation of an orientation. Proposition 12 shows that such a di-
amond can be constructed in polynomial time. We also consider a constant C
that is an implicit parameter of OrientDiamondDim2.

Algorithm 1 OrientDiamondDim2(Dy)

Input: An imaginary quadratic order O with discriminant Dy = 5 mod 8.

Output: w, 8 € O such that O = Z[w], n(w)+n(p) is a 2-power and ged(n(B),n(w)) =
1

1: Let e be the smallest integer such that 272 > C(log |Do|)| Do |.

2: Set x:=0,y:=0.

3: for z € [1,| |2;)J;1| —1]] do

4: M :=2°"2 4 Do (2% +1).

5: if M is a prime such that M = 1 mod 4 or M = 2M’ where M’ is a prime such
that M’ = 1 mod 4 then

6: Use Cornacchia’s algorithm to find X,Y such that X2 +Y? = M and X is

odd.

7 Set x = (X — Dp)/2and y = (Y — zDp)/2.

8: break

9:  end if

10: end for

11: if z =0 and y = 0 then

12: Return 1.

13: end if

14: w ::m—i—%% VDD, I5] ::y—&—z%% VDo

15: return w,g.

The complexity statement on Algorithm 1 only holds assuming some plausible
heuristic regarding the distribution of number of the form 2¢ + D(1 + z2) that
we state below as Heuristic 11.

Heuristic 11. Let e, Dy be as in Algorithm 1. If Do = 5 mod 8, and z are
sampled as random integers then the integers 272 + Dy (1 + 22) behave like
random integers of the same size that are either congruent to 1 mod 4 or equal
to 2 times an integer that is equal to 1 modulo 4.

Proposition 12. Assuming Heuristic 11, and Dy = 5 mod 8, OrientDiamondDim?2
is correct, runs in O (poly (C'log(|Do|))), and there exists a constant C’' such that
the computation has succeeded with probability at least:

1= (1 C'/log(| Do)V 1oetP=),

Proof. The correctness of Algorithm 1 follows from the observation that the
outputs w, 8 will always satisfy that © = Z|w], ged(n(w),n(B)) = 1 and n(w) +



SCALLOP-HD: group action from 2-dimensional isogenies 13

n(B) = 2°. In particular, M is either congruent to 1 mod 4 or equal to 2 times
an integer that is congruent to 1 mod 4 depending on the parity of z, then at
least one of X,Y is odd. In either cases, both X — Dy and Y — 2Dy will be
even.

The complexity follows from the fact that we perform O(,/Clog(|Do)| it-
eration of the loop and that the operations required inside each iteration are
logarithmic in |Dg|. The integers M have size C(log |Dp|)|Dgo| and we assume
that they behave like random integers under Heuristic 11, therefore there is a
constant C” such that either M/2 or M is prime with probability higher than
C’/(log |Do|). The bound on the success probability follows directly from there.

O

Remark 13. We choose to work with isogenies in dimension 2 of degree N = 2°¢
for efficiency of computing such isogenies in practice, and we later choose p such
that 2°-torsion is defined over F, in the set up of SCALLOP-HD. However, our
definition for 2dim-representation and OrientDiamondDim2 easily generalizes to
general degree N. Explicitly, it suffices to require that

n(w) +n(f) =N
in Definition 9, and to solve the equation
(22 + Do)? + (2y + Dp2)? = 4N + Do (22 +1)

to find w, 8. This equation can be solved similarly except that one needs to im-
pose a different congruence condition on Dy with respect to that of NV to ensure
that the right hand side is a sum of two squares with non-negligible probability.
One particular interesting case is when N is chosen to be powersmooth as in
this case the torsion subgroup E[N] can be effectively represented. Despite the
condition that Dy = 5 mod 8 in Proposition 10, this remark justifies our claim
that every orientation and endomorphism can be effectively represented by an
isogeny in between abelian surfaces.

Remark 14. By choosing N to be powersmooth, our 2dim-representation can be
applied to [HW23, Algorithm 1] to replace the isogeny computations in dimen-
sion 8 with computations in dimension 2, improving its efficiency.

4.3 Class group action evaluation

Let [a] € Cl(D) where a is an integral D-ideal such that ged(n(a),2) = 1. We
now explain how to calculate the group action introduced in Section 2.2 in the
context of the 2dim-representation.

Let (F,w, 3, P,Q,wr(P),wr(Q)) be a 2dim-representation of (F,tg), to cal-
culate a 2dim-representation for (Eq, tg, ), we can keep the same w and S. Since
ged(n(a),2) =1, {pa(P), da(Q)} form a basis of E,4[2¢]. By definition,

i, (6a(P.Q)) = %% 0 w5 0 Ba(0a(P.Q)) = da(wp(P, Q).
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Let {R, S} be a basis for E,4[2¢], such as the one computed by a deterministic
algorithm that computes a basis. Given P, Q,wg(P),wg(Q) € E[2°], to compute
tg, (W)(R) and g, (w)(S), we first write R, S as linear combinations of ¢q(P)
and ¢q(Q), then compute tg, (w)(R) and g, (w)(S) from g, (¢pa(P)) = ¢pa(w(P))
and 1, (0a(Q)) = da(w(Q).

5 SCALLOP-HD group action

In this section, we introduce SCALLOP-HD, an effective group action (EGA).
SCALLOP-HD builds on SCALLOP by using the same group action, i.e., C1(D)
acts on Sp (p) for O = Z[f+/—d|. However, SCALLOP-HD deviates from SCAL-
LOP by representing the set elements differently. Precisely, SCALLOP-HD uses
the 2dim-representation for (F,itg) € So(p). It turns out that this choice sig-
nificantly simplifies the group action computation, and removes some of the
constraints on parameter choices, which essentially is due to the fact that we
no longer need to find a generator of © of smooth norm, removing the trade-off
between the smoothness of the generator norm and the group size #C1(D). As
has been mentioned before, SCALLOP-HD has better scalability and has the
potential of being more efficient.

5.1 Outline of SCALLOP-HD

It is clear from Section 3 that to introduce an EGA using the class group action,
one needs to

- specify the group and the set,
- convert the action into a REGA by choosing the set g as in Definition 7,
- and derive an EGA following the stragety outlined in Section 3.

To define the group action, we start with choosing the field characteristic p
and the quadratic order O, they determine the group Cl(9) and the set Sp(p).
When making these choices, there are two aspects one needs to take into con-
sideration — first, from a security point of view, the vectorization problem of
the action should be hard; second, from an efficiency point of view, p should
be of a particular form so that the torsion points involved in subsequent calcu-
lations are defined over FF,2, and additionally © should be an order for which
#Cl1(D) is as smooth as possible for an efficient generation of the lattice of rela-
tion £ (Section 3). In SCALLOP-HD, each element (E,:g) will be given using
the 2dim-representation, and we also specify the relevant parameters w, 8 as a
part of the group action definition. We discuss the details in Section 5.2.

To perform the group action, it’s essential to possess an element from the set
So(p). Acquiring this element, given our choice of of O, isn’t straightforward.
We introduce the SetUpCurveHD algorithm in Section 5.3 specifically for this
purpose.

Once the group action is set up, we proceed in the conventional manner to
convert it into a REGA. Let {{1,...,¢,} be the first n odd primes that split in
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O for n = O(log f), then we choose the set g to consist of the ideals {Iy,..., [}
with [; being one of the prime ideal above ¢;. To further convert the REGA to
an EGA, the offline phase is discussed in Section 5.4 and the online phase is
discussed in Section 5.5.

5.2 Set up the group action

In this section, we explicit various choice of parameters for setting up the group
action.

Choice of the quadratic order. Let O = Z[v/—d] be an imaginary quadratic
order of class number equal to 1 and discriminant equal to d = 5 mod 8, as in
SCALLOP, we choose O to be of the form Z+ fOq for a large prime f. The size of
f will be determined by the target security level. For the efficient precomputation
of the lattice of relations (elaborated further in Section 5.4), we want to ensure
that #Cl(D) = f — (_Td) is as smooth as possible. Such a prime integer f can be
found efficiently in polynomial time by generating random smooth integers and
see whether they are of the form f — (77‘1)

Choosing the field characteristic p. To ensure that the set Sp(p) is non-empty,
we need to choose p that does not split in £ and does not divide the conductor f
according to Proposition 3. Moreover, the form of p is determined by the torsion
subgroups needed. To efficiently represent the orientation, we require that 2°¢-
torsion is defined over Fj2. For efficient computation of the group action, we
also require to have the [], ., ¢;-torsion defined over F,2. These conditions on
torsion points amounts to selecting a prime of the form:

p=c2° ]t +1,
i=1
where ¢ is a small cofactor.

Representing the orientation. Recall that a 2dim-representation of an orientation
is given by the tuple (E,w, 8, P,Q,wr(P),wr(Q)). Once we have fixed O from
the previous discussion, we can determine the integer e and w, 8 € O for instance
using the OrientDiamondDim2 algorithm.

In SCALLOP-HD group action, w, 8 will be part of public parameters, there-
fore, they can be omitted from the orientation representation. Furthermore, we
can use a deterministic algorithm that computes a basis of E[2¢] for any curve
E, this way we omit P, from the representation to make it even compacter.
That being said, in the actual application of SCALLOP-HD group action, the
orientation representation will be of the form (E,wg(P),wr(Q)).
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5.3 Set up a starting curve

The computation of one 9D-oriented curve is necessary to set-up the scheme. This
starting curve can be used to generate every other oriented curve by applying the
group action. Concretely, computing one 2dim-representation for a -oriented
curve means the following: compute any f-isogeny starting from an Og-oriented
curve Ey and evaluate it on a basis of Ey[2°].

For this, we propose to revisit SetUpCurve [DFFKT23, Algorithm 1] as our
setting remains very similar to SCALLOP. Since the conductor f is a big prime,
we cannot hope to compute any isogeny of degree f directly. The trick behind
SetUpCurve is to use an endomorphism of norm fS where S is a smooth integer
and to express the f isogeny as the composition of this endomorphism and an
isogeny of degree S. Such endomorphisms can be found with the FullRepresent-
Integer [DFLLW23, Algorithm 1] as soon as fS = p. Since our ultimate goal
is to evaluate the orientation on the 2°¢ torsion, the best option would be to
take S coprime to 2, and with our choice of prime characteristic, we would have
S =TI, ¢;. Unfortunately, since 2° ~ f2, we have f[],¢; ~ p/f. This means
that we must include other factors in S to reach the desired size. The only
remaining available torsion is the power of 2. Since 2¢/2 ~ f, we should have
f2¢/? [L; % = p. This means that we will be able to find endomorphisms of norm
ohfoel? [I;~1 ¢ for some small exponent h. In that case, we can circumvent the
fact that S is not coprime to 2 by using a trick presented in [DLRW23, section
5.4] to cut the computation of the 2-dimensional isogeny in two, which allows us
to divide by two the torsion requirement. For the group action computation, we
prefer to use the full 2¢-torsion because the computation is more direct, but for
the set-up of the scheme it is not a problem to sacrifice a bit of efficiency. The
idea we just outlined gives the algorithm SetUpCurveHD that we describe below.

We start with an element (Ey, t9) € So,(p). Let Op be a maximal quaternion
order such that End(Ey) = Oy, and we can fix an explicit isomorphism pg : Oy —
End(Ejp), we write wg for 19(v/—d). Then, the orientation 1 is derived from the
inclusion D¢ C Oy and the isomorphism pg.

Proposition 15. SetUpCurveHD is correct and terminates in O(cpoly(log(p)).

Proof. To prove correctness, we need to verify that the output (E,(R,S)) is
a correct 2dim-representation of an element in So(p). Let us assume that the
verification made in the loop passed. We will start by proving correctness under
that assumption, then we will justify why the verification always passes.

When the verification passes, it means that there exists wg € End(E) of same
norm and trace as w. Thus, Zlwg| & Zlw] = O, and sending w to wg defines
a D-orientation tp on E (we explain later in the proof why this is an optimal
embedding of O into End(E)). Moreover, R, S = wg(P,Q) for a deterministic
basis {P, @} of E[2°]. Therefore, (E,(R,S)) = (E,wr(P,Q)) is a valid 2dim-
representation of (E,tg) € So(p).

Now, let us justify that there always is an ¢ that passes the verification. The
element v € Oy provides us with a principal ideal Oy, whose corresponding
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Algorithm 2 SetUpCurveHD (p, f)

Input: p, f,e,w, 3 as defined in Section 5.2 and Do, (Fo, o) as defined above.
Output: A 2dim-representation for (E,tg) € So(p) where © =Z + fOo.

1:

[y

12:
13:
14:
15:

Set h such that ¢ > p/(f2°/*[],.,¢:) and compute v € Op of norm
f2¢/20h 1.~ % with FullRepresentinteger. Repeat that, until Oo (7, f) do not com-
mute with wg.
Compute the isogeny ¢ : Ey — E’ of degree 2°/2 I1, ¢: corresponding to the ideal
Oo(7,2°/2 1, :).
Compute Py, Qo a basis of Ey[2°] and compute Ro, So = t(Po, Qo).
Compute the points Py, Qo, Ro, So = po(7)(Po, Qo, Ro, So).
Make the list (@i : E' = E;)1<i<m with m = (£1 +1)£272 of all isogenies of degree
=1 from B
for i€ [1,m]: do
Compute P;, Qi, Ri, Si = ([(¢} T1,~, )" mod 2°/%])p; 0 ¢(Po, Qo, Ro, So).
Compute R;, S; = [f](Ri, Si).
Try to use Pi, Qi, Ri, S; to build two isogenies Fj : Ef — C and Fz : Ef — C.
If it works, check that F' = F5 o F} is a dimension 2 representation for endomor-
phisms wg,, BE, -
If yes, verify that tr(wg,), n(wg,) is the same as tr(w), n(w). If yes, break from
the loop.
end for
Set E = Ej;, and compute a deterministic basis P, Q of E[2°].
Use F to compute R, S = wg(P,Q).
return (E,(R,S95)).
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isogeny po(¢~) is an endomorphism of Ey. Moreover, we have that (up to com-
posing with some isomorphisms if necessary) ¢, = ¢’ ooy where ¢y : Eg — E
has degree f, ¢ : E — E’ has degree "' and ¢’ : E' — Ej has degree 2¢/2 IL 4.
By [DFFK ™23, Proposition 16], E is an O-orientable curve unless ¢ corresponds
to one of the 1+ (dTO) horizontal f-isogenies of domain Ey. Let us assume for
now that it is not. The endomorphism wg = tg(w) is equal to [z] + ¢ owg o Py.
By design, the ideal (7, 2¢/2 [1, ¢:) corresponds to the isogeny @[AJ'. Thus, we have
that the isogeny 1 computed in Step 2, is the isogeny 1[)’ . Then, if we take the
index i such that ¢;, = ¢, we get that F; is the curve E that we are looking for.
Then, it can be verified that P;,, Q;, is equal to [2¢/2]¢ ;(Py, Q), so it is a basis of
E;,[2¢/2]. Tt can also be verified that the equality R;,, Si, = @ owoo@ (P, Qig)-
From there, the image points wg(P;,,Q:,) and Bg(P;,, Q:,) can be recovered,
and this is enough to build the two isogenies F, and Fy as described in [DLRW23,
Appendix A.4]. Then, F is the correct endomorphism on E? constructed from
isogeny diamond formed by wg and SBg, and so the check for norm and trace
equality will pass.

To finish the proof of correctness, we simply need to prove that the case
where ¢ might be one of the bad isogenies cannot happen. In that case, we
have that ¢y is one of the horizontal isogenies and since D¢ has class number
one, this means that ¢y commutes with wg which is equivalent to the fact that
ideal corresponding to ¢y commutes with wy. Since this ideal is exactly equal to
Oo (7, ), this situation is prevented from happening.

Regarding complexity, we have £~ < p/(f2¢/2]], ;) and since we have
f = 0(2°/?), the loop is repeated at most O(c) times. The computations over the
quaternions are in O(poly(log(p)). Then, since we have the explicit isomorphism
po, we can compute ¥ and evaluate po(y) over the 2°-torsion in O(poly(log(p))
(remember that the 2°-torsion is defined over Fp 2 and 2¢ < p). Then, the com-
putation of each ¢; is in O(poly(log(p)) and computing s; and checking the
trace has O(poly(log(p)) complexity with the CheckTrace algorithm introduced
in [Ler22a]. Computing the norm can be done very similarly with the same com-
plexity. This proves the result. a

5.4 Offline phase

The remaining operations required to be done in the precomputation are exactly
the same as in SCALLOP. First, we need to generate the relation lattice asso-
ciated to the ideal basis (I;)1<i<n. Second, we need to find a reduced basis of
this lattice. These operations can be done exactly as explained in [DFFK™'23].
The lattice of relations is generated by solving some discrete logarithms in the
class group. Then, the reduced basis is found using standard lattice reduction
techniques.

The only real difference between SCALLOP and our new construction is the
complexity of those operations. In particular, with our choice of quadratic or-
der, the generation of the lattice of relations takes polynomial time. Indeed, the
choice of f ensures that the class group has order f — (%d) with a polynomial
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smoothness bound. This means that the Pohlig-Hellman method succeeds in
solving discrete logarithm in polynomial time and so the full lattice of relations
can be generated in polynomial time (whereas it has subexponential complexity
in general). Unfortunately, the complexity of the basis reductions remains su-
perpolynomial, which means that the overall complexity of the precomputation
is still superpolynomial. However, as explained in [DFFK™23], for modest pa-
rameter sizes, the dimension of the relation lattice can be taken quite small and
so a nearly-optimal basis can be found efficiently in practice.

5.5 Online phase

We now describe precisely an algorithm GroupAction to perform the group action
for SCALLOP-HD given anideal a =[], ., ., I;* where [; is an ideal of norm ¢;. In
GroupAction below, we restrict to the case a = [[, [; to simplify the exposition as
the generic algorithm simply consists in several executions of the sub-algorithm

for T, L.

Algorithm 3 GroupAction((E,tg), a)

Input: p, f,e,w, S as defined in Section 5.2, 2dim-representation (E,wg(P),wr(Q))
of (E,1r), and an ideal a = [, ., ., li, where each [; is an ideal of odd prime norm
L
Output: 2dim-representation of a x (E,tg) = (Eaq, tE,)
1: Compute a deterministic basis P, @ of E[2°].
2: Set xg,ys the values in Z such that 8 = x5 + ysw.
3: Compute F : E* — E? the 2°-isogeny of kernel generated by (wg(P), [xs]P +
Wslwe(P)), (we(Q), [#5]Q + [yslws(Q)).
4: Compute the value A; such that [; = O{w — A, £;).
5: for i€ [1,...,n] do
6: Let P;, Q; be a basis of ¢; in E[{;].
7.
8

Compute (%,U;) = F(0g, P;) and (%, V;) = F(0g, Q:).
:  Set R; as one point of order ¢; among {[tr(w) — \;]P; — U, [tr(w) — X\s]Qs — Vi}.
9: end for
10: Compute @4 : E — E,, the isogeny of kernel Go = (), ;«,, (R:)-
11: Compute a deterministic basis R, .S of E4[2°]. o
12: Compute tg, (w)(R) and g, (w)(S) using pq(we(P)) and pu(we(Q)).
13: return FEq, g, (w)(R), e, (w)(S).

Proposition 16. Algorithm 3 GroupAction is correct and runs in

0 (poly (log(p) log(f)n) , / max £i> -

Proof. Let us start by proving correctness. Since w, 5 € O we have that the
endomorphisms wg, tp(3) commutes and since we have 2¢ = n(w) + n(S3), by
Lemma 4, the 2¢%-isogeny Fg : E? — E? is correctly computed from its kernel.
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Then, we have that F(0,R) = (x,wg(R)) for any point R. Thus, we do have
U; = wp(P;),V; = wg(Q;) for each 1 < i < n. The kernel of wg — A; is equal
to (g — A\i)(E[¢;]) and since wg = [tr(w)] — wg, the point R; computed is a
generator of ker(wg — A;) = ker ¢, = ker o, N E[¢;]. Thus, the computation of
©q is correct, and the computation of the 2dim-representation of a x (F,tg) is
correct by the formulas given in Section 4.3. The last step is merely changing
the evaluation to the deterministic basis using linear algebra.

Regarding the complexity, the 2%-isogeny Fr can be computed evaluated in
O (poly (log(p)e)) = O (poly (log(p)log(f))). Then, since the points of E[¢;] are
defined over F., the cost to compute the bases P;,Q; and to compute U;, V;
through evaluation of F is O (poly (log(p) log(f)n)).

Finally, using the v/élu formulas introduced in [BDFLS20], it is possible to
compute the isogeny ¢q of norm [, ., ¢ in O (poly (log(p)n) v/maxi<i<n ;).
This proves the result. a

5.6 Implementation results

In this section, we report on our preliminary proof-of-concept implementation
of SCALLOP-HD in SageMath [The23], which can be found at:

https://github.com/isogeny-scallophd/scallophd

Order and relation lattice. We computed suitable choices of 9 and reduced
bases of its associated lattice of relations, for sizes of Dy up to 4096 bits, which
is twice the size of the largest provided SCALLOP instantiation. The lattice of
relations can easily be found for even larger sizes; however, increasing sizes of Dy
and therefore h(9) warrant the use of growing lattice dimensions, which (due
to the superpolynomial asymptotic growth in cost) eventually renders either the
lattice-reduction step or the online phase prohibitively costly.

In all parameter sets, we use fundamental discriminant Dy = —11, which is
congruent to 5 modulo 8 as required. The conductor f was chosen as a random
prime of the form f = 2Fm + 1 with m a small odd integer, such that f is
split in Q(v/ D). Hence the class group is cyclic of order 2¥m, which makes the
required discrete logarithms in the class group particularly easy to compute.®
As a generating set of the class group, we consider the first n prime integers ¢;
which split in O and, for each of them, let I; = (¢;, fv/Do — m;) where m; is
the smallest non-negative integer such that [; is a prime ideal of norm ¢;. The
reduced relation lattices for these parameter sets can be computed in no more
than a few core-hours per parameter set, almost all of which is spent on running
the BKZ lattice-reduction algorithm.

5 We note that Kuperberg’s quantum algorithm works by first reducing to cyclic
groups of two-power order, hence this group structure cannot be fundamentally
weaker against Kuperberg’s algorithm than a random cyclic group of similar size.
See for instance [Pan21, §2.6.3].
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Starting curve. We then computed starting curves for the chosen parameters
using a KLPT-based approach using the implementation of [EPSV23]. This is
practically easier than using SetUpCurveHD (Algorithm 2) for lack of sufficiently
general genus-2 isogeny libraries, but presumably slower: Computing the starting
curve took about 2 single-core hours for a 512-bit discriminant with n = 74 as
in CSIDH-512, and about 85 single-core hours for a 1024-bit discriminant with
n = 100. (We stress again that these timings are for a naive implementation of
the setup phase and can be improved a lot.)

Computing the action. Finally, our implementation of the SCALLOP-HD
group action itself relies heavily on the SageMath implementation of dimension-2
isogenies provided by [DMPR23]. Although it is hard to compare our SageMath
implementation to the C++ implementation of SCALLOP, our preliminary re-
sults seem to indicate that SCALLOP-HD can at least compete: For the 512-bit
parameter set, a single group-action evaluation averages around 88 seconds on an
Intel Alder Lake CPU core clocked at 2.1 GHz, compared to around 42 seconds
for SCALLOP on the same hardware configuration. For the 1024-bit parame-
ter set, a single group-action evaluation averages around 19 minutes, compared
to around 15 minutes for SCALLOP. However, profiling data reveals that the
2-dimensional isogenies used in SCALLOP-HD are in fact relatively cheap, ac-
counting for only about a third of the total computational effort: Most of the
time is spent on “traditional” elliptic-curve arithmetic, which can therefore be
expected to benefit from very significant speedups using well-known standard
optimization techniques and implementation tricks for genus-1 arithmetic which
have not been incorporated into SageMath. We are thus optimistic that a more
optimized SCALLOP-HD implementation will be able to outperform SCALLOP
by a comfortable margin as the security level grows.

6 Some remarks on security

The security of SCALLOP-HD is identical to that of SCALLOP because the
group action has the same exact structure. In this section, we take the opportu-
nity to discuss the impact of recent developments from the papers [CII123,CV23]
on the security of SCALLOP and SCALLOP-HD.

In [DFFK*23], one proposed method to attack SCALLOP is to compute the
ideal corresponding to the isogeny ¢ of degree f connecting the ©g-oriented
curve Eg with the D-oriented curve E. In [CIIT23], a polynomial-time quantum
algorithm is introduced to perform that computation when there is an efficient
way to evaluate this f-isogeny on points of powersmooth order. Since the en-
domorphism wg can be written as d + ¢y o wy o ¢y for some integer d and
wo € End(E)p), the security of SCALLOP then reduces to the following question:

Can we use the effective orientation wg revealed in SCALLOP(-HD) to
evaluate oy ?
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As far as we know, the answer to this question is no (at least not in polynomial
time). In fact, the problem of evaluating the descending isogeny ¢ was already
discussed in [DFFK'23, Section 7] even though the algorithm from [CII*23]
didn’t exist at the time. The discussion presented in [DFFK'23, Section 7] is
still relevant and justifies why evaluating ¢y from wg appears hard. One possible
way to reduce the search space introduced in [DFFK'23, Section 7] would be
to use non-trivial self-pairings (i.e. pairing such that e(P, P) is not 1). However,
there are no known self-pairings in the context of SCALLOP(-HD) and some
negative results regarding the existence of these objects were even recently shown
in [CHM23].

Recently, [CV23] introduced a generalization of the “lollipop method” to re-
cover an isogeny from a partial torsion information. More concretely, it targets
the following setting. Let ¢ : Ey — E be an isogeny of degree f and P, @ be a
basis of Ey[N] for some big enough integer N. The goal is to recover ¢ from the
knowledge of T, S where T, S is a basis of E[N] equal to X - (P, Q) for some
secret matrix X contained in some subset of GL2(Z/NZ). Typically, [CV23]
targets the case where X is diagonal, but they introduce a generic framework
that can handle a broader variety of families of Xs. The fact that X is un-
known is the main obstacle to apply the usual isogeny recovery attacks or the
attack from [CIIT23]. The paper [CV23] shows how to overcome this obstacle
when the parameters d, N, p allow the existence (and efficient computation) of
an endomorphism p € End(Ep) satisfying various constraints.

Below, we try to apply this attack to recover the isogeny ¢ using the knowl-
edge of the orientation. In particular, we will have a look at the case where X
is diagonal. Indeed, when taking N as a product of split primes in Oy, P,Q
to be two generators of the eigenspaces of wy in Eg[N] and T, S generators of
the eigenspaces of wg € E[N], we are exactly in the desired setting where the
unknown matrix is diagonal (since eigenspaces of wy are mapped to eigenspaces
of wgE by (pf).

When N is powersmooth, the points P, @Q,T,S can be computed in polyno-
mial time by evaluating wy and wg, and solving some discrete logarithms. The
method introduced in [CD23] works by computing a non-trivial endomorphism
p = koo such that [¢¢].o can be computed efficiently, the matrix of the action
of p in the basis P, commutes with the matrix X and degx < N2?/f2. When
those conditions are satisfied, it can be shown that the image of the isogeny
Y = [o]spf ok oy onT,S can be computed exactly, allowing for its efficient
computation with higher dimensional isogenies. In a number of cases, this is
enough to recover ¢y directly, but not always. In the setting of SCALLOP-HD,
this is not necessarily new information if the endomorphism 1/3 o [pf]«o belongs
to tg(9). On the other hand, when it does not, then we obtain a full quaternion
suborder of End(FE) in that matter, and that might be enough to evaluate ¢y
with an adaptation of [Ler22a, Algorithm 5] and then, we can apply the attack
from [CITT23].

Thus, the question becomes: can we find such an endomorphism p satisfying
all the previous constraints? While we do not know how to prove formally that
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the answer is always no, we provide examples where we can prove that finding
a suitable p is impossible.

As far as we know, there are essentially three types of isogenies o for which
we have an efficient way to compute the push-forward [pf],0:

1. The identity.
2. The Frobenius.
3. Horizontal isogenies (used in the group action).

Let us consider the case where o is the identity. We want to find p € End(Ep)
that acts as a diagonal matrix on the subgroups generated by P and Q. As we
explained before, we have an attack if we can find p ¢ Z[wy] (otherwise we don’t
learn anything new).

Let Oy be a quaternion maximal order isomorphic to End(Ey) and I, J, the
two left Og-ideals of norm N corresponding to the subgroups generated by P
and @ under the Deuring correspondence. Then, p will act as a diagonal matrix
on the two subgroups if and only if it is contained inside the quaternion order
O = (Z+1)N (Z+ J) which is an Eichler order of level N2. This is a lattice
of volume equal to Cp?>N* for some small constant C. And this means the four
successive minimas A1, Ag, A3, A4 satisfy

P’N* < MAedsAy < 16Cp°N* (3)

However, since Z[wy] is contained inside O by design, and Oy is a quadratic
order of very small discriminant, we know that the two first successive minimas
are 1 and n(wp) (assuming that wy is the element of smallest norm in Z[wo] \ Z,
which we can do without any loss of generality). Moreover, since wy € O, we can
always multiply any element by wy, this means that we must have Ay < n(wp)As,
and so we can deduce that A3 > pN 2. This means that the smallest element p
we can expect to find in O \ Z[i] has norm greater than pN2. But, to make the
attack work, we need that N2 > f2 degp. These two conditions are clearly not
compatible, and this means that there is no hope to find a suitable p to make
the attack work in this setting.

Let us now consider the case where o is the Frobenius isogeny. When Oy
contains j (which we can assume since the class number of O¢ is 1 and it has
been shown in [CPV20] that the only Og-oriented is F,-rational when p is big
enough), finding p when o is the Frobenius implies that p is contained inside
ONQOpj. It can be verified that the successive minimum of this lattice are small
linear combinations of p, pwg, Nj, Nwoj and thus the solutions outside of Z[i]
have norm bigger than N?2. Thus, it is once again not possible to find p with
N? > f?degp. A similar reasoning can be applied to prove that a suitable
endomorphism p cannot be found when o is an O¢-horizontal isogeny.

Thus, we have proven that the lollipop method cannot be applied to the
setting of SCALLOP-HD when considering the torsion information revealed by
the orientation on the points whose order is a product of split primes.

The same reasoning cannot be applied if we consider inert primes. Indeed, in
that case, the matrix will probably not be diagonal. However, this also means
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that we don’t really know what kind of matrix is required for the endomorphism
p. Thus, it seems hard to use the lollipop method in that case.

7 Conclusion and future work

SCALLOP-HD represents the progression of a series of efforts to enhance the
scalability of EGAs based on isogenies. Beginning with CSI-FiSh, which estab-
lished the foundational strategy and gave a notable example, there was a sig-
nificant challenge in computing larger class groups. SCALLOP then built upon
the work of CSI-FiSh by overcoming this limitation, but still needed superpoly-
nomial time for generating the lattice of relations. SCALLOP-HD takes this
advancement a step further, making precomputation polynomial-time except for
the lattice reduction phase. Indeed, this renders SCALLOP-HD the first member
in the CSI-FiSh family whose practical bottleneck equals the asymptotic bot-
tleneck of the construction, indicating that a fundamentally different approach
may be required to achieve further progress.

SCALLOP-HD is heavily based on the SCALLOP group action [DFFK™23].
The main difference stems from the way the orientation is computed. In SCAL-
LOP, an effective orientation is obtained from an endomorphism of smooth
degree, whereas in SCALLOP-HD, an effective orientation is obtained from a
2dim-representation of an arbitrary degree endomorphism. The relaxation of
the constraint on the degree of the endomorphism is the main advantage of
SCALLOP-HD as it improves scalability and simplifies the group action compu-
tation at the cost of requiring the computation of a 2°-isogeny between abelian
variety of dimension 2.

The 2dim-representation technique we developed in order to represent set
elements in SCALLOP-HD is interesting in its own right. It has already seen
applications in [Ler23] and Remark 14, bringing down the dimension needed to
compute the isogenies between abelian varieties from 4 or 8 to 2.

The main remaining problem is to engineer an efficient and side-channel
resistant implementation of SCALLOP-HD. This is a non-trivial task due to
the need for isogeny computation in higher dimension. The state of the art on
this matter was recently improved by [DMPR23|, which is a great leap in the
right direction, but algorithms for dimension-2 isogenies still haven’t reached
the level of maturity required for serious cryptographic implementation work. In
the end, we are optimistic that the efficiency of SCALLOP-HD’s group-action
computation will outperform that of SCALLOP.
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