
PassPro: A Secure Password-based Authentication Mechanism to Prevent Attacks

Ripon Patgiri
National Institute of Technology Silchar

ripon@cse.nits.ac.in

Laiphrakpam Dolendro Singh
National Institute of Technology Silchar

ldsingh@cse.nits.ac.in

Abstract
The password-based authentication system is a widely used
authentication mechanism. However, it has several issues,
including the domino effect, guessing attacks, dictionary at-
tacks, rainbow table attacks, and database leakage issues. To
address these issues, we present a client-side password hash-
ing method called PassPro. PassPro uses two secrets and a
domain word to shuffle the strings. The shuffled strings are
converted into hash values and sent to the identity manager
for authentication or identity creation. The shuffling is based
on a pseudo-random algorithm. The legitimate user can repro-
duce the shuffled string again. The hash values are encrypted
in the password database using a password-based encryption
method with a mutually reproducible secret word for each user.
Therefore, PassPro features- a) client-side password metering,
b) client-side password hashing, c) prevention of the domino
effect from leaked password database, d) protection of the
password database leakage, e) encryption of the hash values
using a mutually reproducible secret word, and g) prevention
of dictionary and guessing attacks. Also, PassPro guarantees
that adversaries, including authentication managers, cannot re-
trieve the user’s original password and user ID. Alternatively,
the original user ID and password cannot be retrieved even if
the password database is given to the adversary. Furthermore,
a password database’s user ID and password are invalid in
other domains, even if the user uses the same user ID and
password in multiple domains.

1 Introduction

The advent of the computing power of adversaries demands
the revision of existing authentication mechanisms because
authentication mechanisms protect precious digital assets.
Moreover, conventional computers are equipped with more
powerful processors and GPUs at a low cost, and attack-
ing them becomes easier for adversaries. Interestingly, the
password-based authentication mechanism is a widely used
method to protect digital assets from being misused. The

Figure 1: Block diagram of authentication mechanism of the
state-of-the-art method.

password-based authentication mechanism has numerous
challenges, including the domino effect, guessing attacks, dic-
tionary attacks, rainbow table attacks, and database leakage.
The state-of-the-art password-based authentication system
uses salt to defeat dictionary attacks but has an issue with
short salt and salt reuse [7]. However, we cannot assume that
the hash values and the salts are leaked in the conventional
authentication system.

Definition 1 A client sets the user ID as U and password as
P in multiple domains. Once the U and P are compromised,
then the adversary can use the identity to gain authentication
in multiple domains. This phenomenon is called the domino
effect.

Definition 2 A function F transforms an input string, ω, into
an output, O , by the significant influence of another input, I ,
and the I is called a context. Alternatively, F (ω)

I−→ O or

O
I←− F (ω).

1.1 Motivation
Recent developments suggest that users’ passwords are pub-
lished widely, which is fatal for the password-based authen-

1

tication system. COMB publishes 3279064312 passwords
online, which is approximately 3.27 billion pairs of emails
and passwords [9]. The report further highlights that 3.27 bil-
lion is 40% of the world’s total population. Similarly, Rock-
You2021 publishes a whooping 8.4 billion passwords (100GB
text data) [10]. The number of passwords is almost equivalent
to the world’s population. The COMB and RockYou2021 can
reveal the raw passwords and identities from the state-of-the-
art identity manager, which is highly risky. The adversary
uses a rainbow table attack to reveal the passwords from the
leaked hash values. The password stretching algorithm such
as [4] does not affect the domino effect and rainbow table
attack. However, it can defeat guessing attacks and dictionary
attacks. Moreover, numerous models have already been pro-
posed to perform guessing attacks, including deep-learning
models [6, 8, 11, 12, 18, 20], targeted guessing attacks [18],
pattern-based guessing attacks [17] and large-language mod-
els [15]. These models are efficient and effective in predicting
users’ passwords to evade. Moreover, the targeted online pass-
word guessing also poses serious threats to password-based
authentication systems [18]. Diverse defensive mechanisms
have already been proposed to address the issues such as
rainbow table attacks.

The state-of-the-art password-based authentication mecha-
nism assumes that a) hash values and salts cannot be leaked
simultaneously and b) identity managers are honest by de-
fault. The attacker can derive equivalent passwords if the hash
values and salts are leaked simultaneously. Moreover, a dis-
honest identity manager can store the original passwords in a
different database because the raw passwords are transmitted
to the server. Thus, we cannot assume a dishonest identity
manager in the conventional password-based authentication
mechanism. These two assumptions lead to our proposed solu-
tion. We assume that everything can be leaked from the server
(identity manager), including the master secret password of
the identity manager, salts, and the entire password database.
Moreover, we assume that the identity manager is a dishonest
authentication manager.

1.2 Our proposed work

The recent password-hashing competition winner was Ar-
gon2, where Argon2i is suitable for password hashing [3]. Ar-
gon2 features memory hardness for password hashing where
the legitimate user hashes the password using some mem-
ory footprint, whereas the adversary requires a huge memory
footprint, which restricts the parallelism [13]. It is designed
to hash the password on the server side, which contrasts our
proposed work. Moreover, our proposed work encourages the
users to reuse their password and user ID in multiple domains,
which contrasts Wang and Reiter [19]. Wand and Reiter [19]
proposes password lookup in different domains to prevent
password reuse which is not a viable option.

Figure 1 demonstrates the scenes of attacking a password.

We assume that the server stores the hash values of the pass-
words. Moreover, we assume that the hash values are leaked
and the adversary derives the equivalent or the exact password
using a rainbow table attack or other attacks. In that case, the
attacker can reuse the derived password to gain authentica-
tion in a different domain. The current state-of-the-art system
does not guarantee that the adversary cannot gain authenti-
cation using the derived password in a different domain if
the user reuses the password. If the user password reuses the
passwords in different domains, there is a possibility that the
adversary can gain authentication using the derived password,
which is derived by rainbow table attacks or other methods.
Moreover, we assume that a dishonest authentication man-
ager to prove the superiority of our proposed method over a
state-of-the-art authentication manager. The state-of-the-art
method stores the hash values of the password, but the raw
password is transmitted from the user to the server. A dishon-
est authentication manager can easily store the raw password
in a different database. Using these credentials, the dishon-
est authentication manager can easily gain authentication in
different domains if the user reuses the password in differ-
ent domains. To address the above-raised issues, we propose
a new password-based authentication derived from Ross et
al. [16], called PassPro, which features client-side password
hashing. We present a stronger defense against diverse secu-
rity threats. Therefore, we draw our key objectives as outlined
below-

• To prevent getting the direct raw form of the user IDs and
passwords by the adversary, including the authentication
manager (we use the identity manager as analogous to
the authentication manager throughout the paper).

• To ensure that the adversary can never retrieve the origi-
nal user IDs and passwords, including the identity man-
ager.

• To prevent the domino effect and the password leakage
issue.

Our proposed work features a client-side hashing to achieve
the above objectives. We implement a shuffle function to
shuffle two different strings. The shuffling algorithm is based
on a pseudo-random algorithm where the legitimate user can
reproduce the shuffled word consistently for correct input.
The PassPro utilizes this shuffling algorithm to shuffle the
user credentials. The resultant shuffled strings are hashed to
conceal the original raw data. The hashed values are sent to
the identity manager for authentication.

1.3 Key contributions
Our key contributions are outlined below-

• PassPro completely prevents the domino effect from
the leaked password database. It shuffles the user ID,

2

password, and domain word to produce three unique
strings. Therefore, the same user ID and password can
be used in multiple domains without worrying about the
domino effect. In this case, we assume that the attacker
cannot correctly guess all the secret credentials in three
incorrect login attempts.

• PassPro is designed based on the client-side password
hashing to conceal the original user ID and password. It
ensures that the adversary never gets the original user
ID and passwords in raw form from the leaked password
database. Moreover, the authentication manager never
receives the users’ credentials in raw form.

• The Identity manager of PassPro never receives the orig-
inal user ID and password in raw form; therefore, it
features client-side password metering. Alternatively,
the server (identity manager or authentication manager)
can never suggest the strength of a password or user ID.
Therefore, it invalidates the use of AJAX in the frame-
work.

• The secret credentials of each user are encrypted with
a different key in the password database of the identity
manager. The identity manager computes a mutually
reproducible secret word using the hash value provided
by the user and the master secret word from the identity
manager.

• PassPro protects users’ identities from stealing by adver-
saries. The user ID and password are encrypted with dif-
ferent passwords; therefore, the adversary cannot decrypt
the user ID and password even if the entire password
database of the identity manager is leaked.

• PassPro adds more complexities for the guessing attacker
using two secrets.

1.4 Our results
PassPro differs from conventional password-based authenti-
cation systems, where hashing is performed on the client side
rather than hashing a password on the server side (identity
manager). We present our results in the next sub-subsections.

1.4.1 Shuffling with a context

The user enters an email ID (E), a user ID (U), and a pass-
word (P) for authentication where the E is publicly visi-
ble identity. In contrast, the U and P are secret credentials.
PassPro retrieves a domain word (D) to shuffle the user ID and
password. We shuffle the user’s credentials as U

U←−U∪D,

P
P←− P ∪D and K

U||P←−−−U∪(P ||D). Therefore, shuffling
produces a shuffled user ID (U), a shuffled password (P),
and part of a mutually reproducible secret word (K). The
shuffling algorithm produces different shuffled strings-

• For the same user IDs and passwords for different do-
mains.

• For the same user IDs and domains for different pass-
words.

• For the same passwords and domains for different user
IDs.

We can easily retrieve the original user ID and password
can be retrieved from the U and P by removing the char-
acters of the domain word. We hash the shuffled strings to
conceal the original raw string of the user’s secret credentials
before sending the user’s credentials to the authentication
manager. Thus, it is difficult to reproduce the original raw
strings from the hashed values. Therefore, client-side hashing
is required to conceal the original user ID and password.

1.4.2 Client-side hashing

A hash function can be invoked at the client’s computers to
convert shuffled user ID, password, and domain word into
hash values. Our proposed system relies on secure hash
functions, such as SHA2-256 or SHA512. Thus, our pro-
posed algorithm produces three hash values: HU ←H (U),
HP ← H (P), and HK ← H (K). Therefore, it prevents
the transmission of the original password and user ID to the
authentication manager. Hence, the authentication manager
cannot retrieve the actual user ID and password from the hash
values, including the adversaries. The hash values of the shuf-
fled strings cannot be the same for the different domains, even
if for the same password and user ID.

1.4.3 Domino-effect

The domino effect is a crucial effect that needs to be prevented
due to the adversary’s presence in password-based authenti-
cation systems. The domino effect occurs due to password
reuse in multiple domains. The user of PassPro sends the
hash values to the identity manager; therefore, it is computa-
tionally infeasible to reconstruct the original string from the
hash values HU and HP . This method prevents the domino
effect because the different domain words create different
shuffled hash values for the same user ID and password. Thus,
it permits the reuse of user IDs and passwords in multiple
domains.

1.4.4 Encryption and decryption

The user’s hash values are encrypted using AES; however, we
can apply a password-based encryption method [2]. Identity
manager computes a mutually reproducible secret word W
using HK and a master secret word from the identity man-

ager W , i.e., W← H (SW) where SW W←− (HK ∪HW).
Moreover, the W is updated using Argon2i [3]. The en-
cryption is performed using CU ← AES.Enc(HU ,W) and

3

CP ← AES.Enc(HP ,W) where AES is Advanced Standard
Encryption. Alternatively, each user’s hash values are en-
crypted with a different secret key. The algorithm requires a
hash value from the user and a master secret word from the
identity manager to encrypt or decrypt the hash values on the
server side. The user supplies a hash value of the shuffled
string to the identity manager, where shuffling is performed
among the user ID, password, and domain word with a context.
We encrypt the hash values using a mutually reproducible se-
cret word. Therefore, the identity manager cannot reproduce
the mutually reproducible secret key without the hash value
from the user. Besides, the user cannot reproduce the mutu-
ally reproducible secret key without the master secret word
from the identity manager. PassPro encrypts the individual
shuffled-then-hashed user ID and password with an individ-
ual secret key. Alternatively, the identity manager is unable
to decrypt the stored hash values without the user’s consent.
Similarly, the user cannot decrypt its own hash values from
the password database without permission from the identity
manager.

1.4.5 Leakage of the password database

The adversary always tries to steal the password database to
gain authentication in multiple domains. Strict measures are
required to prevent such attacks. Therefore, we introduce a
mutually reproducible word to encrypt using the AES method
to encrypt and decrypt. Consequently, it prevents the identity
manager from decrypting the hash values without permis-
sion from the user. Similarly, the user cannot decrypt the
encrypted hash values from the password database without
having permission from the identity manager, even if the iden-
tity manager provides the user’s own encrypted hash values
to the user. With the condition mentioned above, the adver-
sary is unable to decode the encrypted hash values even if
the adversary evades the security of the identity manager to
steal the database. Therefore, it is computationally infeasible
to decrypt all the encrypted hash values from the password
database for the adversary. Therefore, the user IDs and pass-
words are intact even after the adversary steals the password
database.

1.4.6 Guessing and dictionary attacks

The passwords are created eight characters long- using capital
letters, small letters, digits, and special symbols, which creates
huge password spaces. However, a user always chooses easy-
to-remember passwords; thus, the password space becomes
small for the attackers. Thus, the guessing attacks become
a reality. Also, the dictionary size of the adversary becomes
smaller. For instance, almost all users’ passwords are pub-
lished at [9, 10]. Therefore, it becomes easy for adversaries
to perform the attacks. Hence, a new measurement is needed
to thwart such kinds of attacks. Our proposed system uses

two secret words: user ID and password. Consequently, the
guessing and dictionary attacks become harder even if the
passwords are published at [9, 10].

2 PassPro: The proposed system

In a password-based authentication system, the user enters
a user ID and password to prove the genuineness. However,
there are many issues with conventional password-based au-
thentication systems. The prominent issue is the domino ef-
fect. People often reuse the same password and user ID for
various identity managers so that they can remember them
easily. Therefore, if the password is derived from the leaked
database, the adversary can break the security of all other
identity managers if the user reuses the password in differ-
ent domains. Moreover, conventional identity managers store
passwords by applying salt to them, but still, there is a possi-
bility of leaking the salts. If the hash values and the slats are
leaked, it becomes easy for attackers. Hence, our key objec-
tives are as given below-

• To protect the users’ identities from stealing and publish-
ing by adversaries.

• To protect users’ raw password from the identity man-
ager.

• To prevent the domino effect where the adversary can-
not use a derived password from the leaked password
database to gain authentication in multiple domains.

Our proposed system relies on existing OTP mechanisms
to identify the desired user. Also, it relies on existing captcha
to differentiate between robots and humans. Moreover, it
depends on three correct password attempt mechanisms. Fur-
thermore, it relies on existing cryptography techniques (SSL),
such as the POST method, to send the three hash values to
the identity manager: HU , HP , and HK .

2.1 Identity creation

Figure 2: Block diagram of PassPro in the identity creation
process.

Table 1 shows a user’s identity creation at the identity
manager and is also demonstrated in a block diagram in Figure
2. In our proposed system, the email ID and user ID are treated

4

Table 1: Step-by-step overview of the identity creation of a user.
Client Identity Manager (IDM)
• User retrieves a domain words D .
• User enters user ID U and password P .
• The user performs shuffling-

U∪D P−→U , P ∪D U−→P ,

U∪ (P ||D)
U||P−−−→K

• The user performs hashing-
HU ←H (U), HP ←H (P), HK ←H (K)
• The user sends the HU , HP , and HK to the identity
manager using POST method.

• IDM receives the hash values- HU ,HP , and HK .
• IDM computes a mutually reproducible secret
word W using HK and a master secret word from the identity
manager W .
• The IDM encrypts the hash values-
AES.Enc(HU ,W) and AES.Enc(HP ,W)
• The IDM inserts these encrypted hash values
into the password database and deletes HK , SW and W.

differently. The email ID is a public ID, and the user ID is a
secret word similar to the password. Initially, the user retrieves
a domain word (D), and the user enters two secrets: a user ID
(U) and password (P). The user ID, password, and domain
word are shuffled on the client side to create a unique identity
(see Algorithm 2 for shuffling) as given below-

U∪D P−→U

P ∪D U−→P

U∪ (P ||D)
U||P−−−→K

(1)

The ∪ represents shuffling, and P−→ represents P as context in
the shuffling process. For instance, U and D is shuffled using
a context P to produces a shuffled string U and we represent
the entire process as U ∪D P−→ U . Notably, the characters
of P are not included in the shuffled string U . The shuffled
strings are converted into hash values by the client as given
below-

HU ←H (U)

HP ←H (P)

HK ←H (K)

(2)

The correct hash values can be reproduced exclusively
by the legitimate user. The user sends these hash values
(HU ,HP ,HK) to the identity manager using the POST
method. The identity manager receives the hash values
(HU ,HP ,HK). The identity manager shuffles the HK and
the hash value of the master secret word, W , from the identity
manager to form SW as given below-

SW W←− (HK ∪HW) (3)

The identity manager applies the hash function to produce a
mutually reproducible secret word, as shown below-

W←H (SW) (4)

Moreover, we update the W using Argon2i as

W← Argon2i(W,HSalt) (5)

where Salt is generated from the W as

Salt←H ′K ||W (6)

The H ′K is formed by selecting 32 characters from HK
pseudo-randomly, where it can be reconstructed for the cor-
rect inputs. Thus, the adversary cannot guess the salt, and each
user has a different salt value. We apply Argon2i because it
restricts the adversary from launching parallel computation
by limiting the memory size of the adversary. The two hash
values HU , and HP are encrypted using AES method as
given below-

CU ← AES.Enc(HU ,W)

CP ← AES.Enc(HP ,W)
(7)

The CU and CP are inserted into the password database
against the user’s email ID and delete the W, SW , HW , HK

and H ′K .

2.2 Authentication process
Table 2 shows a similar procedure as the identity creation for
the authentication process except for the decryption process.

5

Table 2: Step-by-step overview of the authentication of a user.
Client Identity Manager (IDM)
• User retrieves a domain words D .
• User enters user ID U and password P .
• The user performs shuffling-

U∪D P−→U , P ∪D U−→P ,

U∪ (P ||D)
U||P−−−→K

• The user performs hashing-
HU ←H (U), HP ←H (P), HK ←H (K)
• The user sends the HU , HP , and HK to the
identity manager using POST method.

• IDM receives the received hash values- HU , HP , and HK .
• IDM computes a mutually reproducible secret word W as
shown in Table 1.
• The IDM decrypts the stored hash values-
H decrypted

U ← AES.Dec(CP ,W), and
H decrypted

P ← AES.Dec(CP ,W)
• The IDM compares the hash values for authentication-
HU = H decrypted

U , and HU = H decrypted
U .

If this comparison is successful, the user is authenticated; otherwise,
the authentication fails.
• The identity manager discards HK , H ′K , SW , HW and W.

Figure 3: Block diagram of authentication process of PassPro.

A block diagram in Figure 3 also depicts the authentication
process. The user shuffles the user ID, password, and domains

word as U∪D P−→U , P ∪D U−→P , and U∪(P ||HD)
U||P−−−→

K . The user converts these shuffled strings into the hash
values and produces HU , HP , and HK as shown in Equation
(2). The user sends these hash values to the identity manager
using the POST method. The identity manager receives these
hash values and produces W using HK and HW as shown in
Equations (3)-(6). The identity manager decrypts the stored
hash values as given below-

H decrypted
U ← AES.Dec(CP ,W)

H decrypted
P ← AES.Dec(CP ,W)

(8)

The W is a high entropy key to encrypt or decrypt. There-
fore, it is strong enough to secure the encrypted data with a
memory-hard hash function, Argon2i. The decrypted hash val-

ues and received hash values are compared for authentication
as given below-

i f (HU = H decrypted
U and HP = H decrypted

P)

Authentication is success f ul

else

Authentication f ails.

As shown above, the user is authenticated if the comparison
is successful. Otherwise, the authentication fails. The identity
manager securely deletes the HK , H ′K , SW , HW and W.

2.3 User ID
The conventional system uses the user ID as a publicly visible
identifier, for instance, mail@example.com. However, our
proposed scheme treats the user ID as equally important as
the password. Alternatively, the user ID and password are
the secret words. If a user ID is secret, it is stronger and can
protect against diverse attacks. A weak password can reveal
the secret of shuffling. Therefore, we consider the user ID as
a secret word similar to the conventional password other than
the email ID. A user ID can be formed using the same rules
as the password. For instance, a user ID can be User@2025.
The user ID and password cannot be the same. The user ID
consists of eight characters, including 26 small-case letters,
26 upper-case letters, 10 digits, and 32 symbols (excluding
white space). Therefore, by choosing eight characters from 94

6

available characters, the maximum number of possible user
IDs is (

94
8

)
= 111,315,063,717 (9)

We have eight character strings comprising of alphabets, dig-
its, and special symbols. Therefore, we can form 111 billion
user IDs. Theoretically, it is large enough to thwart brute-force
attacks but cannot withstand guessing attacks and dictionary
attacks.

2.4 Password
In the creation of a password, we can follow the same rules
as current practices. It is similar to conventional passwords
with a length of a minimum of ten characters. The password
is constituted of ten characters from 26 small-case letters,
26 upper-case letters, 10 digits, and 32 symbols (excluding
white space). Therefore, by choosing ten characters from
94 available characters, the maximum number of possible
passwords is (

94
10

)
= 9,041,256,841,903 (10)

The challenge is to defeat the guessing and dictionary attacks.
Theoretically, a password with ten characters can withstand
diverse attacks by the above-mentioned rules; however, it
cannot withstand dictionary and guessing attacks even if the
password space is large.

2.5 Dictionary attacks
The dictionary and/or guessing attacks can be effectively car-
ried out on stolen password databases because of the three
login attempt restrictions. We assume all user IDs and pass-
words are listed in COMB or RockYou2021. Therefore, per-
forming a guessing or dictionary attack on either the user ID
or the password is trivial. Our proposed system comprises two
secrets, namely, user ID and passwords. Let the user ID and
passwords be in the COMB dictionary (the size of COMB is
less than the size of RockYou2021), i.e., U,P ∈COMB. But
both U and P must belong to the same user and be correct.
Therefore, the probability of selecting the correct user ID and
password from COMB that belongs to a single user is as given
below-

1(3279064312
2

) =
1

5376131379476484516

= 1.8600735908678218e−19
(11)

which is fairly small enough to thwart guessing attacks or
dictionary attacks that motivate us why to consider the user
ID as a secret word. Apparently, the two secret words can
cause inconvenience to the users. However, we must prevent
diverse attacks such as password database leakage. Thus, the

inconvenience is justified. But it cannot ensure freedom from
the domino effect. Moreover, it cannot protect the password
database from being stolen. Therefore, we use a domain word
to prevent such kinds of attacks.

2.6 Domain Word
A user needs to retrieve the domain word, which is shuffled
with the user’s ID and password. The domain word is public
and available to all, including the adversary. For instance,
the domain words are ieee.org, acm.org, usenix.org, iacr.org,
ndss-symposium.org, etc. These words are mixed with the
user ID and password to prevent diverse attacks.

2.7 Shuffling the strings

Algorithm 1 Computing an integer value for utilization.
1: procedure GETVALUE(ω1,Lω1 ,ω2,Lω2 ,ω3,Lω3 ,S ,τ)
2: for i : 1 to τ do
3: S = PRIMARYHASH(ω1,Lω1 ,S)
4: S = PRIMARYHASH(ω2,Lω2 ,S)
5: S = PRIMARYHASH(ω3,Lω3 ,S)
6: end for
7: return S
8: end procedure

Algorithm 1 computes an integer value using a primary
hash function. A primary hash function is a non-secure hash
function that produces a hash value of β-bit (32 bits or 64
bits), for instance, the murmur hash function [1]. The function
iterates τ times to alter the seed value. Initially, the seed value
is public and converted into a private value using a user ID,
password, and domain word.

The user often uses the same user ID and password over
multiple domains; therefore, once the password is compro-
mised, the adversary can access all other domains. Therefore,
we shuffle the user ID and password with a domain word. The
domain word is public; however, the legitimate user can cor-
rectly reproduce the shuffled word. Algorithm 2 portrays the
shuffling between two words with a context (see Definition
2 for context), and the results of the shuffling are shown in
Table 3. Algorithm 2 requires two strings to shuffle with the
context of another word. The strings are ω1 and ω2 and the
context is ω3. Our algorithm depends on a non-cryptography
string hash function such as Murmur2 [1]. The integer value
generation process (Algorithm 1) requires the invocation of
a primary hash function τ times, which is dependent on the
input string. The τ can be computed as τ = S%δ+µ where
we set δ = 1783 for demonstration purpose. We can set δ

to a larger prime number to make it harder to reproduce the
shuffled string by the adversary. However, the larger δ value
slows down the process. The shuffling algorithm is similar
to the password-stretching algorithm. The low-entropy user

7

Algorithm 2 Shuffling two strings, ω1 and ω2, with respect
to context ω3.

1: procedure SHUFFLE(ω1,ω2,ω3,S)
2: Lω1 ,Lω4 = LENGTH(ω1)
3: Lω2 ,Lω5 = LENGTH(ω2)
4: Lω3 ,Lω6 = LENGTH(ω3)
5: COPY(ω4,ω1), COPY(ω5,ω2), COPY(ω6,ω3)
6: τ = 16,δ = 1783,µ = 16
7: S = GETVALUE(ω3,Lω3 ,ω2,Lω2 ,ω1,Lω1 ,S ,τ)
8: τ = S%δ+µ
9: while Lω1 ̸= 0 and Lω2 ̸= 0 do

10: if S ∧1 = 0 then
11: S = GETVALUE(ω1,Lω1 ,ω2,Lω2 ,ω3,Lω3 ,S ,τ)
12: τ = S%δ+µ
13: k = S%Lω4

14: bu f f [i++] = ω4[k]
15: REMOVEONECHAR(ω4,k,Lω4)
16: Lω4 = Lω4 −1
17: else
18: S = GETVALUE(ω3,Lω3 ,ω1,Lω1 ,ω2,Lω2 ,S ,τ)
19: τ = S%δ+µ
20: k = S%Lω5
21: bu f f [i++] = ω5[k]
22: REMOVEONECHAR(ω5,k,Lω5)
23: Lω5 = Lω5 −1
24: end if
25: end while
26: for k : 0 to Lω4 do
27: S = GETVALUE(ω1,Lω1 ,ω3,Lω3 ,ω2,Lω2 ,S ,τ)
28: τ = S%δ+µ
29: pos = S%i, i = i+1
30: INSERTCHARAT(bu f f , i,ω4[k], pos)
31: end for
32: for k : 0 to Lω5 do
33: S = GETVALUE(ω2,Lω2 ,ω1,Lω1 ,ω3,Lω3 ,S ,τ)
34: τ = S%δ+µ
35: pos = S%i, i = i+1
36: INSERTCHARAT(bu f f , i,ω5[k], pos)
37: end for
38: SHA256(bu f f , length(bu f f),0)
39: end procedure

ID and password are converted into a high-entropy string
by shuffling the strings. The shuffling process depends on a
pseudo-random number generation algorithm. The indexes
are generated pseudo-randomly depending on the input string.
Based on the generated index, the characters are placed in
a buffer, and the selected character of the string is removed
using REMOVEONECHAR(ω4,k,Lω4) where it removes a
character from omega4 indexed at k. Finally, the remaining
characters are inserted pseudo-randomly into the buffer us-
ing INSERTCHARAT(bu f f , i,ω4[k], pos) where the character
ω4[k] is inserted into bu f f at index pos. The legitimate user

can reproduce the shuffled strings, but it is hard for adver-
saries. Therefore, the adversary tries to shuffle by guessing a
valid user ID and password. The valid user ID and the pass-
word must belong to a single user. Let us assume that the
adversary guesses two valid strings: user ID and passwords,
and they belong to different users. The adversary cannot gain
authentication because the produced hash values will be dif-
ferent. For instance, shuffling the correct user ID and domain
name requires the correct password (context) to produce the
correct shuffled string. Therefore, partial correctness leads
to a wrong hash value, as shown in Table 3. The adversary
requires two secrets to produce the correct hash values.

Table 3 shows the example of shuffling two words us-
ing a context, and the inputs are taken as an example for
demonstration purposes. We produce three different shuffled
words and hash these three shuffled words using SHA256.
In Test Case 1, the user ID is User@2023, the password
is Pass@1975, and the domain word is mydomain.com for
demonstration and understanding purposes. We want to pro-
duce a shuffled string for user ID, so user ID and domain word
are shuffled using a content password. The shuffled string is
e2roy3mmi@no.dcsaUm02, where the shuffling process is in-
fluenced by the context, but the context is not included in the
shuffled string. A similar process is applied to the password
and the key. In Test Case 2, we change the password from
Pass@1975 to Abc@1975 to see the changes with respect to
Test Case 1. Similarly, in Test Case 3, we change the domain
word from mydomain.com to example.com to observe the
changes with respect to Test Case 1. Likewise, we change the
user ID from User@2023 to Xyz@2023 in Test Case 4 to
observe the changes with respect to Test Case 1. However, our
proposed work shuffles two hash values with a given context
instead of the plaintext as given in Table 3 to make it harder
to reproduce by adversaries. Thus, a tiny change leads to a
drastic change in the hash value.

Therefore, we can conclude as follows-

• Different passwords with the same user ID and domain
word translate into different shuffled user IDs and pass-
words.

• Different domain names with the same user ID and pass-
word translate into different shuffled user IDs and Pass-
words.

• Different user IDs with the same password and domain
word translate into different shuffled user IDs and Pass-
words.

PassPro creates different user IDs and Passwords for different
user IDs, passwords, and domain words. From Table 3, the
adversary can easily reconstruct the user ID and password
from the shuffled user ID and password by removing the char-
acters from the domain words if the client does not hash the
shuffled words. Also, the adversary can get the user IDs and
passwords if the adversary is able to steal the entire database.

8

Table 3: Example of shuffling two input strings with respect to a context.
Test
Case

Context Shuffling
for

String
type

Input String Shuffled string 256-bit hash value using SHA2-256

1
Pass@1975 User ID User ID User@2023 e2roy3mmi@no

.dcsaUm02
7da56be963061fc99b598f0f7a103780
a49262a08b44588dad21fa57e627c62aDomain mydomain.com

User@2023 Password Password Pass@1975 cynPmas9i@s.m
5oaod7m1

76ad4e9e6be754db4b77039732886788
0ddfec73270d7a75130ab89fc0b42f4fDomain mydomain.com

Pass@1975+
User@2023 Key User ID User@2023 9.7m@m1r5so0mU

sPa22icseon@yad3
9379b269ff4bdbd097a78e702371df3a4
124b7c59b500bce1c681cbceb056656

Merging
Pass@1975+
mydomain.com

2
Pass-
word
Change

Abc@1975 User ID User ID User@2023 3yammoro.sUcd0
2me2ni@

eb57bbaef2f1b1223a43584e82ac6913b
5a815bc0ed7945d5c4ce7b689d03c39Domain mydomain.com

User@2023 Password Password Abc@1975 7dc@9nabcmo.
momyi1A5

52973688dad62031f7429f1a0023c6c0
59d09cb8e6100103764dd58194a27bbcDomain mydomain.com

Abc@1975+
User@2023 Key User ID User@2023 id1U59reoocca2@

mA@7mbn0.3yims2
2aa1e1b994ed322e54e0141f72b17702
83d15f3e1eff9eb96e7d69e4310c64c3

Merging
Abc@1975+
mydomain.com

3
Domain
Name
Change

Pass@1975 User ID User ID User@2023 3opmx.mec@rae
02l2eUs

042d567cf42b8242921b6c1d88fa22bf
170461f9470fe34f75cefaf1640a111eDomain example.com

Chair@2023 Password Password Pass@1975 ps.a175cmmoe9@
lxeaPs

3353e4b7d6237992a5951b61686abcb
dc6dcf44f89c7b8173cc37f240cb0f728Domain example.com

Pass@1975+
User@2023 Key User ID User@2023 @sx2pm5c3se92re

0@o7la1amePs.U
6d69ae422b83ef372bd21435a629219a
2572ade52400497a4b80ec651c3aed04

Merging
Pass@1975+
example.com

4
User ID
Change

Pass@1975 User ID User ID Xyz@2023 .2@z3mnmd2yyo
i0cmaXo

1ca8b4dcc6836ed13fe8208df4d5716e
318231f537c70d39715e65ade45091ddDomain mydomain.com

Xyz@2023 Password Password Pass@1975 i1y.Pd@oo7acms
5mmasn9

26d4226853f5a229dda4ad690cde4d5c
9550fbee0354f72693f23e405cc5865aDomain mydomain.com

Pass@1975+
Xyz@2023 Key User ID Xyz@2023 @a5329@mmaiyos

2donX07yPs1.cmz
6418887b91b45d0d1a258a9fb475b61
330757d4927c3d30381f5ddbe274f05fa

Merging
Pass@1975+
mydomain.com

Therefore, PassPro strongly discourages storing/transmitting
the raw form of the user ID and password in the identity man-
ager. Therefore, it demands client-side password hashing to
prevent it, which is described in the next subsection.

2.8 Client-side hashing

PassPro does not transmit the raw password and user ID to
store it in the password database for authentication purposes.
Instead, PassPro uses client-side password hashing for trans-
mission. Firstly, the client shuffles the user ID and password
with a domain word. Secondly, the client of PassPro converts
the shuffled user ID and password into two different hash
values for transmission to the identity manager. We rely on
the SHA256 hash function for hashing the shuffled strings.
However, we can also use other variants of SHA, such as
SHA512 or SHA3. The identity manager of PassPro stores
the hash values of the user ID and password for future au-
thentication by encrypting. The hash value of the same user

ID and password is invalid for the different domains. There-
fore, these hash values cannot be used in other domains to
gain authentication by the adversary. We assume that the
user’s password is a vulnerable low-entropy string. Thus, we
shuffle the strings with a domain word and hash the shuffled
string. Consequently, the hash values become high-entropy
strings. The legitimate user can reproduce the hash values,
and it is hard to reproduce the hash values of a user by an
adversary. For illustration, the U , P and K are constructed
by shuffling U and P using a domain word D. We shuffled
the strings, U, P and D using (1) and produces U , P and
K . The shuffling process uses a context to shuffle the word,
and context influences the placement of the characters in the
shuffled word. The shuffled strings are hashed using (2) and
produce HU , HP and HK . It conceals the original raw user
ID and passwords. Moreover, the shuffling process mixes the
domain words, and therefore, the hash values are different for
different domains for the same user ID and password.

It is guaranteed that the original string is not possible to

9

reconstruct from HU , HU , and HK . Thus, the hash values
HU , HU , and HK are sent to the identity manager for either
identity creation or authentication. The original string can
never be reconstructed from the hash value because it uses the
SHA256 algorithm.Moreover, the input is shuffled pseudo-
randomly, so the adversary can never reconstruct the sequence
without knowing the input strings. Furthermore, the rainbow
table attack becomes infeasible because the input strings are
shuffled in another context. We show that two different users,
let A and B, cannot produce the same hash values. There are
two cases: a) two different user IDs and the same passwords,
and b) two different passwords and the same user IDs. We
take the first case by taking two different user IDs as U1 ̸=U2,
which are non-empty. The shuffling of the client A’s user ID
and password are given in Equation (12).

U1∪D P−→U1

P ∪D U1−→P1

U1∪ (P ||D)
P ||U1−−−→K1

(12)

The hash values of the client A’s user ID and password are
given in Equation (13).

H (U1)→HU1

H (P1)→HP1

H (K1)→HK1

(13)

The shuffling of the client B’s user ID and password are shown
in Equation (14).

U2∪D P−→U2

P ∪D U2−→P2

U2∪ (P ||D)
P ||U2−−−→K2

(14)

The hash values of the client B’s user ID and password are
given in Equation (15).

H (U2)→HU2

H (P2)→HP2

H (K2)→HK2

(15)

From Equation (13) and (15), we can draw the Equation (16).

HU1 ̸= HU2

HP1 ̸= HP2

HK1 ̸= HK2

(16)

Therefore, two users with different user IDs and the same
password always create different hash values. Similarly, two
different users having the same user ID but different pass-
words also create different hash values. Let the password be

P1 ̸= P2, which are non-empty. The shuffled strings of the
client A are given in Equation (17).

U∪D P1−→U3

P1∪D U−→P3

U∪ (P1 ||D)
P1||U−−−→K3

(17)

The hash values of the client A are created using Equation
(18).

H (U3)→HU3

H (P3)→HP3

H (K3)→HK3

(18)

The shuffled strings of the client B are given in Equation (19).

U∪D P2−→U4

P2∪D U−→P4

U∪ (P2 ||D)
P2||U−−−→K4

(19)

The hash values of the client B are given in Equation (20).

H (U4)→HU4

H (P4)→HP4

H (K4)→HK4

(20)

From Equation (18) and (20), we conclude that no two users
can produce the same hash values if the users’ passwords are
different, as shown in Equation (21), even if the user ID and
the domain word are the same.

HU3 ̸= HU4

HP3 ̸= HP4

HK3 ̸= HK4

(21)

Equation (16) and (21) ensure that two different users can-
not produce the same hash values.

2.9 Prevention of the domino effect
The domino effect is a crucial effect that needs to be prevented
in password-based authentication systems. We consider the
domino effect, where the adversary derives a password from
a leaked password database, and it occurs due to password
reuse. A study estimates that about 43-51% of users reuse
passwords in multiple domains [5]. PassPro deals with hash
values with a shuffled user ID and password, which encour-
ages password reuse. Our proposed approach is similar to
Ross et al. [16]. PassPro deals with hash values with a shuf-
fled user ID, password, and domain word. Therefore, it is
computationally infeasible to reconstruct the original string
from the hash values HU , HU , and HK if the adversary

10

does not know the input strings except the domain word. This
method ensures the prevention of the domino effect because
different domain words create different shuffled hash values.
Thus, it permits the reuse of user IDs and passwords in multi-
ple domains. Let us assume a user A uses the U and P at two
domains, namely, the domain words are D1 and D2 where
D1 ̸= D2 which are non-empty. The shuffled strings for the
domain D1 for user A are shown in Equation (22).

U∪D1
P−→U5

P ∪D1
U−→P5

U∪ (P ||D1)
P ||U−−−→K5

(22)

The shuffled strings for the domain D2 for user A are derived
in Equation (23).

U∪D2
P−→U6

P ∪D2
U−→P6

U∪ (P ||D2)
P ||U−−−→K6

(23)

We know that D1 ̸= D2 which is non-empty; therefore, it pro-
duces different shuffled strings. Hence, Equation (24) holds.

U5 ̸= U6

P5 ̸= P6

K5 ̸= K6

(24)

The hash values for the shuffled string with domain D1 for
user A are given in Equation (25).

H (U5)→HU5

H (P5)→HP5

H (K5)→HK5

(25)

Similar to Equation (25), the hash values for the domain D2
for the same user are demonstrated in Equation (26).

H (U6)→HU6

H (P6)→HP6

H (K6)→HK6

(26)

We can conclude that the hash values cannot be the same
in Equation (25) and (26). Hence, Equation (27) shows the
inequality.

HU5 ̸= HU6

HP5 ̸= HP6

HK5 ̸= HK6

(27)

Equation (27) shows that the hash values cannot be the same
for the same user ID and password for different domains. Thus,
there is no domino effect from the stolen password database.
Moreover, the identity manager and adversary do not know
the original input strings of the user IDs and passwords.

2.10 Context
Suppose the client uses hashing of the password with a do-
main word similar to Ross et al. [16]. The adversary can
guess the password and reproduce the hash value because
the domain word is public. Thus, we need to use two secret
words: user ID and password. Suppose the adversary guesses
the password, but it also requires the user ID to gain authen-
tication. Therefore, we use context in shuffling such that the
adversary cannot get any partial success even if the adversary
guesses either the correct password or user ID.

HP ̸
?←−H (P ∪D) (28)

The adversary does not know the context of Equation (28).
Therefore, the adversary cannot correctly reproduce the hash
value even if the adversary can guess the password correctly.
Similarly, the user ID and domain are shuffled using a pass-
word context. Therefore, the adversary must correctly guess
the two secret words to reproduce the correct hash values. For
further illustration, we use two different contexts for the same
password and domain name. Let the context be U1 and U2
where U1 ̸= U2, then we get

P1
U1←− P ∪D

P2
U2←− P ∪D

(29)

where
P1 ̸= P2 (30)

It shows that the adversary cannot reproduce the shuffled
string even if the adversary can get one secret word. It is
hard to reconstruct the correct sequence of the shuffled word
without knowing the secret. Therefore, the shuffling prevents
rainbow attacks. Moreover, the collision attack does not apply
due to multiple hash values.

2.11 Mutually reproducible secret word
The mutually reproducible secret word is a combination of
the user’s hash value and the identity manager’s secret word.
The user computes HK and sends this hash value to the
identity manager. The identity manager produces W using
Equations (3)-(6). The mutually reproducible secret word is
used to encrypt or decrypt the hash values. The W restricts
the unwanted decryption of passwords and user IDs from the
password database.

Let us assume the adversary gets the master secret word
W . In this scenario, the adversary requires a hash value HK ,
but the adversary could not get, and hence, the adversary
uses a random hash value H ′K . The adversary computes H ′W
where the W ̸=W′ holds, and hence, the adversary cannot
decrypt the stored user IDs and passwords. Thus, it is still
secure even if the server makes the master secret word W
public. Moreover, we can assume that the Salt is leaked, but

11

still, PassPro is secure because the adversary cannot correctly
reproduce the secret key W.

2.12 Encryption and decryption
We can also use the hashing method to store the user’s cre-
dentials as follows-

CU = Argon2i(HU ,W)

CP = Argon2i(HP ,W)
(31)

We can use the above equation to store the user’s creden-
tials; however, we choose encryption or decryption for better
security. Our encryption and decryption involve a mutually re-
producible secret word, W. Users’ hash values are encrypted
and inserted into the identity manager’s password database
during identity creation. The identity manager decrypts the
encrypted hash values from the identity manager’s database
for authentication. For cryptography, we have many options
for key derivation: password-based encryption [2] without key
derivation, password-based key derivation [13, 14], Argon2
hash function [3], and PBKDF2-HMAC-SHA512. However,
we use SHA512 and Argon2i for key derivation. Moreover,
we can use either AES or ECC encryption. However, we use
AES for demonstration purposes for this paper.

2.12.1 Encryption

The identity manager encrypts the hash values of the user ID
and password using an individual key. The identity manager
requires a hash value to produce the secret word to encrypt.
The identity manager stores HU , and HP in its database
by encrypting using individual mutually reproducible secret
word, W. The W is produced by shuffling-then-hash using
HK , HW and W as shown in Equations (3)-(6). In identity
creation, the HU , and HP are encrypted by the identity man-
ager using W and inserted these encrypted hash values into
the database. The hash values are encrypted as shown in Equa-
tion (7). The W is different for each user, i.e., the two users,
A and B produce WA and WB, respectively, and WA ̸=WB.
The CU and CP are stored in the password database for fu-
ture use. Retrieving these hash values requires a mutually
reproducible secret word, without which it fails to decrypt.
After inserting the encrypted hash values, the identity man-
ager deletes HK , SW , HW and W. Otherwise, the adversary
can get the secret words to decrypt the stored hash values. Let
us assume two different users, A and B, have a valid identity
at the identity manager. The user A sends HUA , HPA , and
HKA to the identity manager. Similarly, the user B also sends
HUB , HPB , and HKB to the identity manager. Therefore, the
identity manager produces two mutually reproducible secret
words, WA and WB, for the hash values of the user A and B,
respectively. Let us assume that the email ID for the user A
and B are EA and EB, respectively. Thus, the identity manager
encrypts the hash values of A and inserts the encrypted hash

values into the password database against the email ID EA, as
shown in Equation (32).

EA

{
CU ← AES.Enc(HUA ,WA)

CP ← AES.Enc(HPA ,WA)
(32)

Similarly, the identity manager inserts the encrypted hash
values of the user B and inserts the encrypted hash values into
the password database against the email ID EB, as shown in
Equation (33).

EB

{
CU ← AES.Enc(HUB ,WB)

CP ← AES.Enc(HPB ,WB)
(33)

The EA.CU ̸= EB.CU and EA.CP ̸= EB.CP where dot (.)
is membership operator for this representation. PassPro does
not encrypt the user’s email IDs because they are public. The
email IDs are used to index the users’ hash values in the
password database.

2.12.2 Decryption

The identity manager receives HK to reproduce a mutually
reproducible secret word, W, to retrieve HU and HP from
the encrypted CU and CP from its database.

H decrypted
U = AES.Dec(CU ,W)

H decrypted
P = AES.Dec(CP ,W)

(34)

The decrypted hash values in Equation (34) are used to match
the hash value sent from the user for authentication by a gen-
uine user. Let an adversary produce a mutually reproducible
secret word, say W′. The adversary decrypts the hash values
as given in Equation (35).

ADdecrypted
U = AES.Dec(CU ,W′)

ADdecrypted
P = AES.Dec(CP ,W′)

(35)

where

H decrypted
U ̸= ADdecrypted

U

H decrypted
U ̸= ADdecrypted

P

(36)

Therefore, the adversary cannot decrypt the stored hash values.
The adversary cannot decrypt the hash values of the other
users even if the adversary can decrypt the hash value of a
particular user.

3 Dishonest Identity Manager

To elaborate on the domino effect and misuse of stolen users’
credentials, we assume a dishonest identity manager, DisIDM.
Let the purpose of the DisIDM be to gain authentication in

12

other honest identity managers by using its own clients’ iden-
tities and passwords where the clients do not know about
the identity manager. Thus, the DisIDM collects the user
IDs and passwords. This assumption is significant in under-
standing the capability of our proposed method. Let a user A
create an account in the dishonest identity manager DisIDM.
There are two cases: a) the DisIDM authenticates using the
state-of-the-art authentication mechanism, and b) the DisIDM
authenticates using PassPro. Firstly, the DisIDM can receive
the user’s credentials in raw form, and the received creden-
tials are stored in different databases in raw form because the
DisIDM is a dishonest authentication manager. After storing
it, the DisIDM can store the passwords by applying the salt
to them. Therefore, the objective of the DisIDM is successful.
In PassPro, the user A produces three hash values, and these
are H DisIDM

U , H DisIDM
P , and H DisIDM

K . These hash values are
sent to the DisIDM using the POST method. The DisIDM re-
ceives the three hash values and stores these three hash values
separately because we assume that the DisIDM is a dishon-
est identity manager. Let the user A create an account in an
honest identity manager (HoIDM). The A produces three
hash values H HoIDM

U , H HoIDM
P , and H HoIDM

K , and sends these
three hash values to the HoIDM using the POST method. The
HoIDM stores the hash values in the password database by
encrypting using a mutually reproducible secret word. The A
keeps the same user ID and passwords for both identity man-
agers (DisIDM and HoIDM). PassPro shuffles the password
and identity with a domain word, and the domain word for the
DisIDM and HoIDM is different. Therefore, it is guaranteed
that the hash values for two different domains will always be
different. Particularly, it guarantees Equation (37).

H DisIDM
U ̸= H HoIDM

U

H DisIDM
P ̸= H HoIDM

P

H DisIDM
K ̸= H HoIDM

K

(37)

Therefore, the DisIDM cannot gain authentication in the
HoIDM by using its own clients’ credentials. This assump-
tion shows that the adversary cannot use the credentials of
stolen identities and passwords to gain authentication in an-
other identity manager. The DisIDM can also try to get the
raw form of a user ID and password by launching different
types of attacks on the supplied hash values from the user, but
it is computationally hard to reproduce the original strings
from the hash values. The assumption of the dishonest iden-
tity manager proves the superiority of our proposed work over
the state-of-the-art authentication system.

4 Password database leakage

Let us assume that the adversary evades the security of the
identity manager and has stolen the password database. The
adversary tries to remove the salts from the passwords in the
state-of-the-art identity manager. However, the removal of

salt is hard and computationally infeasible. Therefore, the
adversary performs rainbow table attacks to reveal the pass-
word. Often, the adversary becomes successful by the rain-
bow table in the state-of-the-art identity manager, for instance,
COMB [9] and RockYou2021 [10]. Let us assume that the
password database is given to the adversary. At first, the ad-
versary requires two words: the HK from the user and the
master secret word from the identity manager. For simplicity,
we assume that the master secret word is only one through-
out the password database. Let us assume that the adversary
decoded the master secret word from the identity manager.
Let the adversary try to decrypt the hash values of the user A.
The adversary cannot decrypt the hash values of A without
the HK even if the adversary has the master secret word. Let
us assume that the adversary is able to reproduce the mutually
reproducible secret word of A, WA; then the adversary is
able to decrypt the hash values of the A. However, it does
not imply that the adversary can decrypt the hash values of
other users. PassPro encrypts the hash values of each user
with an individual mutually reproducible secret word. The
password database is intact even though the adversary evades
the security of the identity manager. We assumed the HK has
with the adversary, which is computationally hard.

5 Conclusion

In this paper, we presented a secure password-based authenti-
cation called PassPro. In PassPro, an adversary cannot use the
derived credentials of a user from the leaked database in multi-
ple domains to gain authentication. Thus, it encourages users
to reuse the same user ID and password in multiple domains.
It guarantees that the hash values in an identity manager are
invalid in other identity managers. Moreover, it is computa-
tionally hard to retrieve the original user ID and password
from the PassPro. Consequently, it prevents adversaries from
publishing the passwords. We have also presented the idea
that PassPro encrypts the users’ hash values with a mutually
reproducible secret word. The mutually reproducible secret
word is produced or reproduced mutually by the user’s hash
value and the master secret word of the identity manager. Con-
sequently, the adversary cannot decrypt the hash values even
if the identity manager provides the adversary with the pass-
word database. Moreover, the adversary fails in the decryption
process of the encrypted hash values even if it succeeds in
retrieving the master secret word from the identity manager.
Furthermore, our shuffling algorithm is designed based on a
pseudo-random algorithm to shuffle the user ID, password,
and domain word, where legitimate users can consistently re-
produce the order of the shuffled string. The shuffling process
creates unique strings even if the same user ID and password
are used in multiple domains. Finally, we demonstrated the
security of PassPro by assuming a dishonest identity man-
ager, and this assumption leads to tighter security than the
state-of-the-art password-based authentication methods.

13

Open Science Policy

The source code of the project will be made available on
GitHub if the paper is accepted.

Acknowledgments

The research work of Dr. Ripon Patgiri is supported by the Sci-
ence and Engineering Research Board (SERB), Government
of India, under grant Number EEQ/2021/000694.

References

[1] Austin Appleby. murmurhash. [Online], Retrieved
on December 2022 from https://sites.google.com/
site/murmurhash.

[2] Mihir Bellare and Laura Shea. Flexible password-based
encryption: Securing cloud storage and provably resist-
ing partitioning-oracle attacks. In Mike Rosulek, editor,
Topics in Cryptology – CT-RSA 2023, pages 594–621,
Cham, 2023. Springer International Publishing.

[3] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich.
Argon2: New generation of memory-hard functions
for password hashing and other applications. In 2016
IEEE European Symposium on Security and Privacy
(EuroS&P), pages 292–302, 2016.

[4] Jeremiah Blocki and Anupam Datta. Cash: A cost asym-
metric secure hash algorithm for optimal password pro-
tection. In 2016 IEEE 29th Computer Security Founda-
tions Symposium (CSF), pages 371–386, 2016.

[5] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita
Borisov, and XiaoFeng Wang. The tangled web of pass-
word reuse. In NDSS, volume 14, pages 23–26, 2014.

[6] Briland Hitaj, Paolo Gasti, Giuseppe Ateniese, and Fer-
nando Perez-Cruz. Passgan: A deep learning approach
for password guessing. In Robert H. Deng, Valérie
Gauthier-Umaña, Martín Ochoa, and Moti Yung, editors,
Applied Cryptography and Network Security, pages 217–
237, Cham, 2019. Springer International Publishing.

[7] Wenjian Luo, Yamin Hu, Hao Jiang, and Junteng Wang.
Authentication by encrypted negative password. IEEE
Transactions on Information Forensics and Security,
14(1):114–128, 2019.

[8] William Melicher, Blase Ur, Sean M. Segreti, Saranga
Komanduri, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. Fast, lean, and accurate: Modeling
password guessability using neural networks. In 25th
USENIX Security Symposium (USENIX Security 16),
pages 175–191, Austin, TX, August 2016. USENIX As-
sociation.

[9] Bernard Meyer. COMB: over 3.2 Bil-
lion Email/Password Combinations Leaked
| Cybernews. [Online], available at https:
//cybernews.com/news/largest-compilation-
of-emails-and-passwords-leaked-free, July
2022.

[10] Edvardas Mikalauskas. RockYou2021: Largest Ever
Password Compilation Leaked | Cybernews, July 2022.
[Online], Available at https://cybernews.com/
security/rockyou2021-alltime-largest-
password-compilation-leaked.

[11] Dario Pasquini, Marco Cianfriglia, Giuseppe Ateniese,
and Massimo Bernaschi. Reducing bias in modeling
real-world password strength via deep learning and dy-
namic dictionaries. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 821–838. USENIX
Association, August 2021.

[12] Dario Pasquini, Ankit Gangwal, Giuseppe Ateniese,
Massimo Bernaschi, and Mauro Conti. Improving pass-
word guessing via representation learning. In 2021
IEEE Symposium on Security and Privacy (SP), pages
1382–1399, 2021.

[13] C Percival. Stronger key derivation via sequential
memory-hard functions. In BSDCan - The BSD Confer-
ence, 2009.

[14] C. Percival and S. Josefsson. The scrypt Password-
Based Key Derivation Function, August 2016. [Online;
accessed 16 April 2023].

[15] Javier Rando, Fernando Perez-Cruz, and Briland Hitaj.
Passgpt: Password modeling and (guided) generation
with large language models, 2023.

[16] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh,
and John C Mitchell. Stronger password authentication
using browser extensions. In 14th USENIX Security
Symposium (USENIX Security 05), Baltimore, MD, July
2005. USENIX Association.

[17] Emin Islam Tatli. Cracking more password hashes with
patterns. IEEE Transactions on Information Forensics
and Security, 10(8):1656–1665, 2015.

[18] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and
Xinyi Huang. Targeted online password guessing: An
underestimated threat. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’16, page 1242–1254, New York, NY,
USA, 2016. Association for Computing Machinery.

[19] Ke Coby Wang and Michael K. Reiter. How to end
password reuse on the web. In Proceedings 2019 Net-
work and Distributed System Security Symposium, pages
1–15, 2019.

14

https://sites.google.com/site/murmurhash
https://sites.google.com/site/murmurhash
https://cybernews.com/news/largest-compilation-of-emails-and-passwords-leaked-free
https://cybernews.com/news/largest-compilation-of-emails-and-passwords-leaked-free
https://cybernews.com/news/largest-compilation-of-emails-and-passwords-leaked-free
https://cybernews.com/security/rockyou2021-alltime-largest-password-compilation-leaked
https://cybernews.com/security/rockyou2021-alltime-largest-password-compilation-leaked
https://cybernews.com/security/rockyou2021-alltime-largest-password-compilation-leaked

[20] Ming Xu, Chuanwang Wang, Jitao Yu, Junjie Zhang, Kai
Zhang, and Weili Han. Chunk-level password guessing:
Towards modeling refined password composition repre-
sentations. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS ’21, page 5–20, New York, NY, USA, 2021.
Association for Computing Machinery.

Appendix

Client-side password metering

PassPro does not store or deal with the raw form of user IDs
and passwords. Therefore, PassPro cannot offer AJAX service
to verify the strength of the password. Also, PassPro cannot
suggest password vulnerabilities or recommend passwords.
Instead, PassPro offers a client-side password-strength me-
tering system to suggest the strength of the password to the
user. Algorithm 3 imposes the rules of PassPro as described in

Algorithm 3 User ID or password strength checking algo-
rithm. For password, L ≥ 10 and for user ID, L ≥ 8. The
f lag = 0 for user ID and f lag = 1 for password.

1: procedure STRENGTHMETER(ω,L , f lag)
2: if f lag = 1 then ▷ Case for password.
3: ℓ= 10
4: else ▷ Case for user ID.
5: ℓ= 8
6: end if
7: if L < ℓ then
8: Invalid length.
9: Exit

10: end if
11: if ISEMAIL(ω) = true then
12: An email ID cannot be the user ID or password.
13: Exit
14: end if
15: CC, SC, DC, SyC counts the capital letters, small let-

ters, digits, and symbols in ω

16: min = MINIMUM(CC,SC,DC,SyC)
17: if min≤ 1 then
18: Invalid
19: else if min = 1 then
20: Weak
21: else if min = 2 then
22: Good
23: else if min = 3 then
24: Strong
25: else
26: Very strong
27: end if
28: end procedure

subsection 2.3 and 2.4. Algorithm 3 checks the length of the
user ID and password. The minimum length of the user ID is
eight characters, and the minimum length of the password is
ten characters. Also, it imposes restrictions on using an email
ID as a user ID or password. Moreover, Algorithm 3 counts
the capital letters, small letters, digits, and symbols used in
the user ID and password. The CC, SC, DC, and SyC are the
counters of capital letters, small letters, digits, and symbols
present in the input string. The minimum value is used to
decide the strength of the password or user ID. To qualify for
user ID, the minimum value must be 1. Alternatively, the user
ID must contain at least one small letter, one capital letter,
one digit, and one symbol. Similarly, the minimum value for
a password is also 1 to qualify as a password. Therefore, the
password must contain at least a small letter, a capital letter, a
digit, and a symbol.

15

Table 4: Symbols and their descriptions.
U User ID, a secret word
P Password, a secret word
D A domain word which is public

H () A secure hash function, can be SHA256, SHA512 or SHA3
∪ Shuffling of two words based on a context
P−→ The P is a context during the shuffling process
|| Concatenation of two strings
U Shuffled word for user ID
P Shuffled word for password
K Shuffled word for a part of mutually reproducible secret key
HU Hash value of shuffled word of user ID
HP Hash value of shuffled word of password
HK Hash value of shuffled word of the part of the mutually reproducible secret key
W A master secret word from server, Identity manager

HW Hash value of the master secret word from the identity manager
SW Shuffled word of the hash value of the master secret word of the identity manager and secret key

supplied by the user
W The secret key for encryption or decryption of the hash values of the user. It is a mutually reproducible

secret word.
CU It is an encrypted ciphertext stored in the server’s password database by encrypting the hash value of

the user ID using W.
CP It is an encrypted ciphertext stored in the server’s password database by encrypting the hash value of

the password using W.
H decrypted

U A decrypted a hash value of user ID at the server side.
ADdecrypted

U A decrypted a hash value of user ID by the adversary.
DisIDM Assumed dishonest identity manager for analysis purposes.
H DisIDM

U An hash value of user ID by the assumed dishonest identity manager

16

	Introduction
	Motivation
	Our proposed work
	Key contributions
	Our results
	Shuffling with a context
	Client-side hashing
	Domino-effect
	Encryption and decryption
	Leakage of the password database
	Guessing and dictionary attacks

	PassPro: The proposed system
	Identity creation
	Authentication process
	User ID
	Password
	Dictionary attacks
	Domain Word
	Shuffling the strings
	Client-side hashing
	Prevention of the domino effect
	Context
	Mutually reproducible secret word
	Encryption and decryption
	Encryption
	Decryption

	Dishonest Identity Manager
	Password database leakage
	Conclusion

