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SoK: Privacy-Preserving Smart Contract
Huayi Qi, Minghui Xu, Dongxiao Yu, Xiuzhen Cheng

Abstract—The privacy concern in smart contract applications
continues to grow, leading to the proposal of various schemes
aimed at developing comprehensive and universally applicable
privacy-preserving smart contract (PPSC) schemes. However,
the existing research in this area is fragmented and lacks
a comprehensive system overview. This paper aims to bridge
the existing research gap on PPSC schemes by systematizing
previous studies in this field. The primary focus is on two
categories: PPSC schemes based on cryptographic tools like zero-
knowledge proofs, as well as schemes based on trusted execution
environments. In doing so, we aim to provide a condensed
summary of the different approaches taken in constructing PPSC
schemes. Additionally, we also offer a comparative analysis of
these approaches, highlighting the similarities and differences
between them. Furthermore, we shed light on the challenges that
developers face when designing and implementing PPSC schemes.
Finally, we delve into potential future directions for improving
and advancing these schemes, discussing possible avenues for
further research and development.

Index Terms—privacy, smart contract, zero-knowledge proof,
trusted execution environment, blockchain

I. INTRODUCTION

Smart contracts are programs designed to be correctly
executed by a network of blockchain miners who reach a
consensus. However, by the nature of blockchain, the exe-
cution process of smart contracts is publicly visible, which
means anyone is able to inspect all data. Hence, many
privacy-preserving smart contract applications in various areas
have been proposed to prevent privacy disclosure, such as
healthcare [1] [2], data marketplace [3] [4], energy [5] [6],
machine learning [7], and e-commerce [8]. These applications
utilize commitments or ciphertexts to replace a portion of on-
chain data in order to maintain confidentiality. However, these
privacy-preserving solutions are not application-agnostic, i.e.,
specific to each application and cannot be easily applied to
other schemes. Whenever a scheme necessitates a privacy-
preserving smart contract solution, developers must either rely
on fundamental cryptographic tools such as zero-knowledge
proofs, encryption schemes, and hash algorithms to construct
their own solutions, which demands a high level of expertise.

To address this issue, efforts have been made to develop
comprehensive and universally privacy-preserving smart con-
tract (PPSC) schemes. These schemes are not limited to
specific applications but provide a solution that can benefit
a wide range of scenarios, aiming at enabling developers to
effortlessly create PPSC applications by leveraging compiler
toolchains, similar to how regular smart contracts are devel-
oped. The objective of this paper is to systematize existing
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research on PPSC schemes, which we categorize into two
types: crypto-based PPSC schemes and TEE-based PPSC
schemes, depending on the techniques they utilize. These
schemes have varying designs and face both shared and unique
challenges.

Crypto-based PPSC schemes. These schemes utilize cryp-
tographic tools such as non-interactive zero-knowledge proof
(NIZK), secure multi-party computation (MPC), and homo-
morphic encryption (HE). To handle private data, most of
these schemes either directly adopt and extend Zerocash’s
DAP scheme [9], where the commitments of private data are
stored on the blockchain and can only be used once, or they
become variants of DAP scheme to store the ciphertext of
private data on the blockchain. Users keep their encryption
keys or private data off the chain. The main challenge lies
in enabling efficient smart contract execution that involves
private data from multiple users. Additionally, these schemes
also encounter challenges in terms of NIZK efficiency, NIZK
expressiveness, function privacy, and inter-contract exchanging
data.

TEE-based PPSC schemes. By introducing hardware man-
ufacturers as trusted parties, these schemes utilize trusted
execution environments (TEEs), especially Intel SGX. A key
feature called remote attestation provide proofs to convince
other parties of the trustworthiness and integrity of the execut-
ing environment, which eliminates the need for NIZK proofs.
TEEs address the efficiency issues faced by crypto-based
schemes, particularly in multi-user scenarios. Nevertheless,
challenges persist in TEE-based PPSC schemes, especially
regarding the proper design of key distribution and short-term
key derivation to manage private data.

Structure of the paper. The reminder of this paper is
organized as follows. Sec. II provides an overview of PPSC
schemes in a general model, along with an introduction to
the necessary cryptographic and hardware techniques required
for constructing such a scheme. Sec. III and Sec. IV present
a comprehensive overview of crypto-based PPSC schemes
and TEE-based PPSC schemes respectively. In Sec. V, we
highlight the challenges in implementing PPSC schemes, and
in Sec. VI, we discuss ways to further enhance these schemes.
Finally, we conclude the paper in Sec. VII.

II. PRELIMINARIES

This section presents an overview of privacy-preserving
smart contract (PPSC) schemes in a general model and in-
troduces the essential cryptographic and hardware techniques
required for constructing a PPSC scheme.

A. Blockchain and Smart Contract
A blockchain is a decentralized state machine, maintained

by a group of miners running a secure consensus protocol.
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Upon receiving a transaction message from a user, miners
validate the transaction and apply state transition to update the
ledger state. For blockchain systems without smart contract
support, i.e., focusing on processing and recording financial
transactions, such as BitCoin [10] and Litecoin, the state
is a global ledger containing all users’ currency values in
either UTXO model or account model, and therefore the
state transition performed by miners is transferring currency
values from one user to another. State and transactions are
public visible, which brings the privacy need: hide currency
values and transaction routes. Later, Sasson et al. proposed
Zerocash [9], a privacy-preserving cryptocurrency protocol
that enable users to convert their public-visible balances
into coins which support confidential transactions. Zerocash
is based on non-interactive zero-knowledge proofs (NIZK),
which are discussed in Sec. II-D and have a significant impact
on subsequent privacy-preserving systems.

To support extensive applications based on blockchain tech-
nology, smart contracts were proposed by Ethereum [11]. A
smart contract is a user-defined program deployed on chain,
consisting of program codes and a contract state. Miners
execute the codes when receiving a transaction that contains
parameters to update the contract state. Nevertheless, the task
of implementing a smart contract scheme that ensures privacy
is significantly more challenging. Migrating Zerocash to a
smart contract blockchain system is not a straightforward task.
The operations in smart contracts are more intricate compared
to simple integer calculations. In order to preserve privacy in
smart contracts, various schemes have been proposed. These
schemes rely on trusted hardware or NIZK proofs with other
auxiliary cryptographic techniques. Before delving into the
details of these schemes, it is important to establish a model
for privacy-preserving smart contracts, providing readers with
a comprehensive understanding.

B. Privacy-Preserving Smart Contract: The System Model

Despite the fact that the majority of privacy-preserving
smart contract (PPSC) schemes rely on Zerocash’s coin model,
we adopt KACHINA’s definition [12] in order to modelize
more PPSC schemes, specifically a proportion of TEE-based
ones. In a smart contract instance deployed on chain, the
contract state consists of a public state σ, and, for each user
u, a private state ρu. The public state, along with either the
hash or the ciphertext of each user’s private state, is stored on
the blockchain. Users maintain their respective private states
off chain if the hash is stored on chain.

We classify state transitions as single-party transitions and
multi-party transitions. In a single-party case, either a user u or
a TEE executor evaluates the transition function ∆ against the
current state pair (σ, ρu), resulting in a new state pair (σ′, ρ′u)
with a proof π. Upon receiving the proof, miners updates the
public state σ and the hash/ciphertext of user u’s private state
ρu. Note that other users’ private states can not be updated
in a single-party transition. On the other hand, the transition
function ∆ in a multi-party transition updates multiple users’
state pair with a single proof π. However, implementing multi-
party transition in crypto-based schemes is a complex task,

resulting in a lack of efficient implementation. A proportion
of crypto-based schemes have no support for multi-party
transitions, which limits the applications. We define a privacy-
preserving smart contract scheme as Def. 2.1.

Definition 2.1: A privacy-preserving smart contract (PPSC)
scheme is a tuple of PPT algorithms (Setup,CreateAccount,
Transit,UpdateState) defined as follows:

1) Setup: Takes as input a security parameter λ and outputs
system public parameter pp.

2) CreateAccount: Takes as input pp. Generates and outputs
a key pair (sku, pku) and address addru. Executed by user
u.

3) Transit: Takes as input pp, transaction tx (containing
addresses of calling users u1, u2, . . . , un, transition func-
tion ∆, public parameter xpub and private parameter
xpriv), state pair (σ, ρui) for each user ui. Outputs a
proof π and new state pair (σ′, ρ′ui

) for each user ui.
Execute by a transition executor, which can be either a
secure environment established by users u1, u2, . . . , un

or a TEE node, depending on the specific PPSC scheme.
Proper mechanisms are designed to restrict the transition
executor from leaking private data or tampering the result.

4) UpdateState: Takes as input pp, transaction tx, new
public state σ′, new private state hash/ciphertext hi for
each user ui, and the proof π. Output 1 if the new state is
accepted on chain, and 0 otherwise. Executed by miners.

C. A Strawman Example: PPSC-based Silent Auction
To better illustrate a privacy-preserving smart contract

scheme, we present a strawman example of a silent auction. A
silent auction is a type of auction where participants place bids
on items, but their bids are kept secret. Unlike a traditional
auction where bids are made openly and publicly, in a silent
auction, bids are written on a piece of paper which is not public
visible. At the end of the auction, the highest listed bidder wins
the item. To implement this example using PPSC, the public
contract state σ contains the addresses of each participant.
Each private state ρu contains the bid of participant u. The
single-party state transition ∆bid takes the participant’s address
u as the public parameter and also takes the bid bid as the
private parameter. A transition executor first checks whether
the participant has not written the bid. Then, he/she update the
public contract state σ and the participant’s private state rhou
with a proof π, which are then broadcast to miners who will
eventually validate the proof and update the contract state. At
the end of the silent auction, the transaction executor execute
a multi-party transition ∆reveal to reveals the result by writing
the highest bidder with his/her bid to public state σ.

Implementing a PPSC scheme that can effectively support
the provided example presents various challenges. In the case
of a crypto-based PPSC scheme, the participant u typically
acts as the transaction executor. It is crucial to ensure that the
executor only has access to his/her own bid, while preventing
any unauthorized access to other participants’ bids through
a well-designed algorithm. Moveover, to support determining
the highest bidder at the end of the silent auction, i.e., the
multi-party transition ∆reveal, one option is to trust the trans-
action executor for not leaking information and grant him/her
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access to all private data (e.g., Hawk [13]). Alternatively,
cryptographic techniques such as MPC (e.g., zkHawk [14])
and FHE (e.g., Pesca [15]) can be utilized to compute the
result without revealing the plaintext. Nonetheless, the effi-
ciency of these cryptographic techniques is closely tied to the
specific computation process. In some cases, utilizing these
techniques may lead to inefficiencies in CPU time and memory
usage. There may even be situations where implementing such
a scheme becomes impractical or unfeasible. Consequently,
developing a crypto-based PPSC scheme that can effectively
support a wide range of computational tasks requires signif-
icant effort and presents numerous challenges. On the other
hand, TEE-based PPSC schemes also face challenges. In this
case, the participant with a TEE-capable machine acts as
the transaction executor. However, there is a risk of side-
channel attacks, where the executor could potentially obtain
access to other participants’ bids and exploit this information
to manipulate the silent auction by increasing their own bid
dishonestly.

D. Non-Interactive Zero-Knowledge Proof

Zero-knowledge proof is a cryptographic technique used
to allow one party, called a prover, to prove the validity of
a statement about public input x and private input w that
f(x;w) = true to a verifier, without revealing any knowledge
or information about the secret input w. Non-interactive zero-
knowledge proof (NIZK) is a zero-knowledge proof scheme
where multiple rounds of communication are not involved.
A prover can construct the proof without communicating
with verifiers. Moveover, this means an NIZK proof can be
publicly verified, and therefore is widely adopted in blockchain
schemes where miners are usually verifiers.

zk-SNARKs (Zero-Knowledge Succinct Non-Interactive Ar-
guments of Knowledge) are highly popular NIZK construc-
tions, widely utilized in various applications, supporting any
statement that can be expressed as an arithmetic circuit. An
arithmetic circuit is consist of wires and gates, where a wire
contains a field element in Fp, and a gate connects multiple
wires to represent an addition constraint a + b = c or a
multiplication constraint a · b = c. Each gate corresponds to
an element in x or w. The proof can only be successfully
generated when the prover fills gates with values such that all
constraints are met. Although zk-SNARKs are expressive and
support various computation task, they take heavy resources.
For example, all inputs in x or w are immutable, which means
it is quite costly in both CPU time and RAM consumption
to support conditional or loop structure compared with a
traditional computer.

A trusted setup is needed in most zero-knowledge proof
schemes in order to determine the initial parameters and
conditions under which the proof will be conducted. This
allows the verifiers involved in the proof to trust the integrity
and validity of the proof itself. Some NIZK schemes, such
as [16] [17] [18], do not require a trusted setup, while some
schemes such as [19] [20] [21] [22], only require a universal
setup for once (universal SRS). However, these schemes are
not efficient compared with other NIZK schemes which require

a trusted setup for each circuit (circuit-specific SRS), such
as [23] [24] [25]. This means, every time implementing the
state transition ∆ in a smart contract, it requires a trusted setup
procedure.

E. Secure Multi-Party Computation

Secure multi-party computation (MPC), is a cryptographic
technique that allows multiple parties to jointly compute a
function y1, y2, y3, . . . , ym = f(x1, x2, x3, . . . , xm) over their
inputs xi owned by party i, without revealing their individual
inputs to each other. MPC typically requires communication
between the participating parties. In order to jointly compute
the function, the parties need to interact and exchange mes-
sages during the computation process. Similar to zk-SNARKs,
circuits are fundamental building blocks used to represent the
calculation f . Both arithmetic and boolean circuits are widely
adopted in MPC. Public auditable multi-party computation
(PA-MPC) [26] allowing multiple parties jointly evaluate the
function and provide a proof to convince verifiers the correct-
ness of the computed result without requiring any knowledge
of the participants’ private inputs. It requires additional com-
putational overhead and communication complexity.

F. Homomorphic Encryption

A homomorphic encryption scheme is an encryption algo-
rithm such that Enck(m1) ◦ Enck(m1) = Enck(m1 ◦ m2)
holds for every pair of m1 and m2, where ◦ stands for one
or two operations on ciphertext. For partial homomorphic
encryption (PHE) schemes, the additively homomorphic prop-
erty Enck(m1) + Enck(m1) = Enck(m1 + m2) holds. For
fully homomorphic encryption (FHE) scheme, apart from the
additively homomorphic property in PHE, the multiplicative
homomorphic property Enck(m1)·Enck(m1) = Enck(m1·m2)
also holds. However, FHE is inefficient in practice. Similar to
MPC, arithmetic and boolean circuits are utlized to represent
the computation function.

G. Trusted Execution Environment

A trusted execution environment (TEE) is a secure and
isolated operating environment that is separate from the main
operating system on a computing device. It ensures that critical
processes and sensitive data are protected from unauthorized
access and tampering. One of the most important feature in
TEE is called remote attestation. Remote attestation refers
to the process of ensuring the integrity and authenticity of
the TEE and the applications running within it. The remote
attestation process plays a crucial role in establishing trust in
TEE environments, ensuring that the TEE is secure and has
not been tampered with, by providing a proof, which is also
known as a quote.

Intel Software Guard Extensions, or Intel SGX, is the most
widely deployed TEE implementation. It allows developers
to create secure enclaves in which selected portions of their
code and data can be executed in a protected and isolated
environment. This enclave is isolated from the regular OS,
providing a trusted and controlled execution environment
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where certain functions and applications can run securely. Note
that, the remote attestation service in Intel SGX requires an
Internet connection to Intel’s online provisioning servers. An
additional aspect that requires attention is that Intel SGX has
a limited capacity of protected memory, 128 MB, until they
recently lifted the restriction1. A proportion of PPSC-based
TEE schemes [27] [28] suffer from the memory restriction.

III. CRYPTO-BASED PPSC

In this section, we present a comprehensive overview of
crypto-based PPSC schemes. We begin by introducing Zero-
cash and its DAP scheme, which is a fundamental concept.
Next, we describe the general idea to construct PPSC schemes
from DAP scheme. Then, we summarize different approach
to construct a PPSC scheme that supports multi-party state
transition, which is remaining a challenge. Next, we outline
PPSC schemes that focus on functional privacy. In conclusion,
we provide a concise summary of crypto-based PPSC schemes.

A. Decentralized Anonymous Payment

Zerocash [9] is a decentralized digital currency that provides
enhanced privacy and anonymity for its users. They proposed
decentralized anonymous payment (DAP) scheme. The major-
ity of crypto-based PPSC schemes are based on DAP scheme
or its variants. We brief the most significant concept, a coin.

Coins. A coin contains verified private data. Each data in
a coin can only be used once, by a procedure that consumes
old coins and produces new coins. NIZK is applied in these
procedures to verify to miners that the private data in coins
meets the data restrictions and that these coins are validly
consumed and produced. We give the definition in Def. 3.1.

Definition 3.1: A coin is a data object c to which the
following attributes are assigned:

1) A coin value v(c). The private data, which is verified
when producing the coin. Kept private; can also be tem-
porarily public visible when a coin is produced without
old coins.

2) A coin serial number sn(c). A unique string to prevent
double spending. Revealed after the coin is consumed.

3) A coin address. addrpk(c). Identifies the owner. Always
public visible.

4) A coin commitment. cm(c). Hash of the coin. When the
coin is produced, the commitment is public visible, so that
it can be saved on the chain’s Merkle tree. However, when
the coin is consumed, the commitment is no longer public
visible. The owner proves the serial number corresponds
to a commitment on chain, without explicitly specifying
the exact commitment.

We illustrate an example in Fig. 1 to demonstrate how coins
provide privacy and anonymity for users. Initially, Alice holds
$10 public balance. In the first step, she first convert her bal-
ance to a coin c1, publishing cm(c1) with v(c1) = 10. Miners

1Intel recently increased the maximum capacity of protected mem-
ory (Processor Reserved Memory Range Registers, PRMRR) from
128 MB to 512 GB per processor when releasing 3rd Gen Intel
Xeon processors. https://www.intel.com/content/www/us/en/support/articles/
000089550/software/intel-security-products.html

Alice produces c1 ($10)

Public: $10

Alice

Public: $0, c1: $10

Public: $0

Bob Adversary
Alice has $10

Alice consumes c? ($?)
Alice produces c2 ($?), c3 ($?)
Bob gets c3 ($?) from Alice

InspectPublic: $0, c3: $5Public: $0, c2: $5

Public: $5
Bob consumes c? ($5)
Coin is untraceable

Fig. 1. Example on Zerocash’s Decentralized Anonymous Payment Scheme

add the commitment cm(c1) to the Merkle tree, updating the
Merkle root. Note that, in this step, everyone knows Alice
owns a coin with plaintext commitment and value. However,
this does not matter, as when the coin is consumed, both
the commitment and value are kept hidden, and therefore no
one would be able to trace this coin anymore. Next, Alice
secretly transfers $5 to Bob, by consuming her coin c1 and
producing two coins, c2 to Alice and c3 to Bob. She provides
an NIZK proof such that v(c1) = v(c2) + v(c3), i.e., the
sum of coin values are not changed, without exposing specific
values. In this NIZK proof, it also exposes the old coin’s
serial number sn(c1), as well as new coins’ commitments
cm(c2), cm(c3). Since the serial number has never be used
before, after validating the NIZK proof, miners accept this
transaction, adding these two commitments to the Merkle tree.
Note that, in this step, it is publicly known that Alice has
consumed a coin, but since she owns a lot of coins, no one
knows which specific coin is consumed in this transaction,
i.e., the coin c1 is untraceable. Lastly, Bob withdraws his coin
by consuming c3 without producing new coins, with an NIZK
proof to reveal sn(c3) while exposing v(c3) as a public output.
Financial censorship against c3 would be almost impossible.

B. From Zerocash to PPSC: Single-Party Case

Building a PPSC scheme from Zerocash’s DAP scheme
requires extending the coin value from integers to arbitrary
private data. Also, instead of simply proving the sum of
the numbers remains unchanged, an NIZK proof validates
how private data is correctly computed during producing
new coins. Fig. 2 demonstrates the zero-knowledge proof
extension to build a PPSC scheme. In Fig. 2(a), the on-
chain storage for coin commitments remains unchanged, which
continue to ensure uniqueness of commitments and prevent
double spending. The procedure for producing a coin, as
shown in Fig. 2(b), replaces the currency value with arbitrary
private data. Afterwards, during the process of consuming old
coins and generating new ones, the calculations no longer
involve solely integers; instead, a function is employed which
generates outputs based on inputs. The private inputs are
derived from old coins, while the newly generated private
outputs become the new coins. To verify the accuracy of the
computation, as well as the proper generation of commitments
and serial numbers, a corresponding non-interactive zero-
knowledge (NIZK) proof is utilized, as shown in Fig. 2(c).

https://www.intel.com/content/www/us/en/support/articles/000089550/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000089550/software/intel-security-products.html
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Fig. 2. Extend Zerocash’s DAP Scheme to Privacy-Preserving Smart Contract

Challenges are involved after extending Zerocash to PPSC.
NIZK schemes, especially zk-SNARKs, support validating a
relationship that can be expressed as an arithmetic circuit,
as previously introduced in Sec. II-D. Here brings the first
challenge. Real-world smart contracts are implemented in
high-level expressive languages like Solidity. Developers need
to have a comprehensive knowledge of cryptographic tools,
particularly implementation details in zero-knowledge proofs,
which can be a hurdle or obstacle. To migrate this issue, PPSC
schemes provide their compilers to migrate regular smart
contract applications into PPSC ones, such as Hawk [13],
zkay [29], ZeeStar [30], and Zapper [31]. Specifically, in
zkay, the compiler is utilized to manage secret variables in
smart contract. A smart contract usually contains structures
such as unbounded state and loops, which requires unrolling
technique, significantly increasing the circuit size. In this
scheme, each NIZK proof is applied to update a single secret
variable, to overcome the inefficiency of large arithmetic
circuits. Different from the original DPC scheme that user
holds private data in coins, in this scheme, encrypted values
are stored on chain, and users provide proofs to execute a smart
contract function and update these encrypted values. This can
be considered as a variant of DPC scheme.

We continue to take the strawman example in Sec. II-C
where users secretly place bids on items. In this example, a
bid is implemented as a coin. A user place a bid by producing
a coin while providing an NIZK proof such that the bid is
less or equal to the user’s deposit. Different from Zerocash,
although this coin is produced without consuming old coins,
the coin value, i.e., user’s bid, is kept secret. At the end of
the silent auction, there should be another NIZK proof that
consuming all coins and revealing the winner. Since multiple
user’s secret data is involved, we will continue the example in
the next section, Sec. III-C.

C. Foreign Data Computation Support: Multi-Party Case

The strawman example presented in Sec. III-B raises a
crucial question: How can we maintain data privacy when gen-
erating an NIZK proof that involves private data from multiple
users? In Zerocash, transactions are exclusively between two
users. When Alice transacts money to Bob by consuming an
old coin from each and producing a new coin for each, both
Alice and Bob know all the private data during the transaction,
i.e., the coin values of all the four coins. While this is not a
problem in Zerocash due to the ability to mix coins, it becomes

an issue when extending Zerocash into a general PPSC im-
plementation. This challenge is more demanding. Therefore,
not all crypto-based PPSC schemes support the multi-party
case, i.e., handle foreign data computation. There are two
approaches to overcome the challenge and support multi-party
case, manager-based and homomorphic encryption.

1) Manager-Based: To support arbitrary calculation of for-
eign data, Hawk [13] introduced a semi-trusted party called
the manager. The manager is accessible for users’ coin value,
and is trusted not to disclose these private data. However, the
manager is not trusted for not affecting the correct execution
of the contract. In other words, the manager is considered as a
dishonest-but-uncurious adversary. NIZK proofs are capable of
preventing the manager from a dishonest calculation, as mod-
ifying the new coin’s value resulting in an NIZK verification
failure.

We finish the strawman example presented in Sec. III-B.
After the conclusion of the silent auction, the auctioneer
takes on the role of the manager. Participants in the auction
submit their bid values to the manager. The manager then
performs calculations and generates an NIZK proof, which
reveals the highest bid and its respective bidder, while ensuring
the confidentiality of all other bids. This NIZK proof serves
as a safeguard against any potential dishonesty or attempts by
the auctioneer to favor a specific winner or manipulate bid
amounts for a higher gain.

Nevertheless, there are situations where it becomes chal-
lenging to rely on a party to keep private data confidential.
One such example is medical data statistics, where it is crucial
that no individual party has access to personal sensitive infor-
mation. Enigma [38] involves public-auditable secure multi-
party computation (PA-MPC) [26] to perform confidential
computation on secret data from multiple users. Similarly, in
Eagle [39], PA-MPC is utilized to support MPC computation
among private data holders and servers on chain. However,
Ren et al. [40] pointed out that applying PA-MPC to construct
multi-party state transition is still a challenge, as miners do
not trust any MPC participants, and therefore the participants
cannot only multi-sign messages as a proof. In other words,
these works focus on performing a confidential computation
and get a valid result only among these MPC participants,
without convincing miners that the result is valid. Therefore,
constructing a solid PPSC scheme remains a challenge even
if MPC or PA-MPC is involved.

Different from these works, zkHawk [14] and V-zkHawk
(also known as HawkNess) [32] aim to eliminate the need for
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Pesca [15] No No Yes Byzantine assumptions 8 FHE No No
KACHINA [12] No 9 No No - No No NoC
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1 All schemes need NIZK setup as a trust assumption. If omitted in table, non-universal NIZK setup is needed per application.
2 Hawk trusts managers for privacy (but not for correctness). If the manager is TEE-implemented, Hawk can also be considered TEE-based.
3 Yes on theory. Inefficient to be implemented. 4 Homomorphic commitments. 5 Key-homomorphic signatures.
6 Application-agnostic circuit is utilized in Zapper. Only a single trusted setup is needed without the need of introducing a costly universal NIZK scheme.
7 Zapper claimed that function privacy can be achieved by providing Zasm instructions as private inputs to an NIZK proof. Left as future work.
8 Not to be confused with the PBFT consensus algorithm in blockchain. Byzantine assumptions in Pesca means that if more than t consensus nodes
collude, they would have access to all secret data.
9 As a theoretical work, KACHINA does not have an NIZK implementation. However, they have considered Sonic [20] as a potential choice.

trust in the manager by employing MPC and NIZK. The idea is
to perform the whole procedure to generate NIZK proof inside
MPC. However, it is important to note that these approaches
are primarily theoretical, as the generation of an NIZK proof
within an MPC framework is extremely inefficient.

2) Homomorphic Encryption: Another approach to imple-
ment multi-party state transition is homomorphic encryption.

Zeestar [30] utilized additively homomorphic encryption to
generate the NIZK proof without the need for exposing secret
data to an NIZK prover. For example, an NIZK proof for a
financial transaction validates v(c

(1)
A ) + v(c

(1)
B ) = v(c

(2)
A ) +

v(c
(2)
B ) when Alice has a transaction with Bob. In Zerocash,

all these four private values are exposed to both Alice and
Bob. To get rid of such a disclosure, Alice encrypts v(c

(1)
A )

and v(c
(2)
A ) by Bob’s public key pkB . In this way, Bob is

capable of convincing miners v(c
(1)
A ) + v(c

(1)
B ) = v(c

(2)
A ) +

v(c
(2)
B ) by proving EncpkB (v(c

(1)
A )) + EncpkB (v(c

(1)
B )) =

EncpkB (v(c
(2)
A )) + EncpkB (v(c

(2)
B )) since additively homo-

morphic encryption holds. Besides, implementing additively
homomorphic encryption in NIZK is efficient in practice.

Obviously, applying additively homomorphic encryption is
not sufficient to support arbitrary multi-party state transition,
for example, an NIZK proof that requires a multiplication
of secret values from two users. For the same reason as in
zkHawk [14] and V-zkHawk [32] in Sec. III-C1, implementing
fully homomorphic encryption in NIZK is not practical at all.
smartFHE [35] proposed a PPSC scheme with fully homomor-
phic encryption. Different from the majority PPSC schemes
that work on DAP scheme, i.e., produces and consuming coins
by NIZK proof, in smartFHE, miners perform computation
over encrypted data. In this way, NIZK proof is only needed
for proving well-formedness of the private data. However,

implementing multi-party state transition requires multi-key
FHE, which is currently not practial.

Pesca [15] also adopted fully homomorphic encryption such
that miners perform computation. However, the key difference
is that all users’ secret data is encrypted via a global public
key, where all consensus nodes holds a Shamir secret sharing
of global private key. This approach is known as distributed
key generation (DKG). Consequently, there is no requirement
for multi-key FHE, which means Pesca is more practical
compared with smartFHE. It is important to note, however,
that users must place trust in the consensus nodes’ integrity
and their inability to collude. In the event of collusion, the
private data of all users would be vulnerable to exposure.
This diverges from other crypto-based PPSC schemes that
do not necessitate such an assumption. Typically, such a
trust assumption is mostly suitable for adoption in TEE-
based schemes, of which we will delve into the specifics in
Sec. IV-B.

In summary, the task of building a crypto-based PPSC
scheme with multi-party state transition support continues
to be a demanding challenge. Previous attempts to solve
this problem involved integrating with secure multi-party
computation, homomorphic encryption, and making strong
assumptions. Further efforts are needed to make significant
progress in this area.

D. Function Privacy

The primary focus of PPSC schemes is to ensure data
privacy by safeguarding user data, where an NIZK proof
directly proving the computation in private data, exposing the
corresponding transition function. However, situations exist
where users do not wish to expose which transition function
they called. Bowe et al. named it function privacy [33]. For
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example, a lottery application contains two transition functions
named participate — buying a lottery ticket, and redeem —
collecting the price money. Evidently, a lottery winner never
wishes redeem to be public visible, while a PPSC scheme
without function privacy exposes the fact that he/she wins the
lottery, although the specific price value remains confidential.
This knowledge poses a danger to the winner’s personal
security.

ZEXE [33] achieved function privacy, where the transition
function remains undisclosed in the NIZK proof. Within
ZEXE, the NIZK proof functions as a universal function that
interprets instructions derived from the transition function
and the prover’s private inputs. This ensures that adversaries
remain unaware of the specific details of the function. Never-
theless, protecting function privacy presents new difficulties.
Since transition function contains arbitrary instructions, a ma-
licious function can produce faked coins, or faked private data.
For instance, counterfeit currency in financial applications.
One possible attempt in ZEXE adds a new attribute to coins
in Def. 3.1, secretly identifying the function that creates the
coin. When consuming coins, an NIZK proof checks whether
these coins are made by trusted functions or not. However,
this attempt brings out the interoperability issue, as contracts
only trust functions published by their own publisher.

ZEXE proposed records nano-kernel (RNK) where coins in
Def. 3.1 are extended to records by adding two attributes,
namely birth predicate and death predicate. A predicate is a
boolean function that defines a policy, which is ensured by
NIZK proofs. When a record is produced, the birth predicate
is satisfied. Similarly, the death predicate must hold when the
record is consumed. This design allows a record to interact
with other records when its predicates decide to accept. Take
the conditional exchange example in ZEXE. Alice withes to
exchange a digital asset id1 with id2. She creates a record
containing id1, with a death predicate such that, any transaction
consuming the record must create another record containing
id2, whose death predicate only allows Alice to cliam id2. The
example above shows how user-defined assets are achieved.
More features like inter-contract calls can be realized by
properly defining records and their predicates.

Xiong et al. highlighted that the original ZEXE utilizes
a non-universal NIZK scheme, necessitating a trusted setup
for each application. To address this drawback in practical
scenarios, they introduced VERI-ZEXE [34], which incor-
porates a universal NIZK scheme that only necessitates a
single trusted setup. However, employing such an NIZK
scheme results in notably poorer performance. In VERI-ZEXE,
strategic designs are implemented to avoid compromising
performance. Steffen et al. emphasized that while ZEXE has
several vulnerabilities and shortcomings, it was the sole PPSC
scheme that successfully withstands deanonymization attacks.
In order to overcome the limitations of ZEXE, they introduced
Zapper [31], achiving identity privacy by hiding accessed
objects through their oblivious Merkle tree construction.

We provide a summarized overview of crypto-based PPSC
schemes in Table I.

TEE Enclave (Secure)Each User

Remote attestation

Send remote attestation quote

Verify quote

Establish secure communication

Send private data and public inputs

Verify private data with 
each on-chain commitment
Compute and get outputs

Remote attestation

Send remote attestation quote 
containing public inputs/outputs 
and coin-specific public values

Assemble transaction message 
and submit it to miners

Verify quote

TEE Enclave (Secure)Each User

Remote attestation

Send remote attestation quote

Verify quote

Establish secure communication

Send public inputs

Decrypt, compute and get outputs

Remote attestation

Send remote attestation quote 
containing public inputs/outputs 
and new ciphertexts

Assemble transaction message 
and submit it to miners

Verify quote

(a) Apply TEE in DAP scheme

Send quote to get symmetric 
encryption keys from committee

(b) Apply TEE in DKG scheme

Send new private data to each user

Fig. 3. Multi-Party State Transition in TEE-Based PPSC Schemes

IV. TEE-BASED PPSC

This section focuses on TEE-based PPSC schemes. We
begin by discussing the practical integration of TEE with
the blockchain. Next, we introduce per-contract private state
management and explore function privacy. Then, we delve into
a scheme that emphasizes interactive multi-round computation.
To conclude, we provide a summary of TEE-based PPSC
schemes.

A. Integrate TEE with Chains

TEE has significant efficiency advantage over cryptographic
techniques, while brings a trust assumption for hardware
manufacturers. TEE integration within a privacy-focused smart
contract structure was highlighted by Hawk [13] as a vi-
able solution. As we previously mentioned in Sec. III-C, a
tough and unresolved challenge in achieving practical crypto-
based PPSC is efficiently enabling multi-party state transitions
without requiring additional trust assumptions, while keeping
computation costs reasonable. To bypass this challenge, Hawk
introduced a semi-trusted party called the manager, assuming
the manager will never leak users’ private data. However,
this assumption of trustworthiness is not feasible. Therefore,
Hawk suggested that the manager role could be filled by
employing trusted computing hardware, specifically a TEE-
based manager. By integrating TEE implementations like Intel
SGX, the off-chain computation can be efficiently performed
within a confidential SGX enclave, remaining hidden from any
untrusted software or users, thereby preventing data disclosure.

Nevertheless, as Hawk primarily focuses on cryptography,
they have not provided thorough details for integrating TEE.
Brandenburger et al. [27] have addressed this aspect in their
Hyperledger Fabric extension: In Intel SGX, the remote attes-
tation procedure generates a quote as proof of the integrity
and authenticity of an SGX enclave and its current state.
Verifiers can use this quote to ensure the trustworthiness of the
enclave. The quote is then sent to the Intel Attestation Service
for verification using the enhanced privacy ID (EPID) group
signature scheme.
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Remote attestation serves two purposes in a TEE-enabled
PPSC. Firstly, it facilitates the secure transmission of private
data from users/key holders to the enclave. This is achieved
by establishing trust between each user/key holder and the
enclave through remote attestation. Once trust is established,
a secure communication channel can be set up as a TLS-
like connection, where users accordingly sends their private
inputs and receives the new private states to/from the enclave.
Secondly, when the enclave completes its computation, a
quote is provided to convince miners that a multi-party state
transition has been executed correctly. This is an alternative
to using NIZK proofs in crypto-based PPSC schemes. Upon
confirmation of the validity of the proof, miners accept the
multi-party state transition, updating the public state and
the hash/ciphertext of their private states. Apart from Hawk,
CLOAK [41] also works in this way. Fig. 3 demonstrate the
multi-party state transition in TEE-based PPSC schemes.

B. Private State Management

In TEE-based PPSC schemes, the symmetric encryption key
for private states is established on a per-contract basis rather
than per-user. As a comparison, Zerocash’s DAP scheme,
along with its variations, is widely utilized in crypto-based
PPSC schemes. In these schemes, users either store their
private data on their personal devices or retain the symmetric
encryption key while storing the ciphertext on the blockchain.
As a result, it brings a limitation that all private states must
belongs to specific users. In contrast, TEE enclaves play
a critical role as trusted parties which has resulted in the
implementation of a simplified approach called distributed key
generation (DKG) in TEE-based PPSC schemes. In this setup,
per-contract key is applied, thereby supporting maintaining
user-agnostic data in private.

Ekiden [42] is a typical TEE-based PPSC scheme that
utilizes DKG for key management. In this scheme, a contract
possesses both a long-term key and ephemeral short-term keys
derived from the long-term key, providing forward secrecy.

1) A key management committee is formed by a quorum
of TEE nodes. When a new contract c is deployed, the
committee employs the DKG protocol to generate a long-
term key kc, with each committee member storing a secret
sharing of kc. It is important to note that such a design
greatly minimizing the potential for collusion and leakage
of the long-term key kc, even if a small fraction of TEEs
gets corrupted via, e.g., a side-channel attack.

2) Subsequently, when a TEE compute node requests the
symmetric encryption key for accessing or creating pri-
vate state data at epoch t, each committee member
verifies the integrity of the requesting TEE node through
remote attestation. This is followed by the execution of a
distributed pseudo-random function to compute the cor-
responding short-term key kc,t. The distributed nature of
the pseudo-random function guarantees that no committee
member possesses the complete short-term key. Instead,
each member obtains a secret sharing of the calculated
short-term key, which is then securely transmitted to the
requesting TEE node via a communication channel. Once

a sufficient number of secret sharings are received, the
requesting TEE node can recover the short-term key kc,t.

3) By having a short-term key during each required epoch,
the TEE node has the capability to both read and write
the private state of the contract, enabling it to complete
the state transition. A state updating message containing
a encrypted state as well as a remote attestation quote is
sent to miners. Upon receiving this message, miners ver-
ify the quote’s validity. Once the validation is complete,
the miners update the ciphertext of the private state of
contract c on the blockchain.

It is worth mentioning that no individual party possesses direct
access to the private state, ensuring its security and integrity.
Only public outputs from a smart contract function is publicly
visible, executed by such a TEE node, which is by design.

Some other TEE-based PPSC schemes have similar design
to maintain a per-contract key. (1) In Phala [43], Gatekeepers
are introduced to manage the root key, who work similarly
with Ekiden’s committee members. Periodical key rotation is
proposed for re-elect Gatekeepers and updating the root key, to
achieve forward secrecy. Though, in this scheme, the root key
is not produced by DKG, but they have left applying a DKG
scheme for key generation as future works. (2) In PDOs [44],
when an enclave executes a state transition function, it obtains
the relevant per-contract symmetric encryption key through the
provisioning service, which derives the key from provisioned
secrets. However, the authors have not provided comprehen-
sive information regarding the specific mechanisms employed
by the provisioning service for securely generating and storing
these provisioned secrets. They assume that the service is
owned by one or more potentially trustworthy organizations.
(3) CCF [45] (formerly named CoCo) leverages trust in a
consortium of governing members, who runs a replication
protocol that supports both crash-fault tolerant (CFT) con-
figuration and Byzantine-fault (BFT) tolerant configuration.
In the protocol, master secrets are periodically generated.
Some members are selected for key recovery, holding a secret
sharing each, in case that protocol aborts because more node
outages than its replication protocol can withstand. Similarly
with Ekiden, pseudo-random function is utilized to compute
the corresponding short-term key based on the corresponding
master secret.

C. Function Privacy

Two TEE schemes, namely PDOs [44] and ShadowEth [47],
aim to achieve function privacy by ensuring that the smart
contract codes are not publicly visible. The primary focus
of PDOs [44] is to enable a group of untrusted parties to
access and modify private data using policies. These policies
are implemented through a smart contract c, the codes of
which are shared among the parties. It is important to note
that the codes do not necessarily need to be made public
outside the group, ensuring confidentiality. This is achieved
by securely loading and executing the smart contract codes in
an SGX enclave, which protects against disclosure. However,
it is crucial to emphasize that since the private data policies are
agreed by this group, the private data only hold significance
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TABLE II
OVERVIEW OF TEE-BASED PPSC SCHEMES
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Hawk [13] No Managers Modified EVM NIZK circuits User 2 N/A 2 Yes
(NIZK) No

Ekiden [42] SGX Executors 3 EVM contracts
and SGX apps Committee 4 Yes Yes No

CCF [45] SGX Distributed
Storage Ledger 5 EVM/Lua contracts

and SGX apps Storage Yes Yes No

Phala [43] SGX Executors Polkadot
Parachains 3 Phat Contract [46] Committee 4 Yes Yes No

ShadowEth [47] SGX Distributed
Storage 3 EVM contracts Storage No Yes Yes

PDOs [44] SGX Executors 3 Interpretable codes Provisioning
Services No No Yes

FASTKITTEN [48] SGX Executors Time-locked
TX 6 SGX apps 7 No 8 N/A 8 No 8 No

CLOAK [41] SGX Executors 3 SGX apps User 2 N/A 2 Yes No

TZ4FABRIC [49] TrustZone 9 Executors Hyperledger
Fabric TrustZone apps (Unstated) (Unstated) Yes No
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1 Certain PPSC schemes prioritize convincing participants involved in a multi-party off-chain smart contract about the correctness of outputs, rather than
aiming for consensus across the entire blockchain. In these schemes, the contract execution is not publicly verifiable, and therefore neither public nor
private outputs are public can be recorded on chain as they are from a reliable data source.
2 Hawk extends the DAP scheme from Zerocash, where users keep their private data off the chain. Similarly in CLOAK, although not explicitly stated
by authors, on-chain commitments of private data are generated and consumed, functioning similarly to the DAP scheme.
3 Miners/consensus nodes should be able to verification remote attestation quotes. The requirement can be satisfied as smart contract support.
4 Comprised of selected randomly executors. 5 In CCF, blockchain acts as a dummy append-only ledger. They state “every one” is able to verify proofs.
6 Blockchains supporting transactions carrying arbitrary data and can be timelocked, e.g., Bitcoin, Lightcoin, and smart contract enabled blockchains.
7 With restriction: it must be possible to estimate an upper bound on the number of rounds and the maximum run time of any round.
8 FASTKITTEN focuses on interactive multi-round computation where all inputs are provided by users. No states are maintained.
9 ARM TrustZone does not natively support remote attestation. TZ4FABRIC provide possible workarounds.

within the specific smart contract that is exclusively used by
this group of parties. Individuals who do not belong to this
group do not trust the data value. ShadowEth [47] ensure
the confidentiality of smart contract codes by implementing
TEE-DS, a decentralized secure storage system. This storage
solution operates through a group of TEE nodes and maintains
consistency with the help of a Paxos-like consensus algorithm.
By utilizing TEE-DS, ShadowEth offers a reliable and secure
environment for storing both codes and private states. In the
end, we emphasize that function privacy cannot be solely
guaranteed by maintaining the confidentiality of smart contract
codes. We will engage in a discussion in Sec. VI.

D. Interactive Multi-Round Computation

FASTKITTEN [48] achieves a practical off-chain confiden-
tial smart contract execution over Bitcoin. In this scheme, the
authors considered a special computation model as “multi-
round contracts”, which is different from the rest schemes.
FASTKITTEN is dedicated to optimizing the off-chain execu-
tion of multi-round contracts involving a defined set of parties.
It specifically deals with contracts involving a group of n
parties, who contribute initial inputs, and the contract proceeds
through m subsequent rounds. In each round, the contract
receives additional inputs from the same set of n parties and
generates an output. Moreover, the contract in FASTKITTEN

handle coins2 by receiving coins from each party at the initial
round and transferring coins back to the parties according
to the results of the contract execution. In their design, an
operator capable of running a TEE is responsible for executing
the contract and interacting with the involved parties.

However, this setup poses certain challenges. On the one
hand, while TEE enclaves are generally trusted, it is essential
to consider that they are executed within a TEE host (the
operator) that could potentially act maliciously. This creates
the risk of the operator deliberately disrupting the enclave
by dropping network packages or abruptly terminating it,
resulting in a Denial-of-Service (DOS) attack. On the other
hand, a party providing inputs may also be malicious, as they
could submit invalid inputs or even fail to provide necessary
inputs.

Therefore, they have implemented a mechanism called
challenge-response to address any malicious behaviors. In the
event of a misbehavior, a penalty transaction is initiated to
compensate the honest participants and penalize the unethical
party or operator. Let’s say a party maliciously provides incor-
rect inputs, in such cases, the operator publishes a challenge
transaction on the blockchain. If the party fails to respond to
the challenge, the operator can use this as evidence of their
malicious intent. Conversely, if the operator is the one being

2Not to be confused with coins in Zerocash’s DAP scheme. Here, coins
literally refers to currency.
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malicious, they may intentionally drop the message to falsely
accuse a participant of wrongdoing. In order to maintain their
integrity, the party can post a response transaction once the
malicious operator has published the challenge transaction.

We have summarized the overview of TEE-based PPSC
schemes as Table II.

V. CHALLENGES

In this section, we highlight the difficulties encountered
when designing privacy-preserving smart contract schemes.

NIZK expressiveness and efficiency. Zerocash’s DAP
scheme is a widely utilized design for on-chain management
of private states, typically demanding NIZK proofs. Nonethe-
less, it should be noted that NIZK implementations have a
reduced level of expressiveness when compared to regular
machines. For instance, zk-SNARKs provide support for prov-
ing statements represented as arithmetic circuits. However,
implementing complex structures such as conditional/loop
structures and memory addressing — commonly used in
traditional computer structures — requires advanced skills.
Additionally, NIZK implementations are generally inefficient,
especially when a complex structure above is implemented. To
effectively express privacy-preserving smart contracts in NIZK
and minimize resource consumption, compiler toolchains and
strategic workarounds are necessary.

Efficient multi-party transitions without disclosure. Gen-
erating an NIZK proof requires the prover’s knowledge of
all confidential data. This brings a conflict when a privacy-
preserving smart contract transition involves multiple users,
as each user possesses a portion of the data, and the prover
mustn’t acquire access to all private data. Consequently,
discovering an efficient and privacy-preserving resolution to
generate the necessary NIZK proofs remains a formidable,
unresolved challenge.

Confidential data exchange across function-privacy con-
tracts. There are situations where maintaining the confidential-
ity of a smart contract function becomes necessary. However,
concealing the function poses a challenge in terms of trusting
the private data generated by an unidentified smart contract.
This is because a malicious function can generate false private
data in violation of the protocol. Therefore, difficulties exist
to develop a reliable model that ensures both function privacy
and smart contract interoperability.

Forward-secrecy key management. TEE implementations
may be vulnerable to data leakage, particularly through side-
channel attacks. If an attacker manages to obtain the symmetric
encryption key, they can decrypt all sensitive data, which
poses a significant risk. To address this issue, it is crucial to
implement a robust key derivation or key rotation mechanism
to ensure forward secrecy in key management.

VI. DISCUSSION

In this section, we present a discussion on enhancing
privacy-preserving smart contract schemes.

NIZK outsourcing. An NIZK implementation is generally
inefficient, despite many efforts have been made to reduce
the high resource requirement. For instance, ZeeStar stated

that generating a Groth16 [24] zk-SNARK for Paillier en-
cryption [50] with 2048-bit keys requires over 256 GB of
RAM. Obviously, this is an obstacle for making crypto-based
PPSC schemes practical, as a regular home PC usually have
16 GB of RAM, let alone cellphones. Servers, on the other
hand, is capable of generating such an NIZK proof. However,
it is a challenge for users to delegate the task to untrusted
servers since all private data must be accessible in proof
generation. One possible solution is to incorporate TEE in
NIZK proof generation. While TEE may not be considered
a reliable trust assumption in a crypto-based PPSC scheme,
the system security remains unaffected if a user delegates
proof generation to a TEE-capable server — in the worst
case scenario, only this user’s private data may be leaked.
Apart from TEE, another attempt to outsource NIZK proof
generation, zkSaaS [51], was proposed recently.

Malicious functions on TEE-based PPSC. Contrary to
ZEXE [33], TEE-based PPSC schemes lack an effective design
for addressing malicious smart contracts, particularly when
it comes to achieving function privacy. PPSC schemes with
smart contract interoperability are susceptible to attacks or
disruptions by malicious users who can create functions that
compromise the functions and data of other users. For instance,
an attacker can publish a smart contract that simply exposes
a user’s confidential data. Users need to trust a smart con-
tract before using it with their private data, but establishing
this trust, especially in the context of function privacy, can
be challenging. Hence, the adoption of a TEE-based PPSC
scheme for ZEXE could provide a solution to protect users’
private data against malicious functions.

Decentralized TEE attestation service. Intel SGX is the
most practical and most widely deployed TEE schemes, where
most TEE-based PPSC schemes base on. However, it is im-
portant to note that the remote attestation service of Intel SGX
requires an Internet connection to Intel’s online provisioning
servers. This reliance on Intel’s attestation service can be
seen as a barrier since verifying a quote should be similar
to verifying signatures. Furthermore, this online requirement
impedes the ability of blockchain miners to accurately replay
and validate PPSC transactions. Chen et al. proposed an
alternative solution called OPERA [52]. This approach aims
to eliminate Intel’s single-point-of-verification, while still con-
ducting attestation. By incorporating OPERA into TEE-based
PPSC schemes, significant improvements in latency should be
achieved, allowing for more reliable replay and validation of
transactions.

Blockchain with heterogeneous TEE implementations.
Although some TEE-based PPSC schemes [42] [48] [41]
claim to have a TEE-agnostic design, they still rely on
Intel SGX for its enclaves and remote attestation feature.
Ideally, blockchain should be decentralized. It would become
more reliable to incorporate multiple TEE implementations
with chain. However, these alternative TEE implementations
differ from Intel SGX. For instance, ARM TrustZone does
not support remote attestation, leading TZ4FABRIC [49] to
develop workarounds for achieving PPSC. Another example
is AMD SEV [53], which does not have the concept of
an enclave. Other popular TEE implementations includes
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Keystone [54] and ARM CCV [55]. Therefore, incorporating
heterogeneous TEE implementations into blockchain systems
poses challenges. Recently, Zhao et al. introduced vSGX [56],
a system that supports enclave deployment on AMD SEV. This
innovation represents a crucial step towards decentralizing
trust in hardware manufacturers.

VII. CONCLUDING REMARKS

In conclusion, our study delves into a comprehensive sys-
tem overview of privacy-preserving smart contract (PPSC)
schemes. We have classified these schemes into two categories,
namely crypto-based PPSC schemes and TEE-based PPSC
schemes, based on the techniques employed. While each
scheme exhibits distinct designs, they encounter both common
obstacles and individual challenges. Through our investigation,
we have presented a comprehensive summary and comparison
of the diverse approaches employed in constructing PPSC
schemes. Additionally, we have highlighted on the associated
challenges and discussed on potential avenues for augmenting
these schemes further.
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