
Instantiating the Hash-Then-Evaluate Paradigm:
Strengthening PRFs, PCFs, and OPRFs.

Chris Brzuska1, Geoffroy Couteau2, Christoph Egger2, Pihla Karanko1, and Pierre Meyer2,3

1 Aalto University, Finland. {chris.brzuska,pihla.karanko}@aalto.fi
2 Université Paris Cité, CNRS, IRIF, France. {couteau,christoph.egger}@irif.fr

3 Aarhus University, Denmark. pierre.meyer@cs.au.dk

Abstract. We instantiate the hash-then-evaluate paradigm for pseudorandom functions (PRFs),
PRF(k, x) := wPRF(k,RO(x)), which builds a PRF PRF from a weak PRF wPRF via a pub-
lic pre-processing random oracle RO. In applications to secure multiparty computation (MPC),
only the low-complexity wPRF performs secret-depending operations. Our construction replaces
RO by f(kH, elf(x)), where f is a non-adaptive PRF and the key kH is public and thus known
to the distinguishing adversary.
We show that, perhaps surprisingly, several existing weak PRF candidates are plausibly also
secure when their inputs are generated by f(kH, elf(.)). Firstly, analogous cryptanalysis applies
(because pseudorandomness of f implies good statistical properties) and/or secondly an attack
against the weak PRF with such pseudorandom inputs generated by f would imply surprising
results such as key agreement from the hardness of the high-noise version of the Learning Parity
with Noise (LPN) when implementing both wPRF and f from this assumption.
Our simple transformation of replacing RO(·) public pre-processing by f(kH, elf(x)) public pre-
processing applies to the entire family of PRF-style functions. Specifically, we obtain results for
oblivious PRFs, which are a core building block for password-based authenticated key exchange
(PAKE) and private set intersection (PSI) protocols, and we also obtain results for pseudo-
random correlation functions (PCF), which are a key tool for silent oblivious transfer (OT)
extension.

Keywords: random oracle model, extremely lossy functions, pseudorandom functions, pseu-
dorandom correlation functions

Table of Contents

1 Introduction 3
1.1 Contributions . 3

2 Preliminaries 5
2.1 (Weak) Pseudorandom Correlation Function (wPCF). 6
2.2 Non-Adaptive Pseudorandom Correlation Function (naPCF). 7
2.3 Strong Pseudorandom Correlation Function (sPCF). 8

3 Instantiating Hash-then-Evaluate PRFs 9
3.1 Pseudorandom-Input PRF (PI-PRF) . 9
3.2 A conditional argument towards minimality of the definition of PI-PRF 11
3.3 From PI-PRF to sPRF . 12

4 Instantiating Hash-then-Evaluate in the distributed setting: OPRFs and PCFs 14
4.1 Oblivious PRFs (OPRFs) . 14
4.2 Pseudorandom Correlation Functions (PCFs) . 16

4.2.1 Defining a Pseudorandom-Input PCF (PI-PCF). 16
4.2.2 A conditional argument towards minimality. 18
4.2.3 Defining a fully non-adaptive PCF (fnaPCF). 20
4.2.4 Boosting security from PI-PCF to fnaPCF. 21

4.3 Boosting security from fnaPCF to sPCF. 22

5 Candidate PI-PRFs and PI-PCFs 27
5.1 Pseudorandom-Input PRF Candidates . 29
5.2 Implications for Existing PCFs . 31

5.2.1 The two wPRF candidates. 31
5.2.2 Security against linear tests. 32
5.2.3 From security against linear tests to large minimum distance. 32
5.2.4 A win-win result for PI-PRF security against linear tests. 33
5.2.5 Key-agreement from VDLPN or EALPN. 34

1 Introduction

The random oracle model (ROM) [BR93] is an idealised security model where all parties, honest
or otherwise, are given oracle-access to the same uniformly chosen random function. Random ora-
cles (ROs) model ideal hash functions and have found a plethora of applications in cryptography,
including the Fiat-Shamir [FS87] transformation from 3-round interactive to non-interactive zero-
knowledge proofs (NIZK), key-dependent message (KDM) security [BRS03], adaptively secure gar-
bled circuit [BHR12], and many more. In this work, we are particularly interested in RO-based pre-
processing of inputs as used, e.g. for password-based authenticated key exchange (PAKE) [CHL22]
and private set intersection (PSI) constructions [HL08]. Concretely, both PAKE and PSI first pre-
process their inputs—a password for PAKE and database entries for PSI—by applying a RO and then
use secure multi-party computation to evaluate a weak PRF on the RO result, a so-called oblivious
PRF (OPRF) evaluation. This hash-then-evaluate paradigm, thus, pushes some of the complexity of
the PRF PRF(k, x) := wPRF(k,RO(x)) into a purely offline phase, outside of the 2PC.

RO-based proofs for the hash-then-evaluate paradigm construct a reduction which emulates the
random oracle and can therefore observe all queries to the RO as well as program the RO. In effect,
the reduction chooses the mapping of the RO adaptively during the security experiment. Despite the
practical use of the hash-then-evaluate paradigm, we do not know how to instantiate the RO in this
transform.

Extremely Lossy Functions. Zhandry [Zha16] introduces the non-black-box framework of extremely
lossy functions (ELFs) to build secure point function obfuscation with auxiliary input, polynomially-
many hardcore bits for any one-way function and output intractable hash function—all inherently
hard in the standard model—and later also deterministic encryption [Zha19]. An ELF can be sampled
either to be injective or lossy with a poly(λ)-size image, and yet, the injective mode and the lossy modes
are (sufficiently) indistinguishable—if the adversary A is bounded by a fixed polynomial poly′(λ) as
long as poly′(λ) ≪ poly(λ) and 1

poly(λ) ≪ Adv(A), where Adv(A) denotes the adversary’s advantage.
Since the notion is central to this paper (and so the introduction remains self-contained), we formally
define extremely lossy functions already now.

Definition 1 (Extremely Lossy Function (ELF), adapted from [Zha16]). An Extremely
Lossy Function (ELF) is a PPT algorithm ELF.Gen which, on input a security parameter 1λ and an
image size r ∈ [2λ], outputs a polynomial-time computable4 function elf : {0, 1}λ → {0, 1}∗ such that
the following hold:

Injectivity. Prelf←$ELF.Gen(1λ,2λ)

[
|elf({0, 1}λ)| = 2λ

]
= 1− negl(λ).

Lossiness. ∀celf ∈ N: Prelf←$ELF.Gen(1λ,λcelf)

[
|elf({0, 1}λ)| ≤ λcelf

]
= 1− negl(λ).

Indistinguishability. ∀a, t ∈ N,∃c ∈ N s.t. for all A running in time ≤ λt:∣∣Prelf←$ELF.Gen(1λ,2λ)

[
1 = A(1λ, elf)

]
− Prelf←$ELF.Gen(1λ,λc)

[
1 = A(1λ, elf)

]∣∣ < λ−a .

Enumerable image. ∀celf ∈ N, ∃ PPT(λcelf) C :

Prelf←$ELF.Gen(1λ,λcelf)

[
elf({0, 1}λ) ⊆ C(1λ, elf)

]
≥ 1− negl(λ) .

The non-black-box property (via dependency on the adversary’s runtime) as well as the polynomial-
time enumerability of the image space of an ELF in lossy mode are two powerful tools for instantiating
random oracles.

1.1 Contributions

Our main contribution is to instantiate the hash-and-evaluate paradigm for a wide range of PRF-
like objects. We start by instantiating this approach for PRFs, which has direct implications for
low-complexity OPRFs. Our techniques also apply to pseudorandom correlation functions (PCFs)
4 We here refer to a polynomial in λ, and this polynomial is global for all elf which are returned by
ELF.Gen(1λ, ·)

3

[BCG+20], which allow parties to locally expand short correlated keys into large amounts of correlated
randomness which can then be used to perform secure multiparty computation efficiently.

Our instantiation of hash-then-evaluate sPRF(k, ·) = wPRF(k,RO(·)) replaces the random oracle
by the hash-function H(.) := f(kH, elf(.)) where f is a (non-adaptive5) PRF and the key kH is public.
That is, we replace the RO by a public pre-processing phase which does not depend on the secret key
k and hence, in secure multi-party computation applications, does not need to be securely evaluated,
but can be performed locally.

One caveat is that the outputs of H(.) are not random and wPRF expects random inputs. However,
when kH is not given, they are at least pseudorandom. Thus, we strengthen the security requirements
on the weak PRF in the spirit of Pietrzak and Sjödin [PS08] who strengthen weak PRFs to secret-coin
weak PRFs where the adversary is a sampler-distinguisher, i.e. the adversary first samples inputs (non-
adaptively), conditioned on them being uniformly random, and then tries to distinguish PRF outputs
from random. This is stronger than a weak PRF, because, e.g., the adversary can sample a uniformly
random group element h by first sampling a uniformly random exponent x and then returning h = gx.
We strengthen [PS08]’s definition of a secret-coin weak PRF into a pseudorandom-input PRF (PI-
PRF) which is secure as long as the sampler-distinguisher chooses pseudorandom values. Specifically,
we are interested in (non-adaptive) samplers which first sample t (arbitrarily distributed, but distinct)
values x1, .., xt, then sample a key kH and return z1 = f(kH, x1), .., zt = f(kH, xt), where f is a (strong)
PRF. If wPRF(k, zi) is secure for a secret uniformly random key kH and inputs zi from a distribution
of the aforementioned shape, then we call wPRF a PIf -PRF (cf. Definition 11).

To prove strong PRF security, we additionally pre-process the inputs by an ELF. Our core obser-
vation is that the set of image values Im(elf) in lossy mode is efficiently enumerable and independent
of kH. Hence, evaluating a PRF f with public-key kH on Im(elf) yields a set of suitable inputs for the
PI-PRF.

The need for a CRS. We replace sPRF(k, x) := wPRF(k,RO(x)) by sPRF(k, x) := PI-PRF(k,H(kH, x)),
where kH is a uniformly random public value. Thus, we need to incorporate kH into our syntax and
security definition of a strong PRF such that kH is given to the adversary. Alternatively, we could have
k′sPRF := (ksPRF, kH), but including kH into the secret-key means, we would prove too weak a security
notion, where A does not see the key; this security notion would not suffice to establish that public
preprocessing by H(kH, x) is secure, as required by our applications (distributed PRFs, oblivious PRFs
and PCFs). Hence, we include the public value kH as additional variable into our syntax and model
explicitly and call kH a common random string (CRS) in accordance with [BFM88]. We refer to a
PRF which takes a key, and input and an additional public value crs a PRF in the CRS model. CRS
model is not a strong limitation for the aforementioned applications that anyway have a public pre-
processing phase, especially when the alternative is the RO model, which essentially already assumes
the existence of globally accessible setup.

Contribution 1 (Instantiating hash-then-evaluate). We show that the following is a strong PRF in
the Common Reference String model (the CRS contains kH and elf):

sPRF(k, x) := PI-PRF(k, naPRF(kH, elf(x))) .

We also show analogous result for oblivious PRFs and for PCFs (without the need for a CRS 6).

Cryptanalysis and Win-Win Results. Our second main result is the observation that the cryptanalysis
of several weak PRFs [BIP+18,BCG+20,BCG+22] actually also applies when the inputs are pseudo-
random, namely, for as long as they satisfy suitable statistical properties—or at least, that violating
the security of these wPRFs for pseudorandom inputs would have interesting consequences. In slightly
more detail, we consider the weak PRF of [BIP+18], which is at the heart of the most efficient (to
date) oblivious PRF protocol [DGH+21], and the weak PRFs of [BCG+20, BCG+22], which are at
the heart of the most efficient PCFs known to date. For each of these candidates, we analyze the most
natural families of attacks, and obtain the following results:

Contribution 2 (Cryptanalysis and Surprising Implications). We put forward evidence of existing
wPRF candidates being plausibly PI-PRF candidates.
5 i.e. the adversary can only query the PRF non-adaptively
6 For PCFs, there is no need to store kH and elf in a CRS: instead they can simply be sampled during PCF

key generation, and added to each party’s key.

4

Statistical query algorithms. [BIP+18] show that when inputs are chosen uniformly randomly,
their candidate resists all statistical query attacks, one of the most common types of attacks against
low-complexity PRF candidates. We strengthen their analysis to the case of pseudorandom inputs.

Large pseudodistance. It is an open question whether codes with low (sublinear) minimum dis-
tance can be computationally indistinguishable from codes which have large (linear) distance.
The existence of such codes with large pseudodistance would have interesting consequences for
low-complexity cryptographic hash functions [AHI+17]. We show that either there exists an ef-
ficiently sampleable family of linear codes with large pseudo-distance, or the wPRF candidates
of [BCG+20,BCG+22] are secure against attacks from the linear test framework (the main frame-
work used to study the security of wPRFs from LPN-style assumptions, which both these candi-
dates are) even when the wPRF inputs are pseudorandom.

Key Agreement from high-noise LPN. As a final plausibility check, we show that for a wPRF
from high-noise LPN, there must exists a PRF f such that wPRF is also a PIf -wPRF or else, we
would obtain the very surprising result of (infinitely often correct) key agreement from high-noise
LPN.

Organisation. We instantiate the hash-then-evaluate paradigm for PRFs in Section 3.3, for OPRFs
in Section 4.1, and finally for PCFs in Section 4.2. Finally, we present our cryptanalysis and reflection
on the plausibility of existing wPRF/wPCFs being PI-PRFs/PI-PCFs in Section 5.

2 Preliminaries

At a high level, a pseudorandom correlation function (PCF) cryptographically compresses (superpoly-
nomial-size) correlated random strings from some ideal correlation, e.g. generating long vectors of
Beaver triples [Bea92]7, down to short keys. Given a key, it should be possible to incrementally
recover parts of the long string, e.g. evaluating the PCF key at position i should yield a party’s share
of the ith Beaver triple. Prior works have considered three different flavours of PCFs, from weakest to
strongest: weak PCFs (wPCF), non-adaptive PCFs (naPCF), and strong PCFs (sPCF). Intuitively,
and analogously to their PRF counterparts, security is guaranteed (e.g. the pseudorandom Beaver
triples are “safe to use”) when evaluating the PCF keys at random (resp. non-adaptively chosen,
resp. any) points. Note that contrary to PRFs, the PCF literature treats weak PCFs (security w.r.t.
random inputs) as the default PCF which is motivated in part by [BCG+20, Theorem 4.5], which
shows that the hash-then-evaluate paradigm can be used to turn a weak PCF into a strong one.

For technical reasons, and in order to provide a meaningful definition of PCF for infinite families
of finite correlations, we only consider reverse sampleable correlations (Definition 2). We refer to
[BCG+20, Section 4] for more details.

Definition 2 (Reverse-Sampleable Correlation, [BCG+19]). Let 1 ≤ ℓ0(λ), ℓ1(λ) ≤ poly(λ)
be output-length functions. Let Y be a probabilistic algorithm on input 1λ, returns a pair of outputs
(y0, y1) ∈ {0, 1}ℓ0(λ) × {0, 1}ℓ1(λ), defining a correlation on the outputs.

We say that Y defines a reverse-sampleable correlation if there exists a PPT algorithm RSample

which takes as input 1λ, σ ∈ {0, 1}, and yσ ∈ {0, 1}ℓσ(λ), and outputs y
ℓ1−σ(λ)
1−λ , such that for all

σ ∈ {0, 1}

{(y0, y1) : (y0, y1)←$ Y(1λ)} and {(y0, y1) : (y′0, y′1)←$ Y(1λ), yσ ← y′σ, y1−σ ← RSample(1λ, σ, yσ)} .

are statistically close.

All the different flavours of PCF admit the same syntax, which we describe in Definition 3.

Definition 3 (Pseudorandom Correlation Function – Syntax [BCG+20, Definition 4.3]).
Let Y be a reverse-sampleable correlation with output length functions ℓ0(λ), ℓ1(λ) and let λ ≤ n(λ) ≤
poly(λ) be an input length function. Syntactically, a pseudorandom correlation generator is a pair of
algorithms PCF = (PCF.Gen,PCF.Eval) with the following syntax:
7 Recall that multiplication triples are linear shares [a], [b], [c] of some random multiplication triple (a, b, c =
ab) where a, b←$R where R is some ring. As shown by Beaver [Bea92] parties holding linear shares of two
different inputs x, y ∈ R can compute linear shares of x · y by: (1) locally computing shares of α = x − a
and β = y − b as [α]← [x]− [a] and [β]← [y]− [b], (2) broadcasting the shares of α and β to reconstruct
these values, (3) locally setting [x · y]← α · [y] + β · [x]− α · β + [c].

5

– wPCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ, outputs a pair of keys
(k0, k1); we assume that λ can be inferred from the keys.

– wPCF.Eval(σ, kσ, x) is a deterministic polynomial time algorithm that on input σ ∈ {0, 1}, key kσ
and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈ {0, 1}ℓσ(λ).

2.1 (Weak) Pseudorandom Correlation Function (wPCF).

A PCF (with the syntax of Definition 3) is said to be a secure weak pseudorandom correlation function
(wPCF) if it satisfies the properties of Definitions 4 and 5. At a high level, the property of (weak)
pseudorandom Y-correlated outputs states that the evaluations of the PCF (on truly random points)
should look like samples from the ideal distribution Y from the point of view of an external adversary
(who does not hold a PCF key). The (weak) PCF security property captures that a player holding a
PCF key and seeing the other PCF key’s evaluation at random points should learn “nothing about
the other PCF key, except for its evaluation at those points”.

Definition 4 ((Weakly) pseudorandom Y-correlated outputs of a PCF). For every non-
uniform adversary A of size B(λ), it holds that for all sufficiently large λ,

∣∣∣Pr[Expw-prA,N,0(λ) = 1]− Pr[Expw-prA,N,1(λ) = 1]
∣∣∣ ≤ negl(λ)

where Expw-prA,N,b (b ∈ {0, 1}) is defined as in Figure 1. In particular, the adversary is given access to
N(λ) samples.

Experiment (Weakly) Pseudorandom Correlated Outputs

Expw-prA,N,0(λ)

for i = 1 . . . N(λ) :

x(i) ←$ {0, 1}n(λ)

(y
(i)
0 , y

(i)
1)←↩ Y(1λ)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Expw-prA,N,1(λ)

(k0, k1)←$ wPCF.Gen(1λ)

for i = 1 . . . N(λ) :

x(i) ←$ {0, 1}n(λ)

for σ ∈ {0, 1} :

y(i)
σ ←$ wPCF.Eval(σ, kσ, x

(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Fig. 1: (Weakly) Pseudorandom Y-correlated outputs of a wPCF.

Definition 5 ((Weak) PCF Security). For every σ ∈ {0, 1} and every non-uniform adversary A
of size B(λ), it holds that for all sufficiently large λ,

|Pr[Expw-secA,N,σ,0(λ) = 1]− Pr[Expw-secA,N,σ,1(λ) = 1]| ≤ negl(λ)

where Expw-secA,N,σ,b (b ∈ {0, 1}) is defined as in Figure 2. In particular, the adversary is given access to
N(λ) samples (or simply N if there is no ambiguity).

6

Experiment (Weak) PCF Security

Expw-secA,N,σ,0(λ)

(k0, k1)←$ wPCF.Gen(1λ)

for i = 1 . . . N(λ) :

x(i) ←$ {0, 1}n(λ)

y
(i)
1−σ ←$ wPCF.Eval(1− σ, k1−σ, x

(i))

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

return b

Expw-secA,N,σ,1(λ)

(k0, k1)←$ wPCF.Gen(1λ)

for i = 1 . . . N(λ) :

x(i) ←$ {0, 1}n(λ)

y(i)
σ ←$ wPCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y(i)

σ)

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

return b

Fig. 2: Security of a wPCF. RSample is the algorithm for reverse sampling Y as in Definition 2.

2.2 Non-Adaptive Pseudorandom Correlation Function (naPCF).

A PCF naPCF = (naPCF.Gen, naPCF.Eval) (with the syntax of Definition 3) is said to be a secure
non-adaptive pseudorandom correlation function (naPCF) if it satisfies the properties of Definitions 6
and 7. These properties are analogous to the weak counterpart, but hold on non-adaptively chosen
queries, instead of only on truly random ones.

Definition 6 (Non-adaptively pseudorandom Y-correlated outputs). For non-uniform ad-
versary A = (A0,A1) of size B(λ) asking at most N(λ) non-adaptive queries to the oracle Ob(·) (as
defined in Figure 3), it holds that for all sufficiently large λ,∣∣∣Pr[Expna-prA=(A0,A1),N,0(λ) = 1]− Pr[Expna-prA=(A0,A1),N,1(λ) = 1]

∣∣∣ ≤ negl(λ)

where Expna-prA=(A0,A1),N,b (b ∈ {0, 1}) is defined as in Figure 3.

Experiment Non-Adaptively Pseudorandom Correlated Outputs

Expna-prA=(A0,A1),N,0(λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ)

for i = 1 to N(λ) :

(y
(i)
0 , y

(i)
1)←$ Y

b←$A1(st, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Expna-prA=(A0,A1),N,1(λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ)

(k0, k1)←$ naPCF.Gen(1λ)

for i = 1 to N(λ) :

for σ ∈ {0, 1} :

y(i)
σ ← naPCF.Eval(σ, kσ, x

(i))

b←$A1(st, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Fig. 3: Non-Adaptively Pseudorandom Y-correlated outputs of a naPCF.

Definition 7 (Non-Adaptive PCF Security). For every σ ∈ {0, 1} and every non-uniform
adversary A = (A0,A1) of size B(λ), it holds that for all sufficiently large λ,∣∣∣Pr[Expna-secA=(A0,A1),N,σ,0(λ) = 1]− Pr[Expna-secA=(A0,A1),N,σ,1(λ) = 1]

∣∣∣ ≤ negl(λ)

where Expna-secA=(A0,A1),N,σ,b (b ∈ {0, 1}) is defined as in Figure 4.

7

Experiment Non-Adaptive PCF Security

Expna-secA=(A0,A1),N,σ,0(λ)

(k0, k1)←$ naPCF.Gen(1λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ, σ, kσ)

for i = 1 to N(λ) :

y
(i)
1−σ ← naPCF.Eval(1− σ, k1−σ, x

(i))

b←$A1(1
λ, σ, st, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

Expna-secA=(A0,A1),N,σ,1(λ)

(k0, k1)←$ naPCF.Gen(1λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ, σ, kσ)

for i = 1 to N(λ) :

y(i)
σ ← naPCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y(i)

σ)

b←$A1(1
λ, σ, st, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

Fig. 4: Security of a non-adaptive PCF. Here, RSample is the algorithm for reverse sampling Y as in
Definition 2.

2.3 Strong Pseudorandom Correlation Function (sPCF).

A PCF sPCF = (sPCF.Gen, sPCF.Eval) (with the syntax of Definition 3) is said to be a secure strong
pseudorandom correlation function (sPCF) if it satisfies the properties of Definitions 8 and 9. These
properties are analogous to the non-adaptive counterpart, but hold on adaptively chosen queries,
instead of only on non-adaptive ones.

Definition 8 (Strongly pseudorandom Y-correlated outputs). For every non-uniform adver-
sary A of size B(λ) asking at most N(λ) queries to the oracle Ob(·) (as defined in Figure 5), it holds
that for all sufficiently large λ,∣∣∣Pr[Exps-prA,0(λ) = 1]− Pr[Exps-prA,1(λ) = 1]

∣∣∣ ≤ negl(λ)

where Exps-prA,b (b ∈ {0, 1}) is defined as in Figure 5.

Experiment Strongly Pseudorandom Correlated Outputs

Exps-prA,b(λ)

(k0, k1)←$ sPCF.Gen(1λ)

Q ← ∅

b←$AOb(·)(1λ)

return b

O0(x)

if (x, y0, y1) ∈ Q :

return (y0, y1)

else :

(y0, y1)←$ Y(1λ)
Q ← Q∪ {(x, y0, y1)}
return (y0, y1)

O1(x)

for σ ∈ {0, 1} :

yσ ← sPCF.Eval(1λ, σ,

kσ, x)

return (y0, y1)

Fig. 5: Strongly Pseudorandom Y-correlated outputs of a sPCF.

Definition 9 (Strong PCF Security). For every σ ∈ {0, 1} and every non-uniform adversary A
of size B(λ) asking at most N(λ) queries to the oracle Ob(·) (as defined in Figure 6), it holds that
for all sufficiently large λ,

|Pr[Exps-secA,0,σ(λ) = 1]− Pr[Exps-secA,1,σ(λ) = 1]| ≤ negl(λ)

where Exps-secA,σ is defined as in Figure 6.

8

Experiment Strong PCF Security

Expna-secA,b,σ(λ)

(k0, k1)←$ sPCF.Gen(1λ)

b←$AOb(·)(1λ, σ, kσ)

return b

O0(x)

y1−σ ← sPCF.Eval(

1− σ, k1−σ, x)

return y1−σ

O1(x)

yσ ← sPCF.Eval(σ, kσ, x)

y1−σ ← RSample(1λ, σ, yσ)

return y1−σ

Fig. 6: Security of a strong PCF. Here, RSample is the algorithm for reverse sampling Y as in Defini-
tion 2.

3 Instantiating Hash-then-Evaluate PRFs

The Hash-then-Evaluate paradigm relies on the fact that, if wPRF is a weak PRF and RO is a pro-
grammable random oracle, then wPRF ◦ RO is a strong PRF. This transformation truly shines in
distributed settings (e.g. distributed PRFs, oblivious PRFs, and correlated PRFs—better known as
pseudorandom correlation functions (PCF)—), where the hash function is applied locally in an input
pre-processing phase, thereby limiting the use of expensive compilers (such as secure multiparty com-
putation) to securely evaluate only weak PRFs, which admit significantly lower-complexity candidates
than strong PRFs.

Programmability. The random oracle proof of the transformation PRF := wPRF◦RO relies on program-
ming because, in the weak PRF game, evaluation points z1, .., zt are sampled uniformly at random
by the experiment. In turn, in the strong PRF security game, the adversary gets to choose the inputs
x1, .., xt and therefore, the reduction needs to program the RO such that RO(xi) = zi. We circumvent
the need for programmeability by (1) strengthening the wPRF to a PIf -PRF which is secure under
pseudorandom inputs generated by f(kH, ·), where the inputs to f(kH, ·) are chosen independently of
kH and then (2) generate the inputs to f(kH, ·) by querying the entire image Im(elf) in the reduc-
tion to PIf -PRF security, which we can do in the security proof only after having made elf extremely
lossy so that image Im(elf) is polynomial-size. No matter which value xi the adversary later chooses
(adaptively) in the (strong) PRF game, the value of wPRF(k, ·) on f(kH, elf(xi)) will be known to the
reduction, because elf(xi) ∈ Im(elf). Therefore the programming is not needed, because the correct
values are known beforehand.

Construction. We describe our construction in a modular way. Pre-processing only by a non-adaptive
PRF boosts security of a pseudorandom-input PRF to a non-adaptive PRF in the CRS model.
Additionally pre-processing the input by an ELF boosts security from non-adaptive (in the CRS
model) to strong PRF security (in the CRS model). While the 2nd step is, so far, of purely theoretical
nature, the first step is very lightweight (both in terms of efficiency and assumptions) and in fact
practically deployable. Concretely, it can be used whenever the (non-adaptive) PRF is evaluated on
points according to a pre-agreed upon order. In particular, this is how non-adaptive PCFs are used,
and thus, non-adaptive security suffices for MPC applications.

3.1 Pseudorandom-Input PRF (PI-PRF)

We now formalise pseudorandom-input PRFs PI-PRF and PIf -PRF, which produce pseudorandom
values as long as inputs are sampled by an admissible sampler (⇒ pseudorandom inputs) and an
f -admissible sampler (⇒ pseudorandom inputs by applying f to non-adaptively sampled values),
respectively.

Definition 10 (Admissible Sampler). Let len and n be polynomials in λ. A polynomial-time
sampler Samλ,N : {0, 1}len → {0, 1}N×λ is admissible, if for all probabilistic polynomial-time (PPT)
A

|Prr←${0,1}len [1 = A(Samλ,N (r))]− Pr∀i:xi←${0,1}λ [1 = A(x1, ..., xN)]| = negl(λ),

9

where r ←$ {0, 1}len denotes uniform sampling from {0, 1}len. We say that Samλ,N is f -admissible if
there exists a polynomial-time sampler Samna

λ,N : {0, 1}∗ → {0, 1}N×λ such that Samλ,N (r = (r′||k)) :=
f(k, Samna

λ,N (r′)). Sometimes we might not write the randomness r explicitly, but instead consider
Samλ,N as PPT adversary that samples r uniformly itself and does not take any input. We write
R := R(Samλ,N) := |r| for the length of the randomness.

In the definition of admissible sampler, the adversary against Sam does not see the sampler’s ran-
domness r (only Sam’s output). In turn, in the following definition of PI-PRF, the adversary against
PI-PRF receives r. We now define weak PRFs, PI-PRFs, non-adaptive PRFs and strong PRFs. For
the latter two, we also define a variant in the CRS model, as previously described. The non-adaptive
sampler in the CRS model does not get to see the CRS, but for applications where the evaluation
points are pre-agreed anyway, this security level suffices.

Experiment Strong, non-adaptive, weak, and pseudorandom-input PRFs

ExpsPRF,CA,f,0

k ←$ {0, 1}λ

crs←$ {0, 1}C

return AEVAL(crs)

EVAL(x)

assert x ∈ {0, 1}λ

y ← f(k, crs, x)

return y

ExpsPRF,CA,1

crs←$ {0, 1}C

return AEVAL(crs)

EVAL(x)

assert x ∈ {0, 1}λ

y ←$ {0, 1}λ

return y

(a) Security exper. for sPRFs in CRS.

ExpnaPRF,CA=(A0,A1),f,0

(x⃗, st)←$A0(1
λ)

k ←$ {0, 1}λ

crs←$ {0, 1}C

for i = 1, ..., |x⃗|
y⃗i ← f(k, crs, x⃗i)

b∗ ←$A1(st, crs, y⃗)

return b∗

ExpnaPRF,CA=(A0,A1),1

x⃗, st←$A0(1
λ)

crs←$ {0, 1}C

for i = 1, ..., |x⃗|

y⃗i ←$ {0, 1}λ

b∗ ←$A1(st, crs, y⃗)

return b∗

(b) Security experiments for naPRFs and their
CRS version.

ExpwPRFp,A,f,0

x⃗←$ {0, 1}N·λ

k ←$ {0, 1}λ

for i = 1, ..., N

y⃗i ← f(k, x⃗i)

return A(x⃗, y⃗)

ExpwPRFp,A,1

x⃗←$ {0, 1}N·λ

for i = 1, ..., N

y⃗i ←$ {0, 1}λ

return A(x⃗, y⃗)

(c) Security experiments for wPRFs.

ExpPI-PRFN,A,f,0

r ←$ {0, 1}R

x⃗← Samλ,N (r)

k ←$ {0, 1}λ

for i = 1, ..., N

y⃗i ← f(k, x⃗i)

return A(x⃗, y⃗, r)

ExpPI-PRFN,A,1

r ←$ {0, 1}R

x⃗← Samλ,N (r)

for i = 1, ..., N

y⃗i ←$ {0, 1}λ

return A(x⃗, y⃗, r)

(d) Security experiments for PI-PRFs. Difference
to wPRF is highlighted.

Fig. 7: Security experiments of strong, non-adaptive, weak, and pseudorandom-input PRFs. AEval

denotes that adversary A can adaptively query the Eval oracle.

Definition 11 (Pseudorandom Functions (PRF)). A pseudorandom function is a polynomial-
time computable collection of functions (fλ)λ∈N with

fλ : {0, 1}λ × {0, 1}λ → {0, 1}λ

or

fλ : {0, 1}λ × {0, 1}C(λ) × {0, 1}λ → {0, 1}λ when f is in the CRS model.

We usually omit the index λ. We say that f is a

– strong PRF [GGM84] in the CRS model if for all PPT AEVAL who never queries the same
input x twice to the oracle EVAL:∣∣∣Pr[1 = ExpsPRF,CA,f,0

]
− Pr

[
1 = ExpsPRF,CA,1

]∣∣∣ = negl(λ),

10

where ExpsPRF,CA,f,0 and ExpsPRF,CA,1 are defined in Figure 7a.

– non-adaptive PRF [NR95] in the CRS model if for all PPT A which output a vector x⃗ of
distinct input values x

∣∣∣Pr[1 = ExpnaPRF,CA,f,0

]
− Pr

[
1 = ExpnaPRF,CA,1

]∣∣∣ = negl(λ),

where ExpnaPRF,crsA,f,0 and ExpnaPRF,crsA,1 are defined in Figure 7b. C(λ) = C denotes the length of the crs.

– weak PRF [NR95] if for all polynomials N , for all PPT A

∣∣∣Pr[1 = ExpwPRFN,A,f,0

]
− Pr

[
1 = ExpwPRFN,A,1

]∣∣∣ = negl(λ),

where ExpwPRFp,A,f,0 and ExpwPRFp,A,1 are defined in Figure 7c.

– pseudorandom-input PRF [this paper] if for all polynomials N , for all admissible samplers
Samλ,N (definition 10) and for all PPT A

∣∣∣Pr[1 = ExpPI-PRFN,A,f,0

]
− Pr

[
1 = ExpPI-PRFN,A,1

]∣∣∣ = negl(λ),

where ExpPI-PRFN,A,f,0 and ExpPI-PRFN,A,1 are defined as in Figure 7d. Alternatively, if f satisfies the above
property for a fixed Sam (and not necessarily for arbitrary admissible sampler), we say that f is
a Sam-PI-PRF. If the fixed Sam is g-admissible, we say that f is PIg-PRF.

3.2 A conditional argument towards minimality of the definition of PI-PRF

In this section we adapt a result by Pietrzak and Sjödin [PS08], and show that if there exists a
weak PRF that is not also a pseudorandom-input PRF then it can be used to build infinitely often
key-agreement. Since there are wPRF candidates under assumptions which are not known to imply
key-agreement, this can be seen as empirical evidence that the definition of PI-PRF we put forward
is not too much of a strengthening of weak PRFs.

Theorem 12 (wPRF not PI-PRF implies io-KA, adapted from [PS08]). Let wPRF be a weak
PRF. If wPRF is not a PI-PRF, then there exists an infinitely often correct two-party key-agreement
protocol.

Proof. Let wPRF be a weak PRF. If wPRF is not a pseudorandom-input PRF, then there exists
an admissible sampler Samλ,p and a PPTA with advantage ϵ in the security game of fig. 7d (as
instantiated with wPRF as the “candidate PI-PRF”). Consider the protocol of Figure 8 (parameterised
by A,Samλ,p,wPRF), which we will now show to be a (12 + ϵ)-correct single-bit infinitely often key-
agreement protocol.

11

Protocol Infinitely Often Key Agreement

Alice Bob

k ←$ {0, 1}λ

r ←$ {0, 1}R b←$ {0, 1}

x⃗← Samλ,p(r) x⃗

if b = 0 then

for xi ∈ x⃗ do

yi ← f(k, xi)

else

for xi ∈ x⃗ do

yi ←$ {0, 1}λ

y⃗

b← A(x⃗, y⃗, r)
return b return b

Fig. 8: Infinitely often key-agreement protocol, assuming the existence of a weak PRF which is not a
pseudorandom-input PRF.

Correctness, i.e. the fact that Alice and Bob output the same bit with probability at least (12 + ϵ)
follows immediately from the success probability of A in breaking the security game of Figure 7d. As
for security, assume, for contradiction, that there is an eavesdropper B(x⃗, y⃗) that can guess b with
probability 1/2+µ for some non-negligible µ, given only the transcript of the protocol, i.e. (x⃗, y⃗). We
reach a contradiction by considering the following game hops:

– Game 0: Above protocol with b = 0
– Game 1: Same as Game 0, except x⃗ is sampled uniformly at random, instead of using Sam
– Game 2: Same as Game 1, except b = 1 (and hence the protocol samples y⃗ at random.)
– Game 3: Above protocol with b = 1. (Same as Game 2 but using Sam for sampling x⃗.)

Now B must be able to distinguish a pair of consecutive games. However:
Game 0 is indistinguishable from Game 1 by admissibility of Sam. Game 1 is indistinguishable from
Game 2 by wPRF security of f . Game 2 is indistinguishable from Game 3 by admissibility of Sam.
So we reach a contradiction, so such B cannot exist.

3.3 From PI-PRF to sPRF

We now provide our modular instantiation of the transformation from a PI-PRF to a sPRF, first
boosting PI-PRF security via pre-processing to naPRF security and then boosting naPRF security
to sPRF security via further pre-processing.

Lemma 13 (PI-PRF ◦ naPRF is a naPRF). Let f be a non-adaptive PRF and let piPRF be
a PIf -PRF, then naPRF(k, crs, x) := piPRF(k, f(crs, x)) is a non-adaptive PRF in the CRS model.

Proof. Let us now show that the experiments ExpnaPRF,Cp,A,f,0 and ExpnaPRF,Cp,A,1 are indistinguishable by
considering the hybrids Hyb1,Hyb2,Hyb3 of Figure 9.

– ExpnaPRF,Cp,A,naPRF,0 ≡ Hyb1: These hybrids are code-equivalent; we obtain Hyb1 by inlining the definition
of naPRF.

12

Hyb1(λ)

x⃗, st←$A0(1
λ)

crs←$ {0, 1}λ

k ←$ {0, 1}λ

for i = 1, ..., |x⃗|
z⃗i ← f(crs, x⃗i)

y⃗i ← piPRF(k, z⃗i)

return A1(st, crs, y⃗)

Hyb2(λ)

r ←$ {0, 1}R

z⃗ ← Samna
λ,|x⃗|(r)

k ←$ {0, 1}λ

for i = 1, ..., |z⃗|

y⃗i ← piPRF(k, z⃗i)

return A(r,y⃗)

Samna
λ,|x⃗|(r)

st||crs← r

x⃗, st← A0(1
λ; st)

for i = 1, ..., |x⃗|
z⃗i ← f(crs, x⃗i)

return z⃗

Hyb3(λ)

r ←$ {0, 1}R

z⃗ ← Samna
λ,|x⃗|(r)

k ←$ {0, 1}λ

for i = 1, ..., |x⃗|

y⃗i←$ {0, 1}λ

return A1(r, y⃗)

Samna
λ,|x⃗|(r)

st||crs← r

x⃗, st← A0(1
λ; st)

for i = 1, ..., |x⃗|
z⃗i ← f(crs, x⃗i)

return z⃗

Perfect PI-PRF security

Fig. 9: Sequence of hybrids for proving naPRF security in the proof of Lemma 13.

– Hyb1 ≡ Hyb2: Again, these hybrids are in fact code-equivalent. Indeed, w.l.o.g. the second stage
adversary’s state st is equal to the first stage adversary’s internal randomness. Thus, nothing
changes if we define r := st||C.

– Hyb2
c
≈ Hyb3: By naPRF security of f , the sampler Samna

λ,|x⃗| is f -admissible. The hybrids are
therefore indistinguishable by PI-PRF security of piPRF.

– Hyb3 ≡ ExpnaPRF,Cp,A,1 : These hybrids are code-equivalent (by combining the same arguments used to
show the first step and Hyb1 ≡ Hyb2, except in reverse).

Lemma 14 (naPRF ◦ ELF is a sPRF). If naPRF is non-adaptive PRF in the CRS model and
ELF is an extremely lossy function, then sPRF(k, (crs, elf︸ ︷︷ ︸

new crs

), x) := naPRF(k, crs, elf(x)) is a strong PRF

in the CRS model.

Prior works [BH12, BHKN13] also instantiate the non-adaptive-to-strong-PRF RO, but with a
concrete hash function whose evaluation time is a function of the adversary’s runtime. In contrast,
our construction runs in a fixed polynomial time, and is secure against general polynomial-time
adversaries.

Proof. We now show via several game hops that the experiments ExpsPRF,CA,sPRF,0 and ExpsPRF,CA,1 are indis-
tinguishable. Assume towards contradiction, that a PPT adversary A has non-negligible advantage
in distinguishing them. Let r be a sufficiently large polynomial such that A cannot distinguish an
ELF with image size r from an injective ELF.

– ExpsPRF,CA,sPRF,0 ≡ Hyb1: These hybrids are code-equivalent by inlining the definition of sPRF.

– Hyb1
c
≈ Hyb2: These hybrids are indistinguishable by the security of ELF.

– Hyb2 ≡ Hyb3: These hybrids are code-equivalent; the only difference is pre-processing oracle calls
by generating a lookup table.

– Hyb3
c
≈ Hyb4: These hybrids are indistinguishable because naPRF is a non-adaptive PRF in the

CRS model. More precisely, in the naPRF experiment, the first stage adversary AnaPRF
0 samples

the ELF and chooses the image of the ELF as the vector x⃗ and the description of the ELF elf
as the state st = elf that is passed to the second stage adversary, in this case AnaPRF

1 = AEVAL.
Now, since an arbitrary PPT AnaPRF

1 cannot distinguish the naPRF naPRF outputs from random,
neither can AEVAL who must run in time << r (note that arbitrary PPT adversary AnaPRF

1 can
emulate the EVAL oracle calls by computing the full ELF image of size r).

13

Hyb1(λ) Hyb2(λ)

elf ←$ ELF.Gen(1λ, 2λ) (1λ, r)

crs←$ {0, 1}C

k ←$ {0, 1}λ

return AEVAL(1λ, elf, crs)

EVAL(x)

assert x ∈ {0, 1}λ

y ← naPRF(k, crs, elf(x))

return y

Hyb3(λ)

elf ←$ ELF.Gen(1λ, r)

crs←$ {0, 1}C

k ←$ {0, 1}λ

for z ∈ Im(elf) :

T [z]← naPRF(k, z)

return AEVAL(1λ, elf, crs)

EVAL(x)

assert x ∈ {0, 1}λ

y ← T [elf(x)]

return y

Hyb4(λ)

elf ←$ ELF.Gen(1λ, r)

crs←$ {0, 1}C

k ←$ {0, 1}λ

for z ∈ Im(elf) :

T [z]←$ {0, 1}λ

return AEVAL(1λ, elf, crs)

EVAL(x)

assert x ∈ {0, 1}λ

y ← T [elf(x)]

return y

perfect naPRF is a naPRF

Fig. 10: Sequence of hybrids for proving sPRF security in the proof of Lemma 14.

– Hyb4
c
≈ ExpsPRF,CA,1 : The hybrids are equivalent, by ELF security of ELF, with the observation we

applied the reverse of the code-equivalent transform of the first step.

By combining Lemmas 13 and 14 we immediately obtain Corollary 15.

Corollary 15 (PI-PRF ◦ naPRF ◦ ELF is sPRF). Let piPRF be a PIf -PRF, let f be a non-
adaptive PRF, and let ELF be an extremely lossy function. Then

sPRF(k, (crs, elf), x) := piPRF(k, f(crs, elf(x))︸ ︷︷ ︸
public pre-processing

)

is a sPRF in the CRS model, where crs←$ {0, 1}C and elf ←$ ELF.Gen(1λ, 2λ).

4 Instantiating Hash-then-Evaluate in the distributed setting: OPRFs
and PCFs

Where the hash-then-evaluate paradigm truly shines is in the distributed setting, where it allows
us to only wrap the compiler of secure multiparty computation (which typically requires a lot more
resources as the depth of computation grows), around a (low-complexity) weak PRF. This idea of
applying a random oracle to the input before performing the secure evaluation of only a weak PRF is
not merely of theoretical interest, but rather is a key ingredient in state-of-the-art OPRFs and PCFs
which we now each review in turn.

4.1 Oblivious PRFs (OPRFs)

We established in Corollary 15 that the random oracle used to transform a weak PRF to a strong one
can be instantiated, provided we are willing to assume the weak PRF is in fact a pseudorandom-input
PRF. One may pause and wonder why one would ever use this transformation given that a strong
PRF can be built in a black-box way from a weak PRF, and a fortiori from a pseudorandom-input
PRF.

An Oblivious PRF (OPRF) is a secure two-party protocol realising the functionality (k, x) 7→
(⊥, F (k, x)) for some pseudorandom function family F . If F is no longer assumed to be a strong PRF
but instead only a weak or pseudorandom-input PRF, we will call such a protocol a secure function
evaluation (SFE) of a weak (resp. pseudorandom-input) PRF.

14

Remark 16 (Defining an “Oblivious wPRF”). The problem of defining an “Oblivious weak PRF”8 is a
delicate one, which was explicitly left open by e.g. [JKR19,CHL22]. A first attempt would be to define
it as Secure Function Evaluation (SFE) of a weak PRF, i.e. as a secure two-party protocol realising
the functionality (k, x) 7→ (⊥, F (k, x)) for some weak pseudorandom function family F . This is a
convenient solution from a design perspective, but it places the burden of not misusing the primitive
on the user (wishing to build some larger protocol). Indeed, using such a protocol only guarantees
server privacy over the randomness of the queries made by the client. When the primitive of SFE
of a wPRF is composed, it becomes unclear what this means9; in particular, in Canetti’s Universal
Composability framework [Can01] the inputs of even semi-honest parties are assumed to have been
provided by a malicious environment, so even “trusting a semi-honest party to use random inputs” is
not necessarily sound, unless the protocol explicitly specifies how they should be sampled. For this
reason, one might argue that the ideal functionality of an Oblivious weak PRF should sample the
queries itself, and output them to the client, alongside their evaluations. This definition would be
analogous to those of random OT [Rab05] and random-input PIR [GHM+21]. The downside of this
alternative definition is that it does not seem possible to then use the hash-then-evaluate paradigm
to boost an oblivious wPRF to an OPRF.

Lemma 17 (Hash-then-Evaluate OPRF). Let PI-PRF : {0, 1}λ × {0, 1}n(λ) → {0, 1}m(λ) be
a pseudorandom-input PRF, let ELF.Gen be an extremely lossy function, and let naPRF : {0, 1}λ ×
{0, 1}n(λ) → {0, 1}n(λ) be a non-adaptive PRF. Then the protocol of Figure 11 (defined in the
FSFE(PI-PRF)-hybrid model, where FSFE(PI-PRF(·, ·)) is the ideal functionality computing (k, x) 7→
(⊥,wPRF(k, x))) is a (semi-honest) OPRF in the CRS model for the following PRF:

PRF : {0, 1}3λ × {0, 1}n(λ) → {0, 1}m(λ)

(k = (kPI-PRF, knaPRF, r), x) 7→ PI-PRF(kPI-PRF, naPRF(knaPRF, f(x))),
where f = ELF.Gen(2n(λ), 2n(λ); r)

Proof Sketch. There are two statements to prove: the first is that PRF is a pseudorandom function
family, and the second is that the fig. 11 securely realises the functionality (k, x) 7→ (⊥,PRF(k, x)).
We already proved the former in corollary 15, and the latter follows immediately from the fact the
only interaction between C and S is through FSFE(PI-PRF(·, ·)).

Protocol ΠOPRF

Parties: C (the client) and S (the server)

Parameters: PI-PRF(·, ·) : {0, 1}λ × {0, 1}n(λ) → {0, 1}m(λ) is a pseudorandom-input PRF,
naPRF(·, ·) : {0, 1}λ × {0, 1}n(λ) → {0, 1}n(λ) is a non-adaptive PRF, and ELF.Gen is an ELF.

Hybrid Model: The protocol is defined in the FSFE(PI-PRF(·, ·))-hybrid model.

Input: S holds as input a PI-PRF key kPI-PRF ∈ {0, 1}λ, a naPRF key knaPRF ∈ {0, 1}λ, and
randomness r ∈ {0, 1}λ; and C holds as input x ∈ {0, 1}n(λ).

Setup: The CRS is structured as (knaPRF, f), where knaPRF ←$ {0, 1}λ and f ←$

ELF.Gen(2n(λ), 2n(λ)).

The Protocol:

1. C parses the CRS as (knaPRF, f)
2. S and C send respectively (server, kPI-PRF) and (client, naPRF(f(x)) to FSFE(PI-PRF(·, ·)),

and C waits to receive y ∈ {0, 1}m(λ) from FSFE(PI-PRF(·, ·)).

8 Not to be confused with a weak OPRF, a.k.a. a relaxed OPRF, which is a relaxation of an OPRF introduced
by Freedman et al. [FIPR05] which allows for some leakage of the key to the client.

9 Say a client and a server run tho parallel instances of SFE of a wPRF, and the client queries an random
input x in the first instance, and x + 1 in the next: the inputs used by the client in each instance are
random, but nevertheless correlated, and server security is not expected to hold.

15

3. S outputs ⊥, and C outputs y.

Fig. 11: OPRF (parameterised by the PRF of corollary 15) given secure function evaluation of a
pseudorandom-input PRF.

Remark 18 (Instantiating Sate-of-the-Art OPRF). We recall that the OPRF construction of Dinur et
al. [DGH+21], using only two rounds and 641 bits of online communication, boils down to providing a
special-purpose protocol for securely computing Boneh et al. s [BIP+18] weak PRF candidate. Under
the assumption that this candidate is in fact a pseudorandom-input PRF (for some class of admissible
samplers)—we discuss this assumption in section 5.1—then the construction of fig. 11 can be used to
instantiate Dinur et al.’s [DGH+21] OPRF while preserving the number of rounds and the amount
of communication. Depending on the desired level of security (e.g. malicious), some additional tools
will be required.

Remark 19 (Removing the CRS). When considering a semi-honest adversary, the structured CRS
used in the OPRF of fig. 11 can instead by generated by the following protocol, at the cost of an
additional round of interaction: (1) the client samples knaPRF uniformly at random, (2) client and
server each sample an ELF in injective-mode, then exchange these two functions fC and fS , (3) the
parties proceed as in fig. 11 but defining f as f := fC ◦ fS . If fC and fS are both injective, then so
is f , but if one of them is (extremely) lossy, then so is f (as |Im(fC ◦ fS)| ≤ |Im(fC)|, |Im(fS)|). This
allows the reduction to switch f to lossy mode (even though the corrupted party samples their ELF
in injective mode), and the proof goes through.

4.2 Pseudorandom Correlation Functions (PCFs)

We introduce the notion of pseudorandom-input PCF in section 4.2.1. In section 4.2.2 we show a
conditional argument towards the minimality of this new definition (namely, we show that if there
exists a weak PCF which is not also a PI-PCF, then there is a two-party key-agreement protocol).
We introduce the notion of fully non-adaptive PCF in section 4.2.3, and then show in section 4.2.4
that applying a non-adaptive PRF (whose key is public) to the input of a pseudorandom-input PCF
yields a fully non-adaptive PCF. Finally, in section 4.3 we show that applying an ELF to the input
of a fully non-adaptive PCF yields a strong PCF.

4.2.1 Defining a Pseudorandom-Input PCF (PI-PCF). We refer to section 2 for a reminder
on the existing notions of PCFs which have been studied in the litterature: weak, non-adaptive, and
strong PCFs. Of those, the one with the least constraining defintion is the weak PCF. Assume two
parties wish to use a weak PCF for OT correlations10 in order to generate correlated randomness to
be used for secure computation. They will need some way to agree on which OT correlations to use,
i.e. on which points their PCF keys should be evaluated. If they were using a non-adaptive PCF,
they could simply use some predetermined order, e.g. 1, 2, 3, etc. or (sid, 1), (sid, 2), (sid, 3), etc. for
a session identifier sid. However, with a weak PCF the OT correlations will only be guaranteed to
be “safe to use”11 when indices are chosen uniformly at random. Thus, the parties need to agree
beforehand on a random string or a CRS which grows with the size of the computation. This raises
the following question:

Is there an intermediary notion, stronger than a wPCF but weaker than a naPCF, which
is directly useful for MPC applications without a CRS?

10 A 1-out-of-2 bit-OT correlation can be defined as being sampled as a pair (of pairs) (m0,m1) and (σ,mσ),
where (m0,m1) are the OT sender’s random messages in {0, 1}, and σ is the random choice bit given to
the receiver.

11 More precisely, correctness (i.e. parties hold tuples of the form (m0,m1) and (σ,mσ)) is tied to the wPCF
having (weakly) OT -correlated pseudorandom outputs, while security (i.e. m1−σ is hidden from the receiver
and σ is hidden from the sender) is tied to wPCF security.

16

A natural idea is to replace a large random string by a pseudorandom string which can be generated by
a pseudorandom function using a small seed which is small enough to become a part of each party’s
PCF key. We thus introduce the concept of a pseudorandom-input PCF (PI-PCF), which remains
correct and secure even if the PCF inputs are chosen pseudorandomly, according to a public seed.
Again, we rely on the concept of an admissible sampler (Definition 10), which we previously introduced
in the context of PI-PRFs.
We define a PI-PCF syntactically in the same way as a weak PCF (Definition 3), but demand the
stronger properties of pseudorandom Y-correlated outputs and PCF security, which we describe in
Definitions 20 and 21 (differences with the corresponding notions for a weak PCF are highlighted).

Definition 20 (Pseudorandom Y-correlated outputs of a PI-PCF). For every non-uniform
PPT adversary A, it holds that for all polynomials N , for all admissible samplers Samn(λ),N ,

|Pr[ExpPI-prA,N,0(λ) = 1]− Pr[ExpPI-prA,N,1(λ) = 1]|

is negligible, where Figure 12 defines ExpPI-prA,N,b(λ) (b ∈ {0, 1}).

Experiment Pseudorandom Correlated Outputs for Pseudorandom Inputs

ExpPI-prA,N,0(λ)

r ←$ {0, 1}λ

(x(1), . . . , x(N(λ)))← Samn(λ),N(λ)(r)

for i = 1 . . . N(λ) :

(y
(i)
0 , y

(i)
1)←↩ Y(1λ)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)], r)

return b

ExpPI-prA,N,1(λ)

(k0, k1)←$ PI-PCF.Gen(1λ)

r ←$ {0, 1}λ

(x(1), . . . , x(N(λ)))← Samn(λ),N(λ)(r)

for i = 1 . . . N(λ) :

for σ ∈ {0, 1} :

y(i)
σ ←$ PI-PCF.Eval(σ, kσ, x

(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)], r)

return b

Fig. 12: Pseudorandom Y-correlated outputs of a PI-PCF. Differences with a wPCF (Figure 1) are
highlighted.

Definition 21 (PI-PCF Security). For every σ ∈ {0, 1} and every non-uniform PPT A, it holds
that for all polynomial N , for all admissible samplers
Samn(λ),N ,

|Pr[ExpPI-secA,N,σ,0(λ) = 1]− Pr[ExpPI-secA,N,σ,1(λ) = 1]|

is negligible, where ExpPI-secA,N,σ,b (b ∈ {0, 1}) is defined as in Figure 13.

17

Experiment PI-PCF Security

ExpPI-secA,N,σ,0(λ)

(k0, k1)←$ PI-PCF.Gen(1λ)

r ←$ {0, 1}λ

(x(1), . . . , x(N(λ)))← Samn(λ),N(λ)(r)

for i = 1 . . . N(λ) :

y
(i)
1−σ ←$ PI-PCF.Eval(1− σ, k1−σ, x

(i))

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)], r)

return b

ExpPI-secA,N,σ,1(λ)

(k0, k1)←$ PI-PCF.Gen(1λ)

r ←$ {0, 1}λ

(x(1), . . . , x(N(λ)))← Samn(λ),N(λ)(r)

for i = 1 . . . N(λ) :

y(i)
σ ←$ PI-PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y(i)

σ)

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)], r)

return b

Fig. 13: Security of a pseudorandom-input PCF. Here, RSample is the algorithm for reverse sampling
Y as in Definition 2.

We note that the requirement of tolerating any admissible sampler is a strong one (but admittedly
still weaker than a non-adaptive PCF). We discuss in Remark 25 a meaningful relaxation which is
still strong enough to allow our transformation to go through.

4.2.2 A conditional argument towards minimality. Let us now show that if there exists a
weak PCF which is not a pseudorandom-input PCF, then it can be used to build an infinitely-often
key-agreement scheme. This theorem is not trivial in the sense that a weak PCF can be seen as a
form of silent (and incremental) OT extension, and is not known to imply the existence of infinitely
often key-agreement12. Moreover, as we discuss in Section 5.2, there are plausible candidates of weak
PCFs from assumptions not known to imply infinitely often key-agreement.
If wPCF is a weak PCF for some correlation Y, but not a pseudorandom-input PCF for Y, then this
means that at least one out of (1) pseudorandom-input pseudorandom Y-correlated outputs or (2) the
pseudorandom-input PCF security is violated. The proof proceeds by case distinction and shows that
in either case, there is a key-agreement protocol which 1

2 + ϵ, for a non-negligible function ϵ. The
argument is very analogous to Pietrak-Sjödin [PS08].

Theorem 22 (wPCF not PI-PCF implies io-KA). Let wPCF be a weak PCF (for some corre-
lation). If wPCF is not a pseudorandom-input PCF (for that same correlation), then there exists an
infinitely often two-party key-agreement protocol.

Proof of Theorem 22. Let wPCF be a weak PCF for some correlation Y. If wPCF is not a
pseudorandom-input PCF for Y, then at least one of the following properties is not true:
pseudorandom-input pseudorandom Y-correlated outputs or pseudorandom-input PCF security. One
of the following statements is therefore true:

– There exists a non-uniform polytime adversary Apr and a non-negligible function ϵ(·), such that
for infinitely many λ ∈ N, there exists a polynomial N and an admissible sampler Samn(λ),N(λ)

such that:
|Pr[ExpPI-prApr,N,0(λ) = 1]− Pr[ExpPI-prApr,N,1(λ) = 1]| > ϵ(λ) (1)

where ExpPI-prApr,N,b (b ∈ {0, 1}) is defined as in fig. 12 (but parameterised by the PCF wPCF =
(wPCF.Gen,wPCF.Eval)).

– There exists σ ∈ {0, 1} and a non-uniform polytime adversary Asec
σ and a non-negligible function

ϵ(·), such that for infinitely many λ ∈ N, there exists a polynomial N and an admissible sampler
Samn(λ),N(λ)

|Pr[ExpPI-secAsec
σ ,N,σ,0(λ) = 1]− Pr[ExpPI-secAsec

σ ,N,σ,1(λ) = 1]| > ϵ(λ) (2)

12 In fact, (interactive) OT extension is known to be in Minicrypt [IKNP03]. The minimal assumptions for
silent OT extension are unknown.

18

where ExpPI-secAsec
σ ,N,σ,b (b ∈ {0, 1}) is defined as in Figure 13 (but parameterised by the PCF wPCF =

(wPCF.Gen,wPCF.Eval)).

In either case, there is an infinitely often key-agreement protocol with correctness 1
2 + ϵ.

We now show that regardless which proposition holds there exists an infinitely often key-agreement
protocol with correctness 1

2 + ϵ.

– Given the existence of Apr. Consider the protocol of fig. 14. By eq. (1), Alice and Bob will
output the same bit with probability at least 1

2 + ϵ for infinitely many values of the security
parameter, hence infinitely often correctness (recall that ϵ is non-negligible). For security consider
an eavesdropper Eve with access to the transcript of the communication between Alice and Bob.
Let λ ∈ N be a security parameter. Because the sampler Samn(λ),N(λ) is admissible, Eve cannot
distinguish between the transcript of the real protocol, and that of a variant where Alice samples
the (x(i))i∈[N(λ)] uniformly at random. In that variant however, Eve’s advantage in guessing b
cannot be better than negligible, because the outputs of wPCF (on uniformly random inputs
(x(i))i∈[N(λ)]) are pseudorandomly Y-correlated. Hence security of the io-KA protocol.

Protocol Infinitely Often Key Agreement, given Apr

Alice Bob

r ←$ {0, 1}λ (k0, k1)←$ wPCF.Gen(1λ)

b←$ {0, 1}

(x(i))i∈[N(λ)] ← Samn(λ),N(λ)(r) (x(i))i∈[N(λ)]

if b = 0 then

for i ∈ [N(λ)] do

(y
(i)
0 , y

(i)
1)← Y(1λ)

else

for i ∈ [N(λ)] do

for σ ∈ {0, 1} do

y(i)
σ ← wPCF.Eval(σ, kσ, x

(i)
σ)

(y
(i)
0 , y

(i)
1)i∈[N(λ)]

b← Apr(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)], r)

return b return b

Fig. 14: Infinitely often key-agreement scheme, assuming the existence of a wPCF which does not
satisfy definition 20.

– Given the existence of Asec
σ , for some σ ∈ {0, 1}. Consider the protocol of fig. 15. By eq. (2), Alice

and Bob will output the same bit with probability at least 1
2 + ϵ for infinitely many values of the

security parameter, hence infinitely often correctness (recall that ϵ is non-negligible). For security
consider an eavesdropper Eve with access to the transcript of the communication between Alice and
Bob. Let λ ∈ N be a security parameter. Because the sampler Samn(λ),N(λ) is admissible, Eve cannot
distinguish between the transcript of the real protocol, and that of a variant where Alice samples the
(x(i))i∈[N(λ)] uniformly at random. In that variant however, Eve’s advantage in guessing b cannot be
better than negligible, by weak PCF security of wPCF. Hence security of the io-KA protocol.

19

Protocol Infinitely Often Key Agreement, given Asec
σ

Alice Bob

r ←$ {0, 1}λ (k0, k1)←$ wPCF.Gen(1λ)

kσ b←$ {0, 1}

(x(i))i∈[N(λ)] ← Samn(λ),N(λ)(r) (x(i))i∈[N(λ)]

if b = 0 then

for i ∈ [N(λ)] do

y(i)
σ ← wPCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ, σ, kσ)

else

for i ∈ [N(λ)] do

y
(i)
1−σ ← wPCF.Eval(1− σ, k1−σ, x

(i))

(y
(i)
1−σ)i∈[N(λ)]

b← Asec
σ (1λ, σ, kσ,

b← Asec
σ ((x(i), y

(i)
1−σ)i∈[N(λ)], r)

return b return b

Fig. 15: Infinitely often key-agreement scheme, assuming the existence of a wPCF which does not
satisfy definition 21.

In either case, there exists an infinitely often key-agreement scheme.

4.2.3 Defining a fully non-adaptive PCF (fnaPCF). The notion of PI-PCF we just introduced
is analogous to the notion of PI-PRF we introduced in Definition 11. In Section 3.3, we showed a
modular strengthening from PI-PRF to sPRF, via a naPRF; it is therefore a natural question to
ask whether the same transformation can be used to first turn a PI-PCF into a naPCF, and then
a naPCF into a sPCF. This would be interesting because the first transform, which does not even
require the application of an ELF, has the potential of being very lightweight. Unfortunately, for
technical reasons, the intermediary notion we obtain is not a non-adaptive PCF, but what we coin
as a fully non-adaptive PCF. The difference lies in the inputs of a non-adaptive PCF must be chosen
before seeing any of the evaluations of the honest party’s PCF key, but can be chosen after seeing
the corrupt party’s PCF key.
We now introduce the notion of a fully non-adaptive PCF (fnaPCF), which differs from a non-
adaptive PCF in that in the PCF security game, the adversary must produce the evaluation points
before even seeing the corrupt party’s PCF key. A fnaPCF is syntactically defined as a non-adaptive
PCF (Definition 7) and satisfies the same notion of non-adaptively pseudorandom Y-correlated outputs
(Definition 6) as a non-adaptive PCF, but satisfies a stronger security property which we define in
Definition 23 (differences with the security of a naPCF are highlighted).

Definition 23 (Fully Non-Adaptive PCF Security). For every σ ∈ {0, 1} and every non-
uniform adversary A = (A0,A1) of size B(λ), it holds that for all sufficiently large λ,

|Pr[Expfna-secA=(A0,A1),N,σ,0(λ) = 1]− Pr[Expfna-secA=(A0,A1),N,σ,1(λ) = 1]| ≤ ϵ(λ)

where Expna-secA=(A0,A1),N,σ,b (b ∈ {0, 1}) is defined as in Figure 16.

20

Experiment Fully Non-Adaptive PCF Security

Expfna-secA=(A0,A1),N,σ,0(λ)

(k0, k1)←$ fnaPCF.Gen(1λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ, σ)

for i = 1 to N(λ) :

y
(i)
1−σ ← fnaPCF.Eval(1− σ, k1−σ, x

(i))

b←$A1(1
λ, σ, st, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

Expfna-secA=(A0,A1),N,σ,1(λ)

(k0, k1)←$ fnaPCF.Gen(1λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ, σ)

for i = 1 to N(λ) :

y(i)
σ ← fnaPCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y(i)

σ)

b←$A1(1
λ, σ, st, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

Fig. 16: Security of a fully non-adaptive PCF. Here, RSample is the algorithm for reverse sampling Y
as in Definition 2. Differences with Figure 16 are highlighted.

4.2.4 Boosting security from PI-PCF to fnaPCF. Having defined the notions of pseudorandom-
input and fully non-adaptive PCFs, we are ready to introduce our transform.

fnaPCF Fully Non-Adaptive PCF from Pseudorandom-Input PCF + naPRF

Requires:

– Y is a reverse-sampleable correlation with input length function n(λ).
– PI-PCF = (PI-PCF.Gen,PI-PCF.Eval) is a pseudorandom-input weak PCF for Y.
– naPRF is a non-adaptive PRF with key space {0, 1}λ, input space {0, 1}n(λ), and output

space {0, 1}n(λ).

fnaPCF.Gen(1λ):

1. knaPRF ←$ {0, 1}λ
2. (kPI-PCF

0 , kPI-PCF
1)←$ PI-PCF.Gen(1λ)

3. For σ ∈ {0, 1}, set kσ ← (knaPRF, k
PI-PCF
σ)

4. Output (k0, k1)

fnaPCF.Eval(σ, kσ, x):

1. Parse kσ as kσ = (knaPRF, k
PI-PCF
σ)

2. x′ ← naPRF(knaPRF, x)
3. Set yσ ← PI-PCF.Eval(σ, kPI-PCF

σ , x′)
4. Output yσ

Fig. 17: Applying a non-adaptive PRF to a pseudorandom-input PCF’s input yields a fully non-
adaptive PCF.

Lemma 24 (PI-PCF ◦ naPRF is a fnaPCF). Applying a non-adaptive PRF to the input of
a pseudorandom-input weak PCF for some correlation Y yields a non-adaptive PCF for the same
correlation Y. More formally, the construction of Figure 17 is a non-adaptive PCF.

Remark 25 (A PI-PCF “for all admissible samplers” is not required). By careful inspection of the
proof of Lemma 24 (and specifically in the hop from hybrid Hyb1 to Hyb2 in Figure 18, and in the same
hop in Figure 19), one may observe that all is required of the PI-PCF is that it tolerates admissible
samplers of the form “Samn(λ),N(λ) : (x(i))i∈[N(λ)] ←$ A(1λ); knaPRF ←$ {0, 1}λ; For i ∈ [N(λ)],
(x′)(i) ← naPRF(knaPRF, x

(i)); Return ((x′)(i))i∈[N(λ)]”. This relaxation on the notion of a PI-PCF is
the key to plausibly instantiating it under variants of LPN, as discussed in Section 5.2.

Proof of Lemma 24. Let Y be a reverse-sampleable correlation with input length function n(λ), let
PI-PCF = (PI-PCF.Gen,PI-PCF.Eval) be a pseudorandom-input weak PCF for Y, let naPRF be a
non-adaptive PRF with key space {0, 1}λ, input space {0, 1}n(λ), and output space {0, 1}n(λ). Let
fnaPCF = (fnaPCF.Gen, fnaPCF.Eval) be defined as in Figure 17.

21

In order to show that it is a fully non-adaptive PCF, we need to show it has non-adaptively pseudo-
random Y-correlated outputs and that it satisfies fully non-adaptive PCF security. Both reductions
follow along the same lines as the proof of Lemma 13, showing an analogous transformation from
pseudorandom-input PRF to non-adaptive PRF.

1. Non-adaptively pseudorandom Y-correlated outputs. Let N be a polynomial function, and let
A = (A0,A1) be a non-uniform adversary of size B(λ) making at most N(λ) non-adaptive queries.
Without loss of generality, we assume that the state output by A0 are the random coins it used
(recall that A0 outputs N(λ) naPRF inputs as well as its state, to be passed to the distinguisher
A1); we denote ℓ0 the length of this state/randomness.
Consider the sequence of hybrids Hyb0,Hyb1,Hyb2,Hyb3 as defined in Figure 18.
We now show these hybrids to be indistinguishable.
– H0 ≡ H1: This follows from the observation that H0 and H1 are code-equivalent; we simply

inlined the definitions of fnaPCF.Gen and fnaPCF.Eval, then introduced Samn(λ),N(λ).
– H1

c
≈ H2: By security of the non-adaptive PRF naPRF, the sampler Samn(λ),N(λ) is admis-

sible (Definition 10). Since the outputs of PI-PCF are PI-pseudorandom Y-correlated and
Samn(λ),N(λ) is admissible, H1

c
≈ H2.

– H2 ≡ H3: H2 and H3 are code-equivalent (as the highlighted lines define random variables
never subsequently used).

2. Fully Non-adaptive PCF security. Let σ ∈ {0, 1}. Let N be a polynomial function, and let A =
(A0,A1) be a non-uniform adversary of size B(λ) making at most N(λ) non-adaptive queries.
Without loss of generality, we assume that the state output by A0 are the random coins it used
(recall that A0 outputs N(λ) naPRF inputs as well as its state, to be passed to the distinguisher
A1); we denote ℓ0 the length of this state/randomness.
Consider the sequence of hybrids Hyb0,Hyb1,Hyb2,Hyb3 as defined in Figure 19.
We now show these hybrids to be indistinguishable.
– H0 ≡ H1: This follows from the observation that H0 and H1 are code-equivalent.
– H1

c
≈ H2: By security of the non-adaptive PRF naPRF, the sampler Samn(λ),N(λ) is admis-

sible (Definition 10). By applying PI-PCF security of PI-PCF, with the admissible sampler
Samn(λ),N(λ), we immediately get that H1

c
≈ H2.

– H2 ≡ H3: This follows from the observation that H2 and H3 are code-equivalent (Completely
analogously to how H1 and H1, as these games use the same primitives of Samn(λ),N(λ),
fnaPCF.Gen, and fnaPCF.Eval).

4.3 Boosting security from fnaPCF to sPCF.

We now show a transform from a fully non-adaptive to a strong PCF.

sPCF Strong PCF from Fully Non-Adaptive PCF + ELF

Requires:

– Y is a reverse-sampleable correlation with input length function n(λ) (we will be conflating
the sets [2n(λ)] and {0, 1}n(λ) via their natural bijection).

– fnaPCF = (fnaPCF.Gen, fnaPCF.Eval) is a non-adaptive PCF for Y.
– ELF.Gen is an extremely lossy function.

sPCF.Gen(1λ):

1. f ←$ ELF.Gen(2n(λ), 2n(λ))
2. (kfnaPCF

0 , kfnaPCF
1)←$ fnaPCF.Gen(1λ)

3. For σ ∈ {0, 1}, set kσ ← (f, kfnaPCF
σ)

4. Output (k0, k1)

sPCF.Eval(σ, kσ, x):

1. Parse kσ as kσ = (f, kfnaPCF
σ)

2. x′ ← f(x)
3. Set yσ ← fnaPCF.Eval(σ, kfnaPCF

σ , x′)
4. Output yσ

22

Hyb0 = Expna-prA=(A0,A1),N,1(λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ)

(k0, k1)←$ fnaPCF.Gen(1λ)

for i = 1 to N(λ) :

for σ ∈ {0, 1} :

y(i)
σ ← fnaPCF.Eval(σ, kσ, x

(i))

b←$A1(st, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

fnaPCF.Gen(1λ)

knaPRF ←$ {0, 1}λ

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for σ ∈ {0, 1} :
kσ ← (knaPRF, k

PI-PCF
σ)

return (k0, k1)

fnaPCF.Eval(σ, kσ, x)

Parse kσ = (knaPRF, k
PI-PCF
σ)

x′ ← naPRF(knaPRF, x)

yσ ← PI-PCF.Eval(σ, kPI-PCF
σ , x′)

return yσ

Hyb1(λ)

r ←$ {0, 1}λ+ℓ0

((x′)(i))i∈[N(λ)] ← Samn(λ),N(λ)(r)

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for i = 1 to N(λ) :

for σ ∈ {0, 1} :

y
(i)
σ ← PI-PCF.Eval(σ, kPI-PCF

σ , (x′)(i))

b←$A1(r0, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Samn(λ),N(λ)(r) :

knaPRF ← r[0, λ− 1]

r0 ← r[λ, λ+ ℓ0 − 1]

(x(1), . . . , x(N(λ)))←$A0(1
λ; r0)

for i = 1 to N(λ) :

(x′)(i) ← naPRF(knaPRF, x
(i))

return ((x′)(1), . . . , (x′)(N(λ)))

Hyb2(λ)

r ←$ {0, 1}λ+ℓ0

((x′)(i))i∈[N(λ)] ← Samn(λ),N(λ)(r)

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for i = 1 to N(λ) :

(y
(i)
0 , y

(i)
1)←$ Y

b←$A1(r0, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Samn(λ),N(λ)(r) :

knaPRF ← r[0, λ− 1]

r0 ← r[λ, λ+ ℓ0 − 1]

(x(1), . . . , x(N(λ)))←$A0(1
λ; r0)

for i = 1 to N(λ) :

(x′)(i) ← naPRF(knaPRF, x
(i))

return ((x′)(1), . . . , (x′)(N(λ)))

Hyb2(λ) (repeated)

r ←$ {0, 1}λ+ℓ0

r0 ← r[λ, λ+ ℓ0 − 1]

((x′)(i))i∈[N(λ)] ← Samn(λ),N(λ)(r)

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for i = 1 to N(λ) :

(y
(i)
0 , y

(i)
1)←$ Y

b←$A1(r0, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Samn(λ),N(λ)(r) :

knaPRF ← r[0, λ− 1]

r0 ← r[λ, λ+ ℓ0 − 1]

(x(1), . . . , x(N(λ)))←$A0(1
λ; r0)

for i = 1 to N(λ) :

(x′)(i) ← naPRF(knaPRF, x
(i))

return ((x′)(1), . . . , (x′)(N(λ)))

Hyb3 = Expna-prA=(A0,A1),N,0(λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ)

for i = 1 to N(λ) :

(y
(i)
0 , y

(i)
1)←$ Y

b←$A1(st, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

fnaPCF.Gen(1λ)

knaPRF ←$ {0, 1}λ

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for σ ∈ {0, 1} :
kσ ← (knaPRF, k

PI-PCF
σ)

return (k0, k1)

fnaPCF.Eval(σ, kσ, x)

Parse kσ = (knaPRF, k
PI-PCF
σ)

x′ ← naPRF(knaPRF, x)

yσ ← PI-PCF.Eval(σ, kPI-PCF
σ , x′)

return yσ

Fig. 18: Sequence of hybrids for proving non-adaptively pseudorandom Y-correlated outputs in the
proof of Lemma 24.

Fig. 20: Fully non-adaptive PCF + ELF yields a strong PCF.

23

Hyb0 = Expfna-secA=(A0,A1),N,σ,0(λ)

(k0, k1)←$ fnaPCF.Gen(1λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ, σ)

for i = 1 to N(λ) :

y
(i)
1−σ ← fnaPCF.Eval(1− σ, k1−σ, x

(i))

b←$A1(1
λ, σ, st, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

fnaPCF.Gen(1λ)

knaPRF ←$ {0, 1}λ

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for σ ∈ {0, 1} :
kσ ← (knaPRF, k

PI-PCF
σ)

return (k0, k1)

fnaPCF.Eval(σ, kσ, x)

Parse kσ = (knaPRF, k
PI-PCF
σ)

x′ ← naPRF(knaPRF, x)

yσ ← PI-PCF.Eval(σ, kPI-PCF
σ , x′)

return yσ

Hyb1(λ)

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

r ←$ {0, 1}λ+ℓ0

r0 ← r[λ, λ+ ℓ0 − 1]; rnaPRF ← r[0, λ− 1]

(x(i))i∈[N(λ)] ← Samn(λ),N(λ)(r)

for i = 1 to N(λ) :

y
(i)
1−σ ← PI-PCF.Eval(σ, kPI-PCF

1−σ , x(i))

b←$A1(1
λ, σ, r0, r1, k

PI-PCF
σ , (x(i), y

(i)
1−σ)i∈[N(λ)])

return b

Samn(λ),N(λ)(r) :

knaPRF ← r[0, λ− 1]

r0 ← r[λ, λ+ ℓ0 − 1]

(x(1), . . . , x(N(λ)))←$A0(1
λ; r0)

for i = 1 to N(λ) :

(x′)(i) ← naPRF(knaPRF, x
(i))

return ((x′)(1), . . . , (x′)(N(λ)))

Hyb2(λ)

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

r ←$ {0, 1}λ+ℓ0

r0 ← r[λ, λ+ ℓ0 − 1]; rnaPRF ← r[0, λ− 1]

(x(i))i∈[N(λ)] ← Samn(λ),N(λ)(r)

for i = 1 to N(λ) :

y
(i)
σ ← PI-PCF.Eval(σ, kPI-PCF

σ , (x′)(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y

(i)
σ)

b←$A1(1
λ, σ, r0, r1, k

PI-PCF
σ , (x(i), y

(i)
1−σ)i∈[N(λ)])

return b

Samn(λ),N(λ)(r) :

knaPRF ← r[0, λ− 1]

r0 ← r[λ, λ+ ℓ0 − 1]

(x(1), . . . , x(N(λ)))←$A0(1
λ; r0)

for i = 1 to N(λ) :

(x′)(i) ← naPRF(knaPRF, x
(i))

return ((x′)(1), . . . , (x′)(N(λ)))

Hyb2(λ)

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

r ←$ {0, 1}λ+ℓ0

r0 ← r[λ, λ+ ℓ0 − 1]; rnaPRF ← r[0, λ− 1]

((x′)(i))i∈[N(λ)] ← Samn(λ),N(λ)(r)

for i = 1 to N(λ) :

y
(i)
σ ← PI-PCF.Eval(σ, kPI-PCF

σ , (x′)(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y(i)

σ)

b←$A1(1
λ, σ, r0, r1, k

PI-PCF
σ , (x(i), y

(i)
1−σ)i∈[N(λ)])

return b

Samn(λ),N(λ)(r) :

knaPRF ← r[0, λ− 1]

r0 ← r[λ, λ+ ℓ0 − 1]

(x(1), . . . , x(N(λ)))←$A0(1
λ; r0)

for i = 1 to N(λ) :

(x′)(i) ← naPRF(knaPRF, x
(i))

return ((x′)(1), . . . , (x′)(N(λ)))

Hyb3 = Expfna-secA=(A0,A1),N,σ,1(λ)

(k0, k1)←$ fnaPCF.Gen(1λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ, σ)

for i = 1 to N(λ) :

y
(i)
σ ← fnaPCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y(i)

σ)

b←$A1(1
λ, σ, st, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

fnaPCF.Gen(1λ)

knaPRF ←$ {0, 1}λ

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for σ ∈ {0, 1} :
kσ ← (knaPRF, k

PI-PCF
σ)

return (k0, k1)

fnaPCF.Eval(σ, kσ, x)

Parse kσ = (knaPRF, k
PI-PCF
σ)

x′ ← naPRF(knaPRF, x)

yσ ← PI-PCF.Eval(σ, kPI-PCF
σ , x′)

return yσ

Fig. 19: Sequence of hybrids for proving fnaPCF security in the proof of Lemma 24.

Lemma 26 (fnaPCF ◦ ELF is a sPCF). Applying an ELF to the input of a fully non-adaptive
PCF for some correlation Y yields a strong PCF for the same correlation Y. More formally, the
construction of Figure 20 is a strong PCF.

Proof. Let Y be a reverse-sampleable correlation with input length function n(λ), let fnaPCF =
(fnaPCF.Gen, fnaPCF.Eval) be a pseudorandom-input weak PCF for Y, let ELF.Gen be an extremely
lossy function. Let sPCF = (sPCF.Gen, sPCF.Eval) be defined as in Figure 20.
In order to show that it is a strong PCF, we need to show it has strongly pseudorandom Y-correlated
outputs and that it satisfies strong PCF security. Both reductions follow along the same lines as the
proof of Lemma 14, showing an analogous transformation from non-adaptive PRF to strong PRF.

1. Strongly pseudorandom Y-correlated outputs. Let A be an non-uniform adversary of size B(λ)
asking at most N(λ) queries to the oracle Ob(·) (as defined in Figure 5)

24

Consider the sequence of hybrids (Hybi)i∈[0,9], as defined in Figures 21 to 23.

Hyb0(1
λ)

(k0, k1)←$ sPCF.Gen(1λ)

b←$AO1(·)(1λ)

return b

O1(x)

for σ ∈ {0, 1} :
yσ ← sPCF.Eval(σ, kσ, x)

return (y0, y1)

Hyb1(1
λ)

f ←$ ELF.Gen(2n(λ), 2n(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

b←$AO1(·)(1λ)

return b

O1(x)

for σ ∈ {0, 1} :
yσ ← fnaPCF.Eval(σ, kfnaPCF

σ , f(x))

return (y0, y1)

Hyb2(1
λ)

f ←$ ELF.Gen(2n(λ), N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

b←$AO1(·)(1λ)

return b

O1(x)

for σ ∈ {0, 1} :
yσ ← fnaPCF.Eval(σ, kfnaPCF

σ , f(x))

return (y0, y1)

inline sPCF ELF indist. ELF enum. Im

Fig. 21: Sequence of hybrids for proving strongly pseudorandom Y-correlated outputs in the proof of
lemma 26 (Part 1/3). Hyb0 = Exps-prA,1(λ).

Hyb3(1
λ)

f ←$ ELF.Gen(2n(λ), N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

Q ← ∅
for z ∈ Im(f) :

y0 ← fnaPCF.Eval(0, kfnaPCF
0 , z)

y1 ← fnaPCF.Eval(1, kfnaPCF
1 , z)

Q ← Q∪ {(z, y0, y1)}

b←$AO1(·)(1λ)

return b

O1(x)

if (f(x), y0, y1) ∈ Q :

return (y0, y1)

else return ⊥

Hyb4(1
λ) Hyb5(1

λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ)

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

for i = 1 . . . N(λ) :

y
(i)
0 ← fnaPCF.Eval(0, kfnaPCF

0 , x(i))

y
(i)
1 ← fnaPCF.Eval(1, kfnaPCF

1 , x(i))

(y
(i)
0 , y

(i)
1)←$ Y

b←$A1(st, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

A0(1
λ)

rELF ←$ {0, 1}λ

f ←$ ELF.Gen(2n(λ), N(λ); rELF)

st← rELF

return ((z)z∈Im(f), f)

A1(st, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

f ←$ ELF.Gen(2n(λ), N(λ); st)

(x(i))i∈[N(λ)] ← (z)z∈Im(f)

Q ← {(x(i), y
(i)
0 , y

(i)
1) : i ∈ [N(λ)]}

Define: O1(·) : X 7→ (Y0, Y1)

s.t. (X,Y0, Y1) ∈ Q

b←$AO1(·)(1λ)

return b

Hyb6(1
λ)

f ←$ ELF.Gen(2n(λ), N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

Q ← ∅
for z ∈ Im(f) :

(y0, y1)←$ Y
Q ← Q∪ {(z, y0, y1)}

b←$AO0(·)(1λ)

return b

O0(x)

if (f(x), y0, y1) ∈ Q :

return (y0, y1)

else return ⊥

split adversary fnaPCF merge adversary ELF enum. Im.

Fig. 22: Sequence of hybrids for proving strongly pseudorandom Y-correlated outputs in the proof of
Lemma 26 (Part 2/3).

25

Hyb7(1
λ)

f ←$ ELF.Gen(2n(λ), N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

b←$AO0(·)(1λ)

return b

O0(x)

if (x, y0, y1) ∈ Q :

return (y0, y1)

else :

(y0, y1)←$ Y(1λ)
Q ← Q∪ {(x, y0, y1)}
return (y0, y1)

Hyb8(1
λ)

f ←$ ELF.Gen(2n(λ), 2n(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

b←$AO0(·)(1λ)

return b

O0(x)

if (x, y0, y1) ∈ Q :

return (y0, y1)

else :

(y0, y1)←$ Y(1λ)
Q ← Q∪ {(x, y0, y1)}
return (y0, y1)

Hyb9(1
λ)

(k0, k1)←$ sPCF.Gen(1λ)

Q ← ∅

b←$AO0(·)(1λ)

return b

O0(x)

if (x, y0, y1) ∈ Q :

return (y0, y1)

else :

(y0, y1)←$ Y(1λ)
Q ← Q∪ {(x, y0, y1)}
return (y0, y1)

ELF indist. inline sPCF

Fig. 23: Sequence of hybrids for proving strongly pseudorandom Y-correlated outputs in the proof of
lemma 26 (Part 3/3). Hyb9 = Exps-prA,0(λ)

Let us now show these hybrids to be instinguishable.
– Hyb0 ≡ Hyb1: These hybrids are code equivalent, we simply “inlined” the codes of sPCF.Gen

and sPCF.Eval.
– Hyb1

c
≈ Hyb2: These hybrids are indistinguishable by security of ELF. Indeed otherwise, the

PPT process of running fnaPCF.Gen, emulating O1, and running AO1(·) would constitute an
efficient distinguisher for the ELF security game.

– Hyb2 ≡ Hyb3: These hybrids are code-equivalent; observe that we simply moved the brunt of
the work of O1 to a pre-processing phase inside Hyb3.

– Hyb3 ≡ Hyb4: These hybrids are code-equivalent; we simply reorganised the code to introduce
A0 and A1.

– Hyb4
c
≈ Hyb5: These hybrids are indistinguishable by the property of non-adaptively pseudo-

random Y-correlated outputs of fnaPCF.
– Hyb5 ≡ H6: These hybrids are code equivalent (this hop is essentially the reverse of the

transformation from Hyb3 to Hyb4).
– Hyb6 ≡ Hyb7: These hybrids are code equivalent (this hop is essentially the reverse of the

transformation from Hyb2 to Hyb3).
– Hyb7

c
≈ Hyb8: These hybrids are indistinguishable by security of ELF (with the exact same

argument used to show Hyb1
c
≈ Hyb2).

– Hyb8 ≡ Hyb9: These hybrids are code equivalent (this hop is essentially the reverse of the
transformation from Hyb0 to Hyb1).

2. Strong PCF security. Let σ ∈ {0, 1}. Let A be an non-uniform adversary of size B(λ) asking at
most N(λ) queries to the oracle Ob(·) (as defined in Figure 6).
Consider the sequence of hybrids (Hybi)i∈[0,9], as defined in Figures 24 to 26.
Let us now show these hybrids to be instinguishable.
– Hyb0 ≡ Hyb1: These hybrids are code equivalent, we simply “inlined” the codes of sPCF.Gen

and sPCF.Eval.
– Hyb1

c
≈ Hyb2: These hybrids are indistinguishable by security of ELF. Indeed otherwise, the

PPT process of running fnaPCF.Gen, emulating O1, and running AO1(·) would constitute an
efficient distinguisher for the ELF security game.

– Hyb2 ≡ Hyb3: These hybrids are code-equivalent; observe that we simply moved the brunt of
the work of O1 to a pre-processing phase inside Hyb3.

– Hyb3 ≡ Hyb4: These hybrids are code-equivalent; we simply reorganised the code to introduce
A0 and A1.

– Hyb4
c
≈ Hyb5: These hybrids are indistinguishable by the property of fully non-adaptive PCF

security of fnaPCF.

26

Hyb0 = Exps-secA,1,σ(λ)

(k0, k1)←$ sPCF.Gen(1λ)

b←$AO1(·)(1λ)

return b

O1(x)

yσ ← sPCF.Eval(σ, kσ, x)

y1−σ ← Rsample(1λ, σ, yσ)

return y1−σ

sPCF.Gen(1λ)

f ←$ ELF.Gen(2n(λ), 2n(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

for σ ∈ {0, 1} : kσ ← (f, kfnaPCF
σ)

return (k0, k1)

sPCF.Eval(σ, kσ, x)

Parse kσ as kσ = (f, kfnaPCF
σ)

x′ ← f(x)

yσ ← fnaPCF.Eval(σ, kfnaPCF
σ , x′)

return yσ

Hyb1(1
λ) Hyb2(1

λ)

f ←$ ELF.Gen(2n(λ), 2n(λ) N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

b←$AO1(·)(1λ)

return b

O1(x)

yσ ← fnaPCF.Eval(σ, kσ, x)

y1−σ ← Rsample(1λ, σ, yσ)

return y1−σ

Hyb3(λ)

f ←$ ELF.Gen(2n(λ), N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

Q ← ∅
for z ∈ Im(f) :

yσ ← fnaPCF.Eval(σ, kfnaPCF
σ , z)

y1−σ ← Rsample(1λ, σ, yσ)

Q ← Q∪ {(z, y1−σ)}

b←$AO1(·)(1λ)

return b

O1(x)

if (f(x), y1−σ) ∈ Q :

return y1−σ

else :

return ⊥

Fig. 24: Sequence of hybrids for proving strong PCF security in the proof of Lemma 26 (Part 1/3).

– Hyb5 ≡ Hyb6: These hybrids are code equivalent (this hop is essentially the reverse of the
transformation from Hyb3 to Hyb4).

– Hyb6 ≡ Hyb7: These hybrids are code equivalent (this hop is essentially the reverse of the
transformation from Hyb2 to Hyb3).

– Hyb7
c
≈ Hyb8: These hybrids are indistinguishable by security of ELF (with the exact same

argument used to show Hyb1
c
≈ Hyb2).

– Hyb8 ≡ Hyb9: These hybrids are code equivalent (this hop is essentially the reverse of the
transformation from Hyb0 to Hyb1).

By combining Lemmas 24 and 26 we immediately get Corollary 27.

Corollary 27 (PI-PCF◦naPRF◦ELF is a sPCF). Applying an ELF then a non-adaptive PRF
to the input of a pseudorandom-input weak PCF for some correlation Y yields a strong PCF for the
same correlation Y.

5 Candidate PI-PRFs and PI-PCFs

Our work introduces PI-PRFs as a strengthening of wPRFs. In this section, we overview several wPRF
candidates, which are at the heart of some of the most efficient OPRFs and the most efficient PCFs
known to date. For each of the candidates, we analyze the most natural families of attacks against
their security:

Statistical query attacks. The complexity of the [BIP+18] wPRF lies just barely above AC0 which
does not contain wPRF (with better than quasi-polynomial security) due to statistical query at-
tacks [LMN89] . [BIP+18] show that their construction withstands statistical query attacks as a
wPRF, and we show that their construction also withstands statistical query attacks as a PI-PRF.

27

Hyb4(λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ, σ)

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

for i = 1 . . . N(λ) :

y(i)
σ ← fnaPCF.Eval(σ, kfnaPCF

σ , x(i))

y
(i)
1−σ ← Rsample(1λ, σ, y(i)

σ)

b←$A1(1
λ, σ, st, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

A0(1
λ, σ)

rELF ←$ {0, 1}λ

f ←$ ELF.Gen(2n(λ), N(λ); rELF)

st← rELF

return ((z)z∈Im(f), f)

A1(1
λ, σ, st, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

f ←$ ELF.Gen(2n(λ), N(λ); st)

(x(i))i∈[N(λ)] ← (z)z∈Im(f)

Q ← {(x(i), y
(i)
1−σ) : i ∈ [N(λ)]}

Define: O1(·) : X 7→ Y1−σ s.t. (X,Y1−σ) ∈ Q

b←$AO1(·)(1λ)

return b

Hyb5(λ)

((x(i))i∈[N(λ)], st)←$A0(1
λ, σ)

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

for i = 1 . . . N(λ) :

y
(i)
1−σ ← fnaPCF.Eval(1− σ, kfnaPCF

1−σ , x(i))

b←$A1(1
λ, σ, st, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

A0(1
λ, σ)

rELF ←$ {0, 1}λ

f ←$ ELF.Gen(2n(λ), N(λ); rELF)

st← rELF

return ((z)z∈Im(f), f)

A1(1
λ, σ, st, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

f ←$ ELF.Gen(2n(λ), N(λ); st)

(x(i))i∈[N(λ)] ← (z)z∈Im(f)

Q ← {(x(i), y
(i)
1−σ) : i ∈ [N(λ)]}

Define: O1(·) : X 7→ Y1−σ s.t. (X,Y1−σ) ∈ Q

b←$AO1(·)(1λ)

return b

Fig. 25: Sequence of hybrids for proving strong PCF security in the proof of Lemma 26 (Part 2/3).

Hyb6(λ)

f ←$ ELF.Gen(2n(λ), N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

Q ← ∅
for z ∈ Im(f) :

y
(i)
1−σ ← fnaPCF.Eval(1− σ, kfnaPCF

1−σ , z)

Q ← Q∪ {(z, y1−σ)}

b←$AO1(·)(1λ)

return b

O1(x)

if (f(x), y1−σ) ∈ Q :

return y1−σ

else return ⊥

Hyb7(1
λ) Hyb8(1

λ)

f ←$ ELF.Gen(2n(λ), N(λ) 2n(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

b←$AO0(·)(1λ)

return b

O0(x)

y1−σ ← fnaPCF.Eval(1− σ, k1−σ, x)

return y1−σ

Hyb9 = Exps-secA,0,σ(λ)

(k0, k1)←$ sPCF.Gen(1λ)

b←$AO0(·)(1λ)

return b

O0(x)

yσ ← sPCF.Eval(σ, kσ, x)

y1−σ ← Rsample(1λ, σ, yσ)

return y1−σ

Fig. 26: Sequence of hybrids for proving strong PCF security in the proof of Lemma 26 (Part 3/3).

28

Linear tests. The wPRFs at the heart of the leading PCF candidates in [BCG+20] and [BCG+22]
are both are LPN-style constructions. Thus, we analyze their security against attacks from the linear
test framework, which captures most known attacks on the LPN assumption and its many variants.
For both, we establish win-win results, showing that finding a linear attack against the assumption
that these candidates are PI-PRF would have surprising consequences.

Our analysis provides support to the notion of PI-PRF, showing that natural wPRF candidates
used in leading applications are plausibly also PI-PRF. Furthermore, we note that all of the above
candidates are provably not strong PRFs.

5.1 Pseudorandom-Input PRF Candidates

A very efficient wPRF candidate is FK(x) = map(K · x), where K is a matrix, x is a vector, K · x
denotes matrix-vector multiplication, and map is some fixed mapping which, on input a vector y,
returns

∑
i[yi mod 2] mod 3 [BIP+18]. We investigate whether this wPRF candidate might also be a

PI-PRF. To support the security of their candidate, one of the main arguments used by the authors
of [BIP+18] is that with high probability over K, the function FK does not correlate with any fixed
sufficiently small function family. This implies that their candidate cannot be broken by statistical
query algorithms [ABG+14]. The lack of correlation with any sufficiently small function family is
formalized as follows:

Lemma 28 ([BIP+18]). Let H = {h : {0, 1}λ 7→ {−1, 0, 1}} be a collection of functions of size s.
Then

Pr
K

[
∃h ∈ H

∣∣∣∣ Prx [map(K · x) = h(x)] >
1

3
+

1

2λ−1
+ ε

]
≤ 5s

2λ · ε2
.

Note that the factor 1
3 appears in the above inequality, since the outputs of the wPRF are over

{−1, 0, 1} rather than {0, 1}. Lemma 28 refers to a probability over uniformly random inputs x to
the function, and thus, it is only meaningful when the function is used as a wPRF. In turn, we
are interested in the setting where the inputs are given by an admissible sampler Sam that returns
pseudorandom inputs. We show that the candidate of [BIP+18] is in fact also immunised against all
correlation attacks against its PI-PRF security.

Theorem 29. Let H = {h : {0, 1}λ 7→ {−1, 0, 1}} be a collection of functions of size s. Then there
exists a negligible function negl(λ) such that

Pr
K

[
∃h ∈ H,Pr

r,i
[map(K · Sami(r)) = h(r, i)] >

1

3
+ negl(λ) + ε

]
≤ s

ε2
· negl(λ).

In the above theorem, the inner probability is over the random choice of the randomness r of the
sampler, and of the index i of the sampler output (i.e. if Sam(r) outputs (x1, · · · , xq), we write Sami(r)
for the function that returns xi). Theorem 29 implies that the PI-PRF security of the candidate
of [BIP+18] cannot be broken by statistical query analysis, an important class of attacks against
wPRFs. In particular, this captures the attack of Linial, Mansour, and Nisan [LMN89] which breaks
all candidates wPRFs in AC0 in quasipolynomial time.

Remark. The term negl(λ) in Theorem 29 directly comes from the negligible bound on the proba-
bility that any polynomial-time adversary distinguishes the sampler output from random. Stronger
assumptions on the admissible sampler, such as subexponential or exponential pseudorandomness,
directly translate to a corresponding smaller negl(λ) term in Theorem 29.

Proof. Let Sam = Samλ,p : {0, 1}ℓ 7→ ({0, 1}λ)p denote an admissible sampler. Fix any i ≤ p and let
Si denote Sam−1i (0λ) := {r ∈ {0, 1}ℓ : Sami(r) = 0λ}.
Claim. For any i ≤ p, there exists a negligible function negl(λ) such that |Si|/2ℓ = negl(λ).

Proof. Assume towards contradiction that there exists i ≤ p and a polynomial q(λ) such that |Si|/2ℓ ≥
1/q(λ). Let A denote the following adversary against the pseudorandomness of Sam: given a tuple
(x1, · · · , xp), A outputs 1 if xi = 0, and returns a uniformly random bit otherwise. Observe that

|Prr←${0,1}ℓ [1 = A(Samλ,p(r))]− Pr∀i:xi←${0,1}λ [1 = A(x1, · · · , xp)]|

≥
∣∣∣∣ 1

q(λ)
− 1

2λ

∣∣∣∣ > 1

2q(λ)
,

29

which contradicts the assumption that Sam is an admissible sampler.

Let TM ← maxi≤p |Sam−1i (0λ)| and Tm ← mini≤p |Sam−1i (0λ)|. Note that by the above claim, Tm/2ℓ

and TM/2ℓ are both negligible in λ. The rest of the proof largely follows the analysis of [BIP+18], and
adapts it to our setting. Along the way, we also fix a minor bug in the original analysis (we notified
the authors). Let 1(a, b) denote the indicator function which outputs 1 iff a = b, and 0 otherwise. Fix
a single h ∈ H; then, we will conclude with a union bound over all elements of H. First, we consider
the following expectation, which we bound in both directions:

EK

[
Pr
r,i
[map(K · Sami(r)) = h(r, i)]

]
= EK [Er,i[1(map(K · Sami(r)), h(r, i))]]

=Er,i[EK [1(map(K · Sami(r)), h(r, i))]] ≤ max
i

Er[EK [1(map(K · Sami(r)), h(r, i))]]

=max
i

1

2ℓ
·

 ∑
r:Sami(r)=0λ

1(0λ, h(r, i)) +
∑

r:Sami(r) ̸=0λ

EK [1(map(K · Sami(r)), h(r, i))]

≤TM

2ℓ
+ max

r,i:Sami(r)̸=0λ
EK [1(map(K · Sami(r)), h(r, i))], using 1(0λ, h(r, i)) ≤ 1.

Now, for any fixed r, i such that Sami(r) ̸= 0λ, the vector K · Sami(r) is uniformly distributed over
{0, 1}λ, independently of h(r, i). As shown in [BIP+18], 1/3−1/2λ ≤ Ey[1(y, b)] ≤ 1/3+1/2λ for any
b, hence

EK

[
Pr
r,i
[map(K · Sami(r)) = h(r, i)]

]
≤ TM

2ℓ
+

1

3
+

1

2λ
.

In the other direction:

EK

[
Pr
r,i
[map(K · Sami(r)) = h(r, i)]

]
≥ min

i
Er[EK [1(map(K · Sami(r)), h(r, i))]]

=min
i

1

2ℓ
·

 ∑
r:Sami(r)=0λ

1(0λ, h(r, i)) +
∑

r:Sami(r)̸=0λ

EK [1(map(K · Sami(r)), h(r, i))]

≥2ℓ − Tm

2ℓ
· min
r,i:Sami(r)̸=0λ

EK [1(map(K · Sami(r)), h(r, i))], using 1(0λ, h(r, i)) ≥ 0.

Using again the fact that whenever Sami(r) ̸= 0λ, the vector K · Sami(r) is uniformly distributed
over {0, 1}λ, since Ey[1(y, b)] ≥ 1/3− 1/2λ for any b,

EK

[
Pr
r,i
[map(K · Sami(r)) = h(r, i)]

]
≥ 2ℓ − Tm

2ℓ
·
(
1

3
− 1

2λ

)
.

To finish the proof, as in [BIP+18], we use the Bienaymé-Chebyshev inequality, which states that for
any random variable X with finite expected value µ and finite non-zero variance σ2, for any k > 0,
Pr[|X − µ| > kσ] ≤ 1/k2. This yields

Pr
K

[
∃h ∈ H

∣∣∣∣ Prr,i
[map(K · Sami(r)) = h(r, i)] >

1

3
+

1

2λ
+

TM

2ℓ
+ ε

]
≤ σ2

ε2

with 1
2λ

+ TM

2ℓ
+ε = 1

3 +negl(λ)+ε and to conclude we need to bound the variance EK [Er,i[1(map(K ·
Sami(r)), h(r, i))]

2] which is equal to

EK [Er,i[1(map(K · Sami(r)), h(r, i))] · Er′,i′ [1(map(K · Sami′(r
′)), h(r′, i′))]]

≤max
i,i′

Er,r′ [EK [1(map(K · Sami(r)), h(r, i))] · Er′,i′ [1(map(K · Sami′(r
′)), h(r′, i′))]]

≤
(
1

3
+

1

2λ

)2

+
1 + 2TM

2ℓ
,

30

where the last inequality follows from the fact that when r ̸= r′, Sami(r) ̸= 0λ, and Sami′(r
′) ̸= 0λ

(which happens for a fraction at least (1+2TM)/2ℓ of all strings), then K ·Sami(r) and K ·Sami′(r
′)

are uniformly and independently distributed. Eventually, using the definition of the variance,

σ2 ≤
(
1

3
+

1

2λ

)2

+
1 + 2TM

2ℓ
−

(
2ℓ − Tm

2ℓ
·
(
1

3
− 1

2λ

))2

=

(
1

3
+

1

2λ

)2

−
(
1

3
− 1

2λ

)2

+
1 + 2TM

2ℓ
+

(
Tm

2ℓ
·
(
1

3
− 1

2λ

))2

≤ 4

3 · 2λ
+

1 + 2TM

2ℓ
+

T 2
m

9 · 22ℓ
.

Since TM/2ℓ and Tm/2ℓ are both negligible in λ, this yields σ2 ≤ negl(λ). We conclude the proof via
a union bound over the s functions h ∈ H.

5.2 Implications for Existing PCFs

In this section, we discuss the implications of our result for existing PCF constructions. Currently,
there are two main constructions of weak PCFs: a candidate put forth in [BCG+20] (recently refined
in [CD23]) and a candidate put forth in [BCG+22]. Both candidates follow a common template, which
(at a high level) wraps a particular cryptographic primitive (a function secret-sharing scheme for
multipoint functions, or MP-FSS) around a code-based low-complexity wPRF candidate. To apply
our compiler, the weak PCF candidates of [BCG+20, BCG+22] must satisfy the stronger PI-PCF
security notion, which directly translate to assuming that the underlying wPRF is a PI-PRF. Below,
we recall both candidates and show that falsifying the assumption that the underlying wPRF is a
PI-PRF would have interesting and surprising consequences.

5.2.1 The two wPRF candidates. Both the candidate of [BCG+20,CD23] and the candidate
of [BCG+22] apply the same transform to a base wPRF which reduces to a variant of the learning
parity with noise (LPN) assumption. These two assumptions are called respectively variable-density
LPN and expand-accumulate LPN. In the following, N = 2D is a bound on the maximum number of
samples that an adversary can obtain (where D = D(λ) is polynomial in the security parameter).

Variable-Density LPN. Fix parameters par = (λ,D,N = 2D). Let Rλ,i be the distribution of random
λ-regular vectors over F λ·2i

2 : that is, a sample from Rλ,i is obtained by concatenating λ independent
length-2i unit vectors. We let Hi

vd(par) denote the distribution over N × (λ · 2i) matrices over F2
where each row is sampled independently from Rλ,i, and Hvd(par) denote the distribution over FN×2N

2

obtained by sampling Hi ←$ Hi
vd(par) for i = 1 to D and outputting H = H1|| · · · ||HD. Eventually,

we denote by Nvd(par) the noise distribution obtained by sampling e⃗⊺i ←$ Rλ,i and outputting e⃗ ←
(e⃗1// · · · //e⃗D) ∈ F 2N

2 (that is, e⃗⊺ is distributed as a row of H).

Definition 30 (VDLPN(λ,D,N)). The variable-density learning parity with noise assumption with
sparsity λ, D blocks, and number of samples N , denoted VDLPN(λ,D,N), states that

{(H, b⃗) | H ←$Hvd(par), e⃗←$Nvd(par), b⃗← H · e⃗}
c
≈{(H, b⃗) | H ←$Hvd(par), b⃗←$ FN

2 }.

The VDLPN assumption parametrized with any D = poly(λ) immediately yields a wPRF F :

– The vector e⃗←$Nvd(par) defines the secret key of F .
– On input a random x←$ {0, 1}λ·

∑
i≤D i, parse x into D blocks xi of λ · i bits, each divided into λ

strings xi,j ∈ {0, 1}i. Map each xi,j to the length-2i unit vector which has a 1 at xi,j . Let map(x)
denote the concatenation of all these unit vectors. Output Fe⃗(x) = map(x)⊺ · e⃗.

For a random x, by construction, map(x) is equally distributed to sampling a uniformly random
column of H. Therefore, breaking the security of the above wPRF after receiving N samples is
equivalent to breaking the VDLPN assumption.

31

Expand-Accumulate LPN. Fix parameters par = (λ, c,N). N is the number of samples, c is a matrix
sparsity parameter (typically c = Θ(logN) or ω(logN)), and λ is the Hamming weight of the noise.
Let ∆N denote a 5N -by-5N lower triangular matrix filled with ones. We let Hea(par) denote the
distribution obtained by sampling an N -by-5N matrix M whose entries are independent Bernoulli
sample equal to 1 with probability c/2N , and outputting H = M ·∆N . We denote by Nea(par) the
distribution obtained by concatenating t random unit vectors of length N/t.

Definition 31 (EALPN(λ, c,N)). The expand-accumulate learning parity with noise assumption
with noise weight λ, matrix sparsity c, and number of samples N , denoted EALPN(λ, c,N), states
that

{(H, b⃗) | H ←$Hea(par), e⃗←$Nea(par), b⃗← H · e⃗}
c
≈{(H, b⃗) | H ←$Hea(par), b⃗←$ FN

2 }.

5.2.2 Security against linear tests. Both the VDLPN and the EALPN assumptions are recent
assumptions, introduced in [BCG+20] and [BCG+22], respectively. To provide support for VDLPN
and EALPN, a natural approach is to analyze their security against standard attacks. In the context
of LPN variants, the linear test framework (which has its roots in the seminal works of Naor and
Naor [NN90] and of Mossel, Shpilka, and Trevisan [MST03], first explicitly put forth in [BCG+20]
and further used in multiple subsequent works [BCG+21,CRR21,BCG+22,CD23]) provides a unified
way to argue security against most standard attacks against LPN (such as Information-Set Decoding
(ISD), or Blum-Kalai-Wassermann-style attacks [BKW03], and many more). Concretely, an attack
against LPN in the linear test framework proceeds in two stages:

1. First, a matrix H is sampled from the matrix distributionH, and fed to the (unbounded) adversary
Adv. The adversary returns a (nonzero) test vector v⃗ = Adv(H).

2. Second, a noise vector e⃗ is sampled from the noise distribution N . The advantage of the adversary
Adv in the linear test game is the bias of the induced distribution v⃗ ·H · e⃗⊺.

To formalize this notion, we recall the definition of the bias of a distribution:

Definition 32 (Bias of a Distribution). Given a distribution D over F n and a vector u⃗ ∈ F n,
the bias of D with respect to u⃗, denoted biasu⃗(D), is equal to

biasu⃗(D) =
∣∣∣∣ Prx⃗∼D

[u⃗ · x⃗⊺ = 0]− Pr
x⃗∼Un

[u⃗ · x⃗⊺ = 0]

∣∣∣∣ = ∣∣∣∣ Prx⃗∼D
[u⃗ · x⃗⊺ = 0]− 1

|F |

∣∣∣∣ ,
where Un denotes the uniform distribution over F n. The bias of D, denoted bias(D), is the maximum
bias of D with respect to any nonzero vector u⃗.

We say that an instance of the syndrome decoding problem is secure against linear test if, with very
high probability over the sampling of H in step 1, for any possible adversarial choice of v⃗ = Adv(H),
the bias of v⃗ · H · e⃗⊺ induced by the random sampling of e⃗ is negligible. Intuitively, the linear test
framework captures any attack where the adversary is restricted to computing a linear function of
the syndrome b⃗⊺ = H · e⃗⊺, but the choice of the linear function itself can depend arbitrarily on the
code. Hence, the adversary is restricted in one dimension (it has to be linear in b⃗⊺), but can run in
unbounded time given H. Then, we say that an LPN-style assumption (ε, δ)-fools linear tests if

Pr
H
[bias(DH) > δ] ≤ ε,

where DH denotes the distribution which samples e⃗ and outputs the LPN samples H · e⃗. The following
shows that VDLPN cannot be broken by attacks from the linear test framework, which provides strong
support for its security:

Theorem 33 ([BCG+20], informal). VDLPN(λ,D, 2D) with D = Ω(λ) (2−Ω(λ), 2−Ω(λ))-fools lin-
ear tests.

5.2.3 From security against linear tests to large minimum distance. A statement regarding
security against linear tests is, under the hood, a statement about the minimum distance of a linear
code whose parity-check matrix H ′ is related to H. Below, we make this explicit for VDLPN and
EALPN. In the case of VDLPN, it requires a little bit of work to exhibit the right matrix.

32

For VDLPN. Given matrices M1, · · · ,Mn (for some n), we let BD(M1, · · · ,Mn) denote the block-
diagonal matrix whose diagonal blocks are the Mj ’s. Let Ii ∈ F 2i×2D

2 denote the horizontal con-
catenation of 2D−i identity matrices of size 2i × 2i (for any t), and let Bi ← BD(Ii, · · · , Ii) (where
the number of blocks is equal to λ). We observe that the distribution Nvd(par) can be equivalently
described as follows: sample u⃗ as the concatenation of λ · D length-2D unit vectors, and output
e⃗ = BD(B1, · · · , BD) · u⃗. Note also that BD(B1, · · · , BD) is a fixed matrix.
Now, sample H ←$ Hvd(par) and define H ′ ← H · BD(B1, · · · , BD). The VDLPN assumption is
equivalent to the following assumption: given (H ′, b⃗), it is hard to distinguish whether b⃗ is random,
or b⃗ = H ′ · u⃗, where u⃗ is sampled as above. Then, we have the following simple lemma (proven in
lemma 34):

Lemma 34. The code generated by the rows of H ′ has minimum distance at least w = ln(1/δ)/4 =
Ω(λ), with probability at least 1− ε over the choice of H ′.

Proof. The proof is relatively simple. Assume towards contradiction that with probability larger than
ε, the code generated by the rows of H ′ does not have minimum distance w. This means that with
probability ε′ > ε, there exists a vector v⃗ such that v⃗⊺ ·H ′ has Hamming weight less than w. Then,

biasv⃗(DH) =

∣∣∣∣1/2− Pr
u⃗
[v⃗⊺ ·H ′ · u⃗ = 1]

∣∣∣∣ ≥ (
1− 2w

λD

)λD

> δ,

which is a contradiction. Above, the bound on the bias follows from the piling-up lemma (which
bounds the probability that a XOR of independent samples from a Bernoulli distribution equals 1,
with equality when the nonzero entries of v⃗⊺ ·H ′ are spread equally among the λD blocks of length 2D)
and the second inequality follows from the standard inequality (1−1/n)n ≥ e−1 ·(1−1/n) > e−2.

For EALPN. In the case of EALPN, this is actually much more direct: the matrix H ′ is simply equal
to H = M · ∆N (where M is a random sparse matrix and ∆N a lower triangle of ones). In fact,
security against linear test is directly stated as a theorem about the minimum distance of the code
spanned by H in [BCG+22]:

Lemma 35 ([BCG+22], Theorem 3.10). Fix a parameter c = ω(logN). The code generated by
the rows of H = M ·∆N has minimum distance at least Ω(N), with probability at least 1 − N−ω(1)

over the choice of H.

5.2.4 A win-win result for PI-PRF security against linear tests. Equipped with the above
results, we return to our initial question: how plausible is the assumption that the weak PCFs
of [BCG+20,CD23] and [BCG+22] are PI-PCFs? As it turns out, this question is equivalent to asking
whether the wPRFs defined by VDLPN and EALPN are PI-PRFs. Since the main security argument
supporting VDLPN and EALPN is that they are secure against linear tests, it is meaningful to ask
whether the corresponding pseudorandom-input variants of VDLPN and EALPN resist linear tests,
too.
By our above lemmas, this is equivalent to the following problem (we state it for VDLPN for concrete-
ness, but the reasoning is similar for EALPN): given an admissible sampler Sam, if we sample each
row hj of the matrix H as map(xj)

⊺, where (x1, · · · , xN) ←$ Sam, does H ′ = H · BD(B1, · · · , BD)
have minimum distance Ω(λ)? Let us denote Dr the distribution of H ′ when random x1, · · ·xN are
used, and Dpr the distribution with (x1, · · · , xN) ←$ Sam. Now, because Sam is an admissible sam-
pler, it holds that the distribution of (x1, · · · , xN) is computationally indistinguishable from random.
Therefore, Dpr is computationally indistinguishable from Dr, which samples codes with a minimum
distance at least Ω(λ). That is, no polynomial time adversary can distinguish H ′ ←$ Dpr from a code
with a large minimum distance. Using the terminology from [BCG+22, Definition 3.12], Dpr has a
large pseudodistance.
The existence of codes with a large gap between their pseudodistance and their actual minimum
distance is an open problem which has received some attention in the literature. In particular, the
hardness of finding a low-weight codeword, when it exists, is equivalent to the binary SVP assumption
from [AHI+17]. The binary SVP assumption is known to have interesting consequences, such as the
existence of collision-resistant hash functions with very low complexity (constant algebraic degree).

33

Therefore, we obtain the following win-win result for PI-PCFs:

Either the VDLPN-based candidate wPRF of [BCG+20,CD23] is also a PI-PRF, or the binary SVP
assumption holds with respect to the distribution Dpr. A similar win-win holds for the EALPN-based
wPRF candidate of [BCG+22].

5.2.5 Key-agreement from VDLPN or EALPN. We further note that for the transformations
to work, it suffices for the PI-PCF to be pseudorandom with respect to a specific admissible sampler
Sam. Namely, let the sampler Sam output (x1, · · · , xN) = PRFK(z1, · · · , zN), where (z1, · · · , zN) are
(non-adaptively) defined by the sampler, and PRF is a pseudorandom function (the key K of the PRF
can be included in the PCF keys).
In section 3.2, we show, analogously to Pietrzak-Sjödin [PS08], that if a wPRF is not also a PIf -PRF,
then there exists a key-agreement protocol. Now, let PRFK be a PRF which is pseudorandom
under the VDLPN or EALPN assumption. Let us now instante the sampler Sam with PRFK and
assume that the wPRF is not also a PIf -PRF. Then, under the VDLPN or EALPN assumption,
the sampler Sam instantiated with PRFK is an admissible sampler Sam, hence the construction
from section 3.2 yields a secure key-agreement protocol. Therefore, we get the following win-win result:

Either the VDLPN-based candidate wPRF of [BCG+20, CD23] is also a PIPRFK
-PRF, or VDLPN

implies key agreement. The same holds for EALPN.

The problem of understanding whether VDLPN implies key agreement was explicitly put forth and
studied in [BCG+21]. They showed that some natural approaches which use the Razborov-Smolensky
lemma fail to yield key agreement, and could only obtain a positive result under an additional new
assumption, called random LPN is the hardest.

Acknowledgments

Chris Brzuska and Pihla Karanko were supported by the Research Council of Finland grants
No. 328698 and No. 358950. Geoffroy Couteau and Pierre Meyer were supported by the French
Agence Nationale de la Recherche (ANR), under grant ANR-20-CE39-0001 (project SCENE), and by
the France 2030 ANR Project ANR22-PECY-003 SecureCompute. Christoph Egger was supported
by the European Commission under the Horizon2020 research and innovation programme, Marie
Sklodowska-Curie grant agreement No 101034255. Pierre Meyer was supported by the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
under grant agreements numbers 852952 (HSS) and 803096 (SPEC).

References

ABG+14. Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. Candidate weak
pseudorandom functions in AC0 o MOD2. In Moni Naor, editor, ITCS 2014, pages 251–260. ACM,
January 2014.

AHI+17. Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and Vinod Vaikuntanathan.
Low-complexity cryptographic hash functions. In Christos H. Papadimitriou, editor, ITCS 2017,
volume 4266, pages 7:1–7:31, 67, January 2017. LIPIcs.

BCG+19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
pseudorandom correlation generators: Silent OT extension and more. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518.
Springer, Heidelberg, August 2019.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Corre-
lated pseudorandom functions from variable-density LPN. In 61st FOCS, pages 1069–1080. IEEE
Computer Society Press, November 2020.

BCG+21. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Low-
complexity weak pseudorandom functions in AC0[MOD2]. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 487–516, Virtual Event, August 2021.
Springer, Heidelberg.

34

BCG+22. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, and Peter
Scholl. Correlated pseudorandomness from expand-accumulate codes. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 603–633.
Springer, Heidelberg, August 2022.

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum,
editor, CRYPTO’91, volume 576 of LNCS, pages 420–432. Springer, Heidelberg, August 1992.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applica-
tions (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

BH12. Itay Berman and Iftach Haitner. From non-adaptive to adaptive pseudorandom functions. In
Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 357–368. Springer, Heidelberg,
March 2012.

BHKN13. Itay Berman, Iftach Haitner, Ilan Komargodski, and Moni Naor. Hardness preserving reductions
via Cuckoo hashing. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 40–59.
Springer, Heidelberg, March 2013.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 134–153. Springer, Heidelberg, December 2012.

BIP+18. Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. Exploring crypto dark
matter: New simple PRF candidates and their applications. In Amos Beimel and Stefan Dziem-
bowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages 699–729. Springer, Heidelberg,
November 2018.

BKW03. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and
the statistical query model. J. ACM, 50(4):506–519, 2003.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

BRS03. John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the presence
of key-dependent messages. In Kaisa Nyberg and Howard M. Heys, editors, SAC 2002, volume
2595 of LNCS, pages 62–75. Springer, Heidelberg, August 2003.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

CD23. Geoffroy Couteau and Clément Ducros. Pseudorandom correlation functions from variable-density
LPN, revisited. In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part II,
volume 13941 of LNCS, pages 221–250. Springer, Heidelberg, May 2023.

CHL22. Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. Sok: Oblivious pseudorandom functions. In
7th IEEE European Symposium on Security and Privacy, EuroS&P 2022, Genoa, Italy, June 6-10,
2022, pages 625–646. IEEE, 2022.

CRR21. Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE and oblivious
transfer from hardness of decoding structured LDPC codes. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages 502–534, Virtual Event, August
2021. Springer, Heidelberg.

DGH+21. Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna Kelkar, Vivek Sharma, and
Greg Zaverucha. MPC-friendly symmetric cryptography from alternating moduli: Candidates,
protocols, and applications. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV,
volume 12828 of LNCS, pages 517–547, Virtual Event, August 2021. Springer, Heidelberg.

FIPR05. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and obliv-
ious pseudorandom functions. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages
303–324. Springer, Heidelberg, February 2005.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended
abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press, October 1984.

GHM+21. Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and Sophia Yakoubov. Random-
index PIR and applications. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part III,
volume 13044 of LNCS, pages 32–61. Springer, Heidelberg, November 2021.

HL08. Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In Ran Canetti, editor, TCC 2008, volume
4948 of LNCS, pages 155–175. Springer, Heidelberg, March 2008.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer, Heidelberg,
August 2003.

35

JKR19. Stanislaw Jarecki, Hugo Krawczyk, and Jason K. Resch. Updatable oblivious key management for
storage systems. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, pages 379–393. ACM Press, November 2019.

LMN89. Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform, and
learnability. In 30th FOCS, pages 574–579. IEEE Computer Society Press, October / November
1989.

MST03. Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0. In 44th
FOCS, pages 136–145. IEEE Computer Society Press, October 2003.

NN90. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applica-
tions. In 22nd ACM STOC, pages 213–223. ACM Press, May 1990.

NR95. Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of
pseudo-random functions. In 36th FOCS, pages 170–181. IEEE Computer Society Press, October
1995.

PS08. Krzysztof Pietrzak and Johan Sjödin. Weak pseudorandom functions in minicrypt. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 423–436. Springer,
Heidelberg, July 2008.

Rab05. Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint Archive,
Report 2005/187, 2005. https://eprint.iacr.org/2005/187.

Zha16. Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 479–508. Springer, Heidelberg, August 2016.

Zha19. Mark Zhandry. On ELFs, deterministic encryption, and correlated-input security. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 3–32.
Springer, Heidelberg, May 2019.

36

https://eprint.iacr.org/2005/187

	Introduction
	Contributions

	Preliminaries
	(Weak) Pseudorandom Correlation Function (wPCF).
	Non-Adaptive Pseudorandom Correlation Function (naPCF).
	Strong Pseudorandom Correlation Function (sPCF).

	Instantiating Hash-then-Evaluate PRFs
	Pseudorandom-Input PRF (PI-PRF)
	A conditional argument towards minimality of the definition of PI-PRF
	From PI-PRF to sPRF

	Instantiating Hash-then-Evaluate in the distributed setting: OPRFs and PCFs
	Oblivious PRFs (OPRFs)
	Pseudorandom Correlation Functions (PCFs)
	Defining a Pseudorandom-Input PCF (PIPCF).
	A conditional argument towards minimality.
	Defining a fully non-adaptive PCF (fnaPCF).
	Boosting security from PIPCF to fnaPCF.

	Boosting security from fnaPCF to sPCF.

	Candidate PI-PRFs and PI-PCFs
	Pseudorandom-Input PRF Candidates
	Implications for Existing PCFs
	The two wPRF candidates.
	Security against linear tests.
	From security against linear tests to large minimum distance.
	A win-win result for PI-PRF security against linear tests.
	Key-agreement from VDLPN or EALPN.

