
Timed Secret Sharing

Alireza Kavousi1, Aydin Abadi2, and Philipp Jovanovic3

1 University College London
a.kavousi@cs.ucl.ac.uk
2 Newcastle University

aydin.abadi@newcastle.ac.uk
3 University College London
p.jovanovic@ucl.ac.uk

Abstract. This paper introduces the notion of timed secret sharing
(TSS), which establishes lower and upper time bounds for secret re-
construction in a threshold secret sharing scheme. Such time bounds
are particularly useful in scenarios where an early or late reconstruc-
tion of a secret matters. We propose several new constructions that offer
different security properties and show how they can be instantiated effi-
ciently using novel techniques. We highlight how our ideas can be used
to break the public goods game, which is an issue inherent to threshold
secret sharing-based systems, without relying on incentive mechanism.
We achieve this through an upper time bound that can be implemented
either via short-lived proofs, or the gradual release of additional shares,
establishing a trade-off between time and fault tolerance. The latter in-
dependently provides robustness in the event of dropout by some portion
of shareholders.

1 Introduction

Threshold secret sharing [54] is a widely used primitive in cryptography and
distributed computing. A (t, n)-threshold secret sharing scheme lets a dealer
distribute a secret s among n shareholders such that any subset of at least
t + 1 shares can recover s, whereas no subset of at most t shares reveal any
information about s. This primitive is useful in a wide range of applications from
password-protection [8,37] and federated learning [42], to verifiable management
of on-chain secrets [39] and many more. Protocols using secret sharing usually
specify conditions under which shareholders release their shares to reconstruct
the secret [20,30]. In many cases, these conditions depend on the notion of time
in one way or another. In practice, however, shareholders may violate these time-
dependent conditions intentionally or unintentionally by releasing their shares
too early or late. These issues may arise due to the use of unsynchronized clocks
by the shareholders [7, 12, 34] or due to a (temporary) dishonest majority [22,
23]. The latter could occur particularly when incentives are misaligned so that
shareholders collude and reconstruct secrets earlier than what specified [36,44].

The practical applications of threshold secret sharing motivate this work,
where elaborate on two concrete scenarios as follows.

Maximal Extractable Value. In cryptocurrency platforms, consensus nodes
such as proof-of-stake validators may engage in maximal extractable value (MEV)
processes [27] to gain some benefit from users by learning their transactions and
affect their ordering in the block. A principal MEV countermeasure deploys
threshold secret sharing to protect the privacy of transactions up to a time
where their inclusion/ordering in a block is ensured. This is done by encrypting
the transaction using a random key and then sharing the key towards validators
with a threshold secret sharing scheme [44,61].

However, it largely overlooks the fact that consensus nodes have significant
incentives to prematurely reconstruct the secrets to capitalize on MEV rewards.
Observe that this type of collusion (i.e., dishonest majority) does not violate
the protocol’s liveness (i.e., reconstruction) as the success of MEV depends on
the completion of the secret reconstruction, and thus colluding parties are in-
centivized to make progress. In many cases, such behavior is particularly prob-
lematic since corrupt shareholders can carry out the process without leaving any
public traces and thus collusion is unobservable [51].4

Public goods game. An independent issue with threshold secret sharing-based
schemes is that they could constitute a public goods game [4, 11]. This is essen-
tially because only a subset of the shareholders needs to release their shares
to reconstruct the secret. Consequently, the shareholders may choose to remain
inactive, hoping that others will step forward and contribute. As a mitigation
mechanism an incentive system is usually assumed [6, 39] which may, however,
not be available or feasible to implement under all circumstances.

Our schemes with lower and upper time bounds T1 and T2, respectively,
address the aforementioned issues: T1 prevents shareholders from reconstructing
the secret early, and T2 prevents public goods game dilemma without having
to rely on financial incentives, providing an alternative solution. We stress that
the motivations for lower and upper time bounds are different and independent.
In the case of the former, we must ensure that the reconstruction does not
occur before T1. In the case of the latter, the goal is to encourage (rational)
shareholders to appear early and initiate the reconstruction. For the sake of
better consistency, we present the schemes with both time bounds rather than
treating them separately.

1.1 Technical Overview

Our constructions enjoy novel techniques and build upon time-based primitives
with efficient instantiation in a modular way. In particular, we use time-lock
puzzles (TLPs) [1, 43, 50], verifiable timed commitments (VTCs) [57], and veri-
fiable delay functions (VDFs) [48, 60]. In the remainder of this section, we give
an overview of our proposed constructions.

4 Using time-lock puzzles (TLPs) [50] are not sufficient to address the issue as pro-
tected transactions may actually not make it into the block and then lose confiden-
tiality after the TLP has been opened, demanding pending transaction privacy [24].

2

(a) A visual representation of our constructions. It depicts the
underlying tools and techniques to establish the lower and upper
time bounds for different variants of secret sharing protocols.

(b) A visual representation of secret sharing with gradual release
of additional shares that could break public goods game and pro-
vide robustness.

Timed Secret Sharing (TSS). This is our basic construction, where the dealer
encapsulates the shares into TLPs [43,50] to realize a lower time bound T1. Con-
sequently, no computationally bounded adversary can learn the secret before T1,
even if it corrupts all the shareholders [23]. Moreover, TLPs provide a consistent
relative measure of time (i.e., computational timing), eliminating the need for a
shared global clock. For the upper time bound, we rely on the underlying timing
assumption of the secret sharing scheme and later show how to relax it.
Verifiable Timed Secret Sharing (VTSS). We enhance TSS with verifi-
cation mechanisms, to deal with malicious dealers and shareholders. First, we
ensure that a malicious dealer cannot distribute malformed puzzles, i.e., puz-
zles that either are not extractable or contain invalid shares. Second, we ensure
that malicious shareholders cannot send invalid shares during the reconstruction
phase. Here we need to tackle technical challenges in realizing lower and upper
time bounds. We overcome the former with a novel trick in using verifiable se-
cret sharing (VSS) [31] and verifiable timed commitment (VTC) [57] that allows
checking the validity of embedded share before the shareholder invests compu-
tational effort to retrieve it. For the latter, we introduce the novel idea of secret
sharing with gradual release of additional shares that relaxes the assumption
made in the previous scheme and also that could be of independent interest.
Publicly Verifiable Timed Secret Sharing (PVTSS). We further extend
our schemes to support public verifiability. To do so, we take a different route
in realizing the lower and upper time bounds. First, we deploy an efficient

3

non-interactive zero-knowledge (NIZK) protocol, and the cut-and-choose tech-
nique [40] to let anyone (not just shareholders) ensure the validity of the em-
bedded encrypted shares and the extractability of puzzles. Second, we bind the
attestation of the distributed shares to time and impose an upper bound T2 by
utilizing short-lived proofs (SLPs) [5] that come with time-sensitive soundness
and public verifiability. We crucially rely on the observation that the secret (and
shares) are uniformly distributed, allowing us to securely use SLPs that require
indistinguishability property. This essentially puts an upper time bound by mak-
ing the system usable up to some time T2, i.e., the correct reconstruction is only
guaranteed before T2.

It is worth mentioning that our idea of secret sharing with additional shares
could be useful in scenarios where a sufficient number of (honest) shareholders
is not available for reconstruction and thus the additional shares allow the re-
maining parties to nevertheless reconstruct the secret, providing robustness to
the system. As an application, this could help with dropout resilience in secure
aggregation protocols for federated learning [42].

1.2 Our Contributions

– We formally define and construct (t, n)-timed secret sharing (TSS) which en-
ables a timely reconstruction of a secret shared by a dealer to a set of n
shareholders within the time interval [T1, T2].

– We enhance TSS with verifiability by formally defining and constructing ver-
ifiable timed secret sharing (VTSS), which protects against a malicious dealer
during share distribution and against malicious shareholders during secret
reconstruction.

– We further extend VTSS with public verifiability by formally defining and
constructing publicly verifiable timed secret sharing (PVTSS).

– We introduce two novel ideas to break the public goods game in threshold
secret sharing systems. One is based on using short-lived proofs and the other
is based on gradual release of additional shares. As a side contribution, we
formally define and propose a construction for the latter which is also useful
to provide robustness against shareholder’s dropouts.

2 Related Work

There is a large body of literature on the combination of computational timing
and cryptographic primitives such as commitment [3, 14, 29, 45, 58], encryption
[17, 25, 41], signature [9, 28, 33, 57], and more. The essence of almost all of these
works is to enable the receiver(s) to forcefully open the locked object after a
predefined period by working through some computational operation.

The work of [57] proposed efficient constructions for encapsulating a sig-
nature into a TLP, ensuring the receiver can extract the valid signature after
carrying out sequential computation. Roughly speaking, the sender secret shares
the signature and embeds each share in a linearly homomorphic TLP [43]. Then,

4

the sender and receiver run a cut-and-choose protocol for verifying the correct-
ness of the puzzles. Moreover, to enable the receiver to compact all the pieces of
time-locked signatures and solve one single puzzle, a range proof is used to guar-
antee that no overflow occurs. Manevich and Akavia in [45] augment the timed
commitment of Boneh and Naor [14] with zero-knowledge proofs, enabling the
sender to prove any arbitrary attribute regarding the committed value.

With a focus on reducing the interaction in MPC protocols with limited-
time secrecy, the authors in [3] developed a gage time capsule (GaTC), allowing
a sender to commit to a value that others can obtain after putting a total com-
putational cost which is parallelizable to let solvers claim a monetary reward in
exchange for their work. The security guarantee of GaTC resemble ours when
using secret sharing with additional shares in the sense that over time it gradu-
ally decays, as the adversary can invest more and more computational resources.
Doweck and Eyal [29] constructed a multi-party timed commitment that enables
a group of parties to jointly commit to a secret to be opened by an aggregator
later on via brute-force computation.

The authors in [10] explore multi-party computation with output-independent
abort, having each participant in an MPC protocol lock their output until some
time in the future. This is to force the adversary to decide whether to cause an
abort before learning the output. As performing sequential computations might
be beyond the capacity of some users, Thyagarajan et al. [59] developed a system
to allow users to outsource their tasks to some servers in a privacy-preserving
manner. Srinivasan et al. [56] constructed a TLP that supports unbounded batch-
solving while enjoying a transparent setup and a puzzle size independent of the
batch size. Although their construction is of theoretical interest and does not
have practical efficiency due to the reliance on indistinguishability obfuscation,
it enables a party to solve many puzzle instances simultaneously at the cost of
solving one puzzle. It is worth noting that such a setting is not applicable to our
PVTSS as each shareholder just needs to know their own share and solving other
parties’ puzzles gives her no information as they are already encrypted under
the parties’ public keys. One of the motivating reasons for batch-solving is to
enable a party to solve the puzzles of others in case a large number of parties
abort. We refer the reader to [47] for a more detailed overview of relevant works.

3 Preliminaries

3.1 Threat Model and Assumptions

We consider a standard synchronous network where each pair of parties in a set
P = {P1, . . . , Pn} is connected via an authenticated channel, and each message
is delivered at most by a known delay. There is also a dealer D that takes the
role of distributing the secret among participating parties.

As common in the literature for verifiable secret sharing, we assume the
existence of broadcast channels. For a publicly verifiable scheme, we assume the
existence of an authenticated public bulletin board. In this work, we consider a

5

static adversary that may corrupt up to t out of n parties before the start of
protocol execution. D may also be corrupted. We consider both semi-honest and
malicious types of adversaries. In the former, the corrupted parties are assumed
to follow the protocol but may try to learn some information by observing the
protocol execution. In the latter, however, the corrupted parties are allowed to
do any adversarial action of their choice. The adversary’s computational power
is bounded with respect to a security parameter λ that gives it a negligible
advantage in breaking the security of underlying primitives. Such algorithms are
often known as probabilistic polynomial time (PPT). Finally, we denote by [n]
the set {1, . . . , n} an by v a vector of elements {vi}i∈[n].

3.2 Secret Sharing

A (threshold) secret sharing scheme is a cryptographic protocol that enables a
dealer D to distribute a secret s among n parties. The scheme typically consists
of two main phases; distribution and reconstruction. In the former, D sends each
party their corresponding share, and in the latter, any proper subset of parties
reconstruct the secret by pooling their shares.

A (t, n)-threshold secret sharing offers two main properties: (1) correctness:
the secret is reconstructed by any subset of at least t+1 shares, and (2) t-security:
no information is revealed about the secret by gathering t or fewer shares. In this
work, we develop our protocols based on the popular Shamir secret sharing [54].
We note that our proposed definitions can capture any (linear) secret sharing.

Verifiable Secret Sharing (VSS). The basic (t, n)-threshold secret sharing
scheme (e.g., [54]) only provides security against a semi-honest adversary. When
dealing with malicious adversaries, it is essential for (1) the dealer to prove
the validity of the shares it produces in the distribution phase, and (2) the
shareholders to prove the validity of the shares they provide in the reconstruction
phase. To satisfy these properties, various VSS schemes have been proposed,
following the celebrated work by Feldman [31].

Publicly Verifiable Secret Sharing (PVSS). To extend the scope of verifia-
bility to the public and not only participating parties, PVSS schemes [18,19,53]
deploy cryptographic primitives such as encryption and NIZK proofs. PVSS
enables anyone to verify the distribution and reconstruction phases. Cascudo
and David [18] proposed an efficient scheme called Scrape PVSS, which is an
improvement over [53] and has been deployed extensively in many recent cryp-
tographic protocols. The Scrape protocol works as follows. The dealer D chooses
a random value s

$← Zq, sets the secret as a group element of form S = hs,
splits s into shares {si}i∈[n], and computes the encrypted shares {ŝi}i∈[n] using
corresponding parties’ public keys {pki}i∈[n].

Then, D publishes a set of commitments to shares {vi}i∈[n] together with a
proof πD, enabling anyone to check the consistency of the shares (i.e., shares
are evaluations of the same polynomial of proper degree) and validity of the
ciphertexts (i.e., encrypted shares correspond to the committed shares). Upon

6

receiving a threshold number of valid shares (i.e., shares with correct decryp-
tions), anyone can use Lagrange interpolation [2] in the exponent to reconstruct
the secret S. The authors proposed two versions, one in the random oracle model
under the Decisional Diffie-Hellman (DDH) assumption and the other in the
plain model under the Decisional Bilinear Squaring (DBS) assumption. We use
the non-pairing variant which offers knowledge soundness. This is vital to ensure
the secret chosen by the adversary is independent of those of honest parties. Also,
we require the knowledge soundness property for deploying short-live proofs [5].

3.3 Time-Lock Puzzles (TLPs)

The idea of TLPs was introduced by Rivest et al. [50]. TLP locks a secret such
that it can only be retrieved after a predefined amount of sequential computation.
It consists of two algorithms: TLP.Gen, which takes as input a time parameter
T and a secret s, and returns a puzzle Z, and TLP.Solve, that takes as input a
puzzle Z and returns a secret s. A TLP must satisfy correctness and security.
The correctness ensures that the solution is indeed obtained if the protocol gets
executed as specified. The security ensures that no PPT adversary running in
parallel obtains the solution within the time bound T , except with negligible
probability. We provide the formal definitions in Appendix A.
Homomorphic Time-lock Puzzles (HTLP). Malavolta and Thyagarajan
[43] proposed homomorphic TLP, enabling one to homomorphically combine
many instances of TLPs into a single TLP. An HTLP consists of a tuple of algo-
rithms (HTLP.Setup, HTLP.Gen, HTLP.Solve, HTLP.Eval). In particular, HTLP.Setup
generates public parameters pp on input a security parameter, and HTLP.Eval
performs a homomorphic operation on input a set of puzzles to output a single
puzzle.
Multi-instance Time-lock Puzzle (MTLP). Abadi and Kiayias [1] proposed
a primitive called multi-instance TLP. This variant of TLP is suitable for the case
where the solver is given multiple puzzles at the same time but must discover each
solution at different points in time. It allows solving the instances sequentially
one after the other without needing to run parallel computations on them. An
MTLP consists of a tuple of algorithms (MTLP.Setup, MTLP.Gen, MTLP.Solve,
Prove, Verify), where the last two algorithms are used to check the correctness
of a solver’s claimed solution.

3.4 Timed Commitment

An inherent limitation of the well-known time-lock puzzles such as [43,50] is the
lack of verifiability, meaning that the receiver cannot check the validity of the
received puzzle unless after putting time and effort into solving it. To fill this gap,
a timed commitment scheme [14] enables the receiver to make sure about the
well-formedness (i.e., extractability) of the puzzle before performing a sequential
computation. In an attempt to make the timed commitment of [14] efficiently
verifiable, the recent work of Thyagarajan et al. [57] proposed verifiable timed

7

commitment (VTC), enabling the sender to verifiably5 commit to signing keys of
form pk = gsk, sk ∈ {0, 1}λ. The VTC primitive consists of a tuple of algorithms
(VTC.Setup, VTC.Commit, VTC.Verify, VTC.Solve). Note that we deploy VTC to
design construction for our verifiable time secret sharing (VTSS) scheme.

3.5 Sigma Protocols

A zero-knowledge protocol enables proving the validity of a claimed statement
by the prover P to the verifier V without revealing any information further.
While zero-knowledge protocols involve various settings and notions, we par-
ticularly consider the well-known Sigma protocols which are useful building
blocks in many cryptographic constructions. Let v denote an instance that is
known to both parties and w denote a witness that is only known to the P . Let
R = {(v;w)} ∈ V × W denote a relation containing the pairs of instances and
corresponding witnesses. A Sigma protocol Σ on (v;w) ∈ R is an interactive
protocol with three movements between P and V . Using Fiat-Shamir heuris-
tic [32] in the random oracle model, one can make the protocol non-interactive
with public verifiability. A Sigma protocol satisfies two security properties: (1)
soundness, ensuring the verifier about the validity of the statement v, and (2)
zero-knowledge, ensuring the prover about the secrecy of the witness w.

Zero Knowledge proof of equality of discrete logarithm. One of the well-used
Sigma protocols is discrete logarithm equality (DLEQ) proof. It considers a
tuple of publicly known values (g1, x, g2, y), where g1, g2 are random generators
and x, y are two elements of the cyclic group G of order q. DLEQ proof enables
a prover P to prove to the verifier V that it knows a witness α such that x = gα1
and y = gα2 . A DLEQ proof is an AND-composition of two Sigma protocols
for relation R = {(vi;w) : vi = gwi } with the same witness and challenge.
The following protocol is a Sigma protocol for generating a DLEQ proof due to
Chaum-Pedersen [21].
1. P chooses a random element u

$← Zq, computes a1 = gu1 and a2 = gu2 , and
sends them to the V.

2. V sends back a randomly chosen challenge c
$← Zq.

3. P computes r = u+ cα and sends it to V.
4. V checks if both gr1 = a1x

c and gr2 = a2y
c hold.

Throughout the paper we use the non-interactive version of this protocol
which produces a single message DLEQ.P(α, g1, x, g2, y) as proof π verified via
DLEQ.V(π, g1, x, g2, y). The challenge is computed by the prover as c = H(x, y, a1, a2),
where H is a cryptographic hash function modeled as a random oracle.

3.6 Short-lived Proofs

Arun et al. [5] recently introduced the notion of short-lived proofs (SLPs) which
can be roughly defined as types of proofs with expiration, such that their sound-
5 Ensuring the extractability together with validity of the committed message that is

the discrete logarithm of a public key.

8

ness will disappear after certain time. They are only sound if being observed
before a determined time, afterwards, they may be forgery indistinguishable
from the valid proofs. At a high level, an SLP is proof of an OR-composition
R ∨RV DF , where R is an arbitrary relation and RV DF is a VDF evaluation re-
lation. Interestingly, this proof is only convincing to the verifier for a determined
time T as forging the proof is possible for anybody after evaluating the VDF.
Due to the nature of VDF, short-lived proofs offer efficient public variability.
One notable point is that the primitive makes use of a randomness beacon [26]
which outputs unpredictable values b periodically.

An SLP scheme consists of four algorithms (SLP.Setup, SLP.Gen, SLP.Forge,
SLP.Verify) with the following descriptions. SLP.Setup generates public parame-
ters pp on input the security parameter and time parameter T . SLP.Eval takes
pp, an input x, a random beacon value b, and generates a proof π. SLP.Forge
takes pp, x, b, and produces a proof π. Lastly, SLP.Verify validates the proof π
on input pp, x, π, and b. A short-lived proof must satisfy four security properties
including forgeability, enabling anyone running in time (1 + ϵ)T to generate a
valid proof, soundness, preventing a malicious prover P ∗ running with parallel
processors to generate a convincing proof in time less than T , zero knowledge,
preserving the privacy of the witness w, and indistinguishability, making the real
and forged proofs indistinguishable from the actual proof.

4 Timed Secret Sharing (TSS)

With timed secret sharing (TSS), we make a secret sharing scheme dependent
on time, having the reconstruction phase occur within a determined time inter-
val, [T1, T2], where T1 is the lower time bound and T2 is the upper time bound.
These time bounds might be required by the dealer or as part of the system
requirements, or even a combination of these two. An important consideration,
however, is that the dealer’s availability should not be affected by making the
scheme time-based, meaning that the dealer’s role should finish after the distri-
bution phase similar to the original setting.

4.1 TSS Definition

In this section, we present a formal definition of TSS. This definition builds upon
the original definition of threshold secret sharing.

Definition 1 (Timed Secret Sharing). A timed secret sharing (TSS) scheme
involves the following algorithms.

1. Initialization:
− Setup: TSS.Setup(1λ, T1, T2) −→ pp, on input security parameter λ, lower

time bound T1, and upper time bound T2, outputs public parameters pp.
2. Distribution:

9

− Sharing: TSS.Sharing(pp, s) −→ {Ci}i∈[n], on input pp and secret s ∈ Sλ,
outputs a locked share Ci with time parameter T1 for each party Pi in the
set P.

3. Reconstruction:
− Recovering: TSS.Recover(pp, Ci) −→ si, on input pp and Ci, recovers the

share si. The algorithm is run by each party Pi in P.
− Pooling: TSS.Pool(pp,S, T2) −→ s, on input pp and a set S of shares (where
|S| > t and t ∈ pp), outputs the secret s if T2 has not elapsed. Otherwise,
it outputs ⊥.

A correct TSS scheme must satisfy privacy, ensuring no share is obtained
before T1 and security, ensuring any set of shares less than a threshold t + 1
reveals no information about the secret before T2.

Definition 1.1 (Correctness) A TSS satisfies correctness if for all secret s ∈
Sλ and a set of shares |S| > t it holds

Pr

TSS.Pool(pp,S, T2) −→ s :
TSS.Setup(1λ, T1, T2) −→ pp,
TSS.Sharing(pp, s) −→ {Ci}i∈[n],
TSS.Recover(pp, Ci) −→ si

 = 1

Definition 1.2 (Privacy) TSS satisfies privacy if for all parallel algorithms A
whose running time is at most less than T1 there exists a simulator Sim and a
negligible function µ such that for all secret s ∈ Sλ, all λ ∈ N, and all i ∈ [n] it
holds ∣∣∣∣∣Pr

A(pp, s, Ci) = 1 :

TSS.Setup(1λ, T1, T2)→ pp,

A(pp, 1λ)→ s,

TSS.Sharing(pp, s) −→ {Ci}i∈[n]

−

Pr

A(pp, s′, Cj) = 1 :

TSS.Setup(1λ, T1, T2)→ pp,

A(pp, 1λ)→ s′,

Sim(pp) −→ {Cj}j∈[n]

 ∣∣∣∣∣ ≤ µ(λ)

Definition 1.3 (Security) TSS satisfies security if an adversary A controlling
a set S ′ of parties, where |S ′| ≤ t and s ∈ Sλ, learns no information about s.
Thus, it must hold

Pr

A(pp,S ′, T2) −→ s :
TSS.Setup(1λ, T1, T2) −→ pp,
TSS.Sharing(pp, s) −→ {Ci}i∈[n],
TSS.Recover(pp, Ci) −→ si

 ≤ µ(λ) +
1

|Sλ|

4.2 TSS Construction

We present an instantiation of TSS in Figure 2. To enforce a lower time bound
T1, the dealer uses TLPs [43, 50] to lock the shares into puzzles, enforcing a
computational delay for each party to recover their corresponding share. Note
that we treat T2 mostly as a matter of formalization and rely on the underlying
assumption of having common knowledge of time for participating parties. We
later in Section 5 show how to relax this assumption using computational timing.

10

ΠTSS

1. Initialization:
− Setup: TSS.Setup(1λ, T1, T2) −→ pp, the protocol works over Zq, where q > n.

The dealer D runs TLP.Setup(1λ, T1) and publishes public parameters pp.
2. Distribution:
− Sharing: TSS.Sharing(pp, s) −→ {Zi}i∈[n], the dealer D picks a secret s ∈ Zp

to be shared among n parties. It samples a degree-t Shamir polynomial f(·)
such that f(0) = s and f(i) = si for i ∈ [n]. It runs TLP.Gen(1λ, T1, si) to
create puzzle Zi with time parameter T1, locking the share si for all i ∈ [n].
Finally, D privately sends each party Pi their corresponding puzzle Zi.

3. Reconstruction:
− Recovering: TSS.Recover(pp, Zi) −→ si, upon receiving the puzzle Zi, party

Pi starts solving it by running TLP.Solve(T1, Zi) to recover the share si.
− Pooling: TSS.Pool(pp,S, T2) −→ s, upon having sufficient number of shares

(≥ t + 1) received before T2, the reconstructor (a party in P) reconstructs
the secret s using Lagrange interpolation at f(0); otherwise, it returns ⊥.

Fig. 2: Timed Secret Sharing (TSS) protocol

Theorem 1. If the time-lock puzzle TLP and Shamir secret sharing are secure,
then timed secret sharing protocol ΠTSS presented in Figure 2 satisfies privacy
and security, w.r.t. definitions 1.2 and 1.3 respectively.

Proof. Correctness is straightforward. The privacy property follows directly from
that of the underlying TLP which implies the indistinguishability of a puzzle
produced by algorithm TSS.Sharing and the one produced by Sim. Since all the
puzzles are communicated through private channels, no party can learn the other
party’s share after T1. Finally, the security stems from the underlying threshold
secret sharing, where a subset of shares S ′ whose size is less than t reveals no
information about the secret s.

5 Secret Sharing with Additional Shares

A threshold secret sharing scheme guarantees t-security. There is also t + 1-
robustness assumption, ensuring the availability of a sufficient number of valid
shares during the reconstruction phase. However, it is natural to challenge such
a liveness assumption and consider a scenario in which a large fraction of honest
parties goes offline, particularly when having a determined period for recon-
struction, putting the system under threat of failure (i.e., lack of liveness). To
be concrete, a possible scenario that may lead to having less than a threshold of
(honest) parties available is explored in [57] known as denial of spending (DoSp)
attack where the set of available parties cannot reach the threshold and their
investment will remain locked. In a federated learning setting [42], real-world

11

factors such as hardware failure or poor network coverage can also cause this
issue, leading to shareholders’ dropouts.

Our goal is to provide robustness using the capabilities of time-based cryp-
tography. We observe this is feasible by having the dealer provide parties with
additional time-locked shares. By additional, we mean some shares other than
the individual one each party already receives during the distribution phase of
the protocol. Thus, even if there is less than a threshold of parties (even a single
one) available at the reconstruction period (i.e., [T1, T2]), they will be able to
open the additional time-locked shares after carrying out some computation and
retrieve the secret. We remark that a large body of literature on threshold secret
sharing assumes all the parties, not only those interacting in the reconstruction
phase, learn the secret [18, 38]. Given this, we argue that the availability of a
(threshold) number of additional time-locked shares at the proper time (i.e., T2)
does not violate the security of the system since it enables all the parties to
eventually learn the secret at the same time if they have not already learned it.

5.1 Decrementing-threshold Timed Secret Sharing (DTSS)

It is possible to derive an interesting trade-off between time and fault toler-
ance by having some additional time-locked shares to be realized periodically
at different points in time. The consequence of this gradual release is twofold.
Firstly, it enables (honest) parties requiring some more shares (not necessarily
t) to reconstruct the secret without going through the sequential computation
for the whole period, i.e., [T1, T2]. They can stop working up to a point where
a sufficient number of additional shares is gained, as T2 might be considerably
later than T1. Secondly, as time goes by and the reconstruction is not initiated,
the adversary may get more additional shares by investing computational ef-
fort, causing security decay over time [3]. Looking ahead, this feature happens
to be useful to impose an upper time bound and thus break the public goods
game as it ties the security of the system to time; the later parties initiate the
reconstruction, the more chances the adversary learns the secret.6

5.2 DTSS Definition

Now, we present a formal definition for our scheme called decrementing-threshold
timed secret sharing (DTSS).

Definition 2 (Decrementing-threshold Timed Secret Sharing). A (t, n)
DTSS scheme consists of a tuple of algorithms (DTSS.Setup, DTSS.Sharing,
DTSS.ShaRecover, DTSS.Verify, DTSS.AddRecover, DTSS.Pool) as follows.

1. Initialization:
6 It is clear that since all parties can recover the secret by T2, this essentially puts

an upper time bound for the system. We use this technique to relax the assumption
made to realize an upper time bound for TSS.

12

− Setup: DTSS.Setup(1λ, T1, T2, t) −→ {pp, pk, sk}, on input security param-
eter λ, lower time bound T1, and a value t, outputs public parameters pp
and key pair (pk, sk) to be used for generating additional locked shares by
the dealer D.

2. Distribution:
− Sharing: DTSS.Sharing(pp, s, pk, sk) −→ {{Ci}i∈[n], {Oj}j∈[t]}, on input pp,

a secret s, and a key pair (pk, sk), outputs locked share Ci with time pa-
rameter T1. Moreover, it outputs t additional locked shares {Oj}j∈[t], with
Oj being locked with time parameter (j + 1)T1.

3. Reconstruction:
− Share recovery: DTSS.ShaRecover(pp, Ci) −→ si, on input pp and Ci, out-

puts a share si. The algorithm is run by each party Pi.
− Additional share recovery: DTSS.AddRecover(pp, pk, {Oj}j∈[t]) −→ {s′j}, on

input pp, pk, and {Oj}j∈[t], forcibly outputs the additional share s′j at time
(j+1)T1. The algorithm is run by anyone in P wishing to obtain additional
shares.

− Pooling: DTSS.Pool(pp,S, T2) −→ s, on input pp and a set S of shares (where
|S| > t and t ∈ pp), outputs the secret s if T2 has not elapsed.

A correct DTSS scheme must satisfy privacy, security, and robustness with
the following definitions.

Definition 2.1 (Privacy) A DTSS satisfies privacy if for all algorithms A
running in time T < jT1, where 1 ≤ j ≤ t, with at most T1 parallel proces-
sors, there exists a simulator Sim and a negligible function µ such that for all
secret s ∈ Sλ and λ ∈ N it holds that

∣∣∣∣∣Pr

A(pp, pk, s,Ci, {Oj}j∈[t]) = 1
:

DTSS.Setup(1λ, T1) −→ {pp, pk, sk},

A(1λ, pp)→ s

DTSS.Sharing(pp, s)

−→ {{Ci}i∈[n], {Oj}j∈[t]}

−

Pr

A(pp, pk, s′,
Ci, {Oj}j∈[t]) = 1

:

DTSS.Setup(1λ, T1) −→ {pp, pk, sk},

A(1λ, pp)→ s′

Sim(pp) −→ {{Ci}i∈[n], {Oj}j∈[t]}

∣∣∣∣∣ ≤ µ(λ)

Definition 2.2 (t-Security) Let 2T1, . . . , (t+ 1)T1 be times at which each ad-
ditional time-locked share is forcibly obtained. A DTSS is t-secure if prior to
(j + 1)T1, where 1 ≤ j ≤ t, the adversary controlling a set |S ′| ≤ t − (j − 1) of
parties learns no information about s ∈ Sλ in a computational sense. Thus, it
holds

Pr

A(pp, pk,S
′, T2) −→ s :

DTSS.Setup(1λ, T1, t) −→ {pp, pk, sk}
DTSS.Sharing(pp, s)
−→ {{Ci}i∈[n], {Oj}j∈[t]},
DTSS.ShaRecover(pp, Ci) −→ si,
DTSS.AddRecover(pp, pk, {Oj}j∈[t])
−→ {s′j}, 1 ≤ j ≤ t.

 ≤ µ(λ) +
1

|Sλ|

13

Definition 2.3 (Robustness) A DTSS is robust if each party in P can even-
tually reconstruct the secret s, after receiving a sufficient number of other parties’
shares and/or obtaining the additional time-locked shares.

Pr

DTSS.Pool(pp,S, T2) −→ s :

DTSS.Setup(1λ, T1, t) −→ {pp, pk, sk}
DTSS.Sharing(pp, s)
−→ {{Ci}i∈[n],v, {Oj}j∈[t]},
DTSS.ShaRecover(pp, Ci) −→ si,
DTSS.AddRecover(pp, pk, {Oj}j∈[t])
−→ {s′j}j∈[t]

 = 1

5.3 DTSS Construction

We present a construction for DTSS in Figure 3. We would like a protocol in
which anyone can obtain each additional share s′j at time (j + 1)T1 given that
the dealer’s role must end with the distribution phase.7 In a naive way, the
dealer should create t puzzles each embedding one additional share to be opened
at t different points in time. However, this inefficient solution comes with a
high computation cost as anyone wishing to access the shares needs to solve
each puzzle separately in parallel, demanding up to T1

∑t
j=1 j operations. To

get away with this issue, we use multi-instance time-lock puzzle (MTLP) [1],
a primitive allowing sequential (chained) release of solutions where the overall
computation cost of solving t puzzles is equal to that of solving only the last
one.

Theorem 2. If the multi-instance time-lock puzzle MTLP and timed secret
sharing TSS are secure, then our DTSS protocol ΠDTSS presented in Figure
3 satisfies the properties described in Section 5.2.

Proof. Privacy follows from that of ΠTSS together with the underlying ΠMTLP
protocol for additional time-locked shares. The t-security is satisfied concerning
the gradual release of additional time-locked shares s′j over time. That is, the
adversary can forcibly learn s′j by (j + 1)T1, reducing fault tolerance to t − j.
The protocol is robust as each party Pi can eventually learn the secret by the
time T2 due to the t additional time-locked shares.

6 Verifiable Timed Secret Sharing (VTSS)

In this section, we present verifiable timed secret sharing (VTSS), an enhanced
TSS which considers malicious adversaries. It protects against a malicious dealer
who may send incorrect shares (or even no shares) during the distribution phase
and against a malicious shareholder who may send an incorrect share during the
reconstruction phase.
7 Without loss of generality we assume T2 = (t + 1)T1, accommodating the periodic

release of additional shares.

14

ΠDTSS

1. Initialization:
− Setup: DTSS.Setup(1λ, T1, t) −→ {pp, pk, sk}, the dealer D invokes two algo-

rithms of TSS.Setup(1λ, T1, T2) and MTLP.Setup(1λ, T1, t+1), and publishes
the set of public parameters pp, pk.

2. Distribution:
− Sharing: DTSS.Sharing(pp, s, pk, sk) −→ {{Ci}i∈[n], {Oj}j∈[t]}, the dealer D

first picks a secret s ← Zq and invokes TSS.Sharing(pp, s) to generate n
locked shares {Ci}i∈[n]. Moreover, it computes t additional shares f(aj) =
s′j for j ∈ [t], where f(0) = s and {a1, . . . , at} are some known distinct
points. Finally, it invokes MTLP.Gen(m, pk, sk), where m = {⊥, s′1, . . . , s′t}
to generate an MTLP containing {s′j}j∈[t].

3. Reconstruction:
− Share recovery: DTSS.ShaRecover(pp, Ci) −→ si, each party Pi runs

TSS.Recover(pp, Ci) to recover their share si.
− Additional share recovery: DTSS.AddRecover(pp, pk, {Oj}j∈[t]) −→ {s′j}j∈[t],

anyone wishing to obtain additional time-locked shares {s′j}j∈[t] runs
MTLP.Solve(pp, {Oj}j∈[t]).

− Pooling: DTSS.Pool(pp,S, T2) −→ s, upon having sufficient number of valid
shares (i.e., ≥ t+1), the reconstrctor V ∈ P reconstructs the secret s using
Lagrange interpolation at f(0).

Fig. 3: Decrementing-threshold Timed Secret Sharing (DTSS) protocol

6.1 VTSS Definition

We present a formal definition of VTSS. Our definition extends the original
verifiable secret sharing (VSS) of Feldman [31], incorporating the notion of time.

Definition 3 (Verifiable Timed Secret Sharing). A verifiable timed secret
sharing (VTSS) scheme involves the following algorithms.

1. Initialization:
− Setup: VTSS.Setup(1λ, T1, T2) −→ pp, on input security parameter λ, lower

time bound T1 and upper time bound T2, outputs public parameters pp.
2. Distribution:
− Sharing: VTSS.Sharing(pp, s) −→ {Ci, πi}i∈[n], on input pp and a secret s,

outputs locked share Ci with time parameter T1 and a proof of validity πi

for each party Pi ∈ P.
− Share verification: VTSS.Verify1(pp, Ci, πi) −→ 1/0, on input pp, Ci, and πi,

checks the validity of share to ensure the locked share Ci is well-formed and
contains a valid share of secret s. The algorithm returns 1 if both checks
pass. Otherwise, it returns 0.

3. Reconstruction:
− Recovering: VTSS.Recover(pp, Ci) −→ si, on input pp and Ci, forcibly out-

puts a share si. The algorithm is run by each party Pi.

15

− Recovery verification: VTSS.Verify2(pp, si, πi) −→ 1/0, on input pp, si, and
πi, checks the validity of submitted share. The algorithm is run by a verifier
V ∈ P.

− Pooling: VTSS.Pool(pp,S, T2) −→ s, on input pp and a set S of shares
(where |S| > t and t ∈ pp), outputs the secret s if T2 has not elapsed and
⊥ otherwise.

A correct VTSS scheme must satisfy soundness, ensuring extractability and
verifiability of the shares, privacy, and security.

Definition 3.1 (Correctness) A VTSS satisfies correctness if for all secret
s ∈ Sλ and a set of shares |S| > t it holds

Pr

VTSS.Verify1(pp, Ci, πi) = 1
VTSS.Verify2(pp, si, πi) = 1
VTSS.Pool(pp,S, T2) −→ s

:
VTSS.Setup(1λ, T1, T2) −→ pp,
VTSS.Sharing(pp, s) −→ {Ci, πi}i∈[n],
VTSS.Recover(pp, Ci) −→ si

 = 1

Definition 3.2 (Soundness) A VTSS scheme is sound if there exists a neg-
ligible function µ such that for all PPT adversaries A and all λ ∈ N it holds

Pr

 b1 = 1 ∨ b2 = 1 :

VTSS.Setup(1λ, T1, T2) −→ pp,
A(pp)→ ({Ci, πi}i∈[n], {si, π′

i}),
b1 := VTSS.Verify1(pp, Ci, πi) ∧ ∄s s.t.
VTSS.Sharing(pp, s) −→ ({Ci}i∈[n], ·),
b2 := VTSS.Verify2(pp, si, π

′
i) ∧ ∄Ci s.t.

VTSS.Recover(pp, Ci) −→ si

 ≤ µ(λ)

Definition 3.3 (Privacy) A VTSS satisfies privacy if for all parallel algo-
rithms A whose running time is at most T1 there exists a simulator Sim and
a negligible function µ such that for all secret s ∈ Sλ and all λ ∈ N, it holds

∣∣∣∣∣Pr

A(pp, s, {Ci, πi}) = 1 :

VTSS.Setup(1λ, T1, T2) −→ pp,

A(1λ, pp)→ s

VTSS.Sharing(pp, s) −→ {Ci, πi}i∈[n]

−

Pr

A(pp, s′, {Cj , πj}) = 1 :

VTSS.Setup(1λ, T1, T2) −→ pp,

A(1λ, pp)→ s′

Sim(pp) −→ {Cj , πj}j∈[n]

 ∣∣∣∣∣ ≤ µ(λ)

Definition 3.4 (Security) A VTSS satisfies security if there exists a negligible
function µ such that for an adversary controlling a subset S ′ of parties, where
|S ′| ≤ t and s ∈ Sλ it holds

Pr

A(pp,S ′, T2) −→ s :
VTSS.Setup(1λ, T1, T2) −→ pp,
VTSS.Sharing(pp, s) −→ {Ci, πi}i∈[n],
VTSS.Recover(pp, Ci) −→ si

 ≤ µ(λ) +
1

|Sλ|

16

ΠVTSS

1. Initialization:
− Setup: VTSS.Setup(1λ, T1, T2) −→ pp, let g be a generator of a group G of

order q. The dealer D runs VTC.Setup(1λ, T1) and publishes a set of public
parameters pp.

2. Distribution:
− Sharing: VTSS.Sharing(pp, s) −→ {Ci, πi}i∈[n], D picks a secret s

$← Zq to be
shared among n parties. It samples a degree-t random polynomial f(·) such
that f(0) = s and f(i) = si for i ∈ [n]. It then commits to f by computing
vi = gsi and broadcasting v = {vi}i∈[n]. Then, D runs VTC.Commit(pp, si)
to create a locked share Ci and a corresponding proof of validity π′

i with
respect to vi, locking the share si to be opened forcibly at T1, ∀i ∈ [n]. Let
πi = {π′

i,v}. D privately sends each party Pi their sharing {Ci, π
′
i}.

− Share verification: VTSS.Verify1(pp, Ci, πi) −→ 1/0, party Pi runs
VTC.Verify(pp, vi, Ci, π

′
i) to check the locked share Ci is well-formed and

embeds the share si corresponding to vi. They then validate the consistency
of the shares by sampling a code word y⊥ ∈ C⊥, where y⊥ = {y⊥

1 , . . . , y⊥
n },

and checking if
∏n

j=1 vj
y⊥
j = 1.

− Complaint round: If a set of parties of size ≥ t+1 complain about sharing,
then D is disqualified. Otherwise, D reveals the corresponding locked shares
with proofs by broadcasting {Ci, π

′
i}. If the verification fails (or D does not

broadcast), the dealer is disqualified.

3. Reconstruction:
− Recovering: VTSS.Recover(pp, Ci) −→ si, each Pi wishing to participate in

reconstruction runs VTC.Solve(pp, Ci) to obtain a share si.
− Recovery verification: VTSS.Verify2(pp, si, πi) −→ 1/0, for each received share

si from Pi, the reconstructor checks its validity by computing gsi and com-
paring it with vi.

− Pooling: VTSS.Pool(pp,S, T2) −→ s, upon having sufficient number of valid
shares (i.e., ≥ t + 1) received before T2, the reconstrctor (a party in P)
reconstructs the secret s using Lagrange interpolation at f(0) or aborts
otherwise.

Fig. 4: Verifiable Timed Secret Sharing (VTSS) protocol

17

6.2 VTSS Construction

We present a protocol for VTSS in Figure 4. Following Feldman VSS [31], we
make a crucial change in the protocol to adapt it for VTSS so that the dealer
coudl convince each individual shareholder about the validity of their shares.
Notably, in VTSS we have the dealer commit to the shares rather than the co-
efficients of the Shamir polynomial. This modification has two consequences.

First, it allows shareholders to check the consistency of the shares (i.e., all
lie on a polynomial of degree t) using properties of error-correcting code, partic-
ularly the Reed-Solomon code [49]. This is due to the equivalency of the Shamir
secret sharing with Reed-Solomon encoding observed by [46].8 We restate the
basic fact of linear error correcting code in Lemma 1. We remark that in Feldman
VSS the checking of each share is done against the commitment to the whole
polynomial, but here it is done with respect to an individual commitment to each
share, requiring the this step to ensure the sharing phase has been performed
correctly.

Lemma 1. Let C⊥ be the dual code of C that is a linear error correcting code
over Zq of length n. If x ∈ Zn

q \C, and y⊥ is chosen uniformly at random from
C⊥, the probability that the inner product of the vectors ⟨x,y⊥⟩ = 0 is exactly
1/q.

Second, it enables us to make use of VTC primitive [57] to non-interactively
ensure each party Pi that they indeed obtains its correct share si at T1. As
mentioned, VTC allows committing to a signing key sk where its corresponding
public key pk = gsk is publicly known. Our main insight is that we can think of
vi = gsi published by the dealer as a public key for each share si committed by
VTC. So, each party Pi can check the verifiability of its locked share Ci while
ensuring the consistency of the shares {si}i∈[n].

Remark 1. We can realize the upper time bound in VTSS similarly to TSS by
using the idea of secret sharing with additional shares (Section 5.1). We implic-
itly assume the additional time-locked shares are honestly generated due to our
motivation which is realizing an upper time bound (and thus breaking public
goods game). 9

Theorem 3. If the verifiable timed commitments VTC and Feldman verifiable
secret sharing [31] are secure, then verifiable timed secret sharing protocol ΠVTSS
presented in Figure 4 satisfies soundness, privacy, and security, w.r.t. definitions
3.2, 3.3, and 3.4 respectively.

Proof. Correctness is straightforward. The soundness property of the protocol
follows directly from that of the underlying ΠVTC primitive for every single
share si committed with respect to the vi in v. A maliciously generated v can
8 We refer the reader to [18] for a detailed description of the verification procedure.
9 Should a malicious dealer attempt to misbehave, this assumption could be lifted by

using less efficient cryptograhpic protocols.

18

pass the verification check VTSS.Verify1 only with probability 1/q. A maliciously
submitted si by Pi cannot pass the verification check VTSS.Verify2, except with
negligible probability. The privacy property also follows directly from that of the
underlying ΠVTC which implies the indistinguishability of a puzzle produced by
VTC.Sharing and the one produced by Sim. Note that the commitment to shares
v does not reveal any information about the secret s under the discrete logarithm
assumption. It is important to note that for the assumption to hold the secret s
should have a random distribution. Observe that before T1 the privacy property
essentially implies the security; afterward, the security follows directly from that
of Feldman VSS due to the security of the commitment v.

7 Publicly Verifiable Timed Secret Sharing (PVTSS)

In this section, we make our timed secret sharing scheme publicly verifiable,
meaning that anyone, not only a participating party, is able to verify different
phases of the scheme. To achieve this, we use a publicly verifiable secret sharing
(PVSS) scheme as the main building block that compels parties to behave cor-
rectly by non-interactively proving the validity of the messages sent during the
distribution and reconstruction phases.

7.1 PVTSS Definition

In this section, we present a formal definition of PVTSS according to the existing
ones in the literature such as [18,19,53].

Definition 4 (Publicly Verifiable Timed Secret Sharing). A PVTSS scheme
involves the following algorithms.

1. Initialization:
− Setup: PVTSS.Setup(1λ, T1, T2) −→ pp, on input security parameter λ, lower

time bound T1, and upper time bound T2, outputs public parameters pp.
Each party Pi announces a registered public key pki which the corresponding
secret key ski is only known to them.

2. Distribution:
− Sharing: PVTSS.Sharing(pp, S, {pki}i∈[n]) −→ {{Ci}i∈[n], πD}, on input pp,
{pki}i∈[n], and a secret S, generates locked encrypted share Ci with time
parameter T1 for each party Pi ∈ P. It also generates a proof πD for the
validity of shares.

− Share verification: PVTSS.Verify1(pp, {pki, Ci}i∈[n], πD) −→ 1/0, on input
pp, {pki, Ci}i∈[n], and πD, checks the validity of the shares. This includes
verifying the published locked encrypted shares are well-formed and contain
correct shares of secret S. The algorithm is run by any verifier V .

3. Reconstruction:
− Recovering: PVTSS.Recover(pp, Ci, pki, ski) −→ {s̃i, πi}, on input pp, Ci,

pki, and ski, outputs a decrypted share s̃i together with proof πi of valid
decryption. The algorithm is run by each party Pi ∈ P.

19

− Recovery verification: PVTSS.Verify2(pp, Ci, s̃i, πi) −→ {0, 1}, on input pp,
Ci, s̃i, and πi, checks the validity of the decryption. The algorithm is run
by any verifier V .

− Pooling: PVTSS.Pool(pp,S, T2) −→ S, on input pp and a set S of decrypted
shares s̃i (where |S| > t and t ∈ pp), outputs the secret S if T2 has not
elapsed.

A PVTSS scheme must satisfy the following properties.

Definition 4.1 (Correctness) A PVTSS satisfies correctness if for all secret
s ∈ Sλ and a set of shares |S| > t it holds that

Pr

PVTSS.Verify1(pp, {Ci}i∈[n],
πD, {pki}i∈[n]) = 1
PVTSS.Verify2(pp, Ci, s̃i, πi) = 1
PVTSS.Pool(pp,S, T2) −→ S

:

PVTSS.Setup(1λ, T1, T2) −→ pp,
PVTSS.Sharing(pp, S, {pki}i∈[n])
−→ {{Ci}i∈[n], πD},
PVTSS.Recover(pp, Ci, pki, ski)
−→ {s̃i, πi}

=1

Definition 4.2 (Soundness) A PVTSS scheme is sound if there exists a neg-
ligible function µ such that for all PPT adversaries A and all λ ∈ N it holds
that

Pr

b1 = 1 ∨ b2 = 1 :

PVTSS.Setup(1λ, T1, T2) −→ pp,
A(pp)→ ({pki, Ci}i∈[n], πD, s̃, π),
b1 := PVTSS.Verify1(pp, {pki, Ci}i∈[n], πD)
∧∄s s.t.
PVTSS.Sharing(pp, S, {pki}i∈[n])
−→ {{Ci}i∈[n], ·},
b2 := PVTSS.Verify2(pp, C, s̃, π) ∧ ∄sk s.t.
PVTSS.Recover(pp, C, pk, sk) −→ {s̃, ·},

≤ µ(λ)

Definition 4.3 (t-Privacy) A PVTSS satisfies t-privacy if for all parallel al-
gorithms A whose running time is at most T1, and set I ⊂ [n] with |I| = t+ 1,
there exists a simulator Sim and a negligible function µ such that for all secret
s ∈ Sλ and λ ∈ N it holds that

∣∣∣∣∣Pr

A(pp, S, {Ci}i∈[I], πD) = 1 :

PVTSS.Setup(1λ, T1, T2) −→ pp,

A(1λ, pp)→ S,

PVTSS.Sharing(pp, S, {pki}i∈[I])

−→ {{Ci}i∈[I], πD}

−

Pr

A(pp, S′, {Cj}j∈[I], πD) = 1 :

PVTSS.Setup(1λ, T1, T2) −→ pp,

A(1λ, pp)→ S′,

Sim(pp) −→ ({Cj}j∈[I], πD)

∣∣∣∣∣≤ µ(λ)

20

Definition 4.4 (Security) A PVTSS satisfies security if there exists a negli-
gible function µ such that for an adversary controlling a set S ′ of parties, where
|S ′| ≤ t and s ∈ Sλ, together with the public information denoted by PI, it holds
that 10

Pr

A(pp,S ′,PI, T2) −→ S :

PVTSS.Setup(1λ, T1, T2) −→ pp,
PVTSS.Sharing(pp, s, {pki}i∈[n])
−→ {{Ci}i∈[n], πD},
PVTSS.Recover(pp, Ci, pki, ski)
−→ {s̃i, πi}

 ≤ µ(λ) +
1

|Sλ|

An indistinguishability game given in [35,52] and adopted by [18] formalizes the
security definition.

7.2 PVTSS Construction

We present a detailed description of the PVTSS protocol in Figure 5. In what
follows, we elaborate on several techniques used in our construction. In particu-
lar, it turns out that the public verifiability requirement of the scheme demands
taking different approaches toward realizing the lower and upper time bounds.
Dealing with a Malicious Dealer. What makes the protection mechanism
challenging for PVTSS is that anyone, before performing sequential computa-
tion, should be able to check the correctness of shares including consistency,
validity, and extractability of the shares having a set of encrypted shares locked
by the dealer. That is to say, a solution should simultaneously ensure (1) all
shares lie on the same polynomial of degree t, (2) locked encrypted shares con-
tain the committed shares, and (3) shares are obtainable in time T1, all concern-
ing some public information. We first discuss how to guarantee consistency and
verifiability followed by our approach regarding extractability.

Blinded DLEQ. Our solution to meet the first two aforementioned requirements
is based on having the dealer blind each encrypted shares s̃i using some ran-
domness βi, put the randomness into a puzzle Zi, and publish all the puzzles
together with locked encrypted shares and commitments for i ∈ [n]. The dealer
needs to show that the locked encrypted shares contain the same shares as the
commitments, while the consistency of the shares can be checked using the com-
mitments (as discussed in Section 6.2). To do so, we slightly modify the DLEQ
proof (Section 3.5) and make it blinded. It allows proving simultaneous knowl-
edge of two witnesses, one of which is common in two statements. The following
is a protocol ΠBDLEQ for the language

LBDLEQ = {(g1, x, g2, g3, y) | ∃(α, β) : x = gα1 ∧ y = gα2 g
β
3 }

1. P chooses two random elements u1, u2
$← Zq, computes a1 = gu1

1 and a2 =
gu1
2 gu2

3 , and sends them to V.

10 This property is presented as IND1-Secrecy in [35,52].

21

2. V sends back a randomly chosen challenge c
$← Zq.

3. P computes r1 = u1 + cα and r2 = u2 + cβ and sends them to V .
4. V checks if both gr11 = a1x

c and gr12 gr23 = a2y
c hold.

Theorem 4. Protocol ΠBDLEQ is a public-coin honest-verifier zero-knowledge
argument of knowledge corresponding to the language LBDLEQ.

Proof. We show that the ΠBDLEQ satisfies the properties of a Sigma protocol.
Completeness holds, as

gr11 = gu1+cα
1 = gu1

1 gcα1 = a1x
c

gr12 gr23 = gu1+cα
2 gu2+cβ

3 = gu1
2 gu2

3 (gu1
2 gu2

3)c = a2y
c

For knowledge soundness, given two accepting transcripts (a1, a2; c; r1, r2) and
(a1, a2; c

′; r′1, r
′
2) the witness (α, β) can be found as follows

gr11 = a1x
c, gr12 gr23 = a2y

c ; g
r′1
1 = a1x

c′ , g
r′1
2 g

r′2
3 = a2y

c′

g
r1−r′1
1 = xc−c′ ⇔ x = g

r1−r′1
c−c′

1

gr1−r′1
2 g

r2−r′2
3 = yc−c′ ⇔ y = gα2 g

r2−r′2
c−c′

3

Hence, the witness β can be found as β = (r2 − r′2)/(c − c′) given the witness
α = (r1 − r′1)/(c− c′).
Let c be a given challenge. Zero-knowledge property is implied by the fact that
the following two distributions, namely real protocol distribution and simulated
distribution, are identically distributed.

Real : {(a1, a2; c; r1, r2) : u1, u2
$← Zq, a1 = gu1

1 , a2 = gu1
2 gu2

3 ; r1 = u1 + cα, r2 =
u2 + cβ}

Sim : {(a1, a2; c; r1, r2) : r1, r2
$← Zq; a1 = gr11 x−c, a2 = gr12 gr23 y−c}

Note that the probability of occurring for each distribution is the same and
equals 1/q2.

Cut-and-choose. The dealer needs to convince the parties they can obtain their
shares at time T1. This is equivalent to saying that Zi has indeed the value
βi embedded. A natural way to show the correctness of puzzle generation is by
utilizing the cut-and-choose technique as in previous works [9,56]. This technique
forces a sender to behave correctly by randomly opening a (fixed) set of puzzles
it has already sent to the receiver based on the receiver’s choice.

We remark that it is possible to deploy the cut-and-choose technique in our
construction without sacrificing security. Given that opening just reveals a (ran-
dom) set of size t of encrypted shares, we are still guaranteed that the secret
remains hidden up to time T1 as t+1 shares are needed for reconstruction. Each
party is supposed to open their corresponding locked encrypted share, which
is not among the opened ones by the dealer. Given public verification, we can

22

stick to an honest majority assumption (i.e., t < n/2) while ensuring soundness.
We can borrow concrete numbers from related work in the same setting: For
example, setting n = 40 would give a soundness error of 10−12 (Table 3, [57]).
Realizing an Upper Time Bound. Due to the public verifiability, PVTSS
protocol is executed over a public bulletin board. As a result, the secret may
be reconstructed/used by any external party after T2. This demands taking a
different approach towards realizing the upper time bound to make it more strict.
Our solution is based on deploying short-lived proofs (SLPs) [5]. We Observe that
the use of SLPs allows tying the correctness of the system to time, meaning that
the secret is only guaranteed to be correct if it is reconstructed before the upper
time bound. Correctness intuitively states if the distribution phase succeeds,
then the reconstruction phase will output the same secret initially shared by the
dealer. Let us now briefly explain how we make use of SLPs in our construction.

Upper time bound with SLPs. Our approach is to take advantage of the forgeabil-
ity property of SLPs in the PVTSS construction. We piggyback on the proof of
decryptions πi generated by each party Pi as part of the reconstruction phase,
turning them into SLPs where their expiration time matches the upper time
bound T2. Therefore, given the properties of short-lived proofs and also relying
on that the secret has uniformly random distribution in Scrape PVSS,11 the
correctness of a share submitted by a party Pi is only guaranteed if being ob-
served before T2, otherwise it could be an invalid share accompanied with a valid
proof. A short-lived proof for any arbitrary relation R for which there exists a
Sigma protocol can be efficiently constructed [5]. For completeness, we present
the short-lived proof for a relation R using pre-computed VDFs in Figure 6.

In our protocol, we make a black box use of short-lived DLEQ proof genera-
tion denoted by DLEQ.SLP and verification denoted by DLEQ.SLV. It is required
that the beacon value b used to compute πi is not known until the time T1,
with T = T2 − T1 being the time parameter for the underlying VDF. Therefore,
anyone verifying the proof before T2 knows that it could have not been com-
puted through forgery. We highlight that, to deploy short-lived proofs we need
to use the DDH-based version of Scrape PVSS which its DLEQ proof comes with
knowledge soundness property.

Remark 2. Several recent works focus on the notion of forgeability over time,
particularly for developing short-lived signature or forward-forgeable signature
[5,55]. To the best of our knowledge, Arun et al. [5] is the only one exploring the
time-based forgeability in proof systems. This in turn enables us to deploy their
primitive to provide the upper time bound for PVTSS, binding the correctness
of the secret reconstruction to time.

Remark 3. We do not assume the availability of an online verifier who observes
the protocol over time. In fact, due to the characteristic of SLPs, their use is
11 This essentially implies any set of shares is indistinguishable from a set of random

strings. Note that in normal Shamir secret sharing this is limited to a set of size at
most t shares as the secret is not uniformly distributed [13].

23

meaningful when the verifier does not necessarily remain online during the recon-
struction period [T1, T2]; otherwise, it can always reject the proofs sent afterward,
negating the forgeability property. Moreover, as pointed out in [5], convincingly
timestamping the messages published on the bulletin board is opposed to the
usability of SLPs.

In our PVTSS construction, we explicitly feed the upper time bound T2 and a
beacon value b in two algorithms, PVTSS.Recover and PVTSS.Verify2. This is
essentially due to the necessity of the knowledge of time parameters T = T2−T1

and b for short-lived proof generation and verification. Moreover, as discussed
in [5], T does not need to be hardcoded when PVTSS.Setup is run. This allows the
use of VDFs with any time parameter T ′ > T , while still generating short-lived
proofs with respect to time T . That is, even if different parties use different time
parameters with T ′ > T for their VDF evaluations, only those proofs observed
before time T are convincing.

Theorem 5. If the time-lock puzzle TLP, short-lived proofs SLP, and Scrape
PVSS are secure, then publicly verifiable timed secret sharing protocol ΠPVTSS
(presented in Figure 5) satisfies soundness, t-privacy, and security, w.r.t. defini-
tions 4.2, 4.3, and 4.4 respectively.

Proof. Before T2, the correctness is straightforward. Afterward, the correctness
may fail with overwhelming probability due to the forgeability and indistin-
guishability properties of the underlying SLPs together with the uniform distri-
bution of the secret s (and thus shares si). Anyone observing the public bulletin
board after T2 cannot distinguish an erroneous decryption share s̃i from a valid
one as both pass the verification check PVTSS.Verify2. The soundness of the
protocol follows from the underlying cut-and-choose argument and BDLEQ’s
soundness property. Note that by choosing parameters properly the soundness
error for the cut-and-choose technique can be negligible in n. The property of t-
privacy stems from the fact that given a random set of t opened locked encrypted
shares produced by VTC.Sharing, the simulator Sim can produce a locked en-
crypted share indistinguishable from any locked encrypted share that remained
unopened due to the privacy properties of the underlying TLP. Security of the
protocol follows directly from the underlying PVSS protocol. Note that blinded
encrypted shares ci distributed by the dealer provide semantic security due to the
independent randomness βi, while the original encryption method used in [18]
to generate ŝi is not IND-CPA-secure.

8 Discussion

In the following, we explore and discuss several aspects of our constructions.

On the setup phase. In all of our schemes, Setup algorithm is responsible for
generating a set of public parameters pp, encapsulating the parameters for the
underlying secret sharing and time-based cryptographic primitive. In particu-
lar, our VTSS construction in Figure 4 requires a trusted setup to generate

24

ΠPVTSS

1. Initialization:
− Setup: PVTSS.Setup(1λ, T1) −→ pp, the public parameters pp include inde-

pendently chosen generators g1, g2, g3 in a DDH-hard group G, a field Zq,
a hash function H : {0, 1}∗ → I ⊂ [n] with |I| = t, and a public bulletin
board. Each party Pi announces a registered public key pki = gski

1 which
its secret key ski is only known to them.

2. Distribution:
− Sharing: PVTSS.Sharing(pp, S, {pki}i∈[n]) −→ {{Ci}i∈[n], πD}, the dealer D

randomly chooses s $← Zq and defines the secret S = gs1 to be shared among
n parties with public keys {pki}i∈[n]. D computes Shamir shares f(i) = si,
commitments vi = gsi2 , and encrypted shares ŝi = pksi

i for all i ∈ [n]
using a degree-t Shamir polynomial f(·), where f(0) = s. It blinds the
encrypted shares {ŝi}i∈[n] using some independent randomness βi, resulting
in {ci}i∈[n], where ci = ŝig

βi
3 . The dealer then locks every randomness βi in

a TLP by running TLP.Gen(1λ, T1, βi). Let denote Ci = {ci, Zi}. To show
the consistency and validity of the locked encrypted shares, D runs ΠBDLEQ,
resulting in proof π =: (vi, e, r1,i, r2,i) for i ∈ [n]. Finally, D publishes the
locked encrypted shares {Ci}i∈[n] and proof πD on a public bulletin board.
Moreover, D computes H({Ci}i∈[n], π)→ I as a random challenge (for cut
and choose) and outputs πD = {I, π, βi, ŝi}i∈[I].

− Share verification: PVTSS.Verify1(pp, {Ci}i∈[n], πD, {pki}i∈[n]) −→ 1/0, the
verifier V first validates the consistency of the shares by sampling a code
word y⊥ ∈ C⊥, where y⊥ = {y⊥

1 , . . . , y⊥
n }, and checking if

∏n
j=1 vj

y⊥
j =

1. V then checks the proof πD is valid. After re-computing I, the verifier
checks the puzzles are correctly constructed by invoking TLP.Gen algorithm
and comparing the encrypted share sent by the dealer with the one being
unlocked using βi.

3. Reconstruction:
− Recovering: PVTSS.Recover(pp, Ci, pki, ski, b, T2) −→ {s̃i, πi}, after check-

ing the validity of sharing phase, any party Pi wishing to obtain their
share at T1, unlocks the blinding factor βi by running TLP.Solve(pp, Zi),
and obtains their share s̃i after decrypting ŝi as s̃i = ŝj

1/ski . Then,
the party Pi reveals the share s̃i together with a short-lived proof πi =:
{DLEQ.SLP(ski, g1, pki, s̃i, ŝi), βi} of valid decryption. Note that DLEQ.SLP
involves calling SLP.Gen for the relation RDLEQ = {(g1, pki, s̃i, ŝi; ski)}
given a beacon value b publicly known no sooner than T1.

− Recovery verification: PVTSS.Verify2(pp, Ci, s̃i, πi, b, T2) −→ 1/0, any (ex-
ternal) verifier V can check the validity of published share s̃i via
DLEQ.SLV(πi, g1, pki, s̃i, ŝi). Note that having Ci, the verifier first obtains
ŝi with βi.

− Pooling: PVTSS.Pool(pp,S, T2) −→ S, upon having sufficient number of
shares (≥ t + 1) received before time T2, denoted by S, anyone can re-
construct the secret S = gs1 using Lagrange interpolation in the exponent.

Fig. 5: Publicly Verifiable Timed Secret Sharing (PVTSS) protocol

25

the parameters for the underlying VTC primitive. This is due to the linearly
homomorphic TLP of [43] deployed in VTC construction. The functionality of
the primitive depends on such an assumption; otherwise, either the puzzle is
not solvable or one can efficiently solve it upon receipt. Using class groups of
imaginary quadratic fields [16] as a family of groups of unknown order instead
of the well-known RSA group is an option to reduce the trust, but comes with
higher (offline) computational investment for the puzzle generator to compute
the parameters through sequential computation [43]. Deploying the class groups
solely does not eliminate the need for a trusted setup as it is still feasible that
a malicious sender fools a receiver into accepting locked shares that will never
be opened. Moreover, the VDF used in SLPs can be instantiated efficiently via
class groups [60] without making any trusted setup assumption.

On the use of SLPs. As previously mentioned, the use of SLPs necessitates the
availability of a reconstructor prior to the upper time bound for a correct recon-
struction. Moreover, we deploy short-lived proofs using precomputed VDFs [5]
which do not offer reusable forgeability, i.e., forging a proof for any statement
v without computing a new VDF. However, this essentially fits a secret shar-
ing setting (in particular, PVSS) which is inherently one-time use, i.e., after
reconstruction the secret is known and the system is not reusable.

Failure probability. Although just some chances of reconstruction failure after
T2 should be enough to break the public goods game, here We briefly analyze
the probability of a reconstruction failure after T2 when deploying SLPs with an
honest majority assumption. Let t be the number of adversarial shares and n be
the total number of shares publicly available. Given that the incorporation of
even one invalid share results in an invalid reconstruction and the fact that shares
are uniformly distributed, the success probability can be computed as p = p1

p2
,

where p1 =
(
n−t
t+1

)
and p2 =

(
n

t+1

)
. We can easily show that by a proper choice

of the parameters n, t the reconstruction fails with overwhelming probability.
Setting t = ⌈n2 ⌉ − 1, we have p ≤ n2−(⌈n

2 ⌉+1) which is a negligible value in λ for
a choice of n = λ.

Breaking public goods game. A common method to break the public goods game
is to reward those parties who publish their shares sooner via harnessing the fi-
nancial capabilities of the blockchain systems [6,11,39]. That is, the shareholder
receives some reward if their submitted share is among the first t+1 shares pub-
lished on the chain. This in turn creates a race and motivates the shareholder to
show up sooner. Our two solutions, namely gradual release of additional shares
and using short-lived proofs, can be considered as orthogonal methods that are
off-chain. More precisely, the former approach essentially binds the security of
the protocol to time by causing security reduction over time. The latter approach
binds the correctness of the protocol to time, meaning that if the reconstruction
does not occur sometime before T2, then the correctness is not guarantee.12. As a
12 This is a generic argument, independent of the adversarial behavior.

26

result, in both approaches the shareholders are pushed to act as soon as possible
to avoid any pitfalls.

Acknowledgements. The authors would like to thank Dan Ristea for the help-
ful discussions and Asiacrypt 2024 anonymous reviewers for their useful com-
ments. Aydin Abadi was supported in part by REPHRAIN: The National Re-
search Centre on Privacy, Harm Reduction and Adversarial Influence Online,
under UKRI grant: EP/V011189/1.

References

1. A. Abadi and A. Kiayias. Multi-instance publicly verifiable time-lock puzzle and
its applications. In International Conference on Financial Cryptography and Data
Security, pages 541–559. Springer, 2021.

2. A. V. Aho and J. E. Hopcroft. The design and analysis of computer algorithms.
Pearson Education India, 1974.

3. G. Almashaqbeh, F. Benhamouda, S. Han, D. Jaroslawicz, T. Malkin, A. Nicita,
T. Rabin, A. Shah, and E. Tromer. Gage mpc: Bypassing residual function leakage
for non-interactive mpc. Proceedings on Privacy Enhancing Technologies, 2021.

4. M. Archetti and I. Scheuring. Game theory of public goods in one-shot social
dilemmas without assortment. Journal of theoretical biology, 299:9–20, 2012.

5. A. Arun, J. Bonneau, and J. Clark. Short-lived zero-knowledge proofs and signa-
tures. In Advances in Cryptology–ASIACRYPT 2022: 28th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Taipei,
Taiwan, December 5–9, 2022, Proceedings, Part III, pages 487–516. Springer, 2023.

6. Z. Avarikioti, E. Kokoris-Kogias, R. Wattenhofer, and D. Zindros. B rick: Asyn-
chronous incentive-compatible payment channels. In Financial Cryptography and
Data Security: 25th International Conference, FC 2021, Virtual Event, March 1–5,
2021, Revised Selected Papers, Part II 25, pages 209–230. Springer, 2021.

7. C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas. Dynamic ad hoc
clock synchronization. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 399–428. Springer, 2021.

8. A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. Password-protected secret shar-
ing. In Proceedings of the 18th ACM conference on Computer and Communications
Security, pages 433–444, 2011.

9. W. Banasik, S. Dziembowski, and D. Malinowski. Efficient zero-knowledge con-
tingent payments in cryptocurrencies without scripts. In Computer Security–
ESORICS 2016: 21st European Symposium on Research in Computer Security,
Heraklion, Greece, September 26-30, 2016, Proceedings, Part II 21, pages 261–280.
Springer, 2016.

10. C. Baum, B. David, R. Dowsley, R. Kishore, J. B. Nielsen, and S. Oechsner. Craft:
C omposable r andomness beacons and output-independent a bort mpc f rom t
ime. In IACR International Conference on Public-Key Cryptography, pages 439–
470. Springer, 2023.

11. D. Beaver, K. Chalkias, M. Kelkar, L. K. Kogias, K. Lewi, L. de Naurois, V. Nico-
laenko, A. Roy, and A. Sonnino. Strobe: Stake-based threshold random beacons.
Cryptology ePrint Archive, 2021.

27

12. A. Beimel, Y. Ishai, and E. Kushilevitz. Ad hoc psm protocols: Secure computa-
tion without coordination. In Advances in Cryptology–EUROCRYPT 2017: 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30–May 4, 2017, Proceedings, Part III 36, pages
580–608. Springer, 2017.

13. M. Bellare, W. Dai, and P. Rogaway. Reimagining secret sharing: Creating a safer
and more versatile primitive by adding authenticity, correcting errors, and reduc-
ing randomness requirements. Proceedings on Privacy Enhancing Technologies,
2020(4), 2020.

14. D. Boneh and M. Naor. Timed commitments. In Annual international cryptology
conference, pages 236–254. Springer, 2000.

15. J. Bonneau, J. Clark, and S. Goldfeder. On bitcoin as a public randomness source.
Cryptology ePrint Archive, 2015.

16. J. Buchmann and H. C. Williams. A key-exchange system based on imaginary
quadratic fields. Journal of Cryptology, 1(2):107–118, 1988.

17. J. Burdges and L. D. Feo. Delay encryption. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 302–326. Springer,
2021.

18. I. Cascudo and B. David. Scrape: Scalable randomness attested by public entities.
In International Conference on Applied Cryptography and Network Security, pages
537–556. Springer, 2017.

19. I. Cascudo, B. David, L. Garms, and A. Konring. Yolo yoso: fast and simple encryp-
tion and secret sharing in the yoso model. In Advances in Cryptology–ASIACRYPT
2022: 28th International Conference on the Theory and Application of Cryptology
and Information Security, Taipei, Taiwan, December 5–9, 2022, Proceedings, Part
I, pages 651–680. Springer, 2023.

20. M. Chase, H. Davis, E. Ghosh, and K. Laine. Acsesor: A new framework for
auditable custodial secret storage and recovery. Cryptology ePrint Archive, 2022.

21. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Annual inter-
national cryptology conference, pages 89–105. Springer, 1992.

22. M. Chen, C. Hazay, Y. Ishai, Y. Kashnikov, D. Micciancio, T. Riviere, A. Shelat,
M. Venkitasubramaniam, and R. Wang. Diogenes: lightweight scalable rsa modulus
generation with a dishonest majority. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 590–607. IEEE, 2021.

23. Y.-H. Chen and Y. Lindell. Feldman’s verifiable secret sharing for a dishonest
majority. IACR Communications in Cryptology, 1(1), 2024.

24. A. R. Choudhuri, S. Garg, J. Piet, and G.-V. Policharla. Mempool privacy via
batched threshold encryption: Attacks and defenses. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 3513–3529. USENIX Association, 2024.

25. P. Chvojka, T. Jager, D. Slamanig, and C. Striecks. Versatile and sustainable
timed-release encryption and sequential time-lock puzzles. In European Symposium
on Research in Computer Security, pages 64–85. Springer, 2021.

26. J. Clark and U. Hengartner. On the use of financial data as a random beacon.
Evt/wote, 89, 2010.

27. P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and
A. Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 910–927. IEEE, 2020.

28. Y. Dodis and D. H. Yum. Time capsule signature. In International Conference on
Financial Cryptography and Data Security, pages 57–71. Springer, 2005.

28

29. Y. Doweck and I. Eyal. Multi-party timed commitments. arXiv preprint
arXiv:2005.04883, 2020.

30. S. D. Dwilson. What happened to julian assange’s dead man’s switch
for the wikileaks insurance files? https://heavy.com/news/2019/04/
julian-assange-dead-mans-switch-wikileaks-insurance-files/, Apr. 2019.
Section: News.

31. P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In
28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pages
427–438. IEEE, 1987.

32. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Conference on the theory and application of crypto-
graphic techniques, pages 186–194. Springer, 1986.

33. J. A. Garay and M. Jakobsson. Timed release of standard digital signatures.
In International Conference on Financial Cryptography, pages 168–182. Springer,
2002.

34. J. Y. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-tolerant clock synchro-
nization. In Proceedings of the third annual ACM symposium on Principles of
distributed computing, pages 89–102, 1984.

35. S. Heidarvand and J. L. Villar. Public verifiability from pairings in secret sharing
schemes. In International Workshop on Selected Areas in Cryptography, pages
294–308. Springer, 2008.

36. L. Heimbach and R. Wattenhofer. Sok: Preventing transaction reordering manip-
ulations in decentralized finance. arXiv preprint arXiv:2203.11520, 2022.

37. S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected se-
cret sharing and t-pake in the password-only model. In Advances in Cryptology–
ASIACRYPT 2014: 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, ROC, December 7-11,
2014, Proceedings, Part II 20, pages 233–253. Springer, 2014.

38. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polyno-
mials and their applications. In Advances in Cryptology-ASIACRYPT 2010: 16th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Singapore, December 5-9, 2010. Proceedings 16, pages 177–194.
Springer, 2010.

39. E. Kokoris-Kogias, E. C. Alp, L. Gasser, P. Jovanovic, E. Syta, and B. Ford. Ca-
lypso: private data management for decentralized ledgers. Proceedings of the VLDB
Endowment, 14(4):586–599, 2020.

40. Y. Lindell. Fast cut-and-choose-based protocols for malicious and covert adver-
saries. Journal of Cryptology, 29(2):456–490, 2016.

41. A. F. Loe, L. Medley, C. O’Connell, and E. A. Quaglia. Tide: A novel approach
to constructing timed-release encryption. Cryptology ePrint Archive, 2021.

42. Y. Ma, J. Woods, S. Angel, A. Polychroniadou, and T. Rabin. Flamingo: Multi-
round single-server secure aggregation with applications to private federated learn-
ing. In 2023 IEEE Symposium on Security and Privacy (SP), pages 477–496. IEEE,
2023.

43. G. Malavolta and S. A. K. Thyagarajan. Homomorphic time-lock puzzles and ap-
plications. In Advances in Cryptology–CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceed-
ings, Part I, pages 620–649. Springer, 2019.

44. D. Malkhi and P. Szalachowski. Maximal extractable value (mev) protection on
a dag. In 4th International Conference on Blockchain Economics, Security and
Protocols, page 1, 2023.

29

https://heavy.com/news/2019/04/julian-assange-dead-mans-switch-wikileaks-insurance-files/
https://heavy.com/news/2019/04/julian-assange-dead-mans-switch-wikileaks-insurance-files/

45. Y. Manevich and A. Akavia. Cross chain atomic swaps in the absence of time via
attribute verifiable timed commitments. In 2022 IEEE 7th European Symposium
on Security and Privacy (EuroS&P), pages 606–625. IEEE, 2022.

46. R. J. McEliece and D. V. Sarwate. On sharing secrets and reed-solomon codes.
Communications of the ACM, 24(9):583–584, 1981.

47. L. Medley, A. F. Loe, and E. A. Quaglia. Sok: Delay-based cryptography. In
2023 IEEE 36th Computer Security Foundations Symposium (CSF), pages 169–
183. IEEE, 2023.

48. K. Pietrzak. Simple verifiable delay functions. In 10th innovations in theoretical
computer science conference (itcs 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

49. I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of
the society for industrial and applied mathematics, 8(2):300–304, 1960.

50. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. 1996.

51. A. Rondelet and Q. Kilbourn. Threshold encrypted mempools: Limitations and
considerations. arXiv preprint arXiv:2307.10878, 2023.

52. A. Ruiz and J. L. Villar. Publicly verifiable secret sharing from paillier’s cryptosys-
tem. In WEWoRC 2005–Western European Workshop on Research in Cryptology.
Gesellschaft für Informatik eV, 2005.

53. B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its appli-
cation to electronic voting. In Annual International Cryptology Conference, pages
148–164. Springer, 1999.

54. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

55. M. A. Specter, S. Park, and M. Green. {KeyForge}:{Non-Attributable} email from
{Forward-Forgeable} signatures. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1755–1773, 2021.

56. S. Srinivasan, J. Loss, G. Malavolta, K. Nayak, C. Papamanthou, and S. A. Thya-
garajan. Transparent batchable time-lock puzzles and applications to byzantine
consensus. In IACR International Conference on Public-Key Cryptography, pages
554–584. Springer, 2023.

57. S. A. K. Thyagarajan, A. Bhat, G. Malavolta, N. Döttling, A. Kate, and
D. Schröder. Verifiable timed signatures made practical. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, pages
1733–1750, 2020.

58. S. A. K. Thyagarajan, G. Castagnos, F. Laguillaumie, and G. Malavolta. Efficient
cca timed commitments in class groups. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 2663–2684, 2021.

59. S. A. K. Thyagarajan, T. Gong, A. Bhat, A. Kate, and D. Schröder. Opensquare:
Decentralized repeated modular squaring service. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages 3447–3464,
2021.

60. B. Wesolowski. Efficient verifiable delay functions. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 379–407.
Springer, 2019.

61. H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford.
F3b: A low-overhead blockchain architecture with per-transaction front-running
protection. In 5th Conference on Advances in Financial Technologies, 2023.

30

A Cryptographic Primitives and Definitions

A.1 Time-lock Puzzles (TLP)

Definition 5 (Time-lock Puzzle). A time-lock puzzle (TLP) consists of the
following two algorithms:

1. TLP.Gen(1λ, T, s) −→ Z, a probabilistic algorithm that takes time parameter T
and a secret s, and generates a puzzle Z.

2. TLP.Solve(T,Z) −→ s, a deterministic algorithm that solves the puzzle Z and
retrieves the secret s.

We recall the correctness and security definition of standard time-lock puz-
zles:
Correctness [43]. A TLP scheme is correct if for all λ ∈ N, all polynomials T (·)
in λ, and all s ∈ Sλ, it holds that

Pr [TLP.Solve(T (λ), Z)→ s : TLP.Gen(1λ, T (λ), s)→ Z] = 1

Security [43]. A TLP scheme is secure with gap ϵ < 1 if there exists a poly-
nomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size
adversary A = {Aλ}λ∈N of depth ≤ T ϵ(λ), there exists a negligible function
µ(·), such that for all λ ∈ N and s0, s1 ∈ {0, 1}λ it holds that Pr [A(Z) → b :

TLP.Gen(1λ, T (λ), sb)→ Z, b
$← {0, 1}] ≤ 1

2 + µ(λ).
In particular, the seminal work of [50] introduced the notion of encrypting

to the future using an RSA-based TLP. Loosely speaking, the sender encrypts a
message m under a key k derived from the solution s to a puzzle Z. So, anyone
can obtain m after running TLP.Solve(T,Z), and learning the key.

A.2 Homomorphic Time-Lock Puzzles (HTLP)

Definition 6 (Homomorphic Time-Lock Puzzles [43]). Let C = {Cλ}λ∈N
be a class of circuits and Sλ be a finite domain. A homomorphic time-lock puzzle
(HTLP) with respect to C and with solution space Sλ is a tuple of algorithms
(HTLP.Setup, HTLP.Gen, HTLP.Solve, HTLP.Eval) as follows.

1. HTLP.Setup(1λ, T) −→ pp, a probabilistic algorithm that takes a security pa-
rameter 1λ and time parameter T , and generates public parameters pp.

2. HTLP.Gen(pp, s) −→ Z, a probabilistic algorithm that takes public parameters
pp and a solution s ∈ Sλ, and generates a puzzle Z.

3. HTLP.Solve(pp, Z) −→ s, a deterministic algorithm that takes public parame-
ters pp and puzzle Z, and retrieves a secret s.

4. HTLP.Eval(C, pp, Z1, . . . , Zn) −→ Z ′, a probabilistic algorithm that takes a cir-
cuit C ∈ Cλ and a set of n puzzles (Z1, . . . , Zn), and outputs a puzzle Z ′.

31

Security [43]. An HTLP scheme (HTLP.Setup,HTLP.Gen,HTLP.Solve,HTLP.Eval)
is secure with gap ϵ < 1 if there exists a polynomial T̃ (·) such that for all polyno-
mials T (·) ≥ T̃ (·) and every polynomial-size adversary (A1,A2) = {(A1,A2)λ}λ∈N

where the depth of A2 is bounded from above by T ϵ(λ), there exists a negligible
function µ(·), such that for all λ ∈ N it holds that

Pr

A2(pp, Z, τ)→ b :

A1(1
λ)→ (τ, s0, s1)

HTLP.Setup(1λ, T (λ))→ pp

b
$← {0, 1}

HTLP.Gen(pp, sb)→ Z

 ≤ 1

2
+ µ(λ)

The puzzle is defined over a group of unknown order and is of the form
Z = (u, v), where u = gr and v = hr.N (1+N)s. One notable point regarding the
construction is that a trusted setup assumption is needed to generate the public
parameters pp = (T,N, g, h), where N is a safe modulus 13 and h = g2

T

. Such a
setup phase is responsible for generating the parameters as specified and keeping
the random coins secret; otherwise, either the puzzle is not solvable or one can
efficiently solve it in time t≪ T . Having said that, the authors in [43] point out
that this assumption can be removed if construction gets instantiated over class
groups instead of an RSA group of unknown order. However, this comes at the
cost of a higher computational overhead by the puzzle generator.

A.3 Multi-instance Time-lock Puzzle (MTLP)

Definition 7 (Multi-instance Time-lock Puzzle [1]). A Multi-instance Time-
lock Puzzle (MTLP) consists of the following five algorithms.

1. MTLP.Setup(1λ, T, z) −→ {pk, sk,d}, a probabilistic algorithm that takes a se-
curity parameter λ, a time parameter T , and the number of puzzle instances
z, and outputs a key pair (pk, sk) and a secret witness vector d.

2. MTLP.Gen(m, pk, sk,d) −→ {o,h}, a probabilistic algorithm that takes a mes-
sage vector m, the public-private key (pk, sk), secret witness vector d, and
outputs a puzzle vector o and a commitment vector h.

3. MTLP.Solve(pk,o) −→ s, a deterministic algorithm that takes the public key pk
and the puzzle vector o, and outputs a solution vector s, where sj is of form
mj || dj.

4. Prove(pk, sj) −→ πj , a deterministic algorithm that takes the public key pk and
a solution sj, and outputs a proof πj.

5. Verify(pk, πj , hj) −→ {0, 1}, a deterministic algorithm that takes the public key
pk, proof πj, and commitment hj. If verification succeeds, it outputs 1, oth-
erwise 0.

Security [1]. A multi-instance time-lock puzzle is secure if for all λ and T , any
number of puzzle: z ≥ 1, any j (where 1 ≤ j ≤ z), any pair of randomised
13 A safe modulus is a product of two safe primes P = 2p′ + 1, Q = 2q′ + 1, where p′

and q′ are prime numbers.

32

algorithm A : (A1,A2), where A1 runs in time O(poly(jT, λ)) and A2 runs in
time δ(jT) < jT using at most π(T) parallel processors, there exists a negligible
function µ(.) such that

Pr

A2(pk, ö, τ)→ ä
s.t.
ä : (bi, i)
mbi,i

= mbj,j

:

MTLP.Setup(1λ,∆, z)→ (pk, sk,d)
A1(1

λ, pk, z)→ (τ,m)

∀j′, 1 ≤ j′ ≤ z : bj′
$← {0, 1}

MTLP.Gen(m′, pk, sk,d)→ ö

 ≤ 1

2
+ µ(λ)

A.4 Verifiable Delay Function

Definition 8 (Verifiable Delay Function). A verifiable delay function (VDF)
consists of the following three algorithms:

1. VDF.Setup(1λ, T) −→ pp, a probabilistic algorithm that takes security parame-
ter λ and time parameter T , and generates system parameters pp.

2. VDF.Eval(pp, x) −→ {y, π}, a deterministic algorithm that given system param-
eters pp and a randomly chosen input x, computes a unique output y and a
proof π.

3. VDF.Verify(pp, x, y, π) −→ {0, 1}, a deterministic algorithm that verifies y in-
deed is a correct evaluation of the x. If verification succeeds, the algorithm
outputs 1, and otherwise 0.

Intuitively, there are three security properties that a valid VDF should sat-
isfy. There must be a run time constraint of (1+ ϵ)T for a positive constant ϵ to
limit the evaluation algorithm, called ϵ-evaluation. The VDF should have sequen-
tially, meaning no adversary using parallel processors can successfully compute
the output without executing proper sequential computation. Lastly, the VDF
evaluation should be a function with uniqueness property. That is, the verifica-
tion algorithm must accept only one output per input.

VDF constructions Among a variety of constructions, VDFs based on repeated
squaring have gained more attention as they offer a simple evaluation function
that is more compatible with the hardware and provides better accuracy in
terms of the time needed to perform the computation. The two concurrent works
of [48, 60] suggest evaluating the function y = x2T over a hidden-order group.
Despite similarities in construction, they present two independent ways of proof
generation. Particularly, the one proposed by Wesolowski [60] enjoys the luxury
of having a constant size proof and verification cost. In addition, Wesolowski’s
construction can be instantiated over class groups of imaginary quadratic fields
[16] which do not require a trusted setup assumption.

A.5 Verifiable Timed Commitment

Definition 9 (Verifiable Timed Commitment [57]). A verifiable timed com-
mitment consists of the following algorithms:

33

1. VTC.Setup(1λ, T) −→ pp, a probabilistic algorithm that takes a security param-
eter 1λ and time parameter T , and generates public parameters pp.

2. VTC.Commit(pp, s) −→ {C, π}, a probabilistic algorithm that takes public pa-
rameters pp and a secret s, and generates a commitment C and proof π.

3. VTC.Verify(pp, pk, C, π) −→ {0, 1}, a deterministic algorithm that takes public
parameters pp, a public key pk, the commitment C, and proof π, and checks
if the commitment contains a valid s with respect to pk.

4. VTC.Solve(pp, C) −→ s, a deterministic algorithm that takes commitment C,
and outputs a secret s.

Intuitively, a correct VTC should satisfy soundness, ensuring the commit-
ment C indeed embeds a valid secret s with respect to pk, and privacy, ensuring
that no parallel adversary with a running time of less than T succeeds in ex-
tracting s, except with negligible probability.

A.6 Sigma Protocols

Let R = {(v;w)} ∈ V×W denote a relation containing the pairs of instances and
corresponding witnesses. A Sigma protocol Σ on the (v;w) ∈ R is an interactive
protocol with three movements between P and V as follows.

1. Σ.Ann(v, w) −→ a, runs by P and outputs a message a to V .
2. Σ.Cha(v) −→ c, runs by V and outputs a message c to P .
3. Σ.Res(v, w, c) −→ r, runs by P and outputs a message r to V .
4. Σ.Ver(v, a, c, r) −→ {0, 1}, runs by V and outputs 1 if statement holds.

A Sigma protocol has three main properties including completeness, knowl-
edge soundness, and zero-knowledge. Completeness guarantees the verifier gets
convinced if parties follow the protocol. Special soundness states that a mali-
cious prover P ∗ cannot convince the verifier of a statement without knowing
its corresponding witness except with a negligible probability. This is formal-
ized by considering an efficient algorithm called extractor to extract the witness
given a pair of valid protocol transcripts with different challenges showing the
computational infeasibility of having such pairs and therefore guaranteeing the
knowledge of the witness by P . The notion of zero-knowledge ensures that no
information is leaked to the verifier regarding the witness. This is formalized by
considering an efficient algorithm called simulator which given the instance v,
and also the challenge c, outputs a simulated transcript that is indistinguishable
from the transcript of the actual protocol execution. Note that this property only
needs to hold against an honest verifier which seems to be a limitation of the
description, but allows for having much more efficient constructions compared
to generic models. The interactive protocol described above can be easily turned
into a non-interactive variant using the Fiat-Shamir heuristic [32] in the random
oracle model, making it publicly verifiable with no honest verifier assumption.

34

A.7 Short-lived Proofs

Definition 10 (Short-lived Proofs [5]). A short-lived proof scheme includes
a tuple of the following algorithms:

1. SLP.Setup(1λ, T) −→ pp, a probabilistic algorithm that takes security parameter
λ and time parameter T , and generates public parameters pp.

2. SLP.Gen(pp, v, w, b) −→ π, a probabilistic algorithm that takes a (v;w) ∈ R and
a random value b, and generates a proof π.

3. SLP.Forge(pp, v, b) −→ π, a probabilistic algorithm that takes any instance v
and a random value b, and generates a proof π.

4. SLP.Verify(pp, v, π, b) −→ 1/0, a probabilistic algorithm verifying that π indeed
is a valid short-lived proof of the instance v. If verification succeeds, the algo-
rithm outputs 1, and otherwise 0.

Note that the definition assumes there exists a randomness beacon which
outputs an unpredictable value b periodically at certain times. There are vari-
ous ways to implement such beacons including using a public blockchain [15],
financial market [26], and more. Such an assumption is necessary to eliminate
the need for having a shared global clock (i.e., timestamping). As parties agree
on the initial point in time (implied by b), the proof π tied to b must have been
observed before time T to be convincing, otherwise might be a forgery.

SLP using Sigma protocols. Short-lived proofs can be instantiated both using
generic (non-interactive) zero-knowledge proofs and efficient Sigma protocols.
However, as shown in [5], making a Sigma protocol short-lived is rather tricky
as it needs some modification in the protocol for OR-composition to be secure
according to SLP properties. The modification is done in such a way to let the
honest prover create an SLP in a short time without needing to wait for time
T to compute the VDF but forces the malicious prover to do the sequential
computation, preventing her from computing a forgery before time T . More
accurately, in an Or-composition the prover can convince the verifier even if it
only knows the witness to one of the relations. To do so, the verifier lets the prover
somehow cheat by using the simulator for the relation that it does not know the
witness for. Thus, having one degree of freedom the prover chooses two sub-
challenges c1 and c2 under the constraint that c1 + c2 = c. Note that the prover
is free to fix one of them and compute the other one under the constraints. The
observation made in [5] to let the honest prover quickly generate the short-lived
proof is to involve the beacon b in the generation of the challenge. Therefore,
an honest prover just needs to pre-compute the VDF on a random value b∗

allowing her to use it when computing the forgery by freely setting one of the
sub-challenges, say c2, to b∗ ⊕ b and letting c1 = c ⊕ c2. A malicious prover,
however, should compute the VDF on demand as it does not know a witness w
for the relation R and c1 gets fixed by the simulator, taking away the possibility
of setting c2 as specified.

35

ΠSLP

1. Initialization: On input a random value b∗, compute VDF.Eval(pp, b∗) −→
{y∗, π∗

V DF }
2. Proof generation: SLP.Gen(pp, v, w, b) −→ π,

− Compute Σ.Announce(v, w) −→ a
− Compute c = H(v ∥ b ∥ a)
− Set sub-challenge c2 = b∗ ⊕ b
− Compute sub-challenge c1 = c⊕ c2
− Compute Σ.Response(v, w, a, c1) −→ r
− Output π =: {a, c1, r, c2, y∗, π∗

V DF }

3. Forgery: SLP.Forge(pp, v, b) −→ π̃,

− Compute Σ.Simulator(v) −→ (ã, c̃1, r̃)
− Compute c = H(v ∥ b ∥ ã)
− Set sub-challenge c2 = c⊕ c̃1
− Compute VDF.Eval(pp, b⊕ c2) −→ {y, πV DF }
− Output π̃ =: {ã, c̃1, r̃, c2, y, πV DF }

4. Proof verification: SLP.Verify(pp, v, π/π̃, b) −→ {0, 1}
− Compute c = H(v ∥ b ∥ a)
− Accept if:
• c = c1 ⊕ c2
• Σ.Verify(v, a, c1, r) = 1
• VDF.Verify(pp, b⊕ c2, y, πV DF) = 1

Fig. 6: Short-lived proof for a relation R = {(v;w)} using pre-computed VDFs [5]

As an optimization, some alternative ways for generating a VDF solution
by the honest prover instead of pre-computing a VDF from scratch have been
proposed that we refer the reader to [5] for more details.

36

	Timed Secret Sharing

