
Blind signatures from Zero-knowledge arguments

Paulo L. Barreto1, Gustavo H. M. Zanon2

1 University of Washington | Tacoma, USA.
pbarreto@uw.edu

2 University of São Paulo, Brazil.
ghmzanon@gmail.com

Abstract. We propose a novel methodology to obtain Blind signatures
that is fundamentally based on the idea of hiding part of the underlying
plain signatures under a Zero-knowledge argument of knowledge of the
whole signature (hence the shorthand, BZ). Our proposal is necessar-
ily non-black-box and stated in the random oracle model. We illustrate
the technique by describing two instantiations: a classical setting based
on the traditional discrete logarithm assumption, and a post-quantum
setting based on the commutative supersingular isogeny Diffie-Hellman
(CSIDH) assumption.

Keywords: Blind signatures, Zero-knowledge arguments.

1 Introduction

Secure blind signatures [10], despite their usefulness, are notoriously hard to
obtain in a truly secure fashion. Many proposals in the literature have been di-
rectly broken [6] or shown to at least contain flaws in their analysis [18]. To make
things worse, many impossibility results have been discovered along the years,
e.g. [4,14,19] to cite just a few, severely restricting the kind of construction that
could still be obtained. Yet, secure constructions are known [17], and although
they might not be viewed as particularly efficient, they give hope that further
schemes are possible. New blind signature schemes are likely to have a worth-
while impact, both in a conventional setting and in a post-quantum [2] scenario
as well.

Contributions: We propose a novel methodology to obtain blind signatures
from certain security assumptions that is based, on the one hand, on the idea of
replacing part of the usual plain signatures by a non-interactive zero-knowledge
argument for that (now hidden) part, and on the other hand, on certain specific
operations the underlying primitive must support that guide the instantiation
of blind signatures on top of that primitive. Given that we seek to obtain Blind
signatures from Zero-knowledge proofs, we call it the BZ methodology.

Since three-round blind signatures in the standard model are known to be
unattainable [14], our proposal is constrained to the random oracle model in-
stead. Black-box constructions are also known to be impossible even in the ran-
dom oracle model [19], for which reason our proposal is non-black-box, and part of

the analysis must be deferred to the actual instantiations, albeit in a systematic
way. Moreover, our proposal relies on the overall structure of Schnorr-style sig-
natures, and again impossibility theorems are known that rule out large classes
of such schemes [4]. We circumvent this by avoiding the conditions of those
theorems and reducing to a stronger security assumption than the natural one
(e.g. OMDL instead of DL), and the zero-knowledge arguments of knowledge are
pivotal to achieve it.

We instantiate the BZ methodology for the traditional discrete logarithm
assumption and for the commutative supersingular isogeny Diffie-Hellman, or
CSIDH [9], assumption, and argue their formal security in terms of perfect blind-
ness and the notion of one-more MitM unforgeability introduced in [17].

Organization: The remainder of this paper is organized as follows. Sec-
tion 2 introduces notation and basic algebraic concepts. Section 3 describes the
proposed BZ methodology. Section 4 recaps the standard security notions con-
cerning blind signatures, tailoring them to BZ schemes. Sections 5 and 6 specify
two instantiations of the BZ construction, one based on the conventional discrete
logarithm assumption and one based on the commutative supersingular isogeny
Diffie-Hellman (CSIDH) assumption. Section 7 discusses parameters and com-
pares the instantiations above against related blind signature constructions. We
conclude the main text in Section 8.

Supplementary material: In supplement A we explore plausible ways to mount a
ROS-style attack against BZ and IZ schemes, and show how and why they fail.
We also provide more details on the signing equations of the proposed BZ [DL]
and BZ [CSI] schemes in supplement B.

2 Preliminaries

2.1 Notation

Throughout the paper we write Zn := Z/nZ, Z∗n := Zn \ {0}. For an Abelian
group G written multiplicatively with neutral element 1, we write G∗ := G\{1}.
For any finite set S, x

$← S denotes the uniformly random sampling of an
element x ∈ S.

For any positive integer n, Sn denotes the symmetric group (i.e. the set of
all permutations) of the set {1 . . . n}, and for any k | n, M n

k denotes the set of
sequences from {0 . . . k− 1}n where each of the k possible distinct values occurs
exactly n/k times.

Matrices taken from ST×t (for some set S) will be written with row indices
as superscripts and column indices as subscripts, e.g. e1...T1...t .

Given any vector or matrix e1...n, e
1...m, or e1...m1...n , and given any permu-

tations π ∈ Sn and ρ ∈ Sm, we write π(e1...n) := eπ(1...n) := (eπ(1) . . . eπ(n)),

ρ(e1...m) := eρ(1...m) := (eρ(1) . . . eρ(m)), π↓(e
1...m
1...n) := e1...mπ(1...n), ρ

↑(e1...m1...n) :=

e
ρ(1...m)
1...n , and ρ↑π↓(e

1...m
1...n) = π↓ρ

↑(e1...m1...n) := e
ρ(1...m)
π(1...n) . NB: permutations and

2

simple vectors/matrix arithmetic operations commute, e.g. π(e1...n)±π(e′1...n) =
π(e1...n ± e′1...n).

Given sequences e0...k−1 and e0...k−1 and an element c1...n ∈ M n
k , we write

e↓c1...n := (ec1 . . . ecn) and e↑c1...n := (ec1 . . . ecn), and similarly for matrices
where both upper and lower indices are present.

Supersingular curves and isogenies: Given a prime p = 3 (mod 4), the
set of supersingular elliptic curves (in Montgomery form) over Fp is denoted
Eℓℓp := {EA/Fp : y2 = x3 + Ax2 + x | A ∈ Fp ∧#E(Fp) = p + 1}. The neutral
element in the group of points of such a curve E is denoted OE (or simply O
when the curve is clear from the context).

Two elliptic curves E and E′ are called isogenous if there is a group homo-
morphism ϕ : E → E′ with ϕ(OE) = OE′ . That homomorphism is then called
an isogeny.

The ring of endomorphisms End(E) of a curve E is the set of all isoge-
nies from E to itself. The ring of Fp-rational endomorphisms of E is denoted
EndFp(E). For supersingular curves over Fp, End(E) is an order in a quater-
nion algebra whereas O := EndFp

(E) is an order in the imaginary quadratic
field Q(

√
−p). The ideal class group of O, denoted Cl(O), is the quotient of the

group of fractional invertible ideals in O by the principal fractional invertible
ideals. It is known that Cl(O) acts freely and transitively on Eℓℓp through the
mapping O × Eℓℓp → Eℓℓp defined as a ⋆ E := E/Sa, where Sa :=

⋂
α∈a ker(α)

and E/Sa is the image of the isogeny defined on E with kernel Sa.
We henceforth assume that Cl(O) is cyclic of order N := #Cl(O). Let g

be a fixed generator of Cl(O) and let [·] : ZN × Eℓℓp → Eℓℓp be the mapping
(s, E) 7→ [s]E := gs ⋆ E. For each s ∈ ZN , [s] : Eℓℓp → Eℓℓp denotes the specific
action E 7→ [s]E.

Given A ∈ Eℓℓp, U1...m
1...n ∈ Eℓℓm×np , and δ1...m1...n ∈ (Z∗N)m×n, we de-

note [δ1...m1...n]A :=
(
[δ11]A . . . [δ

1
n]A, . . . , [δ

m
1]A . . . [δmn]A

)
and [δ1...m1...n]U1...m

1...n :=(
[δ11]U

1
1 . . . [δ

1
n]U

1
n, . . . , [δ

m
1]Um1 . . . [δmn]Umn

)
.

Notice that, for any permutations π ∈ Sn and ρ ∈ Sm, it holds
that π↓

(
[δ1...m1...n]U1...m

1...n

)
=

[
π↓(δ

1...m
1...n)

]
π↓(U

1...m
1...n) and ρ↑

(
[δ1...m1...n]U1...m

1...n

)
=[

ρ↑(δ1...m1...n)
]
ρ↑(U1...m

1...n).

Protocols: We hereby adopt the term “meddler-in-the-middle” (MitM) as a
gender-neutral alternative to the standard “man-in-the-middle” label in formal
security games.

We employ a simple color code to facilitate keeping track of analogous or
related quantities upon reading the text or comparing the instantiations, e.g. key
pairs are colored blue, generators and starting curves are colored red, primary
commitments are colored green, and so on.

Transcript components from protocol sessions are indicated with a circum-
flex, e.g. ĉ.

Blinding elements in signatures are indicated with Greek letters (except σ,
reserved to denote the signatures themselves).

3

3 The BZ methodology

As we mentioned in the Introduction, our proposal builds on the basic structure
of the Schnorr blind signature scheme. We now recap that scheme and then
describe the general BZ ideas.

3.1 The Schnorr signature scheme

LetG be an Abelian group of prime order n where the discrete logarithm problem
is assumed to be hard, and let G : G→ Zn and H : G×{0, 1}∗ → Zn be random
oracles.

The Schnorr identification scheme [21] for a group generator g ∈ G and a
key pair (x ∈ Zn, y := gx ∈ G) is a challenge-response protocol where, given a
commitment u ∈ G and a challenge c ∈ Zn, the response z ∈ Zn satisfies u =
gzyc. It is made into a signature scheme by replacing the random challenge by the
output from a random oracle call that includes3 the messagem ∈ {0, 1}∗, namely
c := H(u,m), yielding a short transcript (c, z) ∈ Z2

n satisfying c = H(gzyc,m).
Since verification requires computing u ← gzyc, one might be tempted to

speed it up by changing the transcript to (c, h := gz) directly instead, but this is
of course insecure since one could fake a valid transcript by picking u at random,
then computing the forged transcript (c ← H(u,m), h ← u/yc). So it is simply
not enough to offer (c, h) for verification even if c = H(hyc,m) as expected:
knowledge of z is absolutely required for the verification to make sense (notice
that z is actually unknown to the faker in the above forgery, only gz is obtained).

Yet, there is an alternative to exhibiting the actual z, namely, one could offer
a zero-knowledge argument of its knowledge instead, even in a succinct and non-
interactive way (that is, one could offer a SNARK). Indeed, the pair (z, h = gz)
has precisely the same nature of the signing key pair, an idea previously used
to obtain identity-based signatures [15]. Thus, in principle it could be used to
produce a one-time signature to play the role of a SNARK. To that end, just
prepare a pair (d,w) such that d = G(gwhd).

This idea is clearly less efficient than showing a Schnorr transcript (c, z) since
the full signature is now (c, h, d, w) or at least (u, d, w), but it paves the way to
obtaining blind signatures systematically.

3.2 The general BZ construction

We will closely follow [17], adapting their definitions on demand.

Definition 1 (Canonical Three-move Blind-signature-from-Zero-
knowledge Scheme). A canonical three-move Blind-signature-from-Zero-
knowledge scheme BZ is a tuple of algorithms BZ = (BZ .PG,BZ .KG,BZ .S =
(BZ .S1,BZ .S2),BZ .U = (BZ .U1,BZ .U2),BZ .Ver) where:

3 Technically the generator g and the public key y should be included in the hash as
well, but we follow a common convention (adopted e.g. in [17]) and omit them for
brevity and clarity.

4

Fig. 1. The canonical BZ scheme

Signer BZ .S(sk) User BZ .U(pk,m)

(û, v̂, stS)
$← BZ .S1(sk)

û,v̂−→
ĉ,d̂←− (ĉ, d̂, stU)

$← BZ .U1(pk, û, v̂,m)

ŵ ← BZ .S2(stS , ĉ, d̂)
ŵ−→ σ ← BZ .U2(stU , ŵ)

– The randomized parameter generation algorithm BZ .PG takes a security
parameter 1κ as input and returns system parameters par.

– The randomized key generation algorithm BZ .KG takes par as input and
creates a key pair (pk, sk). In turn, the public key defines challenge spaces
(C,D) := CD(pk), and is known to all parties.

– The first, randomized signer algorithm BZ .S1 takes as input the secret key
sk and returns commitments (û, v̂) and the signer’s state stS.

– The first, randomized user algorithm BZ .U1 takes as input the public key pk,
commitments (û, v̂), and a message m, and returns challenges (ĉ ∈ C, d̂ ∈ D)
and the user’s state stU .

– The second, deterministic signer algorithm BZ .S2 takes as input the signer’s
state stS, which includes the secret key sk and the commitments (û, v̂), to-

gether with challenges (ĉ ∈ C, d̂ ∈ D), and returns the response ŵ.

– The second, deterministic user algorithm BZ .U2 takes as input the user’s
state stU , which includes the public key pk, the commitments (û, v̂), the mes-

sage m, and the challenges (ĉ ∈ C, d̂ ∈ D), together with response ŵ, and
returns a signature σ, or ⊥ in case of failure.

– The deterministic verification algorithm BZ .Ver takes as input the public key
pk, a signature σ, and a message m, and returns 1 to indicate acceptance or
0 to indicate rejection (if σ = ⊥ the output is always 0).

The core BZ ideas and properties: The BZ methodology adopts two core
ideas to obtain blind signatures.

– The first core idea is to derive a one-time key pair (ĥ, z) from the z compo-
nent of a traditional Schnorr transcript (û, ĉ, z), and replace z by a SNARK

of its knowledge, that is, by a commitment-challenge-response triple (v̂, d̂, ŵ)

verifiable under ĥ. For instance, in a discrete logarithm setting the one-time

key pair would be (ĥ := gz, z), and the triple (v̂, d̂, ŵ) would satisfy v̂ = gŵĥd̂.
This effectively introduces one more unknown variable (the randomness in-
volved in the SNARK creation) without increasing the net number of linear
equations that are not protected in exponents.

– The second core idea is how the blinding applies in a way that is compatible
with the first idea above. Specifically, we seek to blind commitments using
(multiplicative) permutations and (additive) displacements in the space of

5

possible commitments, and then blind challenges with the inverse permu-
tations as used to blind the commitments. The nature of those ‘permuta-
tions’ and ‘displacements’ depends on the specific primitive/hard problem
underlying each instantiation of the methodology. This mimics the way that
Schnorr signatures are created, in the sense that hash values are transformed
by means of a multiplicative permutation (namely, multiplication by the pri-
vate key) and an additive displacement (namely, adding the random nonce).
It also contrasts with more common exclusively additive blinding mecha-
nisms as used in blind Schnorr signatures and variants, whereby commit-
ments are blinded by adding a linear combination of the public key and the
generator, and challenges are blinded by adding one of the coefficients of
that linear combination.

We stress that the BZ methodology is non-black-box, in the sense that the actual
permutation and displacement operations make direct use if the internals of the
underlying primitive, and thus part of the analysis is necessarily deferred to the
actual instantiations.

We wish the instantiations of the BZ scheme to satisfy the following three basic
informal properties, that will be formalized later:

– Perfect correctness: for any signature σ that genuinely results from BZ .U2

after a protocol session with a key pair (pk, sk) and a message m, it must
hold that BZ .Ver(pk, σ,m) = 1;

– Perfect blindness: if BZ .S chooses two messages (m0,m1), establishes two
sessions with BZ .U with transcripts (T0, T1), and ends up observing the two
signatures (σ0, σ1), then BZ .S cannot tell whether T0 corresponds to m0

(and T1 corresponds to m1), or T0 corresponds to m1 (and T1 corresponds
to m0) any better than by random guessing;

– One-more unforgeability: if BZ .U interacts with BZ .S in ℓ protocol sessions,
then BZ .U obtains no more than ℓ blind signatures (namely, only from those
sessions that reach completion).

We first formalize the latter two notions (blindness in Section 4.1, one-more
unforgeability in Section 4.2), then prove all of these properties for two instan-
tiations of the BZ construction, namely:

– BZ [DL], whose security stems from the Discrete Logarithm assumption and
Schnorr signatures [21] (DL for short);

– BZ [CSI], whose security stems from the Commutative Supersingular Isogeny
Diffie-Hellman assumption [9] and CSI-FiSh signatures [7] (CSI for short).

For these schemes the standard MitM security (defined in Remark 1) is
unattainable, which suggests that security against impersonation under con-
current attacks (IMP-CA), defined in Section 4.3, may be the strongest security
notion that can be achieved within the BZ methodology4.

4 The notion of one-more MitM unforgeability [17, Definition 4.2] is stronger than
IMP-CA, but attaining it, if possible at all, remains elusive.

6

Fig. 2. The canonical IZ scheme

Prover IZ .P (sk) Verifier IZ .U(pk,m)

(û, v̂, stP)
$← IZ .P1(sk)

û,v̂−→
ĉ,d̂←− ĉ

$← C, d̂ $← D
ŵ ← IZ .P2(stP , ĉ, d̂)

ŵ−→ b← IZ .Ver(pk, û, v̂, ĉ, d̂, ŵ)

The proofs of the several properties will be tailored to those instantiations
by the very nature of the underlying algebraic properties: perfect correctness in
Theorems 1 and 6, perfect blindness in Theorems 2 and 7, unattainability of
standard MitM security in Theorems 3 and 8, reduction of one-more unforge-
ability to impersonation under concurrent attacks security in Theorems 4 and
9, reduction of impersonation under concurrent attacks security to the one-more
discrete logarithm or one-more commutative supersingular isogeny in Theorems
5 and 10.

3.3 The underlying IZ identification scheme

The unforgeability properties of BZ instantiations will be related to an under-
lying identification scheme, IZ , which we now define. Again, we closely follow
[17], adapting their definitions on demand.

Definition 2 (Canonical Three-move Identification-from-Zero-
knowledge Scheme). A canonical three-move Identification-from-Zero-
knowledge scheme IZ is a tuple of algorithms IZ = (IZ .PG, IZ .KG, IZ .P =
(IZ .P1, IZ .P2), IZ .Ver) where:

– The randomized parameter generation algorithm IZ .PG takes a security pa-
rameter 1κ as input and returns system parameters par.

– The randomized key generation algorithm IZ .KG takes par as input and
creates a key pair (pk, sk). In turn, the public key defines challenge spaces
(C,D) := CD(pk), and is known to all parties.

– The first, randomized signer algorithm IZ .P1 takes as input the secret key
sk and returns commitments (û, v̂) and the prover’s state stP .

– The second, deterministic prover algorithm IZ .P2 takes as input the prover’s
state stP , which includes the secret key sk and the commitments (û, v̂), to-

gether with challenges (ĉ ∈ C, d̂ ∈ D), and returns the response ŵ.

– The deterministic verification algorithm IZ .Ver takes as input the public key
pk, commitments (û, v̂), challenges (ĉ ∈ C, d̂ ∈ D), and response ŵ, and
returns 1 to indicate acceptance or 0 to indicate rejection.

7

4 Security notions

4.1 Blindness

We adapt our definition of BZ blindness from [17, Definition 5.3]. Consider the
following blindness game with its accompanying oracles Init, U1, and U2:

Game 1 BlindBZ

1: par ← BZ .PG(1κ)

2: b
$← {0, 1}, b0 ← b, b1 ← 1− b

3: (pk, sk)
$← BZ .KG(par) ▷ honest signer model

4: sess0 ← sess1 ← none

5: b′
$← AInit,U1,U2 (pk, sk)

6: return
(
b = b′

)
? 1 : 0

Oracle 1 Init(m̃0, m̃1)

1: if sess0 ̸= none or sess1 ̸= none : return ⊥ ▷ call Init only once
2: m0 ← m̃0, m1 ← m̃1

3: sess0 ← sess1 ← init

Oracle 2 U1(i, û, v̂)

1: if i ̸∈ {0, 1} or sessi ̸= init : return ⊥
2: sessi ← open
3: ui ← û, vi ← v̂
4: (ci, di, sti,U)← BZ .U1(pk, ui, vi,mbi

)
5: return i, ci, di

Oracle 3 U2(i, ŵ)

1: if i ̸∈ {0, 1} or sessi ̸= open : return ⊥
2: sessi ← closed
3: wi ← ŵ
4: σbi

← BZ .U2(sti,U , wi)
5: if sess0 = sess1 = closed :
6: if σ0 = ⊥ or σ1 = ⊥ : return (⊥,⊥)
7: return (σ0, σ1)
8: return i, closed

The advantage of an adversary A in game BlindBZ is defined as

AdvBlind
BZ (A) :=

∣∣∣Pr[BlindABZ ⇒ 1]− 1/2
∣∣∣.

Let BZ be a canonical three-move blind-signature-from-zero-knowledge
scheme. We say that BZ is perfectly blind if for all (even unbounded) adver-
saries AdvBlind

BZ (A) = 0.

4.2 One-more unforgeability

We adapt our definition of BZ one-more unforgeability from [17, Definition 5.4].
Consider the following one-more unforgeability game with its accompanying or-
acles S1 and S2:

8

Game 2 OMUFBZ

1: par ← BZ .PG(1κ)

2: (pk, sk)
$← BZ .KG(par) ▷ honest signer model

3: sid← 0 ▷ no session yet

4: (m1, σ1), . . . , (mℓ(A), σℓ(A))
$← AS1,S2,GH(pk)

5: if ∃i ̸= j : mi = mj or ∃k ∈ {1 . . . ℓ(A)} : BZ .Ver(pk, σk,mk) = 0 : return 0
6: QS1

(A)← #{1 ≤ k ≤ sid | sessk = open} ▷ abandoned sessions
7: QS2

(A)← #{1 ≤ k ≤ sid | sessk = closed}
8: return

(
ℓ(A) ≥ QS2

(A) + 1
)
? 1 : 0

Oracle 4 S1(·)

1: sid += 1
2: sesssid ← open

3: (ûsid, v̂sid, stsid,S)
$← BZ .S1(sk)

4: return sid, ûsid, v̂sid

Oracle 5 S2(sid, ĉ, d̂)

1: if sesssid ̸= open : return ⊥
2: sesssid ← closed
3: ŵsid ← BZ .S2(stsid,S , ĉ, d̂)
4: return ŵsid

The advantage of an adversary A in game OMUFBZ is defined as
AdvOMUF

BZ (A) := Pr[OMUFABZ ⇒ 1] and denote its running time as
TimeOMUF

BZ (A).
Let BZ be a canonical three-move blind-signature-from-zero-knowledge

scheme. We say that BZ is (ϵ, τ,QS1
,QS2

,QGH)-OMUF secure in the random or-
acle model if for all adversaries A satisfying TimeOMUF

BZ (A) ≤ τ , QS1
(A) ≤ QS1

,
QS2(A) ≤ QS2 , it holds that AdvOMUF

BZ (A) ≤ ϵ, where QGH is the maximum
between the number of queries to the joint GH oracle that models a pair of hash
functions5 G and H. An adversary A that satisfies these constraints is said to
break the (ϵ, τ,QS1

,QS2
,QGH)-OMUF security of BZ if AdvOMUF

BZ (A) > ϵ.

Remark 1. In the standard MitM experiment, the winning condition is relaxed
so that there must only exist a successful session with the verifier sporting a
transcript that does not result from a closed session with the prover.

4.3 (Non-)impersonation under concurrent attacks

Now we present the definition of unforgeability we adopt for IZ from [5], namely,
security against impersonation under concurrent attacks, or IMP-CA for short.

An IMP-CA adversary is a pair A := (VP1,P2 ,PC1,C2) of randomized
polynomial-time algorithms, the cheating verifier V and cheating prover P. The
IMP-CA game that A plays has two phases.

In the first phase, V is initialized with the public key pk and a random tape,
and then interacts with the prover P via the oracle P1(·), which opens a new
independent session with the prover and returns the session identifier pid and
a commitment pair (upid, vpid), and the oracle P2(pid, cpid, dpid), which closes
session pid and returns a response wpid to the challenge pair (cpid, dpid), or ⊥ if
pid is not open. These interactions can be arbitrarily interleaved. Eventually, V
outputs some state information stV and stops, ending the first phase.

In the second phase of the game, the cheating prover P has its own state
stP initialized with stV , while the verifier V gets the public key pk and a fresh

5 The use of two hash functions in practice enables an optimization where one challenge
is omitted from the signature and derived on demand from existing information.

9

random tape, and then interacts with P via the oracles C1(·), which takes no
input and returns a commitment pair (u, v), and C2(c, d), which returns the re-
sponse w corresponding to that commitment pair and the given challenge pair.
These oracles make use of corresponding procedures, respectively P.F1(stP) and
P.F2(stP , c, d), that extract the required information from stP and update that
state accordingly, mimicking Algorithms IZ .P1 and IZ .P2. P returns the tran-
script of the most favorable interaction with V (where presumably V accepts).
Adversary A wins if V indeed accepts in this interaction.

This is summarized in game IMP-CAIZ and its associated oracles P1, P2,
C1, and C2.

Game 3 IMP-CAIZ

▷ 1st phase:

1: par ← IZ .PG(1κ), (pk, sk)
$← IZ .KG(par) ▷ honest signer model

2: pid← vid← 0 ▷ no session yet

3: stV
$← VP1,P2 (par, pk), stP ← stV

4: (û, v̂, ĉ, d̂, ŵ)← PC1,C2 (stP)

5: b← IZ .V er(pk, û, v̂, ĉ, d̂, ŵ)
6: return b

Oracle 6 P1(·)

1: pid += 1
2: pSesspid ← open

3: (ûpid, v̂pid, stpid,P)
$← IZ .P1(sk)

4: return pid, ûpid, v̂pid

Oracle 7 P2(pid, ĉ, d̂)

1: if pSesspid ̸= open : return ⊥
2: pSesspid ← closed

3: ŵpid ← IZ .P2(stpid,P , ĉ, d̂)
4: return ŵpid

Oracle 8 C1(·)

1: vid += 1
2: vSessvid ← open

3: (ûvid, v̂vid)
$← F1(stP) ▷ NB: updates stP

4: return vid, ûvid, v̂vid

Oracle 9 C2(vid, ĉ, d̂)

1: if pSessvid ̸= open : return ⊥
2: vSessvid ← closed
3: ŵvid ← F2(stP , ĉ, d̂) ▷ NB: updates stP
4: return ŵvid

The advantage of an adversary A in game IMP-CAIZ is defined as
AdvIMP-CA

IZ (A, κ) := Pr[IMP-CAAIZ ⇒ 1], where the probability is taken over
the coins of IZ .PG, the coins of V, the coins of the prover sessions, and the
coins of V . Denote its running time as TimeIMP-CA

IZ (A). Let IZ be a canon-
ical three-move identification-from-zero-knowledge scheme. We say that IZ is
(ϵ, τ)-IMP-CA secure6, or (ϵ, τ,QP1

,QP2
,QV)-IMP-CA secure when one wants

to specify explicitly the numbers QP1 , QP2 , QV of calls to P1, calls to P2,
and interactions with the verifier V respectively, if for all adversaries A sat-
isfying TimeIMP-CA

IZ (A) ≤ τ (and performing no more than the stated num-
bers of oracle calls), it holds that AdvIMP-CA

IZ (A, κ) ≤ ϵ. An adversary A that
satisfies these constraints is said to break the (ϵ, τ)-IMP-CA security of IZ if
AdvIMP-CA

IZ (A, κ) > ϵ.

6 The original definition from [5] further requires τ ∈ O(poly(κ)) and ϵ ∈ O(poly(κ)).

10

4.4 One-more discrete logarithm and one-more class group action

We recap the one-more discrete logarithm (OMDL) assumption as defined in [5],
then introduce a natural adaptation to the commutative supersingular isogeny
setting, the one-more class group action (OMGA) assumption.

OMDL: An OMDL adversary I is a randomized, polynomial-time algorithm
that gets input a prime number n and a generator g of an Abelian group G
or order n, and has access to two oracles: the discrete logarithm solving oracle
I.Sol(g ∈ G, h ∈ G) that computes z ∈ Zn such that gz = h, and the group
element challenge oracle I.Ch(·) that returns a uniformly random challenge
point h ∈ G each time it is called.

Adversary D plays a game where a discrete logarithm parameter generator
algorithm PG(1κ) is executed to get par := (n, g), then I(par) is executed with
its oracles. Let h1 . . . hℓ+1 ∈ G denote the challenges returned by I’s challenge
oracle. Adversary I wins if it outputs a sequence z1 . . . zℓ+1 ∈ Zn satisfying
hi = gzi after making ℓ calls (or less) to its I.Sol oracle. Adversary I’s OMDL
advantage in winning this game, denoted AdvOMDL

PG (I, κ), is the probability
that I wins, taken over the coins of PG(1κ), the coins of I itself, and the coins
used by the challenge oracle I.Ch(·) across its calls. We say that PG(1κ) is
OMDL-secure if AdvOMDL

PG (I, κ) is negligible for any OMDL adversary I of
time complexity O(poly(κ)).

OMGA: An OMGA adversary I is a randomized, polynomial-time algorithm
that gets input an integer N and a supersingular curve A0 from a set Eℓℓp where
the order of the class group action is N , and has access to two oracles: the class

group action solving oracle I.Sol(A ∈ Eℓℓr
′×c
p , Q ∈ Eℓℓr×cp) that computes a class

group action representative a ∈ Zr×c
N such that Q = [a]A for the desired matrix

dimensions r′, r, and c, and the supersingular curve challenge oracle I.Ch(r, c)
that returns uniformly random challenge curves Q ∈ Eℓℓr×cp each time it is called.

Adversary I plays a game where a commutative supersingular isogeny param-
eter generator algorithm PG(1κ) is executed to get par := (N,A0, C, t, C

′, T),
then I(par) is executed with its oracles. Let Qi ∈ Eℓℓri×cip , 1 ≤ i ≤ ℓ+ 1, denote
the challenges returned by I’s challenge oracle. I wins if it outputs a sequence
ai ∈ Zri×ci

N , 1 ≤ i ≤ ℓ + 1, satisfying Qi = [ai]A0 after making ℓ calls (or less),
involving no more than the corresponding numbers of rows and columns, to
its I.Sol oracle. Adversary I’s OMGA advantage in winning this game, denoted
AdvOMGA

IZ (I, κ), is the probability that I wins, taken over the coins of PG(1κ),
the coins of I itself, and the coins used by the challenge oracle I.Ch(·) across
its calls. We say that PG(1κ) is OMGA-secure if AdvOMGA

IZ (I, κ) is negligible
for any OMGA adversary I of time complexity O(poly(κ)).

5 The BZ[DL] and IZ[DL] schemes

We now define the BZ [DL] blind signature scheme and its associated identifica-
tion scheme IZ [DL]. BZ [DL] consists of the following algorithms:

11

Algorithm 1 BZ [DL].PG(1κ)

1: Select a secure Abelian group G of prime order n ≈ 22κ, a generator g ∈ G, and secure hash
functions H : G× {0, 1}∗ → Z∗

n and G : G→ Z∗
n.

2: return par := (n, g,G,H)

Algorithm 2 BZ [DL].KG(par)

1: (n, g,G,H)← par

2: x
$← Z∗

n, y ← gx

3: sk ← (x, par), pk ← (y, par)
4: return (pk, sk)

Algorithm 3 BZ [DL].S1(sk)

1: (x, par)← sk, (n, g,G,H)← par

2: r
$← Z∗

n, s
$← Z∗

n
3: û← gr, v̂ ← gs, stS ← (sk, r, s)
4: return (û ∈ G∗, v̂ ∈ G∗, stS)

Algorithm 4 BZ [DL].S2(stS , ĉ ∈ Z∗
n, d̂ ∈ Z∗

n)

1: (sk, r, s)← stS , (x, par)← sk,
(n, g,G,H)← par

2: z ← r − ĉx (mod n) ▷ ĥ = gz implicitly

3: ŵ ← s− d̂z (mod n)
4: return ŵ ∈ Z∗

n

Algorithm 5 BZ [DL].U1(pk, û∈G∗, v̂∈G∗,m)

1: (y, par)← pk, (n, g,G,H)← par

2: π
$← Z∗

n, δ
$← Z∗

n, ρ
$← Z∗

n, ε
$← Z∗

n

3: u← ûπgδ, v ← v̂ρπgε

4: c← H(u,m), d← G(v)
5: ĉ← c/π (mod n), d̂← d/ρ (mod n)

6: stU ← (pk, u, û, v̂, π, δ, ρ, ε, d, ĉ, d̂)

7: return (ĉ ∈ Z∗
n, d̂ ∈ Z∗

n, stU)

Algorithm 6 BZ [DL].U2(stU , ŵ ∈ Z∗
n)

1: (pk, u, û, v̂, π, δ, ρ, ε, d, ĉ, d̂)← stU ,
(y, par)← pk, (n, g,G,H)← par

2: ĥ← ûy−ĉ

▷ check that the signer is honest:

3: if v̂ ̸= gŵĥd̂ : return ⊥
4: w ← ρπŵ − dδ + ε (mod n)
5: return σ := (u, d, w) ∈ G∗ × (Z∗

n)
2

Algorithm 7 BZ [DL].Ver(pk, σ ∈ G∗ × (Z∗
n)

2,m)

1: if σ = ⊥ : return 0
2: (y, par)← pk, (n, g,G,H)← par, (u, d, w)← σ

3: c← H(u,m), h← uy−c, v ← gwhd

4: return (d = G(v)) ? 1 : 0

For IZ [DL], algorithms IZ .PG and IZ .KG are, respectively, identical to
BZ .PG and BZ .KG, except that the hash functions are ignored and omitted.
The remaining algorithms are as follows.

Algorithm 8 IZ [DL].P1(sk)

1: (x, par)← sk, (n, g)← par

2: r
$← Z∗

n, s
$← Z∗

n
3: û← gr, v̂ ← gs, stP ← (sk, r, s)
4: return (û ∈ G∗, v̂ ∈ G∗, stP)

Algorithm 9 IZ [DL].P2(stP , ĉ ∈ Z∗
n, d̂ ∈ Z∗

n)

1: (sk, r, s)← stP , (x, par)← sk,
(n, g)← par

2: z ← r − ĉx (mod n) ▷ ĥ = gz implicitly

3: ŵ ← s− d̂z (mod n)
4: return ŵ ∈ Z∗

n

Algorithm 10 IZ [DL].Ver(pk, û ∈ G∗, v̂ ∈ G∗, ĉ ∈ Z∗
n, d̂ ∈ Z∗

n, ŵ ∈ Z∗
n)

1: (y, par)← pk, (n, g)← par

2: ĥ← ûy−ĉ

3: return
(
v̂ = gŵĥd̂

)
? 1 : 0

12

5.1 Perfect correctness of BZ[DL]

Theorem 1. The proposed BZ [DL] protocol is perfectly correct.

Proof. For ∀par ∈ BZ[DL].PG(1κ), ∀(pk, sk) ∈ BZ[DL].KG(par), ∀m ∈ {0, 1}∗,
let σ := (u, d, w) be a genuine signature for m, properly obtained from the
protocol.

Suppose by contradiction that BZ [DL].Ver(pk, σ,m) = 0. This can only hap-
pen (at step 4 of BZ [DL].Ver) if d ̸= G(v), which means that either d is mal-
formed (a contradiction, from the way it is created in step 4 of BZ [DL].U1), or v
is malformed. Because v = gwhd, h = ug−c, and c = H(u,m), the latter means
that either w is malformed or u is malformed, since c matches its definition in
step 4 of BZ [DL].U1. In turn, this means that either û ̸= gzyĉ, given the way

u is defined from û in step 3 of BZ [DL].U1, or v̂ ̸= gŵĥd̂, given the way w is
defined from ŵ in step 4 of BZ [DL].U2, respectively. But this would have caused
BZ [DL].U2 to abort at its step 3 (supported by step 2), and σ would not have
been created, which is contradiction.

Therefore BZ [DL].Ver must end with BZ [DL].Ver(pk, σ,m) = 1 as expected,
and BZ [DL] is thus perfectly correct as claimed. ⊓⊔

5.2 Perfect blindness of BZ[DL]

Theorem 2. The proposed BZ [DL] protocol is perfectly blind.

Proof. Let A be an adversary playing the BlindABZ game. Assume w.l.o.g. that
A’s randomness is fixed and A always finishes both sessions and receives valid
signatures (σ0, σ1).A’s view after its execution is (y,m0,m1, T0, T1, σ0, σ1) where

Ti := (ûi, v̂i, ĉi, d̂i, ŵi) are the transcripts that A observes from the i-th signing
session and σ := (ui, di, wi), i ∈ {0, 1}.

Since A’s randomness is fixed, the only randomness under consideration
is that in BZ [DL].U1 (BZ [DL].U2 introduces no further randomness), that is,
(πb, δb, ρb, εb) for each b ∈ {0, 1}.

Suppose also w.l.o.g. that A takes Ti := (ûi, v̂i, ĉi, d̂i, ŵi) to refer to mb, i.e.

ĉi = π−1b H(û
πb
i g

δb ,mb) and d̂i = ρ−1b G(v̂
ρbπb

i gεb), for some specific choice of
b ∈ {0, 1} that A makes.

NB: ŵi does not introduce new, independent constraints, since the signatures
are presumed valid and this quantity is deterministically obtained from the other
ones.

To prove the theorem, we argue that ∃(πb, δb, ρb, εb) ∈ (Z∗n)4, taken al-
ways from the same distribution independently from b, such that ĉi =
π−1b H(û

πb
i g

δb ,mb) and d̂i = ρ−1b G(v̂
ρbπb

i gεb) for either choice of b ∈ {0, 1}. In
other words, we will show that both transcripts are equally consistent with, and
suggest no preference for, either b = 0 or b = 1.

Consider the effect of taking µb ← gζb and νb ← gχb , for some uniformly
distributed ζb, χb ∈ Z∗n, and computing γb ← H(µb,mb) and λb ← G(νb), for
either choice of b ∈ {0, 1}. We want to be able to write ĉi = π−1b γb and d̂i =

13

ρ−1b λb, so we can just take πb ← γb/ĉi and ρb ← λb/d̂i: since the outputs from H
and G are uniformly distributed over Z∗n, the distributions of πb and ρb defined
this way are uniform over Z∗n as well.

Now we also want µb = gζb = ui = ûπb
i g

δb = gπbri+δb and νb = gχb =
vi = v̂ρbπb

i gεb = gρbπbsi+εb , revealing the constraints ζb = πbri + δb (mod n)
and χb = ρbπbsi + εb (mod n), whereby we can take δb ← ζb − πbri (mod n)
and εb ← χb − ρbπbsi (mod n), respectively: as long as ζb and χb are uniformly
distributed over Z∗n, so are δb and εb, provided that δb ̸= 0 and εb ̸= 0.

NB: only the signer knows ri and si, but the point is to show that some
suitable tuple (πb, δb, ρb, εb) exists at all for either choice of b.

In other words, whichever choice of b ∈ {0, 1} the adversary makes to try and
associate a message mb of their choice (and its corresponding signature σb) to a
transcript T0 or T1, it is always possible to find a suitable tuple (πb, δb, ρb, εb) ∈
(Z∗n)4 suggesting that choice mb, without establishing any preference for either
one. Therefore, the BZ [DL] scheme is perfectly blind, as claimed. ⊓⊔

5.3 Unattainability of standard MitM security for IZ[DL]

Theorem 3. Standard meddler-in-the-middle (MitM) security is unachievable
for the underlying identification scheme IZ [DL].

Proof. A MitM adversary A:

1. chooses α
$← Z∗n;

2. intercepts (û, v̂) from the prover and sends (ũ := ûgα, ṽ := v̂) to the verifier;

3. forwards (c̃ := ĉ, d̃ := d̂) from the verifier to the prover;
4. intercepts the ŵ from the prover and completes the attack by setting w̃ :=
ŵ − αd̂ (mod n).

Now (ũ, ṽ, c̃, d̃, w̃) ̸= (û, v̂, ĉ, d̂, ŵ), but since h̃ = ũy−c̃ = (ûgα)y−ĉ = (ûy−ĉ)gα =

ĥgα, this tuple still satisfies ṽ = v̂ = gŵĥd̂ = gŵ−αd̂ĥd̂gαd̂ = gw̃(ĥgα)d̃ = gw̃h̃d̃,
and A wins the standard MitM experiment with advantage 1. ⊓⊔

5.4 Breaking IZ[DL] OMUF implies breaking IMP-CA

We now show that, given an adversary A that breaks the one-more unforgeability
(OMUF) of BZ [DL], one can build an adversary B that breaks the impersonation
against concurrent attacks (IMP-CA) security of the underlying IZ [DL] scheme.

For convenience, in this section we suppress an optimization that is implicit
in the protocol, namely, the omission of c from the signature contents. This
value is known by the user in line 4 of Algorithm BZ [DL].U1(pk, û, v̂,m) and
could be passed to Algorithm BZ [DL].U2(stU , ŵ) via stU , but is not included
explicitly in σ for being redundant for verification, since it can be recovered
from existing information in line 3 of Algorithm BZ [DL].Ver(pk, σ,m). Yet, the
following description becomes simpler if c is taken to be readily available as part
of the (extended) signature σ′.

14

Adversary 1 BP1,P2,C1,C2,Ver(pk)

1: ((m1, σ
′
1), . . . , (mℓ(A), σ

′
ℓ(A)))

$← AS1,S2,GH(pk)

2: for i ∈ {1 . . . ℓ(A)} :
3: (c′i, u

′
i, d

′
i, w

′
i)← σ′

i ▷ NB: c′i explicitly attached to σ′
i

4: h′
i ← u′

i/y
c′i , v′i ← gw

′
ih′

i
d′i

5: GH(u′
i, v

′
i,mi)

6: vid← vSessu′
i
,v′

i
,mi

7: bi ← Ver(vid, w′
i)

Procedure 1 S1(·)

1: (pid, ûpid, v̂pid)
$← P1(·)

2: return pid, ûpid, v̂pid

Procedure 2 S2(pid, ĉ, d̂)

1: ŵpid ← P2(pid, ĉ, d̂)
2: return ŵpid

Procedure 3 GH(u′, v′,m)

1: if GH[u′, v′,m] ̸= ⊥ : return H[u′, v′,m]

2: (vid, c′, d′)
$← C2(u

′, v′), GH[u′, v′,m]← (c′, d′)
3: vSessu′,v′m ← vid

4: return GH[u′, v′,m]

The following theorem, which adapts [18, Theorem 5.6] to the three-move
scheme-from-zero-knowledge setting, establishes that adversary B does indeed
achieve the aforementioned goal:

Theorem 4. Let H : G × {0, 1}∗ → Z∗n and G : G → Z∗n be hash
functions, and let BZ [DL][G,H] and IZ [DL] be instantiations of the proposed
blind signature scheme and its underlying identification scheme on top of the
DL. If IZ [DL] is (ϵ′, τ ′,QP1

,QP2
,QV)-IMP-CA secure, then BZ [DL][G,H] is

(ϵ, τ,QS1
,QS2

,QGH)-OMUF secure in the random oracle model, where ϵ = ϵ′,
τ = τ ′, QS1 = QP1 , QS2 = QP2 , and QGH = QV −QS2 − 1.

Proof. Let A be an adversary that breaks the (ϵ, t,QS1 ,QS2 ,QGH)-OMUF of
BZ [DL][G,H] in the random oracle model. Adversary B, as we constructed it,
runs the IMP-CAIZ experiment and perfectly simulates A’s oracles S1, S2, and
GH via its own oracles P1, P2, C1, and C2. Note that B calls P2 at most QP2

=
QS2

times over the course of its simulation, and moreover, QP2
(B) = QS2

(A).
We show that B breaks the (ϵ′, t′,QP1 ,QP2 ,QV)-IMP-CA security of IZ [DL].

Suppose that A is successful, i.e. it outputs ℓ(A) ≥ QS2(A)+1 = QP2(B)+1
valid signatures on distinct messages and the number of closed sessions with
the signer is at most QS2

(A) = QP2
(B). Since all messages mi are distinct,

each signature corresponds to a distinct session vidi with the oracle C2 via the
relation GH(u′, v′,mi) = C2(u

′, v′) from line 2 of Procedure GH. Since also σ′i =

(c′i, u
′
i, d
′
i, w
′
i,) is a valid signature on mi, we know that GH(u′i, g

w′
ih′i

d′i ,mi) =

GH(u′i, v
′
i,mi) = C2(u

′
i, v
′
i) with h

′
i = u′i/y

c′i . Therefore, B can make a successful
query to oracleVer(vid, w′i), on the last line resulting in bi = 1 for every valid
signature. Since overall B makes ℓ(B) = QP2

(B) + 1 successful queries toVer , B
wins IMP-CAIZ whenever B wins OMUFBZ . This proves ϵ

′ ≥ ϵ.

15

Moreover, the number QS1
(A) of abandoned sessions in the OMUFBZ ex-

periment equals the number QP1
(B) of abandoned sessions in the IMP-CAIZ

experiment and the number QV (B) of calls to the oracle C2 is bounded by QGH

(for the simulation of GH) plus additional QS2(A) + 1 calls to each of them on
line 5 (the latter is necessary in case A guesses the output of C2 on some points).
Finally, the running times of A and B are roughly the same, τ ′ ≈ τ . ⊓⊔

5.5 Breaking IZ[DL] IMP-CA security implies solving OMDL

Theorem 5. Let IZ [DL] = (IZ .PG, IZ .KG, IZ .P = (IZ .P1, IZ .P2), IZ .Ver) be
the instantiation of IZ with discrete logarithm parameter generator IZ [DL].PG,
and let l(κ) := max{lg |C|, lg |D|} where C and |D are the challenge
spaces (i.e. l(κ) is the maximum challenge bitlength). Let BP1,P2,C1,C2,Ver :=
(VP1,P2 ,PC1,C2) be an IMP-CA adversary of time complexity τ(κ) attacking
IZ [DL]. Then there exists an OMDL adversary I attacking IZ [DL].PG such that,

for every κ, AdvIMP-CA
IZ (A, κ) ≤ 2−l(κ)+

√
AdvOMDL

IZ .PG (I, κ). Furthermore, the

time complexity of I is τ ′(κ) = 2τ(κ) +O(κ3 + (l(κ) + ℓ(κ)) · κ2), where ℓ(κ) is
the number of prover sessions with which V interacts.

Proof. We closely follow the proof [5, Theorem 5.1]. We assume w.l.o.g. that V
never repeats a request. Fix κ ∈ N and let (n, g) be an output of IZ [DL].PG
running on input 1κ. Adversary I has access to a discrete logarithm solving
oracle I.Sol(g, q) that returns a ∈ Zn such that q = ga, and a group element
challenge oracle I.Ch(·) that takes no inputs and returns a random challenge
point q ∈ G each time it is invoked. I calls the I.Ch(·) oracle 2ℓ + 1 times
and tries to compute the corresponding discrete logarithms, while making only
2ℓ queries to I.Sol(· , ·). I simulates an interaction between B and the prover
sessions (that is, I executes V, which is only allowed to query its P1 and P2

oracles). To do so, I first queries its I.Ch(·) oracle, obtaining a random group

element q0
$← I.Ch(·) ∈ G, and uses it to create a public key pk for the IMP-CA

adversary B. It then runs VP1,P2 and answers its requests.
In response to a P1(·) request, I opens a new prover session pid, makes

queries qpid,0
$← I.Ch(·) and qpid,1

$← I.Ch(·), and returns the answer
(pid, qpid,0, qpid,1) to V. This mimics the behavior of a genuine prover session
pid, which would start from a fresh random tape and the public key pk, sample
commitments upid, vpid, and return (pid, upid, vpid) to V.
I does not possess the secret key corresponding to q0, which the genuine

prover sessions would use to respond to V’s P2(pid, c ∈ C, d ∈ D) requests,
where max{lg |C|, lg |D|} = l(κ), but it compensates with its access to the
I.Sol(· , ·) oracle to answer these requests. Specifically, in response to request

P2(pid, cpid, dpid), I makes the queries zpid ← I.Sol(g, qpid,0 q
−cpid
0) and wpid ←

I.Sol(g, qpid,1(qpid,0 q
−cpid
0)−dpid), and returns the answer wpid. This is exactly

the expected response from the prover session pid, as one can see with the cor-
respondence y ↔ q0, upid ↔ qpid,0, vpid ↔ qpid,1. Hence I simulates the prover’s
behavior perfectly.

16

Since QP2
= ℓ(κ) is the number of prover sessions that V opens, interacts

with, and closes, when V stops I has made 2ℓ(κ) queries to its discrete logarithm
oracle, hence I needs to find the discrete logarithm of 2ℓ(κ)+1 challenge points
to win the game. I will first attempt to extract the discrete logarithm a0 of
the challenge q0 from P, which is initialized with the output stV of V, and it
will then use a0 to compute the discrete logarithm of each of the other 2ℓ(κ)
challenge points.

To that end, I obtains the commitment pair (u, v)
$← P.F1(stP), samples

a uniformly random challenge pair (c
$← C, d $← D), runs w $← P.F2(stP , c, d)

to obtain the response to the challenge pair, and evaluates the verification pred-
icate b ← IZ [DL].V er(pk, u, v, c, d, w). I then selects another challenge pair

(c′
$← C, d′ ← d), where c′ is chosen uniformly at random but the same d is

kept as before, rewinds P to the same starting state stP ← stV and reruns it to
eventually obtain its response w′

$← P.F2(stP , c
′, d′) to the new challenge pair,

then evaluates the verification predicate b′ ← IZ [DL].V er(pk, u, v, c′, d′, w′).

If the verification predicates evaluate to b = b′ = 1, both tuples (u, v, c, d, w)
and (u, v, c′, d′, w′) must be valid for public key q0 = ga0 . That means v =

gwhd = gw
′
h′d

′
where h = uq−c0 and h′ = uq−c

′

0 , that is, h′ = hqc−c
′

0 and gw
′
=

gwhd(h′)−d
′

= gwhd(hqc−c
′

0)−d
′

= gwhd−d
′
q
d′(c′−c)
0 = gw+z(d−d′)+a0d′(c′−c)

where h = gz, hence it must hold that w′ = w+(d− d′)z+d′(c′ − c)a0 (mod n).
If furthermore c′ ̸= c but d′ = d, then w′ = w+ d(c′ − c)a0 (mod n), whereby I
extracts the discrete logarithm of q0 as a0 ← (w′ − w)(d (c′ − c))−1 (mod n).

Now we know that zpid = apid,0 − cpid a0 (mod n) where gapid,0 = qpid,0,
and wpid = apid,1− dpid zpid (mod n) where gapid,1 = qpid,1, hence I can recover
all the 2ℓ(κ) discrete logarithms apid,0 ← zpid + cpid a0 (mod n) and apid,1 ←
wpid + dpid zpid (mod n), 1 ≤ pid ≤ ℓ(κ).

If the verification predicates do not evaluate to 1 on both occasions, or the
challenges c and c′ coincide, then I fails. That is, I wins if, and only if, b = b′ = 1
and c ̸= c′. We proceed to relate the probability of this event with the IMP-CA
advantage of adversary B.

We observe that pk has the same distribution as in the two-phase IMP-CAIZ

game. Since I simulates the environment provided to V in that game perfectly,
V behaves as it does when performing a concurrent attack against IZ , and P
is given state information with the same distribution as in that case. Therefore,
the probability that b = 1 is exactly AdvIMP-CA

IZ (B, κ).
Let acc(stV , pk) denote the probability that b = 1 (taken over the choice

of challenge c) when the public key created by I is pk and the output from V
is stV . Let res(stV , pk) denote the probability that b = 1, b′ = 1, and c ̸= c′

(taken over the choice of challenges c and c′) when the public key created by
I is pk and the output from V is stV . Then, if E[•] denotes the expectation of
random variable • over the choice of pk and stV , the probability that b = 1 is
E[acc(stV , pk)], and the probability that I wins is E[res(stV , pk)]. The Bellare-
Palacio Reset Lemma [5, Lemma 3.1] applied to cheating prover P with input
stP = stV and verifier V with input pk, the latter being implemented by I,
implies acc(stV , pk) ≤ 2−l(κ) +

√
res(stV , pk).

17

We obtain the claimed relationship as follows:

AdvIMP-CA
IZ (B, κ) = E[acc(stV , pk)]

≤ E
[
2−l(κ) +

√
res(stV , pk)

]
= 2−l(κ) + E

[√
res(stV , pk)

]
≤ 2−l(κ) +

√
E[res(stV , pk)]

= 2−l(κ) +

√
AdvOMDL

IZ .PG (I, κ).

To complete the proof, it remains to justify the claim about the time complex-
ity of adversary I. Consider the OMDL game from Section 4.4, which defines
AdvOMDL

PG (D, κ). The cost of all the steps of this game before the execution
of adversary I’s final check that c′ ̸= c and b = b′ = 1 is dominated by at
most 2τ(κ) for the whole interaction between the prover P and the cheating
verifier V, plus the cost of evaluating the verification predicate twice to obtain
b← IZ .V er(pk, u, v, c, d, w) and b′ ← IZ .V er(pk, u, v, c′, d′, w′), plus the cost of
retrieving a0 and all of the apid,0 and apid,1.

Each evaluation of the verification predicate involves computing one exponen-
tiation of a lg |C|-bit exponent, one exponentiation of a lg |D|-bit exponent, and
one exponentiation of a lg(n)-bit exponent (disregarding the cost of other opera-
tions, which are much cheaper by comparison). Since lg |C| ≤ l(κ), lg |D| ≤ l(κ),
and lg(n) ≈ 2κ assuming elliptic curve groups, overall the cost is thus O(l(κ)+κ)
group operations, each of which has complexity O(κ2) for a total complexity
O((l(κ)+κ) ·κ2). Finally, the cost of retrieving a0 is one inversion modulo n, or
O((lg n)2) = O(κ2), and the cost of retrieving all of the 2ℓ(κ) remaining discrete
logarithms is O(ℓ(κ) · κ2).

Therefore, overall the time complexity of I is τ ′(κ) := 2τ(κ) +O((l(κ) + κ) ·
κ2 + κ2 + ℓ(κ) · κ2) = 2τ(κ) +O(κ3 + (l(κ) + ℓ(κ)) · κ2). ⊓⊔

Corollary 1. If the discrete logarithm parameter generator IZ [DL].PG is
OMDL-secure and the challenge bitlength satisfies l(κ) ∈ ω(log(κ)) to pre-
clude exhaustively guessing the verifier’s challenges, then the correspondingly
parametrized IZ [DL] is IMP-CA-secure.

6 The BZ[CSI] and IZ[CSI] schemes

For this instantiation we adopt the convention that variables denoting curves
will be uppercase, all others lowercase.

Here we introduce the idea of using more than one commitment and a corre-
sponding number of responses per challenge, enabling the use of multikey CSI-
FiSh for the whole scheme. In Section 7.1 we will discuss an entirely different way
to obtain potentially better BZ parameters with multikey CSI-FiSh, but apply-
ing that scheme with blind signatures (as opposed to plain signatures) remains
elusive. BZ [CSI] consists of the following algorithms:

18

Algorithm 11 BZ [CSI].PG(1κ)

1: Select a prime p = 4
∏

k ℓk − 1, let Cl(O) be the ideal class group over Fp and let N := #Cl(O).
2: Select A0 ∈ Eℓℓp
3: Select the number C ≥ 2 of curves per public key (including A0) and the number t of Fiat-

Shamir [13] iterations such that C | t and t!/(t/C)!C ≥ 2κ.
4: Select the number C′ ≥ 2 of curves per public key (including A0) and the number T of Fiat-

Shamir iterations such that C′ | T and T !/(T/C′)!C
′
≥ 2κ.

5: Select secure hash functions H : Eℓℓ(C
′−1)×t

p × {0, 1}∗ → M t
C and G : EℓℓT×t

p → M T
C′ .

6: return par := (N,A0, C, t, C
′, T,G,H).

Algorithm 12 BZ [CSI].KG(par)

1: (N,A0, C, t, C
′, T,G,H)← par

2: x0 ← 0, x1...C−1
$← (Z∗

N)C−1, A0 ← A0, A1...C−1 ← [x1...C−1]A0

3: sk ← (x0...C−1, A0...C−1, par), pk ← (A0...C−1, par)
4: return (pk, sk)

Algorithm 13 BZ [CSI].S1(sk)

1: (x0...C−1, A0...C−1, par)← sk, (N,A0, C, t, C
′, T,G,H)← par

2: r1...C
′−1

1...t
$← (Z∗

N)(C
′−1)×t, s1...T1...t

$← (Z∗
N)T×t

3: Û1...C′−1
1...t ← [r1...C

′−1
1...t]A0, V̂ 1...T

1...t ← [s1...T1...t]A0, stS ← (sk, r1...C
′−1

1...t , s1...T1...t)

4: return (Û1...C′−1
1...t ∈ Eℓℓ(C

′−1)×t
p , V̂ 1...T

1...t ∈ Eℓℓ
T×t
p , stS)

Algorithm 14 BZ [CSI].U1(pk, Û
1...C′−1
1...t ∈ Eℓℓ(C

′−1)×t
p , V̂ 1...T

1...t ∈ Eℓℓ
T×t
p ,m)

1: (A0...C−1, par)← pk, (N,A0, C, t, C
′, T,G,H)← par

2: π
$← St, δ

(0)
1...t ← 0, δ1...C

′−1
1...t

$← (Z∗
N)(C

′−1)×t, ρ
$← ST , ε1...T1...t

$← (Z∗
N)T×t

3: U1...C′−1
1...t ← [δ1...C

′−1
1...t]π(Û1...C′−1

1...t), V 1...T
1...t ← [ε1...T1...t]ρ↑π↓(V̂

1...T
1...t)

4: c1...t ← H(U1...C′−1
1...t ,m), d1...T ← G(V 1...T

1...t), ĉ1...t ← π−1(c1...t), d̂1...T ← ρ−1(d1...T)

5: stU ← (pk, U1...C′−1
1...t , Û1...C′−1

1...t , V̂ 1...T
1...t , π, δ1...C

′−1
1...t , ρ, ε1...T1...t , d

1...T , ĉ1...t, d̂
1...T)

6: return (ĉ1...t ∈ M t
C , d̂

1...T ∈ M T
C′ , stU)

Algorithm 15 BZ [CSI].S2(stS , ĉ1...t ∈ M t
C , d̂

1...T ∈ M T
C′)

1: (sk, r1...C
′−1

1...t , s1...T1...t)← stS , (x0...C−1, A0...C−1, par)← sk,
(N,A0, C, t, C

′, T,G,H)← par

2: s′1...T1...t ← s1...T1...t − x↓ĉ1...t (mod N) ▷ ∴ V̂ 1...T
1...t = [s′1...T1...t]A↓ĉ1...t

3: z1...C
′−1

1...t ← r1...C
′−1

1...t − x↓ĉ1...t (mod N) ▷ ∴ Û1...C′−1
1...t = [z1...C

′−1
1...t]A↓ĉ1...t

4: z01...t ← 0 ▷ ∴ Ĥ0...C′−1
1...t := (A↓ĉ1...t ∥ Û

1...C′−1
1...t) = [z0...C

′−1
1...t]A↓ĉ1...t

5: ŵ1...T
1...t ← s′1...T1...t − z

↑d̂1...T
1...t (mod N) ▷ ∴ V̂ 1...T

1...t = [ŵ1...T
1...t]Ĥ↑d̂1...T

1...t

6: return ŵ1...T
1...t ∈ (Z∗

N)T×t

Algorithm 16 BZ [CSI].U2(stU , ŵ
1...T
1...t ∈ (Z∗

N)T×t)

1: (pk, U1...C′−1
1...t , Û1...C′−1

1...t , V̂ 1...T
1...t , π, δ1...C

′−1
1...t , ρ, ε1...T1...t , d

1...T , ĉ1...t, d̂
1...T)← stU ,

(A0...C−1, par)← pk, (N,A0, C, t, C
′, T,G,H)← par

2: Ĥ0...C′−1
1...t ← (A↓ĉ1...t ∥ Û

1...C′−1
1...t) ▷ ∴ Ĥ0...C′−1

1...t = [z0...C
′−1

1...t]A↓ĉ1...t

3: if V̂ 1...T
1...t ̸= [ŵ1...T

1...t]Ĥ↑d̂1...T
1...t : return ⊥ ▷ check that the signer is honest

4: w1...T
1...t ← ρ↑π↓(ŵ

1...T
1...t)− δ↑d

1...T

1...t + ε1...T1...t (mod N)

5: return σ := (U1...C′−1
1...t , d1...T , w1...T

1...t) ∈ Eℓℓ(C
′−1)×t

p × ∈ M T
C′ × (Z∗

N)T×t

19

Algorithm 17 BZ [CSI].Ver(pk, σ ∈ Eℓℓ(C
′−1)×t

p × ∈ M T
C′ × (Z∗

N)T×t,m)

1: if σ = ⊥ : return 0

2: (A0...C−1, par)← pk, (N,A0, C, t, C
′, T,G,H)← par, (U1...C′−1

1...t , d1...T , w1...T
1...t)← σ

3: c1...t ← H(U1...C′−1
1...t ,m), H0...C′−1

1...t ← (A↓c1...t ∥U
1...C′−1
1...t), V 1...T

1...t ← [w1...T
1...t]H↑d1...T

1...t

4: return
(
d1...T = G(V 1...T

1...t)
)

? 1 : 0

For IZ [CSI], algorithms IZ .PG and IZ .KG are, respectively, identical to
BZ .PG and BZ .KG, except that the hash functions are ignored and omitted.
The remaining algorithms are as follows.

Algorithm 18 IZ [CSI].P1(sk)

1: (x0...C−1, A0...C−1, par)← sk, (N,A0, C, t, C
′, T)← par

2: r1...C
′−1

1...t
$← (Z∗

N)(C
′−1)×t, s1...T1...t

$← (Z∗
N)T×t

3: Û1...C′−1
1...t ← [r1...C

′−1
1...t]A0, V̂ 1...T

1...t ← [s1...T1...t]A0, stS ← (sk, r1...C
′−1

1...t , s1...T1...t)

4: return (Û1...C′−1
1...t ∈ Eℓℓ(C

′−1)×t
p , V̂ 1...T

1...t ∈ Eℓℓ
T×t
p , stS)

Algorithm 19 IZ [CSI].P2(stP , ĉ1...t ∈ M t
C , d̂

1...T ∈ M T
C′)

1: (sk, r1...C
′−1

1...t , s1...T1...t)← stS , (x0...C−1, A0...C−1, par)← sk, (N,A0, C, t, C
′, T)← par

2: s′1...T1...t ← s1...T1...t − x↓ĉ1...t (mod N) ▷ ∴ V̂ 1...T
1...t = [s′1...T1...t]A↓ĉ1...t

3: z1...C
′−1

1...t ← r1...C
′−1

1...t − x↓ĉ1...t (mod N) ∈ (Z∗
N)t ▷ ∴ Û1...C′−1

1...t = [z1...C
′−1

1...t]A↓ĉ1...t

4: z01...t ← 0 ▷ ∴ Ĥ0...C′−1
1...t := (A↓ĉ1...t ∥ Û

1...C′−1
1...t) = [z0...C

′−1
1...t]A↓ĉ1...t

5: ŵ1...T
1...t ← s′1...T1...t − z

↑d̂1...T
1...t (mod N) ▷ ∴ V̂ 1...T

1...t = [ŵ1...T
1...t]Ĥ↑d̂1...T

1...t

6: return ŵ1...T
1...t ∈ (Z∗

N)T×t

Algorithm 20 IZ [CSI].Ver(pk, Û1...C′−1
1...t ∈ Eℓℓ(C

′−1)×t
p , V̂ 1...T

1...t ∈ Eℓℓ
T×t
p , ĉ1...t ∈ M t

C , d̂
1...T ∈ M T

C′ ,

ŵ1...T
1...t ∈ (Z∗

N)T×t)

1: (A0...C−1, par)← pk, (N,A0, C, t, C
′, T)← par

2: Ĥ0...C′−1
1...t ← (A↓ĉ1...t ∥ Û

1...C′−1
1...t)

3: return

(
V̂ 1...T
1...t = [ŵ1...T

1...t]Ĥ↑d̂1...T
1...t

)
? 1 : 0

6.1 Perfect correctness of BZ[CSI]

Theorem 6. The proposed BZ [CSI] protocol is perfectly correct.

Proof. For ∀par ∈ BZ[CSI].PG(1κ), ∀(pk, sk) ∈ BZ[CSI].KG(par), ∀m ∈
{0, 1}∗, let σ := (U1...C′−1

1...t , d1...T , w1...T
1...t) be a genuine signature for m, prop-

erly obtained from the protocol.
Suppose by contradiction that BZ [CSI].Ver(pk, σ,m) = 0. This can only

happen (at step 4 of BZ [CSI].Ver) if d1...T ̸= G(V 1...T
1...t), which means that

either d1...T is malformed (a contradiction, from the way it is created in

20

step 4 of BZ [CSI].U1), or V
1...T
1...t is malformed. Because V 1...T

1...t = [w1...T
1...t]H

d1...T

1...t ,

H0...C′−1
1...t = (A↓c1...t ∥U1...C′−1

1...t), and c1...t = H(U1...C′−1
1...t ,m), the latter means

that either w1...T
1...t is malformed or U1...C′−1

1...t is malformed, since c1...t matches its

definition in step 4 of BZ [CSI].U1. In turn, this means that either Ĥ0...C′−1
1...t :=

(A↓ĉ1...t ∥ Û1...C′−1
1...t) ̸= [z0...C

′−1
1...t]A↓ĉ1...t , given the way U1...C′−1

1...t is defined from

Û1...C′−1
1...t in step 3 of BZ [CSI].U1, or V̂

1...T
1...t ̸= [ŵ1...T

1...t]Ĥ
↑d̂1...T
1...t , given the way

w1...T
1...t is defined from ŵ1...T

1...t in step 4 of BZ [CSI].U2, respectively. But this would
have caused BZ [CSI].U2 to abort at its step 3 (supported by step 2), and σ would
not have been created, which is contradiction.

Therefore BZ [CSI].Ver must end with BZ [CSI].Ver(pk, σ,m) = 1 as expected,
and BZ [CSI] is thus perfectly correct as claimed. ⊓⊔

6.2 Perfect blindness of BZ[CSI]

Theorem 7. The proposed BZ [CSI] protocol is perfectly blind.

Proof. For clarity, indices in the present context will only denote sessions or
choices, not vector or matrix components. Let A be an adversary playing the
BlindABZ game. Assume w.l.o.g. that A’s randomness is fixed and A always
finishes both sessions and receives valid signatures (σ0, σ1). A’s view after its

execution is (A0...C−1,m0,m1, T0, T1, σ0, σ1) where Ti := (Ûi, V̂i, ĉi, d̂i, ŵi) are
the transcripts thatA observes from the i-th signing session and σ := (Ui, di, wi),
i ∈ {0, 1}.

Since A’s randomness is fixed, the only randomness under consideration
is that in BZ [CSI].U1 (BZ [CSI].U2 introduces no further randomness), that
is, (πb, δb, ρb, εb) for each b ∈ {0, 1}. Suppose also w.l.o.g. that A takes

Ti := (Ûi, V̂i, ĉi, d̂i, ŵi) to refer to mb, i.e. ĉi = π−1b (H([δb]πb(Ûi),mb)) and

d̂i = ρ−1b (G([εb]ρ↑bπb↓(V̂i)), for some specific choice of b ∈ {0, 1} that A makes.
NB: ŵi does not introduce new, independent constraints, since the signatures
are presumed valid and these quantities are deterministically obtained from the
other ones.

To prove the theorem, we argue that ∃(πb, δb, ρb, εb) ∈ St × (Z∗N)(C
′−1)×t ×

ST × (Z∗N)T×t, taken always from the same distribution independently from b,

such that ĉi = π−1b (H([δb]πb(Ûi),mb)) and d̂i = ρ−1b (G([εb]ρ↑bπb↓(V̂i)) for either
choice of b ∈ {0, 1}. In other words, we will show that both transcripts are
equally consistent with, and suggest no preference for, either b = 0 or b = 1.

Consider the effect of taking Υb ← [ζb]A0 and Ωb ← [χb]A↓ci , for some

uniformly distributed ζb ∈ (Z∗N)(C
′−1)×t, χb ∈ (Z∗N)T×t, and computing γb ←

H(Υb,mb) and λb ← G(Ωb), for either choice of b ∈ {0, 1}. We want to be able

to write ĉi = π−1b (γb) and d̂i = ρ−1b (λb), so we can just take πb and ρb to be
any permutations compatible with these relations. For instance, if µi and νb
respectively permute ĉi and γb to the unique sorted sequence (0 . . . 0, . . . , C −
1 . . . C − 1)t of length t, i.e. µi(ĉi) = (0 . . . 0, . . . , C − 1 . . . C − 1)t = νb(γb),

while ηi and θb respectively permute d̂i and λb to the unique sorted sequence

21

(0 . . . 0, . . . , C ′−1 . . . C ′−1)T of length T , i.e. ηi(d̂i) = (0 . . . 0, . . . , C ′−1 . . . C ′−
1)T = θb(λb), just take πb := ν−1b ◦µi and ρb := θ−1b ◦ηi. Since the output from H
is uniformly distributed over M t

C and the output from G is uniformly distributed
over M T

C′ , so are the distribution of νb over St and the distribution of θb over
ST , and therefore the distributions of πb and ρb defined this way are uniform as
well.

Now we also want Υb = [ζb]A0 = Ui = [δb]πb(Ûi) = [πb(ri) + δb]A0, re-
vealing the constraint ζb = πb(ri) + δb (mod N), and Ωb = [χb]A↓ci = Vi =

[εb]ρ
↑
bπb↓(V̂i) = [εb]ρ

↑
bπb↓([si]A↓ĉi) = [εb][ρ

↑
bπb↓(si)]ρ

↑
b(A↓πb↓(ĉi)) = [ρ↑bπb↓(si) +

εb]A↓ci , revealing the constraint χb = ρ↑bπb↓(si) + εb (mod N), whereby we can

take δb ← ζb − πb(ri) (mod N) and εb ← χb − ρ↑bπb↓(si) (mod N), respectively:

as long as ζb and χb are uniformly distributed over (Z∗N)(C
′−1)×t and (Z∗N)T×t

respectively, so are δb and εb, provided that δb ̸= 0 and εb ̸= 0.
NB: only the signer knows ri and si, but the point is to show that some

suitable tuple (πb, δb, ρb, εb) exists at all for either choice of b.
In other words, whichever choice of b ∈ {0, 1} the adversary makes to try and

associate a message mb of their choice (and its corresponding signature σb) to a
transcript T0 or T1, it is always possible to find a suitable tuple (πb, δb, ρb, εb) ∈
St×(Z∗N)(C

′−1)×t×ST×(Z∗N)T×t suggesting that choicemb, without establishing
any preference for either one. Therefore, the BZ [CSI] scheme is perfectly blind,
as claimed. ⊓⊔

6.3 Unattainability of standard MitM security for IZ[CSI]

Theorem 8. Standard meddler-in-the-middle (MitM) security is unachievable
for the underlying identification scheme IZ [CSI].

Proof. A MitM adversary A:

1. sets α
(0)
1...t ← 0 and chooses α1...C′−1

1...t
$← Z∗N ;

2. intercepts (Û1...C′−1
1...t , V̂ 1...T

1...t) from the prover and sends (Ũ1...C′−1
1...t :=

[α1...C′−1
1...t]Û1...C′−1

1...t , Ṽ 1...T
1...t := V̂ 1...T

1...t) to the verifier;

3. forwards (c̃1...t := ĉ1...t, d̃
1...T := d̂1...T) from the verifier to the prover;

4. intercepts ŵ1...T
1...t from the prover and completes the attack by setting

w̃1...T
1...t := ŵ1...T

1...t − α
↑d̂1...T
1...t (mod N).

Now (Ũ1...C′−1
1...t , Ṽ 1...T

1...t , c̃1...t, d̃
1...T , w̃1...T

1...t) ̸= (Û1...C′−1
1...t , V̂ 1...T

1...t , ĉ1...t, d̂
1...T ,

ŵ1...T
1...t), but since H̃0...C′−1

1...t = [α0...C′−1
1...t]Ĥ0...C′−1

1...t , it still satisfies Ṽ 1...T
1...t =

V̂ 1...T
1...t = [ŵ1...T

1...t]Ĥ
↑d̂1...T
1...t = [ŵ1...T

1...t − α
↑d̂1...T
1...t][α↑d̂

1...T

1...t]Ĥ↑d̂
1...T

1...t = [w̃1...T
1...t]H̃

↑d̃1...T
1...t ,

and A wins the standard MitM experiment with advantage 1. ⊓⊔

6.4 Breaking IZ[CSI] OMUF implies breaking IMP-CA

We now show that, given an adversary A that breaks the one-more unforgeability
(OMUF) of BZ [CSI], one can build an adversary B that breaks the impersonation
under concurrent attacks (IMP-CA) security of the underlying IZ [CSI] scheme.

22

For clarity, in this section we will omit all indices except session identifiers
and indices indicating adversary signatures.

Furthermore, for convenience we suppress an optimization that is implicit
in the protocol, namely, the omission of c from the signature contents. This
value is known by the user in line 4 of Algorithm BZ [CSI].U1(pk, Û , V̂ ,m) and
could be passed to Algorithm BZ [CSI].U2(stU , ŵ) via stU , but is not included
explicitly in σ for being redundant for verification, since it can be recovered
from existing information in line 3 of Algorithm BZ [CSI].Ver(pk, σ,m). Yet, the
following description becomes simpler if c is taken to be readily available as part
of the (extended) signature σ′.

Adversary 2 BP1,P2,C1,C2,Ver(pk)

1: ((m1, σ1), . . . , (mℓ(A), σℓ(A)))
$← AS1,S2,GH(pk)

2: for i ∈ {1 . . . ℓ(A)} :
3:

(
c′i, U

′
i , d

′
i, w

′
i

)
← σi

4: H′
i ← (A↓c′

i
∥U ′

i), V ′
i ← [w′

i]H
′↑d′i
i

5: GH(U ′
i , V

′
i ,mi)

6: vid← vSessU′
i
,V ′

i
,mi

7: bi ← Ver(vid, w′
i)

Procedure 4 S1(·)

1: (pid, Ûpid, V̂pid)
$← P1(·)

2: return pid, Ûpid, V̂pid

Procedure 5 S2(pid, ĉ, d̂)

1: ŵpid ← P2(pid, ĉ, d̂)
2: return ŵpid

Procedure 6 GH(U ′, V ′,m)

1: if GH[U ′, V ′,m] ̸= ⊥ : return H[U ′, V ′,m]

2: (vid, c′, d′)
$← C2(u

′, v′), GH[U ′, V ′,m]← (c′, d′)
3: vSessU′,V ′,m ← vid

4: return GH[U ′, V ′,m]

The following theorem, which adapts [18, Theorem 5.6] to the three-move
scheme-from-zero-knowledge setting, establishes that adversary B does indeed
achieve the aforementioned goal:

Theorem 9. Let H : Eℓℓ(C
′−1)×t

p ×{0, 1}∗ →M t
C and G : EℓℓT×tp →M T

C′ be hash
functions, and let BZ [CSI][G,H] and IZ [CSI] be instantiations of the proposed
blind signature scheme and its underlying identification scheme on top of the
CSI. If IZ [CSI] is (ϵ′, τ ′,QP1 ,QP2 ,QV)-IMP-CA secure, then BZ [CSI][G,H] is
(ϵ, τ,QS1 ,QS2 ,QGH)-OMUF secure in the random oracle model, where ϵ = ϵ′,
τ = τ ′, QS1

= QP1
, QS2

= QP2
, and QGH = QV −QS2

− 1.

Proof. Let A be an adversary that breaks the (ϵ, τ,QS1
,QS2

,QGH)-OMUF of
BZ [CSI][G,H] in the random oracle model. Adversary B, as we constructed it,

23

runs the IMP-CAIZ experiment and perfectly simulates A’s oracles S1, S2, and
GH via its own oracles P1, P2, C1, and C2. Note that B calls P2 at most QP2

=
QS2 times over the course of its simulation, and moreover, QP2(B) = QS2(A).
We show that B breaks the (ϵ′, τ ′,QP1 ,QP2 ,QV)-IMP-CA security of IZ [DL].

Suppose that A is successful, i.e. it outputs ℓ(A) ≥ QS2
(A)+1 = QP2

(B)+1
valid signatures on distinct messages and the number of closed sessions with
the signer is at most QS2(A) = QP2(B). Since all messages mi are distinct, each
signature corresponds to a distinct session vidi with the oracle C2 via the relation
GH(U ′, V ′,mi) = C2(U

′, V ′) from line 2 of Procedure GH. Since also σ′i =

(c′i, U
′
i , d
′
i, w
′
i,) is a valid signature on mi, we know that GH(U ′i , [w

′
i]H
′↑d′i
i ,mi) =

GH(u′i, v
′
i,mi) = C2(U

′
i , V

′
i) with H ′i := (A↓c′i ∥U

′
i). Therefore, B can make a

successful query to oracle Ver(vid, w′i), on the last line resulting in bi = 1 for
every valid signature. Since overall B makes ℓ(B) = QP2

(B)+1 successful queries
toVer , B wins IMP-CAIZ whenever B wins OMUFBZ . This proves ϵ

′ ≥ ϵ.
Moreover, the number QS1(A) of abandoned sessions in the OMUFBZ ex-

periment equals the number QP1
(B) of abandoned sessions in the IMP-CAIZ

experiment and the number QV (B) of calls to the oracle C2 is bounded by QGH

(for the simulation of GH) plus additional QS2
(A) + 1 calls to each of them on

line 5 (the latter is necessary in case A guesses the output of C2 on some points).
Finally, the running times of A and B are roughly the same, τ ′ ≈ τ . ⊓⊔

6.5 Breaking IZ[CSI] IMP-CA security implies solving OMGA

Theorem 10. Let IZ [CSI] = (IZ .PG, IZ .KG, IZ .P = (IZ .P1, IZ .P2), IZ .Ver)
be the instantiation of IZ with commutative supersingular isogeny parame-
ter generator IZ [CSI].PG, and let l(κ) := max{lg |C|, lg |D|} where C and |D
are the challenge spaces (i.e. l(κ) is the maximum challenge bitlength). Let
A := (VP1,P2 ,PC1,C2) be an IMP-CA adversary of time complexity τ(κ) at-
tacking IZ [CSI]. Then there exists an OMGA adversary I attacking IZ [CSI].PG

such that, for every κ, AdvIMP-CA
IZ (A, κ) ≤ 2−l(κ) +

√
AdvOMGA

IZ .PG (I, κ). Fur-
thermore, the time complexity of I is τ ′(κ) = 2τ(κ) + O(κ2 · (α(κ) + ℓ(κ))),
where ℓ(κ) is the number of prover sessions with which V interacts and where
α(κ) ∈ O(poly(κ)) is the cost of computing a class group action.

Proof. Again, we closely follow the proof [5, Theorem 5.1]. We assume w.l.o.g.
that V never repeats a request. Fix κ ∈ N and let (N,A0, C, t, C

′, T) be an
output of IZ [CSI].PG running on input 1κ. Adversary I has access to a class

group action solving oracle I.Sol(A ∈ Eℓℓr
′×c
p , Q ∈ Eℓℓr×cp) that returns a ∈ Zr×c

N

such that Q = [a]A, and a supersingular curve challenge oracle I.Ch(r, c) that
takes the desired numbers of rows (r) and columns (c) as inputs and returns
random challenge curves Q ∈ Eℓℓr×cp each time it is invoked. I calls the I.Ch(· , ·)
oracle 2ℓ+ 1 times for a total of ℓrc+ r′ challenge curves (for some r, c, and r′),
and tries to compute the corresponding class group actions, while making only
2ℓ queries to I.Sol(· , ·) for a total of ℓrc solutions. I simulates an interaction
between B and the prover sessions (that is, I executes V, which is only allowed

24

to query its P1 and P2 oracles). To do so, I first queries its I.Ch(· , ·) oracle,

obtaining C − 1 random supersingular curves Q0
$← I.Ch(1, C − 1) ∈ EℓℓC−1p ,

and uses them to create a public key pk for the IMP-CA adversary B. It then
runs VP1,P2 and answers its requests.

In response to a P1(·) request, I opens a new prover session pid, makes queries

Qpid,0
$← I.Ch(C ′ − 1, t) ∈ Eℓℓ(C

′−1)×t
p and Qpid,1

$← I.Ch(T, t) ∈ EℓℓT×tp ,
and returns the answer (pid,Qpid,0, Qpid,1) to V. This mimics the behavior of a
genuine prover session pid, which would start from a fresh random tape and the
public key pk, sample commitments Upid, Vpid, and return (pid, Upid, Vpid) to V.
I does not know the secret key a0 ∈ ZC−1N corresponding to Q0, which

the genuine prover sessions would use to respond to V’s P2(pid, c ∈ C, d ∈ D)
requests, but it compensates with its access to the I.Sol(· , ·) oracle to an-
swer these requests. Specifically, in response to request P2(pid, cpid, dpid), I
makes the queries zpid ← I.Sol((Q0)↓cpid , Qpid,0) ∈ Z(C′−1)×t

N and wpid ←
I.Sol(((Q0)↓cpid ∥Qpid,0)↑dpid , Qpid,1) ∈ ZT×tN , and returns the answer wpid. This
is exactly the expected response from the prover session pid, as one can see with
the correspondence A ↔ Q0, Upid ↔ Qpid,0, Vpid ↔ Qpid,1. Hence I simulates
the prover’s behavior perfectly.

Since QP2
= ℓ(κ) is the number of prover sessions that V opens, interacts

with, and closes, when V stops I has made 2ℓ(κ) queries to its class group action
oracle for a total of (C ′ − 1 + T)t · ℓ(κ) curves queried from I.Ch(· , ·) and the
same amount of class group actions queried from I.Sol(· , ·). Now I needs to find
the class group action of at least one more challenge curve to win the game. In
fact, it will find all the class group actions for all C − 1 from the first query to
the I.Ch(· , ·) oracle. Specifically, I will first attempt to extract the class group
action a0 of the challenge Q0 from P, which is initialized with the output stV of
V, and it will then use a0 to compute the class group action of each of the other
challenge curves.

To that end, I obtains the commitment pair (U, V)
$← P.F1(stP) ∈

Eℓℓ(C
′−1)×t

p ×EℓℓT×tp , samples a uniformly random challenge pair (c
$← C, d $← D),

runs w
$← P.F2(stP , c, d) ∈ (Z∗N)T×t to obtain the response to the challenge

pair, and evaluates the verification predicate b← IZ [CSI].V er(pk, U, V , c, d, w).

I then selects another challenge pair (c′
$← C, d′← d) where c′ is chosen uni-

formly at random but the same d′ = d is kept as before, rewinds P to the
same starting state stP ← stV , and reruns it to eventually obtain its response
w′

$← P.F2(stP , c
′, d′) ∈ (Z∗N)T×t to the new challenge pair, then evaluates the

verification predicate b′ ← IZ [CSI].V er(pk, U, V , c′, d′, w′).

If the verification predicates evaluate to b = b′ = 1, both tuples (U, V , c, d, w)
and (U, V , c′, d′, w′) must be valid for public key Q0 = [a0]A0. That means
V = [w]H↑d = [w′]H ′↑d

′
where H ′ = [z′]A↓c′ and H = [z]A↓c, and hence

H↑d = [z↑d]A↓c = [z↑d+x↓c]A0 andH
′↑d′ = [z′↑d

′
]A↓c′ = [z′↑d

′
+x↓c′]A0 whereby

[w][z↑d + x↓c]A0 = [w′][z′↑d
′
+ x↓c′]A0, that is, w + z↑d + x↓c = w′ + z′↑d

′
+ x↓c′

(mod N), so it must hold that x↓c − x↓c′ = w′ − w + z′↑d
′ − z↑d (mod N). If

furthermore c′ ̸= c but d′ = d, then taking only the indices k such that dk = 0

25

yields x↓c − x↓c′ = w′ − w (mod N), that is, a system of t linear equations in
the C − 1 unknowns x1...C−1, which reveals the whole private key for t ≥ C − 1
(which is the case, from the parameter condition C | t) and a suitable choice of
cj (e.g. any index j such that cj ̸= 0 and c′j = 0 reveals x↓cj = w′j−wj (mod N)
directly).

Now we know that zpid = apid,0 − (a0)↓cpid (mod N) where [apid,0]A0 =

Qpid,0, and wpid = apid,1 − z
dpid
pid (mod N) where [apid,1]A0 = Qpid,1, hence I

can recover all the (C ′−1+T)t ·ℓ(κ) class group actions apid,0 ← zpid+(a0)↓cpid
(mod N) and apid,1 ← wpid + z

dpid
pid (mod N), 1 ≤ pid ≤ ℓ(κ), as desired.

If the verification predicates do not evaluate to 1 on both occasions, or the
challenges c and c′ coincide, then I fails. That is, I wins if, and only if, b = b′ = 1
and c ̸= c′.

Relating the probability of this event with the IMP-CA advantage of ad-
versary B proceedings exactly as in Theorem 5, and leads to precisely the
same result, which is the claimed relation AdvIMP-CA

IZ (A, κ) ≤ 2−l(κ) +√
AdvOMGA

IZ .PG (I, κ).

To complete the proof, it remains to justify the claim about the time complex-
ity of adversary I. Consider the OMGA game from Section 4.4, which defines
AdvOMGA

PG (C, κ). The cost of all the steps of this game before the execution
of adversary I’s final check that c′ ̸= c and b = b′ = 1 is dominated by at
most 2τ(κ) for the whole interaction between the prover P and the cheating
verifier V, plus the cost of evaluating the verification predicate twice to obtain
b← IZ .V er(pk, U, V , c, d, w) and b′ ← IZ .V er(pk, U, V , c′, d′, w′), plus the cost
of retrieving a0 and all of the apid,0 and apid,1.

Each evaluation of the verification predicate involves computing Tt class
group actions with integer representatives of bitlength lgN ∈ O(poly(κ)) (dis-
regarding the cost of other operations, which are much cheaper by compari-
son). From the conditions |C| = |M t

C | = t!/(t/C)!C ≥ 2κ and |D| = |M T
C′ | =

T !/(T/C ′)!C
′ ≥ 2κ it follows, on the one hand, that l(κ) = max{lg |C|, lg |D|} ≥

κ, which immediately precludes exhaustively guessing the verifier’s challenges
since that would require l(κ) ∈ O(polylog(κ)), and on the other hand, that
lgC, lg t, lgC ′, lg T ∈ O(W (κ)) where W (·) is Lambert’s function, and hence
Tt ∈ O(κ2/ log2(κ)) ⊆ O(κ2), so the total cost is O(κ2 · α(κ)). Finally, the
cost of retrieving a0 is that of solving a sparse linear system (each equation
involving only two unknowns) of size (C ′ − 1) × (C ′ − 1), or O(κ2), and the
cost of retrieving all of the (C ′ − 1 + T)t · ℓ(κ) ∈ O(κ2 · ℓ(κ)) remaining class
group actions is O(ℓ(κ) · κ2). Therefore, overall the time complexity of I is
τ ′(κ) := 2τ(κ)+O(κ2 ·α(κ)+κ2+ ℓ(κ) ·κ2) = 2τ(κ)+O(κ2 · (α(κ)+ ℓ(κ))). ⊓⊔

Corollary 2. If the commutative supersingular isogeny parameter generator
IZ [CSI].PG is OMGA-secure, then the correspondingly parametrized IZ [CSI] is
IMP-CA-secure.

26

7 Concrete parameters

BZ [DL] is a conventional discrete-logarithm scheme, and can be instantiated on
top of standard elliptic curves at the desired security level, e.g. any of the curves
recommended in Draft NIST SP 800-186 [12].

We compare BZ [DL] with the Tessaro-Zhu BS3 scheme [23], a recent blind
signature proposal based on the DL assumption. In that scheme, public keys have
the form (X,Z) ∈ G2 and thus occupy 2 lg p bits each, while signatures have the
form (c, s, y, t) ∈ Z∗n×Zn×Z∗n×Zn and thus occupy 4 lgn bits each. The signer
must perform 3 exponentiations, the user must perform 4+4 = 8 exponentiations
(and one inversion in Z∗n), and the verifier must perform 4 exponentiations.

In comparison, in the BZ [DL] scheme public keys have the form y ∈ G and
thus occupy lg p bits each, while signatures have the form (h, d, w) ∈ G∗× (Z∗n)2
and thus occupy lg p + 2 lg n ≈ 3 lg n bits each. The signer must perform 2
exponentiations, the user must perform 4 + 3 = 7 exponentiations, and the
verifier must perform 3 exponentiations.

For BZ [CSI] the choice of parameters is less immediate. Although the com-
plexity of the best classical attack against CSIDH is fully exponential, the CSIDH
problem is solvable in quantum subexponential time [11]. This requires adopt-
ing large class groups, and computing the order of such groups is known to
be a classically (though not quantumly) hard problem, related to computing
discrete logarithms in imaginary quadratic orders [8]. The largest class group
whose order is known exactly seems to be that of CSIDH-512 [7], and ob-
taining new records transcends the scope of this work. Yet, one can estimate
what the cost of BZ [CSI] will be in practice when the corresponding class
group order is available. A given choice of C, t, C ′, T , and the underlying
field Fp, which also determines the class group order N , yields signatures of
size |σ| = ⌈(C ′ − 1)t lg p⌉ + ⌈T lgC ′⌉ + ⌈Tt lgN⌉ bits, and public keys of size
|pk| = ⌈(C ′ − 1) lg p⌉. The main source of processing time complexity is the num-
ber of class group actions that must be computed. Given parameters as above,
the signer must compute (C ′ − 1)t + Tt actions, the user (C ′ − 1)t + Tt + Tt
actions, and the verifier Tt actions.

The usual 128-bit security level requires adopting CSIDH-4096 where lg p ≈
4096, lgN ≈ 2048. The best choice of parameters seems to be C = 35, t = 35,
C ′ = 11, T = 44, for signatures of size 560 KiB and public keys of size 17 KiB.
With this choice the signer must compute 1890 actions, the user must compute
3430 actions, and the verifier must compute 1540 actions. The processing time
is thus bound to be quite long, and the BZ [CSI] scheme is limited to niche
applications.

The bandwidth requirements are clearly much larger than quantum-
susceptible schemes (like BZ [DL] itself) and again limited to niche applications,
but they are not as high as it may look for a post-quantum proposal. For instance,
these space requirements are substantially smaller than the Hauck-Kiltz-Loss-
Nguyen lattice-based blind signature scheme [18] yields signatures of size 7.73
MiB and public keys of size 444 KiB.

27

These results are summarized on Table 1, where ‘exp’ stands for number
of group element exponentiations and ‘act’ stands for number of class group
actions.

Table 1. Blind signature comparison

scheme |pk| |σ| signer user verifier

[23] 512 bits 1024 bits 3 exp 8 exp 4 exp

BZ [DL] 256 bits 768 bits 2 exp 7 exp 3 exp

[18] 444 KiB 7.73 MiB NA NA NA

BZ [CSI] 17 KiB 560 KiB 1890 act 3430 act 1540 act

7.1 Smaller signatures and public keys?

There is a simple way to obtain better parameters for the underlying plain sig-
natures constructed according to the BZ methodology (that is, without the
blinding mechanism). It consists of grouping together the commitments asso-
ciated to the same challenge value, that is, viewing all C ′′ := 1 + t/C curves

Ĥ ′′(0...C
′′) := (Ab ∥ [Û (·)

j | 1 ≤ j ≤ t ∧ ĉj = b]) as constituting the same pub-
lic multikey from the starting curve Ab. In that case, a single commitment per
challenge is needed, the above matrices become single-row vectors and the (·)
superscript in Û

(·)
1...t becomes superfluous. The best choice of parameters becomes

C = 4, t = 72, C ′′ = 19, T = 38, for signatures of size 74.1 KiB and public keys
of size 1.5 KiB. If this arrangement worked for blind signatures, the signer would
have to compute 224 actions, the user would have to compute 376 actions, and
the verifier would have to compute 152 actions, a substantial improvement over
the above parameter choice.

The obstacle for the above idea is that, since the actual constitution of the
Ĥ ′′(0...C

′′) keys (and the corresponding assignment of V̂ 1...T
1...t commitments) is de-

termined by the challenges, the π and ρ permutations would have to be chosen
to keep track of the permuted constitution of those multikeys before the chal-
lenges are even made. Recognizing the right commitments that constitute the
same each multikey is thus hindered by an apparent circularity issue. Whether
this can be circumvented is unclear at this time, and overcoming it is left as an
open problem.

8 Conclusion

We have proposed a novel methodology to help designing blind signature schemes
in both the classical and the post-quantum setting, shorthanded BZ for its re-
liance on zero-knowledge arguments. To showcase its potential, we have described
two instantiations, one based on the conventional discrete logarithm assumption
and one based on the CSIDH assumption. The results are arguably competitive
in practice with existing proposals based on other assumptions.

28

Being non-black-box, the BZ methodology may or may not be applicable to
a given underlying primitive. In particular, at this time it is unclear whether it
can be applied efficiently to hardness assumptions like lattices and codes despite
many structural similarities with the actual instantiations covered herein (for in-
stance, we could not find any sensible permutation and displacement operations
that may be compatible with the notions of short vectors or low Hamming-
weight error patterns that are commonplace in those setting). We leave such
possibilities (or impossibility proofs) as open problems.

References

1. M. Abe and T. Okamoto. Provably secure partially blind signatures. In M. Bellare,
editor, Advances in Cryptology – CRYPTO 2000, pages 271–286, Berlin, Heidel-
berg, 2000. Springer Berlin Heidelberg. DOI:10.1007/3-540-44598-6_17.

2. G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey, J. Lichtinger,
C. Miller, D. Moody, R. Peralta, R Perlner, A. Robinson, D. Smith-Tone, and
L. Yi-Kai. NIST IR 8413: Status Report on the Third Round of the NIST
Post-Quantum Cryptography Standardization Process. NIST, July 2022. https:

//csrc.nist.gov/publications/detail/nistir/8413/final.
3. F. Baldimtsi and A. Lysyanskaya. Anonymous credentials light. In Proceedings

of the 2013 ACM SIGSAC Conference on Computer & Communications Security
(CCS), pages 1087–1098, New York, NY, USA, 2013. Association for Computing
Machinery. DOI:10.1145/2508859.2516687.

4. F. Baldimtsi and A. Lysyanskaya. On the security of one-witness blind signature
schemes. In K. Sako and P. Sarkar, editors, Advances in Cryptology - ASIACRYPT
2013, pages 82–99, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. DOI:

10.1007/978-3-642-42045-0_5.
5. M. Bellare and A. Palacio. GQ and Schnorr identification schemes: Proofs of secu-

rity against impersonation under active and concurrent attacks. In M. Yung, editor,
Advances in Cryptology – CRYPTO 2002, pages 162–177, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg. DOI:10.1007/3-540-45708-9_11.

6. F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova. On the (in)security
of ROS. In A. Canteaut and F.-X. Standaert, editors, Advances in Cryptology –
EUROCRYPT 2021, pages 33–53, Cham, 2021. Springer International Publishing.
DOI:10.1007/978-3-030-77870-5_2.

7. W. Beullens, T. Kleinjung, and F. Vercauteren. CSI-FiSh: Efficient isogeny based
signatures through class group computations. In Advances in Cryptology – ASI-
ACRYPT 2019, pages 227–247, Cham, 2019. Springer International Publishing.
DOI:10.1007/978-3-030-34578-5_9.

8. J.-F. Biasse. Improvements in the computation of ideal class groups of imaginary
quadratic number fields. Advances in Mathematics of Communications, 4(2):141–
154, 2010. DOI:10.3934/amc.2010.4.141.

9. W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: An
efficient post-quantum commutative group action. In Advances in Cryptology –
ASIACRYPT 2018, pages 395–427, Cham, 2018. Springer International Publishing.
DOI:10.1007/978-3-030-03332-3_15.

10. D. Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L.
Rivest, and Alan T. Sherman, editors, Advances in Cryptology, pages 199–203,
Boston, MA, 1983. Springer US. DOI:10.1007/978-1-4757-0602-4_18.

29

DOI:10.1007/3-540-44598-6_17
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8413/final
DOI:10.1145/2508859.2516687
DOI:10.1007/978-3-642-42045-0_5
DOI:10.1007/978-3-642-42045-0_5
DOI:10.1007/3-540-45708-9_11
DOI:10.1007/978-3-030-77870-5_2
DOI:10.1007/978-3-030-34578-5_9
DOI:10.3934/amc.2010.4.141
DOI:10.1007/978-3-030-03332-3_15
DOI:10.1007/978-1-4757-0602-4_18

11. J. Chávez-Saab, J.-J. Chi-Domı́nguez, S. Jaques, and F. Rodŕıguez-Henŕıquez.
The SQALE of CSIDH: Sublinear Vélu quantum-resistant isogeny action with
low exponents. Journal of Cryptographic Engineering, early online access, 2021.
DOI:10.1007/s13389-021-00271-w.

12. L. Chen, D. Moody, A. Regenscheid, and K. Randall. Draft NIST Special Pub-
lication 800-186: Recommendations for Discrete Logarithm-Based Cryptography:
Elliptic Curve Domain Parameters. NIST, October 2019. https://csrc.nist.

gov/publications/detail/sp/800-186/draft.
13. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification

and signature problems. In Advances in Cryptology – CRYPTO’ 86, pages 186–194,
Berlin, Heidelberg, 1987. Springer. DOI:10.1007/3-540-47721-7_12.

14. M. Fischlin and D. Schröder. On the impossibility of three-move blind signature
schemes. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010,
pages 197–215, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. DOI:10.1007/
978-3-642-13190-5_10.

15. D. Galindo and F. Garcia. A Schnorr-like lightweight identity-based signature
scheme. In Progress in Cryptology – AFRICACRYPT 2009, pages 135–148, Berlin,
Heidelberg, 2009. Springer. DOI:10.1007/978-3-642-02384-2_9.

16. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gener-
ation for discrete-log based cryptosystems. Journal of Cryptology, 20:51–83, 2007.
DOI:10.1007/s00145-006-0347-3.

17. E. Hauck, E. Kiltz, and J. Loss. A modular treatment of blind signatures from
identification schemes. In Y. Ishai and V. Rijmen, editors, Advances in Cryp-
tology – EUROCRYPT 2019, pages 345–375, Cham, 2019. Springer International
Publishing. DOI:10.1007/978-3-030-17659-4_12.

18. E. Hauck, E. Kiltz, J. Loss, and N. K. Nguyen. Lattice-based blind signatures,
revisited. In Advances in Cryptology – CRYPTO 2020, pages 500–529, Cham,
2020. Springer International Publishing. 10.1007/978-3-030-56880-1_18.

19. J. Katz, D. Schröder, and A. Yerukhimovich. Impossibility of blind signa-
tures from one-way permutations. In Yuval Ishai, editor, Theory of Cryptogra-
phy, pages 615–629, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. DOI:

10.1007/978-3-642-19571-6_37.
20. G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple Schnorr multi-signatures

with applications to Bitcoin. Designs, Codes and Cryptography, 87:2139–2164,
2019. 10.1007/s10623-019-00608-x.

21. C. P. Schnorr. Efficient identification and signatures for smart cards. In Advances
in Cryptology – CRYPTO ’89 Proceedings, pages 239–252, New York, NY, 1990.
Springer New York. DOI:10.1007/0-387-34805-0_22.

22. E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly,
I. Khoffi, and B. Ford. Keeping authorities “honest or bust” with decentralized
witness cosigning. In 2016 IEEE Symposium on Security and Privacy (SP), pages
526–545, 2016. DOI:10.1109/SP.2016.38.

23. S. Tessaro and C. Zhu. Short pairing-free blind signatures with exponential secu-
rity. Cryptology ePrint Archive, Paper 2022/047, 2022. https://eprint.iacr.

org/2022/047.
24. D. Wagner. A generalized birthday problem. In M. Yung, editor, Advances in

Cryptology – CRYPTO 2002, pages 288–303, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg. DOI:10.1007/3-540-45708-9_11.

25. Alexandros Zacharakis, Panagiotis Grontas, and Aris Pagourtzis. Conditional blind
signatures. Cryptology ePrint Archive, Paper 2017/682, 2017. https://eprint.

iacr.org/2017/682.

30

DOI:10.1007/s13389-021-00271-w
https://csrc.nist.gov/publications/detail/sp/800-186/draft
https://csrc.nist.gov/publications/detail/sp/800-186/draft
DOI:10.1007/3-540-47721-7_12
DOI:10.1007/978-3-642-13190-5_10
DOI:10.1007/978-3-642-13190-5_10
DOI:10.1007/978-3-642-02384-2_9
DOI:10.1007/s00145-006-0347-3
DOI:10.1007/978-3-030-17659-4_12
10.1007/978-3-030-56880-1_18
DOI:10.1007/978-3-642-19571-6_37
DOI:10.1007/978-3-642-19571-6_37
10.1007/s10623-019-00608-x
DOI:10.1007/0-387-34805-0_22
DOI:10.1109/SP.2016.38
https://eprint.iacr.org/2022/047
https://eprint.iacr.org/2022/047
DOI:10.1007/3-540-45708-9_11
https://eprint.iacr.org/2017/682
https://eprint.iacr.org/2017/682

SUPPLEMENTARY MATERIAL

A The (in)effectiveness of the ROS attack

The ROS attack [6] and its generalized version are powerful cryptanalytical
tools, capable of breaking blind Schnorr signatures at the 128-bit security level
in ≈ 20s on a single PC. These attacks similarly break many other blind sig-
nature schemes in probabilistic polynomial time given O(log n) valid signatures:
Okamoto-Schnorr, Syta et al.’s CoSi scheme [22], Maxwell et al.’s two-round
MuSig blind schemes [20]; the threshold scheme by Gennaro et al. [16]; the Abe-
Okamoto [1] and Anonymous Credentials Light [3] partially blind schemes; the
conditional blind scheme by Zacharakis et al. [25]; and others.

We now investigate the applicability of such attacks against the BZ scheme.
Spoiler: surprisingly, if the hash function is fixed-point resistant, the BZ scheme
appears impervious to the ROS and generalized ROS attacks.

For the basic ROS attack, the goal is to construct a probabilistic polynomial-
time adversary A that is able to produce (with overwhelming probability) ℓ+ 1
blind signatures after opening ℓ ≥ ⌈log n⌉ parallel sessions with the signer. We
also investigate the more powerful generalized ROS attack which enhances the
basic attack with Wagner’s subexponential k-list attack [24].

In the remainder of this Appendix we adopt the additive elliptic curve arith-
metic notation, so as to keep the presentation closer to the original attack
from [6].

A.1 Basic attack against blind Schnorr

We begin by recapitulating the basic attack against blind Schnorr signatures.
Let G be a generator of the group G of prime order n, and let the signer’s key
pair be (x ∈ Z∗n, X := xG ∈ G∗).
A chooses ℓ+1 arbitrary messages mi ∈ {0, 1}∗ and samples 2(ℓ+1) blinding

elements (αi,b, βi,b)
$← (Z∗n)2, 1 ≤ i ≤ ℓ+ 1, b ∈ {0, 1}.

A requests ℓ parallel commitments Ûi ∈ G∗ from the signer, and computes
2ℓ blind pre-commitments Ui,b ← Ûi + αi,bG + βi, bX and 2ℓ pre-challenges
ci,b ← H(Ui,b,mi) ∈ Z∗n, 1 ≤ i ≤ ℓ, b ∈ {0, 1}. Assume ci,0 ̸= ci,1.

Define the multivariate affine polynomial τ ∈ Zn[x1 . . . xℓ]:

τ (x1 . . . xℓ) :=

ℓ∑
j=1

2j−1 · xj − cj,0
cj,1 − cj,0

=

ℓ∑
j=1

τjxj + τ0.

The polynomial so defined satisfies τ (c1,b1 . . . cℓ,bℓ) =
∑ℓ
j=1 2

j−1bj for all

(b1 . . . bℓ) ∈ {0, 1}ℓ, that is, any binary sequence of length ℓ can be expressed as
the output from τ evaluated on a selection of the c1,b . . . cℓ,b spelled out by that
binary sequence.

31

With that polynomial, A sets Uℓ+1 ←
∑ℓ
j=1 τjÛj (NB: omitting the τ0

term), computes cℓ+1 ← H(Uℓ+1,mℓ+1), and obtains the binary decomposition∑ℓ
j=1 2

j−1bj := cℓ+1 + τ0, thereby specifying the actual (b1 . . . bℓ).
A blinds the challenges ĉi ← ci,bi + βi,bi (mod n) and sends them to the

signer, obtaining back the responses ẑi ∈ Z∗n, 1 ≤ i ≤ ℓ.
Now A defines zi ← ẑi + αi,bi (mod n), 1 ≤ i ≤ ℓ, and zℓ+1 ←

∑ℓ
j=1 τj ẑj

(mod n).
In summary, out of ℓ sessions A obtains ℓ+ 1 blind signatures:

(Ui, zi) =

{
(Ûi + αi,biG+ βi,bX, ẑi + αi,bi (mod n)), 1 ≤ i ≤ ℓ,

(
∑ℓ
j=1 τjÛj ,

∑ℓ
j=1 τj ẑj (mod n)), i = ℓ+ 1.

A.2 Basic attack attempt against BZ[DL]

One could now try and adapt this attack to the particular way BZ blinds the
signatures.
A chooses ℓ+1 arbitrary messages mi ∈ {0, 1}∗ and samples 4(ℓ+1) blinding

elements (πi,b, δi,b, ρi,b, εi,b)
$← (Z∗n)4, 1 ≤ i ≤ ℓ + 1, b ∈ {0, 1}. A requests ℓ

parallel commitments (Ûi ∈ G∗, V̂i ∈ G∗) from the signer and computes 2ℓ blind
pre-commitments Ui,b ← πi,bÛi+δi,bG, 2ℓ pre-challenges ci,b ← H(Ui,b,mi), and
2ℓ pre-challenges di,b ← H(Vi,b).

Now A chooses whether to mount the attempted ROS attack based on the
primary commitments Ûi or the secondary commitments V̂i.

When basing the attack on the primary commitments, A obtains the τ poly-
nomial, assuming ci,0 ̸= ci,1, 1 ≤ i ≤ ℓ, b ∈ {0, 1}. A sets Uℓ+1 ←

∑ℓ
j=1 τjÛj

(NB: omitting the τ0 term), computes cℓ+1 := H(Uℓ+1,mℓ+1), and obtains

the binary decomposition
∑ℓ
j=1 2

j−1bj := cℓ+1 + τ0, thus specifying the actual

(b1 . . . bℓ). A blinds the challenges ĉi ← ci,bi/πi,bi (mod n) and, assuming the d̂i
are somehow computed as well (discussed below), sends them to the signer, who
then computes but does not reveal the pre-responses zi ∈ Z∗n, 1 ≤ i ≤ ℓ. This

fixes the implicit one-more pre-response zℓ+1 :=
∑ℓ
j=1 τjzj (mod n). The signer

returns ŵi = si − d̂izi (mod n), so from Ĥi := Ûi − ĉiX = ziG A can only com-

pute Hi ← πi,biĤi + δi,biG = ziG, 1 ≤ i ≤ ℓ, and Hℓ+1 ←
∑ℓ
j=1 τjĤj = zℓ+1G

with the implicit zi and zℓ+1.
Still, A needs to decide on how to complete the first ℓ blind signatures with

di, wi, and the blinding elements ρi,bi , εi,bi , and also find suitable dℓ+1 and wℓ+1

to complete the extra signature. The obvious way to obtain the first ℓ blind
signatures is to set d̂i ← di/ρi,bi (mod n) and wi ← ρi,biπi,biŵi − d̂iδi,bi + εi,bi
(mod n), but regardless of how A chooses to do it, computing dℓ+1 and wℓ+1

incurs an issue. Specifically, this requires wℓ+1 = sℓ+1 − dℓ+1zℓ+1 (mod n) for

the already fixed private signing key zℓ+1 :=
∑ℓ
j=1 τjzj (mod n), and sℓ+1 must

depend on the corresponding but implicit (i.e. unknown to A) si such that

V̂i = siG. Since ŵi = si − d̂izi (mod n), i.e. ŵi/d̂i = si/d̂i − zi (mod n), then∑ℓ
j=1 τjŵj/d̂j =

∑ℓ
j=1 τjsj/d̂j −

∑ℓ
j=1 τjzj =

∑ℓ
j=1 τjsj/d̂j − zℓ+1 (mod n), so

32

it must hold that dℓ+1

∑ℓ
j=1 τjŵj/d̂j = dℓ+1

∑ℓ
j=1 τjsj/d̂j − dℓ+1zℓ+1 (mod n).

Hence A must take wℓ+1 ← dℓ+1(
∑ℓ
j=1 τjŵj/d̂j + ξ) (mod n), allowing here

for whatever fudge term ξ might be necessary to relate the actual choice
of wℓ+1 to this expression involving the ŵi, and thus implicitly set sℓ+1 =

dℓ+1(
∑ℓ
j=1 τjsj/d̂j + ξ) (mod n) and Vℓ+1 = sℓ+1G = dℓ+1(

∑ℓ
j=1 τjsj/d̂j +

ξ)G = dℓ+1E where E :=
∑ℓ
j=1 (τj/d̂j)V̂j + ξG.

But dℓ+1 = G(Vℓ+1) = G(dℓ+1E), so dℓ+1 must be a fixed point of the
function F(x) := G(xE). There is no known way to obtain such a dℓ+1 efficiently
(faster than collision finding) when G is modeled as a random oracle7. Some

attack variations are plausible, e.g. including the d̂i in the definition of the τ
polynomial, but in the end they face the same issue of needing to find a fixed
point of a random oracle.

Suppose, then, that A bases the attack on the secondary commitments in-
stead, obtaining the following modified ψ polynomial:

ψ(x1 . . . xℓ) :=

ℓ∑
j=1

2j−1 · xj − dj,0
dj,1 − dj,0

=

ℓ∑
j=1

ψjxj + ψ0.

assuming di,0 ̸= di,1, 1 ≤ i ≤ ℓ, b ∈ {0, 1}. A sets Vℓ+1 ←
∑ℓ
j=1 ψj V̂j (NB:

omitting the ψ0 term), computes dℓ+1 := G(Vℓ+1), and obtains the binary de-

composition
∑ℓ
j=1 2

j−1bj := dℓ+1 + ψ0, thus specifying the actual (b1 . . . bℓ). A
blinds the challenges ĉi ← ci,bi/πi,bi (mod n) and d̂i ← di,bi/ρi,bi (mod n), and

sends them to the signer, who responds with Ĥi and ŵi, 1 ≤ i ≤ ℓ. This fixes
the one-more pre-response wℓ+1 :=

∑ℓ
j=1 ψjŵj (mod n).

But the signing key is no longer the same for all signatures: each secondary
signature (d̂i, ŵj) corresponds to a different signing key, so A must somehow
make sure that the linear combination thus obtained will satisfy the verifi-
cation equation. Indeed, V̂i = ŵiG + d̂iĤi ⇒

∑ℓ
j=1 ψj V̂j =

∑ℓ
j=1 ψjŵjG +∑ℓ

j=1 ψj d̂jĤj ⇒ Vℓ+1 = wℓ+1G + dℓ+1

(
1

dℓ+1

∑ℓ
j=1 ψj d̂jĤj

)
, revealing that

Hℓ+1 = 1
dℓ+1

∑ℓ
j=1 ψj d̂jĤj and hence zℓ+1 = 1

dℓ+1

∑ℓ
j=1 ψj d̂jzj . Now Ûi =

ziG + ĉiX ⇒ 1
dℓ+1

∑ℓ
j=1 ψj d̂jÛj = 1

dℓ+1

∑ℓ
j=1 ψj d̂jzjG + 1

dℓ+1

∑ℓ
j=1 ψj d̂j ĉjX,

revealing that Uℓ+1 = 1
dℓ+1

∑ℓ
j=1 ψj d̂jÛj and cℓ+1 = 1

dℓ+1

∑ℓ
j=1 ψj d̂j ĉj so

that Uℓ+1 = zℓ+1G + cℓ+1X as expected. But it must also hold that cℓ+1 =

H(Uℓ+1,mℓ+1), so from cℓ+1 = 1
dℓ+1

∑ℓ−1
j=1 ψj d̂j ĉj +

1
dℓ+1

ψℓd̂ℓĉℓ (NB: any other

index 1 ≤ k < ℓ could equivalently have been brought to focus here instead of ℓ)

it follows that ĉℓ
πℓ,bℓ

= dℓ+1

ψℓd̂ℓ

(
H

(
1

dℓ+1

∑ℓ
j=1 ψj d̂jÛj ,mℓ+1

)
− 1

dℓ+1

∑ℓ−1
j=1 ψj d̂j ĉj

)
.

And yet, πℓ,bℓ is fixed beforehand since it is required to compute Vℓ and hence
dℓ, which in turn is required to compute ψℓ, and these must all already exist

7 There exist specific hash functions that are not fixed-point resistant, e.g. plain free-
start Davies-Meyer. However, most hash constructions like Miyaguchi-Preneel and
cryptographic sponges are fixed-point resistant.

33

before the above hash is computed. This circularity is essentially similar to, but
even more involved than, the issue with fixed points that A faces when trying to
mount the attack based on the primary commitments, and just as intractable.

In summary, at this time no efficient method is known to obtain the required
dℓ+1 and wℓ+1, and the ROS attack fails against BZ [DL].

Remark 2. For BZ [CSI] it is not clear even how to begin mounting the ROS
attack, since the hash values are not taken from Zn as the attack seems to
require.

A.3 Basic attack attempt against IZ[DL]

The above discussion relies on properties of hash functions, so at first glance it
would seem that the underlying IZ [DL] scheme might still be susceptible to a
ROS-style attack. We now argue this is not the case.

Adapting the attack to the identification scheme, A samples 2(ℓ+ 1) blind-

ing elements δi,b
$← Z∗n, 1 ≤ i ≤ ℓ + 1, b ∈ {0, 1}, requests ℓ pairs of parallel

commitments (Ûi, V̂i) ∈ (G∗)2 from the prover, and computes 2ℓ pairs of blind
parallel pre-commitments Ui,b ← Ûi+ δi,bG, Vi,b ← ⟨something⟩, where we leave
the ⟨something⟩ expression open as it will have no impact on the discussion,
regardless of how A decides to define it. Then A requests 2ℓ pre-challenges pairs
(ci,b, di,b) ∈ (Z∗n)2 from the verifier, corresponding to the pre-commitment pairs
(Ui,b, Vi,b). Assuming ci,0 ̸= ci,1, 1 ≤ i ≤ ℓ, b ∈ {0, 1}, A obtains the τ polyno-

mial, sets Uℓ+1 ←
∑ℓ
j=1 τjÛj , Vℓ+1 ← ⟨something⟩, and requests one more chal-

lenge pair (cℓ+1, dℓ+1) ∈ (Z∗n)2 from the verifier, corresponding to that commit-

ment pair. A sends the challenges (ĉi := ci,bi , d̂i := ⟨something⟩) to the prover,

obtaining back ŵi = si − d̂izi (mod n) for some (not revealed) pre-responses
zi ∈ Z∗n, 1 ≤ i ≤ ℓ. From these, A can only compute Ĥi := Ûi − ĉiX = ziG,

Hi ← Ĥi + δi,biG = ziG, 1 ≤ i ≤ ℓ, and Hℓ+1 ←
∑ℓ
j=1 τjĤj = zℓ+1G, but

still faces the same issue of ZK-proving knowledge of the zi without know-
ing them. Specifically, this requires wℓ+1 = sℓ+1 − dℓ+1zℓ+1 (mod n) for the

already fixed (but unknown) private signing key zℓ+1 :=
∑ℓ
j=1 τjzj (mod n)

and challenge dℓ+1, and sℓ+1 must depend on the corresponding (but also un-

known) si such that V̂i = siG. Since ŵi = si − d̂izi (mod n), it must hold

that dℓ+1

∑ℓ
j=1 τjŵj/d̂j = dℓ+1

∑ℓ
j=1 τjsj/d̂j − dℓ+1zℓ+1 (mod n). Hence A

must take wℓ+1 ← dℓ+1

∑ℓ
j=1 τjŵj/d̂j (mod n) and thus implicitly set sℓ+1 ←

dℓ+1

∑ℓ
j=1 τjsj/d̂j (mod n) while also somehow ensuring Vℓ+1 = sℓ+1G.

And here we see the circularity problem: it appears in the relation sℓ+1 ←
dℓ+1

∑ℓ
j=1 τjsj/d̂j (mod n), as A must commit to Vℓ+1 (and hence somehow

choose sℓ+1) before obtaining the challenge dℓ+1 from the verifier, and without

ever knowing any of the sj (so there is little if any hope of tweaking the d̂j to
force this relation to hold).

In summary, mounting an effective ROS-style attack against IZ [DL] faces
an obstacle that seems as insurmountable as the ROS attack against BZ [DL]
despite the absence of hashing functions, since here the protocol is interactive.

34

A.4 Generalized ROS attack against BZ?

Would the generalized ROS attack fare any better? At first glance this seems
unlikely, given the above discussion on basing the attack on either the primary
or the secondary commitments. And yet, one is entitled to wonder whether some
different construction for the ψ polynomial might yield better results, especially
taking into account that the ŵi signature components are not hidden in an
exponent as the zi components are.

But even if this were the case, consider the following result:

Theorem 11 (Generalized ROS attack [6]). Let L,w ≥ 0 be integers. Under
Wagner’s conjecture, if ℓ ≥ max{2w − 1, ⌈2w − 1 + λ − (w + 1)L⌉}, then there
exists an adversary that runs in expected time O(2w+L) and solves the ROS
problem relative to the parameter generation algorithm and dimension ℓ, where
λ := ⌈lg n⌉.

Since a single signature (d̂i, ŵi) corresponds to each ‘key pair’ (zi, Ĥi), the
effective constraint for the SNARKs is ℓ = 1, whereby max{2w−1, ⌈2w−1+λ−
(w+1)L⌉} ≤ 1. That means w = 0 or w = 1. For the former, ⌈λ−L⌉ = λ−L ≤ 1,
that is, L ≥ λ−1, and the cost is O(2λ−1) = O(2λ). For the latter, ⌈1+λ−2L⌉ =
1 + λ− 2L ≤ 1, that is, L ≥ λ/2, and the cost is O(21+λ/2) = O(2λ/2).

So the most favorable situation for an attacker is the latter, but it coincides
with the usual birthday limit. Therefore, the generalized ROS attack is just as
ineffective as the plain attack.

B The BZ[DL] and BZ[CSI] signing formulas

We summarize the derivation of step 4 of Algorithm BZ [DL].U2 and step 4 of
Algorithm BZ [CSI].U2, since these may perhaps not be immediately clear.

BZ[DL]: Step 3 of Algorithm BZ [DL].U2 only ensures v̂ = gŵĥd̂ with ĥ := ûy−ĉ,
while Algorithm BZ [DL].Ver requires v = gwhd with h := uy−c instead, where
u = ûπgδ and v = v̂ρπgε as defined in defined in step 3 of Algorithm BZ [DL].U1.

Thus v̂ = gŵĥd̂ ⇒ v̂ρπgε = (gŵĥd̂)ρπgε ⇒ v = gρπŵĥρπd̂gε = gρπŵ+εĥπd.

But ĥ = ûy−ĉ ⇒ ĥπ = ûπy−c = ug−δy−c = hg−δ. Hence v = gρπŵ+εĥπd =
gρπŵ+ε(hg−δ)d = gρπŵ−δ+εhd = gwhd, wherefore we obtain the signing formula
w = ρπŵ − dδ + ε (mod n) adopted in step 4 of Algorithm BZ [DL].U2.

BZ[CSI]: Step 3 of Algorithm BZ [CSI].U2 only ensures V̂ 1...T
1...t = [ŵ1...T

1...t]Ĥ
↑d̂1...T
1...t

with Ĥ0...C′−1
1...t := (A↓ĉ1...t ∥ Û1...C′−1

1...t), while Algorithm BZ [CSI].Ver requires

V 1...T
1...t = [w1...T

1...t]H
↑d1...T
1...t with H0...C′−1

1...t := (A↓c1...t ∥U1...C′−1
1...t) instead,

where U1...C′−1
1...t = [δ1...C

′−1
1...t]π(Û1...C′−1

1...t) and V 1...T
1...t = [ε1...T1...t]ρ

↑π↓(V̂
1...T
1...t)

as defined in step 3 of Algorithm BZ [CSI].U1. Thus V̂ 1...T
1...t =

[ŵ1...T
1...t]Ĥ

↑d̂1...T
1...t ⇒ [ε1...T1...t]ρ

↑π↓(V̂
1...T
1...t) = [ε1...T1...t]ρ

↑π↓([ŵ
1...T
1...t]Ĥ

↑d̂1...T
1...t) ⇒ V 1...T

1...t =

35

[ε1...T1...t][ρ
↑π↓(ŵ

1...T
1...t)]ρ

↑π↓(Ĥ
↑d̂1...T
1...t) = [ρ↑π↓(ŵ

1...T
1...t) + ε1...T1...t]π↓(Ĥ

ρ(↑d̂1...T)
1...t) =

[ρ↑π↓(ŵ
1...T
1...t) + ε1...T1...t]π↓(Ĥ

↑d1...T
1...t). But Ĥ0...C′−1

1...t = (A↓ĉ1...t ∥ Û1...C′−1
1...t) ⇒

π↓(Ĥ
0...C′−1
1...t) = (Aπ(↓ĉ1...t) ∥π↓(Û

1...C′−1
1...t)) = (A↓c1...t ∥π↓(Û1...C′−1

1...t)) =

([−δ01...t]A↓c1...t ∥ [−δ1...C
′−1

1...t]U1...C′−1
1...t) = [−δ0...C

′−1
1...t]H0...C′−1

1...t . Hence V 1...T
1...t =

[ρ↑π↓(ŵ
1...T
1...t) + ε1...T1...t]π↓(Ĥ

↑d1...T
1...t) = [ρ↑π↓(ŵ

1...T
1...t) + ε1...T1...t][−δ

↑d1...T
1...t]H↑d

1...T

1...t =

[ρ↑π↓(ŵ
1...T
1...t) − δ

↑d1...T
1...t + ε1...T1...t]H

↑d1...T
1...t = [w1...T

1...t]H
↑d1...T
1...t , wherefore we obtain

the signing formula w1...T
1...t = ρ↑π↓(ŵ

1...T
1...t)− δ

↑d1...T
1...t + ε1...T1...t (mod N) adopted in

step 4 of Algorithm BZ [CSI].U2.

36

	Blind signatures from Zero-knowledge arguments
	Introduction
	Preliminaries
	Notation
	Supersingular curves and isogenies:
	Protocols:

	The BZ methodology
	The Schnorr signature scheme
	The general BZ construction
	The core BZ ideas and properties:

	The underlying IZ identification scheme

	Security notions
	Blindness
	One-more unforgeability
	(Non-)impersonation under concurrent attacks
	One-more discrete logarithm and one-more class group action
	OMDL:
	OMGA:

	The BZ[DL] and IZ[DL] schemes
	Perfect correctness of BZ[DL]
	Perfect blindness of BZ[DL]
	Unattainability of standard MitM security for IZ[DL]
	Breaking IZ[DL] OMUF implies breaking IMP-CA
	Breaking IZ[DL] IMP-CA security implies solving OMDL

	The BZ[CSI] and IZ[CSI] schemes
	Perfect correctness of BZ[CSI]
	Perfect blindness of BZ[CSI]
	Unattainability of standard MitM security for IZ[CSI]
	Breaking IZ[CSI] OMUF implies breaking IMP-CA
	Breaking IZ[CSI] IMP-CA security implies solving OMGA

	Concrete parameters
	Smaller signatures and public keys?

	Conclusion
	The (in)effectiveness of the ROS attack
	Basic attack against blind Schnorr
	Basic attack attempt against BZ[DL]
	Basic attack attempt against IZ[DL]
	Generalized ROS attack against BZ?

	The BZ[DL] and BZ[CSI] signing formulas
	BZ[DL]:
	BZ[CSI]:

