
Complete Knowledge: Preventing Encumbrance of
Cryptographic Secrets

Mahimna Kelkar
∗

Cornell Tech

Kushal Babel
∗

Cornell Tech

Philip Daian
∗

Cornell Tech

James Austgen

Cornell Tech

Vitalik Buterin

Ethereum Foundation

Ari Juels

Cornell Tech

ABSTRACT
Most cryptographic protocols model a player’s knowledge of secrets

in a simple way. Informally, the player knows a secret in the sense

that she can directly furnish it as a (private) input to a protocol,

e.g., to digitally sign a message.

The growing availability of Trusted Execution Environments

(TEEs) and multiparty computation (MPC), however, undermines

this model of knowledge. Such tools can encumber a secret sk and

permit a chosen player to access sk conditionally, without actually
knowing sk. By permitting selective access to sk by an adversary,

encumbrance of secrets can enable vote-selling in cryptographic

voting schemes, illegal sale of credentials for online services, and

erosion of deniability in anonymous messaging systems.

Unfortunately, existing proof-of-knowledge protocols fail to

demonstrate that a secret is unencumbered. We therefore intro-

duce and formalize a new notion called complete knowledge (CK).
A proof (or argument) of CK shows that a prover does not just

know a secret, but also has fully unencumbered knowledge, i.e.,

unrestricted ability to use the secret.

We introduce two practical CK schemes that use special-purpose

hardware, specifically TEEs and off-the-shelf mining ASICs. We

prove the security of these schemes and explore their practical

deployment with a complete, open-source, end-to-end prototype

with smart-contract verification that supports both. We show how

CK can address encumbrance attacks identified in previous work.

Finally, we introduce two new applications enabled by CK that

involve proving ownership of blockchain assets.

1 INTRODUCTION
Most cryptographic protocols are designed under a simple model of

knowledge. If a player P can explicitly furnish a secret value sk as

a (private) protocol input, then she knows sk. In a digital signature

scheme, for example, P inputs a private key sk to a locally executed
algorithm to sign a message.

This basic, intuitive model of knowledge, however, can break

down when sk is not controlled by a single player, but an interac-
tive functionality. For example, sk might be stored exclusively in

a trusted execution environment (TEE) such as Intel SGX [50, 51],

AMD SEV [9], or AWS Nitro Enclaves [8]. The TEE could then en-
cumber P’s access to sk, by only allowing selective use. For instance,
in the previous digital signatures example, a TEE could generate

(and store) a private signing key sk for a user Alice, but only allow

Alice to sign messages approved by an adversary.

Such encumbrances can also be realized by multi-party com-

putation (MPC) [38, 69] over sk among a committee that restricts

∗
The first three authors contributed equally to this work.

its use. Encumbrance of secrets can undermine security in many

cryptographic protocols, as we will show.

It may seem counterintuitive that a user / prover might want to
encumber her own secret sk. Encumbrance of secrets, it turns out,

can paradoxically benefit a user. For example, as highlighted in [31,

57], voters that choose to encumber secret keys used in a voting

scheme can sell their votes to an adversary trying to subvert an

election. Here, Alice might encumber her voting key sk so that she

can only sign a ballot with candidate Bob, the choice of adversary

Mallory. Alice can then sell Mallory an enforceable promise that if

she votes, she will vote only for Bob. Remarkably, even techniques

that specifically aim to prevent such vote-selling—e.g., so-called

coercion-resistant voting schemes [28, 29, 43]—fail in the presence

of such key encumbrance.

In this paper, we introduce and explore a new notion of knowl-

edge called complete knowledge (CK). Complete knowledge embod-

ies a strong notion of possession meant to rule out encumbrance of

e.g., the secret key. CK by a prover P of a secret sk means, infor-

mally, that it has unencumbered access to sk and can use it for any
desired purpose, e.g., can sign any message of her choice.

CK can be leveraged in our voting example, by requiring Alice

to prove that she has complete knowledge of her secret key sk
before allowing her to vote. Here, CK would imply that Alice can

always cast any desired vote and therefore, cannot sell Mallory an

enforceable promise to vote only for Bob.

Our goals in this work are to formalize CK, implement CK

schemes end-to-end, and shed light on its various applications.

The problem with proofs of knowledge. To understand CK,

we build on the classical formalism of proofs of knowledge (PoKs).
PoKs are interactive protocols in which a prover demonstrates

knowledge of some kind to a verifier. PoKs play an important role

in many cryptographic constructions and have found widespread

applications in e-voting [25, 26, 29, 49], encryption [58, 59], group

signatures [13], and private cryptocurrency transactions [20, 62].

More formally, a PoK involves two players: a prover P and a

verifierV . The goal is for P to convince an honestV that it knows

a valid witness sk for some (public) statement 𝑥 . In practice, PoKs

are often zero-knowledge [35], meaning that the protocol hides any

information about sk fromV . (A PoK need not be zero-knowledge,

though, and this is true of some CK schemes we propose.)

As observed above, however, P could have access to sk interme-

diated by an interactive protocol with another entity or device (e.g.,

a TEE or an MPC committee). In this case, classical PoK formalism

breaks down, because it lacks a notion of encumbered knowledge.

In our voting example above, for instance, Alice has a secret key

sk encumbered in a TEE that only allows her to cast a vote for Bob

in an election. This same TEE, however, might allow unencumbered

1

use of sk for completely different purposes, e.g., signing to authorize

cryptocurrency transactions. In these contexts, Alice along with

the TEE can successfully prove knowledge of sk. Yet neither Alice
nor any other entity truly knows sk, in the sense of being able to

use it for any desired purpose. In fact, the TEE can allow Alice

to take any action using sk except for the one to vote against Bob.
This allows a powerful collusion between Alice and the bribing

adversary Mallory; Mallory can bribe Alice without risk since she

provably cannot vote against Bob, while Alice is willing to accept

the bribe since Mallory learns no information about the key and at

the same time Alice is guaranteed to be able to utilize her key for

all other functionalities.

This situation underscores a mismatch between the existing

formalism for proofs of knowledge and knowledge in a critical,

real-world sense. In this paper, we show the potential practical

impact of this mismatch, describing coercive attacks that exploit

encumbrance of secret keys in voting schemes, deniable messaging,

and blockchain systems.

We show how to remedy the resulting problems by introducing

the notion of CK.

Proofs of complete knowledge (PoCKs). In this work, we in-

troduce and formalize proofs of complete knowledge (PoCKs). (Our

definitions also cover arguments of complete knowledge (ACKs),

for which P is polynomial time. We often informally use the term

PoCK to denote both.)

The core idea in our formalization is intuitively as follows: A

PoCK scheme ensures complete knowledge if it is the case that

when an honest V accepts a proof by P, P can learn her own
witness sk fully during the proof execution.

Specifically, in a PoCK, P must be able to eavesdrop on an unen-

crypted channel carrying sk. To ensure this “self-eavesdropping”

capability, P is given access to a special resource R required for

successful execution of the proof.

R will typically be a local piece of hardware within the trust

domain of P. R may paradoxically itself be a TEE that stores sk—as
a way of preventing encumbrance using another TEE. Alternatively,

R could be a resource, such as an ASIC, with special computational

capabilities. Informally, an eavesdropper E must be present on the

channel between P and R. Abstractly, E can be visualized as the

physical manifestation of a straight-line extractor [37] from PoK

literature, in the sense that it will allow for extraction in practice

rather than just as a proof construct (see Section 4 for details).

In the case of R being a TEE, E can be constructed by simply

requiring P to submit sk in plaintext to R, or alternatively by

having a function within the TEE application that reveals sk. Even
if P uses a TEE or MPC committee in an attempt to encumber

sk—thus hiding sk from herself—exposure on E means that P can

still recover sk. Thus a PoCK ensures that sk is unencumbered. The

PoCK setting is shown in Figure 1.

Let’s return to our voting example now. Intuitively, if a PoCK

is used here, then Mallory will no longer have any guarantee on

Alice’s vote since Alice can use E to fully recover sk without being

detected by Mallory.

Realizing CK. We consider two practical schemes for realizing

PoCKs. These schemes enable any proof of knowledge protocol to

be converted into a PoCK protocol.

Prover
P

E
Verifier
V

Resource
R

Eavesdropping
Channel sk

PoCK

Figure 1: Proof of complete knowledge (PoCK) setting. A PoCK is a
proof of knowledge, but has two additional requirements: (1) P can
only execute the proof successfully by accessing a special local re-
source R; and (2) P must have access to the witness sk as it is trans-
mitted to R over a plaintext eavesdropping channel E. Green lines
/ boxes in the figure indicate entities local to / within the trust do-
main of P, while blue lines / boxes indicate those outside.

Our first scheme is a conceptually straightforward one that gen-

eralizes an idea proposed by Gunn et al. [40] for preventing TEE-

based attacks on deniability in messaging protocols. This scheme

paradoxically realizes the resource R as a TEE that prevents en-
cumbrance by, e.g., another TEE. The idea is that P generates sk
inside or inputs sk to a special TEE application that outputs sk to
the user on demand, thus realizing an eavesdropping channel E. To
prove complete knowledge of sk, P has the special TEE application

generate an attestation proving that sk is output to P. We prove

the security of this CK scheme under the assumption that it is not

practical to run a TEE instance inside another TEE instance.

TEEs have important drawbacks, though. Notably, one widely

available, fully-featured hardware TEE is Intel SGX, in which a

number of serious vulnerabilities have been discovered (and later

patched), e.g., [18, 65, 66].
1

We thus explore a second PoCK realization involving proof of
work (PoW) [33, 41], using an ASIC as the resource R.

An ASIC (Application-Specific Integrated Circuit) is special-

purpose hardware for a specific computation. ASICs are widely used

for cryptocurrency mining [63], specifically hashing (e.g., double

SHA-256 for Bitcoin) and thus widely available as an off-the-shelf

component for our PoCK scheme. ASICs also have an important

feature for our purposes: they accept only unencrypted inputs.
2

Our ASIC-based PoCK requires P to solve a specially crafted

PoW puzzle within a certain time period. Successfully solving this

puzzle will reveal sk to P with high probability. Complete descrip-

tion of our scheme and its security analysis is given in Section 6.

Interestingly, our approach to CK not only contributes to the

theory of proof systems, but draws on techniques from the litera-

ture on this theory, specifically the straight-line, non-programming
extractor construction of Fischlin [37].

To show practicality of our CK schemes, we implement an end-to-

end system SMACK (Section 7) in which the verifier is a smart con-

tract on the Ethereum blockchain. This implementation both shows

1
While a break of SGX (or other TEEs) may seem to help achieve CK by exposing sk,
it can in fact undermine CK proofs by enabling the generation of fake TEE attestations.

At the same time, a TEE break does not necessarily prevent encumbrance of secrets, as

the adversary who has broken a TEE may be distinct from one who is using the TEE

to encumber secrets. Also, there are alternative ways to encumber secrets, e.g., MPC.

2
Even if an ASIC supported encrypted connection, without a built-in enclave, it would

still be eavesdroppable.

2

how minimal a CK verifier can be and supports the blockchain ap-

plications we discuss in Section 2. The ASIC-based implementation

(Section 7.1) uses an off-the-shelf mining ASIC. In order to make

CK widely accessible, we also implemented our TEE-based scheme

as a mobile app (Appendix D.1) using the mobile phone’s TEE.

Contributions. In brief, our contributions are:

• Complete Knowledge:We introduce a new notion of knowledge

for cryptographic protocols, called complete knowledge (CK), that
addresses theoretical and practical limitations of classical PoKs

arising from encumbrance of secrets.

• CK applications: We revisit known attacks on existing protocols

that lack CK and offer a unified treatment and discussion of

countermeasures through the lens of CK (Section 2). We also

introduce two new applications of CK that help prove ownership

of blockchain assets.

• Formalization:We formalize CK as a strengthening of standard

proofs / arguments of knowledge (Section 3 and 4).

• Practical CK schemes:We present two practical schemes to con-

vert proofs of knowledge to proofs of complete knowledge (PoCKs),

using a TEE (Section 5) or off-the-shelf mining ASICs (Section 6).

Our schemes work for a very broad class of Σ-protocols, a com-

mon type of ZK proof of knowledge in practice.We implement
both our CK schemes in a full, end-to-end system in which verifica-
tion is performed in a smart contract (Section 7).

2 MOTIVATION: ATTACKS & APPLICATIONS
To motivate our exploration, we begin by briefly reviewing three

key-encumbrance attacks from existing literature and explain how

CK can serve as a countermeasure. The result is a new, unified

treatment of these attacks that identifies their common root cause

as a lack of CK for private credentials. We also describe two new
applications enabled by CK.

2.1 Attacks and CK-Based Countermeasures
Authentication protocols that lack CK are vulnerable to various

attacks in which credentials, such as secret keys or passwords,

are made available fully or conditionally to an adversary. Three

concrete examples are described below.

Deniable Messaging: Deniability in messaging protocols is the

(desirable) property that a participant Alice cannot prove the au-

thenticity of a transcript of her communication with another partic-

ipant Bob, to an outsider, rendering their communications inadmis-

sible as evidence against Bob. Several widely deployed messaging

protocols, e.g., Signal [1, 30] (which is based on OTR [17]),advertise

such deniability as a key feature. These protocols accomplish de-

niability by exposing key material to two communicating parties,

Alice and Bob, that allows either of them to forge a transcript uni-

laterally. E.g., Alice can do so using her long-term private key 𝐴

and an ephemeral private key 𝑎.

Gunn et al. [40] show how a TEE can erode the deniable authen-

tication [17, 32] that underpins messaging protocols. The use of a

TEE enables a simple attack on deniability by either communicating

party in isolation. It suffices for Alice, for example, to generate her

ephemeral private key 𝑎 in a special TEE application that does not

permit her to forge messages from Bob. Through this technique,

Alice can show a judge that she lacks the ability to forge making it

so that Bob loses deniability for the messages he sends; notably this

happens without Bob realizing that his deniability has been eroded.
Gunn et al. describe some countermeasures, the simplest counter-

intuitively involving use of a small TEE program that attests that a

user’s private key is present in unprotected memory, i.e., outside the
enclave, and thus made available to the user for transcript forgery.

Our work, by introducing CK, formalizes and extends ideas

which allow the countermeasure from [40] to work.

Electronic Voting: Electronic voting is becoming important in

decentralized systems such as permissionless blockchains [44, 49].

Those systems make use of user-generated keys. They are vulnera-

ble to attacks—like those initially described in [31] and subsequently

in [57]—in which a voter encumbers her private key used for voting

in a TEE upon generation. The voter then offers a briber or coercer

exclusive and verifiable access to her key either permanently or for

certain elections. Access is verifiable because the TEE can present

a proof of encumbrance to the adversary. Note that the key can be

encumbered for specific well defined tasks and does not for exam-

ple, compromise the voter’s cryptocurrency if the same key also

controls her cryptocurrency.
3

CK offers a countermeasure to such attacks. If a voter is required

to prove CK for her private key sk, then she cannot encumber

it. While prior literature has proposed coercion-resistant (which
subsumes receipt-free [14]) voting protocols [29, 43, 48] for the

explicit purpose of countering adversarial coercion, we emphasize

that they are insecure against TEE-based encumbrance attacks [57].
CK is a necessary requirement to restore coercion-resistance in

these protocols under encumbrance attacks.

Coercion-resistant protocols involve either: (1) An authority that

sends keys to voters over an untappable channel, along with the

ability of users to present fake versions of these keys to adversaries

or (2) The ability for the voter to re-vote. CK cannot fully remedy

the problem on its own for approach (1), as the TEE can still identify

true keys to adversaries. But CK can at least prevent an adversary

from gaining exclusive access to voting keys and can restore the

coercion-resistance for protcols using approach (2). We leave it as

an open problem to understand whether coercion-resistance can

be easily restored in the first approach
4
.

Similarly, CK offers a path to shoring up security in minimal
anti-collusion infrastructure (MACI), a scheme proposed by Bu-

terin [22] that is designed to provide bribery-resistance in voting

and other applications in a way loosely analogous to coercion-

resistance [14, 29, 43, 48].
5
Recent strides have been made toward

MACI deployment on Ethereum [42]. As explicitly noted in [22],

MACI is vulnerable to TEE-based encumbrance of keys. Use of CK,

however, can restore the scheme’s bribery-resistance properties.

3
Because a TEE can be taken offline, encumbrance in a TEE alone only ensures a briber

that either the briber will be able to cast a vote or no one will. While limited, this

property is still valuable to the adversary. Networks of TEEs, e.g., [6, 31] can in fact

further help ensure liveness.

4
One potential approach is to use CK along with placing all voter functionality in a

TEE application. This works in theory but comes at the cost of an application-specific

realization and bloated trusted-computing base.

5
The basic idea is to allow users to switch their registered keys secretly; this prevents

an adversary from knowing whether a key presented by a user is valid or not. The

scheme allows for a race condition between valid users and adversaries with whom

keys are shared. It thus does not strictly meet formal definitions of coercion-resistance,

e.g., JCJ [43], although use of deposits acts as a practical disincentive to key sharing.

3

2.2 New Applications Enabled by CK
We introduce two new applications enabled by CK, i.e., through use

of PoCKs. We show how CK enables users to prove facts about asset

ownership that they could not easily prove without CK. Specifically,

these applications cannot be securely realized with standard PoKs.

Key-coupling: In some systems, it is valuable to be able to ascer-

tain that two different private keys, sk1 and sk2 (with respective

public keys pk
1
and pk

2
), are known simultaneously by the same

user. This is possible with a CK witness consisting of two private

keys. That is, the prover furnishes a CK proof of knowledge of

sk1 ∥ sk2, i.e., a concatenation of the two private keys. We refer to

such proof as key-coupling.
We emphasize that key-coupling is not possible using, e.g., a

conventional PoK of sk1 ∥ sk2. Two distinct holders of sk1 and sk2
could jointly generate such a proof using secure function evaluation

and avoid mutual key disclosure.

Key-coupling has a number of applications, particularly in blockchain

systems. They include:

(1) KYC dilligence: Cryptocurrency users often transfer control

of their own coins from one key to another, e.g., from hot to cold wal-

lets or vice versa. Users often must undergo know-your-customer

(KYC) to transact with exchanges. It can be helpful for a user who

has undergone KYC diligence with respect to the address associated

with pk
1
to be able to transfer assets to an address associated with

pk
2
without having to undergo diligence again. By proving simulta-

neous knowledge of sk1 and sk2, the user provides strong evidence
that assets transferred between pk

1
and pk

2
belong to the same

user—or at least fall under the control of a single entity. The same

approach can be used by the owner of the address associated with

pk
2
to prove that she doesn’t owe tax on funds sent from pk

1
, as the

funds didn’t change hands.

(2) Privacy-preserving credential linkage: Suppose that a user

who controls private keys for pk
1
and pk

2
has a public credential

attached to pk
2
(e.g., proof of KYC diligence, as above). The user

can construct a CK proof for sk1 plus possession of some public

key / address (pk
2
) with an associated KYC credential. She can do

this without revealing pk
2
.

(3) Enforcing NFT royalty payments: Non-fungible tokens (NFTs)
are blockchain objects that often represent ownership of digital

artistic works. Some NFT platforms enforce royalty payments to
artists (e.g., 5% of sale price) upon resale of an NFT. However, those

platforms also support direct, royalty-free transfer between ad-

dresses so as to support transfer between addresses belonging to

a single user. As there is no way (prior to our work) to determine

single-owner possession of two distinct addresses, users can exploit

this royalty-free transfer feature to bypass royalty payments. Con-

troversially, for example, a popular marketplace called Sudoswap

facilitates royalty-free NFT sales [36]. Key-coupling can, however,

enforce true single-owner possession of addresses in royalty-free trans-
fers, thereby closing the loophole that deprives NFT creators of

ongoing royalty payments.

Note that the ability of key-coupling to distinguish between

within-owner and between-owner transfers may not be future-

proof: User wallets could eventually support key changes, whether

for key rotation or social recovery [19, 21]. This feature could be

abused to transfer control between two distinct users while main-

taining an appearance of consistent ownership by a single user.

Still, the friction against cheating created by key-coupling might

still be sufficient to protect, e.g., small-royalty NFT transfers.

CK addresses and Atomic NFTs: Blockchains enable new mech-

anisms for joint ownership of indivisible digital assets. Such own-

ership regimes are referred to as fractionalization. This is a partic-
ularly popular approach to distributing ownership of expensive

NFTs among a collection of users.

Fractionalization, however, introduces problems such as price

volatility and attractiveness to scammers [64]. As NFTs are essen-

tially financial instruments—and usable not just for digital art, but

for real-world assets such as real estate—preventing of fraction-

alization can also help with know-your-customer (KYC) / anti-

money-laundering (AML) compliance, as it ensures that on-chain

ownership representation is accurate [67]. Finally, certain types

of NFTs, e.g., soulbound tokens (SBTs) [68] are intended by design

for exclusive ownership; fractionalization would undermine their

utility.

Fractionalizationmay be prevented on chain, i.e., on the blockchain

itself, by allowing ownership only from a user address and not a

smart contract. But there exists no mechanism (prior to our work)

to prevent off-chain fractionalization of NFTs by means of secret

sharing or TEEs.

CK offers a novel way to prevent fractionalization of any kind

through a concept we call CK addresses. A CK address is one whose

secret key is guaranteeed to be unencumbered through the use of

a PoCK protocol. Through CK addresses, we can create what we

refer to as Atomic NFTs—NFTs which are designed to only permit

ownership by CK addresses. This ensures that at all times only one
entity controls the NFT.

3 PRELIMINARIES AND BACKGROUND
Computational model for interactive proofs. An interactive

proof system [39] is a pair (P,V) of Interactive Turing Machines

(ITMs) that communicate with each other in rounds. P andV may

be given auxiliary inputs 𝑧1 and 𝑧2 respectively, along with a com-

mon input 𝑥 .V outputs a single-bit at the end of the execution. We

use ⟨P(𝑥, 𝑧1),V(𝑥, 𝑧2)⟩ to denote the random variable forV’s out-

put and VIEWV (P(𝑥, 𝑧1),V(𝑥, 𝑧2)) to denote the random variable

forV’s view of the execution.

Interactive proofs of knowledge. Consider a language 𝐿 ∈ NP
with witness relation 𝑅𝐿 , i.e., 𝑥 ∈ 𝐿 iff. (𝑥,𝑤) ∈ 𝑅𝐿 for a witness 𝑤 .

Informally, the goal of a proof of knowledge system is to have the

verifier output 1 iff 𝑥 ∈ 𝐿 and the prover “knows” some witness𝑤

for 𝑥 . We say that (P,V) is an interactive PoK system (for 𝑅𝐿) if it

is complete and a proof of knowledge.
(1) Completeness means that the honest prover P can always

convince the honest verifierV when (𝑥,𝑤) ∈ 𝑅𝐿 . Concretely, for
all (𝑥,𝑤) ∈ 𝑅𝐿 , we have Pr[⟨P(𝑥,𝑤),V(𝑥)⟩ = 1] > 1 − negl(𝜆)
where 𝜆 is the security parameter.

(2) A proof of knowledge is a protocol in which, if a (malicious)

prover P∗ convinces V that 𝑥 ∈ L (i.e., V outputs 1), then the

prover “knows” a witness𝑤 for 𝑥 . This is formalized by requiring

the existence of an extractor E that can extract the witness given

the description of P∗. More formally, we require that for all P∗ and
4

𝑥 , Pr[𝑤 ← EP∗ (𝑥) : (𝑥,𝑤) ∈ 𝑅𝐿]+negl(𝜆) > Pr[⟨P∗ (𝑥),V(𝑥)⟩ =
1] . If this property holds only for a computationally bounded (PPT)

adversarial prover, (P,V) is called an interactive argument of
knowledge system.

(3) We further say that a proof of knowledge is zero-knowledge
if, informally, the verifier learns nothing from a proof execution.

Specifically, for any PPT verifierV ′, there exists a PPT machine

S (called the simulator) such that for all (𝑥,𝑤) ∈ 𝑅𝐿 , it holds

that VIEWV′ (⟨P(𝑥,𝑤),V ′(𝑥)⟩) ≈ S(𝑥), where ≈ means compu-

tational indistinguishability.

For a more detailed introduction, we refer the reader to [54].

As stated before, in a PoK system, there is no guarantee that the

prover actually has unencumbered access to the witness.

Σ-protocols. A popular type of zero-knowledge proofs of knowl-

edge (ZKPoK) used in practice are Σ-protocols. They are a key

building block in our ASIC-based construction. A Σ-protocol is a
three-move, interactive ZKPoK with the following structure:

(1) P sends a message 𝑎 (often called a commitment) toV .

(2) V sends a challenge 𝑐←$ {0, 1}ℓ to P.
(3) P sends a response 𝑠 toV .

For a given 𝑥 ,V decides whether to accept P’s proof based on the

proof transcript, which consists of the triple (𝑎, 𝑐, 𝑠).
Σ-protocols have a property called special soundness, whereby

an extractor can efficiently compute a witness 𝑤 from a pair of

accepting transcripts (𝑎, 𝑐, 𝑠) and (𝑎, 𝑐 ′, 𝑠 ′) where 𝑐 ≠ 𝑐 ′. (They also

have a property called special honest-verifier zero-knowledge, which
means that a simulator given 𝑥 and 𝑐 can generate a transcript

(𝑎, 𝑐, 𝑠) distributed like that in a real execution without access to

the witness.)

An additional property of many Σ-protocols is quasi-soundness,
which means that no efficient prover can produce any two tran-

scripts of the form (𝑎, 𝑐, 𝑠), (𝑎, 𝑐, 𝑠 ′), where 𝑠 ≠ 𝑠 ′, i.e., two different

responses for the same commitment-challenge pair. Our construc-

tion applies only to quasi-sound Σ-protocols.6 We assume such

Σ-protocols throughout.
The extractor E for a proof-of-knowledge protocol may in gen-

eral rewind the prover P. In a Σ-protocol, the special-soundness
property gives rise to a simple extractor construction. After the

first move in the protocol, i.e., the commitment 𝑎 by P, E issues a

challenge 𝑐 , and obtains response 𝑠 . E then rewinds P to the point

just after the first move and issues a second challenge 𝑐 ′, recovering
a second response 𝑠 ′. The two transcripts allow extraction of𝑤 .

The best-known Σ-protocol—and a practical choice for proving

knowledge of a discrete-log-based public key in ASIC-ZKPoCK—is
the Schnorr protocol [60], which proves knowledge of a discrete

log. Here, 𝑥 = 𝑔𝑤 (where 𝑔 is a published generator of some suitable

group G), and the goal is to prove knowledge of the exponent𝑤 .

Straight-line extraction. The need to rewind the prover P re-

sults in loose security reductions for various signature schemes,

e.g., [56] and is typically incompatible with concurrent protocol

composition [23]. These issues with rewinding motivated the ex-

ploration of straight-line extractors (a.k.a. online extractors), which
do not require rewinding.

6
Given the ability to generate two transcripts (𝑎, 𝑐, 𝑠) and (𝑎, 𝑐, 𝑠′) for 𝑠 ≠ 𝑠′, for
instance, which is permissible in strongly-sound Σ-protocols [46], a prover can cheat

in our protocol.

Online extractors may observe calls to a hash function 𝐻 by P,
where 𝐻 is modeled as a random oracle (RO), i.e., responses are
independent and uniformly random. Of particular interest in our

setting are non-programming extractors, which involve a strong

model where the extractor cannot program the RO, i.e., determine

its responses during extraction.

Fischlin [37] proposed a non-interactive ZKPoK scheme with

a straight-line extractor whose techniques we adapt to our ASIC

construction. In this construction the extractor has access to RO

queries. The key idea is that P uses Σ-protocol transcripts as inputs
to the RO in a proof of work (PoW). The scheme is parameterized

in such a way that solving the PoW requires with high probability

that P feeds a pair of valid Σ-protocol transcripts (𝑎, 𝑐, 𝑠), (𝑎, 𝑐 ′, 𝑠 ′)
with 𝑐 ≠ 𝑐 ′ to the RO. By observing these transcripts as RO inputs,

an extractor E can extract the witness𝑤 .

To provide more detail, Fischlin’s scheme builds on a Σ-protocol
involving a prover / verifier pair (PΣ,VΣ). Parameters include

challenge domain cardinality 𝑘 , proof-of-work difficulty 𝑏, global

proof-of-work target 𝑆 , and number of rounds of execution𝑛. Specif-

ically, 𝐻 : {0, 1}∗ → {0, 1}𝑏 , and a valid PoW solution is such that

𝐻 (𝑧) = 0
𝑏
for an input 𝑧 that includes a valid Σ-transcript (𝑎, 𝑐, 𝑠).

The protocol is as follows:

• Prover P: On input (𝑥,𝑤), P does the following:

– Runs the first step of 𝑛 executions of PΣ to obtain 𝑛 commit-

ments ®com = (𝑎1, 𝑎2, . . . , 𝑎𝑛). Let 𝑞𝑖 = ([𝑥, 𝑖]; ®com).
– For each given 𝑎𝑖 , P completes an execution of PΣ on chal-

lenges 𝑐 𝑗 ∈ [0, 𝑘−1]. Each execution ofPΣ yields a correspond-
ing response 𝑠 𝑗 . P sets 𝜋𝑖 = (𝑎𝑖 , 𝑐 𝑗 , 𝑠 𝑗) for 𝐻 ((𝑎𝑖 , 𝑐 𝑗 , 𝑠 𝑗) ∥
𝑞𝑖) = 0

𝑏
if one exists; otherwise it sets 𝜋𝑖 = (𝑎𝑖 , 𝑐 𝑗 , 𝑠 𝑗) for the

minimal result, i.e., 𝑗 for argmin𝑗 𝐻 ((𝑎𝑖 , 𝑐 𝑗 , 𝑠 𝑗) ∥ 𝑞𝑖).
– Sends ®com, 𝑥 , ®𝜋 = {𝜋𝑖 }𝑛𝑖=1 to the verifier.

• VerifierV: On input (𝑥, ®𝜋),V checks: (1) For all 𝑖 ∈ [1, 𝑛] that
VΣ accepts 𝜋𝑖 ; and (2)

∑𝑛
𝑖=1 𝐻 (𝜋𝑖 ∥ 𝑞𝑖) < 𝑆 .

In order to compute PoW results that V will accept, P must

with high probability hash at least two Σ transcripts of the form

(𝑎𝑖 , 𝑐 𝑗 , 𝑠 𝑗) for some 𝑎𝑖 . That means that the random oracle 𝐻 will

be called on a pair of inputs that include distinct pairs (𝑎𝑖 , 𝑐 𝑗 , 𝑠 𝑗)
and (𝑎𝑖 , 𝑐 ′𝑗 , 𝑠

′
𝑗
). From special-soundness, it follows that 𝑤 can be

extracted.

As will be seen later, while our ASIC ACK protocol draws on

the technique of combining a Σ-protocol with a PoW, our setting

differs considerably. In straight-line extractors, extraction is a theo-

retical capability used to prove knowledge of𝑤 . In our ASIC ACK,

extraction is a practical capability used to show that P can access𝑤 .

Additionally, in our ASIC ACK, rather than using a cryptographic
resource in the form of an RO, P uses a computational resource in
the form of an ASIC. The result is a protocol that differs somewhat

from Fischlin’s in terms of the form of oracle queries involved and

the resulting security analysis.

Trusted Execution Environments (TEEs). A TEE runs applica-

tions with strong confidentiality and integrity protections. Some

TEE platforms can issue a type of statement, known as an attes-
tation, to untampered execution of a particular application, along

with application outputs.

One popular TEE with attestation capabilities is Intel Software

Guard eXtensions (SGX) [10, 50, 51]. Trust in the hardware—and

5

in Intel, which authenticates attestation keys—means that only an

SGX platform can generate a valid attestation, i.e., attestations are

existentially unforgeable. We make use of formalism for SGX-like

TEEs in the universal composability (UC) framework from [53].

TEEs are nearly universal today in mobile devices as well, but

without built-in attestation capabilities. Google and Apple, however,

generate attestations for devices in their ecosystems [11, 12].

We make use of both SGX (Section 5) and mobile-device TEEs

(Appendix D.1) in different CK variants.

4 PROOFS OF COMPLETE KNOWLEDGE
As we have explained, the standard proof-of-knowledge property

does not guarantee that the prover actually has unencumbered

access to the witness 𝑤 . This is because in order to recover 𝑤 ,

the (knowledge) extractor gets oracle access to the entire prover,
including parts that may be controlled by separate entities or even

the adversary. The issue is that the prover is modeled as a single

machine P even if in reality it is not owned by a single entity. For

instance, if𝑤 is secret-shared between two independent parties, P
will correspond not to the individual machines, but to the combined

system with both parties, and the extractor is given access to this

system. Here, even though the system as a whole knows the witness

and the extractor is able to recover it, intuitively, it is clear the

neither party alone really has unencumbered access to the witness.

We now formalize proofs of complete knowledge (PoCKs), which
ensure that a single party has full access to the witness.

4.1 Building Intuition
The basic idea behind PoCKs is to design protocols where the knowl-

edge extractor E is actually runnable in practice, rather than simply

a proof construct. We therefore begin with a careful analysis of

what can make an extractor fail if practically run, and then use

these insights to guide our PoCK formalism. As a first point, since

we want E to be able to run in practice, it is obvious that E should

not rewind P, i.e., it must be straight-line. We will further restrict

our attention to straight-line (i.e., non-rewinding) extractors that

are also non-programmable (i.e., unable to program e.g., the random

oracle (RO); this is important since real hash functions used to in-

stantiate the RO cannot be programmed). This style of knowledge

extractor has been used previously in e.g., [37, 46, 52].

Recall that for standard PoK extraction in the random oracle

model, the extractor E is given two quantities: (1) A transcript of

the interaction between the prover and the verifier; and (2) A list

of queries (and corresponding responses) made by the prover to

the random oracle. What does it mean exactly for E to be given

these inputs in practice? Unfortunately, we find that both of these

inputs are problematic to assume in practice (due to encumbrance

by MPC or a TEE) which makes designing protocols for our setting

particularly challenging.

The first input seems obtainable—any entity present on the com-

munication channel between the prover and the verifier can observe

this transcript (even if the prover is composed of multiple entities

and only one communicates with the verifier). This however im-

plicitly assumes that the communication is not encrypted and can

therefore be observed by E. Such an assumption fails ifV is also

run inside a TEE, in which case, a prover TEE holding the witness𝑤

would be able to convinceV without𝑤 being known in plaintext to

any non-TEE entity. This observation has a surprising consequence:

the trivial PoK of simply sending𝑤 toV cannot be a PoCK unless

it can be enforced thatV is not run in a TEE .

The second input—the list of random oracle queries—is also

challenging to enforce in light of TEE or MPC encumbrance. This is

because a hash function, which will typically be used to instantiate

the random oracle, can be computed easily in trusted hardware or

MPC. In turn, providing the oracle queries to E in practice would

effectively translate to breaking the trusted hardware or unravelling

the MPC protocol to figure out the hash function inputs. Intuitively,

the gap here arises from the fact the physical instantiation of the

random oracle may not comply with the way the extractor functions

in theory for the proof of knowledge to go through.

Key technique. To surmount these challenges, we must ensure

that the extractor always obtains the inputs required for knowledge

extraction in practice. To do so, we consider a physical resource
oracle functionality R such that the prover’s interaction with R
leaks a witness to E. We seek to deploy R so that no prover can

perform a successful CK proof without R; in a sense, the resource

abstraction separates out the part of the protocol responsible for

the proof of knowledge.

Concretely, we model E as a man-in-the-middle entity for R
that can snoop on the queries made to R. E will use these queries

to extract the witness, thereby giving it (and whoever can see

its output) complete knowledge of the witness (see Remark 1). To

emphasize its physical presence and its non-rewinding nature, we

refer to E as the eavesdropping extractor, or simply the eavesdropper.

Looking ahead, in our protocols, R models special hardware

available to P—either a global SGX functionality that attests to see-

ing the witness, or an untrusted ASIC whose computational speed

is superior to that of a trusted environment that can potentially

conceal the witness from E. In a sense, the SGX instance represents

a physical manifestation of a trusted third party that furnishes the

witness𝑤 directly to E; the ASIC similarly may be thought of as a

physical manifestation of an RO accessible by E.
Here, E can be thought of as the machine where R physically

resides; as an example, for the SGX resource, E represents the host

machine of the SGX which may simply be one of the entities within

P or even a different external machine. A crucial point here is

that by design, we use a resource R such that there is no practical

resource R ′ which provides an identical functionality and allows

for encrypted queries to be made directly to R ′: this enables E to

view the plaintext queries made to the resource.

Remark 1 (Complete knowledge for some entity). Notice that PoCK

only guarantees that the eavesdropper E can extract𝑤 . If for some

reason, the prover does not have access to the output of E in practice,
then it may not be able to recover𝑤 .

As a consequence, PoCK protocols can only guarantee that some
entity (specifically E and anyone who can see its output) has com-

plete knowledge of𝑤 . For instance, if R is connected to a different

outsourced machineM instead of P, then E will correspond to

M and be able to recover𝑤 while P might not. We note that this

subtlety is not accounted for in standard PoK formalism since E
does not represent a physical entity.

6

This property, however, is sufficient to deter the collusion and

bribery attacks which motivate our work. For instance, a user will

not willingly accept a bribe for her vote if it reveals her key (which

also controls her money) to another entity.

4.2 Formal PoCK Security
We now formally define proofs-of-complete knowledge. We use 𝜆

throughout to denote the security parameter.

Basic setting. Similar to standard PoKs, we consider a prover P
and a verifier V (modeled as ITMs). Specific to our setting, we

model a resource oracle R that can be queried by P. We will often

work in a timed setting where P must complete its proof within

some time 𝑇 (𝜆). To model the concrete computational speed of a

resource R, we associate with it a function 𝑡R (·) that defines the
time taken by the resource to compute responses to its queries.

Note that this execution by R can be concretely faster than by P.
Resource formalism. Abstractly, a resource R is a randomized

and stateful functionality FR . R is initialized with an internal

state stinitial←$ R .Setup(1𝜆). Upon input inp from P, R computes

FR (st, inp) → (st′, out) where st is the current state of R, st′ is the
state after the computation, and out is the output returned to prover.
We also model the time taken by R as the randomized function

𝑡R (st, inp). Note that 𝑡R (·) may be smaller than if the computation

was done by P itself. The tuple (R .Setup, FR , 𝑡R) represents R.
We parameterize our PoCK protocols by a set ℜ of “honest” re-

sources, i.e., resources that an honest prover can utilize to convince

an honest verifier. We use ℜall ⊇ ℜ to denote the global set of

all practically instantiable resources—only resources in this set are

assumed to exist in practice. This explicitly enables modeling our

assumption regarding resource practicality (e.g., the non-existence

of SGX inside SGX).

PoCK formalism. A𝑇 -timed PoCK (when𝑇 is unspecified, there

are no additional timing constraints) for language 𝐿 ∈ NP with

witness relation 𝑅𝐿 , a set ℜ of honest resources, and a set ℜall of

practical resources is a tuple (Setup,P,V) where:
• Setup(1𝜆) → pp generates public parameters.

• (P,V) is an interactive proof system where P is given (pp, 𝑥,𝑤)
andV is given (pp, 𝑥).V outputs a single bit indicating whether

the prover has complete knowledge of a valid witness for 𝑥 . For

non-interactive proofs, P will output a proof 𝜋 which will be

given toV to verify. For 𝑇 -timed protocols, P will be required

to run in time 𝑇 .

We can also consider the standard relaxation of arguments (instead
of proofs) of knowledge for which only PPT provers are considered

(although argument and proof are often used interchangeably in the
literature). Our concrete protocols will be “Arguments of Complete

Knowledge” (ACK).

Now, for PoCK security, we define in the subsequent paragraphs,

two properties—completeness, and forced-revelation (or CK-soundness)

that are required to hold.

Completeness. The first PoCK property of completeness mirrors

the analogous property for PoKs. Recall that completeness states

that an honest prover who holds the witness can convince the

verifier to output the success bit. The only difference now for PoCK

completeness is that the prover is endowed with a resource oracle

R. Formally, PoCK completeness states that for all pp, R ∈ ℜ, and

(𝑥,𝑤) ∈ 𝑅𝐿 :

Pr[⟨PR (pp, 𝑥,𝑤),V(pp, 𝑥)⟩ = 1] > 1 − negl(𝜆) .

Furthermore, PR runs in time at most 𝑇 (𝜆).
Forced revelation orCK-soundness. The second PoCK property

of forced revelation is similar in spirit to the knowledge-soundness

property of standard PoKs. Abstractly, if a prover is able to convince

an honest verifier using any practical resource (i.e., within ℜall and

not just within ℜ), then the eavesdropper will be able to output a

valid witness. Let outE denote the output of E. A party able to view

the output of the eavesdropper obtains the full witness. Formally,

for all pp, inputs 𝑥 , provers A, and resources R ′ ∈ ℜall such that

AR′ runs in time 𝑇 (𝜆),

Pr[⟨AR
′
(pp, 𝑥),V(pp, 𝑥)⟩ = 1]

< Pr[𝑥 ∈ 𝐿 ∧ (𝑥,𝑤 = outE) ∈ 𝑅𝐿] + negl(𝜆) .

Forced revelation directly implies a couple of nice properties.

First, it implies the usual soundness notion since no prover can

convinceV of an 𝑥 ∉ 𝐿 (except with negligible probability). Second,

it also implies that if the prover does not make use of any resource,

making it so that E cannot eavesdrop, then it cannot convinceV ex-

cept with negligible probability even if it has the witness. Intuitively,
this property is necessary because otherwise it would imply the

ability to prove CK through e.g., a 2PC protocol where the witness

is encumbered. As illustrated in the remark that follows, forced

revelation also has surprising ramifications, which underscore the

nuances of working in our PoCK setting.

Forced revelation implies an interesting separation between triv-

ial protocols for PoK and PoCK (see App. A for details).

4.3 Zero-Knowledge PoCK
Most applications require the prover’s witness to not be leaked to

the verifier. A strong property often considered in the PoK realm

is that of zero-knowledge (ZK) [39]. Informally, this ensures that

no additional information is leaked to the verifier. We will add a

similar requirement to PoCKs to formalize “Zero-Knowledge Proofs

of Complete Knowledge” or ZKPoCKs.

Zero-Knowledge property for PoCKs. Formally, we adapt the

ZK property to our setting as follows: For any PPT verifier V ′,
there exists a PPT machine S (called the simulator) such that for

all R ∈ ℜ, (𝑥,𝑤) ∈ 𝑅𝐿 and auxiliary input 𝑧 ∈ {0, 1}∗, it holds that:

VIEWV′ (PR (pp, 𝑥,𝑤),V ′(pp, 𝑥, 𝑧)) ≈ SR (pp, 𝑥, 𝑧).

4.4 Eavesdropper Undetectability
The PoCK formalismmodels E as a man-in-the-middle entity which

eavesdrops on queries made to R. We implicitly assume that E is

always run; in other words, we do not model a scenario where

𝑤 was not extracted even though it could have been. While this

distinction is not important in the standard cryptographic context,

and therefore not part of our core PoCK formalism, it uncovers

subtleties in the context of side channels and incentive compatibility.

We formalize this as the property of “eavesdopper undectability”

and remark on its utility in Appendix A.1.

7

SGX-PoCK Protocol for R = GSGX
Setup(1𝜆) : Output mpk← R .getpk()

PR ((sid,mpk), 𝑥, 𝑤) :
eid← R .install(sid, progCK)
(out, 𝜎) ← R .resume(eid, (“expose”, 𝑥, 𝑤))
Send (eid, 𝜎) to V

V((sid,mpk), 𝑥) :
Await (eid, 𝜎) from P
𝑚 ← ((sid, eid), progCK, (“exposed”, 𝑥))
Output 𝑏 ← S.vermpk (𝑚,𝜎)

progCK
On input(“expose", 𝑥, 𝑤):

Assert (𝑥, 𝑤) ∈ 𝑅𝐿

Return (“exposed”, 𝑥)

Figure 2: SGX-PoCK Protocol Description.

5 SGX-BASED POCK PROTOCOL
We now describe SGX-PoCK, a simple but illustrative PoCK pro-

tocol which uses an SGX TEE as its resource. Intuitively, the SGX

models a physical manifestation of a trusted third party to whom

the prover will submit the witness. We use SGX for concreteness

but note that a similar PoCK can be realized through any TEE which

admits remote attestation, including those in mobile devices, as

discussed in Appendix D.1.

SGX resource. We use the formalism for TEEs with attested exe-

cution from Pass et al. [53]. Abstractly, SGX attestation is modeled

using a global functionality (i.e., with global setup [24]) GSGX. GSGX
models all valid SGX processors and is initialized with a master key

pair (mpk,msk) with signature scheme S = (S.kg, S.sign, S.ver);
this intuitively allows themodeling of anonymous attestationwhich

prevents identifying the SGX which signed an attestation.

GSGX permits SGX-equipped parties (denoted by the set Reg) to
install programs on their SGX and compute outputs. When a party

𝑋 provides input inp to an installed program prog, GSGX computes

its output out and a signature 𝜎 on (id, prog, out) where id denotes

any relevant session identification information. The tuple (out, 𝜎)
is then sent to 𝑋 as the attested output. For completeness, we detail

the full GSGX functionality in Fig. 8 in Appendix B.

SGX-PoCK description. We describe the full SGX-PoCK protocol

in Fig. 2. The public parameter 𝑝𝑝 output by Setup is just the SGX

public keympk. For the proof protocol, the proverP first installs the

program progCK through GSGX. Now, given (𝑥,𝑤) in the relation

𝑅𝐿 as input, P submits the tuple (“expose”, 𝑥,𝑤) to GSGX and gets

back a signature 𝜎 on (id, progCK, (“exposed”, 𝑥)) which it forwards
to V . By checking the validity of the signature, V can convince

itself of complete knowledge of a witness corresponding to 𝑥 .

5.1 SGX-PoCK Properties
It is easy to see that an honest P given𝑤 can always convinceV; in

other words, completeness holds for SGX-PoCK. For CK-soundness,
we require an assumption on the infeasibility of specific types of

resources, as we describe below:

Resource assumptions. To ensure that the witness𝑤 exposed to

the SGX can be eavesdropped upon, intuitively we need to assume

that it is not practical to run progCK in an SGX within another SGX.

This is because otherwise, the outer SGX could be in possession of𝑤

which it could expose to the inner SGX to obtain a CK proof without

𝑤 ever being accessible outside of a trusted enclave. We briefly

remark on how this assumption can be removed in Appendix B.

In the context of theGSGX formalism, this means that no program

prog installed by a party can install its own program prog′—this is
implicitly assumed within [53] since only a fixed registration set

Reg is considered for SGX devices.

CK-soundness proof. Now, assuming that there is no practical

resource R ′ ⊆ ℜall that models such a 2-layer SGX, it is easy to

show that SGX-PoCK satisfies CK-soundness. We provide a sketch

below and defer the full game-based proof to Appendix B.1.

Suppose that some P ′ is able to convince the honestV that it

knows the witness to a statement 𝑥 . This can happen in only one of

two ways: (1) P ′ submits (𝑥,𝑤) to the honest resourceR = GSGX as

one of its queries; (2) P ′ does not query GSGX with (𝑥,𝑤)—it either
does not use GSGX at all (potentially uses a different R ′ ∈ ℜall) or

queries it with different values. In the first case,𝑤 will be sent in

plaintext to GSGX allowing E to easily output it (since we assume

that GSGX cannot be simulated inside another TEE). The second

case implies that P ′ was able to forge a valid GSGX signature on

(𝑥,𝑤) using either (i) a different resource without themsk of GSGX
or (ii) valid signatures from GSGX on different 𝑥 ′ ≠ 𝑥 . Both of these

contradict the SUF-CMA security of the signature scheme S used

and therefore only arise with negl(𝜆) probability.
Privacy properties. Observe that SGX-PoCK as described is not

zero-knowledge since the attestation can be forwarded. Still, the

SUF-CMA security of S implies non-trivial privacy properties over

the basic PoCK. In particular, given many SGX-PoCK proofs (which

are just signatures under the master key), an adversary still cannot

forge a different SGX-PoCK proof for another statement 𝑥 . Appen-

dix B remarks on modifications to make SGX-PoCK satisfy ZK.

6 ASIC-BASED POCK CONSTRUCTION
In this section, we explore the design of a (ZK)PoCK using a cryp-

tocurrency mining ASIC as the prover resource R—a protocol we
call ASIC-ZKPoCK. Our construction is quite general. It can trans-

form a broad class of Σ-protocols [61]—a common class of three-

move, honest-verifier ZKPoK—into an (honest-verifier) ZKPoCK

through the use of an ASIC. The only requirement is that the Σ-
protocol be quasi-sound.

Intuition. ASIC-ZKPoCK makes use of the performance gap be-

tween computation in secure environments (e.g., SGX) or secure

multi-party computation (MPC) and computation using fast ASIC

hardware. By running as a time-constrained protocol,ASIC-ZKPoCK
ensures that it is only feasible to compute a correct, timely proof

using a mining ASIC.

As required, mining ASIC hardware has an eavesdropping chan-

nel E. (Mining ASICs, as we explain below, don’t support encryp-

tion, so eavesdropping is straightforward.) This channel E allows

the prover to extract the witness during the proof generation pro-

cess, ensuring complete knowledge.

In short, a mining ASIC may be viewed as a computing resource

R that is special in that it is fast—faster than a CPU—and has an

eavesdropping channel E on inputs. A mining ASIC thus fits our

basic CK framework shown in Fig. 1.

8

To additionally show practicality, we show how ASIC-ZKPoCK
can be parameterized to work with cheap outmoded ASICs (which

are no longer practical for e.g., Bitcoin mining).

Why ASIC-based (ZK)PoCKs? There are two reasons, security

and performance related respectively, for exploring ASIC-based

PoCKs over TEE-based PoCKs. First, many TEE-based machines op-

erate in the cloud. As noted in Section 1, TEE vulnerabilities could

expose the private keys to cloud operators or remote adversaries

with access to the cloud. Second, in the case of blockchain appli-

cations, TEE attestations can be expensive to verify. For example,

EPID [3] attestations—an attestation type generated by Intel SGX

without special provisioning and with optional privacy protection—

is expensive to verify in the Ethereum Virtual Machine (EVM).

6.1 Background: Mining ASICs and PoWs
Cryptocurrencies like Bitcoin use proof of work (PoW) [41] for the

safety of their underlying consensus mechanism for block genera-

tion, ormining. PoW involves solving puzzles (see below) by means

of repeated cryptographic hashing.

A mining ASIC, designed for fast PoW puzzle solving can com-

pute hashes 1,000,000× faster than a CPU—and thus achieves a

performance gap compared to any SGX-protected application. Min-

ing ASICs today take only unencrypted inputs, meaning that their

inputs are exposed to users.
7

A PoW puzzle is based on a particular hash functionH (typically

modeled as a random oracle) with ℓ-bit outputs, where ℓ is a security

parameter. A puzzle instance has a difficulty 𝑑 corresponding to the

probability of correctly solving it with a single hash computation.
8

A puzzle instance may also include ancillary data 𝐵 (e.g., the block

header data for Bitcoin). Solving a puzzle with data 𝐵 and difficulty

𝑑 ∈ [1, 2ℓ) involves finding a nonce 𝜈 such thatH(𝐵 ∥ 𝜈) < 2
ℓ/𝑑 .

The probability of solving the puzzle for any random nonce is an

independent and identically distributed Bernoulli random variable

with success probability 1/𝑑 (for 𝑑 | 2ℓ).
ASIC-ZKPoCK intuition. The idea behind ASIC-ZKPoCK is to

require P to use an ASIC to find a solution 𝜋 to a PoW puzzle. 𝜋 is

required to include a proof of knowledge of the witness𝑤 . Specifi-

cally, P specifies PoK commitment 𝑎 and 𝜋 includes the challenge

𝑐 and response 𝑠 for a Σ-protocol transcript (𝑎, 𝑐, 𝑠) involving 𝑤 .

Since Σ-protocols are zero-knowledge, the transcript (and thus 𝜋)

will not expose𝑤 .

Despite this, the process of computing 𝜋 will involve P sending

multiple Σ-protocol transcripts to the ASIC. Consequently, given

the special soundness (and quasi-soundness) of the Σ-protocols
we use, the eavesdropper E will be able to extract 𝑤 with high
probability.

While it is possible in principle to perform mining for an ASIC-
ZKPoCK in an SGX enclave (in a CPU), this is not realistic, as ASICs

are far more performant than CPUs. As an example, a top-of-the-

line ASIC can outperform a (single-server) SGX application by a

factor of more than 1,000,000.

7
Even if such ASICs were ultimately to support encryption, if they do not also support

enclaves, any value input to an ASIC will still be exposed to the user. While one could

imagine reasons to support encryption in mining ASICs, there’s no compelling reason

to support enclaves.

8
We refer to𝑑 generically in our protocol description as a difficulty parameter, without

reference to the specific notion of “difficulty” in Bitcoin.

6.2 ASIC-Based PoCK: Protocol construction
Formally, in ASIC-ZKPoCK, P and V execute a Σ-protocol. P
embeds a valid proof transcript (𝑎, 𝑐, 𝑠) for the Σ-protocol in a PoW

puzzle whose solution 𝜋 constitutes a full ASIC-ZKPoCK proof.

The key idea in our construction is to require P to try out multiple
puzzles, each with a different challenge 𝑐 (and thus response 𝑠), in
order to find a solution. We accomplish this by carefully choosing

parameters such that with high (but still constant) probability, a

single randomly chosen 𝑐 will not lead to a puzzle with a valid

solution. As a result, P must input different transcripts to the ASIC
(or in other words, create different puzzles for the ASIC), among

which, by quasi-soundness, is a pair (𝑎, 𝑐, 𝑠), (𝑎, 𝑐 ′, 𝑠 ′) with 𝑐 ≠ 𝑐 ′

and 𝑠 ≠ 𝑠 ′. From this pair, given the special soundness property of

the Σ-protocol, E can extract𝑤 .

At the same time, however, 𝜋 itself—the solution revealed to

V—contains only one proof transcript. Thus V does not learn 𝑤

ensuring that the protocol remains zero-knowledge.

As P must complete the proof in a limited period, it can succeed

only with a powerful resource. Given the right parameter choices,

this means that P must employ an ASIC. We will consider the set

ℜ of (honest) resources that work to be all PoW ASICs with hash

rate at least some threshold 𝑄asic.

Preliminaries. ASIC-ZKPoCK involves a random PoCK challenge
𝑟 fromV . Let 𝜋 = (𝐵, 𝜈) denote a puzzle solution computed by P
in response to a PoCK challenge 𝑟 . The puzzle solution 𝜋 consists

of a block header 𝐵 and nonce 𝜈 corresponding to a valid proof

of work. Let Σmap𝑟 (𝜋) → (𝑐, 𝑠) denote a function, dependent on
𝑟 (as specified below), that maps 𝜋 to a pair (𝑐, 𝑠). We define two

verification functions:

• PoKAccept(𝑥, (𝑎, 𝑐, 𝑠)) → {true, false} checks the correctness of
the Σ-protocol transcript (𝑎, 𝑐, 𝑠) w.r.t. public PoK value 𝑥 .

• puzAccept[𝑑, 𝛽] (𝜋) → {true, false} checks that (𝐵, 𝜈) represents
a correct puzzle solution with difficulty 𝑑 , i.e., H(𝐵, 𝜈) < 2

ℓ/𝑑 .
puzAccept also checks that nonce 𝜈 is of correct size (𝜈 < 𝛽), for

a parameter 𝛽 discussed below.

Our ASIC-ZKPoCK protocol involves 𝑛 rounds of the above form

where a challenge 𝑟 is sent by the verifier and a solution 𝜋 must

be computed by the prover in the round time 𝜏 . For the verifier

to accept the proof, the prover must compute the puzzle solution

in more than 𝑦 rounds. Let puzAccept𝑦 [𝑑, 𝛽] (𝜋1, . . . , 𝜋𝑛) denote
whether more than 𝑦 (out of 𝑛) puzzle solutions are valid. Looking

ahead, setting 𝑦 appropriately will ensure that the proof can be

completed by an honest ASIC but not by an adversarial prover.

Efficient puzzle-solving vs. transcript extraction. As explained
above, our protocol design must force P to try different values of 𝑐

while computing a puzzle solution 𝜋 . Changing 𝑐 , however, carries

the overhead of computing a new corresponding block header 𝐵

and feeding 𝐵 to the ASIC. While this is not relevant for a “theo-

retical ASIC,” it poses a significant practical challenge. Therefore,

to obtain a protocol which can be deployed, we don’t want P to

have to change 𝑐 too frequently. This requires us to correctly set

the nonce size (in particular 𝜈 < 𝛽) as discussed below.

Our approach to resolving this tension is to: (1) map 𝐵 to a

distinct (𝑐, 𝑠), so that changing 𝐵 changes (𝑐, 𝑠) but (2) allow P to

explore a range of different nonces 𝜈 for a given 𝐵.

9

ASIC-ZKPoCK Protocol
P V

𝑎𝑖
// Generate challenge

𝑟𝑖 ←$ {0, 1}poly(𝜆)
𝑟𝑖 𝑡 ← time
𝜋𝑖

𝑡 ′ ← time
// Verify Σ transcript

(𝑐𝑖 , 𝑠𝑖) ← Σmap𝑟𝑖 (𝜋𝑖)
PoKAccept

(
𝑥, (𝑎𝑖 , 𝑐𝑖 , 𝑠𝑖)

) ?

= true

// Check response time

𝑡 − 𝑡 ′
?

≤ 𝜏

. . . for rounds 𝑖 ∈ [1, 𝑛]
// Check solutions

puzAccept𝑦 [𝑑, 𝛽]
(
𝜋1, ..., 𝜋𝑛

) ?

= true

Figure 3: ASIC-ZKPoCK protocol. The protocol executes over 𝑛

rounds. V runs PoKAccept in each round to check that P given a
valid Σ transcript (𝑎𝑖 , 𝑐𝑖 , 𝑠𝑖) and that P has run within time bound
𝜏 . After 𝑛 rounds, V runs puzAccept𝑦 to check more than 𝑦 out of
the 𝑛 PoW puzzle solutions 𝜋1, ..., 𝜋𝑛 are correct with respect to the
difficulty specified by 𝑑 .

We construct a mapping Σmap𝑟 (𝜋) → (𝑐, 𝑠) as follows. Recall
that 𝜋 = (𝐵, 𝜈). The function Σmap𝑟 partitions 𝐵 → 𝐵 [1] ∥ 𝐵 [2].
It computes 𝑐 = H(𝐵 [1] ∥ 𝑟) from 𝐵 [1]. Here, H(· ∥ 𝑟) can
be viewed as a random hash function selected by V (using PoW

challenge 𝑟) to prevent PoW precomputation.

Because 𝑠 depends on 𝑐 (and 𝑎), Σmap𝑟 is constructed such that

P can specify 𝑠 = 𝐵 [2], i.e., encode 𝑠 in a portion of 𝐵 distinct

from that for 𝑐 . Given the collision-resistance ofH , changing 𝐵 [1]
of course changes 𝑐 . Changing 𝐵 [2] also changes 𝐵 [1]: Given a

fixed 𝑎, a given 𝑐 has only one corresponding response 𝑠 , due to the

quasi-soundness property discussed in Section 3. In short, P cannot

feasibly construct distinct blocks that map to the same (𝑐, 𝑠). At the
same time, we allow P to explore the space of possible nonces 𝜈 . To

force P to try multiple puzzles (and thus multiple (𝑐, 𝑠)), the nonce
space should not be too large. Therefore, we impose in puzAccept
the restriction 𝜈 < 𝛽 for a protocol parameter 𝛽 .

In summary, P can feed a block header 𝐵 to an ASIC to solve

a puzzle corresponding to some challenge 𝑐 . Provided that the

security parameter 𝛽 is small enough—i.e., the space of valid 𝜈 is

small—the probability of P finding a puzzle solution 𝜋 = (𝐵, 𝜈) for
any single value of 𝑐 is low. Therefore, P must w.h.p. try multiple

values of 𝑐 to find a puzzle solution. Consequently, P is likely to use

a pair of triples (𝑎, 𝑐, 𝑠) ≠ (𝑎, 𝑐 ′, 𝑠 ′) from which𝑤 can be extracted.

ASIC-ZKPoCK protocol. The Setup(1𝜆) algorithm simply pro-

vides all the concrete parameters (described later) to both parties.

The protocol between P andV is presented in Fig. 3. Two further

points are worth highlighting. First, we reiterate that the protocol

is interactive; V supplies a PoW challenge 𝑟 as described above.

Second, the protocol is timed; P’s response is only accepted byV
if it is returned within time 𝜏 . The goal, again, is to ensure that com-

putation has taken place in a (fast) ASIC, rather than a (relatively

slow) CPU.

𝐵 Block header

𝜈 PoW puzzle nonce

𝜋 PoW solution

𝑟 PoCK challenge

(𝑎, 𝑐, 𝑠) Σ-protocol transcript

𝑑 PoW puzzle difficulty

𝑦 PoW puzzle threshold

𝜏 Prover time bound

𝛽 Bound on nonce 𝜈 size

𝜆 = ℓ Security parameter

𝑛 Total number of rounds

Figure 4: Protocol notation (left) and parameters (right)

6.3 Security Analysis
In this section, we prove security of ASIC-ZKPoCK by showing that

it satisfies the PoCK properties of completeness, forced-revelation,

and (honest-verifier) ZK. Later, we demonstrate its practicality by

choosing concretely viable parameters. We begin with some simple

results (Proofs in App. C.1).

Fact 6.1. Consider 𝑌 ∼ Binomial(𝑛, 𝑝) and let F(𝑛, 𝑝,𝑦) = Pr[𝑌 ≤
𝑦]. If 𝑦 < 𝑛𝑝 , then F(𝑦, 𝑛, 𝑝) ≤ 𝑒𝑥𝑝 (− (𝑛𝑝−𝑦)

2

3𝑛𝑝). If 𝑛,𝑦 = Θ(𝜆), and
𝑝,𝑦/𝑛 = Θ(1) with 𝑦/𝑛 < 𝑝 , then there exists a negligible function

negl(𝜆) such that F(𝑦, 𝑛, 𝑝) ≤ negl(𝜆). Alternatively, if 𝑦/𝑛 > 𝑝 ,

then F(𝑛 − 𝑦, 𝑛, 1 − 𝑝) ≤ negl(𝜆).

Lemma 6.2. Let 𝑝𝑄one denote the probability of P with hash rate
𝑄 successfully computing one PoW puzzle solution in time 𝜏 . Define
𝑘 = 𝜏𝑄/𝑑 . Then: 𝑝𝑄one = 1 − (1 − 1/𝑑)𝑘𝑑 .

Setting parameters. Looking ahead, to obtain asymptotic secu-

rity, we set the parameters as follows: 𝑑, 𝛽 are constants in 𝜆. For

simplicity, our analysis considers 𝑄 and 𝜏 to also be constants. We

note however that since 𝜆 changes the output of the hash func-

tion, it may be the case that the hashrate 𝑄 degrades with 𝜆 (e.g.

𝑄 = Θ(1/𝜆)). Here, the round time 𝜏 can be increased to maintain

𝜏𝑄 = Θ(1); the analysis remains the same. Further, 𝑛,𝑦 will beΘ(𝜆)
such that 𝑦/𝑛 is a constant.

Completeness proof. Consider the PoW threshold satisfying 𝑦 <

𝑛𝑝
𝑄asic
one

. Now, if 𝑛 and 𝑦 are Θ(𝜆) with 𝑦/𝑛 = Θ(1), then by Fact 6.1,

the completeness error for the honest prover will be negl(𝜆), which
proves completeness of ASIC-ZKPoCK.

CK-soundness proof. Notice first that for ASIC-ZKPoCK to func-

tion correctly, it should be infeasible for an adversary to execute

the protocol in an enclave (thus on a CPU). Unfortunately, mining

puzzles are embarrassingly parallel, which means that in principle,

an adversary can use a network of multiple TEE-enabled hosts to

solve them. We must therefore characterize security in terms of the

size of the network, say𝑚. Appendix C remarks on the possibility

of using sequential functions (e.g., VDFs) to remove this constraint.

Furthermore, even assuming that an ASIC is used, in order for

E to extract the witness, we also need to show that at least two

distinct challenges 𝑐 and 𝑐 ′ are used in the computation.

Concretely, for CK-soundness, we need to bound the adversarial

success probability in two strategies: (1) Compute a valid puzzle so-

lution using only one challenge; (2) Compute a valid puzzle solution

using𝑚 TEE-enabled CPUs. Appendix C.1 shows through a game-

based analysis why it is sufficient to consider these approaches.

We note that while the adversary can send one challenge each to

𝑚 different ASICs (to prevent extraction caused by two challenges

10

sent to a single ASIC), this requires the adversary to use separate

machines for each ASIC and requires it to enforce strong non-

collusion properties between these outsourced machines, which is

infeasible. We note this in Remark 4 but still allow the adversary to

use this strategy within our analysis in Appendix C.1. Additionally,

as noted earlier, we assume, as is the case in practice, that the ASICs

do not work over encrypted or secret-shared inputs, avoiding MPC

over ASIC strategies
9
(see Appendix C.1 for details).

Lemma 6.3. Let 𝑝onechal be the probability (irrespective of hash-
rate) of successfully computing a valid puzzle solution using a single
challenge 𝑐 . Then: 𝑝onechal = 1 − (1 − 1/𝑑)𝛽 .

Now, let P
𝑦,onechal
succ denote the probability that this happens in

more than𝑦 (out of𝑛) rounds, i.e., the adversary wins using strategy

(1). Notice that P
𝑦,onechal
succ = F(𝑛 − 𝑦, 𝑛, 1 − 𝑝onechal), and so if 𝛽 =

Θ(1) is such that 𝑝onechal < 𝑦/𝑛, then P𝑦,onechalsucc is negligible in 𝜆.

Following (2), the adversary seeks to boost its mining rate while

preventing disclosure of𝑤 by using a network of𝑚 enclave-enabled

CPUs. Let𝑄cpu denote the fastest hash rate achievable in an enclave

and consider an adversary that uses a network of𝑚 enclave-enabled

CPUs, i.e., 𝑄
adv

= 𝑚𝑄cpu ≪ 𝑄asic. Consider 𝑝
𝑄adv

one < 𝑦/𝑛 = Θ(1).
Fact 6.1 directly implies that an adversarial prover succeeds in more

than 𝑦 rounds with at most negligible probability.

In essence, ASIC-ZKPoCK achieves both completeness and CK-

soundness whenwe set the success threshold𝑦 such that𝑛𝑝
𝑚𝑄cpu
𝑜𝑛𝑒 <

𝑦 < 𝑛𝑝
𝑄asic
𝑜𝑛𝑒 and 𝛽 such that 𝑛𝑝onechal < 𝑦.

(Honest-Verifier) Zero-knowledge proof. Exactly as in [37],

the final proof contains only one Σ-protocol transcript, and thus

the HVZK is maintained (see App. C.1).

6.4 Practical ASIC-ZKPoCK Parameterization
Achieving both completeness and forced revelation introduces a

tension in the tuning of 𝑑 and 𝜏 . For completeness, ASIC-ZKPoCK
requires moderately large 𝑘asic (corresponding to 𝑄asic). To ensure

forced revelation (specifically, to rule out use of CPUs) requires

small𝑘
adv

. To better understand this tension, it is helpful to consider

the ratio 𝑁 = 𝑄asic/𝑄cpu, i.e., the speed advantage conferred by an

ASIC over a CPU. Given an adversary with a network of𝑚 CPUs,

the ratio 𝑘asic/𝑘adv = (𝜏𝑄asic/𝑑)/(𝜏𝑛𝑄cpu/𝑑) = 𝑁 /𝑚. A secure and

efficient (in terms of 𝑛 and 𝑦) parameterization requires𝑚 ≪ 𝑁 ,

i.e., that an adversary cannot feasibly come close to approaching

ASIC speeds with a network of CPUs.

Example practical parameterizations. We derive two concrete

parameterizations for ASIC-ZKPoCK; one for a recent top-of-the-
line mining ASIC [15] with 𝑄asic ≈ 2

47
H/s and one for a cheap,

outmoded mining ASIC with 𝑄asic ≈ 2
43

H/s. The hashrate for a

state-of-the-art CPU [55] is taken as 𝑄cpu ≈ 2
26

H/s. We show that

𝑛 = 8 and 𝑛 = 12 rounds respectively for the the two settings yields

negligible completeness and soundness error against an adversary

with a network of 10,000 CPUs. Appendix C contains further details.

Figure 5 compares honest and adversarial prover success rates

for the top-of-the-line ASIC. We also implement an end-to-end

system using the outmoded ASIC (see Section 7).

9
Even if future ASICs do support such MPC, we posit that ASICs which do not support

this will always be faster, allowing us to appropriately parameterize our protocol.

1011 1013 1015 1017

Difficulty(d)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

1e14

Probability of Success With = 5 Sec Rounds
ASIC - n = 1
ADV - n = 1
ASIC - n = 5
ADV - n = 5
ASIC - n = 10
ADV - n = 10

Figure 5: ASIC-ZKPoCK allows for practical parameters to achieve
overwhelming probability of completeness by an ASIC (hashrate
154 TH/s) and negligible probability of success by an adversarywith
10,000 state-of-the-art CPUs (hashrate 72 MH/s). 𝑛 denotes number
of rounds. Here, prover is required to compute more than 𝑦 = ⌊𝑛/2⌋
valid PoW puzzle solutions. The black line represents a parameter-
ization of 𝑑 = 10

14, for which adversarial success probability is neg-
ligible but that of ASIC is close to 1.

Smart Contract LOC Operation Gas cost

ASIC-ZKPoCK
Verification Contract

Register new job 366,485

140 Initiate challenge 70,209

Verify proof 7,620,401

CK Registry 130 Record a new proof 54,260

Figure 6: Lines of code (LOC) for SMACK and gas costs for various
operations. As of Oct 2023, the cost for 100,000 gas is around $1.55.

7 SMACK: END-TO-END IMPLEMENTATION
To demonstrate CK proofs in a practical setting, we prototype

SMACK (SMArt-contract enabled CK)—a complete, end-to-end CK

system on Ethereum. SMACK offers a good proof of concept of

CK practicality for two reasons. First, smart contracts are highly

resource constrained, with limited, expensive computational power,

coarse-grained, approximate measurement of time, and no ability

to maintain secret state. Making CK proofs work in this austere

environment strongly evidences their general practicality. Second,

deployment of SMACK in Ethereum has the benefit of supporting

a wide variety of blockchain-based services, e.g., voting, Atomic

NFTs, enforced NFT royalties, etc., as described in Section 2.

SMACK allows for any desired CK method to be used. To demon-

strate the practicality of our approaches, we implement two CK

variants in SMACK: ASIC-ZKPoCK and a TEE-based CK proof

system for Android devices that we call lightweight CK (see Appen-

dix D.1). Fig. 6 reports the costs associated with SMACK’s contracts.

CK Registry. SMACK supports CK for private keys associated

with Ethereum addresses (public keys). CK proofs remain indefi-

nitely valid (once an sk is exposed to E, the fact of exposure remains

true forever). Therefore we deploy a smart contract (at address

0x25B270...eE3966), called the CK registry that maintains a perma-

nent record of addresses for which CK proofs have been provided

(to the verification contract). This allows for applications to cheaply

query whether a given address has an associated CK proof. As an

example, we use this registry and verification contracts to mint

11

https://etherscan.io/address/0x25B2709091010489030A85Ab69bc2FD129eE3966

ASIC Miner

Modified Mining Pool Software

PoW
puzzle

PoW
Solution

ASIC CK
Verifier Smart

Contract

Ethereum Mainnet

Derive input r
from blockchain
randomness

CK Prover CK Verifier

Submit PoCK

Embed (a,c,s) in the PoW puzzle

Register public key
pk and -protocol
commitments a

4.

3.

5.

6. 7.
8.

1.

2.

Verify Time
Threshold, PoW
puzzle and -
protocol transcript

9.

Derive -protocol challenges c
using r

Compute -protocol responses s

Figure 7: ASIC-ZKPoCK system architecture. The encircled numbers
correspond to steps in a protocol execution. Our CK Prover consists
of a (modified) pool mining software and an ASIC miner. Our CK
Verifier is implemented as a Smart Contract on Ethereummainnet.

Atomic NFTs (contract deployed at 0x6986fc...FcAC38) for CK ad-

dresses. We provide more details on the registry in Appendix D.

7.1 ASIC-ZKPoCK implementation
We now detail our ASIC-ZKPoCK implementation, which is the

more technically challenging and intricate of the two currently

supported CK methods in SMACK. We make use of a Bitcoin

miner that is several years old—the Bitmain Antminer S9 with

a hashrate of 13TH/s. While this hardware cannot competitively

mine Bitcoin at this point, it is sufficient to achieve low error

bounds in our scheme
10
(details in Appendix C). It demonstrates

that cheap, outmoded hardware (which cost us around $100) can

be repurposed successfully for ASIC-ZKPoCK. We implement the

verifier as an Ethereum smart contract, deployed at the address

0xAC86fD...B39f4b, and carry out an example verification in trans-

action 0xf67b1c...6f4106. All the source code and scripts can be

found at https://github.com/CK-anon/SMACK.

System Architecture. Figure 7 shows our system architecture.

The prover communicates with the ASIC miner using an open

source pool mining software which implements the standard Stra-

tum V2 protocol [4] for allocating work to the miner and fetching

the PoW solution. The miner does some sanity checks on the input

block data (e.g. for increasing block heights, correctly sized fields,

etc.). Therefore, our prover makes use of a private Bitcoin network

to generate valid PoW puzzles for the miner. This also allows us

to configure the difficulty of the PoW puzzles. We use Schnorr’s

protocol [60] for our underlying PoK Σ-protocol. While our veri-

fication smart contract is used for verifying complete knowledge

of the private keys of Ethereum addresses, it can be used for any

general PoK value 𝑥 . To generate the verfier’s random challenge 𝑟 ,

our smart contract uses randomness from the Ethereum proof-of-

stake network [5].
11

For pool mining, the Merkle root in the block

header is expanded into a special coinbase transaction along with

the adjacent Merkle branches. We place 𝑠 (32 bytes in our case)

10
As 𝜏 = 12𝑠 for our implementation, any time advantage that an adversary can have

in communication with the Ethereum blockchain does NOT meaningfully affect the

prover’s completeness probability.

11
This randomness is biasable to small extent but is not material.

inside this coinbase transaction, which is allowed to carry arbitrary

data. Appendix D describes how to correctly set the nonce range 𝛽 .

8 RELATEDWORK

Concurrent work: Individual Cryptography [34]. In recent

work concurrent to the first online version of our paper, Dziem-

bowski et al. [34] propose the notion of individual cryptography,
with a goal similar to ours—to prove that e.g., a key is held unen-

cumbered by an individual party instead of within trusted hardware,

or an MPC committee. This however is the extent of similarities.

We highlight key differences below:

First, andmost importantly our CK formalism and setting is more

general—the main focus of their paper is on a simpler setting where

the verifier also has access to the witness𝑤—this does not model

any of our usecases. Furthermore, [34] explicitly formalizes “slow”

vs “fast” hash function computation as part of their primitive to

model the computational difference between trusted (MPC or TEE)

and untrusted (ASIC) computation; this reduces the scope of their

primitive. In contrast, we provide a general resource-based formal-

ism which captures other CK constructions—e.g., our SGX-based

construction which cannot be modeled through their formalism.

Our ASIC-based scheme also substantially differs from theirs. It

further shows connections to Fischlin [37], allows the usage of

generic Σ-protocols, and can be practically parameterized.

Second, while [34] positions their work as a theoretical explo-

ration, we provide significant practical motivations: bribery attacks

through key encumbrance on voting protocols, as well as new appli-

cations enabled by CK. Furthermore, we demonstrate practicality by

not only implementing our constructions but also deploying them

via Ethereum smart contracts to enable CK-based applications.

Preventing sharing of cryptogrpahic functionalities. Traitor-
tracing [27] and leakage-deterring [45] schemes can both model the

following abstraction: If an adversary with key sk attempts to share

some cryptographic functionality (e.g., signing, encryption) that

uses sk, then any entity that it shares this with could also recover sk.
Note that this abstraction is orthogonal to CK; it could be feasibly

used for voting but does not apply to other CK applications. If black-
box recovery is possible, this can deter adversarial encumbrance

(and bribery) since the user could always recover her own key.

Even then, these techniques do not capture all kinds of encum-

brance we consider for several reasons: First, and most importantly,

they are purpose-built for not only a specific functionality (e.g.,

signing) but also a specific scheme—given one scheme, a different

scheme can be constructed that deters sharing as above. That is, they

cannot generically prevent any type of encumbrance; in contrast,

this is achieved by CK. Additionally, for signature schemes (required

for voting) in particular, recovery is non-black-box. Second, they do
not prevent MPC-based encumbrance where no party has the secret

or a fully-operational functionality for even a single input. Finally,

we note that requiring modification of the encryption/signature

scheme would be a non-starter in the typical blockchain settings

we consider where the voting key also controls, e.g., digital assets.

12

https://etherscan.io/address/0x6986fcbEA8862b03329C8D38C002125e91FcAC38
https://etherscan.io/address/0xac86fd0d5293f8e5c412b569fcb10f8d5db39f4b
https://etherscan.io/tx/0xf67b1cf982ec9c184bc74eebbd894bd82886df5df62486f9253bcb0bf26f4106
https://github.com/CK-anon/SMACK

9 CONCLUSION
We have shown a fundamental limitation in traditional proofs of

knowledge (PoKs)—the fact that they do not actually prove knowl-

edge by a prover in light of encumbrance-based attacks using TEEs

or MPC. This gap in the PoK model introduces a range of coercive

attacks, many explored in earlier works. We therefore formalized

complete knowledge (CK) as a stronger version of PoKs. CK can

help in the design of practical protocols—using TEEs and ASICs—

that are resistant to coercive attacks. We hope that our work will

stimulate the development of new CK constructions and their use

in e-voting, deniable authentication, lease-resistant credentials, and

many other applications.

REFERENCES
[1] 2020. Signal website. https://signal.org.

[2] 2022. Discussion: Play Integrity API. https://forum.xda-developers.com/t/

discussion-play-integrity-api.4479337/.

[3] 2022. Intel Enhanced Privacy ID (EPID) Security Technology. sintel.com/

content/www/us/en/developer/articles/technical/intel-enhanced-privacy-id-

epid-security-technology.html.

[4] [Accessed December 2022]. Ethereum Consensus Notes. https://en.bitcoin.it/

wiki/Stratum_mining_protocol.

[5] [Accessed December 2022]. Ethereum Consensus Notes. https://eth2book.info/

bellatrix/part2/building_blocks/randomness/.

[6] [Accessed June 2022]. Oasis Labs website. https://www.oasislabs.com/.

[7] Referenced Nov. 2022. Android Developers: Verifying hardware-backed key pairs

with Key Attestation. https://developer.android.com/training/articles/security-

key-attestation#root_certificate.

[8] Amazon Web Services. Referenced Nov. 2022. AWS Nitro Enclaves website.

https://aws.amazon.com/ec2/nitro/nitro-enclaves/.

[9] AMD. Jan. 2020. AMD SEV-SNP: Strengthening VM isolation with integrity

protection and more. White Paper (Jan. 2020).
[10] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

technology for CPU based attestation and sealing. In HASP. 7.
[11] Android Open Source Project. Referenced Nov. 2022. Android Open Source

Project: Key and ID Attestation. https://source.android.com/docs/security/

features/keystore/attestation.

[12] Apple Inc. Referenced Nov. 2022. Apple Developer Website: Establishing

your app’s integrity. https://developer.apple.com/documentation/devicecheck/

establishing_your_app_s_integrity.

[13] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. 2000. A practical

and provably secure coalition-resistant group signature scheme. In CRYPTO. 255–
270.

[14] Josh Benaloh and Dwight Tuinstra. 1994. Receipt-free secret-ballot elections. In

STOC. 544–553.
[15] Bitmain. 11 Feb. 2022. Specifications of T19/S19 Liquid-Cooling Miner.

https://support.bitmain.com/hc/en-us/articles/4418373232153-Specifications-

of-T19-S19-Liquid-Cooling-Miner.

[16] Remco Bloemen, Leonid Logvinov, and Jacob Evans. 2017. EIP 712. https://eips.

ethereum.org/EIPS/eip-712.

[17] Nikita Borisov, Ian Goldberg, and Eric Brewer. 2004. Off-the-record communica-

tion, or, why not to use PGP. In WPES. 77–84.
[18] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss, and

Michael Schwarz. 2022. ÆPIC Leak: Architecturally Leaking Uninitialized Data

from the Microarchitecture. In USENIX Security. 3917–3934.
[19] John Brainard, Ari Juels, Ronald L Rivest, Michael Szydlo, and Moti Yung. 2006.

Fourth-factor authentication: somebody you know. In CCS. 168–178.
[20] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions and

more. In IEEE S&P. 315–334.
[21] V. Buterin. 11 Jan 2021. Why we need wide adoption of social recovery wallets.

vitalik.ca blog post at https://vitalik.ca/general/2021/01/11/recovery.html.

[22] V. Buterin. 2 May 2019. Minimal anti-collusion infrastructure (MACI).

Ethereum Research blog post at https://ethresear.ch/t/minimal-anti-collusion-

infrastructure/5413.

[23] Ran Canetti. 2001. Universally composable security: A new paradigm for crypto-

graphic protocols. In FOCS. 136–145.
[24] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. 2007. Universally

Composable Security with Global Setup. In TCC. 61–85.
[25] David Chaum, Peter YA Ryan, and Steve Schneider. 2005. A practical voter-

verifiable election scheme. In ESORICS. 118–139.

[26] David L Chaum. 1981. Untraceable electronic mail, return addresses, and digital

pseudonyms. Commun. ACM 24, 2 (1981), 84–90.

[27] Benny CHor, AMos Fiat, and Moni Naor. 1994. Tracing Traitors. In CRYPTO.
257–270.

[28] Jeremy Clark and Urs Hengartner. 2011. Selections: Internet voting with over-

the-shoulder coercion-resistance. In FC. 47–61.
[29] Michael R Clarkson, Stephen Chong, and Andrew CMyers. 2008. Civitas: Toward

a secure voting system. In IEEE S&P. 354–368.
[30] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-

glas Stebila. 2017. A formal security analysis of the Signal messaging protocol.

In EuroS&P. 451–466.
[31] Philip Daian, Tyler Kell, Ian Miers, and Ari Juels. 2018. On-Chain Vote Buying

and the Rise of Dark DAOs. https://hackingdistributed.com/2018/07/02/on-chain-

vote-buying/.

[32] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. 2006. Deniable

authentication and key exchange. In CCS. 400–409.
[33] Cynthia Dwork and Moni Naor. 1992. Pricing via processing or combatting junk

mail. In CRYPTO. 139–147.
[34] Stefan Dziembowski, Sebastian Faust, and Tomasz Lizurej. 2023. Individual

Cryptography. In CRYPTO. 547–579.
[35] Uriel Feige, Amos Fiat, and Adi Shamir. 1988. Zero-knowledge proofs of identity.

Journal of cryptology 1, 2 (1988), 77–94.

[36] O. Fernau. 13 Aug. 2022. Royalty-Free Sudoswap Is Finding Favor With NFT

Traders. The Defiant (13 Aug. 2022).
[37] Marc Fischlin. 2005. Communication-efficient non-interactive proofs of knowl-

edge with online extractors. In CRYPTO. 152–168.
[38] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY Mental Game.

In STOC. 218–229.
[39] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1985. The knowledge

complexity of interactive proof systems. In STOC. 291–304.
[40] Lachlan J Gunn, Ricardo Vieitez Parra, and N Asokan. 2019. Circumventing

cryptographic deniability with remote attestation. PETS 2019, 3 (2019), 350–369.
[41] Markus Jakobsson and Ari Juels. 1999. Proofs of work and bread pudding proto-

cols. In Secure information networks. 258–272.
[42] K. Wei Jie. 12 Oct. 2021. Release Announcement: MACI 1.0. Medium Post

at https://medium.com/privacy-scaling-explorations/release-announcement-

maci-1-0-c032bddd2157.

[43] Ari Juels, Dario Catalano, and Markus Jakobsson. 2005. Coercion-resistant

electronic elections. In WPES. 61–70.
[44] Aggelos Kiayias and Philip Lazos. 2022. SoK: Blockchain Governance. arXiv

preprint 2201.07188 (2022).
[45] Aggelos Kiayias and Qiang Tang. 2013. How to Keep a Secret: Leakage Deterring

Public-key Cryptosystems. In CCS. 943–954.
[46] Yashvanth Kondi and abhi shelat. 2022. Improved Straight-Line Extraction in

the Random Oracle Model With Applications to Signature Aggregation. In ASI-
ACRYPT.

[47] Brad Linder. 11 Mar. 2020. Some apps may stop working on rooted Android

phones due to SafetyNet update.

[48] Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela Troncoso. 2020. VoteA-

gain: A scalable coercion-resistant voting system. In USENIX Security. 1553–1570.
[49] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. 2017. A smart contract

for boardroom voting with maximum voter privacy. In FC. 357–375.
[50] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson,

Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel® software guard extensions

(Intel® SGX) support for dynamic memory management inside an enclave. In

HASP. 1–9.
[51] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,

Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions

and software model for isolated execution.. In HASP. 10.
[52] Rafael Pass. 2003. On deniability in the common reference string and random

oracle model. In CRYPTO. 316–337.
[53] Rafael Pass, Elaine Shi, and Florian Tramèr. 2017. Formal Abstractions for Attested

Execution Secure Processors. In EUROCRYPT. 260–289.
[54] Rafael Nat Josef Pass. 2006. A precise computational approach to knowledge. Ph.D.

Dissertation. Massachusetts Institute of Technology.

[55] Hoai Luan Pham, Thi Hong Tran, Tri Dung Phan, Vu Trung Duong Le, Duc Khai

Lam, and Yasuhiko Nakashima. 2020. Double SHA-256 Hardware Architecture

With Compact Message Expander for Bitcoin Mining. IEEE Access 8 (2020),

139634–139646. https://doi.org/10.1109/ACCESS.2020.3012581

[56] David Pointcheval and Jacques Stern. 2000. Security arguments for digital signa-

tures and blind signatures. Journal of cryptology 13, 3 (2000), 361–396.

[57] Ivan Puddu, Daniele Lain, Moritz Schneider, Elizaveta Tretiakova, Sinisa Matetic,

and Srdjan Capkun. 2019. TEEvil: Identity Lease via Trusted Execution Environ-

ments. arXiv preprint 1903.00449 (2019).
[58] Charles Rackoff and Daniel R Simon. 1991. Non-interactive zero-knowledge

proof of knowledge and chosen ciphertext attack. In CRYPTO. 433–444.
[59] Amit Sahai. 1999. Non-malleable non-interactive zero knowledge and adaptive

chosen-ciphertext security. In FOCS. 543–553.

13

https://signal.org
https://forum.xda-developers.com/t/discussion-play-integrity-api.4479337/
https://forum.xda-developers.com/t/discussion-play-integrity-api.4479337/
sintel.com/content/www/us/en/developer/articles/technical/intel-enhanced-privacy-id-epid-security-technology.html
sintel.com/content/www/us/en/developer/articles/technical/intel-enhanced-privacy-id-epid-security-technology.html
sintel.com/content/www/us/en/developer/articles/technical/intel-enhanced-privacy-id-epid-security-technology.html
https://en.bitcoin.it/wiki/Stratum_mining_protocol
https://en.bitcoin.it/wiki/Stratum_mining_protocol
https://eth2book.info/bellatrix/part2/building_blocks/randomness/
https://eth2book.info/bellatrix/part2/building_blocks/randomness/
https://www.oasislabs.com/
https://developer.android.com/training/articles/security-key-attestation##root_certificate
https://developer.android.com/training/articles/security-key-attestation##root_certificate
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://source.android.com/docs/security/features/keystore/attestation
https://source.android.com/docs/security/features/keystore/attestation
https://developer.apple.com/documentation/devicecheck/establishing_your_app_s_integrity
https://developer.apple.com/documentation/devicecheck/establishing_your_app_s_integrity
https://support.bitmain.com/hc/en-us/articles/4418373232153-Specifications-of-T19-S19-Liquid-Cooling-Miner
https://support.bitmain.com/hc/en-us/articles/4418373232153-Specifications-of-T19-S19-Liquid-Cooling-Miner
https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-712
https://vitalik.ca/general/2021/01/11/recovery.html
https://ethresear.ch/t/minimal-anti-collusion-infrastructure/5413
https://ethresear.ch/t/minimal-anti-collusion-infrastructure/5413
https://hackingdistributed.com/2018/07/02/on-chain-vote-buying/
https://hackingdistributed.com/2018/07/02/on-chain-vote-buying/
https://medium.com/privacy-scaling-explorations/release-announcement-maci-1-0-c032bddd2157
https://medium.com/privacy-scaling-explorations/release-announcement-maci-1-0-c032bddd2157
https://doi.org/10.1109/ACCESS.2020.3012581

[60] Claus-Peter Schnorr. 1989. Efficient identification and signatures for smart cards.

In CRYPTO. 239–252.
[61] C. P. Schnorr. 1991. Efficient Signature Generation by Smart Cards. J. Cryptol. 4,

3 (jan 1991), 161–174. https://doi.org/10.1007/BF00196725

[62] Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen. 2017. RingCT 2.0:

A compact accumulator-based (linkable ring signature) protocol for blockchain

cryptocurrency monero. In ESORICS. 456–474.
[63] Michael Bedford Taylor. 2017. The evolution of bitcoin hardware. Computer 50,

9 (2017), 58–66.

[64] Langston Thomas. 26 Apr. 2022. Fractional NFTs: The Good, the Bad, and the

Weird. NFT Now (26 Apr. 2022).

[65] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.

2018. Foreshadow: Extracting the keys to the Intel SGX kingdom with transient

out-of-order execution. In USENIX Security. 991–1008.
[66] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. 2020.

SGAxe: How SGX fails in practice. https://sgaxe.com/files/SGAxe.pdf.

[67] Joseph Weinberg. 21 Jan. 2022. NFTs and compliance: Why we need to be having

this conversation. Cointelegraph (21 Jan. 2022).

[68] E Glen Weyl, Puja Ohlhaver, and Vitalik Buterin. 2022. Decentralized Society:

Finding Web3’s Soul. Available at SSRN 4105763 (2022).
[69] Andrew C Yao. 1982. Protocols for secure computations. In FOCS. 160–164.

A DEFERRED POCK FORMALISM
Remark 2 (Trivial PoK and PoCK protocols). Forced revelation

implies an interesting separation between trivial protocols for PoK

and PoCK. Recall that a trivial PoK protocol is for P to simply

provide the witness toV . Of course, such a protocol does not offer

any privacy (e.g., zero-knowledge) properties. Notice however, that

this would not be a PoCK protocol (since E does not come into play).

This may seem surprising but is in fact an important consequence

of the PoCK setting.

Abstractly, if the verifier receives the witness through an en-

crypted channel (e.g., through TLS), then it would also be possible

for two parties constituting the prover and holding only shares of

𝑤 to directly compute the required encryption of𝑤 for the chan-

nel. In such a case, the trivial PoK protocol could be simulated by

two prover parties, neither of which has complete knowledge of

𝑤 . Importantly, this is also possible ifV is run inside a TEE since

there is no point at which𝑤 is revealed in plaintext. Consequently,

simply sending𝑤 will not be a PoCK protocol.

Intuitively, if we can guarantee thatV is not run inside a TEE,

then it will be possible to eavesdrop on the witness, making the

trivial protocol a PoCK. One way this can be done is by havingV
itself be a TEE instance with the assumption that it is not practical

to run a TEE inside another TEE.

This unearths a dependence of PoCKs on how the communica-

tion toV is defined, which is not seen for standard PoKs.

A.1 Eavesdropper Undetectability Details
Side channel on the usage ofE.To differentiate betweenwhether
E was used to recover the witness or not, we consider a side channel

that provides a remote adversary A with this information (explic-

itly, this is added to the VIEW of an adversarial verifier). Conse-

quently, A can now take actions based on whether the witness

was extracted; notably, as we show later, this gives A additional

advantages in our vote bribery scenario.

It is important to emphasize here that the witness can always

be extracted, (thereby satisfying CK-soundness); the difference is

in whether it actually was. We also note that this detection ability

is a highly unconventional power given to the adversary; while A
cannot itself recover the witness, it is still made aware of whether P

did. This is non-standard in the context of existing literature—when

R (and E) is not in the domain of A (because otherwise A could

extract the witness itself), we note that there is likely no practical

side channel that reveals to A whether P chose to extract.

Still, to ensure that PoCK protocols can be correctly deployed in

applications where side channels need to be accounted for, we intro-

duce an explicit assumption—eavesdropper undetectability—as the
property that an adversary cannot detect whether E was run or not.

We show how this property is critical for incentive-compatibility

in our vote bribery example. This also serves to highlight the non-

triviality of our CK setting.

Formal description.To define eavesdopper undectability, we relax
our earlier modeling assumption that E exists as a man-in-the-

middle entity forR and can snoop on any queries made to it. Instead,

we will give the prover the ability to make queries to R without the
usage of E; we use R \ E to denote this oracle. The honest prover

P will still make use of E.
We can now define eavesdopper undectability as the following

property: For 𝑝𝑝 , inputs 𝑥 , and R ∈ ℜ, for all (possibly malicious)

provers P ′ and verifiersV ′, there exists P̂ such that the following

ensembles are indistinguishable:

VIEWV′
(
P ′R\E (𝑝𝑝, 𝑥),V ′(𝑝𝑝, 𝑥)

)
≈ VIEWV′

(
P̂R (𝑝𝑝, 𝑥),V ′(𝑝𝑝, 𝑥)

)
.

Intuitively, this means that no V ′ can distinguish whether it is

interacting with a prover which uses E or one which does not.

In the example that follows, we briefly describe how a side chan-

nel which informs A of whether E was run breaks security in our

vote bribery scenario. Eavesdropper undetectability is required here

to prevent this attack. We leave further exploration of this property

to future work.

Incentive compatibility example. Suppose that a PoCKΠ is used

in a voting application to mitigate the risk of key-encumbrance

based bribery. As stated earlier, Π ensures that the eavesdropper E
can recover the secret key but says nothing about whether the recov-
ery is actually carried out—our previous CK formalism implicitly

assumes that E will always output the recovered key.

Still, if there was some side channel through which a remote

adversaryA could detect whether the key was extracted (by E or P
in general), then it could condition its bribe on this extraction action

not being taken. The consequence of such a conditional bribe is that

while P has the ability to learn her key, she will be incentivized not
to do so in order to profit from the bribe. In particular, while P can
always learn her full key, making the protocol satisfy CK-soundness,

A will be able to detect such an action and refuse to pay P; this
incentivizes P to not learn her key even if she is able to. The key

will therefore remain encumbered. Eavesdropper undetectability

removes this side channel vulnerability.

B DEFERRED DETAILS FOR SGX-POCK
We detail the full GSGX functionality in Fig. 8.

B.1 Security Proof for SGX-PoCK
We now provide the full details of the CK-soundness proof for

SGX-PoCK.
14

https://doi.org/10.1007/BF00196725
https://sgaxe.com/files/SGAxe.pdf

GSGX [𝑆,Reg]
On initialization: (mpk,msk) ←$ S.kg(1𝜆), 𝐼 ← ∅.

On receive getpk∗ () from some partyM:

Send mpk toM.

On receive install∗ (idx, prog) from someM ∈ Reg:
IfM is honest, assert idx = sid.
Generate nonce eid ∈ {0, 1}𝜆 .
Store 𝐼 [eid,M] = (idx, prog, 0) and send eid to P.

On receive resume∗ (eid, inp) from someM ∈ Reg:
Let (idx, prog,mem) = 𝐼 [eid,M], abort if not found. Com-

pute (out,mem′) = prog(inp,mem) .
Update 𝐼 [eid,M] = (idx, prog,mem′) .
Let 𝜎 =S.signmsk ((idx, eid), prog, out) .
Send (out, 𝜎) toM.

Figure 8: GSGX global functionality from [53]. Starred operations
are re-entrant activation points.

CK-Soundness proof. Let game G1 denote the CK-soundness

game, where A must convince V without the witness being ex-

tracted by E. In particular, given 𝑥 ∈ 𝐿 (with witness𝑤) and 𝑝𝑝 , for

adversaryA using resource R ′ ∈ ℜall, we define the CK-soundness

advantage, i.e., the probability of winning G1 as follows:

CK-Adv(AR
′
) = Pr

[
⟨AR′ (pp,𝑥),V(pp,𝑥) ⟩=1
∧ (𝑥,𝑤′=outE)∉𝑅𝐿

]
Observe first that the CK-soundness definition holds whenever

CK-Adv is bounded by negl(𝜆). We will show that for anyA using a

“practically instantiable” resourceR ′ ∈ ℜall, itsCK-Adv is negligibly
small. First, observe thatV outputs 1 only on a valid signature from

the honest resource R = GSGX, i.e., to convinceV , it must be the

case thatAR′ constructed a valid GSGX-signature on𝑤 . We will use

this to bound CK-Adv by the SUF-CMA security of the signature

scheme 𝑆—here, GSGX is instantiated with the key sampled by the

challenger in the SUF-CMA game.

Suppose thatA’s usage of R ′ results in 𝑞 queries made to GSGX.
Without loss of generality, we can assume that any queries to GSGX
are not made directly by R ′ but instead made through A as in-

structed by R ′ (i.e., A has access to two resources—R ′ and GSGX).
Now let gameG2 be the same asG1 except now, if (𝑥,𝑤) (∈ 𝑅𝐿) is

queried to GSGX,⊥ is output instead of the signature; denote this by

G∗SGX. Notice that Pr[A
R′,GSGX

wins in G1] = Pr[AR′,G∗SGX wins in G2]
since whenever A queries GSGX with𝑤 , it will always be output

by E.
Let game G3 be the same as G2 except that the part with the

extractor is removed (i.e., A wins if it just convincesV). It is easy

to see that Pr[AR′,G∗SGX wins in G2] ≤ Pr[AR′,G∗SGX wins in G3]
since the adversary wins in G3 whenever it wins in G2.

Now, with the assumption that no practical resource inℜall (intu-

itively other than GSGX) can give additional information about the

signatures (this is equivalent to assuming that R ′ can be simulated

without access to the msk of GSGX), we can remove any additional

power given by R ′. In particular, consider game G4 where any

queries to R ′ return⊥; denote this resource by R ′⊥. Under the afore-
mentioned assumption, it holds that Pr[AR′,G∗SGX wins in G3] =
Pr[AR′⊥,G∗SGX wins in G4]. Further, sinceR ′⊥ only returns⊥, we can
constructBwhich never queriesR ′ such that Pr[AR′⊥,G∗SGX wins in G4] ≤
Pr[BG∗SGX wins in G4].

Recall from earlier that this G∗SGX returns ⊥ when queried with

the witness𝑤 and that B wins in G4 if it convincesV , i.e., outputs

a valid signature on𝑤 . Now, let game G5 be the standard SUF-CMA

security game for the signature scheme 𝑆 . We can construct an

adversary C for this game as follows: C runs B ↔ V internally

and forwards any queries to G∗SGX from B to its own SUF-CMA

signing oracle. If V outputs 1, then C outputs the last message

sent by B as its own SUF-CMA forgery. Notice now that C wins

the SUF-CMA game exactly when B convinces V—i.e., it holds

that Pr[BG∗SGX wins in G4] = Pr[C wins in G5] = SUF-CMA𝑆 (C).
Further, C makes exactly as many queries to its signing oracle as

B makes to GSGX.
Finally, since the signature scheme 𝑆 being used is SUF-CMA

secure, we know that the adversarial advantage for any adversary

is bounded by some negl(𝜆) which in turn implies that the CK-Adv
for any A and R ′ is bounded by negl(𝜆). This completes the proof.

Making SGX-PoCK satisfy zero-knowledge. Intuitively, to make

the protocol zero-knowledge, there must exist a simulator S that

can simulate the protocol transcript without access to the witness.

Further note that S should also not be able to program the master

secret key of the SGX (this is accounted for since we model the

SGX resource as a GUC functionality).

We now briefly describe how SGX-PoCK can be made zero-

knowledge. As is the case with other GUC protocols, S will require

a trapdoor in other to simulate transcripts. Towards this, intuitively,

we introduce a trapdoor 𝜏 which allows the generation of arbitrary

SGX attestations for our protocol.

Specifically,V first chooses a trapdoor 𝜏 and submits it to GSGX
which returns an attestation 𝜎𝑐 on 𝑐 = owf(𝜏) where owf is a one-
way function.V sends the (𝑐, 𝜎𝑐) to P who then submits (𝑐, 𝑥,𝑤)
to GSGX. Before providing an attestation that the witness 𝑤 was

seen, GSGX ensures that the correct 𝑐 was input. Finally, theV can

check the correctness of the attestation to complete the proof. Note

that this protocol also requiresV to possess an SGX device.

This construction will now be zero-knowledge since the simula-

tor S can use the trapdoor 𝜏 to forge attestations and simulate the

interaction between P andV . The proof is analagous to the one

from [53, Thm. 19].

Remark 3 (SGX inside SGX). SGX-PoCK can in fact be modified to

work even when an SGX can be run inside another SGX as long

as this can be done only a finite number of times. Specifically, if is

practical to run 𝑘 layers of SGX but not 𝑘+1 layers, then SGX-PoCK
can be modified to use the 𝑘-layer SGX as the resource R; P now

obtains an attestation from this R. By assumption, since a (𝑘 + 1)-
SGX is not practical, the witness submitted to R will be seen by E
allowing for extraction.

This also serves to future proof our protocol in case of advances

in TEE infrastructure.

15

C DEFERRED DETAILS FOR ASIC-ZKPOCK

C.1 Proofs
Proof of Fact 6.1. This follows directly from the lower-tail

Chernoff bound. □

Proof of Lemma 6.2. In time 𝜏 , P can compute 𝑄𝜏 = 𝑘𝑑 hash

evaluations. Recall that the probability of finding a solution for

a single evaluation is 1/𝑑 . Therefore, the probability of finding

a solution in 𝑘𝑑 evaluations i.e., 𝑝
𝑄
one can be given by 1 − (1 −

1/𝑑)𝑘𝑑 . □

Proof of Lemma 6.3. The probability of finding a solution for a

single evaluation is 1/𝑑 . Since the nonce-space is of size 𝛽 , the prob-
ability that no nonce works is (1− 1/𝑑)𝛽 . Therefore the probability
𝑝onechal that some nonce works is 1 − (1 − 1/𝑑)𝛽 . □

ASIC-ZKPoCK CK-soundness proof. Similar to the SGX-PoCK
CK-soundness proof, let G1 denote the CK-soundness game where

A must convinceV (in more than 𝑦 out of 𝑛 rounds) without the

witness being extracted by E and define CK-Adv(AR′) similarly

as before given A and resource R ′.
Now define game G2 to be exactly as G1 except that only the

first query made (by e.g., A or R ′) to each honest resource in ℜ is

returned correctly; all other queries return ⊥. Further, define game

G3 similarly except that all queries to resources in ℜ are returned

as ⊥. Recall that making two queries to an ASIC resource allows E
to extract the witness because of the quasi-soundness of the sigma

protocol. Therefore, we have:

Pr[AR
′
wins in G1] ≤ Pr[AR

′
wins in G2]+Pr[AR

′
wins in G3]

Now, for G2, suppose that the adversary deploys one challenge

each to𝑚 different ASICs on different machines to not have two

queries to the same ASIC. While we do analyze this strategy in the

security proof, we note that this actually requires the adversary

to enforce strong non-collusion requirements in order to succeed,

which is likely infeasible; see Remark 4 for details. For small enough

𝑚 = Θ(1), we can set parameters such that the probability that

A wins in G2 is negligible in 𝜆. To see why, note that similar

to Lemma 6.3, the probability that𝑚 challenges are sufficient (in

1 round) is 𝑝 = 1 − (1 − 1/𝑑)𝛽𝑚 . For small enough𝑚, we can set

𝛽 = Θ(1) such that the 𝑝 < 𝑦/𝑛, and therefore Pr[AR′ wins in G2]
is negligible in 𝜆.

Now, the probability that A wins in G3 is exactly the proba-

bility that it wins without using the ASIC resource. Assume that

there is no practical resource that is encrypted (or in other ways

prevents eavesdropping by E; this also prevents for instance, fast

ASICs that can compute hashes in MPC with secret-shared inputs)

and computes hashes faster than 𝑄
adv

= 𝑚𝑄cpu (i.e., equivalent

to a network of𝑚 CPUs). We note that although their setting is

simpler, [34] also makes a qualitatively identical assumption by

modeling all MPC-based hash queries as “slow” as opposed to “fast”

ASIC queries. Consequently, the probability that A wins in G2 can
be bounded using Lemma 6.2 as follows: Suppose that parameters

are set such that 𝑝
𝑄adv

one < 𝑦/𝑛 = Θ(1). From Fact 6.1, it is easy to

see that the the probability A succeeds in more than 𝑦 rounds, i.e.,

wins in game G3 is negligible in 𝜆.

Finally, this means that we can bound the CK-Adv by negl(𝜆)
which completes the proof.

ASIC-ZKPoCK HVZK proof. We now provide additional details

on the honest-verifier zero-knowledge (HVZK) proof.

Recall that the proof 𝜋 = (𝐵, 𝜈) sent toV contains only a single

Σ-protocol transcript. We can define the zero-knowledge simulator

S as follows: Given the public parameters 𝑝𝑝 , and the statement

𝑥 , first randomly sample 𝑟 . Intuitively, S will now use the ASIC-

resourceR to randomly sample 𝐵 [1] until a satisfying PoW solution

𝜈 is found. In essence, S will act the same way as the honest prover

P except in the computation of the Σ-protocol transcript (𝑎, 𝑐, 𝑠)—
instead of using the pre-committed 𝑎 and the challenge 𝑐 to compute

𝑠 , it will run the simulator from the Σ-protocol to generate (𝑎, 𝑠)
given 𝑐 .

Formally, given 𝐵 [1], let 𝑐 = H(𝐵 [1] ∥ 𝑟). Run the simulator

for the Σ-protocol on 𝑐 to obtain a simulated transcript (𝑎, 𝑐, 𝑠) for
knowledge of a witness for 𝑥 ; this is possible since the Σ-protocol is
also HVZK. Finally, use R to find whether there exists a nonce 𝜈 for

the PoW puzzle, i.e., satisfyingH(𝐵 [1] ∥ 𝐵 [2] = 𝑠, 𝜈) < 2
ℓ/𝑑 . Note

that ℓ and 𝑑 are given in the parameters 𝑝𝑝 . If such a 𝜈 does not

exist, then a different 𝐵 [1] is sampled and the process is repeated.

C.2 Remarks
Remark 4 (Network of machines with single-challenge ASICs.). A

sophisticated strategy that the adversary might attempt in order to

bypass our protocol and encumber the key in a TEE is to utilize an

outsourced network of machines, each equipped with an ASIC, in

such a way that each ASIC is given only one challenge to solve. This

ensures that no machine gets access to two challenges that would

enable extraction of the witness. This strategy is highly impractical

however since the adversary will be required to make strong non-

collusion assumptions on the outsourced network. In particular, if

any two machines belong to the same entity or collude, they can

reconstruct the witness which the adversary needs to avoid.

Remark 5 (Usage of sequential functions). Our usage of hash-based

PoW mining comes with some unfortunate consequences: since

evaluation is embarrassingly parallel, we need to rely on assump-

tions on the parallel processing capabilities (e.g., number of ma-

chines) available to the adversary.

A natural question towards removing this constraint is whether

we can leverage sequential computation (e.g., throughVDFs) instead

of parallelizable hash computations. This turns out to be somewhat

tricky however since intermediate values may first be computed in

a TEE following which the rest of the computation can be done in

faster untrusted hardware.We leave the exploration of this direction

to future work.

C.3 Parameterization Details
Estimating 𝑄asic and 𝑄cpu. A top-of-the-line mining ASIC for

Bitcoin, the Antminer S19 Pro Hydro, released in 2022, has a rated

performance of 154 TH/s [15], i.e., about𝑄asic ≈ 2
47

H/s. Each hash

in this case is a “Bitcoin” hash: a double invocation of SHA-256 on

two 64-byte input blocks, as required for Bitcoin mining. The set ℜ

of satisfying resources for our formalism will therefore consist of

all ASICs with a hash rate of at least 𝑄asic.

16

Even under optimistic assumptions (including use of native hard-

ware support for SHA), an SGX application
12

on a state-of-the-art

4.60 GHz Intel processor can execute at most about 72 MH/s, i.e,

𝑄cpu ≈ 2
26

H/s (where hashes here are “Bitcoin” hashes) [55].

Example practical parameterization.Given𝑄asic ≈ 2
47

H/s and

𝑄cpu ≈ 2
26

H/s, we might for instance target a forced revelation

error and completeness error of 𝜖 < 10
−6
. We set 𝑦 = ⌊𝑛/2⌋ for the

most efficient parameterization. While, the error bounds are also

achieved for much smaller value of 𝜏 , we set the duration of each

round 𝜏 to 5 seconds, allowing for any network communication

delays. Difficulty 𝑑 = 2
47

and number of rounds 𝑛 = 8 allow the

ASIC to succeed with probability more than 1−𝜖 while an adversary
using a network of 10,000 CPUs only succeeds with probability less

than 𝜖 . Note that, the range of nonce (security parameter 𝛽) can be

set appropriately to minimize 𝑝onechal. For example, by Lemma 6.3,

a nonce of length 5 bytes (𝛽 = 2
40
) would let an adversary which

uses only one challenge, succeed with probability << 𝜖 . Figure 5

shows the completeness probability of the ASIC and the success

probability of an adversary with 10,000 CPUs as a function of the

difficulty and number of rounds (each round is set to 5 secs).

With a total execution time of 50s, it is possible to achieve an

overwhelming probability of completeness as well as an overwhelm-

ing probability of failure for an adversary trying to bypass forced

revelation with a network of 10,000 CPUs.

ConcreteASIC-ZKPoCK implementation details.We implement

the ASIC-ZKPoCK prover using an outmoded Antminer S9 ASIC

and the verifier using an Ethereum Smart Contract. While this

ASIC has a smaller hashrate compared to the latest hardware in the

market, and the Ethereum network inherently has a coarse gran-

ularity for measuring time, we can still achieve reasonable error

probabilities for completeness and forced revelation. Below is one

such example parameterization for our implementation:

𝑄asic = 13TH/sec ∼ 2
43.5

.

𝑄cpu = 2
26
.

𝜏 = 12 sec (Ethereum inter block time).

𝛽 = 2
40

(Set nonce size to 5 bytes). Notice that the nonce range is

exhausted by our ASIC in 2
40/𝑄asic = 0.08 seconds, so we queue up

new work to the ASIC (with a new challenge) every 0.08 seconds.

For difficulty 𝑑 = 7 × 10
13, 𝑛 = 12, 𝑦 = 6, we have complete-

ness probability > 99.9% and forced revelation error < 10
−4

for a

network of 10,000 CPUs.

D DEFERRED DETAILS ON SMACK

Global system architecture. SMACK consists of different veri-

fication contracts, one for each type of CK proof method that is

supported. For a given public PoK value 𝑥 , the prover supplies a

proof (potentially interactively) according to a certain CK method

to the corresponding verification contract. The verification con-

tract stores a boolean mapping from 𝑥 , indicating whether the proof

has been successfully verified. This mapping is leveraged by the

CK Registry to provide a uniform and well managed interface to

application developers.

12
Note that secure use of SGX requires disablement of hyperthreading.

CK Registry specification. In Ethereum, public keys are asso-

ciated with addresses. SMACK supports CK for the private keys

associated with Ethereum addresses.

CK proofs have an important property: Once one has been gen-

erated for a given witness / address, it remains indefinitely valid.
That is because once a private key sk has been exposed to E, the
fact of exposure remains true for all time.

SMACK therefore includes a smart contract, called the CK Reg-
istry, that maintains a permanent record of addresses for which

valid CK proofs have been provided.

The CK Registry (deployed at 0x25B270...eE3966) includes a func-

tion that maps Ethereum addresses to the type(s) of CK proofs, if

any, that have been verified successfully. When a user wishes to

submit a proof of complete knowledge for their Ethereum address,

it sends the proof to a verification contract (such as the one we

describe in Section 7.1) that the CK Registry trusts and then asks

the CK Registry to record the event. Applications can then cheaply

query the CK Registry to see whether a CK address is verified rather

than handling proofs themselves. The CK Registry also allows for

extra data to be associated with each verification event (such as

attestation from and certificate of a TEE, or the security parameters

of the ASIC-ZKPoCK protocol) so that upstream applications can

utilize important information about the parameters of verification.

The CK Registry is designed to allow the addition of more CK ver-

ification contracts in the future, possibly incorporating new classes

of CK proofs as they are designed, and likewise to remove exist-

ing CK verification contracts (in case the parameters are deemed

insecure in the future). As a demonstration of our work, we have

used the CK Registry and verification contracts to successfully

mint Atomic NFTs for CK addresses. The Atomic NFT contract is

deployed at 0x6986fc...FcAC38.

Setting the Nonce range 𝛽 . For exploring the PoW puzzle solu-

tions, the Bitcoin pool mining protocol allows the miners to try

different values for the nonce and extranonce fields. The nonce field
in Bitcoin header is fixed to 4 bytes and has proven to be too small

for theminingmarket. Therefore, extranoncewas introducedwhose

size can be set by the pool software. Thus, for our case where the

range is 𝛽 (> 2
32), we set extranonce to ⌊𝑙𝑜𝑔2 [𝛽]/8− 4⌋ bytes. Note

that 𝐵 in the proof transcript 𝜋 denotes the portion of the Bitcoin

block header that excludes the extranonce field, i.e. we treat that

field as part of the space of possible nonces.

D.1 Lightweight CK
A PoCK system will be most useful if it is widely accessible. Any

requirement for expensive specialized hardware—such as an SGX-

enabled machine or, worse still, a Bitcoin-mining ASIC—could place

CK beyond the reach of most users. While users could in principle

outsource CK-proof execution, this would require them to entrust

their private keys to third-party services, which could create new

risks of key compromise.

Increasingly many users, however, do in fact own devices with

trusted hardware: their mobile phones. Almost all newly manu-

factured mobile phones come with TEEs: recent Android devices

often ship with Trusty TEE, while iOS devices have Apple’s Secure

Enclave.

17

https://etherscan.io/address/0x25B2709091010489030A85Ab69bc2FD129eE3966
https://etherscan.io/address/0x6986fcbEA8862b03329C8D38C002125e91FcAC38

To show how these devices can be used to implement CK proofs,

we prototype a protocol design that we call lightweight CK. The term
“lightweight” here reflects two features of our design: (1) It uses

common consumer hardware, but (2) embodies a weaker security

model than CK variants using SGX or ASIC. As such, lightweight

CK is most suitable as a defense-in-depth layer or for applications

where the impact of compromise is not high—e.g., Atomic NFTs

(see Section 2.2).

Android implementation and workflow. We design a simple

lightweight CK tool for Android devices that uses the hardware key

attestation API [11] to produce lightweight CK proofs for Ethereum

addresses. This API provides a hardware-backed assurance of boot

integrity and, by extension, an application’s integrity. (Apple’s iOS

analog is its App Attest Service [12], which can support a CK tool

like the one we’ve implemented for Android.)

Our application itself is simple from a user’s standpoint: the user

enters a private key sk—exported from a crypto wallet—into a text

field
13

and taps a button to generate a TEE key. The application

copies the necessary CK proof, described below, to the Android

clipboard for the user to paste into a dApp that creates a transaction

to a CK verifier smart contract.

The app creates an attestation challenge for the freshly gener-

ated TEE key through the key attestation API, and the TEE signs a

new certificate containing the challenge. The attestation challenge

contains the signature of a static message (“Android CK Verifica-

tion”), including an Ethereum message prefix [16] signed by the

user’s private key. While not strictly needed for a CK proof, the

signature serves as a hedge against device compromise. Even if

a compromised Android device could generate a seemingly valid

integrity verdict, it cannot do so for an arbitrary pk—cooperation
from the holder of the corresponding sk would be required.

The API then returns a certificate chain from the new TEE key

containing the challenge to the TEE itself to the device manu-

facturer’s certificate authority and, finally, to a root of trust—the

Google Hardware Attestation Root Certificate [7]. Within the new

TEE key’s certificate is an attestation to the integrity of the operat-

ing system running on the device as well as a hash of the signing

certificates of the application that made the request.

The certificate chain includes all the necessary information to

create a CK proof, so submitting a lightweight CK proof to the

Android CK Verifier smart contract involves creating a transaction

that includes the intended prover address and the complete certifi-

cate chain to some root of trust. To ensure the authenticity of a

lightweight proof, the contract first checks that the newly created

certificate describes an adequately protected Android operating

system: a verified boot from a trusted state and a key attestation

for an app that matches the package name and signing key of our

app. It also checks the attestation challenge embedded within the

certificate to verify that sk signed the message. Next, it validates

the certificate chain to a root certificate that the verifier trusts by

verifying the signatures of each certificate, each one signed by the

next in the chain. If everything passes validation, a record of the

proof is created in the contract for use by the CK Registry. The cost

of verification is approximately 1.5 million gas per certificate.

13
Great care will be required in guiding users, as malicious software could dupe

unsophisticated users into revealing their private keys. This can bemitigated if common

wallets natively implement lightweight CK.

Signed messages cannot protect against a compromised device

producing valid verdicts for others’ keys, so we rely on per-device

limits to mitigate the effect of a compromised device. Until mobile

devices support on-device attestations, integrity measurements

of the operating system are the closest way of verifying that the

application ran as intended and a complete private key was entered

into the device.

Limitations. Key attestation appears not to be foolproof. For ex-

ample, there have been reports of a broken TEE keystore imple-

mentation in the ASUS ROG 3, compromising system integrity and

still allowing a “strong” hardware-based integrity check to pass

irrespective of bootloader status [2]. Google itself recommends a

defense-in-depth approach, with attestation services as only one

of several signals of abuse. To mitigate the problems caused by

an entire class of devices containing faulty TEEs, the Android CK

Verifier contract allows individual CA certificates to be revoked or

trusted.

Privacy. Publishing a complete TEE certificate chain to a public

blockchain comes with its own privacy issues. Each TEE certificate

must be signed by a device manufacturer’s public key for the certifi-

cate chain to be complete, which means that device manufacturers

could easily associate the Ethereum address of a lightweight CK

participant with the mobile device used to create the TEE certificate

chain. This is because the Ethereum address being verified is con-

tained within the TEE-signed certificate, and device manufacturers

can associate a TEE’s public key with its corresponding device both

during manufacturing and whenever the device requires an updated

certificate chain. As a point of reference, the first intermediate cer-

tificate of our sample device expires on a monthly basis, so at least

once a month, the device must contact its manufacturer for a fresh

intermediate certificate.

In order to prevent this type of privacy leak, rather than submit-

ting the certificate chain directly to a smart contract, the certificate

chain could instead be submitted to an application running within

an off-device attesting TEE, such as Intel SGX. The attesting TEE ap-

plication verifies the most sensitive part of the chain—including the

mobile device TEE’s public key—and the integrity state of the mo-

bile device embedded inside the leaf certificate. The smart contract

would then only need to verify the application’s attestation to es-

tablish whether the lightweight CK attempt was successful, thereby

keeping the end of the certificate chain from being disclosed. Then,

collusion between both the mobile device manufacturer and the

organization hosting the off-device TEE, as well as a feasible attack

on the off-device TEE itself, would be necessary to deanonymize

accounts. An attack on the TEE could reveal the tail of the certifi-

cate chain which, when revealed to the device manufacturer, could

be mapped to a device.

In an alternative to the TEE-based privacy approach, the prover’s

CK proof could be a redacted certificate chain along with a ZK proof

(preferably a succinct such proof) of the correctness of the redacted

part of the chain.

Target applications. Google’s Play Integrity API is currently the

more commonly used method for developing assurance of appli-

cation integrity inside Android apps, and its “strong” category of

integrity verdicts include similar hardware-backed key attestations

from a TEE. Although its integrity verdicts can range in strength

18

from basic compatibility tests to hardware-backed key attestation,

it has seen wide use by consumer services (e.g., Netflix), mobile

games (e.g., Pokémon Go), banking applications, etc. for application

integrity [47].

Given the security limitations discussed above, lightweight CK

is most suitable as a defense-in-depth layer or where the impact of

compromise is limited. For example, if CK is compromised for an

Atomic NFT, that NFT can be fractionalized: an undesirable but not

catastrophic outcome. The same is true of key-coupling for royalty

payments. In contrast, only strong CK would meet the levels of

security envisioned for soulbound tokens [68], which are identity

documents.

Through the CK Registry, individual applications can support

the specific CK proof types that match their security models.

19

	Abstract
	1 Introduction
	2 Motivation: Attacks & Applications
	2.1 Attacks and CK-Based Countermeasures
	2.2 New Applications Enabled by CK

	3 Preliminaries and Background
	4 Proofs of Complete Knowledge
	4.1 Building Intuition
	4.2 Formal PoCK Security
	4.3 Zero-Knowledge PoCK
	4.4 Eavesdropper Undetectability

	5 SGX-based PoCK Protocol
	5.1 SGX-PoCK Properties

	6 ASIC-Based PoCK Construction
	6.1 Background: Mining ASICs and PoWs
	6.2 ASIC-Based PoCK: Protocol construction
	6.3 Security Analysis
	6.4 Practical ASIC-ZKPoCK Parameterization

	7 SMACK: End-to-End Implementation
	7.1 ASIC-ZKPoCK implementation

	8 Related Work
	9 Conclusion
	References
	A Deferred PoCK Formalism
	A.1 Eavesdropper Undetectability Details

	B Deferred Details for SGX-PoCK
	B.1 Security Proof for SGX-PoCK

	C Deferred Details for ASIC-ZKPoCK
	C.1 Proofs
	C.2 Remarks
	C.3 Parameterization Details

	D Deferred Details on SMACK
	D.1 Lightweight CK

