
Breaking the Quadratic Barrier:
Quantum Cryptanalysis of Milenage,

Telecommunications’ Cryptographic Backbone

Vincent Quentin Ulitzsch1 and Jean-Pierre Seifert1,2

1 Technische Universität Berlin – SECT
vincent@sect.tu-berlin.de

jean-pierre.seifert@tu-berlin.de
2 Fraunhofer Institute for Secure Information Technology, Darmstadt, Germany

Abstract. The potential advent of large-scale quantum computers in
the near future poses a threat to contemporary cryptography. One ubiq-
uitous usage of cryptography is currently present in the vibrant field
of cellular networks. The cryptography of cellular networks is centered
around seven secret-key algorithms f1, . . . , f5, f

∗
1 , f

∗
5 , aggregated into an

authentication and key agreement algorithm set. Still, to the best of
our knowledge, these secret key algorithms have not yet been subject to
quantum cryptanalysis. Instead, many quantum security considerations
for telecommunication networks argue that the threat posed by quantum
computers is restricted to public-key cryptography. However, various re-
cent works have presented quantum attacks on secret key cryptography
that exploit quantum period finding to achieve more than a quadratic
speedup compared to the best known classical attacks. Motivated by this
quantum threat to symmetric cryptography, this paper presents a quan-
tum cryptanalysis for the Milenage algorithm set, the prevalent instanti-
ation of the seven secret-key f1, . . . , f5, f

∗
1 , f

∗
5 algorithms that underpin

cellular security. Building upon recent quantum cryptanalytic results, we
show attacks that go beyond a quadratic speedup. Concretely, we provide
quantum attack scenarios for all Milenage algorithms, including a poly-
nomial time quantum existential forgery attack in the Q2 model. Our
presented attacks do not constitute a quantum break of Milenage. In-
stead, the comprehensive attack overview can serve as a basis for further
research into the resilience of Milenage against quantum adversaries.

Keywords: Quantum cryptanalysis · Simon’s Algorithm · Quantum Se-
curity · Milenage · Cellular network · AKA protocol · Post-quantum
cryptography

1 Introduction

Telecommunication operators are evidently expecting the advent of general pur-
pose quantum computers, as indicated by their funding of various research
projects investigating the new technologies’ potential [31]. As part of these ef-
forts, telecommunication standardization bodies also pay increasing attention



to post-quantum security in telecommunication networks. As a result, the sixth
generation of telecommunication networks (6G) is intended to be post-quantum
secure, and proposals for extensions of the fifth generation (5G) already integrate
quantum security considerations, cf. [13, 27, 38]. . These security considerations
are often focused on the threat quantum computers pose to asymmetric cryptog-
raphy. To mitigate this threat, telecommunication protocols can replace the vul-
nerable cryptographic primitives with post-quantum secure cryptography, which
does not rely on the hardness of factoring or the discrete logarithm problem. The
National Institute of Standards and Technology (NIST), a standardization body,
leads an ongoing process to evaluate and standardize asymmetric post-quantum
primitives [28]. This process is now in its final stages, with four candidate al-
gorithms already selected for standardization and an ongoing fourth round to
analyze additional alternative constructions [29]. Multiple works have already
demonstrated how the now standardized post-quantum secure public key crypto-
graphic schemes can replace the (quantum) vulnerable public-key cryptography
in present telecommunication protocols [11, 36].

In contrast to public key cryptography, quantum security considerations for
cellular networks often do not consider the aspect of quantum attacks against
symmetric cryptography. Instead, they assume symmetric cryptography to be
unaffected by quantum cryptananalysis, except for a quadratic speed-up of ex-
haustive search due to Grover’s algorithm . Hence, so the argument goes, in-
creasing the key size of symmetric cryptography used in 6G to 256-bit would
provide sufficient protection against quantum adversaries [27, 38].

In light of recent quantum cryptanalytic results however, this common be-
lief can no longer be assumed to be trivially true. Starting with the seminal
works of Kuwakado and Morii [23, 24], various works have shown that quan-
tum period finding – through Simon’s algorithm [35] – can speed up attacks
on symmetric-key cryptography schemes beyond best known classical bounds
[9, 10, 12, 21, 33]. The attacks demonstrate that, depending on the assumed
attacker capabilities, quantum computers can be used to either efficiently break
certain symmetric-key cryptography schemes or reduce the time needed to at-
tack them. The distinguishing feature in the attacker capabilities for quantum
cryptanalysis is the kind of oracle access that is provided to the attacker, com-
monly referred to as Q2 and Q1. In the Q2 setting, also called the quantum
known plaintext attack, the attacker can make superposition queries to an en-
cryption oracle. This model enables quantum attackers to significantly reduce
the security of classically secure symmetric ciphers. For example, in the Q2 set-
ting, Simon’s algorithm enables attackers to execute forgery attacks against an
otherwise classically secure CBC-MACs in polynomial time [21]. However, due
to its powerful attacker model, the Q2 model remains of mainly theoretical in-
terest. In the Q1 model the attacker has access to a general purpose quantum
computer, but can only make classical queries to an encryption oracle. Attacks
in this model can be executed as soon as general-purpose quantum computers
come into existence. In the Q1 model, symmetric cryptography can be attacked
as well. Bonnetain et al. [10] demonstrated Q1 attacks on symmetric cryptogra-



phy that improve upon the best-known classical bounds. Their attacks extend
quantum-cryptanalysis of symmetric ciphers that was rooted in the Q2 model,
i.e., relied on superposition queries to an encryption oracle.The cornerstone of
these attacks is the offline Simon’s algorithm [9], which combines quantum search
and quantum period finding to transfer the Q2 attacks to the Q1 model.

These results call for a careful re-evaluation of the truism that has guided
quantum security considerations for 6G so far. Doubling the key-size might not
be sufficient to ensure long-term security of telecommunication protocols. In-
stead, symmetric-key cryptographic schemes used in telecommunications proto-
cols must be evaluated towards their resilience against quantum enabled adver-
saries as well.

1.1 Contributions

We conduct such a quantum cryptanalysis for the Milenage algorithm set, a
set of symmetric-key cryptographic algorithms ubiquitously used in the cellular
world. The Milenage algorithm set’s main usage is the Authentication and Key
Agreement (AKA) protocol, used for authentication and session establishment
in cellular networks. All Milenage algorithms make use of the network authenti-
cation key K, a secret key shared between the subscriber (stored in his network
provider’s SIM card) and the network. The algorithm set consists of the functions
f1, . . . , f5, , f1∗, f5∗, and makes use of the AES block cipher.

In summary, when a user wants to authenticate to the network, the op-
erator generates a random challenge and calculates the output of one of the
Milenage algorithms, keyed with the network authentication key K. If the user,
upon receiving the challenge, replies with the correct response, thus demonstrat-
ing knowledge of K, the authentication request is accepted. Other functions
of the Milenage algorithm set are used to calculate a Message Authentication
Code (MAC) or derive keys for later usage. Breaking the Milenage algorithm
set would therefore allow attackers to perform account takeover attacks. Thus,
the security of Milenage algorithms is crucial for the security of pervasive cel-
lular networks in general. As such, the algorithms underpin the security of the
worldwide cellular networks and provide a great starting point for the required
quantum cryptanalysis of symmetric ciphers.

In conducting the quantum cryptanalysis, we take a gentle approach that can
be followed by researchers who are not familiar with the internals of quantum
computing. First, in Section 3, we distill a quantum toolbox from the various
works on quantum cryptanalysis and quantum algorithms, i.e., a minimum set
of quantum algorithms and results about their complexity that have proven to be
useful in quantum cryptanalysis. For each algorithm in the toolbox, we explain
the requirements that an attacker needs to meet in order to use the respective
algorithm. For example, whether a quantum algorithm requires superposition
access or can also be executed with only classical oracle access to the encryp-
tion under attack. Once equipped with this quantum toolbox, no more detailed
understanding of quantum computing is required. The attacker then only needs



to construct a function that meets the respective requirements, after which the
algorithms can be applied as a black-box.

Leveraging this minimum quantum toolbox, we develop multiple attacks on
the Milenage algorithm set inspired by various prior works. The quantum crypt-
analysis of Milenage is the main contribution of this paper and can be found in
Section 4. We analyze the Milenage set from several dimensions. In the two differ-
ent query models Q1 and Q2, considering different attacker goals such as full key
recovery or existential forgery and considering more powerful attacker models
such as the related key model. Our results show that the quantum toolbox can
be utilized to provide speedups over classical attacks in all dimensions, and even
leads to polynomial time attacks in the Q2 model. As a helpful overview, Table
1 summarizes the breadth of our results. The complexity analysis is additionally
parameterized by three circuit complexities. First, TQAES refers to the depth of a
quantum circuit computing an AES encryption, as presented for example in Ref.
[19]. Second, TAES refers to runtime-complexity of a classical circuit computing an
AES encryption. Finally, TO refers to the time required for an oracle query. We
find that a Q2 attacker can execute existential forgery attacks against Milenage
in polynomial time. It is an explicit design goal of Milenage to resist existential
forgery attacks of classical adversaries (the design document does not consider
a quantum adversary model) [4]. Less powerful adversaries are, in some attack
scenarios, still able to speed up their attacks, albeit not to an extent that breaks
the algorithm set.

In summary, the attacks show that the Milenage algorithms exhibit a struc-
ture that can be exploited by quantum computers to obtain attacks that are
more efficient than Grover’s search. In the Q2 model, Milenage must be consid-
ered broken, as it is vulnerable to a polynomial-time existential forgery attack.
We emphasize that the Q2 attacks remain of mainly theoretical interest for now,
and do not imply that Milenage is broken once general purpose quantum com-
puters come into existence. Notably however, theQ2 attacker model encompasses
all potential Q1 attacks. An absence of Q2 attacks would have implied an ab-
sence of Q1 attacks as well. Given its vulnerability in the Q2 model, further Q1

attacks against Milenage cannot be ruled out. We encourage further quantum
cryptanalysis and security proofs for Milenage, and its alternative TUAK, based
on the Keccack-f -permutation [2], to lay the ground for post-quantum secure
cellular networks.

2 Background

2.1 Notation

Throughout this paper, we will make use of a block cipher encryption function
E, which takes as input an m-bit message, an n-bit key and returns an m-bit
output. We denote by EK [m] the encryption of bit-string m under block cipher
E with secret K. Similarly, if a function f takes as input a secret key k and
a message m, we denote by fk(m) the invocation of that function with k and



A
tt
a
ck

M
o
d
el

C
la
ss
ic
a
l
Q
u
er
ie
s

S
u
p
er
p
o
si
ti
o
n

Q
u
er
ie
s

C
ir
cu

it
D
ep

th
C
o
m
p
le
x
it
y

B
es
t
K
n
ow

n
C
la
ss
ic
a
l
A
tt
a
ck

S
ec
.

G
ro
v
er
’s

a
tt
a
ck

fo
r

k
ey

re
co
v
-

er
y,

O
P

k
n
ow

n

Q
1

O
(1
)

0
O
( 2

|K
|/

2
·T

Q
A
E
S

)
O
( 2

|K
|
·T

A
E
S

)
S
ec
.

4
.1

G
ro
v
er
’s

a
t-

ta
ck

fo
r

k
ey

re
co
v
er
y,

O
P

u
n
k
n
ow

n

Q
1

O
(1
)

0
O
( 2

(|
K

|+
|O

P
c
|)
/
2
·T

Q
A
E
S

)
O
( 2

|K
|+

|O
P
c
|
·T

A
E
S

)
S
ec
.

4
.1

K
ey

R
ec
ov
er
y

f
2
,

O
P

u
n
-

k
n
ow

n

Q
2

0
O
(|
M

|)
Õ
( (|

M
|·
T
Q
A
E
S
)
·2

|K
|/

2
)

O
( 2

M 2
·T

O
+

2
|K

|+
|M

|
2

·T
A
E
S

)
S
ec
.

4
.2

E
x
is
te
n
ti
a
l

F
o
rg
er
y
f
1

Q
2

O
(1
)

O
(|
M

|)
O
(|
M

|·
T
O
)

O
( 2

|M
|/

2
·T

O

)
S
ec
.

4
.3

R
el
a
te
d

K
ey

A
tt
a
ck

f
1
,.
..
,f

5

Q
2

0
O
(|
K
|+

|O
P
c
|)

Õ
((
|K

|+
|O

P
c
|)
·T

O
)

O
(S

·T
O
+

S
·T

A
E
S
)

w
h
er
e
S
=

2
|K

|+
|O

P
c
|

2

S
ec
.

4
.4

O
ffl
in
e

R
el
a
te
d

K
ey

A
tt
a
ck

f
1
,.
..
,f

5

Q
1

O
( 2

|K
|+

|O
P
c
|

3

)
0

Õ
(S

·T
O
+

S
·T

Q
A
E
S
)

w
h
er
e
S
=

2
|K

|+
O

P
c
|

3

O
(S

·T
O
+

S
·T

A
E
S
)

w
h
er
e
S
=

2
|K

|+
|O

P
c
|

2

S
ec
.

4
.4

T
a
b
le

1
.
S
u
m
m
a
ry

o
f
th
e
re
su
lt
s.

|K
|i
s
th
e
le
n
g
th

o
f
th
e
m
es
sa
g
e
a
u
th
en
ti
ca
ti
o
n
k
ey
,
|O

P
C
|i
s
th
e
le
n
g
th

o
f
th
e
O
P
c
b
it
st
ri
n
g
a
n
d
|M

|
is

th
e
b
lo
ck

le
n
g
th

o
f
th
e
u
n
d
er
ly
in
g
b
lo
ck

ci
p
h
er
.
In

th
e
ca
se

o
f
M
il
en

a
g
e,

|K
|=

|O
P
C
|=

|M
|=

1
2
8
.
F
o
r
a
ll
co
m
p
le
x
it
y
es
ti
m
a
te
s,

th
e

b
ig
-O

n
o
ta
ti
o
n
h
id
es

o
n
ly

a
v
er
y
sm

a
ll
m
u
lt
ip
li
ca
ti
v
e
co
n
st
a
n
t.



message m. For a bit-string x ∈ {0, 1}∗, we denote by |x| the length of the
bit-string. We write 0n to denote the bit-string of n zeros.

Additionally, we define the function rotr(x) and rot−1
r (x) which are the re-

sults of cyclically rotating the 128-bit value x by r bit positions towards the
most significant or least significant bit, respectively. If x = x[0]||x[1]|| . . . x[127],
and y = rotr(x), then y = x[r]||x[r+1]|| . . . x[127]||x[0]||x[1]||x[r− 1]. Of course,
it holds that rotr(rot

−1
r (x)) = x and rot−1

r (rotr(x)) = x.
To state complexities, we use the big-O notation, where we use O(f(n)) to

hide constant factors and Õ (f(n)) to hide polynomial factors.

2.2 The AKA Protocol and Milenage Algorithms

Cellular protocols base their security on seven secret-key cryptographic func-
tions, referred to as a authentication and key generation algorithm set. Upon
session establishment between the home network and the subscriber, these algo-
rithms are used to authenticate the subscriber to the network and derive keys
that are in turn used protect subsequent communication. To this end, telecom-
munication operators assign each subscriber a secret key, the network authen-
tication key, denoted as K. The operator provisions each subscriber’s SIM card
with their individual network authentication key. To authenticate itself to the
network, the subscriber then takes part in a challenge-response protocol, the
so-called AKA protocol. The use of the AKA protocol is mandated through
standardization bodies — all cellular networks follow this protocol.

The AKA protocol is built around a set of cryptographic functions f1, . . . , f5
and f1∗, f5∗, keyed with the network authentication keyK. In summary, the pro-
tocol follows a challenge-response structure. The subscriber sends the telecom-
munication operator an authentication request, containing the subscriber’s iden-
tity. The operator then generates a random challenge RAND and uses one of
the provided cryptographic functions to calculate a corresponding response [5].
The operator then sends the challenge RAND to the subscriber’s device, which
derives the response using the same cryptographic function and sends the de-
rived response to the network. If the derived response and the expected response
match, the subscriber has successfully authenticated themselves to the operator.
In addition, the cryptographic functions f1, . . . , f5∗ serve to a derive a MAC
and additional key material used for encryption and integrity protection of sub-
sequent messages as well as transferred user data. Figure 1 describes the authen-
tication towards the network as implemented in the 4th generation of cellular
networks (LTE), using the AKA protocol and the functions f1, . . . , f5.

The exact details of the AKA protocol are not required to understand the
present analysis — however, it is important to note that the results of the func-
tions f1 and f2 are sent in cleartext over the network upon authentication. The
AKA protocol itself has been subject to formal security analysis [5, 15], proving
AKA’s security under the assumption that the function f1, . . . , f5 and f1∗, f5∗

are pseudorandom. The analysis resulted in improvement suggestions to harden
the protocol’s privacy guarantees. A more detailed protocol description is given
in Appendix B.



M
S

B
S

M
M
E

H
N

A
K

=
f5
(K

i,
R
A
N
D
)

S
Q
N

⊕
A
K
,
A
M
F
,
M
A
C

=
A
U
T
N

V
er
if
y
S
Q
N

in
co
rr
ec
t
ra
n
g
e

X
M
A
C

=
f1
(K

i,
A
M
F
,
S
Q
N
,
R
A
N
D

V
er
if
y
M
A
C

=
X
M
A
C

R
E
S
=

f2
(K

i,
R
A
N
D
)

C
K

=
f3
(K

i,
R
A
N
D
),

IK
=
f4
(K

i,
R
A
N
D
)

K
A
S
M

E
=

K
D
F
(C

K
,
IK

,S
N
id
,
S
Q
N

⊕
A
K
)

G
en

er
a
te

ch
a
ll
en

g
e
R
A
N
D

&
re
tr
ie
v
e
S
Q
N

M
A
C

=
f1
(K

i,
A
M
F
,
S
Q
N
,R

A
N
D
)

X
R
E
S
=

f2
(K

i,
R
A
N
D
),

C
K

=
f3
(K

i,
R
A
N
D
)

IK
=

f4
(K

i,
R
A
N
D
),

A
K

=
f5
(K

i,
R
A
N
D
)

A
U
T
N

=
S
Q
N

⊕
A
K

q
A
M
F

q
M
A
C

K
A
S
M

E
=

K
D
F
(C

K
,
IK

,S
N
id
,
S
Q
N

⊕
A
K
)

V
er
if
y
R
E
S
=
X
R
E
S

1
.
A
tt
a
ch

R
eq
u
es
t

2
.
Id
en
ti
ty

R
eq
u
es
t

3
.
IM

S
I

4
.
IM

S
I,
S
N
id
,
N
et
w
o
rk

T
y
p
e

5
.
R
A
N
D
,
A
U
T
N
,
X
R
E
S
,
K

A
S
M

E

6
.
R
A
N
D
,
A
U
T
N

7
.
R
E
S

F
ig
.
1
.

T
h
e
A
u
th
en
ti
ca
ti
o
n
a
n
d
K
ey

A
g
re
em

en
t
(A

K
A
)
p
ro
to
co
l
a
s
u
se
d
in

L
o
n
g
-T
er
m

E
v
o
lu
ti
o
n
(L
T
E
).

T
h
e
u
se
r’
s
d
ev
ic
e,

re
fe
rr
ed

to
a
s
M
o
b
il
e
S
ta
ti
o
n

(M
S
),

co
m
m
u
n
ic
a
te
s
w
it
h

th
e
B
a
se

S
ta
ti
o
n

(B
S
)
to

a
u
th
en
ti
ca
te

to
w
a
rd
s
th
e
n
et
w
o
rk
.
T
h
e
B
S

fo
rw

a
rd
s
th
e

re
q
u
es
t
to

th
e
M
o
b
il
it
y
M
a
n
a
g
em

en
t
E
n
ti
ty

(M
M
E
),

w
h
ic
h
in

tu
rn

fo
rw

a
rd
s
it

to
th
e
H
o
m
e
N
et
w
o
rk

(H
N
).

T
h
e
h
o
m
e
n
et
w
o
rk

u
se
s
th
e

fu
n
ct
io
n
f
1
,.
..
,f

5
to

ca
lc
u
la
te

se
ss
io
n
in
fo
rm

a
ti
o
n
a
n
d
se
cr
et

k
ey

m
a
te
ri
a
l
a
n
d
fo
rw

a
rd
s
th
e
n
ec
es
sa
ry

in
fo
rm

a
ti
o
n
b
a
ck

to
th
e
M
o
b
il
it
y

M
a
n
a
g
em

en
t
E
n
ti
ty

(M
M
E
).



Note that if an attacker obtains a subscriber’s secret key K, the attacker can
impersonate the respective subscriber towards the home network. This amounts
to a complete account takeover. In addition, an attacker can derive all keys used
for encryption and integrity protection and thus eavesdrop on all communication
between the subscriber and the home network. Therefore, the security of cellular
networks is completely contingent on the security of the cryptographic functions
used in the AKA protocol.

The most commonly used set of functions for the AKA protocol is the Mile-
nage authentication and key generation algorithm set. The Milenage algorithm
set consists of five basis functions, h1, . . . , h5, 3 whose outputs are mapped to
the seven required outputs for the functions f1, . . . , f5∗. Figure 2 describes the
Milenage algorithm set, standardized through the 3rd Generation Partnership
Project (3GPP) [3]. All five functions take as input the random 128-bit challenge
RAND, generated by the operator upon registration of the subscriber’s device
towards the network. The second to fifth basis function, h2, . . . , h5, take this
random challenge as an input and output:

hiK,OPc
(RAND) = EK [ci ⊕ rotri (OPc ⊕ EK [RAND ⊕OPc])]⊕OPc,

where the function EK , also referred to as the kernel, is a block cipher with
block length of 128-bit.

The first basis function h1 takes as an additional input a 128 bit-string IN1,
that is composed of the concatenation of a sequence number SQN and a fixed
authentication management field AMF . The Sequence Number (SQN) acts as
sequential counter to prevent replay attacks. The Authentication Management
Field (AMF) specifies the type of authentication to be used and is usually fixed
[1]. The function h1 is then defined as:

h1K,OPc
(RAND, IN1) = EK [TEMP ⊕ rotr1(IN1⊕OPc)⊕ c1]⊕OPc,

where TEMP = EK [RAND ⊕OPC ].
The output of the basis functions is mapped to the seven required outputs

f1, . . . , f5∗ as follows. The first 64 bits of the h1 output are mapped to represent
the output of f1, the last 64 bits of h1’s output are used as the output of f1∗.
The output of h2 is split in the same vein, to obtain the outputs for f5 and
f2. The basis function h3, h4, h5 are used as-is for the output of f3, f4, f5∗. To
highlight this almost one-to-one relation between the basis functions and their
respective AKA counterparts and to support an intuitive understanding of the
implications of our attacks, we will simply refer to the basis function h1, . . . , h5
as the functions f1, . . . , f5 for the remainder of this paper. This is also done
to emphasize that vulnerabilities in the basis functions translate into immediate
insecurities of their respective AKA counterparts.

All functions in the Milenage algorithm use AES as the underlying block ci-
pher EK . The cipher is keyed with the network authentication key K, a 128-bit-
string shared between the operator and the subscriber. The bit-strings c1, . . . , c5

3 The standard denotes the basis functions as OUT1, . . . ,OUT5



RAND

OPc

EKSQN——AMF——SQN——AMF

OPc

rotate
by r1

c1

EK

OPc

OPc

c2

EK

OPc

OPc

rotate
by r3

c3

EK

OPc

OPc

rotate
by r4

c4

EK

OPc

OPc

rotate
by r5

c5

EK

OPc

f1 f1∗ f5 f2 f3 f4 f5∗

OP EK OPc

Fig. 2. The Milenage algorithm set as standardized by 3GPP [3]. The outputs of the five
Milenage basis functions are mapped almost one-to-one to the seven required outputs.



and r1, . . . , r5 are public constants which are defined in the standard. Notably,
r2 = 0 and c1 = 0. As additional key material, the OPc bit-string is derived from
a (potentially secret) constant OP , defined by the operator. The operator pro-
vides the additional 128-bit string OP , which was intended to provide separation
between different operators [3]. The per-subscriber secret OPc is then derived
as OPc = EK [OP ]⊕ OP . Note that the OP -bit string is never used directly in
the Milenage algorithm set, only the derived value OPc. As such, it suffices to
store the OPc bit-string on a subscriber’s SIM card, without ever revealing the
operator constant OP .

There are no requirements on how the operators generate and manage the
OP -bit string. It is conceivable that each operator uses the same OP bit-string
for all handed-out SIM cards, but the operator could also rotate the OP for every
batch of produced SIM cards. Although the Milenage algorithm set is designed
to be secure even if the OP is public, in practice, operators do not reveal the
value of OP . Instead of the OP , they store the OPc bit-string on the SIM card.
In the present analysis, we will show attacks for both the case when the OP
bit-string is known and when it is secret.

2.3 Classical Cryptanalysis of Milenage algorithms

The Milenage algorithm set was designed to fulfill the following security require-
ments, as specified in [4]:

1. Without knowledge of secret keys, the functions f1, f1*, f2, f3, f4,
f5 and f5* should be practically indistinguishable from independent
random functions of their inputs (RAND——SQN——AMF) and
RAND. Examples: Knowledge of the values of one function on a
fairly large number of given inputs should not enable its values to be
predicted on other inputs. [...]

2. It should be infeasible to determine any part of the secret key K, or
the operator variant configuration field, OP, by manipulation of the
inputs and examination of the outputs to the algorithm.

3. Events tending to violate criteria 1 and 2 should be regarded as in-
significant if they occur with probability approximately 2−128 or less
(or require approximately 2128 operations).

4. Events tending to violate criteria 1 and 2 should be examined if they
occur with probability approximately 2−64 (or require approximately
264 operations) to ensure that they do not have serious consequences.
Serious consequences would include recovery of a secret key, or ability
to emulate the algorithm on a large number of future inputs.

So far, no attack violating this criteria has been identified. Simplified versions
(not using the constant OPc) of the Milenage algorithm set have been proven
to be pseudorandom under the assumption that the kernel function EK is a
random permutation [4, 16]. The proof gives rise to a lower bound of 264 queries
for attacks on the Milenage algorithms. This lower bound is tight, i.e., 264 queries



suffice to identify collisions between the functions f1 and f2 or in the function
f1 itself. Once identified, a collision allows an attacker to perform existential
forgery [4]. For a full key recovery however, no attacks that perform better than
exhaustive search are known. The brute-force attacks amount to a complexity
of O

(
2|K|) if the OP bit-string is known, and O

(
2|K|+|OPc|

)
if OP is unknown.

2.4 Quantum Computation

For a thorough introduction to quantum computing, we refer to the accessible
exposition of [32]. Briefly, quantum computation can be described as follows.
Quantum computation is usually modelled in the quantum circuit model. A
quantum circuit consists of a sequence of quantum gates, acting on logical qubits.
A qubit is encoded in the state of a system, which is described by a vector in
a 2-dimensional Hilbert space. This vector describes a complex linear superpo-
sition of two computational basis state vectors |0⟩ and |1⟩, i.e, α0 |0⟩ + α1 |1⟩,
where α0, α1 are called the complex amplitudes of the basis states and adhere
to the normalization constraint |α0|2 + |α1|2 = 1. An n-qubit state |ψ⟩ is de-
scribed by the complex linear superposition over all 2n computational basis states
|ψ⟩ =

∑
x∈{0,1}n αx |x1, . . . , xn⟩ , where again it must hold that

∑
x |αx|2 = 1.

Measuring a state |ψ⟩ will output the label x with probability |αx|2 and leave the
system in state |x⟩. Quantum gates that act on n qubits are unitary operators
U that transform a quantum state |ψ⟩ into a quantum state U |ψ⟩.

Quantum Oracles and Quantum Complexity When acting on a function
f : {0, 1}n → {0, 1}n, quantum computation requires some kind of oracle access
to this function. The oracle access is usually given through a unitary operator
Of , that performs the following calculation Of : |x⟩⊗|y⟩ → |x⟩ |y ⊕ f(x)⟩, where
x, y ∈ {0, 1}n and |x⟩ , |y⟩ are the corresponding quantum states.

There are multiple ways to measure the complexity of quantum algorithms.
We will focus here on two fundamental dimensions. The query complexity and
the time complexity. Query complexity measures the number of accesses to the
oracle Of , while time complexity is measured by the depth of the respective
quantum circuit consisting of elementary gate operators from a universal quan-
tum gate set, cf. [32]. We will use the terms time complexity and depth of a
quantum circuit interchangeably.

We note here that this model abstracts away constraints that arise when
actually implementing physical systems for quantum computation. For example,
instead of measuring just the depth of the circuit, it has been proposed to include
also the number of qubits (the width of the circuit) [20], to account for the fact
that ensuring coherence of idle qubits might be costly. Unless otherwise men-
tioned, our work will focus on the time and query complexity of the described
attacks. Accounting for other metrics would require to model the designed cir-
cuits in more detail, which we leave as future work.



2.5 Attacker Model

Almost all attacks described in this paper assume access to an encryption oracle
which can be queried with arbitrary plaintexts. This follows the security model of
a chosen plaintext attack. In quantum cryptanalysis, the attacker’s capabilities
are additionally determined by the kind of queries that are allowed to this oracle,
namely whether only classical or also superposition queries are allowed.

In more detail, let F = {fk : {0, 1}n → {0, 1}n}k∈{0,1}n be a family of
functions indexed by k and assume that for any given k, x ∈ {0, 1}n, there
exists a polynomial-time algorithm to compute fk(x). Intuitively, each function
fk defines encryption under key k. For a given function fk sampled from F , the
attacker is given oracle access to fk, denoted by Ofk . Following other quantum
cryptanalytic works [22, 39], we will consider two quantum adversary models,
distinguished by the capabilities of their oracle access.

In the standard security model, or Q1 model, the attacker can only make
classical queries to the function fk. In this case, the oracle Ofk is a classical
function Ofk : {0, 1}n 7→ {0, 1}n.

In the quantum security model, or Q2 model, the attacker is allowed to query
the oracle in superposition. That is, the attacker can provide as input to the
oracle Ofk a superposition

∑
x,y λx,y |x⟩ |y⟩ and the oracle will return the output∑

x,y λx,y |x⟩ |y ⊕ fk(x)⟩. Note that quantum security implies standard security.
We stress that even in the Q1 model, the attacker can still guess the key

k and then construct (and access) a quantum circuit that, given any k, x ∈
{0, 1}n, efficiently evaluates fk(x). This quantum circuit can receive as input
any superposition of k and x. We will make use of this offline computation later
on.

Note that all Milenage functions f1, . . . , f5 can be viewed as a function family
F , where generating a random secret key k amounts to sampling a function from
the family F . The attacker is given access to an oracle Ofk , which evaluates a
function fk with a fixed key k, where k is not known by the attacker.

3 The Quantum Cryptanalysis Toolbox

In recent years, symmetric cryptography has received increasing scrutiny with
respect to resilience against quantum attacks. This quantum cryptanalysis of
symmetric cryptography has mostly uncovered new attacks in the Q2 model,
but also yielded more than quadratic speedups (over classical attacks) in the Q1

model [9, 10, 24]. Most of the cryptanalytic works present quantum algorithms
that equip quantum attackers with powerful attack primitives that can be used
as a black box. We follow this approach and present in this section a quantum
toolbox. I.e., a set of algorithms that facilitate cryptanalytic attacks on symmetric
key cryptography. To keep our work accessible to researchers outside of the
quantum community, we will hereafter use these algorithms only as a black box.

The quantum cryptanalysis presented in this paper is based on three algo-
rithms. Grover’s algorithm to speed up exhaustive search, Simon’s algorithm to



identify a hidden period, and the offline version of Simon’s algorithm, which
combines the two former algorithms to speed up attacks in the Q1 model. In
this section, we will briefly describe the intuition of the relevant algorithms, the
problems they solve, the requirements for their usage and their respective com-
plexity. For the remainder of this work, we will then use these algorithms as a
black box and focus our analysis on classical constructions that will then allow
us to employ quantum algorithms in a simple fashion.

3.1 Grover’s Algorithm: Fast unstructured search

In his seminal work, Grover [17] described an algorithm that achieves a quadratic
speedup when performing an unstructured, brute-force search. We state the main
result as relevant for this paper as follows, where we ignore small constants in
Grover’s time and query complexity and also the extremely high success proba-
bility for better readability.

Theorem 1 (Grover’s Algorithm). Consider a function f : {0, 1}n → {0, 1},
such that 2t inputs map to 1 and the rest maps to 0. Given quantum oracle access
to the function f , Grover’s algorithm finds a preimage of 1, i.e., a k ∈ {0, 1}n

satisfying f(k) = 1, in O
(√

2n/2t
)
time and oracle queries. If there is exactly

one preimage of 1, i.e. only one k such that f(k) = 1, then Grover’s algorithm
finds this k in O

(√
2n

)
time.

Intuitively, Grover’s algorithm “cooks” a solution k0, such that f(k0) = 1,
by constructing an equal superposition over all inputs in the domain of f and
repeating a sub-procedure that increases the amplitude of k0 while decreasing all
other amplitudes. For a detailed explanation, we refer the reader to the standard
literature [17, 32]. Note that Grover’s algorithm requires quantum oracle access
to f .

In quantum cryptanalysis, Grover’s algorithm is typically used to speed up
the exhaustive search (bruteforce) of a key. To this end, an attacker can construct
a quantum circuit for a given cipher, e.g., AES. This circuit will take as input
a message and a key guess k∗ and will return the encryption of the message
under the key k∗. To then bruteforce the key for a fixed but unknown key k, the
attacker first captures enough plaintext-ciphertext pairs so that the secret key
is uniquely determined by those pairs. An attacker can then easily construct a
quantum circuit for a function f that, on input of a key guess k∗ returns 1 if k∗

is equal to the correct k and zero otherwise. The construction works as follows.
The quantum circuit encrypts the collected plaintexts under the key guess k∗

and compares the resulting ciphertexts with the captured ciphertexts. If they
match, f returns 1, otherwise f returns 0. Thus, an attacker can construct a
quantum cirucit for f and then leverage Grover’s algorithm to find the key k
with 2|k|/2 queries to the quantum circuit implementing f .

The effectiveness of Grover attacks are limited by two factors. First, the
search cannot be parallelized [6, 14]. Second, by the complexity of the circuit
actually implementing the oracle f . For example, Jang et al. [19] present a circuit



for AES-128 encryption which results in a circuit depth of roughly 280 gates in
an end-to-end key recovery attack using Grover’s search. To the best of our
knowledge, this is the most efficient quantum circuit for AES presented so far.

3.2 Simon’s Algorithm: Quantum Period Finding

Simon’s algorithm can identify hidden period in a function f in polynomial
time, given quantum oracle access to this function. This powerful primitive has
been successfully used in various quantum attacks on symmetric cryptography
[9, 21, 25] and to show quantum separation, i.e., the existence of functions that
are learnable in the quantum setting, but not in the classical setting (under
standard cryptographic assumptions) [34]. Formally, Simon’s algorithm solves
the following problem:

Definition 1 (Simon’s problem). Let f : {0, 1}n → {0, 1}n be a function that
is either injective, or there exists a single period s ̸= 0n such that

∀x ̸= x′ : f(x) = f(x′) ⇐⇒ x′ = x⊕ s;

determine s.

Given quantum oracle access to f through an oracle Of , this problem can
be solved with O(n) quantum queries to f and O(n3) time using Simon’s algo-
rithm [35]. In summary, Simon’s algorithm relies on a quantum subroutine which
queries the function f with a superposition query and returns a random value
y, s.t. y⊕ s = 0 or a random y if f is injective. After c ·n invocations of Simon’s
quantum subroutine (for a small constant c ≥ 1), we obtain n linear independent
vectors y1, . . . , yn, such that yi ⊕ s = 0. This gives rise to an equation system
and allows us to recover s via Gaussian elimination.

Note that for cryptanalytic purposes, where f represents some sort of cryp-
tographic construction, f does not necessarily fulfill the requirement of Simon’s
problem perfectly. Instead, there might be unwanted collisions in f . Kaplan et al.
[21] showed that Simon’s algorithm can still recover the period s efficiently, pro-
vided that the probability of an unwanted collision is bounded away from 1.
They prove the following theorem.

Theorem 2 (Simon’s algorithm with approximate promise). Let f :
{0, 1}n → X be a function with period s. Define the probability of an unwanted
collision as

ε(f, s) = max
t∈{0,1}n\{0,s}

Prx[f(x) = f(x⊕ t)].

If ε(f, s) ≤ p0 < 1, then with c · n calls of the quantum subroutine, Simon’s
algorithm returns s with probability at least

1−
(
2 ·

(
1 + p0

2

)c)n

.



Note that the theorem also holds for cases where the codomain of the function
is smaller than the domain, i.e., |X| < 2n. It follows from Theorem 2 that as
long as c ≥ 3/(1− p0) the error probability decreases exponentially in n. Thus,
given a constant bound on p0 on the probability of unwanted collision for a
function f , we can recover that function’s period s with O(n) quantum queries
and polynomial time. Throughout this paper, we will make implicit use of a
related theorem. For almost all functions with large enough outputs (in terms of
bit length), the impact of unwanted collisions on the query cost is negligible, c.f.
[8]. This allows us to ignore the issue of unwanted collisions for the remainder of
this paper at all, since we will only deal with functions that have large enough
outputs.

3.3 Offline Simon’s algorithm: Attacks without superposition
queries

In the Q1 model, superposition queries to an oracle Of are not possible. Instead,
the attacker can only query Of classically. Many quantum cryptanalytic attacks
on symmetric ciphers thus are not applicable in the Q1 setting, since the at-
tacks require superposition queries to the attacked cipher. However, even in the
Q1 setting, quantum computers can speed up attacks. Indeed, Bonnetain et al.
[9] introduced a new algorithm, called the “Offline Simon’s Algorithm”, which
leverages structural properties of cryptographic schemes to execute quantum at-
tacks which are ways faster than their known classical counterparts [9, 10]. The
“Offline Simon’s Algorithm” can be divided into two phases. An online phase,
in which the attacker makes classical queries to the oracle. The results of the
classical queries are then used to assemble a database of function inputs/outputs
in superposition. Once this database is established, an offline phase follows. In
the offline phase the attacker uses the database to run a quantum search and pe-
riod finding algorithms. The key idea of the offline Simon’s algorithm is that the
database can be reused throughout the whole offline phase, without any further
additional oracle queries. Reusing the database leads can be exploited to reduce
query complexity, speedup existing algorithms, or reduce memory requirements.
[9].

In more detail, the offline Simon’s algorithm is applicable in the following
situation. Consider a function g : {0, 1}n → {0, 1}l to which an attacker has
only classical oracle access and a family of functions F = {fi : {0, 1}n →
{0, 1}l, i ∈ {0, 1}m}. Assume that given any (i, x) ∈ {0, 1}m × {0, 1}n, there
exists a polynomial-time quantum circuit to compute F (i, x) = fi(x). For ex-
ample, g might be an encryption oracle for an encryption under a fixed (and
unknown) key k with a cipher E, while the function F (i, x) is an encryption
through the cipher E under a key i that is provided as input to the circuit.
Further assume that there exists an i0 ∈ {0, 1}m such that fi0 ⊕ g has a hidden
period, i.e., fi0(x)⊕ g(x) = fi0(x⊕ s)⊕ g(x⊕ s) for some s ∈ {0, 1}n.

The following result due to Bonnetain et al. [9] shows that in this setting,
the strategy described above can be used to achieve a substantial speed up over
classical algorithms when searching for the value i0 and the period s.



Theorem 3 (Asymmetric Search of a Period). Let F = {fi : {0, 1}n →
{0, 1}l, i ∈ {0, 1}m} be a family of functions, define F (i, ·) = fi(·) and let g
be a function g : {0, 1}n → {0, 1}l. Assume that we are given quantum oracle
access to F . Further, assume that there exists exactly one i0 ∈ {0, 1}m such that
fi0 ⊕ g has a hidden period, i.e., for all x ∈ {0, 1}n it holds that fi0(x)⊕ g(x) =
fi0(x⊕s)⊕g(x⊕s) for some s. Moreover, let the probability of unwanted collisions
for all fi ⊕ g be bounded from above by 1/2, i.e.,

max
i∈{0,1}m\{i0}
t∈{0,1}n\{0n}

Prx[fi(x)⊕ g(x) = fi(x⊕ t)⊕ g(x)] ≤ 1

2
.

Then, offline Simon’s algorithm can identify i0 with the following complexities:

1. If we are given classical oracle access to g, then we can identify i0 with
extremely high success probability using O(2n) classical queries to g and ad-
ditional computations with a time complexity of O((n3+nTF ) · 2m/2), where
TF is the time required to evaluate F once.

2. If we are given quantum oracle access to g, then we can identify i0 with
extremely high success probability, using O(n) quantum queries to g and ad-
ditional computations with time complexity O((n3 + nTF ) · 2m/2).

The offline version of Simon’s algorithm leverages Grover’s algorithm to
search for the i0 such that fi0 ⊕ g has a period, and uses Simon’s algorithm
as a sub-procedure in that search to verify that a given guess i∗ indeed results
in a period for the function fi∗ ⊕ g.

In the case where only classical access to g is provided, Bonnetain et al.
[9] first build up a database of all O(2n) input-outputs pairs of g to obtain a
superposition

|ϕg⟩ =
c·n⊗ ∑

x∈{0,1}n

|x⟩ |g(x)⟩

 ,

where
⊗

is the usual tensor product, cf. [32]. This database can then be used
to run the above-mentioned combination of Grover and Simon without any ad-
ditional classical or quantum queries to g. In the case where quantum access to
g is provided, this database can be built faster by querying g in superposition
directly. Note that once that i0 such that fi0 ⊕ g has a period s is identified, we
can recover the actual period s in polynomial time using Simon’s algorithm —
again reusing the g-database |ϕg⟩.

Throughout this paper, we will make use of the fact that the offline Simon’s
algorithm is also applicable in a more generalized setting, where the attacker
combines the function g with a quantum circuit through means other than xoring
the results [8, 9].

Theorem 4 (Generalized Offline Simon’s Algorithm). Consider a family
of functions Fi : {0, 1}n × {0, 1}l → {0, 1}l, indexed by i ∈ {0, 1}m. Let g be
a function g : {0, 1}n → {0, 1}l to which the attacker has classical or quantum
oracle access and pi : {0, 1}n → {0, 1}n be a permutation. Assume that for the



index value i0, the function Fi0(x, g(pi0(x))) has some period s. The Offline
Simon’s algorithm can identify i0 with extremely high success probability, with
the following complexities:

1. If we are given classical oracle access to g, then we can identify i0 using
O(2n) classical queries to g and additional computations with time complex-
ity O((n3 + nTF ) · 2m/2), where TF is the time required to evaluate F once.

2. If we are given quantum oracle access to g, then we can identify i0 using
O(n) quantum queries to g and additional computations with time complexity
O((n3 + nTF ) · 2m/2).

In the same vein as Simon’s algorithm, the offline Simon’s algorithm can
deal with unwanted collisions; again, for functions with large enough output the
impact of unwanted collisions can be neglected [8].

4 Quantum Cryptanalysis of the Milenage algorithms

The main idea of this paper is to leverage the above described quantum toolbox
to perform a quantum cryptanalysis of the Milenage algorithm set. To this end,
we extend existing attacks on symmetric ciphers to perform forgery attacks or
recover the secret key K and the bit-string OPc.

To describe the complexities of the presented attacks, we will consider three
parameters:

– the length of the secret key K,
– the length of the OPc bit-string, and
– the block length of the underlying block-cipher EK , which we denote by |M |.

Note that for the current Milenage configuration it holds that |K| = 128, |OPc| =
128 and |M | = 128. Quantum security considerations for 5G have proposed to
increase the key-size |K| to 256 bits [27, 38]. With this we can summarize our
four different attacks as follows.

1. For reasons of (exposition) completeness, we include the trivial Grover attack
that results in a quadratic reduction of the query complexity of exhaustive
key search.

2. A quantum slide attack against the f2 function, which reduces the com-
plexity of recovering the secret key material in case the OP bit-string is not
known. If quantum superposition access to f2 is granted, the attacker can
acquire the OPc and the key K with only O(|M |) superposition queries and
Õ
(
2|K|/2 · TQAES

)
time. To the best of our knowledge, recovering the network

authentication key K as well as the OPc bit-string via a classical slide attack

requires O
(
2

M
2

)
oracle quries and O

(
2|K|+ |M|

2

)
operations.

3. A quantum polynomial time existential forgery attack on the MAC function
f1, assuming quantum superposition access to f1. Classical attacks that
achieve existential forgery on the f1 cipher require O(2|M |/2) operations
and queries.



4. A quantum related key attack against Milenage, which can recover the secret
key in polynomial time in the Q2 model, and in Õ

(
2(|K|+|OPc|)/3

)
time and

queries in the Q1 model.

4.1 The Grover Key Recovery for f1, . . . , f5

We first describe the most obvious attack on the Milenage algorithms, that gives
an upper bound on the complexity of quantum attacks. Note that the Milenage
algorithms only rely on AES encryption and the xor operation — both of these
operations can be fully simulated by a quantum computer [40]. We can thus use
Grover to execute the following attack:

1. Using classical oracle access to one of the functions f1, . . . , f5, obtain enough
function input/outputs pairs (c1,m1), . . . , (cr,mr) to uniquely determine the
network authentication key K and — if required — the bitstring OPc.

2. Given these plaintext/ciphertext pairs, we can construct a quantum circuit
for the following function f : on input of a key guess K∗, OP ∗

C , return 1 if
K∗ = K and OP ∗

c = OPc and zero otherwise. This circuit can be constructed
as described in Section 3.1.

3. By this quantum circuit, we now have quantum oracle access to the function
f . This allows us to apply Grover’s algorithm to search for the key K and
the bit-string OPc.

With Theorem 1, the attack can recover the key with a circuit of depth

O
(
2|K|/2 · TQAES

)
or O

(
2

|K|+|OPc|
2 · TQAES

)
if the bit-string OPc is not known.

4.2 Quantum Slide Attacks Against f2

Bonnetain et al. [9] describe that the offline Simon algorithm can be used to
execute a quantum slide attack against a 2-round self-similar cipher. A self-
similar cipher builds upon a block cipher E to encrypt a message m, using two
keys k1, k2 in the following way:

iFX(m) = Ek2 [Ek2 [m⊕ k1]⊕ k1]⊕ k1.

The attack described by Bonnetain et al. [9] yields a speedup compared to
classical attacks. This quantum slide attack can be adapted to work on the f2
function as well.

To this end, we first show how the f2 function can be transformed into
a 2-round self-similar cipher and then describe how the attack described by
Bonnetain et al. [9] can be applied to our construction. This leads to an attack
that reduces the additional security provided by the OPc bit-string, a value
which is unknown in practice.

In more detail, recall that function f2 is defined as

f2(m) = EK [rotr2(EK [m⊕OPC ]⊕OPC)⊕ c2]⊕OPc.



Now, the standard defines r2 as r2 = 0, which simplifies f2 to

f2(m) = EK [EK [m⊕OPC ]⊕OPC ⊕ c2]⊕OPc

To transform f2 into a self-similar cipher, we define the function f ′2, which
for each input m instead queries f2 for m⊕ c2 and then xors the result with c2.
I.e.,

f2′(m)
def
= f2(m⊕ c2)⊕ c2

= EK [EK [m⊕ c2 ⊕OPC ]⊕OPC ⊕ c2]⊕OPc ⊕ c2.

Note that c2 is public. As a result, if the attacker has (quantum) oracle access
to f2, the attacker can easily construct a quantum circuit to also have (quantum)
oracle access f2′. Clearly, f2′ follows the description of a self-similar cipher, as
visualized in Figure 3.

m EK EK

c2 ⊕OPc c2 ⊕OPc c2 ⊕OPc

Fig. 3. The f2′ function, which now resembles an iterated FX cipher.

This enables us to execute the attack presented in [9], which we now describe
in the following. Define the functions pi, Fi, g as follows:

Fi((b, x), y)
def
=

{
y ⊕ x if b = 0

Ei(y)⊕ x if b = 1
pi((b, x))

def
=

{
Ei(x) if b = 0

x if b = 1

g(x)
def
= f2′(x).

We combine now the above functions into a function F ∗
i , indexed by i, which

will have the desired hidden period,

F ∗
i (b, x)

def
= Fi((b, x), g(pi(b, x))).

Note that for a given i, an attacker can easily construct an efficient quantum
circuit for Fi((b, x), y) and F

∗
i (b, x).

The function F ∗
k (b, x) = Fk((b, x), g(pk(b, x))) has a hidden period (1, OPc ⊕

c2), as shown in Appendix C. This is sufficient to apply the offline Simon’s
algorithm. Armed with Theorem 4 and the above definitions, we arrive at the
following complexities.



– In the Q2 setting, the attack requires O(|M |) superposition queries to f2
and Õ

(
(|M | · TQAES) · 2|K|/2) time.

– In the Q1 setting, the attack requires more time and queries to prepare
the database of g’s input-output pairs. To this end, the attacker needs to
query f2′(x) for all possible 2|M | inputs. Once the database is prepared,
the attacker can recover the key K as well as the OPc bit-string via the
offline Simon’s algorithm. As such, the attack requires O(2|M |) online classi-

cal queries, and has an additional time complexity of Õ
(
|M | · TQAES) · 2

|K|
2

)
.

Note that this attack requires querying the whole code-book, however. We
therefore only include it here for completeness.

To the best of our knowledge, the best classical attack against the f2 con-
struction — when both the OP bit-string as well the network authentication
key K are unknown — is a slide attack as well. The attacker guesses a key
i ∈ K and tries to find a collision in the function F ∗

i (b, x) to recover the period

(1, OPc ⊕ c2). The attack requires O
(
2

M
2

)
classical queries to the encryption

oracle and approximately O
(
2|K|+ |M|

2

)
time.

Therefore, the presented quantum slide attack reduces the additional security
provided by the OPc bit-string significantly.

4.3 Existential forgery of f1

Our third attack is based on the seminal work of Kaplan et al. [21], who describe
a polynomial time existential forgery attack against a CBC-MAC construction
in the Q2 model. As a result, if superposition queries against the CBC-MAC
oracle are allowed, CBC-MACs must be considered insecure. The attack can be
extended to an attack that allows for polynomial time existential forgery against
the f1 function from the Milenage algorithm set. In the following, we provide
the details of our novel quantum attack.

In summary, the attack assumes superposition access to an oracleOf1K,OPC
(x, y) =

f1K,OPc
(x, y), invoking the function f1 on input (x, y) with a fixed network au-

thentication key K and fixed value OPc. Given this access, the attacker can
efficiently construct q + 1 outputs of the function f1K,OPc after issuing a total
of q quantum and classical queries to the function f1K,OPc

.
Before we provide the details of the attack, recall that the function f1 is

defined as

f1K,OPc
(RAND, IN1)

def
= EK [EK [RAND ⊕OPC ]⊕ rotr1(IN1⊕OPc)⊕ c1]⊕OPc.

Also, for the sake of brevity, we will set x = RAND, and y = IN1, where
x, y ∈ {0, 1}|M |. Then, the function f1 can be a bit “shortened” to

f1K,OPc(x, y) = EK [EK [x⊕OPC ]⊕ rotr1(y ⊕OPc)⊕ c1]⊕OPc.



To now perform an existential forgery attack, pick two arbitrary bit-strings
α0, α1 ∈ {0, 1}|M | with α0 ̸= α1. We then define the following function f ′ :
{0, 1} × {0, 1}|M | → {0, 1}|M | by

f ′(b, y)
def
= f1K,OPc(αb, y)

= EK [EK [αb ⊕OPC ]⊕ rotr1(y)⊕ rotr1(OPc)⊕ c1]⊕OPc.

Clearly, if an attacker has access to a quantum oracle for f1K,OPC
, the at-

tacker can construct an efficient quantum circuit for f ′ as well. As shown in
Appendix D, the function f ′ has the hidden period (1, rot−1

r1 (α
∗
0 ⊕ α∗

1)), where
α∗
b = Ek[αb ⊕OPc]. This hidden period can be recovered in polynomial time us-

ing Simon’s algorithm. Once an attacker obtained the period (1, rot−1
r1 (α∗

0⊕α∗
1)),

the attacker can easily perform an existential forgery. Assume the attacker knows
the value t = f1K,OPc(α0, x), where x ∈ {0, 1}|M |. Then he also knows the out-
put of the function call f1K,OPc

(α1, x⊕ rot−1
r (α∗

0 ⊕ α∗
1)) = f1K,OPc

(α0, x) = t.
Since the f1 function is intended to be used as a MAC, this amounts to an
existential forgery attack.

The attacks proceeds then as follows.

1. Recover the hidden period (1, rot−1
r1 (α

∗
0 ⊕ α∗

1)) using Simon’s algorithm. Let
q′ denote the number of quantum queries made through running Simon’s
algorithm.

2. Repeat the following steps q′ + 1 times:
(a) Pick an arbitrary bit-string y ∈ {0, 1}|M |.
(b) Query the function f1K,OPc

on input (α0, y) to obtain t = f1K,OPc
(α0, y).

(c) The same value t is also a value output/MAC tag for the input (α1, y ⊕
rot−1

r (α∗
0 ⊕ α∗

1))

This will produce a total of 2q′ + 2 tags after issuing only 2q′ + 1 queries.
Overall the attack has a query complexity of O(|M |) quantum queries to f1K,OPc

and O(|M |3) classical computation time. For the Milenage key lengths, this
translates to c · 128 quantum queries for a small constant c and a negligible
amount of computation.

Resistance against classical existential forgery attacks is a design goal of the
f1 function [4] – our quantum existential forgery attack demonstrates that this
resistance does not transfer to the quantum security setting.

4.4 Quantum Related Key Attacks against f1, . . . , f5

Related key attacks, as introduced by Biham [7], consider attackers that can
request encryption under multiple related keys. The exact values of the keys are
unknown, but the way in which the keys are related is known to the attacker.
The attacks can be modelled through a related key oracle, which provides the
attacker access to encryption of a chosen-plaintext under related keys. Related
key attacks are of interest because they have practical implications, for example



when conducting fault-injection attacks. Recent works have shown that related
key attacks on block ciphers can be sped up through quantum computers, both
in the Q2 as well as the Q1 model. In the Q2 model, with quantum superposition
queries to the related key oracle, related key attacks can break any block cipher
in polynomial time [33]. Using the offline Simon algorithm, the attack from [33]
can be adapted to yield a super-quadratic speedup in the Q1 model as well. Both
attacks assume the following attacker model. For a given block-cipher E with
a fixed secret K, the attacker has access to a related key oracle OE,K defined
as follows. The oracle OEK

takes as input a bitmask L and a bit string x and
outputs EK⊕L(x).

Considering this attacker model, classical related key attacks on an ideal
block cipher require at least 2n/2 operations, where n is the key length and the
bound is tight, cf. [37].

In this section, we will describe the attacks in detail and show how to apply
these attacks to the Milenage algorithm set, yielding a polynomial time attack
in the Q2 model, and a super-quadratic speedup over classical attacks in the
Q1 model. The described attacks can be mounted on all Milenage functions
f1, . . . , f5, regardless of whether the OP bit string is known or unknown. To
focus on an intuitive understanding, we will assume that the OP bitstring is
public and thus the functions f1, . . . , f5 take only the network authentication
K as key material. The analysis for the case when OP is unknown follows in an
analogue fashion.

In the following, we denote by f the Milenage function under attack. Then,
for a given function fK , we assume that the attacker has access to an OfK

that takes as input a bitmask L ∈ {0, 1}n and a bit string x ∈ {0, 1}n and
outputs fK⊕L(x), i.e., Ofk(L, x) = fK⊕L(x). In the Q2 model, the attacker has
superposition access to this oracle, while in the Q1 model, the attacker only has
classical access.

Quantum Related Key Attacks with Superposition Access The quan-
tum related key attacks described by Roetteler and Steinwandt [33] can be trans-
ferred in a one-to-one fashion to attack the Milenage algorithm set in the attacker
model described above. Their attack works as follows.

Let c = (c1, . . . , cl) and m = (m1, . . . ,ml) be a set of output-inputs pairs
c = (fK(m1), . . . , fK(ml)) such that (c,m) uniquely determines K. Assume an
attacker has superposition access to a related key oracle for

OfK (s,m) = fK⊕s(m) = (fK⊕s(m1), . . . , fK⊕s(ml)).

Then, define the following mapping

f ′(s)
def
= {fK⊕s(m), fs(m)}.

Given quantum access to a related key oracle oracle OfK (s,m) for fK , one can
construct an efficient quantum circuit for f ′. To be efficiently encodable, f ′

outputs can be encoded as integers [33].



The mapping f ′ is two-to-one with period K, as shown below. Using Simon’s
algorithm, we can recover this period efficiently with only a linear number of
queries to the related key oracle.

To see why f ′ is 2-to-1 with period K, let s, s′ be two different bit-strings
such that f ′(s) = f ′(s′) and assume K ̸= 0n. We consider two cases.

1. Assume fs(m) = fs′(m). As we choose the plaintexts m = (m1, . . . ,ml)
so that they uniquely determine the key, this would imply s = s′, which
contradicts our assumption.

2. Now let fs(m) ̸= fs′(m). Thus, if f ′(s) = f ′(s′), then fK⊕s(m) = fs′(m).
The choice of plaintexts implies K ⊕ s = s′.

Quantum Related Key Attacks without Superposition Access In the Q1

setting, the attacker only has classical access to the related key oracle OfK (s,m).
However, leveraging the offline Simon’s algorithm, the attacker can still achieve
a super-quadratic speedup over classical attacks [9]. We now show how to apply
the offline Simon related key attack as stated by Bonnetain et al. [9] to the
Milenage algorithm set.

Intuitively, the attack works by dividing the key k and the bitmask l into
two parts, i.e., k = k1||k2, l = l1||l2 where l1, k1 ∈ {0, 1}|M |/3. We then query
the oracle OfK for each possible l1 and construct a quantum circuit F so that
Fk2

(l) ⊕ g(l) has period k1, where g is a function derived from the related key
oracle. This allows us to employ the offline Simon algorithm.

Let l = l1||l2, where l1 ∈ {0, 1}|M |/3, l2 ∈ {0, 1}|M |·2/3 and define the follow-
ing function g : {0, 1}|M |/3 → {0, 1}l·|M | by

g(l1)
def
= O(l1||0n

2
3 ) = f(k1||k2)⊕(l1||02/3·|M|)(m).

Moreover let F be a family of functions indexed by h so that

Fh(j) = fj||h(m).

Clearly F can be efficiently represented as a quantum circuit, while querying
g requires oracle access. The function Fk2

(l)⊕ g(l) has period k1. Thus, we have
a family of functions F such that there exists a k2 so that fk2 ⊕ g has a hidden
period. This suffices to apply the offline Simon’s algorithm to recover the key
part k2. Once we obtain the k2, we can efficiently recover k1 as well.

Applying now Theorem 3, the attack requires O(2|K|/3) classical queries to

the related key oracle and a has a time complexity of Õ
(
2

|K|
3 · TQAES

)
. If the

OP bit-string is known, this translates to approximately 243 oracle queries and
encryption operations. If the OP bit-string is not known, then the attack requires
approximately 285.3 oracle queries and encryption operations.

To see why the function Fk2
(l)⊕ g(l) has period k1 note that

Fk2
(l ⊕ k1)⊕ g(l ⊕ k1) = fl⊕k1||k2

(m)⊕ f(k1⊕l⊕k1)||k2
(m)

= fl⊕k1||k2
(m)⊕ fl||k2

(m)

= g(l)⊕ Fk2
(l).



5 Discussion

The presented attacks expose a structural weakness in the Milenage algorithm
set, namely that it exhibits a structure that makes it susceptible to quantum
period finding attacks. The attacks do not imply the Milenage is broken once
general quantum computer come into existence, since the required superposition
oracle is not given to the attacker in Milenage’s typical use-cases.

However, they do show that Milenage cannot be considered secure in the
quantum security (Q2) setting. This result has merit in and of itself, as an
absence of Q2 attacks would have implied an absence of Q1 attacks as well.
Further research is thus required to assess whether the vulnerability in the Q2

model transfers to further attacks in the Q1 model or security proofs for Milenage
can be established. For other ciphers, Q2 attacks have already been elevated to
the Q1 model [10]. In addition, the Q1 attacks we presented already improve on
best-known classical attacks, as well as the trivial Grover, “quantum bruteforce”
attack (depending on Milenage’s configuration). On the other hand, other works
have managed to established security proofs for FX-constructions in the Q1

model [18].
The 3GPP has also standardized an alternative instantiation of the secret

key functions f1, . . . , f5, the TUAK algorithm set [2]. The TUAK algorithm set
is based on the Keccak-f -permutation, which so far withstood quantum crypt-
analysis and seemingly does not exhibit the structural properties that enabled
the presented attacks. We thus conjecture it be secure against the “quantum pe-
riod finding” attacks presented in this paper. In addition, the TUAK algorithm
set was found to provide sufficient performance to be executed on a SIM card
[26], and thus poses a (great) alternative to the Milenage algorithm set.

6 Conclusion

Given that experts increasingly view large-scale quantum computers as likely
[30] and faced with the slow nature of standardization bodies, quantum security
considerations for cellular networks and infrastructure need to start now.

Bringing together research results from recent quantum cryptanalytic works
and synthesizing their results into a quantum toolbox, we took a step in this
direction. We present various novel attacks against the Milenage algorithm set.
Against the strongest (but purely theoretical) quantum adversary, Milenage must
be considered insecure. We see the following research directions as necessary to
ensure the security of telecommunication networks against quantum adversaries.

1. Symmetric cryptography that is used in telecommunication networks needs
to be subject to scrutiny, investigating the resilience against quantum-enabled
attacks. With the synthesized quantum toolbox, we hope to make this work
accessible to non-quantum experts in the research community as well. This
scrutiny should also encompass the investigation whether the results of our
attacks can be improved or proofs of security can be established.



2. It is necessary to clarify what security guarantees suffice and what kind of
quantum adversary models can be ignored in quantum security considera-
tions for cellular networks. The answer to this question can then guide the
choice for appropriate cryptographic algorithms.

Standardizing an algorithm which later turns out to be vulnerable to quantum
adversaries would be a disaster in a post-quantum world and should be prevented
under any circumstances. To this end, this work should serve as a starting point
to spark further investigations into the above-mentioned questions now, to ensure
a smooth transition into quantum-resistant telecommunication networks in the
future.

Acknowledgements The work described in this paper has been supported
by the Einstein Research Unit ”Perspectives of a quantum digital transforma-
tion: Near-term quantum computational devices and quantum processors” of the
Berlin University Alliance. The authors acknowledge the financial support by the
Federal Ministry of Education and Research of Germany in the programme of
“Souverän. Digital. Vernetzt.” Joint project 6G-RIC, project identification num-
ber: 16KISK030. We would like to thank Ryan Sweke and Xavier Bonnetain for
their valuable input which greatly improved the paper. We would like to thank
Shinjo Park for his valuable input on cellular network protocols.

Bibliography

[1] 3GPP: ETSI TR 135 102. Technical Report (TR) 35.102, 3rd Generation
Partnership Project (3GPP) (2013), URL , version 11.5.1

[2] 3GPP: ETSI TR 135 231. Technical Report (TR) 35.231, 3rd Generation
Partnership Project (3GPP) (2014), URL , version 12.1.0

[3] 3GPP: ETSI TR 135 206. Technical Report (TR) 35.206, 3rd Generation
Partnership Project (3GPP) (2016), URL , version 14.0.0

[4] 3GPP: ETSI TR 135 909. Technical Report (TR) 35.909, 3rd Generation
Partnership Project (3GPP) (2019), URL , version 15.0.0

[5] Alt, S., Fouque, P.A., Macario-Rat, G., Onete, C., Richard, B.: A crypto-
graphic analysis of UMTS/LTE AKA. In: Applied Cryptography and Net-
work Security: 14th International Conference, ACNS 2016, Guildford, UK,
June 19-22, 2016. Proceedings, pp. 18–35, Springer (2016)

[6] Aumasson, J.P.: Too much crypto. Cryptology ePrint Archive (2019)

[7] Biham, E.: New types of cryptanalytic attacks using related keys. Journal
of Cryptology 7(4), 229–246 (1994)

[8] Bonnetain, X.: Tight bounds for Simon’s algorithm. In: International Con-
ference on Cryptology and Information Security in Latin America, pp. 3–23,
Springer (2021)

[9] Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrot-
tenloher, A.: Quantum attacks without superposition queries: the offline



Simon’s algorithm. In: International Conference on the Theory and Ap-
plication of Cryptology and Information Security, pp. 552–583, Springer
(2019)

[10] Bonnetain, X., Schrottenloher, A., Sibleyras, F.: Beyond quadratic speedups
in quantum attacks on symmetric schemes. In: Advances in Cryptology –
EUROCRYPT 2022, pp. 315–344, Springer International Publishing, Cham
(2022), ISBN 978-3-031-07082-2

[11] Damir, M.T., Meskanen, T., Ramezanian, S., Niemi, V.: A beyond-5G au-
thentication and key agreement protocol. In: Network and System Security:
16th International Conference, NSS 2022, Denarau Island, Fiji, December
9–12, 2022, Proceedings, pp. 249–264, Springer (2022)

[12] Dong, X., Dong, B., Wang, X.: Quantum attacks on some Feistel block
ciphers. Designs, Codes and Cryptography 88(6), 1179–1203 (2020)

[13] Fettweis, G.P., Boche, H.: On 6G and trustworthiness. Communications of
the ACM 65(4), 48–49 (Apr 2022)

[14] Fluhrer, S.: Reassessing Grover’s algorithm. Cryptology ePrint Archive
(2017)

[15] Fouque, P.A., Onete, C., Richard, B.: Achieving better privacy for the 3GPP
AKA protocol. Proceedings on Privacy Enhancing Technologies 2016(4),
255–275 (Oct 2016),

[16] Gilbert, H.: The security of “one-block-to-many” modes of operation. In:
Johansson, T. (ed.) Fast Software Encryption – FSE 2003, Lecture Notes in
Computer Science, vol. 2887, pp. 376–395, Springer, Heidelberg, Germany,
Lund, Sweden (Feb 24–26, 2003),

[17] Grover, L.K.: A fast quantum mechanical algorithm for database search.
In: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pp. 212–219 (1996)

[18] Jaeger, J., Song, F., Tessaro, S.: Quantum key-length extension. In: Theory
of Cryptography: 19th International Conference, TCC 2021, Raleigh, NC,
USA, November 8–11, 2021, Proceedings, Part I, pp. 209–239, Springer
(2021)

[19] Jang, K., Baksi, A., Kim, H., Song, G., Seo, H., Chattopadhyay, A.: Quan-
tum analysis of AES – lowering limit of quantum attack complexity (2022)

[20] Jaques, S., Schrottenloher, A.: Low-gate quantum golden collision finding.
In: International Conference on Selected Areas in Cryptography, pp. 329–
359, Springer (2020)

[21] Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking sym-
metric cryptosystems using quantum period finding. In: Annual interna-
tional cryptology conference, pp. 207–237, Springer (2016)

[22] Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum dif-
ferential and linear cryptanalysis. IACR Transactions on Symmetric Cryp-
tology 2016(1), 71–94 (2016), ISSN 2519-173X, ,

[23] Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feis-
tel cipher and the random permutation. In: 2010 IEEE International Sym-
posium on Information Theory, pp. 2682–2685, IEEE (2010)



[24] Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour
cipher. In: 2012 International Symposium on Information Theory and its
Applications, pp. 312–316, IEEE (2012)

[25] Leander, G., May, A.: Grover meets Simon–quantumly attacking the FX-
construction. In: International Conference on the Theory and Application
of Cryptology and Information Security, pp. 161–178, Springer (2017)

[26] Mayes, K., Babbage, S., Maximov, A.: Performance evaluation of the new
Tuak mobile authentication algorithm. Proc. ICONS/EMBEDDED pp. 38–
44 (2016)

[27] Mitchell, C.J.: The impact of quantum computing on real-world security: A
5g case study. Computers & Security 93, 101825 (2020)

[28] NIST: Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process. Tech. rep., National Insti-
tute of Standards and Technology (NIST), Washington, D.C. (2017), URL

[29] NIST: Announcing four candidates to be standardized, plus fourth round
candidates (2022), URL

[30] Piani, M., Mosca, M.: Quantum threat timeline report 2021 (2021)
[31] PlankQK: Plankqk: Konsortium (2022), URL
[32] Rieffel, E.G., Polak, W.H.: Quantum computing: A gentle introduction.

MIT Press (2011)
[33] Roetteler, M., Steinwandt, R.: A note on quantum related-key attacks. In-

formation Processing Letters 115(1), 40–44 (2015)
[34] Servedio, R.A., Gortler, S.J.: Equivalences and separations between quan-

tum and classical learnability. SIAM Journal on Computing 33(5), 1067–
1092 (2004)

[35] Simon, D.R.: On the power of quantum computation. SIAM journal on
computing 26(5), 1474–1483 (1997)

[36] Ulitzsch, V.Q., Park, S., Marzougui, S., Seifert, J.P.: A post-quantum secure
subscription concealed identifier for 6G. In: Proceedings of the 15th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, pp.
157–168 (2022)

[37] Winternitz, R., Hellman, M.: Chosen-key attacks on a block cipher. Cryp-
tologia 11(1), 16–20 (1987)

[38] Yang, J., Johansson, T.: An overview of cryptographic primitives for possi-
ble use in 5g and beyond. Science China Information Sciences 63(12), 1–22
(2020)

[39] Zhandry, M.: How to construct quantum random functions. In: 2012 IEEE
53rd Annual Symposium on Foundations of Computer Science, pp. 679–687,
IEEE (2012)

[40] Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations
of aes with fewer qubits. In: International Conference on the Theory and
Application of Cryptology and Information Security, pp. 697–726, Springer
(2020)



A List of Abbreviations

3GPP Third Generation Partnership Project

AK Anomity Key

AKA Authentication and Key Agreement

AMF Authentication Management Field

SQN Sequence Number

MAC Message Authentication Code

HN Home Network

MME Mobility Management Entity

BS Base Station

MS Mobile Station

LTE Long-Term Evolution

EAP Extensible Authentication Protocol

3GPP 3rd Generation Partnership Project

B The AKA Protocol

The Milenage algorithm set’s main usage is the AKA protocol, used for authen-
tication and session establishment in cellular networks as well as other cellular
related applications, e.g., as a variant of the Extensible Authentication Proto-
col (EAP), the EAP-AKA.

In summary, the LTE-AKA protocol is a challenge-response protocol that
allows the subscriber to authenticate themselves to the network. The AKA pro-
tocol also derives a session key KASME that is used for encryption and integrity
protection of communication at later points. The functions f1, . . . , f4 from the
Milenage algorithm set serve to derive a MAC, an expected response to a chal-
lenge, and the confidentiality and integrity keys (commonly denoted as CK and
IK), which are in turn used to derive session keys. The function f5 is used to de-
rive an Anomity Key (AK). The AK serves to mask the SQN, where the purpose
of the SQN itself is to prevent replay attacks.

The authentication procedure in the fifth generation (5G) of cellular networks
networks add various security and privacy enhancements to the LTE-AKA pro-
tocol, but uses the functions f1, . . . , f5 in the same way. Given that the functions
provide authentication and serve as a basis for later encryption and integrity pro-
tection, the security of cellular networks is completely contigent on the security
of the functions f1, . . . , f5.



C Proof of the Hidden Period Required for the Quantum
Slide Attack

To see whyF ∗
k (b, x) = Fk((b, x), g(pk(b, x))) indeed has the hidden period (1, OPc⊕

c2), first observe that

f2′(EK(x⊕OP ∗
c ))⊕ (x⊕OP ∗

c ) = EK(f2′(x))⊕ x, (1)

where we write OP ∗
c = OPc ⊕ c2 for the sake of brevity. To see why Equation 1

holds, note that:

f2′(EK [x⊕OP ∗
c ])⊕ (x⊕OP ∗

c )

= EK [EK [EK [x⊕OP ∗
c ]⊕OP ∗

c ]⊕OP ∗
c ]⊕OP ∗

c ⊕ (x⊕OP ∗
c )

= EK [EK [EK [x⊕OP ∗
c ]⊕OP ∗

c ]⊕OP ∗
c ]⊕ x

and

EK(f2′(x))⊕ x

= EK [EK [EK [x⊕OP ∗
c ]⊕OP ∗

c ]⊕OP ∗
c ]⊕ x

= f2′(EK [x⊕OP ∗
c ])⊕ (x⊕OP ∗

c ).

Thus, it follows that F ∗
k (1, x) = F ∗

k (0, x⊕OPc ⊕ c2) because

F ∗
k (1, x) = Fk((1, x), g(pk(1, x)))

= Fk((1, x), g(x))

= Fk((1, x), f
′
2((x)))

= Ek(f
′
2(x))⊕ x

and

F ∗
k (0, x⊕OPc ⊕ c2)

= Fk((0, x⊕OP ∗
c ), g(pk(0, x⊕OP ∗

c )))

= Fk((0, x⊕OP ∗
c ), g(Ek(x⊕OP ∗

c )))

= f2′(Ek(x⊕OP ∗
c ))⊕ x⊕OP ∗

c

= Ek(f2
′(x))⊕ x,

where the last step follows from equation 1.

D Proof of the Hidden Period Required for the
Existential Forgery Attack

It remains to be shown that f ′ as defined in Section 4.3 indeed has the hidden
period (1, rot−1

r1 (α
∗
0 ⊕ α∗

1)). To this end, we need to show that

f ′(0, y) = f ′(1, y ⊕ rot−1
r1 (Ek[α0 ⊕OPc]⊕ Ek[α1 ⊕OPc])).



First, observe that by linearity of rotation it holds that

f1K,OPc
(x, y)

= EK [EK [x⊕OPC ]⊕ rotr1(y ⊕OPc)⊕ c1]⊕OPc

= EK [EK [x⊕OPC ]⊕ rotr1(y)⊕ rotr1(OPc)⊕ c1]⊕OPc.

Thus, we have

f ′(0, y) = EK [α∗
0 ⊕ rotr1(y)⊕ rotr1(OPc)⊕ c1]⊕OPc,

and

f ′(1, y ⊕ rot−1
r (α∗

0 ⊕ α∗
1))

= EK [α∗
1 ⊕ rotr1(y ⊕ rot−1

r1 (α∗
0 ⊕ α∗

1))⊕ rotr1(OPc)⊕ c1]⊕
OPc

= EK [α∗
1 ⊕ rotr1(y)⊕ rotr1(rot

−1
r1 (α∗

0 ⊕ α∗
1))⊕

rotr1(OPc)⊕ c1]⊕OPc.

Now, using rotr1(rot
−1
r1 (x)) = x we can continue as

= EK [α∗
1 ⊕ rotr1(y)⊕ α∗

0 ⊕ α∗
1 ⊕ rotr1(OPc)⊕ c1]⊕OPc

= EK [rotr1(y)⊕ α∗
0 ⊕ rotr1(OPc)⊕ c1]⊕OPc

= f ′(0, y),

which indeed yields f ′(0, y) = f ′(1, y ⊕ rot−1
r (α∗

0 ⊕ α∗
1)).


	Breaking the Quadratic Barrier:  Quantum Cryptanalysis of Milenage,  Telecommunications' Cryptographic Backbone

