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In 1985, Dolev and Reischuk proved a fundamental communication lower bounds on protocols achieving fault tolerant synchronous

broadcast and consensus: any deterministic protocol solving those tasks (even against omission faults) requires at least a quadratic

number of messages to be sent by nonfaulty parties. In contrast, many blockchain systems achieve consensus with seemingly linear

communication per instance against Byzantine faults. We explore this dissonance in three main ways. First, we extend the Dolev-

Reischuk family of lower bounds and prove a new lower bound for Crusader Broadcast protocols. Our lower bound for crusader

broadcast requires non-trivial extensions and a much stronger Byzantine adversary with the ability to simulate honest parties. Secondly,

we extend our lower bounds to all-but-𝑚 Crusader Broadcast, in which up to𝑚 parties are allowed to output a different value. Finally,

we discuss the ways in which these lower bounds relate to the security of blockchain systems. We show how Eclipse-style attacks in

such systems can be viewed as specific instances of the attacks used in our lower bound for Crusader Broadcast. This connection

suggests a more systematic way of analyzing and reasoning about Eclipse-style attacks through the lens of the Dolev-Reischuk family

of attacks.
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1 INTRODUCTION

Two of the foundational and highly related tasks in the world of distributed systems are consensus, and broadcast.

In a consensus protocol, all parties have some input and they must agree on an output. On the other hand, in a

broadcast protocol, a designated sender attempts to send a specific message to all parties, and all parties must output

the same message sent by the sender. These tasks have been widely researched both in theoretic settings and practical

settings. Ideally, we would like to be able to design efficient protocols for solving these tasks in the presence of faults.

A foundational limit on the efficiency of such protocols is the work of Dolev and Reischuk in 1985 [9]. They prove

that any deterministic protocol solving fault tolerant broadcast must send at least Ω(𝑛 · 𝑓 ) messages, where 𝑛 is the

number of parties overall and 𝑓 is the number of omission-faulty parties, whose incoming and outgoing messages can

be dropped
1
. Since broadcast and consensus reduce to each other [6], the lower bound also provides a lower bound on

consensus. Hadzilacos and Halpern [14] show that a similar lower bound also holds only when considering fault-free

runs of broadcast protocols if they are designed to be resilient to faults. Abraham, Chun, Dolev, Nayak, Pass, Ren, and

Shi [1] generalized this work to probabilistic protocols, showing that with 𝑓 Byzantine faults, a broadcast protocol

with a
3

4
+ 𝜖 probability of success requires Ω(𝜖𝑛𝑓 ) messages to be sent in expectation (assuming a strongly adaptive

adversary).

1.1 Dolev-Reischuk does not hold for Crusader Broadcast

A slightly relaxed task related to that of broadcast is the task of Crusader Broadcast [8], in which parties are allowed to

remain undecided when the sender is faulty. This is formalized by allowing parties to output a special non-value, ⊥.
Two important restrictions, in this case, are that no two nonfaulty parties may output different non-⊥ values and that

1
the lower bound in [9] mentioned malicious adversaries, the extension to omission failures appears in [3].
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all nonfaulty parties must output the sender’s input if it is nonfaulty. The known Dolev-Reischuk style attacks heavily

rely on the fact that parties have to output some value from the protocol, regardless of what they see. This is utilized by

completely isolating a party, forcing it to communicate only with omission faulty parties. The adversary then simply

blocks all communication with the isolated party, forcing it to output some value without hearing anything throughout

the protocol. All that is left to do is make sure that other parties output the other value, successfully attacking any

protocol with low communication complexity. However, in Crusader Broadcast, a nonfaulty party is allowed to output ⊥
if it hears nothing throughout the protocol. Since a nonfaulty sender may send messages to any party without reaching

quadratic communication complexity, it is entirely possible that in any run in which the sender is nonfaulty, no party

can be completely isolated from nonfaulty parties in the protocol. This implies that the Dolev-Reischuk lower bound

attack does not hold as is for Crusader broadcast protocols.

1.2 A New Lower Bound for Crusader Broadcast

The main contribution of this paper is a new lower bound for crusader broadcast. It differs substantially from the classic

Dolev-Reischuk lower bound in that the adversary is required to actively corrupt parties. Using Byzantine corruption

also raises a new challenge that is similar to that of the lower bound proven by Fischer, Lynch and Meritt [12]: the

corrupted parties need to be able to simulate honest parties.
Intuitively, while classic Dolev-Reischuk isolates one party and makes it hear no message at all, while other parties

hear a sender sending say 𝑣 , in our lower bound we isolate one party and make it think it is living in an alternative

world where the sender is sending 𝑣 ′ ≠ 𝑣 . Again intuitively, building an alternative universe is harder since it requires

active simulation of other parties, and thus requires more malice than just causing the isolated party to hear nothing.

This type of attack (isolating a node and making it think it’s living in an alternative world) is not just theoretical, we

discuss is section 5 how Eclipse-type attacks can be viewed as types of this attack. We find this connection between a

theoretical lower bound and Eclipse-style blockchain attacks to be a conceptual contribution of its own and expand on

this in section 1.4.

1.3 Extending to the all-but-m model

Yet another problem that the classic Dolev-Reischuk lower bound does not cover is almost everywhere agreement
[10, 17]. This notion is closely related to that of classic agreement protocols but allows a small number of nonfaulty

parties to output the wrong value, as long as the percentage of those dissenting parties tends towards 0 as 𝑛 tends

towards infinity. In particular, classic Dolev-Reischuk just shows a safety violation of one party. What if we allow some

fraction of the parties to dissent and output differing values? Does some variant of Dolev-Reischuk hold in this case?

In this work, we prove that if the number of messages sent is significantly smaller than quadratic, then a large

number of parties can be made to disagree. Concretely, if the number of messages sent is 𝑂 (𝑛𝑓 1−𝑐 ) for some 𝑐 ∈ [0, 1],
the number of parties that can be made to output a differing value is 𝑂 (𝑓 𝑐 ). Crucially, as the number of messages in

the protocol approaches 𝑂 (𝑛), the adversary can make 𝑂 (𝑓 ) nonfaulty parties disagree, which is often taken to be a

constant fraction of the total number of parties.

1.4 Why does Crusader Broadcast matter for Blockchains? Connections to Eclipse Style Attacks

Blockchain systems are designed to solve the task of consensus [21, 24], or more precisely, state machine replication.

Many of these systems claim to achieve consensus in a linear number of messages per block. This seems to be in direct

conflict with the lower bounds of Dolev-Reischuk, suggesting that at least quadratic (Ω(𝑛𝑓 )) messages are required.
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One way of making sense of this contradiction is by looking at the details of the lower bounds. As discussed above,

Dolev-Reischuk prove such lower bounds for protocols in which parties are required to output some value eventually,

even without hearing any message. In Bitcoin and Ethereum (Nakamoto consensus based systems) not hearing new

blocks simply causes parties to not decide anything. Formally, we can think of this as if such a party outputs a special

value ⊥, signifying not knowing. In this sense, it is natural to actually view such blockchain protocols, when focusing

on a single block, as solving Crusader Broadcast rather than consensus.
In section 5, we explore the connections between our new lower bounds for crusader broadcast and the eclipse style

attacks in proof-of-work blockchain systems. We observe the following similarity:

• In our lower bound for a single shot of crusader broadcast, in the deterministic case the adversary can be

static to isolate a party and needs to be able to simulate other parties to trick the isolated party to believe an

alternative world.

• Similarly, in Eclipse-style attacks, the systems had insufficient randomness at the network layer, meaning that

the communication graph induced by the protocol was either deterministic, or very easy to influence. This

allowed a relatively static adversary to isolate a party, or even worse. Similarly, by the nature of Nakamoto

consensus, the adversary can simulate other parties (often for a limited time) and trick the isolated party to

believe an alternative world.

Note that in both cases, the isolated party believes in an alternative world and a double spend is executed. This is

unlike the classic Dolev-Reischuk lower bound where the isolated node just sees silence (so there is just one spend and

one party that does not observe the spend). Finally, we discuss in section 6 the consequence of our lower bound for

the study of upper bounds for crusader broadcast. In particular, we show how a subquadratic protocol for crusader

broadcast takes advantage of randomization and cryptography in order to circumvent the Ω(𝑛2) lower bound.

Our contributions

To summarize, our work makes three main contributions:

(1) A new Lower Bound for crusader broadcast. While it is definitely part of the enhanced Dolev-Reischuk family,

it requires new non-trivial extensions. In particular, Byzantine adversaries and the ability to simulate.

Theorem 4.1. Let there be a deterministic protocol solving Binary Crusader Broadcast in lockstep synchrony. If the

protocol is resilient to 𝑓 static Byzantine corruptions, then there must be at least one run of the protocol in which at

least 1

4
(𝑛 − 1) 𝑓 messages are sent for 𝑛 ≥ 𝑓 + 2.

(2) We extend the Dolev-Reischuk style lower bounds to the all but𝑚 model, showing that near linear protocols

may actually suffer a near linear number of isolated parties. Similar to how Abraham et al. [1] extend the Dolev-

Reischuk lower bound to the randomized setting given a strongly adaptive adversary, we also extended our lower

bound on Crusader Broadcast to the randomized setting given a strongly adaptive adversary in theorem 4.2.

Theorem 4.3. Let there be a probabilistic ( 2
3
+𝜖)-correct protocol solving all-but (𝑓 𝑐 −1) Binary Crusader Broadcast

in lockstep synchrony for some 𝑐 ∈ [0, 1] and 𝜖 ∈
(
0, 1

3

]
. If the protocol is resilient to 𝑓 strongly adaptive Byzantine

corruptions, then the expected number of messages sent in the protocol is at least 𝜖
8
(𝑛 − 1) 𝑓 1−𝑐 for 𝑛 ≥ 3𝑓 .

(3) Make the conceptual connection between Eclipse style attacks and our new Crusader broadcast lower bound.

We believe that by highlighting this connection, protocol designers may be able to more rigorously design

blockchain protocols that are more secure against Eclipse-style attacks.



4 Ittai Abraham and Gilad Stern

2 COMMUNICATION AND ADVERSARY MODEL

We consider a fully-connected network of 𝑛 parties with synchronous communication: there is a commonly known

bound Δ on message delay. The adversary can choose exactly how long each message is delayed within the range [0,Δ].
The lower bounds hold in an even stronger synchrony assumption: lockstep communication where communication

proceeds in lockstep rounds.

We assume a Byzantine adversary that can corrupt up to 𝑓 parties. We consider both static and strongly adaptive

adversaries. A static Byzantine adversary must choose which parties to corrupt at the beginning of the protocol. A

strongly adaptive adversary can choose which parties to corrupt at any given time. Furthermore, it can even choose

to corrupt parties after they send messages, but before they are delivered. If it chooses to do so, it can delete those

messages and send different messages instead. We assume a computationally unbounded adversary that can simulate

other parties if required. When the adversary is computationally limited, we explicitly mention this.

3 DEFINITIONS

The Binary Crusader Broadcast task is very similar to the Binary Broadcast task, except parties are also allowed to

output ⊥ if the sender is faulty. Formally, such a protocol is defined as follows:

Definition 3.1. A Binary Crusader Broadcast protocol has a designated sender 𝑠 with some input 𝑥 ∈ {0, 1}. Every
party outputs some value 𝑦𝑖 ∈ {0, 1,⊥}. A protocol solving Binary Crusader Broadcast has the following properties:

• Validity. If the sender is nonfaulty, then every nonfaulty party outputs 𝑥 .

• Correctness. If two nonfaulty parties 𝑖, 𝑗 output 𝑦𝑖 , 𝑦 𝑗 ∈ {0, 1}, then 𝑦𝑖 = 𝑦 𝑗 .

• Termination. If all nonfaulty parties participate in the protocol, they all complete it.

A weaker version of the Binary Crusader Broadcast task is the almost-everywhere Binary Crusader Broadcast

protocol, similar to the almost-everywhere agreement problem [10, 23]. Whereas in a regular Binary Crusader Broadcast

protocol all parties that don’t output ⊥ must output the same value even when the sender is faulty, in an almost-

everywhere Binary Crusader Broadcast protocol a small number of parties are allowed to output a different value when

the sender is faulty. A protocol solving Binary Crusader allowing𝑚 parties to disagree is called an all-but𝑚 Binary

Crusader protocol, and is defined as follows:

Definition 3.2. An all-but𝑚 Binary Crusader Broadcast protocol has a designated sender 𝑠 with some input 𝑥 ∈ {0, 1}.
Every party outputs some value 𝑦𝑖 ∈ {0, 1,⊥}. A protocol solving all-but𝑚 Binary Crusader Broadcast has the following

properties:

• Validity. If the sender is nonfaulty, then every nonfaulty party outputs 𝑥 .

• Correctness. There exists some 𝑦 ∈ {0, 1} such that at most𝑚 nonfaulty parties 𝑖 output 𝑦𝑖 ∉ {𝑦,⊥}.
• Termination. If all nonfaulty parties participate in the protocol, they all complete it.

Note that an all-but 0 Binary Crusader Broadcast protocol is simply a Binary Crusader Broadcast protocol. A protocol

is said to be deterministic if all nonfaulty parties’ actions are chosen as a deterministic function of their input and the

messages they receive, and probabilistic otherwise. A protocol is said to be 𝑝-correct if for any adversary all of its

properties hold with probability 𝑝 or greater.
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3.1 Relationship to Crusader Consensus

The notion of Crusader Broadcast is highly related to that of Crusader Consensus. We define the task of Crusader

Consensus as follows:

Definition 3.3. In a Binary Crusader Consensus protocol, every party 𝑖 has an input 𝑥𝑖 ∈ {0, 1}. Every party outputs

some value 𝑦𝑖 ∈ {0, 1,⊥}. A protocol solving Binary Crusader Consensus has the following properties:

• Validity. If all nonfaulty parties have the same input 𝑥 , then they all output 𝑥 .

• Correctness. If two nonfaulty parties 𝑖, 𝑗 output 𝑦𝑖 , 𝑦 𝑗 ∈ {0, 1}, then 𝑦𝑖 = 𝑦 𝑗 .

• Termination. If all nonfaulty parties participate in the protocol, they all complete it.

These tasks reduce to each other in the same way regular consensus and broadcast reduce to each other when

𝑛 ≥ 2𝑓 + 1 with 𝑓 Byzantine parties [6]. In short, assume we have a Crusader Broadcast protocol. In order to achieve

Crusader Consensus, every party broadcasts its input 𝑥𝑖 and waits to complete all broadcasts. After completing all 𝑛

broadcasts, if there exists some value 𝑦 which was received in at least 𝑛 − 𝑓 broadcasts, output 𝑦. Otherwise output ⊥.
If all nonfaulty parties have the same input 𝑥 , then from the Validity property they will receive that value in at least the

𝑛 − 𝑓 broadcasts with nonfaulty senders and output it. On the other hand, if some nonfaulty party outputs a value

𝑦 ≠ ⊥, then it received it in at least 𝑛 − 𝑓 broadcasts. From the Correctness property, every other party either outputs 𝑦

or ⊥ in those broadcasts, and thus can output some 𝑦′ such that 𝑦′ ∉ {𝑦,⊥} only in the 𝑓 remaining broadcasts. We

know that 𝑛 ≥ 2𝑓 + 1, and thus 𝑓 ≤ 𝑛 − (𝑓 + 1) < 𝑛 − 𝑓 , which means that it won’t output 𝑦′ ∉ {𝑦,⊥}, as required.
In the other direction, assume that there exists a Crusader Consensus protocol. In order to implement broadcast, the

sender sends its input to all parties. Each party that doesn’t receive a value within Δ time chooses a default value, e.g.

0. They then all participate in the Crusader Consensus protocol with their received value as input, and output their

output from the Crusader Consensus protocol. If the sender is nonfaulty with the input 𝑥 , then all nonfaulty parties will

receive that value in Δ time. They then all participate the Crusader Consensus protocol with the input 𝑥 , and therefore

from the Validity property output 𝑥 as well. In addition, if two nonfaulty parties output 𝑦,𝑦′ ∈ {0, 1}, then from the

Correctness property 𝑦 = 𝑦′, as required.

4 LOWER BOUNDS

This section provides several communication lower bounds on protocols solving Binary Crusader Broadcast. The lower

bounds use ideas from the Dolev-Reischuk lower bound [9], and from the subsequent work of Abraham et al. [1]. The

lower bounds presented in theorem 4.1 and theorem 4.2 isolate a party in a similar way to the ones described in [9]

and [1] respectively. However, unlike previous works, the lower bounds presented in this paper require the adversary

to act in a Byzantine manner and actively simulate other parties. theorem 4.3 shows how previously known techniques

can be used to isolate a large number of parties, and cause wide disagreement in the network. All of the following lower

bounds are stated as lower bounds on the number of messages sent, as done in previous works. However, the lower

bounds actually only use the number of messages as a bound on the number edges in the communication graph. That

is, if fewer than𝑚 messages are sent in the network, then there are fewer than𝑚 pairs of parties that communicate

with each other. These lower bounds cannot be avoided by increasing the number of messages without increasing

the number of edges in the communication graph of the protocol. This means that the lower bounds might be more

accurately stated in terms of edges in the communication graph instead of messages sent.



6 Ittai Abraham and Gilad Stern

The first lower bound uses the fact that few messages are sent in order to isolate a single party 𝑖 and cause it to

communicate only with faulty parties. The faulty parties then simulate a run with the input 1 for party 𝑖 when a

nonfaulty sender has the input 0, causing it to output 1. The faulty parties also make sure that the rest of the network

doesn’t notice that 𝑖 was isolated by simulating its messages in a run with the sender’s input being 0 and having the

faulty parties respond accordingly when communicating with other parties. Note that in order for the theorem to hold,

the content of the messages actually can be probabilistic, as long as parties always communicate with the same parties

throughout the protocol. All of the following bounds also include an upper bound on the number of faulty parties. This

is done in order to make sure that the required number of nonfaulty parties remain in order to reach a contradiction.

Clearly, if the adversary can actually corrupt a larger number of parties, it can choose not to do so and achieve the

same lower bounds, slightly adjusting the exact number of messages. In all cases however, 𝑓 is allowed to be a constant

fraction of 𝑛.

Theorem 4.1. Let there be a deterministic protocol solving Binary Crusader Broadcast in lockstep synchrony. If the

protocol is resilient to 𝑓 static Byzantine corruptions, then there must be at least one run of the protocol in which at least
1

4
(𝑛 − 1) 𝑓 messages are sent for 𝑛 ≥ 𝑓 + 2.

Proof. Assume by way of contradiction that fewer than
1

4
(𝑛 − 1) 𝑓 messages are sent overall throughout any run of

the protocol. Let𝑊0 be a run in which the adversary does not corrupt any party and the sender has input 0. Similarly, let

𝑊1 be a run in which the adversary does not corrupt any party and the sender has input 1. From the Validity property

of the protocol all parties output 0 in𝑊0 and 1 in𝑊1. By assumption, the total number of messages sent in either run is

less than
1

4
(𝑛 − 1) 𝑓 , and thus the total number of messages in both runs is less than

1

2
(𝑛 − 1) 𝑓 . Now assume by way of

contradiction that at least 𝑛 − 1 parties send or receive at least 𝑓 messages in total in both runs. When summing over

the messages sent or received by all parties, each message is counted twice: once when it is sent and once when it is

received. Therefore, the total number of messages sent in both𝑊0 and𝑊1 is at least
1

2
(𝑛 − 1) 𝑓 , reaching a contradiction

to the stated above. This means that at least 2 parties send or receive no more than 𝑓 messages in total in both runs. Let

𝑖 be one of those parties such that 𝑖 is not the sender 𝑠 . Let 𝑃0, 𝑃1 be the sets of parties with which 𝑖 communicated in

𝑊0 and𝑊1 respectively. By the stated above, |𝑃0 ∪ 𝑃1 | ≤ 𝑓 .

Now observe the run𝑊ℎ𝑦𝑏𝑟𝑖𝑑 in which 𝑠 has the input 0 and the adversary acts according to the following strategy:

the adversary corrupts all parties in 𝑃0 ∪ 𝑃1, all of those parties communicate with all parties that aren’t 𝑖 as nonfaulty

parties would in the protocol, and communicate with 𝑖 as nonfaulty parties would if 𝑠 had the input 1. More precisely,

parties in 𝑃0 ∪ 𝑃1 simulate all of 𝑖’s messages internally when communicating with all parties other than 𝑖 and act as if

they received those messages, but don’t send resulting messages to 𝑖 . On the other hand, when communicating with

𝑖 they simulate all of the messages from all other parties with a nonfaulty 𝑠 having the input 1 and act accordingly,

but only send resulting messages to party 𝑖 . Note that both in𝑊0 and in𝑊1, all parties not in 𝑃0 ∪ 𝑃1 ∪ {𝑖} don’t
communicate directly with party 𝑖 . All nonfaulty parties see communication that is identical to the one in𝑊0 and

since they are not in 𝑃0, they don’t send any messages to 𝑖 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 as well. Similarly, 𝑖 sees communication that is

identical to the one in𝑊1 and thus doesn’t send any messages to parties other than those in 𝑃1 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . Therefore

the view of all parties not in 𝑃0 ∪ 𝑃1 ∪ {𝑖} is identical to their view in𝑊0, and thus as stated above, they all output 0.

On the other hand, 𝑖’s view is identical to its view in𝑊1, and thus it outputs 1. Note that 𝑛 ≥ 𝑓 + 2, so there are at least

two nonfaulty parties. Party 𝑖 and all parties not in 𝑃0 ∪ 𝑃1 ∪ {𝑖} are nonfaulty, so this is a violation of the Correctness

property of the protocol, reaching a contradiction and completing the proof. □
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The second lower bound uses ideas from [1] and generalizes them to the task of probabilistic Crusader Broadcast.

The first part of the lower bound shows that if no more than
𝜖
4
𝑓 2 messages are sent in expectation in the protocol, then

there is at least one non-sender party that communicates with a small number of parties with probability 𝜖 . Using this

insight, an adversary can isolate that party and perform a similar attack to the one described in the previous theorem.

The last part of the theorem shows that the probability that if the original protocol is purported to be ( 2
3
+ 𝜖)-correct,

then the isolated party and the rest of the nonfaulty parties output different values with at least
1

3
probability, reaching

a contradiction. Recall that as defined in section 3, a protocol is said to be 𝑝-correct if its properties hold with probability

𝑝 or greater.

Theorem 4.2. Let there be a probabilistic ( 2
3
+𝜖)-correct protocol solving Binary Crusader Broadcast in lockstep synchrony

for some 𝜖 ∈
(
0, 1

3

]
. If the protocol is resilient to 𝑓 strongly adaptive Byzantine corruptions, then the expected number of

messages sent in the protocol is at least 𝜖
4
(𝑛 − 1) 𝑓 for 𝑛 ≥ 𝑓 + 2.

Proof. Assume that is not the case. This means that there exists a ( 2
3
+ 𝜖)-correct Binary Crusader Broadcast

protocol with expected message complexity smaller than
𝜖
4
(𝑛 − 1) 𝑓 . Similarly to the previous theorem, we will define

𝑊0 and𝑊1 as runs in which the adversary does not corrupt any party and the sender has inputs 0 and 1 respectively.

In both of these runs, the probability that all parties terminate and output the sender’s input must be at least
2

3
+ 𝜖 .

Define 𝑀0 and 𝑀1 to be random variables indicating the number of messages sent by nonfaulty parties in𝑊0 and

𝑊1 respectively. In addition, define 𝑀 = 𝑀0 + 𝑀1 to be the number of messages sent in both runs. By assumption,

E[𝑀] = E[𝑀0] + E[𝑀1] < 𝜖
2
(𝑛 − 1) 𝑓 . For every 𝑖 ∈ [𝑛], let 𝑋𝑖 be a random variable indicating the total number of

messages sent or received by party 𝑖 in total both in𝑊0 and in𝑊1. Assume by way of contradiction that for at least

𝑛 − 1 parties 𝑖 ∈ [𝑛], E[𝑋𝑖 ] > 𝜖 𝑓 . First note that𝑀 = 1

2

∑𝑛
𝑖=1 𝑋𝑖 because when summing over all the messages that each

party sent and received, we count every message twice. Therefore, E[𝑀] = 1

2

∑𝑛
𝑖=1 E[𝑋𝑖 ] >

𝜖
2
(𝑛 − 1) 𝑓 , in contradiction.

Therefore, there exist at least two parties 𝑖, 𝑗 ∈ [𝑛] for which E[𝑋𝑖 ],E[𝑋 𝑗 ] ≤ 𝜖 𝑓 . Let 𝑖 be a non-sender party for which

E[𝑋𝑖 ] ≤ 𝜖 𝑓 . From the Markov inequality, Pr[𝑋𝑖 ≥ 𝑓 ] ≤ E[𝑋𝑖 ]
𝑓
≤ 𝜖 𝑓

𝑓
= 𝜖 .

We will now define an adversary’s attack in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . The sender 𝑠 has the input 0, and the adversary will attempt

to cause 𝑖 to output 1 while other parties output 0. Informally, the adversary’s strategy is to corrupt all parties that

communicate with 𝑖 (either by sending or receiving messages) throughout the run and delete all messages to 𝑖 . The

adversary then simulates 𝑖’s responses to the messages it would have received, corrupts the parties that would have

received those messages and causes them to act as if they received those messages. In addition, the adversary simulates

a full run in𝑊1, and whenever a party sends a message to 𝑖 in its simulation, it corrupts that party and causes it to send

that message to 𝑖 . This causes 𝑖 to think it is in𝑊0 and all other parties to think they are in𝑊1, causing them to output

different values.

More formally, whenever a party 𝑗 sends a message to party 𝑖 , the adversary corrupts 𝑗 and erases the message. In

addition, whenever 𝑖 sends a message to some party 𝑘 , the adversary corrupts 𝑘 . In parallel, the adversary simulates

party 𝑖’s responses in𝑊0, given all of the messages it was sent. If party 𝑖 ever sends a message to party 𝑗 in that

simulation in a given round, the adversary corrupts party 𝑗 , erases its outgoing messages for that round, and makes it

act as a nonfaulty party would if it received all of the messages it already received and the messages sent by 𝑖 in the

simulated run. Finally, the adversary simulates all of the communication between all parties in𝑊1 given the messages

sent by 𝑖 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . This is done by internally running all parties in each round of the protocol except 𝑖 , and using 𝑖’s

messages in each round. Whenever a party 𝑘 sends 𝑖 a message in the simulated run of𝑊1, the adversary corrupts it in

𝑊ℎ𝑦𝑏𝑟𝑖𝑑 and sends that message to 𝑖 . If at any point the adversary is required to corrupt more than 𝑓 parties, it aborts.
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Before analyzing the probability that the attack succeeds, we will define several random variables. Let 𝐴0 be the event

that all nonfaulty parties except 𝑖 output 0 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . Let 𝐴1 be the event that 𝑖 outputs 1 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . Similarly, let 𝐵0

be the event that all nonfaulty parties except 𝑖 output 0 in𝑊0, and let 𝐵1 be the event that 𝑖 outputs 1 in𝑊1. Note that

the definitions of 𝐴0, 𝐵0 allows 𝑖 to output 0 as long as all other nonfaulty parties output 0. Define 𝐺 to be the event

that no more than 𝑓 parties communicate with 𝑖 in total in𝑊0 and𝑊1 combined. Finally, define𝐺ℎ𝑦𝑏𝑟𝑖𝑑 to be the event

that the adversary does not abort in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 .

Our goal is to show that Pr[𝐴0 ∩𝐴1] > 1

3
− 𝜖 . This contradicts the fact that the protocol is ( 2

3
+ 𝜖)-correct, because

with more than
1

3
− 𝜖 probability, all honest parties except for 𝑖 output 0, and 𝑖 outputs 1. By assumption 𝑛 ≥ 𝑓 + 2,

so there actually are at least two nonfaulty parties. Before doing so, note that as long as the adversary isn’t required

to corrupt more than 𝑓 parties, the view of all nonfaulty parties except 𝑖 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 is identical to the view they

would have in𝑊0, given that no more than 𝑓 parties communicate with 𝑖 in both𝑊0 and𝑊1. Similarly, as long as

that event doesn’t happen, 𝑖’s view is identical to the view it would have in𝑊1, given that no more than 𝑓 parties

communicate with 𝑖 in both𝑊0 and𝑊1. Therefore, we know that Pr[𝐺] = Pr[𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ], Pr[𝐴0 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ] = Pr[𝐵0 |𝐺]
and Pr[𝐴1 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ] = Pr[𝐵1 |𝐺]. We are now ready to analyze Pr[𝐴0 ∩𝐴1]:

Pr[𝐴0 ∩𝐴1] = Pr[𝐴0] + Pr[𝐴1] − Pr[𝐴0 ∪𝐴1]

≥ Pr[𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ]
(
Pr[𝐴0 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ] + Pr[𝐴1 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ]

)
− 1

= Pr[𝐺]
(
Pr[𝐵0 |𝐺] + Pr[𝐵1 |𝐺]

)
− 1

= Pr[𝐵0 ∧𝐺] + Pr[𝐵1 ∧𝐺] − 1

= Pr[𝐵0] − Pr[𝐵0 ∧𝐺] + Pr[𝐵1] − Pr[𝐵1 ∧𝐺] − 1

≥ Pr[𝐵0] + Pr[𝐵1] − 2 Pr[𝐺] − 1

= Pr[𝐵0] + Pr[𝐵1] − 2 Pr[𝑋𝑖 > 𝑓 ] − 1

≥ ( 2
3

+ 𝜖) + ( 2
3

+ 𝜖) − 2𝜖 − 1 = 1

3

>
1

3

− 𝜖 ,

reaching a contradiction, and completing the proof. □

The main insight of the previous theorem was that if fewer than Ω(𝑛𝑓 ) messages are sent in a protocol in expectation,

then there is a good probability that at least one party communicates with 𝑓 parties or fewer, and can be isolated. The

next lower bound generalizes this insight and shows that if for some 𝑐 ∈ [0, 1] fewer than Ω(𝑛𝑓 1−𝑐 ) messages are sent

in expectation, there exist 𝑓 𝑐 parties that can be isolated. From this point, the proof is extremely similar to the one of

the previous theorem. Note that the exact same techniques can be used in the deterministic case with a static adversary,

but the theorem is omitted due to its similarity. It is also important to note that similar theorems with different choices

instead of 𝑓 𝑐 − 1 can easily be formulated for more general results. This specific choice was made as it simplifies some

calculations, and it is enough to show that as the number of messages approaches a 𝑂 (𝜖𝑛), the number of isolated

parties approaches Ω(𝑓 ).

Theorem 4.3. Let there be a probabilistic ( 2
3
+ 𝜖)-correct protocol solving all-but (𝑓 𝑐 − 1) Binary Crusader Broadcast in

lockstep synchrony for some 𝑐 ∈ [0, 1] and 𝜖 ∈
(
0, 1

3

]
. If the protocol is resilient to 𝑓 strongly adaptive Byzantine corruptions,

then the expected number of messages sent in the protocol is at least 𝜖
8
(𝑛 − 1) 𝑓 1−𝑐 for 𝑛 ≥ 3𝑓 . 2

2
It is actually enough that 𝑛 ≥ 𝑓 + 2𝑓 𝑐 , since all we need is 𝑓 faulty parties and 2 sets of at least 𝑓 𝑐 nonfaulty parties to disagree on the output.
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Proof. Assume that is not the case. This means that there exists a ( 2
3
+ 𝜖)-correct all-but (𝑓 𝑐 − 1) Binary Crusader

Broadcast protocol with expected message complexity smaller than
𝜖
8
(𝑛 − 1) 𝑓 1−𝑐 . Similarly to the previous theorem,

we will define𝑊0 and𝑊1 as runs in which the adversary does not corrupt any party and the sender has inputs 0

and 1 respectively. In both of these runs, the probability that all parties terminate and output the sender’s input must

be at least
2

3
+ 𝜖 . Define 𝑀0 and 𝑀1 to be random variables indicating the number of messages sent by nonfaulty

parties in 𝑊0 and 𝑊1 respectively. In addition, define 𝑀 = 𝑀0 + 𝑀1 to be the number of messages sent in both

runs. By assumption, E[𝑀] = E[𝑀0] + E[𝑀1] < 𝜖
4
(𝑛 − 1) 𝑓 1−𝑐 . Similarly to before, the adversary will seek a set

of ⌊𝑓 𝑐 ⌋ > 𝑓 𝑐 − 1 parties that don’t contain the sender and don’t send many messages. In order to do that, assume

without loss of generality that the sender is party 𝑛. Let𝑚 = ⌊𝑓 𝑐 ⌋, ℓ = ⌈𝑛−1𝑚 ⌉, and define ℓ sets of𝑚 parties as follows:

∀𝑖 ∈ {0, . . . , ℓ − 2} 𝑃𝑖 = {𝑖 ·𝑚 + 1, . . . , (𝑖 + 1)𝑚} and 𝑃ℓ−1 = {𝑛 −𝑚, . . . , 𝑛 − 1}. We would like to guarantee that the

sender is not in any of the sets 𝑃𝑖 , and that every other party appears in one of the sets, but in no more than two of the

sets. First note that the sender is not in 𝑃ℓ−1 by definition. The largest number in any of the other 𝑃𝑖 sets is (ℓ − 2 + 1)𝑚.

Using the definition of ℓ , (ℓ − 2 + 1)𝑚 = (⌈𝑛−1𝑚 ⌉ − 1)𝑚 ≤
𝑛−1
𝑚 ·𝑚 < 𝑛, and thus the sender (party 𝑛) is not in any of

those sets. Secondly, note that all of the sets up to 𝑃ℓ−2 are disjoint. This means that every party appears at most once

in one of the sets 𝑃0, . . . , 𝑃ℓ−2 and at most once more in 𝑃ℓ−1. Finally, the sets 𝑃0, . . . , 𝑃ℓ−2 exactly contain the parties

1, . . . , (ℓ − 2 + 1)𝑚. Note that (ℓ − 2 + 1)𝑚 = (⌈𝑛−1𝑚 ⌉ − 1)𝑚 ≥ (
𝑛−1
𝑚 − 1)𝑚 = 𝑛 − 1 −𝑚, and thus 𝑃ℓ−1 contains all of the

rest of the parties, except for the sender.

As defined in the previous lower bound, for every 𝑖 ∈ [𝑛], let 𝑋𝑖 be a random variable indicating the total number

of messages sent or received by party 𝑖 in total both in𝑊0 and in𝑊1. In addition, for every 𝑖 ∈ {0, . . . , ℓ − 1} let 𝑌𝑖
be the total number of messages sent or received by all parties 𝑗 ∈ 𝑃𝑖 in total both in𝑊0 and in𝑊1. It is always the

case that

∑
𝑗 ∈𝑃𝑖 𝑋 𝑗 ≥ 𝑌𝑖 because

∑
𝑗 ∈𝑃𝑖 𝑋 𝑗 counts all messages sent or received by parties in 𝑃𝑖 , and might even count

some of those messages twice. Assume by way of contradiction that for every 𝑖 ∈ {0, . . . , ℓ − 1}, E[𝑌𝑖 ] > 𝜖 𝑓 . First note

that𝑀 = 1

2

∑𝑛
𝑖=1 𝑋𝑖 because when summing over all the messages that each party sent and received, we count every

message twice. In addition, seeing as each party 𝑗 appears in at most two of the sets 𝑃𝑖 , 2
∑𝑛
𝑖=1 𝑋𝑖 ≥

∑ℓ−1
𝑖=0

∑
𝑗 ∈𝑃𝑖 𝑋 𝑗 .
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Combining these observations:

E[𝑀] = E[ 1
2

𝑛∑︁
𝑖=1

𝑋𝑖 ]

=
1

4

E[2
𝑛∑︁
𝑖=1

𝑋𝑖 ]

≥ 1

4

E[
ℓ−1∑︁
𝑖=0

∑︁
𝑗 ∈𝑃𝑖

𝑋 𝑗 ]

≥ 1

4

ℓ−1∑︁
𝑖=0

E[𝑌𝑖 ]

≥ 1

4

ℓ𝜖 𝑓

=
1

4

⌈𝑛 − 1
𝑚
⌉𝜖 𝑓

≥ 1

4

· 𝑛 − 1⌊𝑓 𝑐 ⌋ 𝜖 𝑓

≥ 1

4

𝑛 − 1
𝑓 𝑐

𝜖 𝑓 =
𝜖

4

(𝑛 − 1) 𝑓 1−𝑐

in contradiction. This means that there exists at least one 𝑘 ∈ {0, . . . , ℓ − 1} for which E[𝑌𝑘 ] ≤ 𝜖 𝑓 . Let 𝑃𝑘 be such a set.

From the Markov inequality, Pr[𝑌𝑘 ≥ 𝑓 ] ≤ E[𝑌𝑘 ]
𝑓
≤ 𝜖 𝑓

𝑓
= 𝜖 . In other words, the probability that in total all parties in

𝑃𝑘 send and receive more than 𝑓 messages in𝑊0 and in𝑊1 combined is no greater than 𝜖 .

We will now define an adversary’s attack in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 , similar to the attack in theorem 4.2. The sender 𝑠 has the input 0.

Whenever a party 𝑗 ∉ 𝑃𝑘 sends a message to a party 𝑖 ∈ 𝑃𝑘 , the adversary corrupts 𝑗 and erases the message. In addition,

whenever a party 𝑖 ∈ 𝑃𝑘 sends a message to a party 𝑗 ∉ 𝑃𝑘 , the adversary corrupts 𝑗 . In parallel, the adversary simulates

all of the messages parties 𝑖 ∈ 𝑃𝑘 send in𝑊0, given all of the messages they were sent by parties not in 𝑃𝑘 . If any party

𝑖 ∈ 𝑃𝑘 ever sends a message to party 𝑗 ∉ 𝑃𝑘 in that simulation in a given round, the adversary corrupts party 𝑗 , erases

its outgoing messages for that round, and makes it act as a nonfaulty party would if it received all of the messages it

already received and the messages sent by all parties in 𝑃𝑘 in the simulated run. Finally, the adversary simulates all of

the communication between all parties in𝑊1 given the messages sent by all parties 𝑖 ∈ 𝑃𝑘 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . This is done by

internally running all parties in each round of the protocol except for parties in 𝑃𝑘 , and using the messages sent by

parties in 𝑃𝑘 in each round. Whenever a party 𝑗 ∉ 𝑃𝑘 sends some party 𝑖 ∈ 𝑃𝑘 a message in the simulated run of𝑊1, the

adversary corrupts 𝑗 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 and sends that message to 𝑖 . If at any point the adversary is required to corrupt more

than 𝑓 parties, it aborts. The adversary never corrupts any party 𝑖 ∈ 𝑃𝑘 , so all parties in 𝑃𝑘 remain nonfaulty. Before

analyzing the probability that the attack succeeds, we will define several random variables. Let 𝐴0 be the event that all

nonfaulty parties except parties in 𝑃𝑘 output 0 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . Let 𝐴1 be the event that all parties in 𝑃𝑘 output 1 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 .

Similarly, let 𝐵0 be the event that all nonfaulty parties except parties in 𝑃𝑘 output 0 in𝑊0, and let 𝐵1 be the event that

all parties in 𝑃𝑘 output 1 in𝑊1. Note that the definitions of 𝐴0, 𝐵0 allow all parties in 𝑃𝑘 to output 0, as long as all other

nonfaulty parties do so as well. Define𝐺 to be the event that no more than 𝑓 parties communicate with parties in 𝑃𝑘 in

total in𝑊0 and𝑊1 combined. Finally, define 𝐺ℎ𝑦𝑏𝑟𝑖𝑑 to be the event that the adversary does not abort in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 .

Our goal is to show that Pr[𝐴0 ∩ 𝐴1] > 1

3
− 𝜖 . Note that in this case, all parties in 𝑃𝑘 output 1 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 and all

other nonfaulty parties output 0. There are 𝑓 𝑐 parties in 𝑃𝑘 and at least 𝑛 − 𝑓 − 𝑓 𝑐 ≥ 𝑛 − 2𝑓 ≥ 𝑓 ≥ 𝑓 𝑐 nonfaulty
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parties not in 𝑃𝑘 . Therefore, with probability greater than ( 1
3
− 𝜖) at least 𝑓 𝑐 nonfaulty parties output 0 and at least

𝑓 𝑐 nonfaulty parties output 1, contradicting the fact that the protocol is an ( 2
3
+ 𝜖)-correct all-but (𝑓 𝑐 − 1) Binary

Crusader Broadcast protocol. Before doing so, note that as long as the adversary isn’t required to corrupt more than 𝑓

parties, the view of all nonfaulty parties except parties in 𝑃𝑘 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 is identical to the view they would have in𝑊0,

given that no more than 𝑓 parties communicate with parties in 𝑃𝑘 in both𝑊0 and𝑊1. Similarly, as long as that event

doesn’t happen, the view of all parties in 𝑃𝑘 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 is identical to the view they would have in𝑊1, given that no

more than 𝑓 parties communicate with parties in 𝑃𝑘 in both𝑊0 and𝑊1. Therefore, we know that Pr[𝐺] = Pr[𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ],
Pr[𝐴0 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ] = Pr[𝐵0 |𝐺] and Pr[𝐴1 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ] = Pr[𝐵1 |𝐺]. We are now ready to analyze Pr[𝐴0 ∩𝐴1]:

Pr[𝐴0 ∩𝐴1] = Pr[𝐴0] + Pr[𝐴1] − Pr[𝐴0 ∪𝐴1]

≥ Pr[𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ]
(
Pr[𝐴0 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ] + Pr[𝐴1 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ]

)
− 1

= Pr[𝐺]
(
Pr[𝐵0 |𝐺] + Pr[𝐵1 |𝐺]

)
− 1

= Pr[𝐵0 ∧𝐺] + Pr[𝐵1 ∧𝐺] − 1

= Pr[𝐵0] − Pr[𝐵0 ∧𝐺] + Pr[𝐵1] − Pr[𝐵1 ∧𝐺] − 1

≥ Pr[𝐵0] + Pr[𝐵1] − 2 Pr[𝐺] − 1

= Pr[𝐵0] + Pr[𝐵1] − 2 Pr[𝑌𝑘 > 𝑓 ] − 1

≥ ( 2
3

+ 𝜖) + ( 2
3

+ 𝜖) − 2𝜖 − 1 = 1

3

>
1

3

− 𝜖 ,

reaching a contradiction, and completing the proof. □

5 ECLIPSE ATTACKS IN BLOCKCHAIN SYSTEMS

Blockchain system provided new revolutionary consensus protocols [13, 21] and with them came a new set of attacks

[4, 11, 18]. One new style of attack focuses on the underlying peer-to-peer communication network and the ways it

might affect the security of the system as a whole. These works suggest Eclipse attacks [15, 19], in which an adversary

isolates a specific party (or group of parties), and causes it to fork off in ways that are economically advantageous to

the attacker.

A natural question arises: are Eclipse-style attacks unique to the blockchain space or are they connected to more

traditional attacks in the theory and literature on consensus? In consensus research, generic attacks on protocols are

captured as lower bounds.

In this section, we make the conceptual connection between Eclipse-style attacks and theoretical lower bounds for

Crusader broadcast. We show that many Eclipse-style attacks work because the underlying blockchain protocols are

subquadratic and the protocol was not designed to take full power of forcing the adversary to be adaptive or to force the

adversary to simulate. Hence Eclipse-style attacks can be viewed as specific attacks following the general lower bound

for crusader broadcast, even with a mildly static adversary that cannot fully simulate as many other parties as it wants.

In the Eclipse attack, [15, 19] the adversary, by controlling a sufficient number of IP addresses, can monopolize all

connections to and from a victim node. Once the node is isolated, the adversary can cause nodes to briefly locally

confirm transactions that conflict with the majority of nodes. This is analogous to outputting different values in the

attacks or our lower bound for crusader broadcast. Eclipse-style attacks may also combine selfish mining attacks [4, 11].

In this attack, the adversary filters communication to and from the isolated nodes and abuses the nodes’ mining power
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to the adversary’s advantage. This attack is also similar to the one described in theorem 4.3, which suggests that these

lower bounds could be of interest also when not directly attacking the agreement of the protocol, but rather notions

like liveness or fairness of a consensus protocol.

We note that the difference between the attacks described in theorems 4.1 and 4.2 stems from the randomized nature

of the communication graph, and not from the difference in the content of messages. The proof of theorem 4.1 would

not change if a randomized Crusader Broadcast protocol uses a static communication graph. In addition, theorem 4.3

generalizes the result even further and shows that as the number of messages decreases, or more precisely the number

of edges in the communication graph decreases, a larger number of nonfaulty parties can be isolated and made to

output a different value. As the number of edges in the communication graph tends towards 𝑂 (𝜖 · 𝑛), the number of

isolated parties tends towards Ω(𝑓 ). This means a weak protocol with near linear communication may allow a large

adversary to partition the nonfaulty parties into two large groups that disagree on the output of the protocol.

Limitations of Real-World Adversaries

The attacks described in section 4 assume extremely strong adversaries. First of all, in all lower bounds, the adversary

is assumed to be able to simulate other parties. This assumption may not hold in some real-world systems. Since

adversaries have limited compute power, they generally cannot arbitrarily simulate other parties in proof-of-work

systems. Furthermore, in systems with a public key infrastructure, adversaries cannot forge other parties’ signatures

or break other cryptographic primitives during the simulation of the protocol. The adversary in theorems 4.2 and 4.3

also needs to be strongly adaptive. In the real world, adversaries generally cannot corrupt parties at will, let alone

retroactively delete their messages and replace them. Given all of these limitations, one could reasonably ask: are the

attacks described in these lower bounds applicable to the real world?

Surprisingly, the answer seems to be that they are applicable, as evidenced by previous works on eclipse attacks. We

discuss how both limitations are overcome next.

Overcoming the need for strong adaptivity, due to protocol level flaws. As shown in [15, 19], both Bitcoin’s and

Ethereum’s peer-to-peer communication protocols had flaws that allowed an adversary to easily monopolize a victim

node’s connections. When nodes restart, they initiate outgoing connections from tables storing addresses of known

peers. The adversary fills those tables in advance with addresses of nodes controlled by the adversary and then causes

the node to restart. After restarting, the node connects to peers from those tables, hence connecting to the adversary’s

nodes. Nodes may also receive incoming connections from peers. After causing a node to restart, the adversary also

sends incoming connection requests and monopolizes all of the incoming connections. These attacks are performed in

advance, allowing the adversary to essentially structure the communication graph in a malicious manner. Compare the

Eclipse attack strategy above to our lower bounds for crusader broadcast. In this attack, the protocol flaw is such that

the adversary does not need to be adaptive, let alone strongly adaptive. Even worse, the lower bound in theorem 4.1

only shows that there must exist some party that can be isolated. In that attack, the adversary has to have some special

knowledge of that specific party and tailor its attack to it. However, in the Eclipse attacks described in [15, 19], the

adversary can choose whichever node it wants and isolate it in a static manner, without the need to find out which

node can be isolated.

Overcoming the need for simulation due to the nature of proof of work. The second challenging assumption for a

real-world attack is the assumption that the adversary has the power to simulate many honest parties. In our lower

bounds for crusader broadcast, this stems from the fact that we do not know what the parties may do in the protocol.
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For example, parties may use cryptography in order to guarantee that a large portion of the network saw some value

(see [2, 25] for such examples). In order to fully simulate the behavior of the nonfaulty parties, an adversary needs

to be able to break some of the cryptographic assumptions made in the design of the protocol. On the other hand, in

current proof-of-work based blockchain systems, simulating honest parties “only” requires mining blocks with the

correct information. The adversary is limited by its own compute-power, so it can’t actually fully simulate the rest of

the network for the isolated parties. However, Eclipse-style attacks suggest ways to mitigate this issue. For example,

the adversary could conceivably utilize honest nodes to simulate the protocol for it. This can be done by letting only

parts of the network see a given block. The adversary could then use the fact that nodes would continue to mine on top

of it as a means of simulating the work required, and then showing the mined blocks to the rest of the network when

needed.

To conclude, the adversary described in the lower bounds of section 4 seems too powerful to be of interest when

discussing real-world systems. However, some of the real-world systems used today had flaws that didn’t require the

adversary to be so powerful in order to levy attacks.

Lessons from theory. Our lower bound suggests pricipled ways to design more secure protocols that will not allow

adversaries with limited adaptivity and simulation power to succeed in their attacks. As suggested by [15, 19], measures

could be taken in order to make it harder to fill the outgoing link tables with the adversary-controlled nodes’ addresses.

The proof of theorem 4.1 suggests that having a dynamically changing communication graph with outgoing edges

being chosen randomly without much adversary control is the best long-term solution.

In addition, one could make it harder to simulate parts of the protocol. For example, by requiring more nodes to

sign blocks, or by making more use of cryptography in the communication layer itself. This is indeed obtained using

BFT-based finality gadgets [5].

6 SUBQUADRATIC CRUSADER BROADCAST PROTOCOL

After focusing on lower bounds for Crusader Broadcast, in this section, we explore upper bounds. We start with a

trivial information theoretic crusader broadcast protocol with 𝑂 (𝑛2) communication. Our lower bound proves that this

folklore construction is in fact tight for an unconditional adversary.

We then explore how using randomization and assuming a PKI can circumvent the Ω(𝑛2) lower bound for crusader

broadcast. In the second protocol, the𝑂 (𝑛2) all-to-all cost is replaced by a gossip procedure [22]. This lowers the overall
communication cost to 𝑂 (𝑛 · polylog𝑛) at the cost of increasing the round complexity. The gossip protocol heavily

relies on randomization to limit the adversary’s ability to guess the communication pattern. We analyze this protocol

against static adversaries. This protocol is a sort of “minimal example” showing that it is easy to force the adversary to

either be adaptive or to be able to simulate other parties in order to break subquadratic crusader broadcast protocols.

We start with a simple construction of a Crusader Broadcast protocol resilient to 𝑓 strongly adaptive and computa-

tionally unbounded Byzantine corruptions, as long as 𝑛 > 3𝑓 .

Theorem 6.1. The IT − CrusaderBroadcast protocol is a Crusader Broadcast protocol resilient to 𝑓 strongly adaptive,

computationally unbounded Byzantine corruptions in a synchronous system if 𝑛 > 3𝑓 .

Proof. Each property is proven individually.

Validity. Assume the sender 𝑠 is nonfaulty with input 𝑥 . In the beginning of the protocol it sends the message

⟨“sender”, 𝑥, ⟩ to all parties. Every nonfaulty party receives that message up to Δ time after that, and sends ⟨“forward”, 𝑥⟩
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Algorithm 1 IT − CrusaderBroadcast𝑖
1: if 𝑖 is the sender 𝑠 with input 𝑥 then
2: send the message ⟨“sender”, 𝑥⟩ to all parties

3: wait Δ time

4: if a single ⟨“sender”,𝑚⟩ message was received from 𝑠 while waiting then
5: send ⟨“forward”,𝑚⟩ to all parties

6: wait Δ time

7: if there exists a value𝑚 for which ⟨“forward”,𝑚⟩ was received from at least 𝑛 − 𝑓 parties then
8: output𝑚 and terminate
9: else
10: output ⊥ and terminate

to all parties. After Δ time, every nonfaulty party will receive a ⟨“forward”, 𝑥⟩ message from every nonfaulty party.

Since there are 𝑛 − 𝑓 nonfaulty parties, every nonfaulty party then outputs 𝑥 .

Correctness. Observe two nonfaulty parties 𝑖, 𝑗 that output two non-⊥ values𝑚𝑖 ,𝑚 𝑗 respectively. This means that

𝑖 received the message ⟨“forward”,𝑚𝑖 ⟩ from at least 𝑛 − 𝑓 parties, and 𝑗 received the message ⟨“forward”,𝑚 𝑗 ⟩ from
at least 𝑛 − 𝑓 parties. By assumption, 𝑛 > 3𝑓 , and thus 2(𝑛 − 𝑓 ) = 2𝑛 − 2𝑓 = 𝑛 + (𝑛 − 2𝑓 ) ≥ 𝑛 + 𝑓 + 1. Therefore, 𝑖
and 𝑗 received the aforementioned messages from at least 𝑓 + 1 common parties. At least one of those parties must be

nonfaulty, and nonfaulty parties only send a single “forward” message to all parties. Therefore, it must be the case that

𝑚𝑖 =𝑚 𝑗 .

Termination. All parties wait for 2Δ overall and terminate. □

Note that in the above protocol, the sender sends 𝑂 (𝑛) messages, and each nonfaulty party sends 𝑂 (𝑛) messages as

well. This results in a protocol with 𝑂 (𝑛2) message complexity, showing that the lower bound above is tight.

The folklore 𝑂 (𝑛2) protocol, presented in algorithm 2, proceeds in two rounds. In the first round, the sender 𝑠 sends

a signed message with its input to all parties. Parties then inform each other of the message they’ve seen. Finally, any

party that received a message𝑚 from the sender without seeing any conflicting message outputs𝑚. If either of these

conditions doesn’t hold, that party outputs ⊥ instead. This protocol is captured in algorithm 2. In general, for a protocol

𝑋 , denote 𝑋𝑖 to be the code for party 𝑖 executing protocol 𝑋 . We assume the existence of a PKI such that every party

𝑖 knows a signing key sk𝑖 and all parties know the associated public key pk𝑖 . The PKI is used in a signature scheme

consisting of the signing algorithm Sign and verification algorithm Verify. We analyze the signature scheme as perfectly

secure, meaning that only 𝑖 can produce signatures which verify with respect to pk𝑖 . A similar analysis can be done

allowing for a negligible probability of error (meaning that the resulting protocol is 1 − negl(𝜆) correct, with 𝜆 being

the security parameter).

The protocol consists of a single multicast requiring 𝑂 (𝑛) messages, and a single all-to-all round requiring 𝑂 (𝑛2)
messages. A proof of the protocol follows:

Theorem 6.2. The CrusaderBroadcast protocol is a Crusader Broadcast protocol resilient to any number of Byzantine

corruptions 𝑓 in a synchronous system.

Proof. Each property is proven individually. Denote 𝑣𝑎𝑙𝑖 to be the variable 𝑣𝑎𝑙 stored by party 𝑖 .

Validity. Assume the sender 𝑠 is nonfaulty with input 𝑥 . In the beginning of the protocol it produces a signature 𝜎

for x, and sends the message ⟨“sender”, 𝑥, 𝜎⟩ to all parties. Every nonfaulty party receives that message up to Δ time

after that, and updates 𝑣𝑎𝑙 to 𝑥 . The sender didn’t sign any other value𝑚′ ≠ 𝑥 , so no nonfaulty party will receive a
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Algorithm 2 CrusaderBroadcast𝑖

1: 𝑣𝑎𝑙 ← ⊥
2: if 𝑖 is the sender 𝑠 with input 𝑥 then
3: 𝜎 ← Sign(sk𝑖 , 𝑥)
4: send the message ⟨“sender”, 𝑥, 𝜎⟩ to all parties

5: wait Δ time

6: if a ⟨“sender”,𝑚, 𝜎⟩ message was received from 𝑠 while waiting such that Verify(pk𝑠 ,𝑚, 𝜎) = 1 then
7: 𝑣𝑎𝑙 ←𝑚

8: send ⟨“forward”,𝑚, 𝜎⟩ to all parties

9: wait Δ time

10: if a ⟨“forward”,𝑚′, 𝜎 ′⟩ message was received while waiting such that𝑚′ ≠ 𝑣𝑎𝑙 and Verify(pk𝑠 ,𝑚′, 𝜎 ′) = 1 then
11: 𝑣𝑎𝑙 ← ⊥
12: output val and terminate

⟨“forward”,𝑚′, 𝜎 ′⟩ message with such that𝑚′ ≠ 𝑣𝑎𝑙 and Verify(pk𝑖 ,𝑚′, 𝜎 ′) = 1. Therefore no nonfaulty party reverts

𝑣𝑎𝑙 back to ⊥. Finally, after 2Δ time, all nonfaulty parties output 𝑣𝑎𝑙 = 𝑥 and terminate.

Correctness. Assume by way of contradiction two nonfaulty parties 𝑖 ≠ 𝑗 output two non-⊥ values 𝑚𝑖 ,𝑚 𝑗

respectively such that𝑚𝑖 ≠ 𝑚 𝑗 . Those parties output the variable 𝑣𝑎𝑙 at the end of the protocol, after 2Δ time. By

assumption, they output non-⊥ values, so 𝑣𝑎𝑙𝑖 ≠ ⊥ and 𝑣𝑎𝑙 𝑗 ≠ ⊥. Party 𝑖 only updates 𝑣𝑎𝑙𝑖 to 𝑚𝑖 ≠ ⊥ at time

Δ in line 7, if it received a ⟨“sender”,𝑚𝑖 , 𝜎𝑖 ⟩ message from 𝑠 such that Verify(pk𝑠 ,𝑚𝑖 , 𝜎𝑖 ) = 1. It then sends the

message ⟨“forward”,𝑚𝑖 , 𝜎𝑖 ⟩ to all parties at time Δ. Party 𝑗 receives that message by time 2Δ, sees that𝑚𝑖 ≠𝑚 𝑗 and

Verify(pk𝑠 ,𝑚𝑖 , 𝜎𝑖 ) = 1 and updates 𝑣𝑎𝑙 𝑗 to ⊥. Finally, 𝑗 outputs 𝑣𝑎𝑙 𝑗 = ⊥, contradicting the fact that it output some

value𝑚 𝑗 ≠ ⊥.
Termination. All parties wait for 2Δ overall and terminate. □

This simple protocol is based on the fact that for correctness to hold, it is enough to make sure that any value heard

by a nonfaulty party needs to be heard by all nonfaulty parties (or at least the fact that two nonfaulty parties heard

different values). In order to reduce the communication costs of the protocol, it is possible to replace the expensive

all-to-all communication round with a more efficient gossip procedure. Using well-known results about gossip [7, 16, 22],

we know that parties can exchange information between them by proceeding in rounds and in each round choosing

a party to divulge all heard information to. Using this technique, it is guaranteed that in 𝑂 (log𝑛) rounds all parties
will hear all nonfaulty parties’ initial information. When dealing with a constant number of Byzantine faults, simply

raising the number of parties with which each party communicates in each round yields the same analysis, showing

that such a protocol requires 𝑂 (𝑛 · polylog(𝑛)) messages to be sent overall, yielding a subquadratic Crusader Broadcast

protocol. It is also possible to reduce the size of the messages by parties sending up to 2 of the values they heard up

until that point. This is enough to detect equivocation, while guaranteeing that message size remains constant. Note

that an adaptive adversary can make sure that no nonfaulty party receives a message𝑚 from an informed party 𝑖 in the

first rounds of the protocol by corrupting the parties which received messages from 𝑖 , requiring more rounds and more

overall communication. This shows that a subquadratic randomized protocol exists which is resilient to non-adaptive

adversaries, but stops working when the adversary can corrupt parties adaptively.

Another approach for breaking the quadratic message barrier is by relying on stronger cryptographic primitives.

This has been useful in reducing the communication costs of protocols solving related tasks such as consensus [20, 25].

For example, if 𝑛 > 3𝑓 it is possible to use threshold cryptography. Given a well known threshold 𝑘 , a threshold
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signature scheme allows parties to sign a message individually, and then compressing 𝑘 such signatures into a single

collective signature, proving that at least 𝑘 parties signed the message individually. Instead of having an all-to-all round

as described in algorithm 2, parties that hear a value𝑚 from the sender can reply, sending a signature on𝑚 to the

sender. Using a threshold signature scheme with a threshold of 2𝑓 + 1, the sender can combine those signatures into

a single threshold signature proving that at least 2𝑓 + 1 parties replied with a signature on the value𝑚. Since 2𝑓 + 1
parties constitute a Byzantine quorum, it is guaranteed that there is only one such threshold signature, meaning that

if the sender then sends the threshold signature to all parties, they can safely output it. This technique, used in the

non-equivocation round of the HotStuff protocol [25], yields a protocol with 𝑂 (𝑛) communication costs and 𝑂 (1)
rounds, but more heavily relies on the assumption that the adversary cannot simulate other parties.
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