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Abstract

We model and analyze the Signal end-to-end secure messaging protocol within the Universal
Composability (UC) framework. Specifically:

• We formulate an ideal functionality that captures end-to-end secure messaging in a setting
with Public Key Infrastructure (PKI) and an untrusted server, against an adversary that
has full control over the network and can adaptively and momentarily compromise parties
at any time, obtaining their entire internal states. Our analysis captures the forward
secrecy and recovery-of-security properties of Signal and the conditions under which they
break.

• We model the main components of the Signal architecture (PKI and long-term keys, the
backbone continuous-key-exchange or “asymmetric ratchet,” epoch-level symmetric ratch-
ets, authenticated encryption) as individual ideal functionalities. These components are
realized and analyzed separately, and then composed using the UC and Global-State UC
theorems.

• We show how the ideal functionalities representing these components can be realized using
standard cryptographic primitives with minimal hardness assumptions.

Our modeling introduces additional innovations that enable arguing about the security of Signal,
irrespective of the underlying communication medium, and facilitate the secure composition of
dynamically generated modules that share state. These features, in conjunction with the basic
modularity of the UC framework, will hopefully facilitate the use of both Signal-as-a-whole and
its individual components within cryptographic applications.
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1 Introduction

Secure communication, namely allowing Alice and Bob to exchange messages securely, over an
untrusted communication channel, without having to trust any intermediate component or party,
is perhaps the quintessential cryptographic problem. Indeed, constructing and breaking secure
communication protocols, as well as modeling security concerns and guarantees, providing a security
analysis, and then breaking the modeling and analysis, has been a mainstay of cryptography since
its early days.

Successful secure communication protocols have naturally been built to secure existing com-
munication patterns. Indeed, IPSec has been designed to provide IP-layer end-to-end security
for general peer-to-peer communication without the need to trust routers and other intermediaries,
while SSL (which evolved into TLS) has been designed to secure client-server interactions, especially
in the context of web browsing, and PGP has been designed to secure email communication.

Securing the communication over messaging applications poses a very different set of challenges,
even for the case of pairwise communication (which is the focus of this work). First, the commu-
nicating parties do not typically have any direct communication connection and may not ever be
online at the same time. Instead, they can communicate only via an untrusted server. Next, the
communication may be intermittent and have large variability in volumes and level of interactivity.
At the same time, a received message should be processed immediately and locally. Furthermore,
connections may span very long periods of time, during which it is reasonable to assume that the
endpoint devices would be periodically hacked or otherwise compromised – and hopefully later
regain security.

The Signal protocol has been designed to give a response to these specific challenges of secure
messaging, and in doing so it has revolutionized the concept of secure communication over the
Internet in many ways. Built on top of predecessors like Off-The-Record [16], the Signal protocol
is currently used to transmit hundreds of billions of messages per day [56].

Modeling the requirements of secure messaging in general, and analyzing the security properties
of the Signal protocol in particular, has proved to be challenging and has inspired multiple analytical
works [1–3, 7, 10, 11, 14, 17, 20, 29–37, 39–41, 53–55, 59–62, 64]. Some of these works directly address
the Signal architecture and realization, whereas others propose new cryptographic primitives that
are inspired by Signal’s various modules.

The need for composable security analysis. It is well documented that standalone security
analyses of protocols (namely, analyses that only consider an execution of the protocol “in vitro”)
are not always sufficient to capture the security of the protocol when used as a component within a
larger system. This situation is particularly relevant to secure messaging and the Signal protocol.
People typically participate concurrently in several conversations spanning several multi-platform
chat services (e.g., smartphone and web), and the subtleties between a chat service and the un-
derlying messaging protocol have led to network and systems security issues (e.g., [35,36,47]). For
example, the Signal protocol is combined with other cryptographic protocols in WhatsApp [63] to
perform abuse reporting or Status [57] and Slyo [58] to perform cryptocurrency transactions and
Tor-style onion routing.

Moreover, Signal isn’t always employed as a single monolithic protocol. Rather, variations and
subcomponents of the Signal protocol are used within the Noise protocol family [52], file sharing
services like Keybase [42] (which performs less frequent ratcheting), and videoconferencing services
like Zoom [45] (which isn’t concerned with asynchrony).

This state of affairs seems to call for a security analysis within a framework that allows for
modular analysis and composable security guarantees. First steps in this direction were taken by
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the work of Jost, Maurer, and Mularczyk [41] that defines an abstract ratcheting service within the
Constructive Cryptography framework [48, 49], and concurrent work by Bienstock et al. [12] that
formulates an ideal functionality of the Signal protocol within the UC framework (see Section 1.5
for details). However, neither of these works give a modular decomposition of Signal into its basic
components (as described in [51].)

The apparent non-modularity of Signal. One of the main sticking points when modeling and
analyzing Signal in a composable fashion is that the protocol purposefully breaks away from the
traditional structure of a short-lived “key exchange” module followed by a longer-lived module that
primarily encrypts and decrypts messages using symmetric authenticated encryption. Instead, it
features an intricate “continuous key exchange” module where shared keys are continually being
updated, in an effort to provide forward security (i.e., preventing an attacker from learning past
messages), as well as enabling the parties to quickly regain security as soon as the attacker loses ac-
cess. Furthermore, Signal’s process of updating the shared keys crucially depends on feedback from
the “downsteam” authenticated encryption module. This creates a seemingly inherent circularity
between the key exchange and the authenticated encryption modules, and gets in the way of bas-
ing the security of Signal on traditional components such as authenticated symmetric encryption,
authenticated key exchange, and key-derivation functions.

Security of Signal in face of adaptive corruptions. Another potentially thorny aspect of the
security of secure messaging protocols (Signal included) is the need to protect against an adversary
that decides whom and when to corrupt, adaptively, based on all the communication seen so far.
Indeed, not only is standard semantic security not known to imply security in this setting: there
exist encryption schemes that are semantically secure (under reasonable intractability assumptions)
but completely break in such a setting [38].

1.1 This Work

This work proposes a modular analysis of the Signal protocol and its components using the language
of universally composable (UC) security [21,22]. We focus on modeling Signal at the level specified
in their documentation [51] , taking care to adhere to the abstractions within the specification and
not limiting our analysis to any single choice of cipher suite.

We provide an ideal functionality, FSM, for secure messaging along with individual ideal func-
tionalities that capture each module within Signal’s architecture. We then compose the modules to
realize the top-level secure messaging functionality and demonstrate how to realize the modules in
a manner consistent with the Signal specification [51]. Our instantiation achieves adaptive security
against transient corruptions while making minimal use of the random oracle model.

This combination of composability and modularity makes Signal and its components conve-
niently plug-and-play: future analyses can easily re-purpose or swap out instantiations of the
modules in this work without needing to redo most of the security analysis.

In the process of instantiating the key exchange module in the plain model, we propose a new
abstraction for Signal’s continuous key derivation module, which we call a Cascaded PRF-PRG
(CPRFG), and we show that this primitive suffices for Signal’s continuous key exchange module to
achieve adaptive security. We also show how to construct CPRFGs from PRGs and puncturable
PRFs. This new primitive may be useful as a building block in other protocols as well.

The rest of the Introduction is organized as follows. Section 1.2 presents and motivates our
formulation of FSM. Section 1.3 presents and motivates the formulation of the individual modules,
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and describes how these modules can be realized. Section 1.4 highlights some new uses of the UC
framework that might be useful elsewhere. Section 1.5 discusses related work.

1.2 Notes on the Ideal Secure Messaging Functionality, FSM

We provide an ideal functionality FSM that captures end-to-end secure messaging, with some Signal-
specific caveats. The goal here is to provide idealized security guarantees that will allow the analysis
of existing protocols that use Signal, as well as to facilitate the use of Signal (or any protocol that
realizes FSM) as a component within other protocols in a security-preserving manner.

When a party asks to encrypt a message, FSM returns a string to the party that represents
the encapsulated message. When a party asks to decrypt (and provides the representative string),
the functionality checks whether the provided string matches a prior encapsulation, and returns
the original message in case of a match. The encapsulation string is generated via adversarially
provided code that doesn’t get any information about the encapsulated message, thereby guaran-
teeing secrecy. If the provided representative string at the time of decapsulation is does not match
the original encapsulation exactly, then whether to decapsulate is also decided via adversarially
provided code that doesn’t get any information about the encapsulated message. This approach
avoids restricting to only strong MACs (Message Authentication Codes).

Simple user interface. The above encapsulation and decapsulation requests are the only ways
that a parent protocol interacts with FSM. This eliminates the need for the parent protocol to
maintain session-related state such as epoch-ids or sequence numbers. In addition to simplicity,
this modeling provides the guarantee that a badly designed parent protocol cannot harm the security
of a protocol realising FSM.1

Abstracting away network delivery. The fact that FSM models a secure messaging scheme as a
set of local algorithms (an encapsulation algortihm and a decapsulation one) substantialy simplifies
traditional UC modeling of secure communication. In traditional UC modeling, the communication
medium is considered part of the service provided by the protocol, and the actual communication
is abstracted away.

Moreover, by having FSM return to the parent protocol an actual string (that represents an
idealized encapsulated message), our model allows the parent protocol to further process the string
as needed, similar to what is done in existing systems. This abstraction grants more flexibility in
how the secure communication is utilized and integrated within various applications and contexts.

Immediate decryption. FSM guarantees that message decapsulation requests are fulfilled locally
on the receiver’s machine, and are not susceptible to potential network delays. Furthermore, this
holds even if only a subset of the messages arrive, and arrival is out of order (as formalized in
[1]). To provide this guarantee within the UC framework, we introduce a mechanism that enables
FSM to execute adversarially provided code, without enabling the adversary to prevent immediate
fulfillment of a decapsulation request. See more details in Section 2.

Modeling of PKI and long term keys. We directly model Signal’s specific design for the
public keys and associated secret keys that are used to identify parties across multiple sessions.
Specifically, we formulate a “PKI” functionality FDIR that models a public “bulletin board,” which

1Furthermore, this modeling forces any protocol that realizes FSM to handle all aspects that are critical to security,
such as, say, the timely deletion of sensitive information (keys, internal random choices, epoch identifiers).
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stores the long-term, ephemeral, and one-time public keys associated with identities of parties. In
addition, we model “long term private key” module FLTM for each identity. This module stores
the private keys associated with the public keys of the corresponding party. Both functionalities
are modeled as global, namely they are used as subroutines by multiple instances of FSM. This
modeling is what allows to tie the two participants of a session to long-term identities. Similarily
to [19, 28], we treat these modules as incorruptible. It is stressed, however, that, following the
Signal architecture, our realization of FSM calls the FLTM module of each party exactly once, at
the beginning of the session.

Modelling corruption and recovery. One of the main design goals of Signal is its resilience
to recurring but transient break-ins. We facilitate the exposition of these properties by modelling
corruption as an instantaneous event where the adversary learns the entire state of the corrupted
party.2

The security guarantees for corruption and recovery are then specified as follows. When the
adversary instructs FSM to corrupt a party, it is provided all the messages that have been sent to
that party and were not yet received. In addition, the party is marked as compromised until a
certain future point in the execution. While compromised, all the messages sent and received by
the party are disclosed to the adversary, who can also instruct FSM to decapsulate ciphertexts to
any plaintext of its choice. This captures the practical aspects of the Signal protocol, where as
long as any one of the parties is compromised, neither party can securely authenticate incoming
messages.

Forward secrecy guarantees that the adversary learns nothing about any messages that have
been sent and received by the party until the point of corruption. Furthermore, the adversary
obtains no information on the history of the session such as its duration or the long term identity
of the peer. In FSM, this is guaranteed because corruption does not provide the adversary with any
messages that were previously sent and successfully received.

On the other hand, the specific point by which a compromised party regains its security is Signal-
specific and described in more detail within. After this point, the adversary no longer obtains the
messages the messages sent and received by the parties; furthermore, the adversary can no longer
instruct FSM to decapsulate forged ciphertexts.

Resilience to adaptive corruptions. All the security guarantees provided by FSM hold in
the presence of an adversary that has access to the entire communication among the parties and
adaptively decides when and whom to corrupt based on all the communication seen so far. In
particular, we do not impose any restrictions on when a party can be corrupted.

Signal-specific limitations. The properties discussed so far relate to the general task of secure
messaging. In addition, FSM incorporates the following two relaxations that represent known
weaknesses that are specific to the Signal design.

First, Signal does not give parties a way to detect whether their peers have received forged
messages in their name during corruption. (Such situations may occur when either party was
corrupted in the past and then recovered.) This represents a known weakness of Signal [17, 35].
Consequently, FSM exhibits similar behavior.

2We don’t directly model “Byzantine” corruptions, where the adversary is allowed to destroy or modify the state
or program of the corrupted party. Indeed, when the internal state is modified, the concept of “regaining security”
of a party’s device following a break-in becomes hard to pin down and is left out of scope for this work. We stress,
however, that in our setting, where the adversary has complete control over the communication, mere knowledge of
the internal state of a party suffices for full impersonation of that party to its peer.
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Second, as remarked in the Signal documentation [51], when one of the parties is compromised,
an adversary can “fork” the messaging session. That is, the adversary can create a person-in-the-
middle situation where both parties believe they are talking with each other in a joint session,
but they are actually both talking with the adversary. Furthermore, this can remain the case
indefinitely, even when no party is compromised anymore. (In fact, we know this situation is
inherent in an unauthenticated network with transient attacks, at least without repeated use of
a long-term uncompromised public key [24].) While such a situation is mentioned in the Signal
design documents, pinpointing and analyzing the conditions under which forking occurs has not
been formally done before our work and the concurrent work by Bienstock et al. [12]. In our
modeling, FSM forks when one of the parties is compromised, and at the same time, the other
party successfully decapsulates a forged incoming message with an “epoch id” that is different than
the one used by the sender. In that case, FSM remains forked indefinitely, without any additional
corruptions.

1.3 Modelling the Components of the Signal Architecture as UC Modules

Signal’s strong forward secrecy and recovery from compromise guarantees are obtained via an
intricate mechanism where shared keys are continually being updated, and each key is used to
encapsulate at most a single message.

To help keep the parties in sync regarding which key to use for a given message, the conversation
is logically partitioned into sending epochs, where each sending epoch is associated with one of the
two parties, and consists of all the messages sent by that party from the end of its previous sending
epoch until the first time this party successfully decapsulates an incoming message that belongs to
the peer’s latest sending epoch.

Within each sending epoch, the keys are pseudorandomly generated one after the other in a
chain. The initial chaining key for each epoch is generated from a ‘root chain’ that ratchets forward
every time a new sending epoch starts. Each ratcheting of the root chain involves a Diffie-Hellman
key exchange; the resulting Diffe-Hellman secret is then used as input to the root ratchet (along
with an existing chaining value). The public values of each such Diffie-Hellman exchange are
piggybacked on the messages within the epoch and therefore authenticated using the same AEAD
used for the data. Furthermore, these public values are used as unique identifiers of the sending
epoch that each message is a part of. This mechanism allows the parties to keep in sync without
storing any long-term information about the history of the session.

The Signal architecture document [51] de-composes the above mechanism into 3 main crypto-
graphic modules, plus non-cryptographic code used to put these modules together. The modules
are: (1) a symmetric authenticated encryption with associated data (AEAD) scheme that is applied
to individual messages; (2) a symmetric key ratcheting mechanism to evolve the key between mes-
sages within an epoch; (3) an asymmetric key ratcheting (or “continuous key exchange”) mechanism
to evolve the “root chain.” Since these modules are useful for applications beyond this particu-
lar protocol, we follow this partitioning and decompose Signal’s protocol into similar components.
(Our partitioning into components is also inspired by that of Alwen et al. [1].)

We model the security of each component as an ideal functionality within the UC framework.
(These are Faead,FmKE,FeKE, respectively.) This allows us to distill the properties provided by each
module and demonstrate how they can be composed, along with the appropriate management code
to obtain the desired functionality—namely to realize FSM. The management code (specifically,
protocols Πfs aead and ΠSGNL), does not directly access any keying material. Indeed, these protocols
realise their respective specifications, namely Ffs aead and FSM, perfectly—see Theorems 2 and 4.

Before proceeding to describe the modules in more detail, we highlight the following apparent
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circularity in the security dependence between these modules: the messages in each sending epoch
need to be authenticated (by the AEAD in use) using a key k that’s derived from part of the
message itself. This interdependence between message content and the authentication key might
initially suggest that a modular security analysis along the above partitioning to modules would be
impossible.

One way to get around this issue is to include the AEAD module (or at least the authentication
of the first message in each epoch) within the key exchange module, thereby allowing FeKE to
authenticate new epoch identifiers. However, this would alter the partitioning of modules as given
in the Signal protocol. We thus keep the AEAD module separate, and explicitly model the fact
that the FeKE does not determine the authenticity of new epoch identifiers. In our work, FeKE

assigns a fresh pseudorandom secret key with each new epoch identifier, regardless of whether it is
authentic or not. The determination of whether a new purported epoch identifier is authentic (or a
forgery caused by an adversarially generated incoming message) is done elsewhere – specifically by
the calling protocol, which receives feedback from an authenticated encryption functionality that
uses the key k output by FeKE for this epoch identifier. This is a separation of tasks successfully
breaks-up the circularity issue, allowing it to be adressed across multiple components in a modular
fashion. We now proceed to provide a more detailed overview of our partitioning and the general
protocol logic. See also Figure 1.

FeKE. The core component of the protocol is the epoch key exchange functionality FeKE, which
captures the generation of the initial shared secret key from the public information, as well as the
continuous Diffie-Hellman protocol that generates the unique epoch identifiers and the “root chain”
of secret keys. Whenever a party wishes to start a new epoch as a sender, it asks FeKE for a new
epoch identifier, as well as an associated secret key. The receiving party of an epoch must present
an epoch identifier, and is then given the associated secret key.

As mentioned, we allow the receiving party of a new epoch to present multiple potential epoch
identifiers, and obtain a secret epoch key associated with each one of these identifiers. Furthermore,
while only one of these keys is the one used by the sender for this epoch, all the other keys provided
by FeKE are guaranteed to appear random and independent to the adversary. In other words, FeKE

leaves it to the receiver to determine which of the candidate identifiers for the new epoch is the
correct one. If FeKE recognizes, from observing the corruption activity and the generated epoch
ids, that the session has forked, then it exposes the secret keys to the adversary. We postpone the
discussion of realizing FeKE to the end of this section.

FmKE. The per-epoch key chain is captured by an ideal functionality FmKE that is identified
by an epoch-id, and generates, one at a time, a sequence of random symmetric keys associated
with this epoch-id. The length of the chain is not a priori bounded; however, once FmKE receives
an instruction to end the chain for a party, it complies. FmKE guarantees forward secrecy by
making each key retrievable at most once by each party; that is, the key becomes inaccessible upon
first retrieval, even for a corrupted party. However, it does not post-compromise security: once
corrupted, all the future keys in the sequence are exposed to the adversary.
FmKE is realized by a protocol, ΠmKE, that first calls FeKE with its current epoch-id, to obtain

the initial chaining key associated with that epoch-id. The rest of the keys in this epoch are derived
using a key derivation function (KDF) (of which Signal’s typical instantiation using HKDF is a
special case.) The desired properties of the KDF are discussed at a high level in Signal’s documen-
tation, we introduce the new primitive cascaded PRF-PRG to capture the necessary properties of
this module.
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Figure 1: Modeling and realizing secure messaging: The general subroutine structure. Ideal func-
tionalities are denoted by F and protocols by Π. Horizontal arrows denote realization, whereas
vertical arrows denote subroutine calls; the red dashed arrows denote subroutine calls to FΠ (see
Section 2.2 and 4.) Functionalities FDIR,FLTM,Flib,FpRO are global with respect to FSM and all its
sub-functionalities, whereas FeKE and FmKE are global only to a subset of functionalities.

Demonstrating that ΠmKE realizes FmKE is relatively straightforward, except for the need to
address the fact that the same instance of FeKE is used by multiple instances of ΠmKE. Using the
formalism of [5], we thus show that ΠmKE UC-realizes FmKE in the presence of a global FeKE.

Faead. Authenticated encryption with associated data is captured by ideal functionality Faead,
which provides a one-time ideal authenticated encryption service: the encrypting party calls Faead

with a plaintext and a recipient identity, and obtains an opaque ciphertext. Once the recipient
presents the ciphertext, Faead returns the plaintext. (The recipient is given the plaintext only
once, even when corrupted.) The “associated data,” namely the public part of the authenticated
message, is captured via the session identifier of Faead.
Faead is realized via protocol Πaead, which employs an authenticated encryption algorithm using

a key obtained from FmKE. If we had opted to assert security against non-adaptive corruptions,
any standard AEAD scheme would do. However, we strive to provide simulation-based security
in the presence of fully adaptive corruptions, which is provably impossible in the plain model
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whenever the key is shorter than the plaintext [50]. We get around this issue by realizing Faead

in the programmable random oracle model. While we provide a very simple AEAD protocol in
this model, many common block cipher-based AEADs can also realize Faead provided we model the
block cipher as a programmable random oracle. It is stressed however that the random oracle is
used only in the case of short keys and adaptive corruptions. In particular, when corruptions are
non-adaptive or the plaintext is sufficiently short, our protocol continues to UC-realize Faead even
when the random oracle is replaced by the identity function.

Since each instance of FmKE is used by multiple instances of Πaead, we treat FmKE as a global
functionality with respect to Πaead. That is, we show that Πaead UC-realizes Faead in the presence
of (a global) FmKE.

Ffs aead. Functionality Ffs aead is an abstraction of the management module that handles the en-
capsulation and decapsulation of all the messages within a single epoch. An instance of Ffs aead

is created by the main module of Signal whenever a new epoch is created, with session ID that
contains the the identifier of this epoch. Ffs aead then provides encapsulation and decapsulation
services, akin to those of Faead, for all the messages in its epoch. In addition, once instructed by
the main module that its epoch has ended, Faead no longer allows encapsulation of new messages
— even when the party is corrupted.
Ffs aead is realized (perfectly, and in a straightforward way) by protocol Πfs aead that calls mul-

tiple instances of Faead, plus an instance of FmKE for this epoch - where, again, the session ID of
FmKE contains the current epoch id.

ΠSGNL. At the highest level of abstraction, we have each of the two parties run protocol ΠSGNL.
When initiating a session, or starting a new epoch within a session, (i.e., when encapsulating the
first message in an epoch), ΠSGNL first calls FeKE to obtain the identifier of that epoch, then creates
an instance of Ffs aead for that epoch id and asks this instance to encapsulate the first message of
the epoch. All subsequent messages of this epoch are encapsulated via the same instance of Ffs aead.

On the receiver side, once ΠSGNL obtains an encapsulated message in a new epoch id, it creates
an instance of Ffs aead for that epoch id and asks this instance to decapsulate the message. It
is stressed that the epoch id on the incoming message may well be a forgery; however in this
case it is guaranteed that decapsulation will fail, since the peer has encapsulated this message
with respect to a different epoch id, namely a different instance of Ffs aead. (This is where the
circular dependence breaks: even though the environment may invoke ΠSGNL on arbitrary incoming
encapsulated message, along with related epoch ids, Ffs aead is guaranteed to reject unless the
encapsulated message uses the same epoch id as the as actual sender. Getting under the hood,
this happens since the instances of FmKE that correspond to different epoch ids generate keys that
are mutually pseudorandom.) It is emphasised that ΠSGNL is purely “management code” in the
sense that it only handles idealized primitives and does not directly access cryptographic keying
material. Commensurately, it UC-realizes FSM perfectly.

Realizing FeKE. Recall that FeKE is tasked to generate, at the beginning of each new epoch,
multiple alternative keys for that epoch – a key for each potential epoch-id for that epoch. This
should be done while preserving simulatability in the presence of adaptive corruptions.

Following the Signal architecture, the main component of the protocol that realizes FeKE is a
key derivation function (KDF) that combines existing secret state, with new public information
(namely the public Diffie-Hellman exponents, which also double-up as an epoch-id), and a new
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shared key (the corresponding Diffie-Hellman secret), to obtains a new secret key associated with
the given epoch-id, along with potential new local secret state for the KDF.

If the KDF is modeled as a random oracle then it is relatively straightforward to show that
the resulting protocol UC-realizes FeKE. On the other extreme, it can be seen that no plain-
model instantiation of the KDF module, with bounded-size local state, can possibly realize FeKE

in our setting. Indeed, since the adversary can obtain unboundedly many alternative keys for a
given epoch, where all keys are generated using the same bounded-size secret state, the Nielsen
bound [50] applies.

We propose a middle-ground solution: we show how to instantiate the KDF via a plain-model
primitive which we call a cascaded PRF-PRG (CPRFG) whose local state grows linearly with the
number of keys requested from FeKE at the beginning of a given epoch. Once the epoch advances,
the state shrinks back to its original size. Our instantiation uses standard primitives (pseudorandom
generators and puncturable pseudorandom functions) and realises a marginally weaker functionality
F∗eKE that differs in how it handles the problem of the adversary sending malformed packets to the
receiver during a compromised epoch. Our name “cascaded PRF-PRG” is based on the conceptual
similarity between our definition and the PRF-PRG introduced by Alwen et al. [1]; nevertheless,
we stress that technically the primitives are quite different, as we elaborate below in Section 1.5.

Modularity with weaker adaptivity. Some earlier analyses of Signal (see Section 1.5) consider
security against adversaries which are limited in their adaptivity. Our modular decomposition of
Signal as presented here remains valid for such adversaries. That is, as long as the building blocks
can withstand a certain level of adaptivity, the overall protocol remains secure.3

The benefits of modularity In conclusion, we emphasise the advantages of a fully composable
and modular approach to analysing the Signal architecture for secure instant messaging. We men-
tioned earlier in this section that currently existing implementations of AEAD and the asymmetric
ratchet could be shown to realize Faead and FeKE if one assumes a stronger reliance on the random
oracle model. Concretely, one could (1) instantiate Faead using any CTR- or CBC-based encryption
scheme under the assumption that the block cipher is a random oracle, and (2) instantiate FeKE

using HKDF construction under the assumption that its HMAC subroutine is a random oracle.
We emphasize that the modularity and generality of our interconnected ideal functionalities allow
other instantiations of Πaead and ΠeKE to be easily plugged in.

Additional functionalities and methods. Our modeling and instantiation of Signal also relies
on the existence of several functionalities at the network level and on individual devices. For
instance, we rely on the existence of a public key infrastructure Flib, which can be modeled as
a global UC functionality as described in the next section. We also assume that each party’s
corresponding secret key is stored in a long-term module FLTM that is protected at the system level
from exfiltration even if the device is corrupted. Moreover, we presume that local devices have the
ability to perform secure deletion, in order to erase old keys as part of the key ratcheting process.

One of the contributions of this work is to specify concretely what functionalities Signal relies
upon, and in which components of the system. When a protocol is not specified clearly, an instan-
tiation that adheres to the specified protocol could mess up implied aspects of the protocol (such as
deletion of old keys) and, in doing so, open up avenues for attacks. The protocol specifications in

3For more details on modeling adaptivity levels of corruptions in the UC framework, see [22, Section 7.1 on Page
69].
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this work are somewhat longer than expected because they address such concerns, whereas Signal’s
specification [51] sometimes lacks such detailed guidance.

1.4 Streamlining our UC Analysis: Global Functionalities, Party Corruptions

We highlight two additional modeling and analytical techniques that we used to simplify the overall
analysis. We hope that these would be useful elsewhere.

Multiple levels of global state. Our analysis makes extensive use of universal composition
with global state (UCGS) within the plain UC model, as formulated and proven in [5]. Specifically:

• At the highest level we use UCGS to model three global modules available to all the other
functionalities in our paper. (1) A single global directory FDIR that stores the public keys of
all parties. (2) A long term storage module FLTM for each party that stores the private keys
corresponding to that party’s globally available public keys. (2) A single adversarial code
library Flib that stores the adversarially provided code for every functionality.

• Additionally, we use UCGS to model the two key exchange modules in our breakdown of
the Signal architecture (This allows multiple short lived functionalities to ask for keys from
a single long term module): (1) For each epoch of the conversation, an instance of the
message key exchange functionality FmKE receives a request for each message key from the
encryption module for that particular message. (2) For the entire conversation, a single epoch
key exchange functionality FeKE receives requests for each epoch key from the message key
exchange module FmKE for that particular epoch.

• Finally, we use UGCS to model the programmable random oracle FpRO that is used in the
encryption module.

Furthermore, since our use of global state is not completely covered by the UCGS Theorem
of [5], we extend that theorem so as to cover our use case. To see why our use case is not covered
by the UCGS Theorem, recall that the UCGS Theorem states that if a protocol Π UC-realizes
functionality F in the presence of a globally accessible functionality G, then for any protocol ρ, the
protocol ρF→Π UC emulates ρ in the presence of G.

While this theorem suffices for most of our uses, for our multi-level use of UCGS we would like
to additionally show that ρF→Π UC emulates ρ even in the presence of ΠG , where ΠG is a protocol
that UC-emulates G. However, such implication is not true in general [6, 28].

We get around this problem by proving the following simple-but-useful lemma (Lemma 1 in
Section 2): Assume that ΠG UC-realizes G via a simulator S, then any protocol ρ that UC-realizes
F in the presence of GS also UC-realizes F in the presence of ΠG , where GS is the functionality
that combines G with S in the natural way. We then show that, for the protocols ρ in this work,
having access to GS suffices for them to realise their respective functionalities F.

Multiple levels of corruptions. The UC framework allows the adversary to adaptively and
individually corrupt each party in each module within a composite protocol. While this is very
general, it makes the handling of party-wise corruption events (where typically the internal states
of multiple modules belonging to the party are exposed together) rather complex. We thus adopt
a somewhat simpler modeling of party corruption: When the environment corrupts a protocol/-
functionality belonging to a party, it obtains the state of the party corresponding to that module
as well as all the sub-modules used within; (1) A corrupted module forwards the corruption notice

13



to all its subroutines. (2) Each subroutine responds with a local state for the corrupted party. (3)
The module collects the local states of the subroutines together with its own and reports them to
the environment. (If the corrupted module is a functionality, it asks its simulator to produce a local
state corresponding to the corrupted party.) In addition to being simpler, this modeling provides
a tighter correspondence between the real and ideal executions and is thus preferable whenever
realizable (which is the case in this work).

1.5 Related Work

This section briefly surveys the state of the art for security analyses of the Signal architecture
in particular and end-to-end secure messaging in general, highlighting the differences from and
similarities to the present work.

There is a long line of research into the design and analysis of two-party Signal messaging, its
subcomponents, and variants of the Signal architecture; this research builds upon decades of study
into key exchange protocols (e.g., [8, 9, 26, 27]) and self-healing after corruption (e.g., [24, 32, 34]).
Some of these secure messaging analyses purposely consider a limited notion of adaptive security
in order to analyze instantiations of Signal based on standardized crypto primitives (e.g., [1, 10,
36, 40, 64]). Other works consider a strong threat model in which the adversary is malicious, fully
adaptive, and can tamper with local state [4, 7, 39, 41, 53], which then intrinsically requires strong
HIBE-like primitives that depart from the Signal specification. By contrast, we follow a middle
ground in this work: our adversary is fully adaptive and has no restrictions on when it can corrupt
a party, yet its corruptions are instantaneous and passive.

We stress that, while this work is inspired by the clear game-based modeling and analyses
of Signal in works like Alwen et al. [1], our modeling differs in a number of significant ways.
For one, our analysis provides a composable security guarantee. Furthermore, we directly model
secrecy against a fully adaptive adversary that decides who and when to corrupt based on all the
information seen so far. In contrast, Alwen et al. [1] guarantee secrecy only against a selective
adversary that determines ahead of time who and when it will corrupt.

There are two prior works that perform composable analyses of Signal. In concurrent work
to our own, Bienstock et al. [12] provide an alternative modeling of an ideal secure messaging
within the UC framework and demonstrate how the Signal protocol can be modeled in a way that
is shown to realize their formulation of ideal secure messaging. Like this work, they demonstrate
several shortcomings of previous formulations, such as overlooking the effect of choosing keys too
early or keeping them around for too long. Additionally, Jost, Maurer, and Mularczyk [41] conduct
an analysis in the constructive cryptography framework. Their work provides a model for message
transmission as well as one for ratcheting protocols.

That said, the ideal functionalities in [12] and [41] differ from our FSM in several ways.

• Differences between our work and both of [12,41] : Their modeling does not account for the
session initiation process, nor the PKI and long-term key modules that are an integral part of
any secure messaging application. Additionally, they include the communication medium as
part of the protocol, which (a) makes it harder to argue about immediate decryption and (b)
means that an instantiation of Signal would have to include an entire TCP/IP stack, which
weakens modularity and inhibits the use of Signal as a sub-routine within larger functionali-
ties.

• Additional differences with Bienstock et al. [12]: While the modeling of the Signal protocol
in [12] follows the traditional partitioning into continuous key exchange, epoch key derivation
and authenticated encryption modules, it does not formalize this partitioning within the UC
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framework as done in this work; commensurately, they model all key derivation modules
as random oracles. Also, their modeling forces the “calling protocol” to keep track of the
message IDs for the Secure Messaging functionality/protocol, and assumes uniqueness of the
IDs which might create a security risk. On the other hand, [12] accounts for adversarial choice
of randomness, which our modeling does not account for. They also propose and analyze an
enhancement of the double ratchet structure, which they call the Triple Ratchet protocol,
that helps parties regain security faster following a compromise event.

• Additional differences with Jost, Maurer, and Mularczyk [41]: To model ratcheting compo-
nents in a modular fashion, [41] introduces a global event history defined for the entire real
(or ideal) world, where a history is a list of events having happened at a module (e.g. a
message being input by Alice or one having leaked to the adversary). The event history is
visible to the environment, the resources, and the simulator. The security of a resource is
then allowed to depend on the global event history. They make composable statements about
continuous key agreement protocols in their model (a notion introduced by Alwen et al. [1])
by restricting the adversaries capabilities in the real world as a function of the global event
history. Alternatively, for the case of unrestricted adversaries [41] provide a HIBE-based
implementation which is quite different than that of Signal (and ours) and requires heavier
cryptographic primitives. Additionally, they transform their HIBE-based protocol into one
that is fully composable via a technique that requires a restriction on the number of messages
a party can send before receiving a response from the other party.

Comparison to the CRYPTO 2022 version of this work. In addition to providing full
specifications of the ideal functionalities and protocols, as well as full proofs of security, the current
version of FSM provides a marginally weaker guarantee than the version in [25], in terms of recovery
from session compromise. Specifically, the version of FSM in [25] guarantees that a session regains
its security at the third epoch since the last party corruption event, unless the environment chooses
to prevent recovery by delivering a specifically crafted bogus message to the party that expects
to receive the first message in a new epoch. If such a message is delivered, the session is forked
indefinitely.

The current version of FSM allows the environment to deliver yet another form of bogus message
to the party that expected the first message in a new epoch. However, in this case the recovery is
only delayed so as to take three epochs from the delivery event. We view this weakening as having
a secondary impact of the actual security of the protocol, yet it simplifies the analysis and prevents
us from using stronger cryptographic hardness assumptions. See more details in Sections ?? The
current version of FSM allows the environment to deliver yet another form of bogus message to the
party that expected the first message in a new epoch. However, in this case the recovery is only
delayed so as to take three epochs from the delivery event. We view this weakening as having a
secondary impact of the actual security guarantees provided by our treatment, yet it simplifies the
analysis and prevents us from using stronger cryptographic hardness assumptions. See more details
in Sections 3.2 and 5.1.

2 Universally Composable Security

2.1 Universal Composability: A Primer

UC security [22] is an instantiation of the simulation-based security paradigm in which the real
world execution of a protocol Π is compared with an idealized abstraction F. The UC security
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framework gives two special powers to the distinguisher (also known as the environment Env) in
order to provide maximum flexibility to distinguish Π from F: direct interaction with either the
protocol or the abstract specification (or, ideal functionality) by way of providing all inputs and
obtaining all outputs, as well as interaction via pre-specified adversarial channels — either directly
with the protocol or else with the specification, where the interaction is mediated by a special
computational component called the simulator.

A protocol Π is deemed to be a UC-realization of the functionality F if there exists an efficient
simulator S such that no environment can tell whether it is interacting with Π, or else with F and
S, namely execE,Π ≈ execE,F,S for all polytime environments E .

The UC model also formulates a stylized model of execution that is sufficiently general so as
to capture most realistic computational systems. In this model, machines (which are the basic
computational entity) can interact by sending messages to each other. Messages take the form of
either input, or output, or “side information”, where the latter model either adversarial leakage of
information from a machine, or adversarial influence on the behavior of the machine. Machines
can create other machines dynamically during an execution of the system, and each new machine
is given an identity that includes its own program and is accessible to the machine itself. When a
machine sends input or output to another machine, the system lets the recipient machine know the
full identity of the sender.

By convention, identities consist of two fields, called session ID (sid) and party ID (pid). All
machines that have the same sid and same program Π are called a session of Π. These machines are
also called the main machines of this instance. In this paper, we use the notation (F, sid) to denote
the specific instance of the machine running the code of F that has session id sid; this combination
uniquely identifies a single machine. Within sid, many (but not all) of the functionalities in this
work will include the pid of the parties that are permitted to invoke this session; this serves as a
form of access control.

If machine A has sent input to machine B in an execution, or machine B sent output to machine
A, then we say that B is a subroutine of A. Protocol session B is a subroutine of protocol session A
if some machine in B is a subroutine of some machine in A. The extended session of some protocol
session A in an execution of a system includes the transitive closure of all the protocol sessions
under the subroutine relation starting from A.

Remarkably, the UC model of execution considers only a single (extended) instance of the
protocol under consideration, leading to relative simplicity of the specification and analysis. Still,
the UC framework provides the following generic composition theorem, called the UC Theorem:
Suppose one proves that a protocol Π UC-realizes F, and there exists another “hybrid” protocol ρ
that makes (perhaps many) subroutine calls to functionality F. Now, consider the protocol ρF→Π

that replaces all instances of the ideal functionality F with the real protocol Π. The composition
guarantees that the instantiation ρF→Π is “just as secure” as the ρ itself, in the same sense defined
above. In this case we say that ρF→Π UC-emulates ρ.

UC with global subroutines. Crucially, the UC theorem requires that both F and Π are
subroutine respecting. (A protocol is subroutine respecting if the only machines in any extended
session of the protocol that take input from a machine that is not part of this extended session, or
provides output to a machine that is not part of this extended session, are the main machines of
this protocol session.)

While this requirement is both natural and essential, it does not allow for direct, “out of the
box” application of the UC theorem in prevalent situations where one wants to decompose systems
where multiple protocols (or multiple sessions of the same protocol) use some common construct
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as subroutine. In the context of this work, examples include public-key infrastructure, a long-term
memory module that is used by multiple sessions, a key generation protocol that is used in multiple
epochs and multiple messages in an epoch, or a global construct modeling the random oracle.

First attempts to handle such situations involved extending the UC framework to explicitly
allow for multiple sessions of protocols within the basic model of execution [23]. However, this
resulted in additional complexity and incompatibility with the basic UC model. More recently,
the following formalism has been shown to suffice for capturing universal composition with global
subroutines within the basic UC framework [5]:

Say that protocol Π UC-realizes functionality F in the presence of global subroutine G if there
exists an efficient simulator S such that no environment can tell whether it is interacting with Π
and G, or else with F, G, and S. Here G can be either a single machine or an entire protocol
instance, where G can be a subroutine of Π or of F, and at the same time take inputs directly from
the environment and provide outputs directly to the environment4.

Now, consider protocol ρ that makes subroutine calls to functionality F, and additionally also
calls to G. Then the UC With Global Subroutines Theorem states that the protocol ρF→Π , that is
identical to ρ except that all instances of the ideal functionality F are replaced by instances of the
real protocol Π, UC emulates ρ in the presence of G. Note that in both ρ and in ρF→Π , G may
take input from and provide outputs to multiple instance of Π (or of F), of ρ, and also directly to
the environment.

2.2 New Capabilities: Global Functionalities, Adversarially Provided Code

We describe two new modeling techniques that simplify our analysis, and may be of more general
interest.

Instantiating global functionalities. The first technique relates to applying the UC theorem
to global functionalities. Assume that we have a protocol ρ that UC-realises a functionality F in
the presence of a global functionality G. Assume also that we have a protocol ΠG that UC-realises
the functionality G. It may be tempting to deduce directly that ρ UC-realizes F in the presence of
ΠG ; however, this implication is false in general [6,28]. Still, the following implication does hold: If
ΠG UC-realises G, and ρ UC-realizes F in the presence of ΠG , then ρ UC-realizes F in the presence
of G.

We use this fact as follows: since ΠG UC-realizes G, there must exist a simulator S such that no
environment can distinguish between an interaction with ΠG and an interaction with G and S. Now
consider the machine GS that represents the combination of G and S (the communication between
G and S are now internal to the combined machine GS . We observe that ΠG and GS UC-emulate
each other, more specifically ΠG UC-emulates GS and in addition GS UC-emulates ΠG. Hence,
instead of demonstrating that ρ UC-realizes F in the presence of Π, it suffices to demonstrate that
ρ UC-realizes F in the presence of GS . That is:

Lemma 1 Let ΠG be a protocol that UC-realizes an ideal functionality G, and let S be a simulator
that demonstrates this fact, i.e execE,ΠG ≈ execE,G,S. Then protocols ΠG and GS UC-emulate each
other. Consequently, for any protocol ρ and ideal functionality F we have that ρ UC-realizes F in
the presence of ΠG if and only if ρ UC-realizes F in the presence of GS.

4Since the standard UC model of execution only considers an interaction of the environment with a single instance
of some protocol, [5] first demonstrate that, without loss of generality, an instance of F alongside G exhibits the same
behavior as an instance of a “dummy protocol” δ that simply runs Π alongside G as subroutines of δ.
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Modeling don’t-care code and immediate response. The second modeling technique can
actually be thought of as further formalization of a technique that has been used in several works
for different purposes. Specifically, it is sometimes convenient to have an ideal functionality expect
to obtain from the adversary a piece of code that will be later run by the functionality under some
conditions. In this work we have the additional requirement that the adversarially provided code
should be readily available for use by ideal functionalities immediately upon first invocation.

Specifically, the formalism proceeds as follows. We formulate an ideal functionality, Flib (see
Figure 2), to be used as a global functionality in the system. The adversary can upload code
to be used by ideal functionalities. (We call the uploaded code I an internal adversary, as it
can be thought of as an adversary run internally by the functionality without direct access to
the environment.) More specifically, each uploaded code is associated with an identifier. Ideal
functionalities can then ask Flib for the code associated with a given identifier. Flib then either
responds with the uploaded code, or else returns an error message. For further convenience, we
allow uploaded code to refer and use other uploaded pieces of code, referring to these pieces of code
by their identifiers. (This is akin to “code linking” in standard software packages.)

Flib

Obtaining adversarial code: When receiving a message (τ, α, linking) from the adversary record it. //α
represents the adversarial code, and τ represents the code of the target machines to obtain code α. The linking flag
lets Flib know whether the adversarial code calls adversarial code for other target machines.

Delivering adversarial code: When receiving a request for code from some party τ , find the latest (τ, α, linking)
that has been recorded.
//This code runs for a bounded amount of time; if it exceeds its specified running time, then it outputs ⊥.

1. If no such (τ, α, linking) was recorded, output ⊥.

2. If linking == true then:

• Go through program α and link the program by doing the following for all calls to dependencies (τ ′, I):

(a) Find the latest (τ ′, α′, linking′) that has been recorded.

(b) If no such record exists for a dependency, output ⊥.

(c) If linking′ == true then run this compilation on α′ starting at step 2.

(d) Inline the code for the calls to α′.

(e) If this is the last dependency, record (τ, α, linking = false).

3. Output α.

Figure 2: The code library functionality, Flib

In this work this technique is used to model the immediate encryption and immediate decryption
properties of secure messaging. The uploaded internal adversarial code is specific to the protocol
that realizes the functionality, and essentially it acts as the ideal-world simulator during an honest
execution. This ensures that the functionality does not need to wait for the adversary to encrypt or
decrypt messages that are not corrupted. In cases where the message or ciphertext is corrupted, the
fully adaptive adversary is called for input (for example, asking A to encrypt a message or decrypt
a ciphertext). The state of the static code I is maintained across calls in a variable stateI , and it
is sent to the adversary upon corruption. Here the fact that Flib is global is crucial, in allowing the
static code to be already defined at the time that the functionality is instantiated.

The linking feature of Flib becomes handy when writing simulators for protocols that (a) realize
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an ideal functionality F that expect adversarial code, and (b) make use of another ideal functionality
F ′ that also expects adversarial code. In such situations the code that the simulator will upload to
Flib will link to the code that is to be uploaded by the adversary (or simulator) for F ′.

3 Modelling Secure Messaging

This section presents our overall modeling of secure messaging. Relying on the overview provided
in Section 1.2, we dive right into the detailed descriptions of the main components. Section 3.1
describes the functionalities (FDIR, FLTM, and FpRO) that are global with respect to the top level
secure messaging functionality FSM (other than Flib which was described on Page 18). Section 3.2
describes the the top-level secure messaging functionality FSM.

3.1 Global Functionalities

In Section 2.2 we described the functionality Flib that we use to model the instant encryption and
instant decryption properties of secure messaging. In this section we describe three other global
subroutines used in our work. The global subroutines presented here are adaptations of well-studied
UC functionalities.

FDIR. First, we construct a public key infrastructure functionality called the directory FDIR (Fig. 3).
This functionality allows each party (through their long-term module FLTM) to upload their long-
term public identity key ik to the directory. The directory also supports the execution of the triple
Diffie-Hellman protocol that binds the session to the identity of the two participants. Specifically,
FDIR allows the initial sender in a session of secure messaging to fetch the recipient’s long- and
short-term keys as well as a unique one time key for the session.

FpRO. Next, we design a programmable random oracle module FpRO (Fig. 4) that will be used
to generate one-time keys during the symmetric ratcheting step. We need a random oracle for
equivocation against an adaptive attacker, given that there is no bound on the number of message
keys that a party might use within an epoch. Specifically, we use the following random oracle
functionality from [18]. Anyone can query the random oracle, but only the (real or ideal world)
adversary has the power to program it.

FLTM. Finally, we design a module FLTM (Fig. 5) with two responsibilities: local storage of long-
term public and private cryptographic key material, and performing computations that require
access to the long term private keys of a party. Intuitively, one can think of FLTM as a trusted
execution enclave or secure co-processor that performs the Diffie-Hellman operations associated
with the long term keys. Looking ahead, our secure messaging protocol only invokes FLTM when
establishing a new session of secure messaging; it is not invoked by ongoing communications. The
functionality also has several methods to support the execution of Signal’s triple Diffie-Hellman
protocol [46]. Concretely, each party can generate short-term rotating and one-time keys that limit
the period of vulnerability if a long-term key is compromised.

3.2 The Secure Messaging Functionality, FSM

This section presents our secure instant messaging functionality FSM (the complete details of which
can be found in Figure 6.) This functionality takes two types of inputs from the peers that are
using it, SendMessageand ReceiveMessage; SendMessage inputs are used to encapsulate messages
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FDIR

FDIR has a fixed session ID, denoted FDIR.

RecordKeys: On input (RecordKeys, pid, ikpkpid, rk
pk
pid) from (FLTM, pid) do: //For simplicity FDIR records just one

public key per pid. Multiple public keys per ”user level party” can be handled by having multiple pid’s per party.

1. Set ikpkpid and rkpkpid as the identity and rotating keys corresponding to pid, respectively, and

2. Output (RecordKeys, pid, Success) to the caller.

ReplaceRotatingKey: On input (ReplaceRotatingKey, pid, rkpkpid) from (FLTM, pid), replace the rotating key corre-

sponding to pid with rkpkpid and Output (ReplaceRotatingKey, pid, Success).

StoreOnetimeKeys: On input (StoreOnetimeKeys, pid, ls) from from (FLTM, pid), do:

1. If the list onetime keyspid corresponding to pid doesn’t exist, then create it.

2. Append ls to onetime keyspid and Output (StoreOnetimeKeys, pid, Success) to the caller.

GetInitKeys: On input (GetInitKeys, pidj , pidi):
//pidj is the responder and pidi is the initiator.

1. If there is no entry for pidj then output (GetInitKeys, Fail) to the caller.

2. Choose the first key okpkpidj
from the list onetime keyspidj (If the list is empty then let okpkpid =⊥.)

3. Remove okpkpid from the list onetime keyspid.

4. Output (GetInitKeys, pid, ikpkpid, rk
pk
pid, ok

pk
pid) to the caller.

GetResponseKeys: On input (GetResponseKeys, pidi) from a machine with party id pidj : //pidj is the responder.

1. Send (GetResponseKeys, pidi, ik
pk
pidi

) to the caller.

GetRotatingKey: On input (GetRotatingKey, pid), do: If there is no entry for pid then output

(GetRotatingKey, Fail) to the caller. Else (GetRotatingKey, pid, rkpkpid) to the caller.

Figure 3: The Public-Key Directory Functionality, FDIR

FpRO

On input (HashQuery,m, `):

1. If there is a record (m,h)

• If |h| ≥ `: let h′ be the first ` bits of h. //FpRO returns prefixes of already-computed entries.

• If |h| < `: choose hend
$← {0, 1}`−|h|, let h′ = h||hend, and replace the record (m,h) with (m,h′).

Else choose h′
$← {0, 1}` and record (m,h′).

2. Output (HashQuery, h′) to the caller.

On message (Program,m, h) from the adversary:

1. If there is no record (m,h′), then record (m,h). Send (Program) to the adversary. //If m has already been
queried then programming fails silently.

Figure 4: The Programamble Random Oracle Functionality, FpRO
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FLTM

FLTM is parameterized by a specific activator program Root, a key derivation function HKDF and key generation
function keyGen(), and an algebraic group G. All algebraic operations are done in G. The local session ID is of the
form (FLTM, pid). Inputs from senders whose party ID is different than pid are ignored.

Initialize: On input (Initialize) from (pid,Root) do: If this is not the first activation then end the activation. Else:

1. Create an empty list onetime keyspid = [ ]. Also, choose and record the key pairs (ikskpid, ik
pk
pid), (rkskpid, rk

pk
pid)

$←
keyGen(), which will be called the party’s identity key-pair and rotating key-pair, respectively.

2. Provide input (RecordKeys, pid, ikpkpid, rk
pk
pid) to FDIR.

UpdateRotatingKey: On input (UpdateRotatingKey) from (pid,Root), do:

1. Replace the rotating key pair with a new key pair (rkskpid, rk
pk
pid)

$← keyGen().

2. Provide input (ReplaceRotatingKey, pid, rkpkpid) to FDIR.

GenOnetimeKeys: On input (GenOnetimeKeys, pid, j) from (pid,Root), do:

1. Choose j new key pairs (oksk1 , ok
pk
1 ), . . . , (okskj , ok

pk
j )

$← keyGen() and append them to onetime keyspid.

2. Provide input (StoreOnetimeKeys, pid, okpk1 , . . . , ok
pk
j ) to FDIR.

ConfirmRegistration: On input (ConfirmRegistration) from (FSM, pid) or (ΠSGNL, pid), do:

1. If pid has already called (Initialize), output (ConfirmRegistration, Success).

2. Otherwise output (ConfirmRegistration, Fail).

ComputeSendingRootKey: On input (ComputeSendingRootKey, ikpkpartner, rk
pk
partner, ok

pk
partner) from a machine with PID

pid and code ΠeKE:

1. Choose an ephemeral key pair (eksk, ekpk)
$← keyGen() and compute the following:

• DH1 = (rkpkpartner)
ikskpid //Here (a)b denotes the exponentiation operation in the respective algebraic

group.

• DH2 = (ikpkpartner)
eksk

• DH3 = (rkpkpartner)
eksk

• DH4 = (okpkpartner)
eksk

2. Output (ComputeSendingRootKey, HKDF (DH1||DH2||DH3||DH4), ekpk).

ComputeReceivingRootKey: On input (ComputeReceivingRootKey, ikpkpartner, ek
pk
partner, ok

pk) from (ΠeKE, pid) do:

1. If list onetime keyspid does not contain an entry (oksk, okpk) for the given okpk, then output an error message
to (ΠeKE, pid).

2. Else, delete the one-time key pair (oksk, okpk) from the list and compute:

• DH1 = (ikpkpartner)
rkskpid

• DH2 = (ekpkpartner)
ikskpid

• DH3 = (ekpkpartner)
rkskpid

• DH4 = (ekpkpartner)
oksk

3. Output (ComputeReceivingRootKey, HKDF (DH1||DH2||DH3||DH4)).

Figure 5: The Long-Term Keys Module Functionality, FLTM
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FSM (Part 1)

This functionality has a session id sid = (sid′, pid0, pid1). Inputs arriving from machines whose identity is neither pid0
nor pid1 are ignored. //For notational simplicity we assume some fixed interpretation of pid0 and pid1 as complete
identities of the two calling machines.

SendMessage: On input (SendMessage,m) from pid: //pid is the extended identity of a party’s machine.

1. Let i be such that pid = pidi.

2. If initialized not set do: //initialization

• If pid 6= pid0, end the activation. Else, send (ConfirmRegistration) to (FLTM, pid).

• Upon output (ConfirmRegistration, t) from FLTM: If t = Success, send (GetInitKeys) to FDIR. Else,
end the activation.

• Upon receiving a response (GetInitKeys, pid1, ik
pk
1 , rk

pk
1 , ok

pk
1 ) from FDIR: If okpk1 6= ⊥, continue. Else,

end the activation.

• Initialize boolean variables initialized = true, diverge parties = false, integer vari-
ables (set to 0) epoch num0, sent msgnum0, rcv msgnum0, N self0 = 0 and empty dictionaries
advControl, id dict,N dict = {}.
//advControl will record which parties are adversarially controlled in each epoch, id dict maps epoch id’s
to epoch numbers, and N dict will hold the number of messages sent in each epoch.

• For all e ≥ 0, set N dict[e] =∞. Set advControl[epoch num0] = ⊥.

• Initialize stateI = ⊥ and call Flib to obtain the internal code I.

3. Increment sent msgnumi by 1.

4. If leak ∈ advControl[epoch numi] ∨ diverge parties = true, send backdoor message (stateI , SendMessage, pid,m)
to A. Else, run I(stateI , SendMessage, pid, |m|).

5. Upon obtaining (state′I , SendMessage, pid, epoch id, c) from A or I, continue.

6. Update stateI ← state′I .

7. If sent msgnumi == 1: //If this is the start of a new sending epoch store the returned epoch id.

• If epoch id /∈ keys(id dict), record id dict[epoch id] = epoch numi. Else, end the activation.

8. Set h = (epoch id, sent msgnumi, N selfi).
//N selfi is the number of messages sent by pidi in its previous sending epoch.

9. If diverge parties = false, record (pid, h, c,m). Else, continue.
//If the parties’ states have diverged, then encrypted messages are no longer recorded.

10. Output (SendMessage, sid, pid, h, c) to pid.

Corrupt: On input (Corrupt, pid) from Env:

1. If pid /∈ {pid0, pid1}, end the activation. Else, continue.

2. Initialize the list corruptionsi if it does not exist.

3. Append (epoch numi, sent msg numi, received msg numi) to the list corruptionsi.

4. For all epochs e ≤ epoch numi, set advControl[e] = {leak, Inject} to allow the adversary to influence messages
still in transit.

5. Set advControl[epoch numi+1], advControl[epoch numi+2] = {leak, Inject}. Set advControl[epoch numi+3] =
{leak}.

6. Initialize a list pending msgs = []. For each record (pid1−i, h, c,m) do the following:
//Make a list of all the messages still in transit to party pid1.

(a) If there already was a successful ReceiveMessage for h (i.e there is a record (Authenticate, h, c′, 1) for
some c′), continue to the next record. Else, append (pid1−i, h, c,m) to pending msgs.

7. Send a request (stateI , ReportState, i, pending msgs) to A.

8. On receiving (ReportState, i, S) from A, output (Corrupt, S) to Env.

(The rest of this functionality is in Fig. 7 on Page 23)

Figure 6: The Secure Messaging Functionality FSM22



FSM (Part 2)

(This functionality begins in Fig. 7 on Page 23)

ReceiveMessage: On receiving (ReceiveMessage, h = (epoch id,msg num, N), c) from pid, do:

1. Let i be such that pid = pidi.

2. If this is the first ReceiveMessage request: //initialize the responder

• If i = 1, continue. Else, end the activation.

• Send (ConfirmRegistration) to (FLTM, pid).

• Upon receiving the output (ConfirmRegistration, t) from FLTM: If t = Success, continue. Else, end
activation.

• Send (GetResponseKeys, pid0, pid1) to FDIR.

• Upon receiving output (GetResponseKeys, pid0, ik
pk
0 ) from FDIR, continue.

• Initialize the variables sent msgnum1, rcv msgnum1 = 0 and epoch num1 = 1.

3. If there already was a successful ReceiveMessage for h (i.e there is a record (Authenticate, h, c′, 1) for some
c′), or this ciphertext previously failed to authenticate (i.e. a record (Authenticate, h, c, 0) exits), output
(ReceiveMessage, h, c, Fail) to pid.

4. If epoch id ∈ keys(id dict), set temporary variable epoch num = id dict[epoch id]. Else:

(a) If sent msgnumi = 0, output (ReceiveMessage, h, c, Fail) to pid. Else, continue.
//If pid is in a receiving state and hasn’t sent any messages in its current sending epoch, it will not
accept messages with a new epoch id.

(b) Set temporary variable epoch num = epoch numi + 1.

(c) If leak ∈ advControl[epoch num]:a

• For epochs e ∈ {epoch num, epoch num + 1}: Set advControl[e] = {leak, Inject}.
• Add leak to advControl[epoch num + 2]

5. If msg num > N dict[epoch num], output (ReceiveMessage, h, c, Fail) to pid
//For epoch num’s that are not finished yet, the N dict returns a default value of ∞, so this check passes
automatically.

6. If diverge parties = false ∧ Inject /∈ advControl[epoch num], run I(stateI , Inject, pid, h, c). //honest case

7. Else, send backdoor message (stateI , Inject, pid, h, c) to A.

8. On receiving (state′I , Inject, h, c, v) from A or I:

• Update stateI ← state′I .

• If v = ⊥, record (Authenticate, pid, h, c, 0) and output (ReceiveMessage, h, c, Fail). Else, continue.

• If diverge parties = false and Inject /∈ advControl[epoch num]: //honest case

– If there is a record (sender, h, c∗,m) for header h, record (Authenticate, h, c, 1) and set m∗ = m.
Else, output (ReceiveMessage, h, c, Fail). //allow authentication of a message with a different
mac in the honest case.

• Else: //compromised case

– Record (Authenticate, h, c, 1), and set m∗ = v.

– If epoch id does not appear as a key in id dict then set diverge parties = true. //diverge parties is
being set here.

9. If epoch numi < epoch num: //we only get to this step if decryption is successful

• Set N dict[epoch num− 2] = N , epoch numi += 2, N selfi = sent msgnumi, and sent msgnumi = 0.

10. Output (ReceiveMessage, h,m∗) to pid.

aThis provision (which was missing in the [25] version) allows the environment to delay recovery from
corruption by delivering messages with bogus epoch ids, this occurs even if these messages do not contain a
payload that passes authentication.

Figure 7: The Secure Messaging Functionality FSM
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for sending to the peer, whereas ReceiveMessage inputs are used to decapsulate received packets.
The functionality takes a few other ‘modeling inputs’ that are not part of the interface of protocols
realising this functionality. The first of these, Corrupt, captures the meaning of party corruptions
in our model. The others are a number of ‘side channel’ messages from the adversary, these are
used to fine-tune the security guarantees within the SendMessage and ReceiveMessage interfaces.

An instance of FSM is created by some party (namely an ITM, or colloquially a machine) by
way of sending the first SendMessage input to a machine whose code is FSM and whose session ID
is sid. (Recall that ideal functionalities have null party identifier.) The creating party encodes its
own identity, as well as the identity of the desired peer for the interaction, in the session ID. That
is, it is expected that sid = (sid′, pid0, pid1), where pid0 is the identity of the creating party (ie, the
initiator), and pid1 is the identity of the other party. It is stressed that there is no special “initiation”
input, namely the first SendMessage input already contains the message to be encapsulated.

SendMessage. Upon the first (SendMessage,m) activation (which is the first activation of the
functionality overall) FSM runs its initialization by doing the following four things:

1. Verifying the existence of the instance of FLTM corresponding to the initiator pid0.

2. Checking if the desired peer (pid1) has an available one-time key okpk registered with the
directory FDIR.

3. Initiating variables that will record subsequent epoch identifiers, message numerals within
each epoch, compromised epochs, etc.

4. Initializing internal adversarial state stateI and calling Flib to obtain internal adversarial code
I.5

If the local state of FSM indicates that this SendMessage activation is the first one in a new
epoch, then FSM will have already allowed the ideal-model adversary (namely, the simulator) to
choose a new epoch identifier for this epoch within the ReceiveMessage interface. When the epoch
is uncompromised, I will have been run internally by FSM to allow the simulator to choose the new
epoch identifier. Otherwise the epoch is compromised and FSM will have asked the simulator for
a new epoch identifier and waited to receive a response. In both cases FSM will have verified that
the newly chosen identifier is different than all previously used ones before continuing.

After initialization during the first activation and at the start of all subsequent activations, FSM

lets the ideal-model adversary choose the ciphertext c that will correspond to m. There are two
cases (Case 1: Uncompromised sending epoch.) The functionality allows the simulator to
make the choice of ciphertext by running the code I internally with only the length of m as input.
(Case 2: Compromised sending epoch.) The message m is leaked in full to the simulator by
FSM who then waits for the simulator to send back its chosen ciphertext c.

Finally, FSM records (m, c, h) where h is the “header information” that includes the epoch
identifier epoch id of the message and the message number msg num in the epoch. The output
(c, h) is sent to pid0. As long as the epoch ids are unique, no two records of encrypted messages
have the same header information. Indeed, uniqueness is the only property that the epoch ids need
to satisfy.

5When no party is compromised, the functionality never hands over control to the simulator. Instead, it allows
adversarial choices by internally running the adversarially provided code I. This enables the functionality to achieve
immediate decryption.
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ReceiveMessage. This input allows the receiving party to perform an “idealized authenticated
decryption” operation, even though the ciphertext was generated without knowledge of the message
and FSM itself has no keying material.

Upon the first (ReceiveMessage, c, h) input, FSM perform initialization by (1) Verifying that
this request is coming from pid1 (2) Verifying that the instance of FLTM that corresponds to pid1

exists, and (3) Verifying that pid0 is registered with FDIR.
After initialization during the first activation and on all subsequent activations, decryption

proceeds with respect to the following cases:

1. if there is an encryption record (m, c, h) for the header h with the exact ciphertext c, then FSM

returns the corresponding message m to pid regardless of whether the epoch is compromised.

2. Otherwise, if there is some encryption record (m, c′, h) for the header h with a different cipher-
text c′ (presumably, c is a “mauled ciphertext”) then FSM gives the adversary the latitude to
decide whether decryption should succeed. This behavior combines the standard EU-CMA
guarantee for the underlying authentication scheme, combined with one-time decryption.
There are two sub-cases 1) Uncompromised receiving epoch. The functionality allows
the simulator to decide if the ciphertext c successfully decrypts by running the code I inter-
nally and providing it h and c as inputs. If the output of I isn’t ⊥ then decryption succeeds
and the message m is output. Hence immediate decryption is preserved. 2) Compromised
receiving epoch. The ideal-model adversary can cause the receiving party to accept any
plaintext of its choosing. To this end, the functionality provides h and c as inputs to the
adversary and waits for the adversary to return a plaintext m′ to decrypt to. As long as
m′ 6=⊥, decryption succeeds.

3. Finally, if there is no record (m, c′, h) for the header h, then FSM fails to decrypt unless
the next receiving epoch of decrypting party is compromised. In the case that the next
receiving epoch is compromised, the adversary may attempt a person-in-the-middle attack
which succeeds if and only if the honest recipient accepts a new epoch created by the adversary
rather than the honest sender. The functionality proceeds as in the previous case and gives the
adversary the latitude to decide whether decryption should succeed and what the decrypted
plaintext should be. If decryption succeeds then the party has now started receiving messages
in a new epoch where its peer can never send a message and therefore the parties’ states and
keys have diverged from each other. In that case, FSM notes that the session is forked —
or in other words, that the parties have diverged. In this case, the functionality behaves as
if both parties are compromised for the rest of the session. This divergence(i.e. fork) event
represents a complete break of security of the session. If decryption doesn’t succeed then the
compromise is extended to two epochs past the next receiving epoch of the decrypting party.

It is stressed that FSM only supports decrypting a message for each header once; whenever a
successful decryption is output by FSM for some header h, the functionality will note this and will
refuse to participate in all subsequent calls with the same header h. This ensures forward secrecy.
In addition, FSM stores the exact number of messages sent in previous epochs so that honest parties
can detect if there is an attempt to inject a message after the sender’s planned ending to an epoch.

Finally, if this happens to be the first successfully received message for party pidi in the newest
epoch, then FSM notes that the next SendMessage activation with sender pid will start a new epoch
and allows the ideal-model adversary (namely, the simulator) to choose a new epoch identifier for
this sending epoch as described earlier.
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Corrupt. The response of FSM to party corruption inputs is the core of the security guarantees
it provides. The goal is to bound the effect of exposure of the local states of the parties on the loss
of security and, and provide guarantees as to how soon security of the communication is restored
(if at all).

First, we note two ways in which our modeling of corruptions differs from the traditional. First,
corruption is captured as an instantaneous exposure event, as opposed to having separate corrupt
and leave events. Second, corruptions are modeled as inputs (coming from the environment, as
opposed to the traditional UC modeling corruption as message coming from the adversary. Both of
these changes simplify the mechanics and yield a cleaner model while not restricting the adversary’s
power.

In FSM when a party is corrupted, the adversary learns nothing about all messages that have
been sent and received by the party until the point of corruption. Furthermore, the adversary
obtains no other information on the history of the session such as its duration. This guarantees
forward secrecy of a protocol that realises FSM. However, any messages in transit at the time
of corruption is sent to the ideal-model adversary instantly, who sends back a simulated state
that can be output to the environment. We’ve already described the behavior of FSM within the
SendMessage and ReceiveMessage interfaces while epochs are compromised.

So all that’s left is describing the process by which the functionality recovers from a compro-
mise. The point by which a compromised session becomes uncompromised is Signal-specific, and
is determined by inspecting the sequence of encapsulation and decapsulation activations of that
two parties. More specifically, Signal partitions the messages sent in a session into sending epochs,
where each sending epoch is associated with one of the two parties, and consists of all the messages
sent by that party from the end of its previous sending epoch until the first time this party suc-
cessfully decapsulates an incoming message that belongs to the peer’s newest sending epoch. For a
compromised session to become uncompromised, the corrupted party must start at least two new
sending epochs since the last corruption event. Specifically, if party pidi is corrupted when it is in
sending epoch e, the resulting compromise lasts at least until epoch number e+3. The compromise
period may be extended further if a party receives a packet with a mauled header that corresponds
to some compromised epoch e∗. In this case, one of two things can happen:

• If decryption fails, the compromise extends until epoch e∗ + 2. This outcome corre-
sponds to a weakness in the standalone security of ΠeKE, as it does not include any authen-
tication of keys. 6

• If decryption succeeds, the functionality behaves as if both parties are compro-
mised for the rest of the session. The success of decryption corresponds to the party
starting to receive messages in a new epoch where its peer can never send a message, causing
the parties’ states and keys to diverge from each other. In this scenario, FSM notes that
the session is forked—or in other words, that the parties’ states have diverged, and the func-
tionality then behaves as if both parties are compromised for the rest of the session. This
divergence (i.e., fork) event represents a complete break of security for the session.

4 Overview of our Modular Decomposition

This work provides a modular analysis of Signal’s protocol. In this section provide more details
about our modular, iterative process for decomposing the Signal architecture into a collection of

6This provision was missing in the [25] version of this work.
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ideal modules that each address a specific purpose. In essence, this section summarizes the theorems
that collectively serve to instantiate FSM, and it serves as an organization for the rest of the paper.

While reading this section, we encourage readers to review Fig. 1 on page 10, which graphically
depicts the various components and how they fit together.

A Signal-style realization of FSM. In our first instantiation depicted by the thick black arrow
at the top left of Fig. 1, we decompose the Signal protocol into two ideal modules representing the
interconnected components of the double ratchet architecture: (1) a long-lived FeKE component
that models the asymmetric ratcheted key exchange in the Signal architecture and (2) multiple
copies of short-lived Ffs aead components that model unidirectional forward secure authenticated
channels, each representing the combination of authenticated encryption (with associated data)
and the symmetric key ratchet from the Signal architecture, for handling the messages associated
with a single epoch. Protocol ΠSGNL uses these modules to realize FSM, following the overall logic
of Signal’s architecture

The long-lived key exchange module FeKE contributes two main features of the overall protocol:
(1) healing from compromise through the incorporation of randomness, and (2) long-term forward
secrecy. Meanwhile, the short-lived forward secure encryption modules Ffs aead each grant fine-
grained forward secrecy within the epochs they are associated with. By relying on FeKE, the
Ffs aead modules additionally enable the overall protocol to realise the long-term forward secrecy
and healing properties endowed by FeKE. At this level of abstraction, the reliance of Ffs aead on
FeKE is indirect (via the epoch identifiers.) However, at a lower level of abstraction, the security
of this module will depend directly on FeKE since the chain keys provided by FeKE will be used
eventually to derive the encapsulation and decapsulation keys for individual messages. Next, we
will briefly describe these modules along with our main theorem. Full descriptions as well as a
rigorous proof of the theorem can be found in Section 5.

• Signal Protocol (ΠSGNL, Fig. 16): The protocol ΠSGNL (see Section 5.3) is the top-level pro-
tocol that interfaces only with the ideal functionalities FeKE and Ffs aead and realises the
functionality FSM. There are three primary takeaways from the design of ΠSGNL: 1) it has
the same input-output API as our ideal functionality FSM, 2) it displays an idealized ver-
sion of the double ratchet with clearly distinct roles for the two subroutines, and finally 3) it
moves one level of abstraction closer to the specification of the real Signal architecture. Added
features at this level of abstraction include key material stored within party states, explicit
accounting for out-of-order messages by holding onto missed message keys, and epochs being
identified directly by their epoch id rather than an idealized epoch num ordering.

• Epoch Key Exchange (FeKE, Fig. 13): The epoch key exchange functionality FeKE persists
throughout the entire secure messaging session between two parties. It represents the root
ratchet of the Signal protocol which comprises the public key “backbone” of continuous
key agreement in the secure messaging architecture of Signal. At the level of abstraction
where ΠSGNL realises FSM, The only role of the epoch key exchange functionality is to
produce the epoch id’s that identify the communicating parties’ sending epochs. At this
level the functionality interacts only with the protocol ΠSGNL and the global functionalities
Flib,FDIR,FLTM. However, FeKE doesn’t only produce epoch identifiers. It also maps identi-
fier pairs (epoch id0, epoch id1) to sending and receiving chain keys that can be leveraged by
the symmetric ratchet to harness FeKE’s properties of healing from compromise and coarse-
grained forward secrecy. Looking ahead, this property of FeKE is used two levels of abstraction
below this one, where the module FmKE is instantiated by a protocol ΠmKE. The message
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key exchange protocol retrieves the chain keys produced by FeKE and uses them to produce
encapsulation and decapsulation keys for individual messages.

• Forward Secure Authenticated Encryption (Ffs aead, Fig. 15): Each instance of the forward
secure authenticated encryption functionality models the encryption and decryption of mes-
sages for a single epoch of the secure messaging system. In each epoch, one of the parties may
only send messages while the other may only receive messages. As the name suggests, the
forward secure encryption functionality provides forward security by allowing each message to
be decrypted exactly once. Additionally, the sender’s (resp. receiver’s) ΠSGNL for the epoch
may send a StopEncrypting (resp. StopDecrypting) request to the Ffs aead instance, after
which the Ffs aead instance will no longer allow any more messages to be encrypted (resp.
decrypted) by anyone. This way the functionality Ffs aead allows for the ‘expiry’ of the epoch
it represents once the parties move on in the conversation.

In Section 5 we provide a rigorous specification for each of the modules ΠSGNL,FeKE,Ffs aead

discussed above. We then prove Theorem 2 (Figure 8): we provide a concrete simulator SSM and
show that (together with FSM) it is perfectly indistinguishable from the ΠSGNL hybrid world.

Figure 8: A pictorial rendition of Theorem 2

Theorem 2 Protocol ΠSGNL (perfectly) UC-realizes the ideal functionality FSM in the presence of
Flib, FDIR and FLTM.

Instantiating the public ratchet (realizing FeKE). The instantiation of FeKE in a modular
fashion is one of the most delicate parts of this work (alongside the teasing apart of a modular
functionality FeKE to represents the security provided by Signal’s public key ratchet). Signal’s
public key ratchet is specified by ΠeKE in Section 6.1 of our work and the instantiation of FeKE is
depicted in Figure 1 by the lowermost thick black arrow in the diagram. One main challenge, as
observed by Alwen et al. [1] and others, is that the key derivation function (KDF) within the public
ratchet (ΠeKE), must maintain security if either of the previous root key or the newly generated
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ephemeral keys are uncompromised. As described in the introduction, we point to an additional
challenge to instantiating FeKE, namely that of asserting security at the presence of adaptively
chosen key exposures.7

Alwen et al. formalized the guarantee they realised KDF must satisfy by way of constructing a
new primitive: a PRF-PRG. In Section 6.2 we formulate a new primitive primitive called a Cascaded
PRF-PRG (CPRFG) that extends the PRF-PRG concept to provide also the equivocation needed
to handle adaptive state exposures (Def. 11). We then provide a plain model instantiation of
this primitive based only on punctured PRFs (Thm. 12 in Section 6.2.3). Using this CPRFG
construction, we are able to UC-realise the functionality FeKE (described in Section 6.3) The proof
of Theorem 3 (Figure 9) is quite intricate; See Section 6.3 for the details.

Figure 9: A pictorial rendition of Theorem 3

Theorem 3 Assume that KDF is a CPRFG with security parameter λ, that the DDH assumption
holds in the group G where |G| ≥ 2λ. Then protocol ΠeKE UC-realizes the ideal functionality FeKE

in the presence of global functionalities Flib, FDIR and FLTM.

Instantiating unidirectional forward secure authenticated channels (realizing Ffs aead).
In the top right part of Fig. 1, we decompose the symmetric key component of Signal into two smaller
pieces: a message key exchange functionality FmKE that interfaces with the epoch key exchange
to produce the symmetric chain keys, and a one-time-use authenticated encryption routine. This
decomposition spans Sections 7 to 9 in the paper.

• Message Key Exchange (FmKE, Fig. 28): Each message key exchange functionality instance
handles the key derivation for the symmetric ratchet for a particular epoch. Specifically, it
provides key seed’s to Πaead instances that are then expanded to any length using the global
random oracle FpRO. The functionality also closes epochs at a certain message number N
when instructed to by Πfs aead by generating all key seed’s up to N and later disallowing the
generation of any further key seeds for its epoch. The protocol (ΠmKE, Fig. 34) realizes FmKE

by iteratively applying a length-doubling pseudorandom function to the chain key provided by
ΠeKE to generate key seed’s. If it needs to skip message key seeds (for example, if the messages
arrive out of order), ΠeKE applies the PRG several times until reaching the correct key seed,
meanwhile storing intermediate key seed’s. To close an epoch at a particular message number
N, it generates all message key seeds up to N and then deletes the chain key. The functionality

7Note that it is relatively straightforward to achieve both these guarantees by modeling the KDF as a pro-
grammable random oracle.
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(and protocol) enforces the forward security guarantee by: deleting key seeds for messages
that have been retrieved, ensuring that message keys look independent and random from each
other (using the PRG), and deleting the chain key when the parties have moved on to future
epochs (to prevent message injection in old epochs).

• Authenticated Encryption with Associated Data (Faead, Fig. 29): Each authenticated en-
cryption functionality instance handles the encryption, decryption, and authentication of a
particular message for a particular epoch and hands the ciphertext or message back to Πfs aead.
It gets a key seed from ΠmKE and then asks the adversary to provide a ciphertext c (while
leaking either |m| or m depending on whether the epoch is compromised). For decryption,
if it gets the same ciphertext back, Faead returns message m. If it gets a different ciphertext
c′ 6= c, it asks the adversary whether it wants to inject a message. Depending on the corrup-
tion status, Faead will either return A’s message or return m, or return a failure. The protocol
(Πaead, Fig. 36) realizes Faead by querying the random oracle FpRO on the key seed to get the
full msg key. It then computes the ciphertext c using a One Time Pad and then a secure
message authentication code to authenticate c as well as its sid (which contains information
about the pid’s, epoch id, msg num, and such). To decrypt, Πaead similarly gets the key seed
from FmKE and queries FpRO to expand it. Then, Πaead decrypts the ciphertext only if the
tag verifies.

Within Section 7, we rigorously define all of the functionalities described above and their as-
sociated instantiations as cryptographic protocols. We also formally prove that our hybrid world
UC-realizes a real world containing only cryptographic protocols rather than functionalities (albeit
still in the presence of the global subroutines).

Figure 10: A pictorial rendition of Theorem 4

Theorem 4 Protocol Πfs aead (perfectly) UC-realizes the ideal functionality Ffs aead in the presence
of Flib.

Instantiating the Symmetric Ratchet (realizing FmKE). By this point we have already
described all of the functionalities in our model. As shown in Figure 1, it only remains to construct
real-world protocols that realize each of them. Unlike with FeKE, our instantiations of symmetric
functionalities are relatively straightforward. In Section 8, we provide a simple instantiation of
FmKE based on Signal’s symmetric ratcheting algorithm.
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Figure 11: A pictorial rendition of Theorem 5

Theorem 5 Assume that PRG is a secure length-doubling pseudorandom generator. Then protocol
ΠmKE UC-realizes FmKE in the presence of global functionalities Flib,FDIR,FLTM, as well as FΠeKE

eKE ,

where FΠeKE
eKE = (IeKE,SeKE,FeKE).

Instantiating authenticated encryption for single messages (realising Faead). Addition-
ally, Faead is a slight variant of the secure message transmission functionality FSMT that has been
analyzed in the original work of Canetti [21] that introduced the UC security framework. We show
the following theorem in Section 9.

Figure 12: A pictorial rendition of Theorem 6

Theorem 6 Assuming the unforgeability of (MAC,Verify), protocol Πaead UC-realizes the ideal
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functionality Faead in the presence of global functionalities FpRO, Flib,FDIR,FLTM, as well as FΠmKE
mKE ,

FΠeKE
eKE , where FΠmKE

mKE = (SmKE,FmKE), and FΠeKE
eKE = (IeKE,SeKE,FeKE).

Putting it all together (composition theorems). It is left to put the pieces together and
assert the security of the composed protocol as shown in Figure 1. We first use Theorems 3 and
5, together with Proposition 1 to deduce that ΠmKE UC-realizes FmKE in the presence of ΠeKE, as
well as FLTM,FDIR:

Corollary 7 Assume that the KDF module used by ΠeKE is a CPRFG, that the DDH assump-
tion holds for the group G used in FLTM and ΠeKE, and that the PRG used in ΠmKE is a secure
length-doubling pseudorandom generator. Then protocol ΠmKE UC-realizes FmKE in the presence of
ΠeKE,Flib,FDIR,FLTM.

Next we use Theorem 6 together with Corollary 7 and Lemma 1 to deduce that Πaead UC-realizes
Faead in the presence of ΠmKE,ΠeKE,FLTM,FDIR:

Corollary 8 Assume that (MAC,Verify) used in Πaead is unforgeable, that the KDF module used
by ΠeKE is a CPRFG, that the DDH assumption holds for the group G used in FLTM and ΠeKE,
and that the PRG used in ΠmKE is a secure length-doubling pseudorandom generator. Then protocol
Πaead UC-realizes Faead in the presence of ΠmKE,ΠeKE,Flib,FDIR,FLTM,FpRO.

Now, recall that ΠFmKE→ΠmKE,Faead→Πaead
fs aead is the protocol that’s identical to Πfs aead, except that

calls to FmKE are replaced with calls to ΠmKE and calls to Faead are replaced with calls to Πaead.
Then Theorem 4, together with Corollary 8 and the UC with Global Subroutines (UCGS) theorem
says that:

Corollary 9 Assume that (MAC,Verify) used in Πaead is unforgeable, that the KDF module used
by ΠeKE is a CPRFG, that the DDH assumption holds for the group G used in FLTM and ΠeKE,
and that the PRG used in ΠmKE is a secure length-doubling pseudorandom generator. Then protocol
ΠFmKE→ΠmKE,Faead→Πaead

fs aead UC-realizes Ffs aead in the presence of ΠeKE,Flib,FDIR,FLTM,FpRO.

Finally, recall that Π
FeKE→ΠeKE,Ffs aead→Π

FmKE→ΠmKE,Faead→Πaead
fs aead

SGNL is the protocol that’s identical to
ΠSGNL, except that calls to FeKE are replaced with calls to ΠeKE and calls to Ffs aead are replaced
with calls to ΠFmKE→ΠmKE,Faead→Πaead

fs aead . Then Theorem 2, together with Corrolary 9 and the UCGS
theorem says that:

Corollary 10 Assume that (MAC,Verify) used in Πaead is unforgeable, that the KDF module used
by ΠeKE is a CPRFG, that the DDH assumption holds for the group G used in FLTM and ΠeKE,
and that the PRG used in ΠmKE is a secure length-doubling pseudorandom generator. Then protocol

Π
FeKE→ΠeKE,Ffs aead→Π

FmKE→ΠmKE,Faead→Πaead
fs aead

SGNL UC-realizes FSM in the presence of Flib,FDIR,FLTM,FpRO.

5 A Signal-style Secure Messaging Protocol: Realizing FSM

In this section we decompose Signal into two ideal modules (FeKE, Ffs aead) and a protocol that glues
them together (ΠSGNL). We then prove that these pieces together form an instantiation of the secure
messaging functionality FSM. We begin by describing a long-lived component FeKE in Section 5.1
that models the public key ratchet in the Signal architecture. Next, we present a short-lived
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component Ffs aead in Section 5.2 that models a unidirectional forward secure authenticated channel.
(This will later, in Section 7, be instantiated using authenticated encryption and a symmetric key
ratchet component in the style of the Signal architecture.) In Section 5.3 we present the protocol
ΠSGNL that glues together a long lived FeKE and several short lived Ffs aead. Finally, in Section 5.4
we prove that the signal like protocol ΠSGNL realises the secure messaging functionality we presented
in Section 3.2.

5.1 The Epoch Key Exchange Functionality FeKE

The fundamental security objective of the epoch key exchange functionality (see Figure 13 on page
38) is to provide recovery from an adversarial state corruption. This requires that the parties’
secret keys are updated periodically with new random values. Intrinsic to the security goal of
post-compromise security and periodic updates is the concept of epochs: agreed-upon points in the
conversation to re-randomize the secret keys. The functionality FeKE presented in this section is
a long lived functionality that allows the parties to refresh their randomness every epoch. With
this functionality we capture the properties provided to the Signal architecture by their public key
ratchet.

An important usability feature of the public key ratchet from the Signal Architecture is that an
online party can refresh their own randomness unilaterally, producing a new key that can be used
for messaging without even requiring the other party to be online at the same time. Then, when
the other party comes online, they are able to complete the re-randomization of the secret keys and
therefore the healing from prior corruption events. To achieve this, their protocol enforces that the
parties must take turns refreshing their randomness – ensuring that parties are able to assimilate
the randomness introduced in the right order. When pidi receives a ciphertext from pid1−i (through
Ffs aead) marked with an epoch id that it has not seen before, pidi knows that pid1−i has started a
new epoch. The party pidi then does a tentative ratcheting step using the epoch id to derive its new
keys (without deleting its old keys right away). This new key must then be verified by pidi. If the
verification succeeds, pidi confirms the new epoch and updates its state accordingly, otherwise the
party deletes any temporary variables it computed and remains in the same sending and receiving
epochs. Our functionality models the exact same behavior.

Each instance of the functionality FeKE has a parties pid0, pid1 inherited from the overall proto-
col, where pid0 is the party that initiates the overall conversation. Additionally, each epoch within
the instance has exactly one sender and one receiver, with the parties alternating between the
two roles. (i.e. pid0 is the sender for all even numbered epochs and pid1 is the sender for all odd
numbered epochs.) While the epoch numbers exist internally within the functionality, the epochs
are only ever externally identified by the epoch id generated by the sending party. 8 An epoch id
is a unique adversarially chosen value (in Signal, the epoch id is the sender’s public Diffie-Hellman
key). The adversarial choice of epoch id models the fact that we have no requirements from this
value beyond uniquely identifying epochs.

At initialization, the epoch key exchange functionality checks that parties are registered in the
global directory functionality FDIR and that the responding party has fresh one time keys available.
It then makes a call to its long term module functionality FLTM to bind both parties’ directory
keys to the conversation. The directory and long term module functionalities FDIR and FLTM are
used by to provide the identity binding automatically assumed in FeKE. Finally, FeKE makes a call
to Flib to obtain the adversarial code I that will be run internally by the functionality to allow

8This way of identifying the epochs provides the property of revealing as little as possible about the history of the
communication. The Signal protocol achieves this property by requiring that the parties store only epoch ids and
never track epoch numbers at all.
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adversarial choice of all epoch ids without actually relinquishing control to the adversary unless
a party is compromised. (I will also be used to allow adversarial choice of receiving keys when
the receiver inputs an incorrect epoch id but neither party is compromised.) This mechanism of
internally running adversarial code within our functionalities allows us to model the immediate
decryption property of the Signal protocol. Overall, the epoch key exchange functionality FeKE

models the forward secrecy and post-compromise security guarantees of the public key ratchet in
the Signal protocol, but without providing any epoch keys at the level of ΠSGNL + Ffs aead + FmKE.

In addition to providing epoch ids, the epoch key exchange functionality FeKE also provides
keys at the level where Ffs aead and FmKE have been instantiated by Πfs aead and ΠmKE respectively.
At this level, when a ΠmKE protocol instance belonging to pidi sends a GetReceivingKey request
and a new epoch id to the functionality, a new receiving key for the epoch is produced for this
party. The receiving key will only match the sender’s key if the epoch id is the correct one. This
way the functionality FeKE enables the calling party to identify that the provided receiving epoch
id is not the correct one without directly communicating it. (In fact, as a sub-component of ΠSGNL,
FeKE receives such a request when the party pidi is using an instantiation Πfs aead+ΠmKE+Faead of
Ffs aead to check that the ciphertext and its associated information decrypts (and authenticates)
successfully under the key produced for the received epoch id.)9 If the verification succeeds (either
by a protocol using the provided key or by a functionality directly checking whether the epoch id’s
match), FeKE expects a ConfirmRcvEpoch request directly from the party; When it receives this
request, it replaces the the party’s current receiving epoch id with the one that was confirmed.
It then allows the adversarially provided code to choose a brand new sending epoch id for this
party with which to send any future messages. The choice of id by the adversary simply represents
the fact that this value is an identifier; the epoch id is able to provide the properties needed by
the functionality FeKE without needing to be hidden or to be chosen by the functionality. If the
verification fails, the functionality simply does not receive a ConfirmRcvEpoch request and does
not update the relevant variables.

We now describe the input output behavior of the FeKE in detail. (The pseudocode for this
functionality can be found in Fig. 13.) The epoch key exchange functionality takes inputs from
and provide output to the corresponding two machines of ΠSGNL, namely (ΠSGNL, sid, pid0) and
(ΠSGNL, sid, pid1), (as well as (ΠmKE, “mKE”, sid.fs = (“fs aead”, sid′ = (sid, pid0), epoch id)) and
(ΠmKE, “mKE”, sid.fs = (“fs aead”, sid′ = (sid, pid1), epoch id)) once Ffs aead and its subcompo-
nent FmKE have been instantiated by their respective protocols) and the adversary A. Inputs
coming from other sources are ignored. Recall that at first activation, FeKE checks that parties are
registered in FDIR, it checks that the responding party has fresh one time keys available, and it
makes a call to Flib to obtain the adversarial code I. The adversarial code I allows us to model the
immediate decryption property of secure messaging protocols when parties have not been corrupted.
In this case, the choices made by the adversary are fixed based on the protocol and are not allowed
to be adaptive based on the honest keys chosen during the particular run of the architecture.

The functionality has four interfaces, which we describe next.

Confirm Receiving Epoch After initialization, the epoch key exchange functionality expects
an input of the form (ConfirmRcvEpoch, epoch id∗) from (ΠSGNL, sid, pid) only after a message
has been successfully received using epoch id∗ in a new receiving epoch. This input triggers the
functionality to update its state according to the receiving epoch id being confirmed and provide
a new adversarially chosen sending epoch id to the party. On the first activation FeKE gets the

9Note that even at the level where Ffs aead is instantiated by Πfs aead+FmKE+Faead, no keys are used and therefore
this request is never sent to FeKE.
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first receiving epoch id from the global directory FDIR. For all other epochs, the receiving epoch
id is updated to the value epoch id∗ from the request. The state update carried out within the
functionality depends on whether epoch id∗ matches the sending epoch id of the party that pid is
talking to.

When epoch id∗ matches the epoch identifier of the other party, then the functionality runs
the adversarially provided code I to choose a new epoch id for the party’s next sending epoch.
Otherwise, if epoch id∗ is not the current sending epoch identifier for the other party (for example,
if the adversary provided an alternative epoch identifier under which the ciphertext successfully
authenticates) the functionality no longer provides any guarantees. To model this outcome, the
variable diverge parties is set to true in this case and the adversary A is allowed to choose all epoch
ids and chain keys for both parties for the rest of time. In the protocol, if the parties’ epoch
identifiers diverge in this way, their symmetric keys diverge as well and cannot be restored. Note
that in the Signal protocol, the adversary can carry out a person-in-the-middle attack against both
parties simultaneously forever after just a single state compromise.

Get Sending Key As mentioned earlier, the epoch keys generated by FeKE (and ΠeKE) are
used by the Signal protocol to derive many message keys, one for each message within the epoch
(These keys don’t exist at the level of ΠSGNL + FeKE + Ffs aead. Hence, this will interface never be
called at this level.) However, at the level where Ffs aead and its sub-component FmKE have both
been been instantiated, the functionality FeKE expects GetSendingKey requests from the parties’
ΠmKE instances. For each epoch, the functionality FeKE expects one GetSendingKey request from a
ΠmKE instance that belongs to the sender pidi for the epoch. When no parties are compromised in
the corresponding epoch, the functionality responds to this request with a uniformly chosen value
sending chain keyi which it stores in its state. Otherwise, if any party is compromised during this
epoch or if divergence has occurred, FeKE allows the adversary to choose the new sending chain
key.

Get Receiving Key Similarly to the GetSendingKey interface, this interface will also never be
called at the level of ΠSGNL+FeKE+Ffs aead. This is because the epoch keys and message keys do not
exist at this level of abstraction. At the level where Ffs aead and its sub-component FmKE have both
been instantiated, the functionality FeKE expects GetReceivingKey requests from the parties’ ΠmKE

instances. For each epoch, the functionality FeKE expects a non-zero number of GetReceivingKey
requests from ΠmKE instances that belong to the receiver for the epoch. When either party is
compromised for the epoch or when divergence has occurred, FeKE allows the adversary A to
choose the key that it will output. Otherwise, the output key depends on whether the epoch id of
the ΠmKE instance matches the senders epoch id for the epoch. When the epoch ids match, FeKE

responds to this request with the value sending chain keyi which was provided to the sender of the
epoch – thus preserving the symmetry of the keys. When the epoch ids don’t match, FeKE responds
with a key chosen by the latest adversarial code I uploaded by the adversary to Flib at the time of
the first activation of the FeKE instance. Note importantly that I will not have access to the key
provided to the sender of the epoch. The functionality FeKE leaves it to the instantiation of Ffs aead

to use the key chosen by I to figure out that ΠmKE’s epoch id should not be confirmed as the
new receiving epoch identifier. This models the fact that in the Signal protocol, naive tampering
with the sender’s public exponent will cause an unsuccessful temporary ratchet upon a failure of
authentication (and later reversion to the previous epoch). In traditional instantiations of the
Signal architecture, if A corrupts the receiver after naive tampering attempts, the adversary can
use the party’s stored root key to compute the recv chain key’s from these tampering events after
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the fact, therefore running into the Nielsen bound and being unable to realise FeKE in the plain
model. Looking ahead, we show that an instantiation of the Signal architecture with a KDF built
from laconic primitives can circumvent this problem. It can realise FeKE in the plain model by
removing the ability to compute receiving chain keys corresponding to epoch ids that resulted in
failed ratcheting attempts.

Corrupt On receiving a Corrupt notification from a party’s ΠSGNL instance, FeKE sends a
ReportState request to the adversary along with the (epoch id, recv chain key′) pairs corresponding
to GetReceivingKey calls made so far. Additionally, at the time of making a ReportState call to
the adversary A, FeKE provides A with the corrupted party’s newest receiving key if it hasn’t been
successfully retrieved yet. In response, the adversary sends back some state S which is forwarded
by FeKE to the ΠSGNL instance that made the corruption request. Before responding to the calling
instance of ΠSGNL, FeKE notes that the current epoch is corrupted, and adds the next 3 epochs to
a list of compromised epochs until full post-compromise recovery may be achieved. This is because
the recovery for a single compromise goes through the following phases:

1. full state compromise (the party’s entire state is known during epochs e, e+ 1.) If
a party is corrupted during sending epoch e then they will be a receiver in epoch e+ 1. Since
the party does not add any secret randomness to its state in epoch e+ 1, the adversary still
knows the party’s entire state at this point.

2. sender’s randomness is updated (epoch e+ 2) In epoch e+ 2, the corrupted party will
update its randomness and send a value epoch ide+2 to their peer. Once their peer confirms
the new epoch id, the adversary will be unable to tamper with the communication in a
significant way; however, full deniability has not been restored.

3. both parties’ randomness is updated (epoch e+ 3) In epoch e+ 3 the peer will update
its randomness and send a value epoch ide+3 to the corrupted party. Once the corrupted
party confirms the new epoch id, full deniability will be restored. However, since such a
confirmation is evidenced by the start of epoch e+ 4, this is the first uncompromised epoch
after the corruption.

The compromise period may be extended further if a party receives a packet with a bogus epoch
id that corresponds to some compromised epoch e∗. In this case, one of two things can happen:

• If the party does not confirm the bogus epoch id, the compromise extends until
epoch e∗ + 2. This outcome corresponds to a weakness in the standalone security of ΠeKE,
as it does not include any authentication of keys.10

• If the party does confirm the bogus epoch id, the functionality behaves as if both
parties are compromised for the rest of the session. The confirmation of a bogus
epoch id corresponds to the divergence of the parties’ states and keys. In this scenario, FeKE

notes that the parties have diverged, and the functionality then behaves as if both parties are
compromised for the rest of the session.

10This provision was missing in the [25] version of this work.
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Remark

We remark here that one may easily. replace the 3 epoch compromise here and in FSM with a variable
for the time before healing. This would be especially useful since a Signal-like secure messaging protocol
will inherit its healing time from the epoch key exchange that it uses. Using our modular analysis, one
can easily swap out one epoch key exchange protocol that heals in r rounds with another that heals in
a different number of rounds r′ and show that the resulting ΠSGNL + Πfs aead + Π′

eKE system will realise
an FSM that enforces healing in a number of rounds that is greater than or equal to r′.
A simple modification to ΠeKE in fact allows healing in 2 rounds instead of 3. This modification is
discussed in the remark on Page 51

5.2 The Forward Secure Encryption Functionality Ffs aead

The forward secure authenticated encryption functionality (see Figure 15 on page 41) processes
encryptions and decryptions for a single epoch (specified in sid.fs) for the protocol ΠSGNL. As the
name suggests, Ffs aead enforces the forward security property for messages encrypted within an
epoch. That is, on a state compromise of the receiver for the epoch, the adversary only gets (c,m)
pairs for messages that are in transit from the sender to receiver, and it gets the power to replace
ciphertexts in transit with authentic-looking ones. Note that once an epoch has been compromised,
there is no recovery within the epoch; that is, the adversary retains the power to tamper with in-
transit ciphertexts from the epoch until all have arrived at the receiver. Any ciphertexts that
the receiver decrypted prior to state compromise are not available to A; this models the forward
security property of Signal’s symmetric chain.

Encryption On receiving an encryption request for a message m, it sends N (the number of
messages sent in the previous sending epoch) and leaks either |m| or m to A (depending on whether
the epoch is compromised) and gets a ciphertext c in return, which it records along with m,
msg num, N , and the leakage. Note that in the real protocol, the msg num, epoch id, as well as N
are authenticated but sent in the clear with each ciphertext. Ffs aead then sends the ciphertext up
to the protocol ΠSGNL.

Decryption When receiving a decrypt request for ciphertext c and message number msg num,
Ffs aead checks whether the receiver has already successfully decrypted this msg num; if so, the
msg num was set to inaccessible and Ffs aead will return a failure message to ΠSGNL. Next, Ffs aead

checks whether the ciphertext c previously failed authentication for msg num; in this case, the
functionality also outputs a failure message to ΠSGNL. If the decryption has not failed from the
previous two cases, the functionality sends an Inject message to A.

If the state of Ffs aead is not compromised, then A should only be able to Inject the true
message m that was encrypted for msg num. In the honest setting (no state corruption), if the
adversary returns ⊥ or there is no record of an encryption for msg num, Ffs aead returns a failure;
otherwise, regardless of which message v the adversary returns, Ffs aead sends m to ΠSGNL. This
models the fact that without compromising a party, the real world adversary should not be able to
produce ciphertexts that authenticate.

In the case that a state compromise has occurred, if A returns some v 6= ⊥, Ffs aead marks
msg num as unavailable and sends v up to ΠSGNL. This models the power that the adversary
has after a state compromise (of either party) to tamper with the sender’s ciphertexts to produce
authentic-looking ciphertexts. Note that Ffs aead never recovers from a state compromise; thus, the
adversary maintains the power to tamper with the ciphertexts for the epoch as long as there are
messages from the epoch in transit.
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FeKE

This functionality has a session id sid.eKE that takes the following format: sid.eKE = (“eKE”, sid). Inputs arriving
from machines whose identity is neither pid0 nor pid1 are ignored. //For notational simplicity we assume some fixed
interpertation of pid0 and pid1 as complete identities of the two calling machines.

//The following method is also used by the sender of epoch 0 to start the conversation.
ConfirmReceivingEpoch: On input (ConfirmReceivingEpoch, epoch id∗) from (ΠSGNL, sid, pidi):

1. If this is the first activation, initialize conversation using FDIR,FLTM and get internal code from Flib:

(a) Parse sid to retrieve two party ids (pid0, pid1) for the initiator and responder parties and store them. If
pid0 6= pidi end the activation.

(b) Provide input (GetInitKeys, pid1, pid0) to (FDIR).

(c) Upon receiving output (GetInitKeys, ikpk1 , rk
pk
1 , ok

pk
1 ) from (FDIR):

i. If okpkpid1
= ⊥ then output (ConfirmReceivingEpoch, Fail).

//Don’t start the conversation if the one time keys belonging to the other party have run out.

ii. Initialize empty lists corruptions0, corruptions1, compromised epochs.

iii. Set epoch id partner0 = epoch id self1 = okpkpid1
, epoch num0 = −2, and epoch num1 = −1.

iv. Send (ComputeSendingRootKey, ikpk1 , rk
pk
1 , ok

pk
1 ) to FLTM.

(d) On receiving (ComputeSendingRootKey, k, ekpk) from FLTM, continue.

(e) Initialize stateI = ⊥, call Flib to obtain internal adversarial code IeKE.

2. Else (this is not first activation):

(a) Set epoch id partneri = epoch id∗.

(b) If epoch id∗ 6= epoch id self1−i: Set diverge parties = true, run step 3 of Corrupt to set recv chain key∗

and leakage, and send (ReportState, stateI , i, recv chain key∗, leakage) to the adversary. On receiving a
response, continue. //diverge parties is set here
//If this may be the first divergence, make sure the simulator has control.

3. If epoch numi + 2 ∈ compromised epochs or diverge parties: Send backdoor message (GenEpochId, i, epoch id∗)
to the adversary. Else run I(stateI , GenEpochId, i, epoch id∗).
//If the parties are diverged or compromised send a backdoor message to the adversary, otherwise run the
internal adversarial code.

4. Upon receiving (GenEpochId, state′I , i, epoch id) from A or from I, update stateI ← state′I and do the following:

(a) If epoch id is the same as any previous invocation of GenEpochId, end the activation.

(b) Set epoch id selfi = epoch id, epoch num dict[epoch id] = epoch numi, got sending keyi = false, and
epoch numi += 2. //save the next sending epoch id.

(c) Output (ConfirmReceivingEpoch, epoch id selfi) to (ΠSGNL, sid, pidi).

GetSendingKey: On receiving input (GetSendingKey) from (ΠmKE , sid.mKE, pid):

1. Parse sid.mKE = (“mKE”, “fs aead”, sid, epoch id). If epoch id 6= epoch id selfi end the activation; else set
i such that pid = pidi.

2. If got sending keyi = true or ConfirmReceivingEpoch has never been run successfully then end the activation.
//the functionality isn’t initialized or the sending key for the current epoch has already been retrieved

3. Sample sending chain keyi
$← Kep from the key distribution. //In the honest case, the key is not known to

the adversary. Otherwise the key will get overwritten in the following step.

4. If diverge parties = true, or epoch numi ∈ compromised epochs send backdoor message (GetSendingKey, i) to
the adversary; on receiving backdoor message (GetSendingKey, i,Ksend) from A set sending chain keyi = Ksend.
//If the parties are diverged or compromised let the adversary choose sending chain keyi.

5. Set got sending keyi = true and output (GetSendingKey, sending chain keyi).

(The rest of this functionality is in Fig. 14 on Page 39)

Figure 13: The Epoch Key Exchange Functionality, FeKE
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FeKE continued...

(This functionality begins in Fig. 13 on Page 38)

GetReceivingKey: On receiving input (GetReceivingKey, epoch id) from (ΠmKE , sid.mKE, pid):

1. If pid /∈ {pid0, pid1} then end this activation. Else, set i such that pid = pidi.

2. If sending chain key1−i has been deleted or ConfirmReceivingEpoch has never been run successfully end the
activation.

3. Parse epoch id = (epoch id′, ekpkj , ok
pk
i←j) and sid.mKE = (“mKE”, “fs aead”, sid, epoch id”). If epoch id′ 6=

epoch id” end the activation.

4. If this is the first call to GetReceivingKey:

(a) If pid1 6= pidi, then end the activation.

(b) Send (GetResponseKeys, pid1−i) to FDIR.

(c) Upon receiving (GetResponseKeys, ikpkj ), send input (ComputeReceivingRootKey, ikpkj , ek
pk
j , ok

pk
i←j) to

FLTM.

5. If diverge parties = true or epoch numi + 1 ∈ compromised epochs: //Let A choose key

(a) If epoch id 6= epoch id self1−i add epoch numi + 2, epoch numi + 3 to compromised epochs.a

(b) Send (GetReceivingKey, i, epoch id) to the adversary.

(c) Upon receiving (GetReceivingKey, i, epoch id, recv chain key∗) from A, output
(GetReceivingKey, recv chain key∗).

6. Else, if epoch id 6= epoch id self1−i: //No corruptions or divergence but epoch id doesn’t match epoch id1−i.

(a) Sample recv chain keyi
$← Kep.

(b) Add (epoch id, recv chain key) to receive attempts[epoch num].

(c) Output (GetReceivingKey, recv chain key).

7. Else, output (GetReceivingKey, sending chain key1−i). //Expected case.

Corrupt: On receiving a (Corrupt) request from (ΠSGNL, sid, pidi) for i ∈ {0, 1} do:

1. Add epoch id selfi to the list corruptionsi.

2. Add epoch numi, epoch numi + 1, . . . , epoch numi + 3 to the list compromised epochs.
//Compromise goes through the following stages: fully compromised for 2-3 epochs, sender randomness up-
dated, both parties’ randomness updated.
//epoch numi + 5 is protected by forward secrecy even in the case of re-corruption.

3. Let j be such that epoch numj > epoch num1−j and:

(a) If got sending keyj = false set recv chain key∗ = ⊥. Else set recv chain key∗ = sending chain keyj .

(b) If epoch numj ∈ receive attempts.keys then set leakage = receive attempts[epoch numj ]. Else set
leakage = [].

4. Send (ReportState, stateI , i, recv chain key∗, leakage) to the adversary.

5. Upon receiving (ReportState, i, S) from A, output (Corrupt, S) to (ΠSGNL, sid, pidi).

aThis provision (which was missing in the [25] version) allows the environment to delay recovery from
corruption by delivering messages with bogus epoch ids, this occurs even if these messages do not contain a
payload that passes authentication.

Figure 14: The Epoch Key Exchange Functionality, FeKE (continued)
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In all of the above cases, if a decryption was successful, Ffs aead marks that msg num as unavail-
able for future decryption attempts. This models the forward security property of the symmetric
ratchet in the Signal protocol. Note that Ffs aead doesn’t mark messages as inaccessible upon un-
successful decryption. We chose this to prevent denial-of-service attacks that would prevent honest
parties from decrypting messages sent to them.

Stop Encrypting When receiving a StopEncrypting request from the sender for the epoch,
Ffs aead notes this and blocks all future encryptions for the epoch. This prevents an adversary from
compromising the sender and injecting additional messages after the sender has moved to a new
epoch.

Stop Decrypting When receivng a (StopDecrypting, msg num∗) request from the receiver,
Ffs aead marks all message numbers larger than msg num∗ as inaccessible, thereby preventing their
decryption. This prevents an adversary from compromising the receiver of the epoch and injecting
additional messages in the epoch after the receiver has advanced to a new epoch.

Corruption On receiving a state compromise notification from above (specifically, ΠSGNL), if the
receiver is the corrupted party, Ffs aead leaks to the adversary all message/ciphertext pairs that
are in transit from the sender to receiver. This models the fact that in the Signal protocol, the
receiver has keys for out-of-order messages stored in its state until they have all arrived. On the
other hand, if the sender is corrupted, no sent messages are leaked to the adversary, since in the
Signal protocol the sender does not store any keys for message it has already sent. (Either way,
the adversary will be able to read all messages sent after corruption.) The adversary (or simulator)
then returns a constructed state for the party: the message keys for messages in transit, along
with the chain key if it has not been deleted. This state is passed back up to ΠSGNL. Since this
functionality corresponds to a single epoch, there is no provision for recovery of security properties
after a corruption.

5.3 The Signal Protocol, ΠSGNL

Protocol ΠSGNL (see Figure 16 on page 43) is the top-level protocol that takes input commands
from a party, communicates with FeKE and Ffs aead, and returns outputs to the party to coordinate
the encryption and decryption of messages for the duration of the conversation session between two
parties. The ciphertexts are transferred between parties via the environment, which has full control
over the network. Next we describe the three interfaces to ΠSGNL (which have identical API’s as
FSM).

Send Message When receiving a SendMessage request from party pid, ΠSGNL first initializes
FeKE if necessary to get the first epoch id, and sends an Encrypt request with message m and
Nlast (the number of messages that were sent in the party’s previous sending epoch) to the
Ffs aead instance for the current epoch. On receiving a ciphertext c from Ffs aead, the protocol
ΠSGNL deletes m, increments the number of messages sent, and outputs c along with a header
h = (epoch idself , sent msg num, Nlast) to pid.

Receive Message On receiving a ReceiveMessage command with ciphertext c and header
h = (epoch id,msg num, N) from a party with id pid, the protocol ΠSGNL first initializes the
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Ffs aead

This functionality processes encryptions and decryptions for a single epoch and has session id sid.fs, where sid.fs =
(“fs aead”, sid = (sid′, (pid0, pid1)), epoch id). Inputs arriving from machines other than pid0, pid1 are ignored. //For
notational simplicity we assume a fixed interpertation of pid0 and pid1 as complete identities of the two calling
machines.

Encrypt: On receiving input (Encrypt,m,N) from (ΠSGNL, sid, pid) do:

1. If this is the first activation then:

• Let i be such that pid = pidi. Initialize msg num = 0 and sender sender = i.

• Initialize stateI = ⊥, call Flib to obtain the internal adversarial code I.

2. Verify that sid matches the one in the local state and pid = pidb, otherwise end the activation.

3. If the sender has deleted the ability to encrypt messages, then end the activation.

4. Increment msg num = msg num + 1.

5. If IsCorrupt? = false: Run I(stateI , Encrypt, pid, N, |m|).

6. If IsCorrupt? = true: Send a backdoor message (stateI , Encrypt, pid,msg num, N,m) to A.

7. On obtaining the output (stateI , Encrypt, pid, c,msg num, N) from I or A, update stateI and record
(m, c,msg num, N).

8. Output (Encrypt, c) to (ΠSGNL, sid, pid).

Decrypt: On receiving (Decrypt, c,msg num, N) from (ΠSGNL, sid, pid) do:

1. Verify that sid matches the one in the local state and pid = pid1−sender, otherwise end the activation.
//end the activation if the decrypt request is not from the receiving party

2. If msg num is set as inaccessible, or there is a record (Authenticate, c,msg num, N, 0), then output
(Decrypt, c,msg num, N, Fail) to (ΠSGNL, sid, pid).

3. If IsCorrupt? = false:

• Run I(stateI , Authenticate, pid, c,msg num, N) and obtain updated state stateI and output
(Authenticate, pid, c,msg num, N, v).

• If v = ⊥, then record (Authenticate, c,msg num, N, 0) and output (Decrypt, c,msg num, N, Fail) to
(ΠSGNL, sid, pid).

• Otherwise, mark msg num as inaccessible and output (Decrypt, c,msg num, N,m) to (ΠSGNL, sid, pid).

4. Else (IsCorrupt? = true):

• Send (stateI , Inject, pid, c,msg num, N) to A.

• On receiving (stateI , Inject, pid, c,msg num, N, v) from A, update stateI and do:

– If v = ⊥, record (Authenticate, c,msg num, N, 0) and output (Decrypt, c,msg num, N, Fail).

– Else, then mark msg num as inaccessible and output (Decrypt, c,msg num, N, v) to (ΠSGNL, sid, pid).

StopEncrypting: On receiving (StopEncrypting) from (ΠSGNL, sid, pid) do:

1. If sid doesn’t match the one in the local state, if pid 6= pidsender, or if this is the first activation: end the
activation.

2. Otherwise, note that pidi has deleted the ability to encrypt future messages. Output
(StopEncrypting, Success).

StopDecrypting: On receiving (StopDecrypting,msg num∗) from (ΠSGNL, sid, pid) do:

1. If sid doesn’t match the one in the local state, pid 6= pid1−sender, or no messages have been successfully decrypted
by pidi: end the activation.

2. Mark all msg num > msg num∗ as inaccessible, and output (StopDecrypting, Success) to (ΠSGNL, sid, pid).

Corrupt: On receiving (Corrupt, pid) from (ΠSGNL, sid, pid):

1. Record (Corrupt, pid) and set IsCorrupt? = true.

2. If pid = pid1−sender (pid is the receiver), let leakage = {(pidsender, h = (epoch id,msg num, N), c,m)} be the set
of all messages sent by pidsender which are not marked as inaccessible.

3. Otherwise (pid is the sender), set leakage = ∅

4. Send (ReportState, stateI , pid, leakage) to A.

5. Upon receiving a response (ReportState, stateI , pid, S) from A, send S to (ΠSGNL, sid, pid).

Figure 15: The Forward-Secure Encryption Functionality Ffs aead
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receiver’s state if necessary. It then sends a Decrypt request for ciphertext c to the Ffs aead in-
stance corresponding to the value epoch id in header h. On receiving a response from Ffs aead, if
decryption failed, ΠSGNL outputs a failure message. Otherwise, it updates the list of msg num’s
that were skipped in the epoch corresponding to the value epoch id. If the value epoch id is new
(i.e. no messages have been received by this party under this value before) then ΠSGNL closes
its last sending and receiving epochs (by sending a StopDecrypting request to the Ffs aead in-
stance corresponding to epoch idpartner, and a StopEncrypting request to the Ffs aead instance
corresponding to epoch idself .) The protocol ΠSGNL then updates epoch idpartner = epoch id and
sends (ConfirmReceivingEpoch, epoch id) to FeKE to ratchet forward and receive a new epoch id∗

for its next sending epoch. Finally, ΠSGNL deletes the decrypted message v returned by Ffs aead and
outputs the ciphertext c, message v, and header h to pid.

Corruption The protocol ΠSGNL has one additional interface, a Corrupt interface that is accessi-
ble only to Env. This interface is not part of the real protocol, but is included only for UC-modelling
purposes. On a corruption from the environment, ΠSGNL sends Corrupt notifications to FeKE and to
every Ffs aead instance that has messages in transit. These sub-functionalities report their internal
states to ΠSGNL who forwards the union of their states up to Env.

5.4 Security Analysis of ΠSGNL

In this section we prove Theorem 2 which says that ΠSGNL, FeKE, and Ffs aead together UC-realize
FSM in the presence of global functionalities Flib, FLTM, and FDIR.

As a reminder, the claim that “A UC-realizes B in the presence of C” means that the envi-
ronment’s views are indistinguishable when interacting with A or B, together with their respective
adversaries and a global subroutine C. We refer readers to Section 2 for a more detailed primer on
the universally composable security framework.

Theorem 2 Protocol ΠSGNL (perfectly) UC-realizes the ideal functionality FSM in the presence of
Flib, FDIR and FLTM.

Proof:To prove Theorem 2, we first construct the simulator SSM and the internal code ISM. Then,
we argue that the environment Env has an identically distributed view in its interaction with
ΠSGNL + Ffs aead + FeKE as it does in its interaction with FSM + SSM + ISM.

In an interaction between Env and FSM, the simulator SSM and internal adversarial code ISM
are provided with only the information that FSM gives to its ideal process adversary and internal
adversarial code. When the session is not compromised, the functionality never calls the simulator
SSM. Instead, the only adversarial choices are made when the functionality runs the internal code
ISM. The objective of SSM and ISM is to respond in such a way that simulates the artifacts that
would be generated if Env were interacting with ΠSGNL. The detailed versions of ISM and SSM can
be found in Figure 19 (Page 46) and Figure 17 (Page 44) respectively.

Before arguing that the adversary’s view is identical in the two scenarios, we describe where
SSM and ISM are called by FSM within each of its methods:

• Within SendMessage, as long as initialization has been properly performed then FSM will
generate tuple (SendMessage, pid, `) and either run the code ISM on it or send it to SSM
based on whether the parties are compromised, diverged, or neither. When the parties are
neither compromised nor diverged, ` = |m| and the code ISM is run on (SendMessage, pid, `).
Otherwise, ` = m and the tuple is sent to SSM.
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ΠSGNL

SendMessage: Upon receiving input (SendMessage,m) from pid, do:

1. If this is the first activation do: //initialization for the initiator of the session

• Parse the local session id sid to retrieve the party identifiers (pid0, pid1) for the initiator and responder. If
pid0 is different from either the local party identifier pid, or the party identifier of pid, end the activation.

• Initialize epoch idself = ⊥, epoch idpartner = ⊥, sent msg num = 0, Nlast = 0.

• Provide input (ConfirmReceivingEpoch,⊥) to (FeKE, sid.eKE).

• On receiving (ConfirmReceivingEpoch, epoch id) from (FeKE, sid.eKE), set epoch idself = epoch id.

• Initialize a list receiving epochs = [].

2. Provide input (Encrypt,m,Nlast) to (Ffs aead, sid.fs), where sid.fs = (sid, epoch idself). //Ffs aead already
knows epoch id and msg num

3. On receiving (Encrypt, c, Nlast) from (Ffs aead, sid.fs), delete m, increment sent msg num += 1, output
(SendMessage, sid, h, c) to pid, where h = (epoch idself , sent msg num, Nlast).

ReceiveMessage: Upon receiving (ReceiveMessage, h = (epoch id,msg num, N), c) from pid:

1. If this is the first activation then do: //initialization for the responder of the session

• Parse the local session identifier sid to retrieve the party identifiers (pid0, pid1) for the initiator and
responder. If pid1 is different from either the local party identifier, or the party identifier for pid, then
end the activation.

• Initialize epoch idself = ⊥, epoch idpartner = ⊥, sent msg num = 0 and Nlast = 0, received msg num = 0.

• Initialize a dictionary missed msgs = {} and a list receiving epochs = [].

2. Provide input (Decrypt, c,msg num, N) to (Ffs aead, sid.fs = (sid, epoch id)).

3. Upon receiving (Decrypt, c,msg num, N, v) from (Ffs aead, sid.fs): if v = Fail then send
(ReceiveMessage, h, ad, Fail) to pid. //Otherwise, v is the decrypted message

4. While msg num > received msg num:
//note down any expected messages

• Append received msg num to the entry missed msgs[epoch id].

• Increment received msg num+ = 1.

5. If msg num is in the entry missed msgs[epoch id]:

• remove it from the list.

• If the entry missed msgs[epoch id] is now an empty list then remove epoch id from missed msgs.keys.

6. Else (msg num /∈ missed msgs[epoch id]):

• If epoch id = epoch idpartner or sent msg num = 0, output (ReceiveMessage, h, c,⊥).
Otherwise continue. //Starting new epoch–ratchet forward

• Append the numbers received msg num, . . . , N to the entry missed msgs[epoch id].

• Send (StopDecrypting, N) to (Ffs aead, (sid, epoch idpartner)). //‘Closing’ the Ffs aead for the last epoch.

• On receiving (StopDecrypting, Success), update epoch idpartner = epoch id, and send (StopEncrypting)
to (Ffs aead, (sid, epoch idself)).

• On receiving (StopEncrypting, Success), send (ConfirmReceivingEpoch, epoch id) to (FeKE, sid.eKE).

• On receiving (ConfirmReceivingEpoch, epoch id∗), update epoch idself = epoch id∗, Nlast =
sent msg num, and sent msg num = 0.

7. Output (ReceiveMessage, h, c, v) to pid while deleting the decrypted message v.

Corruption: Upon receiving (Corrupt, pid) from Env:
//Note that the Corrupt interface is not part of the “real” protocol; it is only included for modelling purposes.

1. Initialize a list S and send (Corrupt) as input to (FeKE, sid.eKE = “eKE”, sid).

2. On receiving (Corrupt, SeKE) from (FeKE, sid.eKE = “eKE”, sid), add it to S and continue. //now corrupt
individual Ffs aead instances.

3. For epoch id ∈ missed msgs.keys do:

• Send (Corrupt) as input to (Ffs aead, sid.fs = (“fs aead′′, sid, epoch id)).

• On receiving Sepoch id, add it to S.

4. Output (Corrupt, pidi, S) to Env.

Figure 16: The Signal Protocol, ΠSGNL
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SSM

At first activation: Send (FSM, I) to Flib.

SendMessage: On receiving (stateI , SendMessage, pid,m) from (FSM, sid) do:

1. Set i such that pid = pidi. //this is the identity of the sender

2. If this is the first invocation of SendMessage do:

• Initialize diverge parties = false, injectable = false, corrupted party = ⊥, sent msg num0 = 0, and
sent msg num1 = 0.

• Create empty stacks sent ids0 = [] and sent ids1 = [].

• Create empty sets injectable ids0 = ∅ and injectable ids1 = ∅.
• Parse state.eKE from stateI

• Send (state.eKE, GenEpochId, i,⊥) to Env (in the name of (FeKE, sid.eKE)).

• Upon receiving (state, GenEpochId, i, epoch id) from Env, update state.eKE ← state and push epoch id
onto the stack sent ids0.

3. Set epoch id equal to the top of the stack sent idsi, and increment sent msg numi += 1.

4. Parse state.fs.epoch id from stateI .

5. Send (state.fs.epoch id, Encrypt, pid, sent msg numi,m) to Env (in the name of (Ffs aead, sid.fs), where sid.fs =
(“fs aead”, sid, epoch id))

6. On receiving (state, Encrypt, pid, sent msg num, c) from Env:

• Update state.fs.epoch id← state

• Add (h, c) ∈ sentheaders.

• Update sentheaders and sent ids0, sent ids1 in stateI

• Send (stateI , SendMessage, pid, epoch id, c) to (FSM, sid)

Inject: On receiving (stateI , Inject, pid, h, c) from (FSM, sid) do:

1. Set i such that pid = pidi. //this is the identity of the attempted sender, and pid1−i is the receiver

2. Parse h = (epoch id,msg num, N).

3. Parse state.fs.epoch id from stateI .

4. Send (state.fs.epoch id, Inject, pid,msg num, c) to Env (in the name of (Ffs aead, sid.fs) where sid.fs =
(“fs aead”, sid, epoch id)).

5. On receiving (state, Inject, v) from Env, update state.fs.epoch id← state.

6. If (h, c) /∈ sentheaders ∧ v = ⊥: output (Inject, h, c,⊥) to (FSM, sid). //in this case FSM should output Fail,
otherwise decryption succeeds

7. If epoch id 6= sent idsi then set diverge parties = true. //this epoch id was generated by the adversary rather
than the sender, and it caused a divergence

8. If this is the first successfully received message with this epoch id do: //received first message from the sender’s
newest epoch

• Parse state.eKE from stateI

• Send a message (state.eKE, GenEpochId, i, epoch id) to Env (in the name of (FeKE, sid.eKE))

• On receiving (state, GenEpochId, i, epoch id∗), update state.eKE ← state and add epoch id∗ to the stack
sent ids1−i and add epoch id∗ to stateI . //this will be party i’s next epoch id when it next sends a
message

• If epoch id = sent idsi.top and injectable = true and diverge parties = false and corrupted party = i then:
set injectable = false and corrupted party = ⊥. //if party i succeeds in establishing a new sending epoch,
the adversary can no longer inject

9. Output (stateI , Inject, h, c, v) to (FSM, sid).

(The rest of this simulator is in Fig. 18 on Page 45)

Figure 17: Secure Messaging Simulator, SSM44



SSM continued...

(This simulator begins in Fig. 17 on Page 44)

ReportState: On receiving (ReportState, pid, pending msgs) from (FSM, sid) do:

1. Set i such that pid = pidi. //this is the identity of the corrupted party

2. Set corrupted party = i, injectable ids0 = sent ids0, injectable ids1 = sent ids1, and initialize an empty list Si.

3. Set recv chain key
$← Kep from the key distribution.

4. Send (state.eKE, ReportState, i, recv chain key) to Env (in the name of (FeKE, sid.eKE)).

5. Upon receiving (ReportState, i, S∗) from Env, add S∗ to Si.

6. For all epoch id∗ such that there exists a header h ∈ pending msgs containing epoch id∗:

• Send (state.fs.epoch id∗, Corrupt, pid, leakage) to Env (in the name of (Ffs aead, sid.fs) where sid.fs =
(“fs aead”, sid, epoch id∗).

• Upon receiving a response (Corrupt, pid, S∗) from Env, add S∗ to the set Si.

7. Output (stateI , ReportState, pidi, Si) to (FSM, sid).

Figure 18: Secure Messaging Simulator SSM continued...

• Within ReceiveMessage, after performing several input validation checks (e.g., that the
epoch/message header hasn’t been used before) FSM will generate a tuple (state.fs.epoch id, Inject, pid,msg num, c).
When the parties are not compromised or diverged, FSM runs the code ISM on the tuple to
decide whether the message is authentic. Otherwise, it sends the tuple to SSM to allow it
to decide whether the message is authentic or even run a rushing attack to change the mes-
sage contents. If this is the first successfully received message of a new epoch then ISM/SSM
additionally generates a new epoch id for the recipient party to use when it sends its next
message.

• If the corruption of a party is requested by environment, then FSM calls the simulator’s
ReportState method to generate a simulated state for the party which it sends to the envi-
ronment in response.

In the remainder of this proof, we describe why the actions of SSM and ISM ensure that Env’s
view in its interaction with FSM is identically distributed (when treated as a random variable) to
its view when interacting with the real protocol ΠSGNL.

This argument is divided into two cases based on whether the session is compromised or not.
When the session is not compromised, the proof proceeds via induction over the steps of the internal
code ISM where we argue that each individual action taken within the internal code maintains the
indistinguishability property between the environment’s view in the real and ideal worlds. Likewise,
when the session is compromised, the proof proceeds by induction over the steps of the simulator.
Observing that corruption, uncorruption, and divergence occur at the same times in FSM and ΠSGNL,
on can see that checking the above cases suffices to complete the argument that the environment’s
view is identical in the real and ideal cases.

Note that the simulator SSM may assume that the first call made by the environment is to
SendMessage and that all subsequent calls to ReceiveMessage use (epoch id,msg num) headers
that haven’t been used before and that have valid epoch id. If these constraints do not hold, then
we observe by inspection that both FSM and ΠSGNL terminate before ever invoking the ideal-world
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ISM

This internal adversary is only called when no parties are compromised.
SendMessage: On receiving (stateI , SendMessage, pid, |m|) from (FSM, sid) do:

1. Set i such that pid = pidi. //this is the identity of the sender

2. If this is the first invocation of SendMessage do:

• Initialize sent msg num0 = 0, and sent msg num1 = 0.

• Create empty stacks sent ids0 = [] and sent ids1 = [].

• Create empty sets injectable ids0 = ∅ and injectable ids1 = ∅.
• Parse state.eKE from stateI

• Run IeKE(state.eKE, GenEpochId, i,⊥)

• Upon receiving (state′, GenEpochId, i, epoch id) from Env, update state.eKE ← state′ and push epoch id
onto the stack sent ids0.

3. Set epoch id equal to the top of the stack sent idsi, and increment sent msg numi += 1.

4. Parse state.fs.epoch id from stateI .

5. Run Ifsaead(state.fs.epoch id, Encrypt, pid, sent msg numi, |m|) for specifically (Ifsaead, sid.fs), where sid.fs =
(“fs aead”, sid, epoch id)).

6. On receiving (state, Encrypt, pid, sent msg num, c) from Ifsaead:

• Update state.fs.epoch id← state

• Add (h, c) ∈ sentheaders

• Update sentheaders and sent ids0, sent ids1 in stateI

• Send (stateI , SendMessage, pid, epoch id, c) to (FSM, sid)

Inject: On receiving (stateI , Inject, pid, h, c) from (FSM, sid) do:

1. Set i such that pid = pidi. //this is the identity of the attempted sender, and pid1−i is the receiver

2. Parse h = (epoch id,msg num, N), read in sentheaders and sent ids0, sent ids1 from stateI , and read in
state.fs.epoch id from stateI

3. Run Ifsaead(state.fs.epoch id, Inject, pid,msg num, c) specifically for (Ffs aead, sid.fs) where sid.fs =
(“fs aead”, sid, epoch id)).

4. On receiving (state, Inject, v) from I, update state.fs.epoch id← state.

5. If (h, c) /∈ sentheaders∧ (v = ⊥∨ (@c∗ s.t. (h, c∗) ∈ sentheaders)): output (stateI , Inject, h, c,⊥) to (FSM, sid).
//in this case FSM should output Fail, otherwise decryption succeeds

6. If epoch id 6= sent idsi then set diverge parties = true. //this epoch id was generated by the adversary rather
than the sender, and it caused a divergence

7. If this is the first successfully received message with this epoch id do: //received first message from the sender’s
newest epoch

• Parse state.eKE from stateI

• Run IeKE(state.eKE, GenEpochId, i, epoch id)

• On receiving (state′, GenEpochId, i, epoch id∗), update state.eKE ← state′, add epoch id∗ to the stack
sent ids1−i and add epoch id∗ to stateI . //this will be party i’s next epoch id when it next sends a
message

8. Output (stateI , Inject, h, c, v) to (FSM, sid).

Figure 19: Internal Adversary ISM
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adversary SSM or the real-world adversary A, respectively.
Without loss of generality, we restrict our attention to a deterministic environment Env and

a dummy adversary A. Consequently, there are only two sources of randomness in the entire
execution: first, the choice of ik and rk within FDIR, which influences the epoch key generated in
FeKE, and second, the choice of epoch key recv chain key within the view of a corrupted receiver.

Case 1: neither party is compromised. The functionality FSM notifies the internal code
when any message is sent or received, as long as it passes the input validation checks described
above. During ReceiveMessage, the internal code is given a message header (epoch id,msg num, N)
together with a ciphertext c, and it is permitted to attempt to inject a message. In the analogous
ReceiveMessage routine in the real world, the protocol ΠSGNL invokes the specific instance of
Ffs aead corresponding to epoch id, which then sends a notification to the internal code Ifsaead
asking for the desired message to inject. In the ideal world, the internal code ISM sends this exact
backdoor message to the internal code Ifsaead and retrieves a value v. It is straightforward to
confirm by inspection that the logic in ISM matches the input-validation logic used within the real
world: v is ignored if c is a valid ciphertext created by a previous invocation to SendMessage, and
otherwise the message is authenticated if and only if v 6= ⊥. Finally, if this is the first successfully
received message of a new epoch, then the real world protocol ΠSGNL invokes FeKE to perform a
public ratchet; the internal code ISM emulates the corresponding backdoor message that FeKE sends
to its internal adversarial code IeKE to receive the epoch id for the new epoch. Hence, the real and
ideal worlds move to a new epoch in lockstep. The internal code also records all epoch ids for later
use during SendMessage, as described below. It is straightforward to check that the code of FSM

and ΠSGNL identically perform other checks that do not involve the (ideal or real world) adversary
at all, such as refusing to decrypt a message whose header h has already been used or that is
invalid because its msg num is larger than expected. As a result, the views of the environment in
both scenarios contains the same backdoor messages, as well as the same outputs since they are
deterministically derived from the environment’s own responses to the backdoor messages.

During SendMessage, the internal adversarial code is given the identity of the sending party
pid and the length of the desired message ` = |m|. In the ideal world, by the time that FSM has
invoked ISM, it has properly initialized SendMessage and is using ISM to generate a ciphertext so
that it can complete the message transmission. Note that ISM generates the ciphertext by invoking
the code Ifsaead with state state.fs.epoch id that corresponds to the newest epochid stored in the
state stateI given to ISM. For the corresponding call to SendMessage in the real world, ΠSGNL

performs the same initialization and then invokes the specific instance of Ffs aead corresponding to
the latest epoch id, which in turn uses the internal code Ifsaead directly to generate the ciphertext.
Because ISM has ` and the newest epoch id (from previous calls to ReceiveMessage), the views of
the environment in both scenarios are the same.

Finally, it is simple to observe by inspection that internal state variables like msg num and N
remain in sync as well.

Case 2: one or both parties are compromised. During the interval where the adversary
can tamper with the communication (i.e., Inject ∈ advControl) or if the parties’ root chains have
diverged (i.e., diverge parties = true), the simulator works analogously to the way ISM does in the
case described above with some small differences. Specifically, the simulator SSM sends backdoor
messages to the environment (addressed to Sfsaead) in the situations where the internal code ISM
would have run the code Ifsaead, there is a small difference in how the returned value is processed
in the case of Inject.
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The difference between ISM and SSM in SendMessage is the following: While ISM invokes Ifsaead
with the length |m|, the simulator SSM sends a nearly identical backdoor message with the length
|m| replaced by message m, this backdoor message is marked for Sfsaead corresponding to the latest
epoch id stored in stateI .

During Inject, the difference between SSM and SSM is in how the returned value from the
the environment (resp. Ifsaead) is processed. The simulator SSM sends a backdoor message to the
environment that’s identical to the input that ISM runs Ifsaead with. On receiving a response, SSM
must compute an input validation predicate that’s different than the one in ISM, because in this
case whenever the ciphertext c isn’t exactly the one generated in the corresponding Encrypt call,
both FSM and ΠSGNL allow the adversary to inject any message of its choice.

To complete the proof, it only remains to check that corruption and uncorruption happen at
the same times in the real and ideal worlds and that the environment receives the same state in
response to a ReportState command.

Corruption is initiated by the environment itself; both ΠSGNL and FSM (with SSM) respond im-
mediately to this request by corrupting parties and reporting state back to the environment. In re-
sponse to a ReportState command sent to FSM, the simulator SSM constructs the corrupted party’s
view by using FeKE and all pertinent Ffs aead in exactly the same way as ΠSGNL does, with only one
exception. Because ΠSGNL does not expose to the environment the commands GetSendingKey and
GetReceivingKey within its FeKE subroutine, it suffices for the simulator to sample recv chain key
independently (from the same distribution as FeKE does) because Env cannot make the queries
needed to test consistency with the underlying state held within FeKE.

Additionally, it is simple to observe by inspection that FSM and ΠSGNL uncorrupt a party and
mark the parties as diverged at the same times.

2

6 The Public Key Ratchet: Realizing FeKE

This section describes a protocol ΠeKE (Fig. 20) that UC-realizes FeKE (Fig. 13). This protocol
mirrors the public key ratchet from the Signal protocol – in particular it uses values from a contin-
uous Diffie-Hellman ratchet as inputs to a key derivation function (KDF) chain. The properties of
a KDF chain are captured by a new primitive, Cascaded PRF-PRG (CPRFG) (Section 6.2) that
is realisable in the plain model and may be of independent interest. In Section 6.3 it is shown that
ΠeKE (instantiated with a CPRFG) UC-realizes FeKE in the plain model (without a random oracle)
in the presence of the global functionalities FDIR, Flib, and FLTM.

6.1 Protocol ΠeKE

This section describes a protocol ΠeKE (Fig. 20) that UC-realizes the epoch key exchange func-
tionality FeKE (Fig. 13). The protocol ΠeKE, which persists for the entire duration of the secure
messaging session between two parties, mirrors the public key ratchet from the Signal protocol. It
uses values from a continuous Diffie-Hellman ratchet as inputs to a key derivation function (KDF)
chain. The epoch key exchange protocol ΠeKE (Section 6.1) has a security tradeoff: (1) When the
KDF used in ΠeKE is modeled as a random oracle, the protocol realises FeKE as is, this allows the
overall protocol ΠSGNL to realise FeKE as is. Allowing an adversary to send malformed packets
during corruption means that the adversary can get extra information about the parties secret
Diffie-Hellman exponents:

Say that Alice and Bob have secret exponents a and b respectively. Alice tried to share her new
epoch identifier ga with Bob, but Bob has not yet received this information. The adversary can
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now send as many malformed epoch identifiers ga
′

to the Bob as it chooses and get back the value
KDF (ga

′b) for each. Additionally ga
′

can depend on the honest epoch identifier ga of Alice.11

This is the reason that the adversary to FeKE can extend the healing time after corruption by
sending malformed packets to parties during the first epoch after recovery. Without step 5a FeKE

could not be realises by ΠeKE in the plain model without specific strong properties being enforced
on KDF .12

Recall that each of the two parties will run their own copy of epoch key-exchange protocol ΠeKE.
This is different from the ideal world where the parties share a copy of the epoch key exchange
functionality FeKE that they both interact with. One cosmetic impact of this is that each party’s
protocol must be initialized on first activation. The functionality FeKE is initialized just once, on
the first call to ConfirmReceivingEpoch by the initiator of the conversation. Since there are two
copies of the protocol, each must be initialized separately. The initiator’s instance of the protocol
ΠeKE is also initialized on the first call to ConfirmReceivingEpoch by the initiator. However, the
responder’s instance of ΠeKE is initialized on the first call to GetReceivingKey by the responder
since this is the first action the responder must take.

The protocol has two basic components: (1) A continuous Diffie-Hellman ratchet between the
two parties which provides both forward secrecy and healing from compromise. This is the place
where parties can add fresh randomness into the system. (2) A KDF-chain that provides immediate
decryption for the secure messaging system. This chain leverages the healing property of the Diffie-
Hellman ratchet and extends the forward secrecy property. We briefly describe each of the methods
of ΠeKE below. The full details can be found in Figure 20 on Page 50.

Each of the parties involved in the protocol execution run an instance of ΠeKE. Just like in
FeKE the parties take turns starting epochs in which they will send messages. They achieve this
interleaving by updating their sending randomness (via a new Diffie-Hellman pair) as soon as they
get confirmation of a new Diffie-Hellman pair being used by the other party. This means that most
of the work happens when the parties successfully receive a message in the other party’s newest
sending epoch. In that vein, let’s start by briefly describing the GetReceivingKey method.

GetReceivingKey When a party receives a new public Diffie-Hellman value epoch id from its
partner, it runs the method (GetReceivingKey, epoch id) to produce a tentative recv chain key.
This key is then confirmed to be the correct value (or confirmed to be wrong) by the party out of
band of the epoch key exchange protocol.

ConfirmReceivingEpoch If a new public Diffie-Hellman value epoch id produces a key that the
party confirms to be correct (with this confirmation being out of band of the epoch key exchange
protocol), then the party will run the ConfirmReceivingEpoch method to update the both the
Diffie-Hellman ratchet and the KDF-chain accordingly. (This update enatils the overwriting of
the partner’s old epoch id with the new one and the overwriting of the old root key with the new
one output by KDF .) The party also knows at this point that it must update its own sending
randomness – so this method additionally updates both the Diffie-Hellman ratchet and the KDF
chain again according to a randomly chosen Diffie-Hellman pair (epoch id′, epoch key′), this update
also produces a new sending chain key value (output by KDF ) which is stored temporarily until the

11We note that in the context of the full secure messaging protocol the adversary does not actually see these chain
keys. It instead only learns if decryption succeeds or not.

12Another option for weakening the functionality is to assume that the adversary is completely inactive during the
recovery epoch, or even during the entire healing period as is done in the work by Alwen et al. [1], we prefer instead
to characterize the exact additional power gained by the adversary.
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ΠeKE

This protocol has a party id pid and session id sid.eKE of the form: sid.eKE = (“eKE”, sid) where
sid = (sid′, pid0, pid1).
This protocol uses protocols keyGen and KDF as subroutines: (1) keyGen chooses a random Diffie-Hellman exponent

epoch key
$← |G| for a known group G and sets epoch id = gepoch key. It then outputs (epoch key, epoch id). (2) The

protocol KDF is a cascaded PRF-PRG.

//The method ConfirmReceivingEpoch is also used by the initiator of the conversation to start the first sending
epoch (epoch 0) before it has any receiving epochs to confirm.

ConfirmReceivingEpoch: On input (ConfirmReceivingEpoch, epoch id∗) from (ΠSGNL, sid, pid
′):

1. If pid′ 6= pid, then end the activation. Let i be such that pid = pidi.

2. Set temp epoch id partneri = epoch id∗.

3. If this is the first activation:

• Initialize state variables (root keya, root keyc), epoch id, epoch key, sending chain key = ⊥.

• Send (GetInitKeys, pid1−i, pidi) to FDIR.

• Upon receiving (GetInitKeys, ikpkj , rk
pk
j , ok

pk
j←i), if okpkj←i = ⊥ then output

(ConfirmReceivingEpoch, Fail). Otherwise, send input (ComputeSendingRootKey, ikpkj , rk
pk
j , ok

pk
j←i) to

FLTM.

• Upon receiving (ComputeSendingRootKey, s = (sa, sc), ek
pk
i ), set (root keya, root keyc) = (sa, sc).

• Run the subroutine Compute Sending Chain Key.

• Erase ekpki and output (ConfirmReceivingEpoch, epoch idself ||ek
pk
i ||ok

pk
j←i) to (ΠSGNL, sid, pidi)

4. Else (this is not the first activation):

• Run the steps in Compute Sending Chain Key.

• Output (ConfirmReceivingEpoch, epoch idself) to (ΠSGNL, sid, pidi).

GetSendingKey: On receiving input (GetSendingKey) from (ΠmKE , sid.mKE, pid
′):

1. If pid′ 6= pid, or if sending chain key has already been erased, end the activation.

2. Output (GetSendingKey, sending chain key) and erase sending chain key.

GetReceivingKey: On receiving input (GetReceivingKey, epoch id) from (ΠmKE , sid, pid
′):

1. If pid′ 6= pid, then end the activation. Otherwise, let i be such that pid = pidi.

2. Set temp epoch id partner = epoch id.

3. If this is the first activation:

• Initialize state variables (root keya, root keyc), epoch id, epoch key, sending chain key = ⊥.

• Parse epoch id = (epoch id′, ekpkj , ok
pk
i←j) and set temp epoch id partner = epoch id′

• Send (GetResponseKeys, pid1−i) to FDIR.

• Upon receiving (GetResponseKeys, ikpkj ), send input (ComputeReceivingRootKey, ikpkj , ek
pk
j , ok

pk
i←j) to

FLTM.

• Upon receiving (ComputeReceivingRootKey, s = (sa, sc)), set (root keya, root keyc) = (sa, sc).

4. Run the subroutine Compute Receiving Chain Key.

5. Output (GetReceivingKey, temp recv chain key) and erase temp recv chain key.

(The rest of this protocol is in Fig. 21 on Page 52)

Figure 20: The Epoch Key Exchange Protocol ΠeKE
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party retrieves it using the GetSendingKey method. (This second update also entails overwriting of
old value. This time, the party’s old Diffie-Hellman pair is overwritten along with the old root key.)

GetSendingKey This method simply outputs the stored sending chain key value and then deletes
it. If the value has already been deleted then it does nothing.

Now we briefly discuss the initialization of the protocol for each party and the corrupt method
that exists only for record keeping purposes.

Initiator Initialization The first time the initiator runs the ConfirmReceivingEpoch method
of ΠeKE, the method must initialize the KDF-chain and the Diffie-Hellman ratchet. It then updates
both using a randomly chosen Diffie-Hellman pair (epoch id′, epoch key′), and temporarily store
the produced sending chain key value till the party retrieves it using the GetSendingKey method.
To initialize the Diffie-Hellman Ratchet, the party retrieves the responder’s keys from directory
functionality FDIR using the GetInitKeys method. It can then use the ComputeSendingRootKey

method of its long-term memory functionality FLTM to run a triple Diffie-Hellman on both parties’
keys. This initializes the Diffie-Hellman ratchet and KDF-chain, it also binds the conversation to
the longterm identity keys of the two parties.

Responder Initialization The first time the responder runs the GetReceivingKey method
of ΠeKE, the method must initialize the KDF-chain and Diffie-Hellman ratchet of the responder
in much the same way as the initialization of the Initiator that happens on the its first call to
ConfirmReceivingEpoch. After this, the steps of the GetReceivingKey method are run like they
will be for the rest of the conversation.

Corrupt The corrupt method in Figure 20 defines the model of corruption we are considering. On
corruption, ΠeKE returns its internal state containing: (epoch key, epoch idself , epoch idpartner, root key).
Note that, as with the other protocols, the Corrupt method is not a “real” interface, but is only
record keeping for the purposes of the model.

Remark

We remark that a simple modification to ΠeKE, also mentioned in [1], allows for the protocol to heal
even faster with a small increase in communication. This modified protocol can realize a functionality
FeKE that heals in 2 rounds instead of 3. Such a protocol can easily be substituted in place of the
current ΠeKE to show that the resulting ΠSGNL + Πaead + Π′

eKE system will realise functionality FSM

that heals from corruption in ≥ 2 rounds. This modification has each party use two Diffie-Hellman
pairs when an epoch turns over, one for the party’s new sending epoch, and one for the other party’s
next sending epoch when it responds. This allows both parties to delete the Diffie-Hellman exponents
corresponding to their sending epochs as soon as they begin.
Bienstock et al. [13] provide a different modification, which they call the ‘triple ratchet’, that achieves
similarly fast healing from corruption without the additional communication overhead.

6.2 Cascaded PRF-PRG (CPRFG)

A crucial component of the epoch key exchange protocol ΠeKE (fully specified later in Fig. 20 on
Page 50) is a stateful key derivation function (KDF). The KDF consists of a secret state s = (sa, sc),
and two deterministic functions, KDF.Advance and KDF.Compute, which take an values sa,
sc respectively along with externally provided input r, and do the following:
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ΠeKE continued...

(This protocol begins in Fig. 20 on Page 50)

Corrupt: On receiving (Corrupt) from (ΠSGNL, sid, pidi): return (epoch key, epoch idself , epoch idpartner, (root keya, root keyc))
to (ΠSGNL, sid, pidi)
//Note that the Corrupt interface is not part of the “real” protocol; it simply serves to formalize what the adversary

sees on corruption.

//Below are subroutines used in the interfaces above. This is where the cascaded PRF-PRG protocol KDF is used.
Compute Sending Chain Key:

1. If this is the first activation start at step 5.

2. Compute a root input root input = Exp(temp epoch idpartner, epoch keyself).

3. Compute the new root key KDF.Advance(root keya, root input) = (root key′a, root key′c) and update the value
(root keya, root keyc) = (root key′a, root key′c).

4. Generate a key pair (epoch keyself , epoch idself)← keyGen().

5. Compute a new root input root input = Exp(temp epoch idpartner, epoch keyself).

6. Compute the sending chain key KDF.Compute(root keyc, root input) = (root key′c, sending chain key) and
update root keyc = root key′c.

7. Erase root input. //The old root key is overwritten and therefore erased. The old sending chain key was
already erased.

Compute Receiving Chain Key:

1. Compute root input = Exp(temp epoch idpartner, epoch keyself).

2. Compute KDF.Compute(root keyc, root input) = (root key′c, temp recv chain key) and update the value
root keyc = root key′c.

3. Erase root input. //The old root key is overwritten and therefore already erased.

Figure 21: The Epoch Key Exchange Protocol ΠeKE (continued)
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• KDF.Advance(sa, r): Update the state s = (sa, s
′
c) according to the input sa, r to generate

an updated state s∗ = (s∗a, s
∗
c). (Within the Signal protocol, an application of KDF.Advance

corresponds to advancing an epoch.)

• KDF.Compute(sc, r): Generate a key k for a potential next epoch corresponding to a given
the input sc, r, along with an updated state s′c. (Within the Signal protocol, an application
of KDF.Compute corresponds to computing a receiving chain key k without advancing the
epoch. Note that we allow an update to the state even in this case; this is a crucial ingredient
in providing security against adaptive corruptions.)

In this subsection we define a new primitive, Cascaded PRF-PRG (CPRFG), that captures
the security requirements from this KDF. Additionally, we present a candidate construction of a
CPRFG in the standard model. (The HKDF function [44] used in the Signal application also
meets this definition of a CPRFG, albeit in the random oracle model.)

6.2.1 Defining the CPRFG

The definition of a Cascaded PRF-PRG (CPRFG) extends the PRF-PRNG model from Alwen
et al. [1] to capture the requirements from a KDF-chain under adaptive corruptions. The benefit
of the CPRFG definition is that it directly requires the exact adaptive properties needed from a
KDF-chain as specified in the Signal architecture [51] while the PRF-PRNG definition from [1]
has to be stringent enough to provide the right adaptive guarantees when used in a chain. This
definition follows the real/ideal paradigm. Specifically, it specifies an ideal game and a real game,
and requires existence of a simulator SKDF such that no adversary can distinguish whether it is
interacting in a real game that represents an execution of an actual KDF , or in an ideal game with
simulator SKDF, where the ideal game represents the expected behavior of the system that exhibits
the properties described above.

In both games, the adversary can repeatedly make one of four queries: (Compute, r), (Advance, r),
(Compromise, r), or (Recover) which are answered as defined in Figure 22 below.

We note that, while the definition does follow the real/ideal paradigm, we found it more con-
venient not to frame it within the UC framework. In particular, this allows us to directly require
that KDF.Compute and KDF.Advance be deterministic functions, and to make the queries in
the game different than the normal API of KDF.Compute and KDF.Advance.

A formal definition follows in Theorem 11 with the full game details shown in Fig. 22.

Definition 11 (Cascaded PRF-PRG (CPRFG)) Let m be a polynomial, OCPRFG be an oracle
that runs either the real or ideal version of the CPRFG security game (Figure 22, pg Page 54), λ ∈ N
be the security parameter, and |Rλ| ≥ 2λ be an input space. Let the module KDF have a secret
state (sa, sc) ∈ {0, 1}λ and deterministic functions (KDF.Compute,KDF.Advance) such that:
KDF.Advance takes inputs sa, r ∈ {0, 1}λ×Rλ and produces an output (s∗a, s

∗
c) ∈ {0, 1}λ×{0, 1}λ).

KDF.Compute takes inputs sc, r ∈ {0, 1}λ×Rλ and produces an output s′c, k ∈ {0, 1}λ×{0, 1}m(λ).
KDF is a cascaded PRF-PRG (CPRFG) if ∃ probabilistic polynomial time (PPT) algo-

rithm SKDF such that any PPT machine A interacting with oracle OCPRFG can distinguish whether
the oracle is running the real game or the ideal game with advantage at most negligible in λ.

6.2.2 Properties of the CPRFG

To provide intuition for this new primitive, in this section we provide an informal discussion of
some of the properties that it guarantees.
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Cascaded PRF-PRG Security Game

Let m be a polynomial, λ ∈ N a security parameter. This figure describes the Cascaded PRF-PRG security game for
a KDF with secret state (sa, sc) ∈ {0, 1}λ × {0, 1}λ and deterministic functions (KDF.Compute,KDF.Advance)
such that: KDF.Advance takes inputs sa, r ∈ {0, 1}λ × Rλ and produces an output (s∗a, s

∗
c) ∈ {0, 1}λ × {0, 1}λ).

KDF.Compute takes inputs sc, r ∈ {0, 1}λ ×Rλ and produces an output s′c, k ∈ {0, 1}λ × {0, 1}m(λ).

Real game:

• On Initialization: Oracle OCPRFG is initialized with uniformly sampled state s = (sa, sc)
$← {0, 1}λ.

• On input (Compute, r): OCPRFG runs KDF.Compute(sc, r) = (s′c, k), outputs k, changes state s = s′.

• On input (Advance, r): OCPRFG runs KDF.Advance(sa, r) = (s∗a, s
∗
c), and changes state (sa, sc) = (s∗a, s

∗
c).

• On input (Compromise, r∗): OCPRFG outputs the old state s. Mark the state as compromised.

• On input (Recover): OCPRFG samples r′
$← Rλ uniformly at random, computes KDF.Compute(sc, r′) = s′c, k,

and KDF.Advance(sa, r′) = (s∗a, s
∗
c), and changes state s = (s∗a, s

∗
c). Mark the state as recovered and output

k.

Ideal game:

• On Initialization: Oracle OCPRFG is initialized with a uniformly sampled state F
$← {f : Rλ → {0, 1}m(λ)}.

• On input (Compute, r):

1. If the state is compromised it outputs S(Compute, r) = k and adds the tuple (r, k) to the list
computed values.

2. Else (the state is not compromised), it outputs F (r) = k and adds the tuple (r, k) to the list
computed values.

• On input (Advance, r):

1. The oracle OCPRFG resets computed values = {}.

2. If the state isn’t compromised, OCPRFG updates its state to a new function F
$← {f : Rλ → {0, 1}m(λ)}

sampled uniformly at random.

3. Else (the state is compromised), OCPRFG runs S(Advance, r).

• On input (Compromise, r∗): If the state is not compromised then OCPRFG marks the state as compromised
and outputs S(computed values, (r∗, F (r∗)) (or S(computed values,⊥) if r∗ = ⊥), where computed values cor-
respond to all the Compute queries made by A since the last Advance or Recover query and F is the current
state. //If the state is compromised, do nothing.

• On input (Recover): OCPRFG marks the state as recovered. It samples k
$← {0, 1}λ uniformly at random

and updates its state to a new function F
$← {f : Rλ → {0, 1}m(λ)} sampled uniformly at random. It runs

S(Recover). Reset computed values← [].

Figure 22: Cascaded PRF-PRG Security Game
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Property 1: As long as the initial state s = (sa, sc) is random and secret, any sequence of calls
to KDF.Compute that does not contain a call to KDF.Advance should behave like a sequence
of calls to a random function. That is, for each new, adversarially chosen value of r, the key k
generated by running KDF.Compute(sc, r) should look like a fresh random key. Furthermore,
two calls with the same input r should result with the same k. That is, regardless of the sequence
of KDF.Compute queries run before the call with input r, the output key k should be the same.

(This property is intended to ensure that even though an adversary for ΠeKE may cause a receiver
to compute epoch keys using r’s that don’t match the one used by the sender, the adversary cannot
actually guess what any of the resulting epoch keys will be. Furthermore, the consistency of the
outputs to KDF.Compute queries ensures that two parties that have the same initial state (sa, sc)
and each make a different sequence of KDF.Compute queries, will get the same output key k for
any query r contained in both sequences.)

This property holds for the following reasons: (1) Compute queries in the ideal game (from
Figure 22), are answered via a function F chosen uniformly at random as long as the state is not
compromised. (2) The outputs of the randomly chosen function F on inputs r are fixed regardless
of the order of Compute queries (till an Advance occurs and a new random function is chosen). (3)
Finally, when a call to (Compute, r) is answered with a key k, the tuple (r, k) is stored till the next
Advance query to make sure all calls to (Compute, r) till then are answered with the same key k.

Property 2: As long as either sa or r is both random and secret, running KDF.Advance(sa, r)
updates the state to a new pseudorandom state (s∗a, s

∗
c). This in turn causes KDF.Compute

to behave like a fresh random function. Furthermore, a party that starts with some initial state
s = (sa, sc) and runs some sequence of KDF.Compute queries that lead to a state s′ = (sa, s

′
c), will

always get the same resulting state s∗ when it queries KDF.Advance for some input r, regardless
of the sequence of KDF.Compute queries that it made before advancing to lead to the state s′.

(This property provides forward secrecy of any keys computed before the last timeKDF.Advance
was run. It also allows parties who can agree on a fresh random and secret r to recover from the
corruption. Additionally, the consistency property ensures that even though an adversary for ΠeKE

can cause parties to compute keys for several incorrect randomizer values, the adversary still can’t
make the parties go out of sync without corrupting them.)

In the case where the state is not compromised, the ideal game samples a fresh random function
on receiving (Advance, root input). On the other hand, the case where the state is compromised
running KDF.Advance(sa, r

′) with a secret random value r′ is indistinguishable from updating
the state to a newly chosen random function because the actions for (Recover) in the real game look
indistinguishable from those for (Recover) in the ideal game. Finally, consistency of the resulting
state s∗ with respect to the input r holds because KDF.Advance is deterministic with respect to
its inputs (sa, r) and queries to KDF.Compute don’t change sa.

Property 3: To demonstrate the security properties of a CPRFG against break-ins we would like
to show that: (1) Exposing the current state of the KDF does not expose any keys generated before
the last Advance. (2) At any point during the execution, the current local state of the system is
simulatable given only the inputs and outputs of KDF.Compute since the last KDF.Advance.

(This guarantees that an adversary does not obtain any computational advantage over what is
allowed in an ideal execution where the generated keys are truly random.)

This property is modeled in the ideal (Compromise, root input∗) operation in which the simulator
is given only the inputs and outputs since the last advance and produces a state s = (sa, sc) that
is indistinguishable from that seen during compromise in the real world.
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6.2.3 Constructing the CPRFG

In this section, we provide a construction for the CPRFG in the standard model. The construction
requires a puncturable pseudorandom function [15] along with standard crypto primitives.

CPRFG Construction

The construction is parameterized by a puncturable PRF {f}, PRF g, and length-tripling PRG h.
KDF.Compute(sc, r):

1. Parse sc = (s1, s2), and further parse s1 = (ŝ1, (a1, b1), ..., (ak, bk))

2. If r = ai for some i: set f̂s1 (root input) = bi and s′c = sc.

3. Else:

(a) ŝ′1 ← Puncture(ŝ1, r)

(b) Update s′1 = (ŝ′1, (a1, b1), ..., (ak, bk), (r, fŝ1 (r))

(c) Compute f̂s1 (r)← fŝ1 (r)

4. Output (s′c, f̂s1 (r)⊕ s2)

KDF.Advance(sa, r):

1. Output (sa, sc)← h(gsa (r))

Figure 23: CPRFG Construction

Theorem 12 Assume that {f} is a puncturable PRF, {g} is a PRP, and h is a PRG. Then the
KDF construction in Figure 23 is a cascaded PRF-PRG.

Cascaded PRF-PRG Simulator

On input (Compute, r) run the honest KDF.Compute(sc, r) from Figure 23 and update sc accordingly.
On input (Advance, r) run the honest KDF.Advance(sa, r) from Figure 23 and update s = (sa, sc) accordingly.
On input (computed values, (r, k)) or (computed values,⊥):

• Sample s1, sa
$← {0, 1}λ independently and uniformly at random.

• Parse computed values = ((a1, b1), . . . , (ak, bk)).

• Let ŝ1 be the result of puncturing s1 at points a1, . . . , ak.

• Set s′1 = (ŝ1, (a1, b1), . . . , (ak, bk)).

• If (r, k) 6= ⊥, set s2 = k ⊕ f̂s′1 (r).

• Finally, set sc = (s′1, s2) and output s = (sa, sc).

On input (Recover): delete state s.

Figure 24: Cascaded PRF-PRG Simulator

Proof:Consider the simulator SKDF in Figure 24 (on Page 56). We argue that an adversary A that
distinguishes between the real and ideal games can be used to break either the fact that {f} is a
puncturable PRF (as in [15]), or the fact that {g} is a PRF, or the PRG property of h.

The proof uses the following hybrid argument. Let the hybrid experiment H1
i consist of the

ideal CPRFG game up to and including the i-th instance of (Advance, ·) or (Recover) in the CPRFG
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game; all following calls to the game are real. Next, let H2
i consist of the ideal CPRFG game up to

the i-th instance of (Advance, ·) or (Recover) and the subsequent calls to the CPRFG game before
the next advance; only then do all subsequent calls act as in the real game. Specifically, if epoch i
was not corrupted, the (i+ 1)-th (Advance, ·) will use a random root key3 to key g.

We will begin with the first case. Suppose there is some A that can distinguish H1
i from H2

i

(which differ only in whether the operations computed during the i-th epoch are real or ideal).
Then, clearly epoch i is not compromised because the simulator ensures that the two hybrids are
identical (the simulation is perfect). Then, construct the following adversary APPRF against the
puncturable PRF property of f :

1. Emulate the ideal CPRFG game to A up to and including the i-th Advance.

2. Until the next Advance or Compromise:

(a) Initialize a list of computed values computed values

(b) Let K be the set of possible values for r.

(c) For inputs of the form (Compute, r), for some r from A:
Query

k ← PPRF.Challenge(r)

and return k; Also, set K = K \ {r} to puncture this input.

3. If we exited Step 2 with a (Compromise, r∗) for some r∗, query
s1 ← PPRF.Constrain(K∪{r∗}), sample s′2 and sa uniformly and set s2 = PPRF.Challenge(r∗)⊕
s′2. Output s = ((s1, s2), sa).

4. If we exited Step 2 with a (Advance, r) for some r, sample (sa, sc)
$← {0, 1}λ uniformly.

5. Emulate the real CPRFG game with the state initialized to s for the remaining calls from A.

6. IfA outputs “H1
i ”, then output “pseudorandom function”. Otherwise (A outputsH2

i ), output
“random function”.

Notice that if the function in the PPRF game is pseudorandom, then hybrid H1
i is exactly

emulated to A, because the PPRF key is truly random; otherwise, H2
i is perfectly emulated to A.

Thus, A’s distinguishing probability is identical to APRF PRG’s.
Now, consider the case that A can distinguish between hybrids H2

i−1 and H1
i (which differ

only on whether the i-th Advance is real or ideal). Clearly then epoch i is not corrupt because
the simulator ensures that the two hybrids are identical (the simulation is perfect) Then, we will
construct the following PRF-PRG adversary APRF PRG:

1. Emulate the ideal CPRFG game to A up to the i-th Advance.

2. On the i-th (Advance, ·) or Recover:

(a) If (Advance, r) for some r: (sa, sc)← h(PRF.Challenge(r)).

(b) Else (Recover): the PRF key k is known to A, but the r is uniformly random. Set
k ← PRG.Challenge().

3. For the remaining calls from A, emulate the real CPRFG game with state initialized to
s = (sa, sc).
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4. If A outputs “H2
i−1”, then output “pseudorandom”. Otherwise (A outputs “H1

i ”), output
“truly random”.

Notice that if the functions in the PRF or PRG games are pseudorandom, then we have perfectly
emulated hybrid H2

i−1 to A; otherwise, if the functions in the PRF or PRF games are random, we
have perfectly emulated hybrid H1

i . Thus, the distinguishing advantage of A is the same as that
of APRF PRG.

Lastly, since the CPRFG adversary A runs in polynomial time in the security parameter, there
can be at most a polynomial number of Advance and Recover events–and thus, hybrids. Overall,
A’s distinguishing advantage over all hybrids remains negligible. 2

Observe that the size of the state of above CPRFG grows roughly linearly with the number of
applications of KDF.Compute between two consecutive applications of KDF.Advance, which
may in principle lend to a denial of service attack on the protocol. However, we argue that a
linear growth in space is unavoidable in plain model constructions – not only for the notion of
CPRFG, but also for realizing FeKE in the presence of security against adaptive corruptions [50].
Furthermore, it may be reasonable to mitigate such denial of service attacks by imposing an a priori
bound on the number of failed attempts to advance an epoch before the protocol raises an alarm
to the user.

6.3 Security Analysis of ΠeKE

Proof:The proof of Theorem 3 proceeds in two parts. The first part is the construction of the
simulator SeKE and the internal code IeKE. The second part of the proof is a hybrid argument used
to show the following indistinguishability (for the previously constructed SeKE, IeKE):

(Flib,FDIR,FLTM,F∗eKE,SeKE,IeKE) ≈ (Flib,FDIR,FLTM,ΠeKE).

When neither party has ever been corrupted, the functionality never calls the simulator. Instead,
the only adversarial choices are made when the functionality runs the internal code IeKE to receive
new epoch ids. The internal adversarial code for this proof simply samples (epoch key, epoch id)
pairs uniformly at random for each new epoch. The detailed version of IeKE can be found in Fig. 25
on Page 59.

Once a party has been corrupted, the functionality will begin to call the simulator SeKE. (The
detailed simulator SeKE can be found in Figs. 26 to 27 on Page 60.) The simulator is first called
by the functionality at the time of corruption. At this time, the simulator must return a simulated
state state for the corrupted party which will be passed to the environment by the functionality.
The receipt of party state state simulates a passive cloning attack. Then, during the healing period
when the parties are still compromised from the state corruption, the simulator must perform two
actions: (1) provide sending chain keys and recv chain keys for the parties to FeKE until compromise
ends (maybe never if the adversary chooses to person-in-the-middle the parties forever!), and (2)
continue to return snapshots of the current party’s state on new corruptions in a way that seems
consistent with the previously produced values, (even if the party is still compromised from a
previous corruption.)

To understand how the simulator goes about this, imagine that at corruption, the simulator
creates dummy parties P0,P1. These dummy parties run the code of ΠeKE based on the state that
the simulator provides them. If the simulator can produce a ‘convincing state’ for the corrupted
party at the time of corruption, then simply running the parties as in the honest protocol and
updating them based on the inputs provided by the environment will look indistinguishable from
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IeKE

The keyGen(·) operation is the same one as from ΠeKE. It chooses a random Diffie-Hellman exponent epoch key
$← |G|

and sets epoch id = gepoch key. It then outputs (epoch key, epoch id).

GenEpochId: On receiving (stateI , GenEpochId, i, epoch id∗) from (FeKE, sid.eKE) do:

1. If this is the first activation:

• Set epoch num0 = 0, epoch num1 = −1 in stateI .

2. Else (this is not the first activation):

• Parse stateI to recover the pair (epoch keyi, epoch idi).

• Store old epoch idi = epoch idi and old epoch keyi = epoch keyi in stateI .

3. Sample a new pair (epoch keyi, epoch idi)
$← keyGen() and record this pair in stateI .

4. Output (stateI , GenEpochId, i, epoch idi) to (FeKE, sid.eKE).

Figure 25: Internal adversarial code IeKE

how an honest corruption would go. To flesh out this intuition, let’s start by discussing how the
simulator will handle a ReportState request from ΠeKE.

ReportState: When the functionality FeKE receives a corruption notification from its calling
protocol, it will send a request of the form (ReportState, i, recv chain key) to the simulator. The
simulator must return ‘the state of pidi’; this state will be returned to the calling protocol and in
turn to the adversary.

The only variables stored in a party’s state in ΠeKE are epoch keyi, epoch idi, epoch id1−i, s =
sa||sc.

Note that epoch keyi, epoch idi, and epoch id1−i were chosen by the adversarial code IeKE just
like they would be in the real protocol and can be provided as-is. So, the only remaining question
is what value s = sa||sc) should the simulator provide. Remember that any sending or receiv-
ing chain key not yet provided by FeKE will be chosen by the simulator in the future using these
dummy parties who simply run the honest protocol on this provided state. So, the sa||sc pro-
duced here only needs to take account past chain keys. Fortunately, because KDF is a cascaded
PRF-PRG, the current sa||sc in the state of a party will be unrelated to all previous keys pro-
vided by FeKE in most cases and can simply be chosen at random. The only case where s is
related to a previous output of FeKE is when the instance of protocol ΠSGNL for pid1−i has already
started a sending epoch whose chain key recv chain key has not yet been retrieved from FeKE by
the receiving party’s instance (ΠSGNL, sid, pidi). In this case, the provided (sa||sc) must satisfy

KDF.Compute(sc, epoch id
epoch keyi
1−i ) = −, recv chain key. In these cases only, the functionality

will provide recv chain key to the simulator at the time of making the request. On receiving a
request containing recv chain key, the simulator will invoke the KDF simulator SKDF that proves
the security of KDF ; since the KDF protocol is a secure CPRFG, such a simulator SKDF must
exist.

After pidi is corrupted, the simulator will be able to provide all the keys for the parties by
running the instructions for ΠeKE within the dummy parties and using the epoch id∗ provided in
the GenEpochId requests to know how to ratchet forward to the receiving epochs for each party.
Once the functionality ‘heals’ from the corruption, it will stop asking the simulator for keys unless
the parties have diverged. If divergence doesn’t occur, the simulator will end the execution of the
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Simulator SeKE for realizing FeKE

SeKE runs only if the parties are diverged, or if the current epoch is compromised (i.e. we’re within the quarantine
period for a corruption.)

The keyGen(·) and KDF components are the same ones from ΠeKE: (1) keyGen chooses a random Diffie-Hellman
pair (epoch key, epoch id). (2) The protocol KDF is a CPRFG (Cascaded PRF-PRG).

At first activation: Send (FeKE, IeKE) to Flib.

//GetSendingKey and GetReceivingKey are used as subroutines to answer ReportState and GenEpochId requests.
GetSendingKey: On receiving (GetSendingKey, i) from (FeKE, sid.eKE) do:

1. If Viewi.sending chain key exists:

• Output (GetSendingKey, i,Viewi.sending chain key) and delete Viewi.sending chain key.

2. Otherwise end the activation.

GetReceivingKey: On receiving (GetReceivingKey, i, epoch id) from (FeKE, sid.eKE) do:

1. Set Viewi.temp epoch idpartner = epoch id

2. Compute Viewi.root input = Exp(Viewi.temp epoch idpartner,Viewi.epoch keyself).

3. If diverge parties = false:

• If epoch id 6= View1−i.epoch idself : Add epoch num1−i + 1, epoch num1−i + 2 to compromised epochs.

• Run the KDF simulator SKDF(Compute,Viewi.root input) and set the output as
Viewi.temp recv chain key.

4. Else (diverge parties = true):

• Set Viewi.temp recv chain key = KDF.Compute(Viewi.root key,Viewi.root input).

5. Erase Viewi.root input and Viewi.temp epoch idpartner.

6. Output (GetReceivingKey, i, epoch id,Viewi.temp recv chain key) to (FeKE, sid.eKE) and delete
Viewi.temp recv chain key.

ReportState: On receiving (ReportState, stateI , pidi, recv chain key∗, leakage) from (FeKE, sid.eKE) do:
//This method is run every time FeKE is informed that a party has been corrupted.
//recv chain key∗ = ⊥ if and only if epoch num1−i < epoch numi.

1. Add epoch numi, epoch numi + 1, epoch numi + 2, epoch numi + 3 to the list compromised epochs in stateI .

2. If View0,View1 already exist, output (ReportState, pidi,Viewi) to (FeKE, sid.eKE). Otherwise, continue to
create them.

3. Create two dictionaries View0,View1.
//This and following steps will run only if the parties weren’t compromised when ReportState was called.

4. From stateI get the variables epoch id0, epoch id1, epoch key0, epoch key1, old epoch id0, old epoch id1.

5. Set the following values in the view objects View0,View1:

(a) Set View0.epoch idself = epoch id0, View0.epoch keyself = epoch key0.

(b) Set View1.epoch idself = epoch id1, View1.epoch keyself = epoch key1.

(c) Let j ∈ {0, 1} be such that pidj started the latest sending epoch. (i.e epoch numj > epoch num1−j .)

i. Set Viewj .epoch idpartner = epoch id1−j .

ii. Set View1−j .epoch idpartner = old epoch idj .

iii. Let root input∗ = Exp(epoch idj , epoch key1−j).

iv. Run SKDF(Compromise, leakage, (root input∗, recv chain key∗)) to get an output root key.

v. Set View1−j .root key = root key.

vi. If recv chain key∗ 6= ⊥, set Viewj .sending chain key = recv chain key∗.

vii. Set Viewj .root key = KDF.Advance(root key, root input∗). //Only the receiver tells SKDF to
advance. Compute sender’s root key locally.

6. Output (ReportState, pidi,Viewi = {epoch keyself , epoch idself , epoch idpartner, root key}) to (FeKE, sid.eKE).

(The rest of this simulator is in Fig. 27 on Page 61)

Figure 26: Simulator SeKE for realizing FeKE
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Simulator SeKE continued...

(This simulator begins in Fig. 26 on Page 60)

GenEpochId: On receiving (GenEpochId, i, epoch id∗) from (FeKE, sid.eKE) do:

1. Set epoch numi += 2.

2. Set Viewi.epoch idpartner = epoch id∗.

3. Compute root input = Exp(epoch id∗,Viewi.epoch keyself).

4. If diverge parties = false:

(a) Run SKDF(Advance, root input). //The receiver will tell SKDF to advance its epoch.
//Next, we check if the states have diverged.

(b) Compute s = KDF.Advance(Viewi.root key, root input) and set Viewi.root key = s.

(c) If Viewi.root key 6= View1−i.root key then set diverge parties = true. //divergence occurs here

5. Else (diverge parties = true):

• Set Viewi.root key = KDF.Advance(Viewi.root key, root input).

6. If epoch numi /∈ compromised epochs and diverge parties 6= true):
//If the views are in sync and epoch numi + 1 is the first uncompromised epoch after corruption.
//Delete the view objects and generate a new epoch id.

(a) Sample (Viewi.epoch keyself ,Viewi.epoch idself)
$← keyGen().

(b) Let j ∈ {0, 1} be such that pidj started the latest sending epoch. (i.e epoch numj > epoch num1−j .)

(c) Set the following values in stateI :

i. epoch idj = Viewj .epoch idself and epoch keyj = Viewj .epoch keyself .

ii. epoch id1−j = View1−j .epoch idself and epoch key1−j = View1−j .epoch keyself .

iii. old epoch idj = View1−j .epoch idpartner and old epoch id1−j = ⊥.

(d) Delete View0,View1 and output (GenEpochId, stateI , i, epoch idi) to (FeKE, sid.eKE).

7. Otherwise (epoch numi ∈ compromised epochs or diverge parties = true):
//If the parties are still compromised or the views have diverged.
//Continue to update Viewi according to ΠeKE.

(a) Sample (Viewi.epoch keyself ,Viewi.epoch idself)
$← keyGen().

(b) Compute root input = Exp(epoch id∗,Viewi.epoch keyself).

(c) If diverge parties = false, run SKDF(Compute, root input) and set Viewi.sending chain key to be its output.

(d) Else (diverge parties = true), set Viewi.sending chain key = KDF.Compute(Viewi.root key, root input).

(e) Set Viewi.root key = KDF.Advance(Viewi.root key, root input).

(f) Erase root input.

(g) Output (GenEpochId, i,Viewi.epoch idself) to (FeKE, sid.eKE).

Figure 27: Simulator SeKE (continued)
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dummy parties. However, in the case of divergence, it must continue to run the dummy parties to
provide chain keys.

Analysis of SeKE.

To demonstrate the validity of SeKE, IeKE, One must prove that that the ideal functionality FeKE

with access to the simulator SeKE and internal code IeKE is indistinguishable from the real world.
This indistinguishability is proven via the following hybrid executions H0, . . . ,H5 that bridge the
gap between a real-world execution H0 (namely an execution with ΠeKE,FDIR,FLTM) and an ideal
execution H5 (namely an execution with FeKE,SeKE,FDIR,FLTM). The full hybrid argument follows
this brief description of each hybrid:

• Hybrid H0 (Ideal World): This is the ideal world. Here you can think of SeKE+IeKE+FeKE

all together as one combined unit with combined state.

• Hybrid H1: In this hybrid the main change is to the method of choosing chain keys when
both parties are uncompromised. In hybrid H0 these keys are chosen uniformly at random
from Kep while in this hybrid they’re chosen via a function F : G → Kep chosen uniformly
at random for the corresponding epoch. the inputs to the random function are the values
root input chosen uniformly at random from the group G(as in the CPRFG game). The
adversary’s view in this hybrid is identically distributed as in the previous hybrid.

• Hybrid H2: This hybrid again changes the method of choosing chain keys when both parties
are uncompromised. In this case, H2 transitions from using a version of the ideal CPRFG
game to using the protocol KDF . In particular, the KDF.Compute and KDF.Advance
methods of the KDF are now used to compute the chain keys and update the value s = sa||sc
respectively instead of choosing a new random function for each epoch. The root inputs and
initial root key are chosen identically to the previous hybrid. This hybrid is indistinguishable
to H1 since KDF is a secure CascadedPRF-PRNG.

• Hybrid H3: This hybrid again changes the method of choosing chain keys when both parties
are uncompromised. In particular, we replace the random choices of root inputs with the
Diffie-Hellman keys computed as specified in the protocol ΠeKE over a series of hybrids. Let
M = max epochnum, then the hybrids are denoted by H1

3 , . . . ,H
M
3 where Hk

3 is the hybrid
where the root inputs for the first k epochs are all using the specification of ΠeKE. The hybrid
HM

3 is computationally indistinguishable from H2 based on the DDH assumption on the
group G.

• Hybrid H4: In this hybrid the random choice of initial root key is replaced by the value
computed using FLTM. The indistinguishability of this hybrid is also by reduction to the
DDH assumption on group G since FLTM computes the value s = sa||sc using the the X3DH
protocol.

• Hybrid H5: (Real World) This hybrid is the real world. The only real difference between
this hybrid and the previous one is the fact that the parties run separate instances of KDF
instead of a joint instance. This hybrid is indistinguishable from the previous one because:
(1) KDF consists of deterministic functions,(2) the two parties run KDF on identical inputs
to the ones they use in H4.
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Note

In hybrids H0, H1, and H2 we display the lines of the simulator and functionality that are relevant to
the current hybrid. This note explains the colors used in the display boxes; black text existed in
the previous hybrid and does not change in the current hybrid; brown text was added in
the current hybrid; struck out grey text was erased in the current hybrid.

6.3.1 Hybrid H0 (Ideal World)

This is the combination of the ideal functionality FeKE, the internal code IeKE, and the simulator
SeKE all in the presence of FDIR,FLTM. Here you can consider SeKE+IeKE+FeKE all together as one
combined unit (with combined state) since this combined unit must be proven indistinguishable
from the real protocol ΠeKE. In other words, this hybrid is exactly the ideal world, we are simply
considering the code of SeKE and IeKE to be directly inlined into the functionality FeKE as shown
below:

SeKE (Hybrid 0)

At first activation: Send (FeKE, IeKE) to Flib.

FeKE (Hybrid 0)

ConfirmReceivingEpoch:

1. (e) Initialize stateI = ⊥, call Flib with input “eKE” to obtain internal adversarial code IeKE.

2. (b) If epoch id∗ 6= epoch id self1−i: Set diverge parties = true, run step 3 of Corrupt to set recv chain key∗

and leakage. Run SeKE(ReportState, stateI , i, recv chain key∗, leakage) and discard the output.
, and send (ReportState, stateI , i, recv chain key∗, leakage) to the adversary. On receiving a response,
continue.

3. If epoch numi + 2 ∈ compromised epochs or diverge parties: Run SeKE(GenEpochId, i, epoch id∗). Send
backdoor message (GenEpochId, i, epoch id∗) to the adversary. Else run I(stateI , GenEpochId, i, epoch id∗).

GetSendingKey:

4. If diverge parties = true, or epoch numi ∈ compromised epochs run SeKE(GetSendingKey, i), on producing
output (GetSendingKey, i,Ksend), set sending chain keyi = Ksend.
send backdoor message (GetSendingKey, i) to the adversary; on receiving backdoor message (GetSendingKey, i,Ksend)
from A set sending chain keyi = Ksend.

GetReceivingKey:

5. (a) If epoch id 6= epoch id self1−i, add epoch numi + 2 to compromised epochs.

(b) Run SeKE(GetReceivingKey, i, epoch id). On producing output
(GetReceivingKey, i, epoch id, recv chain key∗), output (GetReceivingKey, recv chain key∗).
Send (GetReceivingKey, i, epoch id) to the adversary.

(c) Upon receiving (GetReceivingKey, i, epoch id, recv chain key∗) fromA, output (GetReceivingKey, recv chain key∗).

Corrupt:

4. Run SeKE(ReportState, stateI , i, recv chain key∗, leakage). On producing the output (ReportState, i,Viewi)
output (Corrupt,Viewi).
Send (ReportState, stateI , i, recv chain key∗, leakage) to the adversary.

5. Upon receiving (ReportState, i,Viewi) from A, output (Corrupt,Viewi) to (ΠSGNL, sid, pidi).
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6.3.2 Hybrid H1

The changes made in this step are very important for setting up the next few hybrids. The two
main changes between this hybrid and the previous one are:

1. This hybrid chooses the initial root key completely at random in Step 1d of FeKE, ignoring
the output of FLTM.

2. When parties are uncompromised, this hybrid chooses root inputs randomly from G and runs
those though a function F : G → Kep (chosen uniformly at random for the corresponding
epoch.)

Note the exception in the choice of root input that happens for the very first sending chain key
chosen after the end of a compromise. The random choice of root input in this case corresponds
to the Recover interface in the ‘real execution’ of the CPRFG security game. The properties
provided to the root input via the DDH assumption on group G are only required for secure
recovery. In a later hybrid, this random choice of root input in the case of recovery is replaced
with the computation of a Diffie-Hellman key as in ΠeKE via a reduction to the DDH assumption
on group G.

Note that the view of the environment in this hybrid is identically distributed to its view in the
previous hybrid: The first change doesn’t impact the view of the adversary at all in this hybrid
since the initial root key isn’t used anywhere in the rest of this hybrid. Moreover, from the security
of the X3DH protocol, the initial root key computed by FLTM is indistinguishable from a randomly
chosen initial root key. This will be important in hybrid H3 where a CPRFG protocol KDF is
used to choose the chainkeys.

The edits to the code of SeKE + IeKE + FeKE are presented in detail below. In particular, the
only edits in this hybrid are to the code of FeKE. Recall that this functionality can now access the
internal states of IeKE and SeKE; the values epoch idi, epoch keyi referred to below belong to IeKE’s
state. These values are used to compute root input for every epoch except when recovering from
compromise.
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FeKE (Hybrid 1)

ConfirmReceivingEpoch:

1. (d) On receiving (ComputeSendingRootKey, k, ekpk) from FLTM, sample a value sa||sc
$← {0, 1}n. continue.

4. (c) Choose a new random function F : G→ Kep.
(d) Output (ConfirmReceivingEpoch, epoch id selfi) to (ΠSGNL, sid, pidi).

GetSendingKey:

3. If there is a tuple (epoch idi, epoch idi−1, chain key) in the list computed values, set sending chain keyi =
chain key. Else :

Sample sending chain keyi
$← Kep from the key distribution.

(a) If epoch numi − 1 /∈ compromised epochs compute root input = Exp(epoch id1−i, epoch keyi). Else

choose a random value root input
$← G and store the tuple (epoch numi, root input).

(b) Compute sending chain keyi = F (root input) and store the tuple
(epoch idi, epoch idi−1, sending chain keyi) in the list computed values.

GetReceivingKey:
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6. (a) If there is a tuple (epoch id, epoch idi, chain key) in the list computed values, set recv chain keyi =
chain key.

Sample recv chain keyi
$← Kep.

(b) Else:

i. Compute root input = Exp(epoch id, epoch keyi).

ii. Compute recv chain keyi = F (root input) and store the tuple (epoch id, epoch idi, recv chain keyi)
in the list computed values.

Note that the changes here closely map to the ideal interface in the CPRFG security game when
b = 1. (In the next hybrid, a secure CPRFG KDF will be used instead.)

Lemma 13 The view of the environment in H0 is identically distributed to that in hybrid H1.

Proof:As mentioned earlier, the first change doesn’t impact the view of the adversary at all in
this hybrid since the initial root key isn’t used anywhere in the rest of this hybrid. Additionally,
the outputs of a function F : G → Kep chosen uniformly at random are identically distribution to

chain key
$← Kep chosen uniformly at random, this remains true both when root input is sampled

randomly and when root input is known. 2

6.3.3 Hybrid H2 (This hybrid uses a CPRFG protocol KDF to choose the output
keys.)

This hybrid transitions from using a version of the ideal CPRFG game + SKDF to using the actual
protocol. In particular, the KDF.Compute and KDF.Advance methods of the KDF are now
used to compute the chain keys and update the value s = sa||sc for each party instead functions
chosen uniformly at random for each epoch.

The detailed edits to the version of SeKE + IeKE +FeKE from the previous hybrid are presented
below. The edits in the first box pertain to the same lines of code in FeKE as were edited in the
previous hybrid. Following that are the edits to SeKE which replace the use of SKDF with the use
of the protocol KDF . As before, the values epoch idi, epoch keyi for i ∈ {0, 1} belong to IeKE’s
state. These values are used to compute root input for every epoch except for during recovery from
compromise.

FeKE (Hybrid 2)

ConfirmReceivingEpoch:

1. (d) On receiving (ComputeSendingRootKey, k, ekpk) from FLTM, sample a value sa||sc
$← {0, 1}n.

4. (c) If epoch numi−2 /∈ compromised epochs, compute root input = Exp(epoch id1−i, epoch keyi). Else,
get root input from the tuple (epoch numi, root input).
Choose a new random function F : G→ Kep.

(d) Run KDF.Advance(sa, root input) = s′, and change state s = s′.

GetSendingKey:

3. If there is a tuple (epoch idi, epoch idi−1, chain key) in the list computed values, set sending chain keyi =
chain key. Else:

(a) If epoch numi − 1 /∈ compromised epochs compute root input = Exp(epoch id1−i, epoch keyi). Else

choose a random value root input
$← G and store the tuple (epoch numi, root input).

(b) Compute sending chain keyi = F (root input) and s
Run KDF.Compute(sc, root input) = (s′c, sending chain keyi) and change state sc = s′c. Store the
tuple (epoch idi, epoch idi−1, sending chain keyi) in the list computed values.
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GetReceivingKey:

6. (a) If there is a tuple (epoch id, epoch idi, chain key) in the list computed values, set recv chain keyi =
chain key.

(b) Else:

i. Compute root input = Exp(epoch id, epoch keyi).

ii. Compute recv chain keyi = F (root input) and s
Run KDF.Compute(sc, root input) = (s′c, recv chain keyi) and update the value sc = s′c.
Store the tuple (epoch id, epoch idi, recv chain keyi) in the list computed values.

SeKE (Hybrid 2)

GetReceivingKey:

3. If diverge parties = false:

• Run the KDF simulator SKDF(Compute,Viewi.root input). Set the output as Viewi.temp recv chain key.

4. Else (diverge parties = true):

• Set Viewi.temp recv chain key = KDF.Compute(Viewi.root key,Viewi.root input).

ReportState:

5. (c) iv. Run SKDF(Compromise, leakage, (root input∗, recv chain key∗)) to get an output root key.

v. Set View1−j .root key = sa||scroot key.

GenEpochId:

4. (a) Run SKDF(Advance, root input).

6. (c) Set sa||sc = View1−j .root key.

(d) Delete the objects View0,View1 and output (GenEpochId, stateI , i, epoch idi) to (FeKE, sid.eKE).

7. (c) Let sa||sc = Viewi.root key and compute KDF.Compute(sc,Viewi.root input) = s′c, k.
If diverge parties = false, run SKDF(Compute, root input) and set Viewi.sending chain key to be its
output.

(d) Update Viewi.sending chain key = k and Viewi.root key = sa||s′c.
Else (diverge parties = true), set Viewi.sending chain key = KDF.Compute(Viewi.root key, root input).

This hybrid is indistinguishable from the previous one because our KDF is a secure CPRFG. This
is proved via a reduction to the security of the KDF protocol. An environment that can distinguish
this hybrid from the previous one can be used to build an adversary that wins the CPRFG security
game from Figure 22.

Lemma 14 Assume that KDF is a CPRFG. Then the view of the environment in hybrid H1 is
computationally indistinguishable from that in hybrid H2.

A: FeKE (proof of Lemma 14)

ConfirmReceivingEpoch:

1. (d) On receiving (ComputeSendingRootKey, k, ekpk) from FLTM, initialise OCPRFG.

sample a value sa||sc
$← {0, 1}n.

4. (c) If epoch numi−2 /∈ compromised epochs, compute root input = Exp(epoch id1−i, epoch keyi). Else,
get root input from the tuple (epoch numi, root input).

(d) Send (Advance, root input) to OCPRFG.
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Run KDF.Advance(sa, root input) = s′, and change state s = s′.
//If epoch numi ∈ compromised epochs, recovery just occurred so the epoch was advanced by the
other party calling the GetSendingKey method.

GetSendingKey:

3. If there is a tuple (epoch idi, epoch idi−1, chain key) in the list computed values, set sending chain keyi =
chain key. Else:

(a) If epoch numi − 1 /∈ compromised epochs compute root input = Exp(epoch id1−i, epoch keyi). and
send (Compute, root input) to the oracle OCPRFG. Else send (Recover) to the oracle OCPRFG.

choose a random value root input
$← G and store the tuple (epoch numi, root input).

(b) Run KDF.Compute(sc, root input) = (s′c, sending chain keyi) and change state sc = s′c. S
On getting a response sending chain keyi, store the tuple (epoch idi, epoch idi−1, sending chain keyi)
in the list computed values.

GetReceivingKey:

6. (a) If there is a tuple (epoch id, epoch idi, chain key) in the list computed values, set recv chain keyi =
chain key.

(b) Else:

i. Compute root input = Exp(epoch id, epoch keyi).

ii. If epoch idi /∈ compromised epochs, then send (Compute, root input) to the oracle OCPRFG for the
CPRFG security game and get an output chain key. Else, runKDF.Compute(sc, root input) =
(s′c, recv chain keyi) and update the value sc = s′c. Store the tuple
(epoch id, epoch idi, recv chain keyi) in the list computed values.

A: SeKE (proof of Lemma 14)

GetReceivingKey:

3. If diverge parties = false:

• Send (Compute,Viewi.root input) toOCPRFG Run the KDF simulator SKDF(Compute,Viewi.root input)
and set the output as Viewi.temp recv chain key.

4. Else (diverge parties = true):

• set sa||sc = Viewi.root key and compute KDF.Compute(sc,Viewi.root input) = s′c, k.
Set Viewi.temp recv chain key = KDF.Compute(Viewi.root key,Viewi.root input).

• Update Viewi.temp recv chain key = k and Viewi.root key = sa||s′c.

ReportState:

5. (c) iv. Send (Compromise, root input∗) to OCPRFG and get back a state s = sa||sc.
Run SKDF(Compromise, leakage, (root input∗, recv chain key∗)) to get an output root key.

v. Set View1−j .root key = sa||scroot key.

GenEpochId:

4. (a) Send (Advance, root input) to OCPRFG.
Run SKDF(Advance, root input).

6. (c) Set sa||sc = View1−j .root key.

(d) Delete the objects View0,View1 and output (GenEpochId, stateI , i, epoch idi) to (FeKE, sid.eKE).

7. (c) If diverge parties = false, send (Compute, root input) to OCPRFG

run SKDF(Compute, root input) and set Viewi.sending chain key to be its output.

(d) Else, set sa||sc = Viewi.root key and compute KDF.Compute(sc,Viewi.root input) = s′c, k.
set Viewi.sending chain key = KDF.Compute(Viewi.root key, root input).

(e) Update Viewi.sending chain key = k and Viewi.root key = sa||s′c.
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Proof: Let D be an environment that distinguishes between hybrids H1 and H2 with advantage
greater than negligible in λ, let the oracle OCPRFG be as in Definition 11 (an oracle that runs
either the real or the ideal version of the CPRFG game from Figure 22 on Page 54). The oracle D
will be used to construct an adversary A (described below) that can distinguish whether the oracle
OCPRFG is running the real game or the ideal game with advantage greater than negligible in λ. The
adversary A maps messages from the distinguishing environment D into messages for the CPRFG
game and vice versa. The environment D’s view in its interaction with the adversary A exactly
matches its view in either hybrid H1 or hybrid H2 depending on whether OCPRFG represents the
‘ideal game’ or the ‘real game’ respectively. Therefore, to acquire the exact same distinguishing
probability as D, A mimics the distinguishing decisions of D exactly. That is, if at any point D
stops and produces an output, A will produce the same output.

The adversary A responds to requests from the distinguishing environment D by running the
instructions for FeKE + SeKE + IeKE from H2 with some minor changes where it queries OCPRFG to
choose the sending and receiving chain keys that it outputs. The tricky part of replacing the choice
of chain keys from H2 with calls to OCPRFG is the decision of when to send an Advance query to
OCPRFG.

Most of the time, the Advance queries (in A’s code) ensure that the epoch of OCPRFG is consistent
with the epoch of the party that is behind, i.e the party that is not the latest sender. This allows
A to respond to GetReceivingKey requests for this party by making Compute queries to OCPRFG.
However, when recovery from compromise occurs, A must send a Recover query to OCPRFG to get
the parties’ new sending chain key, this necessarily advances the epoch of OCPRFG to be consistent
with the latest sender. However due to the preceeding corruption, A has enough information in
these situations to respond directly to GetReceivingKey requests for the party that is behind.

When the oracle OCPRFG corresponds to the ‘real game,’ A is simply executing hybrid H2.
Correspondingly, when the oracle OCPRFG corresponds to the ‘ideal game,’ A is simply executing
hybrid H1. Since KDF is a CPRFG, there is a simulator SKDF for which the ‘real execution’
and ‘ideal execution’ of the CPRFG game are computationally indistinguishable. For this same
simulator then, hybrids H1 and H2 are therefore computationally indistinguishable. 2

6.3.4 Hybrid H3

This hybrid again changes the method of choosing chain keys when both parties are uncompromised.
In particular, we replace the random choices of root inputs with the Diffie-Hellman keys computed as
specified in the protocol ΠeKE over a series of hybrids. Let G, q, g be fixed, let M = max epochnum,
then the hybrids are denoted by H1

3 , . . . ,H
M
3 where Hk

3 is the hybrid where the root inputs for the
first k epochs are DDH values computed using the specification of ΠeKE. All remaining root inputs
are randomly sampled as in hybrid H2. The hybrid HM

3 is computationally indistinguishable from
H2 based on the DDH assumption on the group G.

Lemma 15 Assume that the DDH assumption holds for group G. Then the view of the environment
in hybrid H2 is computationally indistinguishable from that of the last hybrid in series H3.

Lemma 15 will be proven via reduction to the following distinguishing game: The adversary A
is given a challenge triple G, q, g, (gx, gy, gz). If b = 0 then z

$← |G|, if b = 1 then z = x · y. A
must distinguish whether b = 0 or b = 1. Because the DDH assumption holds for group G, no PPT
adversary A can distinguish whether b = 0 or b = 1 with advantage greater than negligible in the
security parameter λ.
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Say that there exists a distinguishing environment D that can distinguish between H2 and H3

with non-negligible probability. Then D can be used by an adversary A to win the DDH distin-
guishing game with non-negligible advantage. The adversary A is constructed differently on a case
by case basis but in both cases the adversary A will respond to requests from D by running the
instructions for FeKE + SeKE + IeKE from H3 up to epoch k − 1 and from H2 starting epoch k + 1
for some value k. Also in both cases A will choose the root input for epoch k to be gz from the
challenge triple (gx, gy, gz), and the epoch ids for epochs k − 1 and k to be gx and gy respectively.
(Since A not doesn’t have the secret exponent for the epoch gx, it chooses the root input for epoch
k − 1 to be (gx)a where a is the known secret exponent for epoch k − 2.)

Instructions for A in both cases:

1. If there is some environment D that successfully distinguishes between hybrids H2 and H3

with non-negligible probability in the parameter λ, then it can also distinguish neighboring
hybrids Hk−1

3 and Hk
3 for at least one k. First, find such a k.

2. When the parties are compromised, simply follow the code of hybrid H2 (which is the same
as hybrid HM

3 .)

3. When the parties are not compromised follow the instructions below to choose root inputs
for all epochs and to choose epoch ids for epochs k − 1 and k. All the rest of the code of
hybrids H2 and HM

3 is the same, so follow it exactly.

• Up to epoch k, choose root inputs to be real Diffie-Hellman keys.

• During epoch k, choose root input gz from the challenge triple (gx, gy, gz). Correspond-
ingly, choose epoch ids gx, gy for epochs k− 1 and k respectively. (choose the root input
for epoch k − 1 to be (gx)a where a is the known secret exponent for epoch k − 2)

• For each epoch starting k + 1, randomly sample a fresh root input h
$← G.

Case 1: The probability that epoch k is compromised by D is higher in one of the two hybrids
Hk−1

3 and Hk
3 by an amount that is non-negligible in λ.

If epoch k is compromised by D significantly more often in one of the two hybrids, then the
adversary can win the DDH distinguishing game by choosing its outputs as below:

3 If D takes any actions that cause epoch k to be compromised, stop and output 1, other-
wise output a randomly chosen bit at the end of the execution. (The actions that could
cause epoch k to be compromised include: 1) corrupting the party in epochs epoch num∗ +
1, epoch num∗, epoch num∗ − 1, epoch num∗ − 2, epoch num∗ − 3, 2) diverging the parties 3)
sending bogus epoch ids to the receiver of epoch k−2 or k−1 while the epoch is compromised.)

Pr[A(gx, gy, gxy) = 1]− Pr[A(gx, gy, gz) = 1]

= Pr[epoch k compromised in Hk−1
3 ]− Pr[epoch k compromised in Hk

3 ]

Case 2: Now, if the probability that epoch k is compromised D in hybrid Hk−1
3 is within a

negligible distance of the probability that epoch k is compromised in hybrid Hk
3 , then this can be

used by A to win the DDH distinguishing game by choosing its outputs as follows:
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3 IfD takes any actions that cause epoch k to be compromised, then stop and output a randomly
chosen bit, otherwise wait till D stops, and then produce the same output that D produces.

Let the event that epoch k is compromised be cprm and let the event that epoch k is not
compromised be ¬ cprm. Note that when epoch k is compromised then the hybrids Hk−1

3 and Hk
3

are identical. So, an environment D that corrupts epoch k roughly the same amount in hybrids
Hk

3 and Hk+1
3 must have that Pr[D(Hk+1

3 ) = 1 | cprm]− Pr
[
D(Hk

3 ) = 1 | cprm
]

= negl(λ) for some
negligible function negl(·). Therefore,

Pr[A(gx, gy, gxy) = 1]− Pr[A(gx, gy, gz) = 1]

= Pr[D(Hk+1
3 ) = 1 | ¬ cprm]− Pr[D(Hk

3 ) = 1 | ¬ cprm]

= Pr[D(Hk+1
3 ) = 1]− Pr[D(Hk

3 ) = 1]− negl(λ)

Given that epoch k is not compromised, the environment’s view is exactly as in Hk−1
3 when b = 0

and Hk
3 when b = 1. So if D distinguishes between hk−1

3 and Hk
3 with non-negligible probability

then so does A.

6.3.5 Hybrid H4

In this hybrid the randomly chosen initial root keys are replaced by root keys computed using
FDIR, FLTM as in ΠeKE. While the functionality FeKE automatically provides a binding between
party id’s and epoch keys up to the first compromise, the protocol ΠeKE realizes this binding
via access to FLTM,FDIR. Also, this initial root key is indistinguishable from a random choice
because (FLTM, pid) is not corruptible and it hides all Diffie-Hellman exponents belonging to pid.
In summary, this hybrid is indistinguishable from the previous one because:

• FLTM hides the exponents for all the group elements it chooses.

• The DDH property applies to the group that FLTM chooses elements from.

• FDIR reliably provide parties with each others’ public diffie hellman halves ik, rk.

• FDIR reliably provides pairs of parties with the same public diffie hellman half ok.

• The provided ok is unique to a pair of parties.

Lemma 16 Assume that the DDH assumption holds for group G. Then the view of the environment
in hybrid H4 is computationally indistinguishable from that in H3.

6.3.6 Hybrid H5 (Real World)

Finally, we can now separate the epoch key exchange instances that the two parties interact with by
splitting the functionality into two instances. In the hybrids before this, if either party is corrupted
or confirms an incorrect epoch id then control is handed over to the simulator who runs separate
instances of the protocol for each party anyway. So the interesting case is when the parties’ views
of the epoch id’s so far agree. In this case, agreement for all previous hybrids is by fiat. Here,
agreement holds because of the consistency of KDF.Compute and because KDF.Advance is a
deterministic function of sa, r.

Lemma 17 The view of the environment in hybrid H5 is identically distributed to that in H4.

2
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7 Unidirectional Forward Secure Authenticated Channels: Real-
ising Ffs aead

In this section, we prove that protocol Πfs aead (which uses ideal functionalities FmKE and Faead as
subroutines) UC-realizes the functionality Ffs aead (which is described in section Section 5.2).

The protocol Πfs aead and the proof that it realises Ffs aead are presented in Section 7.3. Prior to
that, the component functionalities FmKE and Faead are defined in Sections 7.1 and 7.2 respectively.

7.1 The Message Key Exchange Functionality FmKE

In this section, we describe the ideal message key exchange functionality FmKE (as described pre-
viously in Section 4). This functionality, which is shown in full detail in Figure 28 on page 73,
provides message key management for a single epoch, mainly by keeping track of which message
keys have been generated and retrieved and which message keys have been exposed during a state
compromise. In the context of Πfs aead, FmKE provides key seed’s to Faead instances for each message
within the epoch that FmKE represents. For each msg num, the functionality allows at most one
(RetrieveKey, pid) request for each party pid. If a second request is made then it simply ends the
activation. That is the functionality will provide the key seed at most once for the encryption and
for the decryption of each mesage in the epoch. The functionality also closes epochs by allowing
the Πfs aead instance for each party to make a request (StopKeys, N). Once such a request is made
by a party, the functionality will disallow any RetrieveKey requests made on behalf of that party
for msg num > N .

7.2 The Single-Message Authenticated Encryption Functionality Faead

In this section, we define an single-message authenticated encryption functionality Faead, with the
full details shown in Figure 29 on page 74). Each Faead instance handles the encryption, decryption,
and authentication of a particular message for a particular epoch and hands the ciphertext or
message back to Πfs aead.

Encryption: On receiving an encryption request, while not corrupted, Faead first consults the
message key exchange functionality FmKE to decide whether encryption of this message is possible
for the party pid. It then runs adversarial code Iaead with the message length |m| to choose
the corresponding ciphertext c. It then simply stores the message and adversarially-generated
ciphertext in a table. While corrupted, the functionality instead provides the message m to the
adversary and allows it to choose a ciphertext directly with this knowledge.
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FmKE

This functionality has a session id sid.mKE that takes the following format: sid.mKE = (“mKE”, sid.fs). Where
sid.fs = (“fs aead”, sid, epoch id). The local session ID is parsed as sid = (sid′, pid0, pid1). Inputs arriving from
machines whose identity is neither pid0 nor pid1 are ignored. //For notational simplicity we assume some fixed
interpretation of pid0 and pid1 as complete identities of the two calling machines.

This functionality is parametrized by a seed length λ

RetrieveKey: On receiving (RetrieveKey, pid) from (Πaead, sid.aead), where sid.aead = (“aead”, sid.fs,msg num),
or from Faead:

1. If this is the first activation,

• Parse sid to recover the two party ids (pid0, pid1).

• Initialize dictionary key dict and variables IsCorrupt? = false, msg num0,msg num1 = 0.
//If this epoch is corrupted then this isn’t the first activation because there was already a (Corrupt)
request.
//msg numi is the largest message number whose key has abeen successfully retrieved by pidi.

2. If there is record (Retrieved, i,msg num) or a record (StopKeys, i, N) for N < msg num, end the activation.

3. If IsCorrupt? = false:

• If msg num ∈ key dict.keys, set k = key dict[msg num].

• Else (msg num /∈ key dict.keys), set k
$← {0, 1}λ.

4. Else (IsCorrupt? = true):

• Send (RetrieveKey, pid,msg num) to the the adversary.

• Upon receiving (RetrieveKey, pid, k) from the adversary, continue.

5. Store key dict[msg num] = k.

6. If msg num > msg numi, set msg numi = msg num. //msg numi is the largest message number whose key
has abeen successfully retrieved by pidi.

7. Record (Retrieved, i,msg num) and output (RetrieveKey, pid, k) to (Πaead, sid.aead).

StopKeys: On receiving (StopKeys, N) from (Πfs aead, sid.fs = (“fs aead”, sid, epoch id, b), pid),

• Run steps 2-6 of RetrieveKey for all msg num such that msg numi < msg num ≤ N .

• Record (StopKeys, i, N) and output (StopKeys, Success).

Corruption: On receiving (Corrupt) from (Πfs aead, sid.fs = (“fs aead”, sid, epoch id, b), pid):

1. Let i be such that pid = pidi.

2. Set IsCorrupt? = true, create empty lists keys in transit, pending msgs.

3. For all msg num ∈ key dict.keys, if there is no record (Retrieved, i,msg num) then append
(msg num, key dict[msg num]) to keys in transit and append msg num to pending msgs.

4. If there is a record (StopKeys, i, N) set stop request = (StopKeys, i, N), Else set stop request = ⊥.

5. Send (ReportState, i, keys in transit,msg num0,msg num1, stop request) to A.

6. On receiving a response (ReportState, i, S) from A, output (Corrupt, S) to (Πfs aead, sid.fs, pidi).

Figure 28: The Message Key Exchange Functionality FmKE

73



Faead

This functionality has a session id sid.aead = (“aead′′, sid.fs,msg num) where sid.fs = (“fs aead”, sid =
(sid′, pid0, pid1), epoch id). Inputs arriving from machines whose identity is neither pid0 nor pid1 are ignored. //For
notational simplicity we assume some fixed interpretation of pid0 and pid1 as complete identities of the two calling
machines.

Encryption: On receiving (Encrypt,m,N) from (Πfs aead, sid.fs, pid):

1. Let i be such that pid = pidi.

2. If this is not the first encryption request end the activation.

3. If IsCorrupt? = true, Send a backdoor message (stateI , Encrypt, pid,m,N) to A.

4. Else (IsCorrupt? = false):

• Provide input (RetrieveKey, pid) to (FmKE, sid.mKE, pid).

• Upon receiving output (RetrieveKey, pid, k) from (FmKE, sid.mKE, pid), if k =⊥ then end the activation.
//The key is not available.

• Initialize stateI = ⊥, call Flib to obtain the internal code I, and run I(stateI , Encrypt, pid, |m|, N).

5. Upon obtaining (stateI , Encrypt, pid, c) from A or I, record the tuple (c,m,N, 1), record the sender S = i, and
set ready2decrypt = true.

6. Output (Encrypt, c) to (Πfs aead, sid.fs, pid).

Decryption: On receiving (Decrypt, c, N) from (Πfs aead, sid.fs, pid):

1. If IsCorrupt? = false:

• If there isn’t a stored key k, provide input (RetrieveKey, pid) to (FmKE, sid.mKE, pid). Upon obtaining
a response (RetrieveKey, pid, k) from FmKE: Store k.

• If there hasn’t been a successful encryption request or pid 6= pidS−i, output (Decrypt, Fail) to
(Πfs aead, sid.fs, pid).

2. If k = ⊥, if ready2decrypt = false, or if there is a record (c,N, 0), output (Decrypt, Fail) to (Πfs aead, sid.fs, pid).
//Failure of decryption can occur for an honest receiver so we need an explicit failure notification.

3. If there is a record (c,m,N, 1), note ready2decrypt = false and output (Decrypt,m).

4. If IsCorrupt? = false:

• Run I(stateI , Authenticate, pid, c, N) to obtain the output (stateI , v).

• If v = ⊥ then record (c,N, 0), and output (Decrypt, Fail). Else, note ready2decrypt = false, and output
(Decrypt,m).

5. Else (IsCorrupt? = true):

• Send backdoor message (stateI , Inject, pid, c, N) to A.

• Upon receiving response (stateI , Inject, pid, c, N, v) from A: If v = ⊥ then record (c,N, 0), and output
(Decrypt, Fail). Else output (Decrypt, v) to (Πfs aead, sid.fs, pid).

Corruption: On receiving (Corrupt) from (Πfs aead, sid.fs, pid):

1. Provide input (RetrieveKey, pid) to (FmKE, sid.mKE, pid).

2. Upon obtaining a response (RetrieveKey, pid, k) from FmKE, store k.

3. If a message m was successfully decrypted then set m∗ = m, otherwise, set m∗ = ⊥.

4. Set IsCorrupt? to true, and send (ReportState, stateI , pid, k,m
∗) to A.

5. Upon receiving a response (ReportState, pid, S) from A, send (Corrupt, S) to (Πfs aead, sid.fs).

Figure 29: The Authenticated Encryption with Associated Data Functionality, Faead
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Πfs aead

This protocol is active during a single epoch and has session id sid.fs that takes the following format: sid.fs =
(“fs aead”, sid, epoch id).

Encrypt: On receiving input (Encrypt,m,N) from (ΠSGNL, sid, pid) do:

1. Check that sid matches the one in the local session ID, and that pid matches the local party id, else abort.

2. If this is the first activation then initialize curr msg num = 0.

3. Increment curr msg num+ = 1.

4. Send (Encrypt,m,N) to (Faead, sid.aead = (“aead”, sid.fs,msg num)) and delete m.

5. Upon receiving (Encrypt, c), output (Encrypt, c) to (ΠSGNL, sid, pid).

Decrypt: On receiving (Decrypt, c,msg num, N) from (ΠSGNL, sid, pid) do:

1. Check that sid matches the one in the local session ID, and that pid matches the local party id, else abort.

2. If this is the first activation then initialize curr msg num = 0, pending msgs = [].

3. Send (Decrypt, c, N) to (Faead, sid.aead = (“aead”, sid.fs,msg num)).

4. Upon receiving (Decrypt, v), if v = Fail then output (Decrypt, Fail) to (ΠSGNL, sid, pid).

5. Otherwise (v 6= Fail):

• While curr msg num < msg num:

– Increment curr msg num+ = 1.

– Add curr msg num to pending msgs.

• Remove msg num from pending msgs and output (Decrypt, v) to (ΠSGNL, sid, pid).

StopEncrypting: On receiving (StopEncrypting) from (ΠSGNL, sid, pid) do:

1. Check that sid matches the one in the local session ID, and that pid matches the local party id, else abort.

2. Send (StopKeys,msg num) to (FmKE, sid.mKE).

3. On receiving (StopKeys, Success), output (StopEncrypting, Success) to (ΠSGNL, sid, pid).

StopDecrypting: On receiving (StopDecrypting,msg num∗) from (ΠSGNL, sid, pid) do:

1. Check that sid matches the one in the local session ID, and that pid matches the local party id, else abort.

2. Send (StopKeys,msg num∗) to (FmKE, sid.mKE).

3. On receiving (StopKeys, Success):

• While curr msg num < msg num∗:

– Increment curr msg num+ = 1.

– Add curr msg num to pending msgs.

• Output (StopDecrypting, Success) to (ΠSGNL, sid, pid).

Corruption: On receiving (Corrupt) from (ΠSGNL, sid, pid):
//Note that the Corrupt interface is not part of the “real” protocol; it is only included for UC-modelling purposes.

1. Check that sid matches the one in the local session ID, and that pid matches the local party id, else abort.

2. Initialize a state object S and add curr msg num, pending msgs to it.

3. Send (Corrupt) to (FmKE, sid.mKE = (“mKE′′, sid.fs)).

4. On receiving (Corrupt, SmKE), add it to S and do the following.

5. For each record msg num ∈ pending msgs:

• Send (Corrupt, pidi) to (Faead, sid.aead = (“aead′′, sid.fs,msg num))

• On receiving a response (Corrupt, pidi, Smsg num), add Smsg num to S.

6. Output (Corrupt, S) to (ΠSGNL, sid, pid).

Figure 30: The Forward-Secure Encryption Πfs aead
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Ifsaead

Encrypt: On receiving (stateI , Encrypt, pid, N, |m|) from (Ffs aead, sid.fs) do:

1. Let i be such that pid = pidi.

2. If stateI = ⊥:

(a) Initialize objects View0, View1, and dictionary records.

(b) Set View0.curr msg num = View1.curr msg num = 0.

(c) Set View0.pending msgs = View1.pending msgs = []

3. Else, parse the objects View0, View1, and the dictionary records from stateI .

4. Set msg num = Viewi.curr msg num + 1 and update Viewi.curr msg num + = 1.

5. If msg num stateaead exists in stateI then parse it otherwise initialize msg num stateaead = ⊥.

6. Run Iaead(msg num stateaead, Encrypt, pid, |m|, N).

7. Upon receiving output (msg num stateaead, Encrypt, pid, c), store (` = |m|, pid, ready2decrypt = true), (c,N, 1)
in records[msg num].

8. Update or store for the first time the values View0, View1, records, msg num stateaead, in stateI

9. Output (stateI , Encrypt, pid,msg num, N, c) to (Ffs aead, sid.fs).

Authenticate: On receiving (stateI , Authenticate, pid, c,msg num, N) from (Ffs aead, sid.fs) do:

1. Let i be such that pid = pidi.

2. Parse the dictionary records from stateI :

(a) If records[msg num] = ⊥ then output (stateI , Authenticate, pid, c,msg num, N,⊥) to (Ffs aead, sid.fs).

(b) Else get (`, pid, ready2decrypt) and any record of the form (c,N, v) from records[msg num].

3. If ready2decrypt = false in the retrieved record, output (stateI , Authenticate, pid, c,msg num, N,⊥) to
(Ffs aead, sid.fs).

4. If there is no record (c, n, v):

• Run Iaead(msg num stateaead, Authenticate, pid, c, N). On obtaining the output
(msg num stateaead, Authenticate, pid, c, N, v), append (c,N, v) to records[msg num] and update
records in stateI .

5. If v = 0 then output (stateI , Authenticate, pid, c,msg num, N,⊥) to (Ffs aead, sid.fs). Else continue.

6. While Viewi.curr msg num ≤ msg num do: //we only get to this step if decryption succeeds.

• Increment Viewi.curr msg num+ = 1.

• Append Viewi.curr msg num to Viewi.pending msgs.

7. Output (stateI , Authenticate, pid, c,msg num, N, 1) to (Ffs aead, sid.fs).

Figure 31: Internal Adversary, Ifsaead

Decryption: Once a successful decryption occurs, an instance of the functionality Faead will
never try to decrypt a ciphertext again. While not corrupted, the encryption functionality Faead

will only ever output the originally encrypted message m or a failure notification. On receiving
a decryption request, if the instance is not corrupted, then the functionality first consults with
the message key exchange functionality FmKE to decide whether decryption of this message is
possible for the party pid at all, if not then it outputs a failure notification. (If the instance has
been corrupted already then this key has already been retrieved and sent to A by the functionality.)
Otherwise, if the ciphertext provided matches the ciphertext c chosen at the time of corruption then
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Faead always outputs m in both the honest and corrupted case. In general Faead keeps consistency
with its prior outputs, always outputting a failure notification for ciphertexts it previously refused
to decrypt. If the ciphertext does not match the one produced at the time of encryption, and if
decryption of this ciphertext has never been attempted before, then based on whether corruption
has occurred, the functionality will either run the adversarial code to decide if the ciphertext
authenticates or it will allow the adversary to decrypt the ciphertext to any value of its choosing
(up to consistency of outputs.).

7.3 Protocol Πfs aead

As outlined in Section 4, protocol Πfs aead makes straightforward use of multiple instances of Faead,
along with FmKE. It is presented in Figure 30 on page 75. In this subsection we prove Theorem 4.

Theorem 4 Protocol Πfs aead (perfectly) UC-realizes the ideal functionality Ffs aead in the presence
of Flib.

The proof of Theorem 4 takes up the rest of this section. For legibility, we first provide a
high-level overview of the proof, and then we provide the details in the two cases where the parties
are and aren’t corrupted.
Proof:To prove Theorem 4, we first construct the simulator Sfsaead and the internal code Ifsaead.
Then, we argue that the environment Env has an identically distributed view in its interaction with
Πfs aead + FmKE + Faead as it does in its interaction with Ffs aead + Sfsaead + Ifsaead.

The objective of Ifsaead is to use Iaead to provide ciphertexts that match the distribution of
ciphertexts in the real world. This is necessary because we do not restrict the ciphertexts provided
by Ffs aead to any particular distribution or format. (The detailed specification of this internal code
can be found in Figure 31 on page 76.)

The objective of the ideal process adversary Sfsaead is to simulate the interactions that would
take place between the environment and the protocol Πfs aead once a party has been corrupted. Since
Πfs aead’s security properties derive entirely from its component functionalities FmKE and Faead, the
view of an environment Env will be identically distributed in the real and ideal scenarios. When
the simulator Sfsaead receives messages from Ffs aead in the ideal world, it takes the actions specified
in the pseudocode in Figure 32 on page 78.

Observe that the APIs of Ffs aead and Πfs aead are identical: they each have 5 methods. In the
remainder of the proof, we compare the actions taken by Πfs aead in the real world with the actions
taken by Ffs aead together with Ifsaead and Sfsaead in the ideal world. As in the proof of Theorem 2,
this proof holds by induction over the actions taken by the internal adversarial code Ifsaead and
the simulator Sfsaead. We show that each action leaves the distribution in the real and ideal worlds
the same: that is, each action of Sfsaead and Ifsaead maintains the property that the view of the
environment Env is identical when interacting with either the ideal functionality Ffs aead or the real
protocol Πfs aead.

Without loss of generality, we restrict our attention to a dummy adversary A and a deterministic
environment Env. As a consequence, the entire execution is deterministic, since the message keys
themselves are never used for encryption in Faead.
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Sfsaead

At first activation: Send (Ffs aead, I) to Flib.

ReportState: On receiving (stateI , ReportState, pid, leakage) for pidi ∈ {pid0, pid1} from (Ffs aead, sid.fs):

1. Initialize keys in transit = [ ] and a simulated state object statepid.

2. If IsCorrupt? = true, skip to step 4. Else, set IsCorrupt? = true and continue.

3. If stateI = ⊥:

(a) Initialize objects View0, View1, and dictionary records.

(b) Set View0.curr msg num = View1.curr msg num = 0.

(c) Set View0.pending msgs = View1.pending msgs = [ ]

4. Else, parse the objects View0, View1, and the dictionary records from stateI and store them. Also parse and
store any records msg num stateaead.

5. Add Viewi.curr msg num and Viewi.pending msgs to statepid.

6. For each h = (epoch id,msg num, N), c,m ∈ leakage:

(a) Pick a new key kmsg num
$← {0, 1}λ (where λ is the key length that parametrizes FmKE).

(b) Append the tuple (msg num, kmsg num) to keys in transit.

(c) If msg num stateaead doesn’t exist, initialize msg num stateaead = ⊥.

(d) Send (msg num stateaead, ReportState, pid, kmsg num,m) to A on behalf of (Faead, sid.aead =
(“aead”, sid.fs,msg num)).

(e) On receiving a response (ReportState, pid, S), add S to statepid.

7. If there is a record (StopKeys, i, N) set stop request = (StopKeys, i, N), Else set stop request = ⊥.

8. Send (ReportState, i, keys in transit,View0.curr msg num,View1.curr msg num, stop request). to A on behalf
of (FmKE, sid.mKE = (“mKE”, sid.fs))

9. On receiving a response (ReportState, i, statemKE) from A, add it to the state statepid.

10. Output (stateI , ReportState, statepid) to (Ffs aead, sid.fs).

Encrypt: On receiving (stateI , Encrypt, pid, N,m) from (Ffs aead, sid.fs) do:

1. Let i be such that pid = pidi.

2. Set msg num = Viewi.curr msg num + 1 and update Viewi.curr msg num + = 1.

3. If msg num stateaead exists in stateI then parse it otherwise initialize msg num stateaead = ⊥.

4. Send a backdoor message (RetrieveKey, pid,msg num) to A on behalf of (FmKE, sid.mKE = (“mKE”, sid.fs))
and await a response (RetrieveKey, pid, k). On receiving the response, continue.

5. Send a backdoor message (msg num stateaead, ReportState, pid, k) to A on behalf of Faead with sid.aead =
(“aead”, sid.fs,msg num) and await a response.

6. Send a backdoor message (msg num stateaead, Encrypt, pid,m,N) to A on behalf of Faead with sid.aead =
(“aead”, sid.fs,msg num).

7. On receiving a response (msg num stateaead, Encrypt, pid, c) from A, store (` = |m|, pid, ready2decrypt =
true), (c,N, 1) in records[msg num].

8. Update or store for the first time the values View0, View1, records, msg num stateaead, in stateI

9. Output (stateI , Encrypt, pid,msg num, N, c) to (Ffs aead, sid.fs).

(The rest of this simulator is in Fig. 33 on Page 79.)

Figure 32: Forward Secure Authenticated Encryption Simulator, Sfsaead
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Sfsaead Continued...

(This simulator begins in Fig. 33 on Page 79.)

Authenticate: On receiving (stateI , Authenticate, pid, c,msg num, N) from (Ffs aead, sid.fs) do:

1. Let i be such that pid = pidi.

2. Provide input ()

3. Parse the dictionary records from stateI :

(a) If records[msg num] = ⊥ then output (stateI , Authenticate, pid, c,msg num, N,⊥) to (Ffs aead, sid.fs).

(b) Else get (`, pid, ready2decrypt) and any record of the form (c,N, v) from records[msg num].

4. If ready2decrypt = false in the retrieved record, output (stateI , Authenticate, pid, c,msg num, N,⊥) to
(Ffs aead, sid.fs).

5. If there is no record (c, n, v):

• Send a backdoor message (RetrieveKey, pid,msg num) to A on behalf of (FmKE, sid.mKE =
(“mKE”, sid.fs)) and await a response (RetrieveKey, pid, k).

• If k = ⊥ then output (stateI , Authenticate, pid, c,msg num, N,⊥) to (Ffs aead, sid.fs).

• Else a backdoor message (msg num stateaead, ReportState, pid, k) toA on behalf of Faead with sid.aead =
(“aead”, sid.fs,msg num) and await a response.

• Senda backdoor message (msg num stateaead, Inject, pid, c, N) to A on behalf of Faead with sid.aead =
(“aead”, sid.fs,msg num).

• On obtaining the output (msg num stateaead, Inject, pid, c, N, v), append (c,N, v) to records[msg num]
and update records in stateI .

6. If v = 0 then output (stateI , Inject, pid, c,msg num, N,⊥) to (Ffs aead, sid.fs). Else output
(stateI , Authenticate, pid, c,msg num, N, v) to (Ffs aead, sid.fs).

Figure 33: Sfsaead Continued...

Case 1: No Corruptions Have Occurred

We begin by examining the action of the simulator and internal code when all parties are honest
and uncorrupted. We show via induction that the real and ideal worlds remain indistinguishable
after each action.

Encrypt. In the real world, Πfs aead outsources the encryption of each message to a separate Faead

instance (Faead, sid.aead = (“aead”, sid.fs,msg num)) that is parametrized by the its msg num.
The functionality Faead then sends a (RetrieveKey, pid) request to ΠmKE to check whether the
message key seed for the message is available to party pid. If the message key is available, then the
functionality Faead runs the internal code Iaead with message length |m| to produce a ciphertext.
Meanwhile, the functionality FmKE samples a key at random for each msg num and provides each
key exactly once for each party (up to any StopKeys requests made by the parties).

In the ideal world, Ffs aead makes the same checks as FmKE to make sure that the key for
the message is available to party pid. It then runs Iaead with message length |m| to choose the
ciphertext, just like Faead does in the real world.

Decrypt. In the real world, Πfs aead again uses the appropriate Faead instance for decrypting
ciphertexts. In this honest case Faead will only ever output the originally encrypted message m
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or a failure request. Specifically, it will never output a new message m′ that is different in any
way to the originally encrypted message m for that msg num. The authenticate encryption Faead

sends a (RetrieveKey, pid) request to ΠmKE to check whether the message key seed is available
to the requesting party. If ΠmKE says that the key is available and if the ciphertext c is exactly
the one that Faead sent on encryption, then Faead outputs the message m to Πfs aead. Otherwise,
if the ciphertext is different, then Faead runs internal code Iaead to decide whether the message
authenticates. Depending on the output v of the internal code, Πfs aead also outputs either the
message or a failure notification.

In the ideal world, Ffs aead again makes the same checks as FmKE to ensure that the decryption
key would have been available to the requester. If the key is available, then to decide whether to
successfully decrypt, Ffs aead sends an Authenticate request to Ifsaead just like Faead does in the
real world.

Case 2: One or Both Parties Have Been Corrupted

Next, we show that the real and ideal worlds remain indistinguishable at the moment of corruption,
and also after subsequent encryption and decryption operations are executed.

Corruption. The protocol Πfs aead, on receiving a Corrupt request from ΠSGNL, sends Corrupt

to FmKE, which leaks to A a list of message seed keys in transit as well as the current message
number for the corrupted party and the chain key. On receiving a state SmKE from A, FmKE

reports a list of all messages still in transit and SmKE . Then, Πfs aead corrupts each Faead instance
that has a pending message, each of which leaks its message and key seed to A. When Faead gets a
state Smsg num back from A, it reports this to Πfs aead. Πfs aead then reports all of the states SmKE
and Smsg num’s along with the list of pending messages and current message number to ΠSGNL.

The ideal functionality, on receiving Corrupt, sends a ReportState request to Sfsaead and
includes a list of the ciphertexts and messages that are in transit. Since no message key seeds are
used in the ideal world, the ideal functionality simply chooses random keys for any messages still in
transit to the corrupted party (as FmKE would have done) and uses these keys to send the necessary
ReportState requests to SmKE and Saead. The messages that need to be leaked are simply stored
in Ffs aead.

Encrypt. In the real world, Πfs aead outsources the encryption of each message to a separate Faead

instance (Faead, sid.aead = (“aead”, sid.fs,msg num)) that is parametrized by the its msg num.
The functionality Faead then sends a (RetrieveKey, pid) request to ΠmKE to check whether the
message key seed for the message is available to party pid. If the message key is available, then the
functionality Faead send the message m to the simulator Saead and allows it to choose the ciphertext
c. Meanwhile, the functionality FmKE allows the simulator SmKE to choose the required key as long
as a key for this msg num hasn’t already been retrieved and there isn’t a stopkeys request for a
number smaller than msg num.

In the ideal world, Ffs aead also allows SmKE to choose the required key under the same conditions.
It then sends the message m to the simulator Saead to allow it to choose the ciphertext. It is
straightforward to validate that these actions look just like in the real world.

Decrypt. In the real world, Πfs aead again uses the appropriate Faead instance for decrypting
ciphertexts. The authenticate encryption Faead sends a (RetrieveKey, pid) request to ΠmKE to
check whether the message key seed is available to the requesting party. If ΠmKE says that the key
isn’t available which happens if the key has already been retrieved or if (StopKeys, N) was run run
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for N < msg num then a failure notification is output. Otherwise, if the ciphertext c is exactly the
one that Faead sent on encryption, then Faead outputs the message m to Πfs aead. Otherwise, if the
ciphertext is different, then Faead allows the simulator Saead decide what the ciphertext decrypts
to. Successful decryption is allowed only once even in the case of corruption.

In the ideal world, Ffs aead again makes the same checks as FmKE to ensure that the decryption
key would have been available to the requester. If the key is unavailable then Ffs aead outputs a
failure notification. If the key is available and the ciphertext matches the one at encryption, then
again Ffs aead takes an executive decision and outputs the message m that was originally encrypted.
Otherwise, to decide how to decrypt, Ffs aead sends an Inject request to Sfsaead just like Faead does
in the real world.

Both Cases 1 and 2

Finally, we must consider the remaining two methods within the API for forward-secure AEAD:
the stop encrypting and stop decrypting methods. Our analysis of these two methods is the same
whether any parties have been previously corrupted or not.

Stop Encrypting In the real world protocol, a StopEncrypting request causes Πfs aead to send a
StopKeys request to FmKE for the current message number. Then FmKE will note that the sending
epoch is closed, thereby disallowing the sender (or adversary) from being able to encrypt more
messages in the epoch.

In the ideal world functionality, Ffs aead simply notes that the sender has deleted the ability
to encrypt any more messages for the epoch, also preventing the sender from encrypting more
messages for the epoch.

Stop Decrypting When Πfs aead receives a (StopDecrypting, N) request from above, it sends
(StopKeys, N) to the FmKE instance for the epoch. Then, FmKE makes a note that the epoch
is closed for the receiver at message number N . This prevents the receiver (or adversary) from
decrypting any messages past N for the epoch.

The ideal world functionality Ffs aead simply mimiks this behavior by directly marking all mes-
sages beyond N as inaccessible and returns control to ΠSGNL.

In conclusion, Sfsaead gives an exact emulation of the real world for every action taken by Env
and A in the ideal world, so the views of Env and A is identical to the real world. This completes
the proof of Theorem 4. 2

8 The Symmetric Ratchet: Realising FmKE

In this section, we prove that the message key exchange protocol ΠmKE associated with a a particular
epoch, realises the functionality FmKE for that epoch in the presence of the long-lived global epoch
key exchange functionality FeKE. As outlined in Section 4, protocol ΠmKE (presented in Figure 28
on page 73) implements the symmetric keychain for the epoch specified in its session ID. This is
done by obtaining the base key for the chain from FeKE and then extending the chain as needed.
Importantly, the keys on the main symmetric chain are never directly given as output; rather the
outputs are keys derived from the chain keys. This structure allows the key derivation function to
only be a (length doubling) pseudorandom number generator.

Before reading the following proof that ΠmKE (Figure 34) realises FmKE in the presence of FeKE,
one must understand that such a proof may not continue to hold in general when FeKE is realised by
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some protocol ΠeKE. However, as explained in Section 2.2, one can instead prove that ΠmKE realises
FmKE in the presence of FΠeKE

eKE for some protocol ΠeKE that realises FeKE. This is the approach that
we follow in this section.

ΠmKE

The protocol has a party id pid and a session id sid.mKE that takes the following format: sid.mKE =
(“mKE”, sid.fs). Where sid.fs = (“fs aead”, sid, epoch id), and sid = (sid′, pid0, pid1).

The protocol is parametrized by a length doubling pseudorandom generator PRG.

RetrieveKey: On receiving (RetrieveKey, pid) from (Πaead, sid.aead, pid), where sid.aead =
(“aead”, sid.fs,msg num),

1. if pid /∈ {pid0, pid1} then end the activation.

2. If this is the first activation, set curr msg num = 0 and provide input (GetSendingKey) to (FΠeKE
eKE , sid.eKE)

//FΠeKE
eKE = (SeKE, IeKE,FeKE).

3. Upon receiving (GetSendingKey, sending chain key) from FΠeKE
eKE set curr chain key = sending chain key.

4. While curr msg num ≤ msg num do:

• Increment curr msg num.

• (curr chain key, k) = PRG(curr chain key).

• Store missed msgs[curr msg num] = k.

5. Output (RetrieveKey, pid,missed msgs[msg num]) to (Πaead, sid.aead, pid) while erasing the entry
missed msgs[msg num].

StopKeys: On receiving (StopKeys,msg num∗) from (Πfs aead, sid.fs, pid) do:

1. If StopKeys has already been called, return (StopKeys, Success).

2. While curr msg num ≤ msg num∗ do:

• Increment curr msg num.

• (curr chain key, k) = PRG(curr chain key).

• Store missed msgs[curr msg num] = k.

3. Set curr chain key = ⊥.

4. Return (StopKeys, Success).

Corruption: On receiving (Corrupt) from (Πfs aead, sid.fs, pid):
//Note that the Corrupt interface is not part of the “real” protocol; it is only included for UC-modelling purposes.

1. Let S = (curr chain key, curr msg num,missed msgs).

2. Output (Corrupt, S) to (Πfs aead, sid.fs, pid).

Figure 34: The Message Key Exchange Protocol ΠmKE

Theorem 5 Assume that PRG is a secure length-doubling pseudorandom generator. Then protocol
ΠmKE UC-realizes FmKE in the presence of global functionalities Flib,FDIR,FLTM, as well as FΠeKE

eKE ,

where FΠeKE
eKE = (IeKE,SeKE,FeKE).

Proof:We construct an ideal-process adversary SmKE in the figure on Fig. 35 that interacts with
functionality FmKE. The objective of SmKE is to simulate the interactions that would take place
between the environment and the protocol ΠmKE (in the presence of FeKE+SeKE+IeKE), so that the
views of the environment Env are computationally indistinguishable in the real and ideal scenarios.
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SmKE

The global session id sid encodes a ciphersuite, including the PRG (used by ΠmKE), and the length λ of key seeds.

ReportState: On receiving (ReportState, i, keys in transit,msg numi, stop request) from (FmKE, sid.mKE) do:

1. If msg numi 6= 0 or stop request 6= ⊥ output (ReportState, S = ⊥) to (FmKE, sid.mKE).
//Note that FmKE only gets corrupted if the sender has already initialized it. This means that the sender’s
msg num will never be 0.

2. Else If msg numi 6= 0 (i.e. stop request = ⊥), initialize chain key
$← {0, 1}λ.

//The chain key is selected at random unless the receiver is corrupted before retrieving any keys for the epoch,
this is because later chain keys should be unrelated to the initial one due to the PRG property.

3. Else (msg numi = 0 and stop request 6= ⊥), send (GetReceivingKey, epoch id) to FΠeKE
eKE . On receiving a

response (GetReceivingKey, recv chain key) set chain key = recv chain key.

//
(
FΠeKE

eKE = (SeKE, IeKE,FeKE),Flib,FDIR,FLTM

)
//If the receiver has not retrieved any keys, we get the chain key from FΠeKE

eKE so that it matches the key the
sender used in the real world.

4. Initialize a dictionary seeds = {}.

5. For (msg num, k) ∈ keys in transit such that msg num < msg numi:

• Store seeds[msg num] = k

6. Let curr msg num = msg numi, and let the curr chain key = chain key.

7. While there is some (msg num, k) ∈ keys in transit such that msg num > msg numi:

• curr msg num+ = 1

• Let (curr chain key, key seed) = PRG(curr chain key).

• Store seeds[curr msg num] = key seed.

• Set latest seed num = curr msg num.

• Delete (msg num, k) from keys in transit.

8. Delete local variable curr msg num.

9. Output (ReportState, S = {chain key, seeds}).

RetrieveKey: On receiving (RetrieveKey, pid,msg num) from (FmKE, sid.mKE) do:
//This happens only if IsCorrupt? = true. In particular, SmKE has already gotten a ReportState directive.

1. If msg num ≤ latest seed num then output (RetrieveKey, pid, k = seeds[msg num]) to (FmKE, sid.mKE).
//The only keys not in this dictionary are keys that were already retrieved by both parties at the time of
corruption.

2. If msg num > latest seed num, initialize j = latest seed num + 1.

3. While j < msg num:

• (curr chain key, key seed)← PRG(curr chain key).

• Store seeds[j] = key seed, j+ = 1.

4. Output (RetrieveKey, pid, k = seeds[msg num]) to (FmKE, sid.mKE).

Figure 35: Message Key Exchange Simulator, SmKE
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When the simulator SmKE receives messages from FmKE in the ideal world, it takes the actions
specified in the pseudocode on Fig. 35.

Note that the real world adversary sees no keys before a compromise. If the epoch has been
compromised, the real world adversary gets all key seeds for messages that are in transit. The real
world adversary also gains the ability to compute all future key seeds available to the party (if
StopKeys has not been called).

At such a compromise, the ideal world functionality FmKE provides the simulator SmKE with
all the message numbers for which pending keys should be stored in the party’s state, the party’s
current message number, as well as a chain key. The provided chain key is chosen at random in
most cases, except for the case in which the party has not retrieved a single key in the epoch. In
this case, the functionality provides SmKE with the initial chain key that a party would retrieve from
the combined FeKE +SeKE +IeKE for this epoch to provide indistinguishability from the real world.
The simulator SmKE then produces the keyseeds that are “in transit” by sampling them uniformly
at random; it computes the future key seeds honestly using the chain key provided to it during
compromise. Since SmKE generates future keys just like ΠmKE would and otherwise uses the keys
produced at compromise, if the state produced by the simulator at compromise is indistinguishable
from the real world, then this proof is complete.

Note that if a uniformly random input is run through a PRG and then the output of the PRG run
through the PRG again – and chained like this polynomially many times, the tuple containing all the
outputs is still pseudorandom and therefore indistinguishable from outputs chosen independently
at random. Therefore, the state produced at compromise is indistinguishable from the real world.
2

9 Authenticated Encryption for Single Messages: Realising Faead

As outlined in Section 4, the ideal authenticated encryption functionality Faead is realized by way of
a specific symmetric authenticated encryption scheme, which obtains its secret key from FmKE, and
provides security against adaptive curruptions in the programmable random oracle model (which
is captured by way of FpRO).

If corruptions were not adaptive, any authenticated encryption scheme would suffice here; in
particular, there would have been no no need to resort to the random oracle model. In fact, this
would have remained true even if the overall corruption structure was adaptive, as long as the
adversary does not learn the keys that correspond to messages that were sent to the corrupted
party but not yet received.

However, assert full-fledged security in our model requires coming up with a simulation process
that first generates a ciphertext c, and is then given an arbitrary message m and asked to generate
a key k such that Dec(k, c) = m. While such schemes exist, they require having a key that is longer
than the total length of the messages encrypted with that key. Furthermore, impossibility holds
even when authentication is not required: There do not exist adaptively secure encryption schemes
in the plain model where the key is shorter t han the message [50].

We circumvent this impossibility by resorting to the random oracle model (again, using ideas
from [50]). Specifically, we employ a simple Encrypt-then-MAC scheme [43] where the encryption
is simply a one-time-pad, and the random oracle is used to expand the key to the length needed
for the MAC algorithm, plus the length of the message.

We note that when the message is shorter than the overall keylength minus the length of the
MAC key, the above scheme is adaptively secure even in the plain model. Consequently, in situations
where there is a known bound on the total length of messages sent in each epoch, our solution is
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fully secure in the plain model.
Protocol Πaead is presented in Figure 36 on page 85.

Πaead

This protocol has a session id sid.aead = (“aead′′, sid.fs,msg num) where sid.fs = (“fs aead”, sid =
(sid′, pid0, pid1), epoch id) and party id pid.

It uses a message authentication code (MAC,Verify) with key length λ.

Encrypt: On receiving (Encrypt,m,N) from (Πfs aead, sid.fs, pid):

1. If this is not the first activation or pid /∈ (pid0, pid1), end the activation.

2. Provide input (RetrieveKey, pid) to (ΠmKE, sid.mKE, pid).

3. Upon receiving output (RetrieveKey, k) from (ΠmKE, sid.mKE, pid):

• Let ` = |m|+ λ.

• Send (HashQuery, k, `) to FpRO.

• Upon receiving the output (HashQuery,msg key), parse msg key = kotp||kmac, where the kotp has length
|m|, and kmac has length λ.

• Compute ciphertext c′ = kotp ⊕m
• Compute tag t = MAC(kmac, (c′, sid.aead,N)).

• Finally, set c = (c′, t).

• Delete msg key, k,m, and c and output (Encrypt, c) to (Πfs aead, sid.fs, pid).

4. If the response from (ΠmKE, sid.mKE, pid) is (RetrieveKey, Fail), then output (Encrypt, Fail) to
(Πfs aead, sid.fs, pid).

Decryption: On receiving (Decrypt, c = (c′, t), N) from (Πfs aead, sid.fs, pid):

1. If this is not the first activation or pid /∈ (pid0, pid1), end the activation.

2. Provide input (RetrieveKey, pid) to (ΠmKE, sid.mKE, pid).

3. Upon receiving output (RetrieveKey, k) from (ΠmKE, sid.mKE, pid):

• Let ` = |m|+ λ.

• Send (HashQuery, k, `) to FpRO.

• Upon receiving the output (HashQuery,msg key), parse msg key = kotp||kmac, where the kotp has length
|m|, and kmac has length λ.

• If Verify(kmac, t, (c′, sid.aead,N)) 6= 1, then output (Decrypt, Fail) to (Πfs aead, sid.fs, pid).

• Else (the tag is valid), compute message m = kotp ⊕ c′.
• Delete msg key, k,m, and c and output (Decrypt,m) to (Πfs aead, sid.fs, pid).

4. If the response from (ΠmKE, sid.mKE, pid) is (RetrieveKey, Fail), then output (Decrypt, Fail) to
(Πfs aead, sid.fs, pid).

Corruption: On receiving (Corrupt) from (Πfs aead, sid.fs, pid):
//Note that the Corrupt interface is not part of the “real” protocol; it is only included for UC-modelling purposes.

1. Output (Corrupt, S = ⊥) to (Πfs aead, sid.fs, pid). //Πaead has no persistent state.

Figure 36: The Authenticated Encryption with Associated Data Protocol, Πaead
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Theorem 6 Assuming the unforgeability of (MAC,Verify), protocol Πaead UC-realizes the ideal
functionality Faead in the presence of global functionalities FpRO, Flib,FDIR,FLTM, as well as FΠmKE

mKE ,

FΠeKE
eKE , where FΠmKE

mKE = (SmKE,FmKE), and FΠeKE
eKE = (IeKE,SeKE,FeKE).

Iaead

The internal code has a ciphersuite, including the MAC protocol (MAC,Verify), the encryption protocol OTP , and
the length of the MAC keys λ.

To compute I(stateI , Encrypt, pid, |m|, N):

1. Set ` = |m| and m = 0`.

2. Choose a random message key msg key
$← {0, 1}`+λ.

3. Parse msg key = kotp||kmac where |kotp| = ` and |kmac| = λ.

4. Compute ciphertext c′ = kotp ⊕m and tag t = MAC(kmac, (c′, sid.aead,N)).

5. Finally, set c = (c′, t), and record (msg key,m, c,N) in stateI .

6. Return (stateI , Encrypt, pid, c).

To compute I(stateI , Authenticate, pid, c, N):

1. Parse c∗ = (c′, t′)

2. Let ` = |c′|.

3. If there is no record (msg key,m, c = (c′, t), N) in stateI then end the activation.

4. Else, parse msg key = kotp||kmac where |kotp| = |m| and |kmac| = λ.

5. If Verify(kmac, t′, (c′, sid.aead,N)) = 0: set v = ⊥.

6. Else (Verify(kmac, t′, (c′, sid.aead,N)) = 1): set v = m.

7. Return (stateI , v).

Figure 37: Internal adversarial code Iaead

Proof:
The ideal-process adversary Saead is presented in Figure 38 and the internal adversarial code

Iaead is presented in Figure 37. To demonstrate the validity of Saead, we show that no environment
that has global access to FpRO,FΠmKE

mKE = (SmKE,FmKE),FΠeKE
eKE = (IeKE,SeKE,FeKE),FDIR,FLTM,Flib,

can tell whether it is interacting with Πaead, or else with Faead, Iaead, and Saead.
This is done as follows: We first argue that, conditioned on two bad events not happening,

the simulation is perfect. Then, we show that the bad events happen with negligible probability.
The first, Forge, is the event that the environment produces a verifying message tag pair (m′, t′)
for a fresh message m′, when no party has been corrupted. The second, Collision, is the bad event
that a message seed key provided by FΠmKE

mKE collides with an input to the random oracle that was
previously programmed by the environment or simulator.

86



Saead

At first activation: Send (Faead, I) to Flib.

On receiving (stateI , ReportState, pid, k,m
∗) from (Faead, sid.aead):

1. Initialize simulated state statepid = {k} and store the key k.

2. If k 6= ⊥ and there is a record (c = (c′, t),msg key,m,N, b) in stateI :

• Parse msg key = kotp||kmac where |kotp| = |m∗|.
• Let kotp

∗ = c′ ⊕m∗ and msg key∗ = kotp
∗||kmac.

• Send a backdoor message (Program, k,msg key∗) to FpRO.

• On receiving (Program), continue.

3. Output (stateI , ReportState, pid, statepid) to (Faead, sid.aead).

On receiving (stateI , Encrypt, pid,m,N): //This is called in the case that either party has been corrupted and no
ciphertext was released yet. In this case Saead simply runs the instructions for Πaead.

1. If the stored key k = ⊥, then end the activation.

2. Set ` = |m|.

3. Send (HashQuery, k, `+ λ) to FpRO. //Note that k is sent to Saead during ReportState

4. Upon receiving the output (HashQuery,msg key), set msg key = kotp||kmac where |kotp| = ` and |kmac| = λ.

5. Compute ciphertext c′ = kotp ⊕m and tag t = MAC(kmac, (c′, sid.aead,N)).

6. Finally, set c = (c′, t) and record (msg key,m, c,N) in stateI .

7. Output (stateI , Encrypt, pid, c) to (Faead, sid.aead).

On receiving (stateI , Inject, pid, c
∗, N) from (Faead, sid.aead):

//This is called in the case that either party has been corrupted and no output was generated yet. Saead simply runs
the instructions for Πaead.

1. Parse c∗ = (c′, t′)

2. Let ` = |c′|.

3. Send (HashQuery, k, `+ λ) to FpRO. //Note that k is sent to Saead during ReportState

4. Upon receiving the output (HashQuery,msg key′), continue.

5. Parse msg key′ = kotp||kmac where |kotp| = `, |kmac| = λ.

6. If Verify(kmac, t′, (c′, sid.aead,N)) = 0: set v = ⊥.

7. Else (Verify(kmac, t′, (c′, sid.aead,N)) = 1): compute v = kotp ⊕ c′.

8. Output (stateI , Inject, pid, c, N, v) to (Faead, sid.aead).

Figure 38: Authenticated Encryption with Associated Data Simulator, Saead
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MAC Forgery Game

We define MAC forgery in the standard chosen-plaintext setting:

1. A key kmac
$← Kmac is sampled uniformly.

2. The adversary A is given access to the MAC oracle MAC(kmac, ·) which on message m computes
and outputs the tag t of that message under the MAC. Let Q denote the set of all queries that
A makes to MAC(kmac, ·).

3. The adversary A then outputs (m′, t′)

4. The event Forge1 occurs if and only if Verify(kmac,m
′, t′) = 1 and m′ /∈ Q.

We will call a successful forgery event of this kind Forge.

Second Forgery Game

Now we define a different type of forgery:

1. Two keys kmac, kmac
′ $← Kmac are sampled uniformly and independently.

2. The adversary A is given access to the MAC oracle MAC(kmac, ·) which on message m computes
and outputs the tag t of that message under the MAC.

3. The adversary A is given access to the Verify oracle Verify(kmac
′, ·, ·) which on input (m′, t′)

outputs whether the message tag pair verifies.

4. The adversary A then outputs (m′, t′)

5. The event Forge2 occurs if and only if Verify(kmac
′,m′, t′) = 1.

We will call a successful forgery event of this kind Forge2.

This experiment models the setting where the two parties have diverged and thus have inde-
pendent MAC keys. Lastly, we define Collision to be the event that Env already programmed FpRO

on input k.

Lemma 18 If neither Forge nor Collision events happen during the executions, then the the simu-
lation by Saead and Iaead is perfect.

Proof:Assume that the bad events Forge and Collision do not occur during the executions. We
will prove that, for all environments Env and adversaries A, the functionality Faead together with
simulator Saead and internal adversarial code Iaead perfectly simulates the real-world views of Env
and A when they interact with Πaead.

Encryption Observe that encryption in the ideal world occurs exactly as in the real world, except
that the Iaead module in Faead chooses a random key under which to encrypt the all 0’s message
of the correct length using the one time pad to produce a ciphertext c. It then authenticates
the produced ciphertext using the randomly chosen kmac. Later, when a corruption occurs, the
simulator can easily use the leaked message m to compute a key kotp = c⊕m that will decrypt the
ciphertext to the correct message. It then uses the leaked key-seed and programs FpRO to output
the key kotp ‖ kmac on this seed.

Decryption In the real world, Πaead retrieves the message key seed from ΠmKE, and if the key is
available, Πaead queries FpRO to get the expanded msg key. If the tag t verifies, then it decrypts the
ciphertext using msg key; otherwise, it returns a failure message. If the adversary has compromised
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the state of Πaead, then ΠmKE for the same epoch is compromised as well, and A will get the key seed
(which it can expand to inject ciphertexts that will authenticate).

In the ideal world, Faead retrieves the message key from ΠmKE and if the key is available, Faead

returns the message m that it encrypted to c = (c′, t) in the case that the other party asks to
decrypt c. This case is identical to the real world, by definition. If, on the other hand, Faead

gets a different ciphertext c∗ 6= c, then Faead either runs the internal adversarial module Iaead on
(Authenticate, c∗) or calls the adversary om (Inject, c∗).

If it is not corrupted then Faead runs the internal adversarial code to see if it wants to au-
thenticate this ciphertext c∗, and waits for a response value. (Iaead uses the kmac it used during
encryption to verify the tag in c∗; if the tag fails to verify for c∗, then it returns v = ⊥.) In the case
that the epoch is not compromised, Faead will check that Iaead’s returned value v 6= ⊥. If v 6= ⊥,
then Faead will output the original message m. Assuming that Forge1 and Forge2 do not occur, the
original m will be returned if and only if c is the input ciphertext.

In the case that the epoch is compromised, Faead calls Saead which uses the message key seed k
that it received from Faead to query the random oracle FpRO to expand the key. It then verifies the
tag and outputs the decryption of the ciphertext (which may be different from m). In this case,
Faead outputs the injected message from Saead. This is identical to the powers of the real-world
adversary after a state compromise.

Corruption Notice that the protocol Πaead has no persistent state besides its sid and whether
it has been activated already. The message, ciphertext, tag, and keys are all deleted after its
activation. Accordingly, Saead (and thus Faead) returns no state upon corruption.

The main job of Saead on corruption is to equivocate on the ciphertext it provided during
encryption by programming the random oracle. Importantly, encryption occurs at most once in
Faead (and Πaead). Thus, the random oracle is programmed at most once, and since we are assuming
that the bad event Collide (that FpRO was already programmed or queried on input k) does not
occur, the message seed key will be programmable. Saead receives the correct message m∗ along
with the key seed k from Faead, after which it computes the message key from the ciphertext c it
generated and m∗ (and re-uses the MAC key kotp) and programs these in FpRO. 2

So, all that’s left to argue is why Forge and Collision do not occur. Notice that before corruptions
the message key seeds provided by FΠ

mKE are uniformly random, so event Forge corresponds to the
standard security game for message authentication codes. In particular, assuming that we have
an environment that successfully induces a Forge event with non-negligible probability, we can
construct a forger against (MAC,Verify), breaking our assumption. Thus, Forge happens with
negligible probability.

Next, we discuss the Collision event. Since the key seeds provided by FΠ
mKE are uniformly ran-

dom and independent, and the space of inputs to FpRO is exponential in the security parameter δ,
the probability that any two of them collide is negligible in the security parameter. Furthermore,
since the environment runs in polynomial time with respect to the security parameter δ, the envi-
ronment can only program a polynomial number of inputs. So, for a seed length that is θ(δ), the
probability that the adversary programs an input that causes a collision is roughly 2θ(δ) − poly(δ).
2
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