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ABSTRACT

Most blockchain-based cryptocurrencies suffer from a heavily lim-
ited transaction throughput, which is a barrier to their growing
adoption. Payment channel networks (PCNs) are one of the promis-
ing solutions to this problem. PCNs reduce the on-chain load of
transactions and increase the throughput by processing many pay-
ments off-chain. In fact, any two users connected via a path of
payment channels (i.e., joint addresses between the two channel
end-points) can perform payments, and the underlying blockchain
is used only when there is a dispute between users. Unfortunately,
payments in PCNs can only be conducted securely along a path,
which prevents the design of many interesting applications. More-
over, the most widely used implementation, the Lightning Network
in Bitcoin, suffers from a collateral lock time linear in the path
length, it is affected by security issues, and it relies on specific
scripting features called Hash Timelock Contracts that hinders the
applicability of the underlying protocol in other blockchains.

In this work, we present Thora, the first Bitcoin-compatible off-
chain protocol that enables the atomic update of arbitrary channels
(i.e., not necessarily forming a path). This enables the design of
a number of new off-chain applications, such as payments across
different PCNs sharing the same blockchain, secure and trustless
crowdfunding, and channel rebalancing. Our construction requires
no specific scripting functionalities other than digital signatures and
timelocks, thereby being applicable to a wider range of blockchains.
We formally define security and privacy in the Universal Compos-
ability framework and show that our cryptographic protocol is a
realization thereof. In our performance evaluation, we show that
our construction requires only constant collateral, independently
from the number of channels, and has only a moderate off-chain
communication as well as computation overhead.
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1 INTRODUCTION

Permissionless cryptocurrencies such as Bitcoin [28] use consen-
sus mechanisms to verify transactions in a decentralized way and
record them in a public and distributed ledger. This approach has in-
herent scalability issues, resulting in a low transaction throughput
and a long confirmation latency. These limitations prevent cryp-
tocurrencies from meeting the growing user demands, especially
when we compare them with centralized payment networks, like
Visa, which handle tens of thousands of transactions per second
and confirm transactions usually within seconds.

Off-chain protocols constitute one of the most promising solutions
to tackle this scalability issue. Instead of recording every transaction
on the public ledger, users exchange and keep their transactions
off-chain and use the ledger only as a fallback when there are
disputes in order to keep their funds. One of the promising off-
chain protocols are Payment Channels (PCs) which are deployed
at scale in cryptocurrencies such as Bitcoin and Ethereum [26, 29].
Intuitively, a channel is a shared address that allows two parties to
maintain and update a private ledger through off-chain transactions.
In a bit more detail, looking at Bitcoin’s unspent transaction output
(UTXO) model, users first open a PC by locking some coins in a 2-of-
2 multi-signature output. Then, they can update the balance in the
PC arbitrarily many times by exchanging signed transactions. Each
of the users can close the PC by publishing the last state on-chain.
This allows them to perform many transactions while burdening
the ledger with only two transactions.

1.1 HTLC-based PCNs and their limitations

Payment channel networks (PCNs) like the Lightning Network
(LN) [29] and Raiden [1] generalize this approach, by allowing two
users to pay each other as long as they are connected by a path
of channels with enough capacity. Such a payment in a PCN, also
called a multi-hop payment (MHP), requires updating each channel
on the path. The challenge here is to ensure atomicity, i.e., either
all channels are updated consistently or none, such that no user is
at risk of losing money. In the most popular PCN, i.e. the Lightning
Network, atomicity is achieved through Hash Timelock Contracts
(HTLCs) [29], which make the payments on each channel on the
path conditioned on revealing the preimage of a certain hash. The
receiver has to reveal that preimage in order to receive the money
and then all intermediaries from right to left are incentivized to
update their left channel in order to claim the money of the payment.
An example of a payment using HTLCs is shown in Figure 1.

HTLC-based PCNs, however, have the following fundamental
drawbacks:
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Figure 1: An example of a payment in LN from A to D for
a value o using HTLC contracts. An HTLC contract denoted
by HTLC(Alice, Bob, x, y, t), shows the following conditions:
(i) If timeout ¢ expires, Alice gets back the locked x coins. (ii)
If Bob reveals a value r, such that H(r) = y, before timeout
t, Alice pays x coins to Bob.

Collateral All parties on the path have to lock the payment amount
a up to a period of locktime. The payment amount multiplied by the
locktime is called collateral, a metric that has been used in previous
work, e.g., [9, 18, 27]. In addition, parties can impose fees for the
service of forwarding payments. In the case of HTLCs, each party
has to lock a collateral that is linear in the size of the path n, i.e.,
O(a - n - §), where ¢ is a security parameter defining the time by
which users have to react in case of misbehavior from others (in
Lightning, J is one day).

Due to the linear collateral, the effects of griefing attacks [18] on
HTLC-based PCNs are particularly severe. In a griefing attack, a
malicious user starts a multi-hop payment to itself with the intent to
block coins owned by intermediaries. The attacker manages to lock
up « coins in n — 1 honest channels. The fact that the lock duration
is also linear in the path length amplifies the effects of this attack
further. The malicious user subsequently lets the payment fail to
limit the overall network throughput or to lock coins of specific
users.

Weak atomicity Lightning guarantees only a weak form of atom-
icity, that is, only the two adjecent channels of an honest node are
updated consistenlty. In particular, Lightning is vulnerable to the
wormbhole attack [24], where two colluding malicious users can skip
honest users in the phase where they reveal the preimage. This does
not lead to a loss in funds for the honest users, but the malicious
users can steal the fees originally intended for the honest users.

Path restriction Since HTLC-based PCN protocols rely on an
incentive based forwarding of a preimage via a path to ensure
that honest users do not lose funds, these protocols are limited to
payments over a path of channels. This rules out other topologies
reflecting relevant financial applications (e.g., crowd-funding can
be seen as a star topology where all nodes update their channel
with the beneficiary).

Value privacy In Lightning, intermediaries implicitly learn the
paid amount, as the value has to be the same (except for some
fee) over all channels within the path to ensure atomicity of the
protocol.

1.2 Related work

Recently, various protocols have been designed to overcome the
aforementioned issues, but they all fall short of some property, as
summarized in Table 1.

Anonymous Multi-Hop Locks (AMHL) prevent the wormhole
attack by dispensing from HTLCs in favor of adaptor signatures,

a mechanism in which the secret is somewhat embedded in the
randomness of the signature and revealed once that signature is
published, but they still suffer from linear collateral and only sup-
port path-based payments.

The Atomic Multi-Channel Updates (AMCU) protocol [18] at-
tempts to achieve payments with constant collateral and also to
support more generic applications than path-formed payments. Un-
fortunately, AMCU is not secure: It is vulnerable to channel closure
attacks [19], where users honestly updating their channels can be
victim of double-spending attacks, which can lead to a loss of funds
for honest users.

Blitz [9] is a recently proposed payment protocol for multi-hop
payments, which in contrast to Lightning requires only one round of
communication through the path with constant collateral. However,
Blitz supports only path-based payments.

Sprites [27] is the only secure protocol supporting atomic multi-
channel updates with constant collateral. In fact, the paper ad-
dresses only path-based payments, but we conjecture that the
protocol could in principle be modified so as to support arbitrary
topologies and also to hide the paid amount. Unfortunately, Sprites
inherently requires Turing-complete scripting, which makes it in-
applicable to blockchain technologies with limited scripting capa-
bilities, such as Bitcoin itself. A Turing complete scripting language
provides more expressiveness, but it also enlarges the trusted com-
puting base, opens the door to programming bugs, and makes com-
putations more expensive (e.g., in terms of gas fees in Ethereum).

Hence, it is both a foundational and practically relevant ques-
tion whether or not atomic multi-channel updates with constant
collateral are possible at all in blockchains with limited scripting
languages like Bitcoin. Indeed, it was conjectured in [27] that they
are not.

1.3 Our contribution

In this paper, we show that the aforementioned conjecture is incor-
rect. In particular,
e We introduce Thora, the first secure Bitcoin-compatible proto-
col with constant collateral for atomic, multi-channel updates.
The constant collateral property not only makes the protocol
financially sustainable for a large number of channels, but also
mitigates the threat of griefing attacks. Thora only requires sig-
natures and timelocks, and it is thus compatible with a number
of cryptocurrencies, such as Bitcoin, Stellar, and Ripple. In ad-
dition, Thora supports payments over channels with arbitrary
topologies, thereby enabling a variety of interesting applications.
Finally, Thora achieves value privacy, i.e., the channel owners
can synchronize their payments without necessarily disclosing
the individual payment amounts.
We formally model our protocol in the Global Universal Compos-
ability (GUC) framework [15], analyzing its security and privacy
properties. For this, we define an ideal functionality which cap-
tures the security and privacy notions of interest and prove that
Thora constitutes a GUC-realization thereof.
e We conduct a complexity analysis and performance evaluation,
demonstrating the practicality of Thora.
o We instantiate Thora in the context of several applications that
go beyond simple path-formed payments, such as mass payments,



Table 1: Comparing different payment methods: Lightning Network, Anonymous Multi-Hop Locks (AMHL), Sprites, Payment
Trees, Atomic Multi-Channel Updates(AMCU), Blitz, and our construction. Studied features are: atomicity property, path re-
striction, need for Turing-complete smart contracts, size of per party collateral, and value privacy. For the latter, note that
there are constructions that do not inherently leak the value transferred in individual channels, but they can only be used for
applications (i.e., payments) that require the same value in all channels.

Atomicity | Path restriction Smart contract pp Collateral Value privacy

Lightning Network [29] No Yes No Linear application leak

AMHL [24] Yes Yes No Linear application leak
AMCU [18] No No No Constant No
Payment Trees [19] Yes Yes No Logarithmic No

Blitz [9] Yes Yes No Constant application leak
Sprites [27] Yes No Yes Constant Yes
Thora Yes No No Constant Yes

channel rebalancing, and crowd-funding, thereby exemplifying
the class of off-chain applications enabled by Thora.

2 BACKGROUND

In this section, we provide an overview on the background and the
notations used throughout the paper. For more details, we refer the
reader to [7, 9, 23].

2.1 UTXO based transactions

We assume the underlying blockchain to be based on the unspent
transaction output (UTXO) model, like Bitcoin. In this model, coins,
or the units of currency, exist in outputs of transactions. We rep-
resent each output as a tuple 6 := (cash, ¢) where 6.cash is the
output value, and 6.¢ is the condition required to spend the output.
We encode the condition in the scripting language used by the
underlying cryptocurrency. The notation OneSig(U) denotes the
condition that a digital signature w.r.t. U’s public key is required for
spending an output. If multiple signatures are required, we write
MultiSig(Uy, Uz, ..., Up).

Users can transfer the ownership of outputs via transactions.
A transaction spends a non-empty list of unspent outputs (trans-
action inputs) and maps them to a list of new unspent outputs
(transaction outputs). Formally a transaction is denoted as a tuple
tx == (id, input, output). tx.id € {0, 1}* is the identifier, set to be the
hash of inputs and outputs, tx.id = H (tx.input, tx.output), where
H is modeled as a random oracle. tx.input denotes the list of iden-
tifiers of the inputs and tx.output denotes the list of new outputs.
Also we let tx := (id, input, output, witness) or for convenience
also tx = (tx, witness) denote a full transaction. tx.witness consists
of witnesses for the spending conditions of the transaction’s inputs.
Only valid transactions can be recorded on the public ledger £ (the
blockchain). A transaction is considered valid if (i) its inputs are not
spent by other transactions in £, (ii) the sum of its outputs is not
greater than the sum of inputs, and (iii) the transaction provides
valid witnesses fulfilling the spending conditions of every input. In
practice, transactions are not recorded on the ledger and published
immediately, but only after the participants in the distributed con-
sensus accept them. We use A to denote the upper bound on the
time it takes for a valid transaction to be published and accepted to

L.

Using the scripting language, we can encode more complex con-
ditions on transaction outputs than simple ownerships. To better
visualize transactions, we use charts in which transactions are rep-
resented as rounded rectangles and inputs as incoming arrows.
Boxes inside transactions represent outputs and the values in these
boxes determine the amounts of coins stored in the outputs. Outgo-
ing arrows from an output are used to encode the condition under
which said output can be spent. In particular, below an arrow, we
identify who can spend an output by listing one or more public
keys. A valid transaction must contain signatures that verify under
these public keys. Above the arrow, we write additional conditions
that are required for spending the output. These conditions can be
any script supported by the scripting language of the underlying
blockchain, but in this work, we only use time-locks. For denoting
relative time-locks, we write RelTime(t) or +t, which means that
the output can be spent only if at least ¢ rounds have passed since
the transaction holding this output was accepted on L. For denot-
ing absolute time-locks, we use AbsTime(t) or > ¢, which means
that the output can be spent only if the round ¢ has already passed.
If an output condition is a disjunction of several conditions, i.e.,
¢ =¢1V -V ¢, we draw a diamond in the output box and put
each condition ¢; below/above its own arrow. For the conjunction
of several conditions, we write ¢ = ¢1 A $2... A ¢,,. We illustrate
an example of our transaction charts in Figure 2.

2.2 Payment channels

Using payment channels, two users can perform an arbitrary num-
ber of payments off-chain by publishing only two transactions on
the ledger, one for funding and one for closing. Through the funding
transaction tx, users jointly lock up some coins in a shared multi-
signature output, thereby opening a new channel. To avoid having
their funds locked, the two users exchange signed transactions
spending from tx', and assigning new balances for users, before
posting txf on-chain. Users can perform payments by exchanging
new transactions that reassign their balances. These transactions
holding the balances are called states of the channel. When the two
users are done, they can close the channel by posting the last state
to the ledger.

For readability, we omit the implementation details and instead
use payment channels in a black-box manner, using the following
abstraction: Both users have the same transaction tx52% which
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Figure 2: The left transaction tx has two outputs, one of value
x1 that can be spent by A, with a transaction signed w.r.t. pk4,
but only if at least #; rounds passed since tx is accepted on
the blockchain. The other output of value x, can be spent by
a transaction signed w.r.t. pk, and pkg at or after round f;.
The right transaction tx’ has one input, which is the second
output of tx containing x; coins, and has only one output,
which is of value x2 and can be spent by a transaction whose
witness satisfies the output condition ¢; V (¢2 A ¢3). The in-
puts of tx are not shown.

holds the outputs representing the last state of the channel. Fur-
thermore, we assume that the users can only publish the last txtat®
on the ledger. In practice there is a punishment mechanism in
place, which gives the total channel capacity to the honest party in
case a malicious party publishes an old state. We refer the reader
to [7, 23, 24] for more details.

We denote payment channels as ¥ := (id, users, cash, st), where
y.id € {0,1}* is the unique identifier of the channel, y.users € P?
contains addresses of two involved parties (out of the set of all
parties P), y.cash € R is the total number of coins in the channel,
and y.st := (outputy, output,, ..., output,) is the last state of the
channel and contains a list of outputs. The balance of both users can
be inferred from the current state y.st, and y.balance(P) returns the
amount of coins owned by P for P € y.users. We define a channel
skeleton y for a channel y, as y := (¥.id;y.users). Moreover, in
the context of our multi-channel updates protocol, based on the
direction of the payment in each channel y, we define one of the
involving parties as sender, which is denoted by y.sender € y.users,
and one as receiver which is denoted by y.receiver € y.users.

2.3 Payment channel networks

A payment channel network (PCN) [23] is a graph consisting of
vertices, representing the users, and edges, representing the chan-
nels between pairs of users. PCNs enable payments between any
users connected through a path of open payment channels. This
is called a multi-hop payment. Assume user Uy wants to pay user
Up, but there is no direct payment channel between them. Instead,
Up has an open payment channel yy with Uj, U; has an open pay-
ment channel y; with Uy and so on, until the receiver U,. An MHP
allows transferring coins from Uy to Uy, through intermediaries
{Ui}ie[1,n-1] atomically in a secure way, which means that no
honest user is at the risk of losing money.

HTLC. The Lightning Network (LN) [29] achieves atomicity by
using a technique called Hash Timelock Contract (HTLC). This
contract can be executed by two parties sharing an open payment
channel, e.g., Alice and Bob. First, Alice locks some of her coins
in an output that is spendable if one of the following conditions is

fulfilled. (i) If a specified timeout ¢ expires, Alice gets her money
back. (ii) If Bob presents a pre-image r4 for a certain hash value
H (ra) chosen by Alice, Bob gets the money.

An MHP in LN concatenates several HTLCs aiming for an atomic
payment. In a nutshell, suppose again there is a sender Uy who
wants to pay « coins to a receiver U, through some intermedi-
aries {Ui};e[1,n-1]- The payment receiver Un chooses a random
value r and sends y = H(r) to the sender. Then the sender sets
up an HTLC with U; by creating a new state with three outputs
(output, output,, output,) where output, contains & coins, output;
contains Up’s balance minus «, and output, contains U;’s balance.
The HTLC specifies that output, can be spent by Uy if timeout n- T
is expired, or by Uy, if she knows a value x such that H(x) = y.
Then U; sets up an HTLC with Us in a similar manner using the
same hash y but a different time, (n—1) - T. This step is repeated un-
til the receiver is reached, with a timeout of T. We call this process
the setup phase. Thereafter, the receiver can reveal r and claim
coins from the left neighbor. Using r, U,—; can claim « coins from
Up—-2 and so on, in a second phase, which is called open phase. In
this way, all payments can be performed atomically through the
path.

Note that in the open phase, each pair of parties can either agree
to update their channel to a new state off-chain, where finally Uy,
has a coins more, or otherwise the receiver can publish the state
and a transaction with witness r on-chain. The timelocks of the
HTLCs are staggered, i.e., they increase from right to left, because
we need to give enough time to an intermediary party to claim her
money from the left neighbor, when her right neighbor reveals r
and spends the output of the corresponding HTLC. LN payments
thus require (i) two rounds of pairwise, sequential communication
from sender to receiver and (ii) a linear collateral lock time in terms
of the path length. This opens the door to denial-of-service attacks,
also called griefing attacks [18] in the literature. Another attack that
threatens the security of the HTLC-based protocols is the wormhole
attack [24]. This attack allows two colluding users to exclude honest
intermediaries from the payment and steal their fees.

Blitz. Blitz [9] recently improved on that by requiring only one
round of communication through the path, and a constant collateral
lock time, while guaranteeing security in the presence of malicious
intermediaries. In this protocol, the sender creates a unique trans-
action Enable Refund, which is denoted by tx". This transaction
acts as a global event and makes the refunds atomic, following
a pay-unless-revoke paradigm. On a high level, each party U; for
i € [0,n — 1], creates an output of & that is spendable in two ways:
(i) Ui41 can claim it after some specific time T, or (ii) U; can refund
the coins if tx" is on the ledger before that time T. If all channels
are updated from sender to receiver in this way, the receiver sends
a confirmation to the sender and the payment is considered suc-
cessful. Otherwise, if any update fails, the sender posts tx¢" before
time T to the ledger to trigger all refunds.

Note that in LN, payments in the pessimistic case are performed
sequentially. In Blitz, instead, in the case of failure, all refunds
can be performed in parallel whenever tx®" appears on the ledger.
Because of that, the collateral lock time in Blitz for each party is
constant, thereby significantly reducing the effects of a griefing



attack against Blitz compared to protocols with a linear collateral
lock time.

3 SOLUTION OVERVIEW

In this work, we present Thora, the first Bitcoin-compatible pro-
tocol that enables the atomic update of arbitrary channels, going
beyond the path-based topology assumed in HTLC- or Blitz-based
payments. In other words, Thora supports multiple senders and
receivers, without requiring them to be connected to each other.
This feature enables the design of new off-chain applications as well
as to perform payments across distinct PCNs sharing the same un-
derlying blockchain. We start by informally presenting the security
and privacy goals of interest and then give an intuitive overview of
our construction.

3.1 Security and privacy goals

In this work, we focus on two fundamental properties, which we
informally define below, referring the reader to Appendix C for the
formal definitions.

(S1) Atomicity. The aim of a multi-channel update protocol is to
update a set of channels. A multi-channel update protocol achieves
atomicity if there are no two channels with at least one honest
user each where one update fails and the other one is successful,
unless at least one honest user is compensated (i.e., by getting coins
she would otherwise not get). In other words, without losing coins
(i) a malicious receiver cannot let the update of her channel be
successful even though it should fail and (ii) a malicious sender
cannot let the update fail, even though it should be successful. Note
that a malicious (irrational) user can always forfeit their own coins,
e.g., by posting an old channel state, but as this is to the benefit of
the honest user, we do not consider it as breaking atomicity.

(P1) Strong value privacy. We say that a multi-channel update
protocol achieves value privacy if in the optimistic case (i.e., when
the protocol is executed entirely offline), for each channel, no party
except for the channel owners can determine the payment value.
Note that this property is stronger than value privacy as defined
in AMCU [23]. In AMCU, each channel’s payment value is known
to all parties involved in the protocol, and the privacy of values is
preserved only against parties not involved in the protocol.

Assumptions. We assume that there is a secure and authenticated
channel between each protocol participant. This can be realized
in practice by establishing TLS channels. Also, we do not consider
the side channels that can be established by probing the nodes in
the network or by observing the opening and closing on-chain
operations, as these constitute orthogonal problems that affect all
PCNs and can be mitigated with dedicated techniques (e.g. [16]).

3.2 Keyidea

The approach we follow to construct our protocol is reminiscent of
the pay-unless-revoke paradigm adopted in Blitz [9], but it proceeds
the other way around and it should thus be seen as a revoke-unless-
pay paradigm, as discussed below. In particular, for each channel,
we aim to design an update contract that simultaneously allows the
receiver to claim her coins if all payments are successful and allows
the sender to refund her coins if at least one channel fails to perform

the payment. We propose our solution in an incremental way. First,
we start with a high-level overview of the approach. Then, we
discuss the challenges and possible solutions, until reaching the
final protocol.

Let {yi}ie[1,n] be the set of involved payment channels. For each
channel y;, based on the payment direction, we define one party as
the sender, denoted by y;.sender, and one as the receiver, denoted
by yi.receiver. We call the payment value for this channel ¢;. As a
high-level abstraction, y;.sender splits «; coins from her balance in
the channel’s current state, and generates a new output. This output
can be spent by the receiver if all payments are successful, or can be
refunded to the sender if at least one payment fails. In other words,
we need to overcome two challenges. First, the design should be
such that if a sender refunds her coins, then all other senders can also
do that. Second, if the payment in a channel is successful or a receiver
is able to claim her coins, then payments in all other channels are
forced, and senders cannot refund.

For the first challenge, we make all refunds possible only if a
timeout T expires, so after this time, all senders can refund their
coins if the coins have not been spent by the receivers. In other
words, we give all users time T to finalize the payments in their
channels. If the payment in a channel has not been finalized until
this time, the sender can use a refund transaction and get back
her coins. T is a protocol parameter, independent of the number of
channels, and the same for all channels.

For the second challenge, we make payments atomic using a
global event. For each channel, the sender updates the channel
and creates a payment transaction, which transfers coins to the
receiver only after a global event occurs before time T. When all
channels are updated correctly, senders are expected to finalize their
channels, transferring coins to their receiver neighbor. In this case,
if at least one receiver does not receive coins, the global event will be
triggered before time T, and all payment transactions will become
valid. Then, receivers can claim their cash. This global event is the
appearance of a specific transaction on the ledger, which we call
Enable Payment transaction, and denote it by tx®P. This transaction
is similar to Enable Refund transaction in the Blitz protocol, but the
logic is reversed. Instead of refunds, we make payments dependent
to a global event.

Update contract. For easing the presentation, let us assume first
that there is a trusted user, who creates tx°P and is responsible
for posting it to the ledger. tx°P contains outputs to all receivers,
which is the key to achieve atomicity. We discuss the structure of
the update contract below, which makes both the payment and the
refund available to the channel owners. In more detail, for each
channel y;, the sender y;.sender creates three transactions: txState,
tx", and txP. txSt2t€ is a new state transaction, where @; coins from
the sender are put in a contract which can be spent by the other two
transactions. Transaction tx" refunds back the «; coins to the sender
if a timeout T expires. Transaction txP has inputs from tx°P and
txt3t€ and transfers the coins to the receiver, if txP is on the ledger
before time T. The design of these transactions is shown in Figure 3.
The sender sends tx*t3'¢ and the signed txP to the receiver, who
verifies the messages and updates the channel to the new state
txstate together with the sender. In the case of success, the receiver
sends an endorsement to the trusted user.
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Figure 3: Update contract for the channel y; between two
neighboring users y;.sender and y;.receiver with the new state
tx®tat€ xg is the amount thatS; = y;.sender owns and xg, is the
amount that R; = y;.receiver owns in the state before txstat¢,

Atomic payments. If the trusted user receives endorsements from
all receivers, she informs all parties to finalize their channels and to
transfer coins to receivers safely. There are two error cases. (i) The
trusted user does not receive the endorsement from every receiver.
In this case, no party will get a message from the trusted user to
finalize the channel, so all channels are safe, and after time T they
can be restored to the initial state based on refund transactions. (ii)
If a sender gets the finalize message from the trusted user but does
not finalize her channel, the corresponding receiver informs the
trusted user to put tx®P on-chain before time T in order to force all
payments.

At this point, our goal is to eliminate the trusted user assumption.
Indeed, if we elected one of the parties for creating and publishing
tx®P, that party might act maliciously and break atomicity. For
instance, by not posting tx°P to the ledger when some senders do
not finalize their channel, or by posting tx*P when some channels
have been updated with tx*!3'® and some not, payments would no
longer be atomic. Our strategy is thus to enable all receivers to
publish txP, but only after every channel updated already to txt3te,
For this, each receiver creates her own tx®P. Each tx®P has an input
conditioned on the public keys of the creator and of all senders,
and it has outputs to all receivers. An example of this transaction
is shown in Figure 4.

All receivers send their txP to all other parties, and this time
each sender creates one txP per tx®P. Then, for each channel, the
sender and the receiver jointly update the channel using tx*%t
as we discussed earlier. If no error occurs, the receiver sends a
first endorsement to all parties instead of the trusted user. Each
sender waits until receiving all endorsements to make sure that
all channels are updated using tx*t3%, After that, the sender sends
her signature to each tx°P to the creator. Eventually, when all re-
ceivers get complete signatures to their tx®P, they send their second
endorsement and the senders are safe to start finalizing channels
and transfer coins to the receivers, because all channels have been
updated with tx5%%€_If some transfer fails, the receivers can post
txP on the ledger and force all payments.

+i.+ A
pkg,

+t.+ A
pkg,

+t.+ A
PkR,,

Figure 4: Transaction tx‘l.EP created by receiver R; for a pay-
ment with n channels, where the set of all senders is
{Sj}jeri,n] and the set of all receivers is {R;};c[1,]- This
transaction enables all payments and spends the output of
transaction txil.".

We now intuitively argue why atomicity and strong privacy
hold. For atomicity, an honest sender will only update the channel
with her receiver neighbor, if she receives the second endorsement
from all receivers, which means that every receiver is able to force
payments via tx®P. Similarly, honest receivers will only give their
second endorsement if they received all the signatures from tx¢P.
This means that if a malicious user does not send her signature
or endorsement to any or some of the users, this will not break
atomicity but potentially only prevent updates from taking place or
force the updates via some tx®P. Moreover, if a malicious receiver
sends either endorsement prematurely, she will only potentially
lose money without side effect to other channels, i.e., the adversary
will donate money to the sender without affecting the payments
in the other channels. Finally, malicious users are rational, which
means they will either refund their money or claim the money from
a forced update, if possible.

With regards to privacy, the payment value is only known to the
sender and the receiver, and in particular it is not disclosed to the
other parties involved in the protocol.

Timelocks. txP should be valid until time T, and tx" should be
valid after that time. The latter can easily be handled by using
an absolute timelock of T, which is supported by the underlying
scripting language of most cryptocurrencies, including Bitcoin.
However, we do not have access to scripting functionalities to
define outputs that are valid before time T.

We can solve this problem by applying relative timelocks. In
particular, we add a relative timelock of A for the transaction txP,
where A is the blockchain delay. According to this timelock, if txState
appears on the ledger after time T, users have enough time to post
tx" before the relative timelock of txP expires. In other words, tx"
is always accepted over txP, in the case that both are published
after time T. On the other hand, if txstate appears before time T — A,
users have enough time to post txP and force the payment.

One other issue we should consider is the unfair advantage of a
receiver who closes her channel in advance and puts her txP on
the ledger just before time T — A. In this case, the receiver can post
txP and force the payment in her channel, but other receivers, who
have not closed their channels, do not have enough time to react
to txP. To prevent this issue and give enough time to all users to
close their channels and post txP to the ledger, we add a relative
time of ¢, + A to the outputs of txP, where ¢, is an upper bound
on the time a user needs to close a channel (Figure 3). For more



detail on how we prevent race conditions, we refer the reader to
Section 8.

We point out that, as in the Lightning Network, honest users are
assumed to be online and to monitor the ledger. This assumption
is orthogonal to our construction and can be removed using the
techniques proposed in the literature for this purpose, e.g., Watch-
towers [11, 25].

Protocol overview. To wrap up, our protocol proceeds in four
main phases, as described below and visualized in Figure 5.

(1) Pre-Setup: Each receiver creates her own tx°P, and sends
it to all other parties. Each tx®P, in addition to the creator’s
signature, requires signatures from all senders, and has one
output for each receiver.

(2) Setup: The senders create tx and tx", and also one txP per
tx®P. They send tx°'2t¢ and all txP to their receiver neighbor.
Also, they include their signatures for every txP in the mes-
sage to their receiver neighbor. This ensures that receivers
can post txP on the ledger regardless of which tx®P is posted
in the end. Eventually, the receivers verify the messages and
send their first endorsement to all parties.

(3) Confirmation: When a sender gets all such endorsements,
she is sure that all channels have been updated by tx5tate,
Then, the sender signs each tx®P and sends it to the corre-
sponding receiver. When a receiver gets the signatures from
all senders, she is able to post her tx®P on the ledger, so she
sends sends a second endorsement to all parties.

(4) Finalizing: When the senders get the second endorsement
from all receivers, they know that all receivers are able to
put their txP on the ledger, so they can start updating their
channels safely. When one update fails and the correspond-
ing receiver does not get the coins, she checks if a tx®P is on
the ledger or else posts her own tx®P. Either way, she claims
her coins via some txP.

state

Fast payments. Similar to the Lightning Network, in the case
that all users are honest, updates can be carried out almost in-
stantaneously, i.e., the channels are updated as soon as the second
endorsements are received from receivers. When the senders are
ensured that each receiver has all signatures required for spending
her txP, they can safely update their channels and pay coins to
their right neighbors.

Honest update. The update contract and the corresponding trans-
actions tx%tat€ tx" and txP are exchanged between two parties
sharing a channel to guarantee that honest users do not lose their
coins and atomicity holds during the protocol execution. However,
when one of the two channel owners is able to convince the other
one that she is able to force the payment (or refund) by posting
txP (or tx") to the ledger, the two parties can update the channel
honestly to a state on which both agree. In other words, when both
parties of a channel are honest, no on-chain transaction is required.

4 CONSTRUCTION
4.1 Building blocks

Digital signatures. A digital signature scheme consists of three
algorithms: KeyGen, Sign, Vrfy.
(sk,pk) « KeyGen(1%) is a PPT algorithm, taking the security

Blockchain

set of all senders |

sender

|set of all receivers

receiver
<

il
1. Pre-Setup message

&

2. Setup message

4. Confirmation messa

5. 2nd Endorsement

6. Post txP

Figure 5: For each channel, first, the receiver sends her own
tx®P to all other parties (the Pre-Setup message). The sender
creates tx*'€ and one txP for each txP, then sends all these
transactions to the receiver (Setup message). After verifying
the message, the receiver sends her first endorsement to all
other parties. When the sender gets all endorsements, she
sends her signature to each tx°P to its creator (Confirmation
message). After getting all signatures and verifying them,
the receiver sends the second endorsement to all other par-
ties. Finally, when the receiver has enough signatures as her
tx®P witnesses, and the payment is not received, she will post
her tx°P to the ledger.

parameter 14 as input and returning a public key pk and the corre-
sponding secret key sk.

o « Sign(sk,m) is a PPT algorithm, taking a secret key sk and a
message m as inputs and returning a signature o.

{0,1} « Vrfy(o,m,pk) is a DPT algorithm, taking signature o,
a message m, and a public key pk as inputs, and returning 1 if o
is a valid signature on message m and created by the secret key
corresponding to pk. Otherwise it returns 0.

Ledger and payment channels. In this work, we use a ledger

and a PCN as black-boxes. The ledger keeps a record of balances of

users and all transactions. The PCN supports the operations open,
close, and update. For simplicity, we assume the payment channels
involved in the multi-channel updates protocol to be already open.

We assume that ledger and PCN expose the following API to the

users:

o getBalance(U): Returns the sum of all coins in the UTXOs owned
by user U on the ledger.

o splitCoins(U, v, ¢): Aggregates all UTXOs owned by U and re-
turns a transaction with an output containing v coins, which
is conditioned on ¢. If the balance of U is greater than v, the
rest is sent to an address controlled by U. If the balance of U
is less than v, the procedure returns L.

o publishTx(tx): Appends the transaction tx to the ledger after at
most A rounds, if witnesses are valid, inputs exist and are
unspent, and the sum of coins in their outputs is less than
or equal to the sum of coins in the inputs.



o updateChannel(y, tx*!3%): Initiates an update in the channel y to

the state defined by tx5t3', when called by a user € y.users.
The update is performed after at most ¢, rounds. Upon the
termination, the procedure returns UPDATE-OK in the case
of success, and UPDATE-FAIL in the case of failure to both
users.

e closeChannel(y): Closes the channel y when called by a user
€ y.users. The latest state y.st appears on the ledger after at
most t, rounds.

4.2 Protocol description

Let U := {(yi, @i) }ie[1,n] e the set of all updates, where {yi};c[1,n]
denotes the involved payment channels and «; denotes the pay-
ments value through the channel y;. Let dealer be the trigger party,
S = {yi.sender};c[1 ] and R := {y;.receiver};e(y ] the set of all
senders and all receivers respectively. S and R are known to all
parties. A simplified version of the Thora protocol and the used
macros are shown below. We refer the reader to Appendix B.5 for
a full description of the protocol. The main phases of the protocol
are as follows.

Initialization. First, we make sure that all parties are aware of
every channel who is participating in the update. The protocol then
starts from the Pre-Setup phase. The protocol execution is triggered
by a party denoted by dealer. Note that the triggering party has no
security or privacy advantages over the others.

Pre-Setup. Each user y;.receiver creates txii"', which has an output
conditioned on the public keys of y;.receiver and all senders in S.
The value of the output is n - ¢, where ¢ is the smallest possible
amount of cash. tx}" is created by calling the procedure GenTxIn.
Then, y;.receiver calls GenTxEp, which takes tx'l.n and R as inputs,
and returns a transaction tx?p with outputs to all users in R, each
containing ¢ coins. y;j.receiver sends tx?p to all users. The structure
of txiin and tx?p can be viewed in Figure 4.

Setup. y;.sender, upon receiving {tx?lD }je[1,n] from all receivers,
verifies the correctness of these transactions. Then, y;.sender cre-
ates tx3''€, tx!, and {txsj}je[l,n]- tx3tate splits ¢; coins from the
sender’s current balance in y.st, which is spendable by payment
or refund transactions. tx returns the coins back to y;.sender only
if the time T elapses. txf ; has an input from txj.p and sends the
split coins to y;.receiver. The sender creates tx3'%' by the proce-

dure GenState, tx] by the procedure GenRef, and tx?j by the
state
1 >,
the receiver neighbor. We refer the reader to Figure 3 for the struc-
ture of these transactions. y;.receiver checks the correctness of the
transactions and signatures, then sends the first endorsement to all

parties.

procedure GenPay. yj.sender sends tx and all signed txfj to

Confirmation. When a sender y;.sender gets first endorsements
from all parties in R, it updates y; using tx*#*_If the update is
performed successfully, y;.sender sends a signature on each tx;ID
to the receiver yj.receiver. Each receiver yj.receiver waits for all
signatures on tx;3p and then sends the second endorsement to all
parties if y; has been updated successfully.

Finalizing. Upon receiving the second endorsements from all
parties in R, a sender can safely update the channel to its final state
with the receiver neighbor. When updating a channel fails in this
phase, and no tx®P is on the ledger, the receiver can post her tx®P
and force the payment.

Respond. This phase is executed in every round by all users. Each
sender y;.sender checks whether the current round is greater than
T, yi has been closed, and at least one tx®P is on the ledger. If so,
yi-sender posts tx; to the ledger before y;.receiver force the payment
by posting a payment transaction. On the other side, each receiver
yi-receiver checks whether one tx;p has appeared on the ledger. If
state
L

ledger, she posts tx? jto the ledger and force the payment through

so, she closes the channel y;. After the appearance of tx on the

the channel y;.

The Thora multi-channel updates protocol

o Let dealer be a selected user as the trigger party, T the upper bound on
tlhe1 time we expect the updates to be performed, and A the blockchain
elay.
o Let l}; = {(¥i, @) }ic[1,n] De the set of all ongoing updates. Each «; is
known only for parties in y;.users.
Initialization
dealer
(1) Sendmessage (init, {yi}ie[1,n)) toall partiesin {y;.sender};c(1n)V
{vi.receiver}ic(i,n)-
All parties upon receiving (init, {y; }ic[1,n]) from dealer

(1) Verify the channels set. If decision is not participating in the protocol,
return abort.

(2) Set S := {yi.sender}ic[1,n] » R = {yi.receiver}ic[in], and P =
SUR.

(3) Go to the Pre-Setup phase.

Pre-Setup

yi.receiver

(1) Set txiin = GenTxIn(y;.receiver, {yk }ke[1,n])-

(2) Set tx;BID = GenTxEP( {¥k }ke[1,n]> tX]")-

(3) Send tx(:lD to all partiesin R U S.

All users upon receiving {tx;p }je[1,n] from all parties in R

(1) Forall j € [1,n],If CheckaEp(tX;p,yj.receiver, Ve trerin)) = L,

return abort.
(2) Go to the Setup phase.

Setup
vi-sender -
(1) Set tx§"'¢ = Genstate(a;, T, ¥;)-
(2) Set tx} = GenRe £(tx{'', y; sender).
(3) Forall j € [1,n],let 6; ; be the output of txj.ID which corresponds to

Yi.receiver, then create tx'i)j := GenPay(tx™te

, Yi-receiver, 0; j) and
the corresponding signature Uy,-,sender(txl; j).
(4) Send (tx3ate, {tx‘ij‘j, inAsende,(txzj)) }jel1,n]) tO yi.receiver.

yi.receiver upon receiving

(txgtate, {(tx?,j’ Oy;.sender (txzj)) }je [1,n]) from y;.sender

1) If’tx§tate # GenState(a;, T, ¥;), return abort.
any signature oy sender (tX; ;) 1S not correct, return abort.
2) If any sig Vi txf ) i t, return ab
orall j € [1,n],let 6; ; be the output of tx ;" owne j.receiver.
3) Forall j € [1,n], let 6; ; be the output of tx}” dbyy i
if tx?j # GenPay(tx§''®, y;.receiver, 6; ;), return abort.

(4) Send message (setup-ok;) to all parties in P.




All users upon receiving { (setup-ok; }je[1,n])

from all parties in R

(1) Go to the Confirmation phase.
Confirmation

yi.sender

(1) updateChannel(y;, tx?tate).
(2) If time #,, has expired and the message (UPDATE-OK) has not been
returned, return abort.

(3) Forall j € [1,n], send O'(txj.p) to y;.receiver.

yi.receiver upon receiving {O'(tX?p) }je[1,n]) from all parties in S

(1) If (UPDATE-OK) has been returned and for all j € [1,n], o(tx;p)

is a valid signatures, send message (confirmation-ok;) to all
parties in P, otherwise return abort.

All users upon receiving { (confirmation-ok; }je[1,n])

from all parties in R

(1) Go to the Finalizing phase.
Finalizing

yi.sender

(1) Set txtirans = GenTrans(a;, ¥;).

(2) updateChannel(y;, txia"s).

yi.receiver

(1) If the message (UPDATE-OK) has not been received for the final
transfer, and no tx°P is on the ledger, before time T — ¢, —3A, combine
received signatures from senders for txfp with own signature inside
a(tx?p) and calls publisth(tx?p, a(tx?p)).

Respond(Executed in every round 7,)

yi.receiver
(1) f o < T—t.—2A and at least one tx°P is on-chain, closeChannel(y;).
(2) After tx?tate is accepted on the blockchain within at most ¢, rounds,
wait A rounds. Let U(tx?) be a signature using the secret key
sky; receiver in addition to received signature from y;.sender for
tx'?. publisth(txf, O'(tX?)).
yi-sender

state

(1) Ifzx > T, is closed and tx;
but not tx?, publishTx(tx}, oy, sender (tx})).

and at least one tx°P is on the ledger,

Subprocedures used in the multi-channel updates protocol

GenTxIn(R, {Yk tke[1,n]):

(1) n= {yk tkerngl

(2) ¢ = MultiSig(R, y1.sender, yz.sender, ..., yn.sender).
(3) Return tx'" := splitCoins(R, n - €, ¢).

GenTXEP({yk }ke[1,n]> tX"):

(1) n= {yx tkeung
(2) If tx".output[0].cash < n - ¢, return L.
(3) outputList := 0.
(4) For each R; := y;.receiver for all i € [1,n]:
e outputList = outputList U (&, OneSig(R;) A RelTime(t. + A))
(5) id := H(tx".output[0], outputList).
(6) Return tx°P := (id, tx".output[0], outputList).
CheckTXEpP(tx°P, R,{yk }ke[1,n]):

(1) n= [ {yx tkerngl

(2) If tx°P.input.cash < n-¢eor
txP.input.¢p # MultiSig(R, y1.sender, yy.sender, ..., yn.sender),
return L.

(3) If [tx®P.output| # n, return L.

(4) For all outputs (cash, ¢) € tx°P.output if cash # ¢ or
¢ # (OneSig(x), RelTime(#; + A)), where x is one of the receivers,

return 1.
(5) Return T.

GenState(a, T, Y):

(1) Let @ := y.st be the current state of channel ¥ and contains two
outputs 05 = (x5, OneSig(y.sender)) and
0, = (xr, OneSig(y.receiver)).
(2) fxs < areturn L.
(3) Return 0 := (6, 01, 03) such that:
o 6y := (a, (OneSig(y.sender) A AbsTime(T))V
(MultiSig(y.sender, y.receiver) A RelTime(t. + A)))
e 0; := (x5 — a,OneSig(y.sender))
o 0, := (x,,OneSig(y.receiver))

GenRe£(tx*'3, y; sender):

(1) Return a transaction tx" such that tx".input := tx**2 output[0] and
tx".output := (tx°13% output [0].cash, OneSig(y;.sender).

state

GenPay(tx*'¢, y.receiver, 0):

(1) Return a transaction txP such that txP.input := (tx**#.output[0], §)
and
txP.output = (tx°'¥%€ output[0].cash + O.cash, OneSig(y.receiver).

(1) Let 0" :=y.st = (6, 6], 6;) be the current state of channel y.
(2) Return 0 := (0o, 01) such that:

o 0 = (0].cash, OneSig(y.sender))

o 0) := (0;.cash + a, OneSig (Y .receiver))

5 SECURITY ANALYSIS
5.1 Security model

We model the security of our multi-channel updates protocol in
the synchronous setting and global universal composability (GUC)
framework [15]. Our security model is similar to the one adopted in
prior work [7, 9, 17]. In particular, the global ledger £ is modeled
by the functionality Gjegger, Which is parameterized by a signa-
ture scheme ¥ and a blockchain delay A. We model the notion of
communication by the ideal functionality FGpc and the time by
G:lock- Moreover, we define an ideal functionality G.panner> Which
provides open, update, and close operations for payment channels.

The formal security analysis is detailed in Appendix B. In this sec-
tion, we briefly present a high-level overview of the security model.
First, we provide an ideal functionality %;,p4q4re, Which describes
an ideal multi-channel update protocol with atomicity and strong
value privacy properties. #y,p4qze is parameterized by a blockchain
delay A and a time T, which determine an upper bound on the ex-
pected time for a successful Thora payment. The ideal functionality
describes input/output behaviors of the payment protocol users,
and their impacts on the global ledger.

We then describe the Thora protocol IT formally, and show that
IT GUC-realizes Fpqqre- Intuitively, this means that we design a
simulator X, which translates any attack on the protocol IT on the
ideal functionality #,pq4qre- We then show that no PPT environ-
ment can distinguish between interacting with the real world and
interacting with the ideal world. Thus, II provides both atomicity
and strong value privacy. This is stated by Theorem 1 and formally
proven in Appendix B.

Theorem 1. ForanyA,T € N, the protocol II GUC-realizes the ideal
functionality Fpqare-



5.2 High level functionality description

We give a high level description of our channel update ideal func-
tionality %, 544se and refer to Appendix B for the formal UC de-
scription. Fpgqre can be called for a set of channels to be updated,
essentially with the goal of atomically performing payments in
each channel from sender to receiver. Similar to the protocol, the
ideal functionality proceeds in the following phases.

In the initialization phase, the set of channels to be updated is
registered with %, 44s.. This phase is initiated by a dealer, which
can be any party that is part of the set of channels to be updated.
Following this, in phase pre-setup, %, pqare prepares all channels for
update by creating a synchronizing transaction tx°P per channel
that can later be used to force all payments. In phase setup, Fpgate
proceeds with preparing an intermediary state update for each
channel. In this intermediary state, the payment can be enforced if
any of the synchronizing transactions gets posted to Gjeqger and
reverted after timeout T. Then, in phase confirmation, the updates
to the intermediary states are performed via G.hannei-

The functionality #,pgaze proceeds to the finalizing phase iff all
updates are successful and either the set of senders are honest or the
simulator provided a valid signature from all dishonest senders for
the synchronizing transactions. This is crucial, because at this point
Fupdate can enforce the payment for honest receivers and only then
it is safe to start finalizing. In the finalizing phase, all channels are
finalized, i.e., updated to the state where the payment went through.
If an update fails, 7,44 can utilize the synchronizing transaction
to ensure that the payment is forced for honest receivers.

Further, the functionality checks each round if a synchronizing
transaction tx°P was posted to Gjegger- This can be achieved by
expecting the environment to pass the execution token to Fpgare
each round. If it does not, #;,p4qre Outputs an error the next time it
gets the execution token. In case that a synchronizing transaction
is posted, F;pgaze can force the payment on Gjeqge,- Similarly, a
refund can be forced after T.

5.3 Informal security analysis

Here, we informally argue why the Thora protocol description
shown in Section 4.2 achieves atomicity and strong value privacy
as defined in Section 3.1.

Atomicity. We want to show that if there exist two channels with
different update statuses, where each has at least one honest user,
then the party deviating from the protocol loses the payment value
in favour of the other (honest) channel end-point.

Assume that for two channels y;, y;, each with at least one honest
user and with payment values @; and «;, y; is updated successfully,
but y; is reverted. There are two possible cases as follows.

(1) The final update in y; is done by y;.sender using tx{"2"s. If
vi-sender has followed the protocol correctly, she should re-
ceive confirmation-ok message from all receivers, includ-
ing yj.receiver. So, y;.receiver has enough signatures to put txP
on the ledger and force the payment. If y;.sender has finalized
yi without receiving all confirmation-ok messages, she is
deviating from the protocol at the cost of losing her funds to
Yi-receiver. Also, if y;.receiver has sent confirmation-ok

without having enough signatures or refuses to force the pay-
ment using tx%, she is deviating from the protocol at the cost
of losing her funds to y;.sender. None of the cases would affect
others’ security.
(2) The payment in y; is forced via posting an enable payment
transaction txzp and txf L on the ledger. Thus, all other receivers,
including y;.receiver, can force the payment in their channels us-
ing txzp. Note that tx:P contains an output owned by yj-receiver,
otherwise this user would not send setup—ok to other parties,
including y;.sender. If y;.sender continued the protocol with-
out receiving all setup-ok messages, she is deviating from
protocol at the cost of losing her funds. Also, if y;.receiver has

sent setup-ok having incorrect ‘cxip or refuses to force the

payment using tx.", she is deviating from the protocol at the
cost of losing her funds to y;.sender. None of the cases would
affect others’ security.

Strong value privacy. For an optimistic execution of the protocol,
the value of payment «; through each channel y; is only known
to the sender and the receiver of this channel. ; is used only
in tx?tate, tx, and {txgj }je[1,n]- These transactions are exchanged
between y;.sender and y;.receiver through secure and authenticated
channels. If both parties are honest, the payment value is not visible
to an adversary.

6 EVALUATION

In this section, we analyze the performance of our construction.
We conducted an asymptotic analysis to determine the number
of transactions required on-chain and off-chain. We also built an
implementation to evaluate the size of these transactions and to
check the compatibility of the construction with Bitcoin’s scripting
functionalities. The implementation is open-source and the code
is publicly available [6]. Let n be the number of payment channels
to be updated, which means that there are n possibly non-distinct
senders and n possibly non-distinct receivers, and m € [0, n] be
the number of channels in which parties do not agree to update
off-chain, and therefore on-chain transactions are required to settle
the dispute.

Number and size of transactions. In the honest case, Thora
happens completely off-chain, requiring no on-chain cost. The
(worst-case) on-chain overhead of the scheme is linear, requiring
2m + 1 transactions to be posted on-chain. As shown in Table 2
and discussed below, this in line with the state-of-the-art Bitcoin-
compatible PCN protocols (e.g., Lightning Network and Blitz). In
Thora, however, users are required to store a linear number of off-
chain transactions per channel (which results in a quadratic number
of total off-chain transactions), whereas the off-chain overhead for
the existing Bitcoin-compatible PCN protocols is only constant per
channel (or linear in total). We argue that this is a reasonable price
to pay for supporting a larger class of off-chain applications, as (i)
this increase does not lead to any extra on-chain fees and (ii) the
size is small enough in practice to be easily handled even on mobile
devices, as we show now.

The transaction tx®P is 141n+ 160 bytes large, since it requires an
output and a signature for each channel. Making use of Taproot’s
aggregated Schnorr signatures [2], one can reduce the size of this



transaction to 38n + 256 bytes. This is achieved by eliminating n
public keys (32 bytes) and signatures (70-72 bytes) from the redeem
script in tx°P, adding instead one Schnorr public key (32 bytes),
which is the aggregation of public keys of one receiver and n senders,
and one Schnorr signature (64 bytes).

Moreover, each channel requires n transactions txP (501 bytes
each), one transaction tx" (272 bytes), an input transaction to tx°P
(224 bytes), a channel update of size 380 bytes for initiating the
update, and another one of size 337 bytes for finalizing the update.
For the whole protocol execution, this leads to an off-chain storage
overhead of 539n + 1469 bytes per channel as we plot in Figure 6.
For example, even when updating n = 100 channels, the off-chain
transaction overhead is only around 55KB per channel, or around
5.5MB are exchanged in total.

Collateral. Because the success of the update depends on the
global event tx°P, Thora manages a constant collateral lock time.
For the payment protocols LN [29] and AMHL [24], this collateral is
instead linear in the number of channels, as they require a growing
timelock for each channel to propagate the preimage required for
unlocking. In PT [19], the time is logarithmic due to the underlying
tree-based structure. Finally, Blitz [9], Sprites [27], and AMCU [18]
achieve also constant collateral, at the price of various security,
expressiveness, and compatibility trade-offs (cf. Tables 1 and 2).

Computational overhead. Computationally, the protocol needs
to create and verify transactions (mostly string operations) and
handle signatures. In particular, the computational overhead is
dominated by computing and verifying signatures. Each sender
needs to sign up to 2n+2 transactions, more specifically the channel
update transaction tx*'3€, one force refund transaction tx” which
they need only in case of dispute, n force payment transactions txP
for their receiver neighbors, and n transactions tx®P, one for each
receiver. Each receiver signs up to n+2 transactions, i.e., the channel
update transaction tx*'3t€ one force payment transaction txP which
they need only in case of dispute, and their own transaction tx®P.
In our implementation, the time required for creating and verifying
one signature is about 30ms on average.

On-chain comparison with LN and Blitz. In Table 3, we com-
pare the on-chain costs of Thora with LN and Blitz, the two state-of-
the-art solutions for path-based payments. We assume that Thora
is used to conduct such a payment and focus on the on-chain load
on the blockchain together with the associated fees, which we cal-
culate using the current price of Bitcoin in USD [4] and the current
average fee per bytes [5] (February 2022). When all parties are
honest, both protocols are executed completely off-chain, and no
transaction is required to appear on the ledger, thus here we are in-
terested in the case where parties need to force either the payment
or the refund.

Thora and Blitz have similar message costs, just the cost for the
payment and refund transactions are inverted, which corresponds
to the fact that one adopts the pay-unless-revoke paradigm and the
other one the revoke-unless-pay paradigm. The size of the channel
state transaction holding the update contract (370 bytes) is the
same in all three constructions, due to our usage of P2SH addresses.
The size of the payment transaction in LN is 451 bytes, the size of
the refund is 302 bytes. The main difference between the on-chain
overhead of these two protocols is tx°P in Thora. In the case of

Table 2: Asymptotic comparison of current solutions, with n
being the number of channels.

Collateral | # tx (on-chain) | # tx (off-chain)
LN [29] O(n) O(n) O(n)
AMHL [24] O(n) O(n) O(n)
AMCU [18] o(1) O(n) O(n)
PT [19] O(logn) O(n) O(n)
Blitz [9] o(1) O(n) O(n)
Sprites [27] 0(1) 0(n) O(n)
Thora 0(1) O(n) 0(n?)
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Figure 6: Per-channel off-chain storage overhead for varying
number of synchronized channels.

forced payments, in addition to one txP per channel, also one tx®P
in total has to be posted to the ledger to enable payments in all
channels. This overhead is present in the Blitz refund case. Aside
from this, the on-chain fees of Thora are similar to those for LN
(the payment transaction is 6% more expensive, while the refund
transaction is 6% cheaper). A difference to LN and similarity to Blitz
is, that the user posting tx®? in Thora (or the equivalent transaction
in Blitz) loses (n — 1) - € coins. In Bitcoin, outputs cannot hold 0
coins, therefore € is chosen to be the smallest possible value, e.g.,
for P2ZWPKH outputs this is currently 294 satoshis (roughly 0.06
USD). This cost is not present in LN.

7 APPLICATIONS

Most of the existing PCN solutions only support payments from one
sender to one receiver and these are to be connected by a path of
open channels. This limitation prevents the design of applications
with multiple senders or multiple receivers, or those involving
payments through two or more distinct PCNs sharing the same
blockchain. We show below how Thora overcomes these limitations.

Mass payments. Mass payments can be used by entities that need
to perform a high volume of payments. Suppose that a single entity
S wants to pay multiple recipients Ry, Ry, ..., R, simultaneously, with
corresponding values ay, az, ..., an. Here, atomicity can be highly
desirable as it guarantees that either all payments are performed cor-
rectly or the sender is refunded. For simplicity, we assume that S has
a direct channel y; to each receiver R;. The sender S can use Thora
with the input of the update set U := {(y1, «1), (y2, @2), ..., (Yn, an)}
to perform a mass payment in an atomic and off-chain way. Going
one step further, the sender does not need to be directly connected
to all receivers, but instead can set up updates via some intermedi-
aries. A special case of this is when one sender wants to atomically



Table 3: On-chain overhead and cost comparison of LN, Blitz and Thora. n is the number of channels and m € [0,n] is the

number of disputed channels.

Overhead LN (Bytes || USD) | Blitz (Bytes || USD) Thora (Bytes || USD)
Payment transaction 821m || 1.50m 642m || 1.17m 871m || 1.59m
Refund transaction 672m || 1.23m 871m || 1.59m 642m || 1.17m

Cost of enforcing pay/refund 0 257 +35n || 0.47 + 0.06n | 256 +36n || 0.47 + 0.06n
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Figure 7: An example of rebalancing with 4 users and 5
channels. Each user holds the same coins after the rebalanc-
ing as before, but distribution of coins through channels is
changed in order to refund depleted channels. In this case,
rebalancing cannot be conducted using a single path-formed
payment without using a channel more than once.

pay one receiver over multiple paths at once, e.g., when the balance
of one path is not sufficient. This is known as atomic multi-path
payment 3] and can be achieved with Thora.

Rebalancing. In a bidirectional channel, when payments in one
direction are more frequent than in the other direction, the chan-
nel becomes skewed and is eventually reduced to a unidirectional
channel. Users can close the channel and create a new channel with
fresh balances, but for that they need to post some transactions to
the blockchain. Alternatively, if there exists a path of channels be-
tween the two users that wish to rebalance their channel, they can
leverage a payment through this path to replenishing the depleted
channel. This can be more efficient if there are multiple users on
the path that wish to rebalance their channels. However, as the
length of the path grows, refunding becomes more expensive in
terms of fees and collateral [18, 21].

Moreover, in some cases, rebalancing is performed through more
complex topologies, where (i) a single path payment does not suffice
without using certain channels more than once, see Figure 7, or
(ii) rebalancing can be made more efficient by making use of the
cancelling out effect, as shown in [12]. In the example of Figure 7,
users hold the same amount of coins after the payments as before,
but the distribution of coins in the channels is changed. We can
perform rebalancing in this case by initiating Thora with the input
of the update set {(y1,3), (y2,3), (y3,7), (ya,4), (y5,4)}. The set of
senders and receivers are defined based on the direction of the
payment in each channel.

Transaction aggregation. Suppose Sy wants to pay 5 coins to Ry
and S; wants to pay 5 coins to S, however, there are only channels
between Sy and Ry and between S; and R;. A more generalized

version of this problem was introduced as transaction aggregation
in [30] along with a construction that uses Thora as a building
block, which solves this problem.

Crowdfunding. This application is similar to mass payments, but
reversed. We have multiple senders Sy, S1, ..., Sn who want to fund
one single receiver R in an atomic way. In such a case, each sender
S; may want to pay «; coins to the receiver only when there is a
guarantee that all other senders will pay their funds in the same way.
Analogous to previous cases, we can use Thora to perform trustless
and off-chain crowdfunding by including all involved channels and
corresponding payments values in the update set.

8 DISCUSSION

Enhancing privacy. In the case of a dispute when one tx*P ap-
pears on the ledger, users can decide to perform honest updates
(Section 3) and to post no transaction to the ledger. In this way,
they can still preserve the privacy of payment values and save the
cost of transaction fees. However, because tx®P includes outputs to
all receivers, receivers’ identities are revealed publicly when tx®P is
posted.

To enhance privacy, we can use stealth addresses [31]. On a high
level, instead of existing addresses, receivers can generate fresh
addresses for other receivers, and create tx°P using new addresses.
Thus, if any tx®P is posted to the ledger and the two channel users
decide to update the channel honestly, their identities will stay
private from all parties not involved in the protocol. For more
details on stealth addresses, we refer the reader to Appendix A.

Accountability. Thora guarantees strong value privacy for off-
chain payments. However, in some applications, users may have an
interest in accounting payments instead of privacy. For instance,
in the crowdfunding application, suppose that all senders have
planned to fund the receiver entity with an identical value. Here,
the users want to be sure all updates are consistent with the agreed
payment value. In this case, the senders can use signed versions of
x5t and the set of txP as receipts and prove their correct behavior.

Communication and computation complexity. As previously
discussed, parties have to exchange off-chain messages with each
other (i.e., txP and signatures), which leads to quadratic communi-
cation overhead. By extending the role of dealer to a user whom
all parties send these messages and who aggregates the signatures,
one could asymptotically reduce the number of signatures that
each party has to handle from linear to constant, since only the
aggregated signature is sent instead of every individual one. Note
that, despite the resulting gain, the size of the transactions is, tech-
nically speaking, still quadratic from an asymptotical point of view,



because tx°P has a linear number of outputs and there is one for
every channel.

Race condition. When a receiver posts tx®P, it will appear in the
ledger after at most A rounds. According to Section 3, we put a
timelock of ¢ + A on outputs of a tx®P to give enough time to users
to close their channels and post txP. Thus, for a rational receiver,
the latest possible time to publish tx°P is T — 3A — ¢, so that it is
accepted at T — 2A — t, and the timelock of the outputs runs out at
T — A. This ensures that the payment txP has precedence over the
refund tx". However, if a receiver posts tx®P after T — 3A — . and
before T — 2A — t,, the timelock on the outputs of tx°P could run out
just before T, at which point the refunds tx" become possible. Now,
there is a potential race between the payments and the refunds.
In particular, there is a chance that one receiver can post txP just
before T, and in a another channel, a sender might post a refund.

Of course, this behaviour is irrational since the receiver puts
her balance and possibly the one of other malicious receivers at
risk, as other channels with honest receivers will have already ei-
ther updated honestly or posted their tx°P before T — 3A — t.. If
interested, we can anyway prevent this race condition caused by
irrational receivers by changing the spending condition of tx". In
more detail, each receiver R sets the condition of her tx" as follows:
(MultiSig(R, S1, S2, ..., Sn) ARelTime(A)) V(AbsTime(T — 3A — t;)),
where S; is the sender of channel y;. According to the new condi-
tion, the receiver is forced to post tx®P before T — 5A — t., because
otherwise, any party, e.g., also miners, can spend tx'" and prevent
forced payments. This mechanism is similar to the one adopted in
Blitz [9].

9 CONCLUSION

In this work, we presented Thora, the first Bitcoin-compatible multi-
channel update protocol that guarantees atomicity of payments
without restrictions on the channel topology. Moreover, Thora
enables channel owners to keep their payment value private.

We defined an ideal functionality to model the security and
privacy notations of interest, and showed that Thora is a secure
realization thereof within the Global Universal Composability frame-
work. Further, we evaluated the performance and showed that the
collateral is constant and independent of the number of channels.
Our construction does not require Turing-complete smart contracts
and can be implemented on top of any blockchain that supports
time-locks and signatures in its scripting language.

An interesting direction of future work is exploring the possi-
bility to extend Thora to achieve a threshold atomicity property
in generic channel networks. For instance a k-threshold atomicity
holds, if at least k channels are updated successfully or else, all
channels are reverted to the initial state. This extension can fur-
ther widen the range of practical applications of Thora payments.
Other venues of future research are interoperability, exploring how
to refine Thora in order to support atomic channel updates over
different blockchains, and optimizing Thora in terms of storage and
communication for more specific network topologies.
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A STEALTH ADDRESSES

The stealth addresses scheme allows us to derive one-time and
fresh public keys in a digital signature scheme for a specific user.
Here, we briefly describe a basic dual-key stealth addresses protocol
(DKSAP). Assume that G is a base point of an elliptic curve, in
which the difficulty of the elliptic curve discrete logarithm problem

(ECDLP) [22] holds. Moreover, assume that there is a user (say

Alice) with two pairs of private/public keys (a, A), (b, B) such that

A =a-Gand B = b-G. We want to derive fresh public keys for Alice.

A DKSAP is a tuple of two algorithms DKSAP := (GenPk, GenSk)

defined as follows.

e (P,R) « GenPk(A, B): APPT algorithm takes two Alice’s public
keys A, B as inputs and returns a fresh public key for Alice P
along with an additional value R, which is required for deriving
the secret key for P. For that, a random r P [0,1—1] is sampled
uniformly, where [ is the prime order of the underlying elliptic
curve. Then, P is computed as P := H(r - A) - G+ B, H is a hash
function modelled as a random oracle. Moreover, R is computed
asR:=r-G.

e p «— GenSk(a,b,P,R): A DPT algorithm takes two Alice’s secret
keys a, b and P, R generated by GenPk algorithm as inputs and
returns the secret key corresponding to P. For that p is computed
asp:=H(a-R)+b.

Correctness of algorithms follows directly: p - G = (H(a - R) +
by -G=H(a-r-G)-G+b-G=H(r-A)-G+B=P.In[31] it
is argued that the new address P is unlikable for a spectator, even
when observing R.

B UC MODELING

In this section, we formalize our construction in the global UC
framework (GUC) [15], which is an extension of the standard UC
framework [14] that allows for a global setup. We use this global
step for modelling the ledger. Through this section, first, we provide
some preliminaries. Then, we define an ideal functionality for the
multi-channel updates protocol. Our model follows closely the
model in [7, 9, 10].

B.1 Preliminaries, communication model and
threat model

In the real world, a protocol IT is executed by a set of parties # and in
the presence of an adversary A. A security parameter A € N and an
auxiliary input z € {0, 1}* are given to the adversary as inputs. We
consider a static corruption model, which means that A can corrupt
any party P; € P at the beginning of the protocol execution. A
controls corrupted parties and learns their internal states. All parties
in P and A take their input from a special entity called environment
&, which represents everything external to the protocol. This entity
observes all output messages from participants. We assume that the
communication network is synchronous, and the protocol execution
takes place in rounds. The global ideal functionality G.jocx [20]
represents a global clock that proceeds to the next round if all
honest parties indicate that they are ready to do so. Every entity
always knows the current round. Communications between parties
in P are through authenticated channels with guaranteed delivery
after exactly one round. If a party P sends a message to party Q in
round t, then Q receives that message in the beginning of round ¢ +1
and knows that P has sent the message. We model authenticated
channels by an ideal functionality FGpc [17]. The adversary can
read and reorder the messages sent in the same round, but can not
modify or delay messages. Communications involving A, & or the
simulator X and every computation that a party executes locally
take zero rounds.

B.2 Ledger and channels

We model a UTXO based blockchain in the ideal functionality
Gledger- We denote the blockchain delay as A, and the blockchain’s
signature scheme by . Gjegger communicates with a fixed set of
parties P.

Initially, the environment & chooses a key pair (skp, pkp) for
each P € P and registers it to the ledger by sending
(sid,register, pkp) to Giedger- Also, & sets the initial state of L,
which is a publicly accessible set of all published transactions. A
party P € P can post a transaction tx via message (sid, POST, tx)
to Giedger- The transaction will be added to the ledger after at most
A rounds, if it is valid. The exact number of delay rounds is chosen
by the adversary. In this work, we consider a simplified model for
the underlying blockchain and assume that the set of users is fixed
instead of allowing them to join or leave dynamically. For a more
precise model, we refer the reader to works [13]. We define an
ideal functionality Ghanner [8], which is built on top of Gjeqger
and provides open, update, and close procedures related to payment
channels. We assume that closing a channel takes at most ¢, rounds
and updating a channel takes at most #, rounds. For simplicity,
we assume that channels involved in the multi-channel updates
protocol have already been registered and opened with the ledger
functionality.

The complete API of Gepanner and Gledger are shown below.
We hide the calls to G.jock and Fgpc in our notation. Instead of

t
explicitly calling these functionalities, we write msg < X to denote

t
sending message msg to party X in round t and also msg < X to
denote receiving message msg from party X in round ¢.
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Interface of Gjeqger (A,2) [7, 9]

This functionality keeps a record of the public keys of parties. Also, all
transactions that are posted (and accepted, see below) are stored in the
publicly accessible set L containing tuples of all accepted transactions .
Parameters:
A:  upper bound on the number of rounds it takes a valid
transaction to be published on £
3:  adigital signature scheme
APIL:
Messages from & via a dummy user P € P:
o (sid,REGISTER, pkp) <> P:
This function adds an entry (pkp, P) to PKI consisting of the public
key pkp and the user P, if it does not already exist.

e (sid,POST,tx) < P:
This function checks if tx is a valid transaction and if yes, accepts it
on L after at most A rounds.

Interface of G pannel (T, k) [7, 9]

Parameters:
T: upper bound on the maximum number of consecutive
off-chain communication rounds between channel users
k: number of ways the channel state can be published on the
ledger
APIL:
Messages from & via a dummy user P:
o (sid,CREATE,7,tidp) < P:
Let y be the attribute tuple (y.id, y.users, y.cash, y.st), where y.id €
{0,1}* is the identifier of the channel, y.users C P are the users of
the channel (and P € y.users), y.cash € R’ is the total money in the
channel and Y.st is the initial state of the channel. tidp defines P’s
input for the funding transaction of the channel. When invoked, this
function asks y.otherParty to create a new channel.
(sid, UPDATE, id, §) <> P:
Let ¥ be the channel where y.id = id. When invoked by P € y.users
and both parties agree, the channel y (if it exists) is updated to the new

state 6. If the parties disagree or at least one party is dishonest, the

update can fail or the channel can be forcefully closed to either the old

or the new state. Regardless of the outcome, we say that ¢, is the upper

bound that an update takes. In the successful case, (sid, UPDATED, id, )
<7+,

SN Y-users is output.

(sid,CLOSE, id) < P:

Will close the channel y, where y.id = id, either peacefully or forcefully.

After at most ¢, in round < 7 + f, a transaction tx with the current

state y.st as output (tx.output := y.st) appears on L (the public ledger

of G, ledger)-

B.3 The UC-security definition

Closely following [9, 10], we define II as a hybrid protocol that
accesses to ideal functionality F,,¢1im consisting of FGpc, Giedger
Gehannel> a1d Gejock- In the beginning, the environment & supplies
inputs to the parties in # and the adversary A with a security

parameter A and auxiliary input z. We denote the output that &
ﬁ)relim
IL,LAE

ideal protocol of the ideal functionality #,pgase, Where the dummy
users simply forward their input to %,p4ase- With access to func-

tionalities %,;¢jim, We denote the output of this idealized protocol

observes as the ensemble EXEC (A, 2). Vﬂpdate denotes the

Fpretim
as EXEC.? A, 2).
Tupdate’X’S( )

If a protocol IT GUC-realizes an ideal functionality %544z, then
any attack that is possible on the real world protocol I can be
carried out against the ideal protocol "¢, pdate and vice versa.

Definition 1. A protocol II GUC-realizes an ideal functionality
Fupdates WLL. Fprejim, if for every adversary A there exists a sim-
ulator X such that for any z € {0,1}* and A € N, we have

ﬁ)relim

Fpretim (3 z) ~¢ EXEC.

EXECH,?I,S

Tupdate’X’S(A, Z) (1)

where =, denotes computational indistinguishability.

B.4 Ideal functionality

Here, we define our the ideal functionality %, 544t¢- This function-
ality can output an ERROR message, e.g., when a transaction does
not appear on the ledger as it should. When %,,,44¢ outputs ERROR,
any guarantees are lost. Hence, we are only interested in protocols
that realize #,p44¢e and never output an ERROR. The subprocedures
used in Fpgaze, I1, and X follow the same logic as the macros
defined in Section 4.2.

Note that in % pdare and I1, for better readability, we use the set
P to store all parties, the set S to store all senders, and the set R
to store all receivers. We know that two different channels may
have a common user. Thus, for handling duplicated identifiers in
the aforementioned sets, we implicitly assign different identifiers
for users of different channels. Consequently, the size of each set is
equal to the number of channels.

Ideal Functionality 7, pqare (A, T)

Parameters:
A: Upper bound on the time it takes a transaction to appear
on L.

T : Upper bound on the time expected for successful pay-
ments.

Local variables:
idSet : A set of tuples containing pairs of ids and channels

(pid, y;) to avoid duplicated channels.

r: Asetoftuples (pid,y;, tx?tate, txg, {tX?’j, 0ij}jelin])

that for each payment id pid and channel y;, store
the state transaction tx?tate, refund transaction tx} and
a set of tuples for payment transactions (txti),j’ 0ij)

where 0; ; is the output of txj.p used in tx?j.

b A map, storing for a given pid a copy of all tx°P ina
set {txj.p }Yieln]-

ty Time required to perform a ledger channel update
honestly.

te: Time it takes at most to close a channel.

Start (executed in the beginning in round Zstart)

2 2
Send (sid, start) &R X and upon (sid, start-ok, #,, &) P

X set ty and t. accordingly.
Initialization
Let 7 be the current round, and S, R, and P be initially empty sets.

(1) If (sid, pid, CHANNELS—SET, {¥i }ic[1,n]) & dealer where the
dealer is honest, do the following.




(a) Send (sid,pid, send-init, {y;} je[1n]. dealer) < X.
(b) For all honest P; € {yj.sender};c[1,,] U {yi.receiver}ic[in],

send (sid, pid, INIT-CHECK, {y;} je[1.n]) L p
(2) Upon each message (sid, pid, send-check, {yi}ic(1,n], Pi) L X,
send (sid, pid, INTT-CHECK, {y; } je[1.n]) “— Pi.

(3) Upon (sid,pid, INIT-CHECKED, {¥;} je[1,n]) aas P; for each
honest P;, do following.
(a) Send (sid, pid, send-init-ok, {y;} je[in], Pi) > X.
(b) If this is the first INIT-CHECKED message from an honest
party, for each y; the tuple (pid,y;) ¢ idSet, set idSet = idSet U
{(pid,y;)}, add y;.sender to S and P, and add y;.receiver to R

and P.
(4) If there is an honest P; € P, where the message

1

(sid,pid, INIT-CHECKED, {Y; } je[1,n]) L P; is not received, go
idle.

(5) If there is an honest P; € # and a corrupted P; € P, where the

2

message (sid, pid, init-acc, P,-,Pj) L X is not received, remove
P; from £ and S or R.

(6) Go to the Pre-Setup phase, and pass the set of channels with the
receiver in P to the next phase.

Pre-Setup
Let 7 be the current round.
(1) For each channels y; do following.
(a) Let tx}" := GenTxIn(y;.receiver, {Yk.}kE[l,n])
(b) Let tx?p = GenTxEP({Yk }ke[1,n], tX}"), and add txjp to ¥(pid)
(c) If yj.receiver is corrupted, send
(sid,pid,presetup—req,)/i,txip) 54X
(d) Else if y;.receiver is honest, for all corrupted P; € ¥ send
(sid, pid, send-presetup, txfp,yixeceiver, Pj) S X
(2) If there is an honest P; € ¥ and a corrupted P; € R, where the
1
message (sid,pid,presetup-acc, P;, Pj) LAY X is not received,
remove P; from P and S or R.

(3) Go to the Setup phase, and pass the set of channels with at least one
user in P to the next phase.

Setup

Let 7 be the current round.

(1) For each channel y; if both y;.sender and y;.receiver are honest, do
the following.

a) If y;.sender € P, (sid,pid, REQ-VALUE, y; 5 ;.sender.
Y Y Y

(b) Upon (sid,pid, VALUE,y;, ;) S vi-sender, continue. Other-
wise skip the steps (c) to (g).

(c) Let tx?tate = GenState(a;, T,7;), and
tx] := GenRe £(tx'', y;.sender).

(d) Forall j € [1,n],let 6; ; be the output oftxj.p which corresponds
to yj.receiver, then create tx?j = GenPay(tx?a'e, yi.receiver,
0i ).

(e) If yj.receiver € P, send

1
(sid,pid, REQ-VALUE, y;) B yi-receiver.
1
(f) Upon (sid, pid, VALUE,¥;, a;) st yi-receiver, continue. Oth-

erwise skip the step (g).
(g) For all corrupted P; € P, send

(sid, pid, send-setup-ok, y;.receiver, P;) J—Ji X.
2) Else If y;.sender is corrupted and y;.receiver is honest, do the follow-
Y p Y
ing.
1
(a) If (sid,pid, setup-acc,¥;, txState, {txt'),j}}jeu,nj) 5 X set
a; = tx?tate.output[O].caSh. Otherwise, skip the steps (b) to (d).

(b) If y;.receiver € P, send
(sid, pid, REQ-VALUE, y;) fT—H> yi.receiver.

(c) Upon (sid,pid, VALUE,y;, a;) L yi.receiver with a same

a; as the step(b) and tx§'"® = GenState(a;, T, ¥;), continue.
Otherwise skip the step (e).

(d) For all corrupted P; € P, send

1
(sid, pid, send-setup-ok, P;, Pj) AN X.
(3) Else If y;.sender is honest and y;.receiver is corrupted, do the follow-
ing.
(a) If yi.sender € P, (sid,pid, REQ-VALUE,y;) < vi-sender.
(b) Upon (sid, pid, VALUE,y;, ;) S vi-sender, continue. Other-
wise skip the steps (c) to (e).
(c) Let tx§' .= GenState(a;, T, ¥;), and
tx} := GenRe f(tx?tate, yi.sender).
(d) Forall j € [1,n],let 0; j be the output of txj.p which corresponds

state

to yi.receiver, then create tx?j = GenPay(txi , Yi.receiver,

0;.5)-
(e) Send (sid,pid, send-setup,¥;, txS'ae,
741
{(tx?)ﬁ Oy;.sender (tXE—J’j)) }je [l,n]) — X.
(4) If there is an honest receiver P; € R, where the message

(sid,pid, VALUE,y;, a;) <—T:1° P; is not received, go idle.
(5) If there is an honest P; € # and a corrupted P; € R, where the

message (sid,pid, setup-finalized,P;,Pj) <—Ti’ X is not re-
ceived, remove P; from P and S or R.
(6) Go to the Confirmation phase. Pass the set of channels with at least
one user in P to the next phase.
Confirmation
- Let 7 be the current round.
(1) For each honest sender y;.sender € S, do the following.

() Send (ssidc, UPDATE, 7;.id, bt output) <> Genannel-

4

(b) Tf not (ssidc, UPDATED, 7,.id, bt output) €~ Gepannels
skip the step (c).

(c) For each corrupted y;.receiver € R, send

T+
(sid,pid, send-sig, y;.sender, y;.receiver, txj.p) — 4 X.

(2) For each honest receiver y;.receiver € R, if

. . . . . . T+iy+1
(i) (sid,pid, confirmation-acc,y;.receiver,y;.sender) «—— X

is received for all corrupted y;.sender € S, and

1
(ii) (ssidc, UPDATED, 7,.id, bt output) <% Gepanner on behalf
of y;.receiver, do the following.

(a) Send (sid,pid, OPENED,¥;) Lt yi.receiver
(b) For all corrupted P; € P,

T+,
(sid,pid, send-confirmation-ok, Yi.receiver,Pj) — % X.

(3) If there is an honest receiver y;.receiver, where

. . . . . T+iy+1 .
(sid,pid,confirmation-acc,y;.receiver, y;j.sender) «—— X is

not received for at least one corrupted y;.sender € S, or

f
(ssidc, UPDATED, y,.id, tx§''.output) Je, Gehannel on behalf of
yi-receiver, go idle.

(4) If there is an honest P; € # and a corrupted P; € R, where the

T+iy+1
message (sid,pid,confirmation-finalized,P;, Pj) —ts

X is not received, remove P; from # and S or R.
T+t +1

(5) Send (sid,pid,agg-sig, {txj.p Yielin) S) —— X.
(6) Go to the Finalizing phase. Pass the set of channels with at least one
user in P to the next phase.
Finalizing
- Let 7 be the current round.
(1) For each channel y;, let th”‘"s :=GenTrans(ai, ¥;)-




(2) For each honest sender y;.sender, send

(ssidc,UPDATE,yi.id,thm”S.output) 5 Gehannel-
(3) For each channels y;, If y;.receiver is honest, do the following.

12
(a) If not (ssidc, UPDATED, y;.id, tx{"a" output) LN Gehannels
4
(sid,pid, post-txep,¥;,tx;") BALUNS'S
#
(b) Send (sid,pid, FINALIZED,Y;) SN yi.receiver.
Respond (executed at the end of every round)

Let ¢ be the starting round. For every element

(pid,?i,txﬁtate,tx;, {txgj, 0ij}je(1n)) €T, if y;st = tx?tate.output, and
one txj.p € ¥ (pid) is on L, do the Pay step as follows.

Pay: If y;.receiver is honest and ¢t < T — t. — 2A do the following.

. —. t
(1) (ssidc,CLOSE,yi.id) = Gehannel
(2) Attime t+t, if a transaction tx with tx.output = ¥;.st appears on L,

t'<T-A
Wait for A rounds and send (sid, pid, post-pay,¥;, tx?j) Bl

X.

(3) Attime ¢t” < T, if a transaction tx” appears on £ with tx".input =
[6;,j, tx.output[0]] and
tx".output = [(tx.output[0].cash + 6; ;.cash, OneSig(y;.receiver))],

send (sid,pid, PAID) ft—> yi.receiver. Otherwise return ERROR to all
parties.
Force-Refund: Else, if a transaction tx with tx.output = y;.st is on-
chain and tx.output[0] is unspent, ¢ > T, and y;.sender is honest, do the
following.

(1) Send (sid,pid,post—refund,?i,tx;) 4 X
(2) If transaction tx” with tx.input = [tx.output[0]] and tx".output =
(tx.output[0].cash, OneSig(y;.sender)) appears on the £ in round

t
t; < t+A, send (sid,pid, FORCE-REFUND) < yi.sender. Otherwise,
return ERROR to all parties.

B.5 Protocol

In this section, we present the formal protocol II. The protocol is
similar to what is presented in Figure 5, but extended with pay-
ment ids and UC formalism. We add the environment & and model
communication in rounds. The protocol is divided into six phases.
In Initialization, a user dealer receives the ongoing updates from
& and sends them to every user to check whether all participants
agree with that. In Pre-Setup, each receiver generates tx°P and sends
it to all parties. In Setup, senders generate and send tx*13€, txP, and
tx" to their neighbors. Receivers verify the messages and inform
all parties when everything is OK. In Confirmation, senders update
their channels, and then send their signature to each tx°P to the
corresponding receivers. When a receiver gets all signatures, sends
an endorsement to all parties. In Finalizing, the senders after re-
ceiving all endorsements update their channel to the final state. If a
receiver does not get UPDATED from G pannel» puts tx*P on-chain.
In Respond users will react to tx°P being published and, either force
payments or refunds.

Protocol II

Local variables:

pidSet : A set storing every payment id pid that a user has

participated in, to prevent duplicates.

paySet : A map storing for a given pid a tuple ({y; }ic[1,n],
S, R) where U is the set of containing channels and
payment values, S is the set of all senders and R is
the set of all receivers.
local : A map storing for a given pid a copy of all tx*P in a

set {tx;p }Yielin]-

left :  For each sender y;.sender, a map storing for a given
pidatuple (73, tx?t"‘te, tx") which contains the chan-
nel y; and corresponding state and refund transac-

tions.
right: For each receiver yj.receiver, a map
storing for a given pid a tuple

(vi txztate’ {(txi.)’j, Oy;.sender (tXE-),j), gi,j) }je [l,n])
which contains a channel and corresponding state
transaction and the set of payment transactions.
Along with each txz j» a signature from the sender
of the channel and the input of this transaction that
comes from txj.P are saved.

sigSet :  For each receiver y;.receiver, a map, storing for

a given pid the signatures for tx?ID of all senders

{O-yi.sender(txjp) }jE[l,n] .

Initialization
- Let 7 be the current round.
dealer upon (sid,pid, CHANNELS-SET, {yi }ic[1.n]) < &

(1) For all parties P; in {y;.sender};e(1,,) U {yireceiver};c(1,,], send
(sid,pid, init, {yi}iefin)) < Pi
Each y;.sender and y;.receiver

upon (sid,pid, init, {y;}je[1,n]) I dealer

(1) If pid € pidSet, abort. Add pid to pidSet, and let S, R and P be
initially empty sets.

(2) Send (sid,pid, INTT-CHECK, {y;} je[1n]) > &

(3) If (sid, pid, INTT-CHECKED, {y; } je[1n]) <—> &, for each chan-
nel y; add y;.sender to S and y;.receiver to R. Then set
paySet(pid) = ({¥j}je[1,n]>S,R) and P = R U S. Otherwise
abort.

(4) Send (sid,pid, init-ok) <=5 P; toall P; € P.

2
(5) If (sid,pid, init-ok) 5 P; from all parties in P, go to the
Pre-Setup phase. Otherwise abort.
Pre-Setup

- Let 7 be the current round.
yi.receiver

(1) Let txiin = GenTxIn(y;.receiver, {Yk_}ke[l,n])~
(2) Let tx(;p = GenTxEp({yk tke[1,n]> tX])-
(3) Send (sid,pid,prefsetup,tx?p) < P; forall P; € P.

All users upon

1
sid,pid, pre-setup, tx L i.receiver foralli € [1,n
i Vi




(1) Forall j € [1,n],if CheckaEp(txj.P,yj.receiver, {rkteerin)) = L,
abort. otherwise set local(pid) = {txj.p }jel1,n] and go to the Setup
phase.

Setup

- Let 7 be the current round.
yi.sender

(1) Send (sid,pid, REQ-VALUE,Yy;) < &.1f this message is replied by
(sid,pid, VALUE,y;, @) 5 &, continue. Otherwise go idle.

(2) Let tx$* := GenState(a;, T, 7;)-

(3) Let tx! := GenRe £(tx{"', y; sender).

(4) Forall j € [1,n], let 0; j be the output of txj.P which corresponds to
yi-receiver, then create tx];j := GenP ay(txiitate, yi-receiver, 0; ;).

(5) Set left(pid) = (7, ™, 1, {65}

(6) Generate the set {ny,-.sender(txzj) }ieltn]-

(7) Send

. . -_— T

(sid, pid, setup, Yis tx?tate’ {(tx';,j, O'yi,sender(txzj)) }jE[l,n]) nd
yi.receiver.

state

yi-receiver upon (sid,pid, setup,y;, tx;

T+1
s {(txzj’ Uy,-.sender(txzj)) }je[l,n]) < y;.sender

1
(1) Send (sid,pid, REQ-VALUE, y;) ALY &. If this message is replied
by
1
(sid,pid, VALUE,¥;, @;) L &, continue. Otherwise go idle.
(2) If txS%*  GenState(a;, T, ¥;), abort.
(3) For each element in {(txsj, ayl.,sende,(tx';’j)) Yelin), If
Oy, sender (tx?j) is not a correct signature, abort.
(4) Forall j € [1,n], let 6;; be the output of tx;p which corresponds to
yi.receiver. If txzj # GenPay(txjtate, Yi-receiver, 0; ;), abort.
(5) Set right(pid) = (E, tX;tates {txijx Oy, .sender (tX?’Jw gi,j) }jE [1,71])
1
(6) Send (sid,pid, setup-ok) AN P; forall P; € P.
All users
2
(1) If (sid,pid, setup-ok) 5 P; for all P; € R, go to the Confirma-
tion phase. Otherwise abort.
Confirmation
- Let 7 be the current round.
yi.sender
(1) Send (ssidc, UPDATE, 7;.id, tx3" € output) <> Genannel-
+1,
(2) If (ssidc, UPDATED, 7;.id, tx$'2'® output) S Genanner forall j €
[1,n], create signature in_sender(txj-p) and send

. . . . Ty .
(sid,pid,confirmation, &y, sender (txj.p)) —— yj.receiver.

yi.receiver upon (sid, pid, confirmation, Oy sender (tx?p))

Ty +1
«—— yj.sender for all j € [1,n]

b
(1) If (ssidc, UPDATED, 7, id, 6™t .output) <> G opannel,

T+iy+1

send (sid,pid, OPENED,y;) ——— &. Otherwise abort.
(2) Ifforall j € [1,n], ij.sender(txip) are valid signatures,

let sigSet = {(ij.sender(txip)) }je[1,n]- Otherwise abort.

u+l
(3) Send (sid,pid,confirmation-ok) S P; forall P; € P.

All users

ty+2
(1) If (sid,pid,confirmation-ok) S P; for all P; € R, go to

the Finalizing phase. Otherwise abort.

Finalizing
- Let 7 be the starting round.
vi.sender
(1) Let tx{'a" := GenTrans(a;, ¥;)-
. — T
(2) Send (ssidc, UPDATE, yrld,txtimns.output) > Gehannel-
yi.receiver

+t,
(1) If not (sside, UPDATED, 7,.id, tx™" output) €% Gepannet, sign
tx?p and add the signature to sigSet. (ssidy,POST, (tx?p,sigSet))

T+ity
4 gledger‘
T+iy

(2) Send (sid,pid, FINALIZED,Y;) — &.
Respond

Let ¢ be the current round. Do the following:
yi.receiver at the end of every round ¢

(1) For every pid in right.keyList(),
let (ﬁ tx?tate’ {tX?J-) O'y,zsender(txzjs ei,j) }je[l,n]) = I‘ight(pid)
and let {txjP }jel1,n) = local(pid).
(2) Ift < T—t.—2A, one tx;ID is on the ledger £, and ¥, st = tx$'' output,
do the following:
t
(a) Send (ssidc, CLOSE,¥;.id) = Gehannel-
(b) If a transaction tx with tx.output = tx$'.output is on £ in
round ¢ + £, wait A rounds.
: p
(c) Sign tx; ; and set
tx?}j = (txs",j’ {Uy,zreceiverﬁxzj): O'Yi.senderuxsj) H-
—5 tHtcHA
(d) Send (ssidr,POST, tx] ) 5 Gledger-
e en tx; . appears on £ inround #; < T, sen
(¢) When tx] ; app Li d T, send
t
(sid,pid,PAID,7,) <> &
vi-sender at the end of every round ¢

(1) For every pid in leftkeyList(), let (y;, txS™, txf, {txzj Yielin]) =
left (pid).

(2) Ift > T and a transaction tx with tx.output = tx3tate

54 is on the ledger
L, but not any transaction in {tx?j }je[1,n]> do the following:
(a) Sign tx} and set tx” = (tx, 0y, sender (tx1)).
— ¢
(b) Send (ssidr,POST,tx}) = Giedger-
(c) When tx} appears on £ in round #; < ¢ + A, send

t
(sid,pid, FORCE-REFUND,7;) <> &

B.6 Proof

In this section, we present the simulator and formal proof that our
multi-channel updates protocol Appendix B.5 UC-realizes the ideal
functionality %,p4are Appendix B.4.

Simulator

Local variables:

. . . . ep
enableSig : A map, sorting for a glvin (pid, tx;") the set of
signatures {ayj_sende,(txip)} from all senders.
paySig: A map, sorting for a given (pid, tx?j) the signa-

P
ture Oy;.sender (txl‘!j)-

Start phase




. .
Upon(sid,start)& update>Send (sid, start-ok, ty, tc) star

Fupdate and go to the Initialization phase.
Initialization phase

Upon (sid,pid, send-init, {y;} je[1,n] dealer) & Fupdate- for all
corrupted P; € {y;.sender};c[1] U {yi.receiver}cy ], send
(sid,pid, init, {yi}ie[1,n]) S P; on behalf of dealer.
If the trigger party dealer is corrupted, upon
(sid,pid, init, {yi}ic[1,n]) & dealer on behalf on each honest
party P;, send (sid, pid, send-check, {y; }ic[1,n]: Pi) < Fupdate-
Upon (sid, pid, send-init-ok, {y;}je[1,n] Pi) & X, for corrupted
Pj € {yi.sender};c(1,n] U {yi-receiver};c(1,], send
(sid,pid, init-ok) N P; on behalf of P;.
Upon (sid,pid,init-ok) <12’ P; on behalf of P;, where P; is
honest and P; is corrupted, send (sid,pid,init-acc, P;, Pj) ‘T—+2>
7jupdate-

Pre-Setup phase

Upon (sid, pid, presetup-req, yi, tx?) <> Fupdate, Where
yi.receiver is a corrupted party, do the following.
1

(1) Upon (sid,pid,pre—setup,txjp) ALY yj-receiver of behalf of

P;, where y;.receiver is corrupted, and P; is honest, check if tx:fp =

1

txP, (sid, pid, presetup-acc, P;, yj.receiver) BN Fupdate-
Upon (sid,pid, send-presetup, tx?p,ylareceiver, P;) S Fupdates
where y;.receiver is honest and P; is corrupted, send
(sid,pid,pre-setup, txip) S Pj on behalf of y;.receiver.

Setup phase

Upon, (sid, pid, send-setup-ok, P;, P;) & updates Where P; is

honest and P; is corrupted, send (sid, pid, setup—ok) & Pj on
behalf of P;.
Upon (sid, pid, setup,¥y;, tx

state
i s

T+1 .
{(txzj, Uy,«.sender(txgj»}je[l,n]) «— y;.sender, where y;.sender is
corrupted, do the following.
1) Check if any signature oy sender (tx? ) is not valid, abort.
y sig Yi ij
(2) Forall j € [1,n], let 6;; be the output of tx;P which corresponds

state

to yj.receiver. If tx?yj # GenPay(txi , Yi-receiver, 0; j), abort.

. P . . p
(3) Add the signature for each tx; ; to paySig(pid, tx; ;).

. . — T+1
(4) (sid,pid, setup-acc,y;, tx§'ate, {tXfJ}}jeu,nJ) — Fupdate-
Upon (sid,pid, send-setup, txa, {tx';j }ielin] ¥i) S Fupdate
where y;.sender is honest but y;.receiver is corrupted, do the following.
1) sign tx? . on behalf of y;.sender and add it to paySig(pid, tx” .).
g ij Y paysig i,j
(2) send (sid,pid, setup,¥;, txi?,
T .
{(tx?)j, ayi_sender(txzj)) }je[1,n]) = Vi-receiver on behalf of
yi-sender.
1
Upon (sid,pid, setup-ok) 5 yj.receiver on behalf of P;, where
P; is honest and y;.receiver is corrupted, send
1
(sid,pid, setup-finalized, P;,y;.receiver) AL Fupdate
Confirmation phase

T
Upon (sid,pid,send-sig, y;.sender, y;.receiver, txj.p) < Fupdates
where y;.sender is honest but y;.receiver is corrupted, sign txj.p on
behalf of y;.sender and send

. . . . T .
(sid,pid, conflrmatlon,O'Yilsender(txj.p)) < yj.receiver.

T
e Upon (sid,pid,confirmation, Jyjjender(txjp)) < yj.sender is
received on behalf of y;.receiver, where y;.receiver is honest and
yj-sender is corrupted, check if all signatures are valid, send

(sid, pid, confirmation-acc,y;.receiver, y;.sender) N Fupdate-
e Upon, (sid, pid, send-confirmation-ok, P;, P;) S Fupdate> Where
P; is honest and P; is corrupted, (sid,pid,confirmation-ok)
1
ALY P; on behalf of P;.

T
e Upon (sid,pid,confirmation-ok) « yj.receiver is received on
behalf of an honest party P;, where y;.receiver is corrupted, send

(sid,pid,confirmation-finalized, P;, y;.receiver) 5 Fupdate-

e Upon (sid,pid, agg-sig, {txj.ID Yietin)S) & X, for each txj.p, sign
the transaction on behalf of all honest P; € S and add op; (txjp) to
enableSig(pid, tx;p)

Finalizing phase
e Upon (sid, pid, post-txep, Yi,txjp) & Fupdate Where y;.receiver is
a honest:
(1) Sign tx‘;P on behalf of y;.receiver and add the signature to
. : ep
enableSig(pid, tx;")
(2) Set tx?p = (tx?p,enableSig(pid,tx?p)).
(3) Send (ssidr,POST, ") <5 Gieager-
Respond phase

e Upon (sid,pid,post—pay,?i,tx'i’j) S Fupdate> Where yj.receiver is
honest:
(1) Sign tx'?j on behalf of y;.receiver and add the signature to

paySig(pid,tx?j).
(2) Set tx';j = (tx];j, paySig(pid,txf’j).
(3) Send (ssidz.POST, 0 ) <% Gregger-

e Upon (sid,pid,post-refund,y;, tx}) S Fupdate Where y;.sender
is honest: o
(1) Sign tx] on behalf of y;.sender and set tx] := (tx}, oy; sender (tx}).

At
(2) Send (ssidr,POST, ) <% Glodger-

Now, we show that in the view of the environment &, a transcript
resulted from interactions between the simulator X and the ideal
functionality ¥, qase is indistinguishable from a transcript resulted
from a execution of the protocol IT in the presence of the adversary
A. Formally, we want to show that EXEC[ ¢ g and EXECE,  tare. X.E
are indistinguishable.

Our protocol IT and ideal functionality #,544e both are executed
in six phases: Initialization, Pre-Setup, Setup, Confirmation, Finalize,
and Respond. For each phase separately, we show how the ideal
world and the real world are indistinguishable for the environment.

In our description, we write m[7] to denote that message m is
observed at round 7. In other meaning, 7 is the receiving round for
message m (not the round it is sent). Moreover, sometimes we inter-
act with ideal functionalities such as Gcpanner and Giedger- These
functionalities in turn interact with either the environment & or
other parties, who are possibly under adversarial, either by sending
messages or additional impacts on publicly observable variables,
i.e., the ledger L. To capture this, we define obsSet(m, ¥, 7) as the
set of all observable messages which are triggered by calling #
with message m in round 7.

Lemma 1. The initialization phase of protocol I1 GUC-emulates the
initialization phase of the functionality Fypqate-



Proof. Let 7 be the starting round. Note that in the real world
environment controls ‘A, and therefore, all corrupted parties. For
better readability we define following messages that are used for
Initialization phase in %;,p4qare and I1.
mg = (sid,pid, INIT-CHECK, {¥i};e[1,n])
my = (sid,pid, INIT-CHECKED, {y;}je[1,n])
my = (sid, pid, CHANNELS—SET, {Yi};c[1,n])
m3 = (sid,pid, init, {yi}ie[1,n])
my := (sid, pid, init-ok)
ms = (sid,pid, send-init, {y;}je[1,n]. dealer)
meg == (Sid, pid, send-check, {Yi}ie[l,n])Pi)
my = (sid,pid, send-init-ok, {y;};je[1,n], Pi)
mg = (sid,pid, init-acc, P;, P;j)

For each participant P;, we compare messages that & receives
from this party and the trigger party dealer in the ideal world and
the real world. The types of the messages depends on corruption
cases for P; and dealer. Note that messages from corrupted parties
to & are not considered, because the environment is commuincating
with itself, which is trivially the same in the ideal and the real world.

Case 1: P; honest, dealer honest

Real world: & receives m3 from dealer in round 7 + 1 on behalf
of all corrupted parties. Moreover, & receives mg from P;, which
contains the set of all channels in round 7+1. If P; gets m; from & in
the response, then & receives my4 from P; on behalf of all corrupted
parties in round 7 + 2.

EXECh, a1, = {m3[t+1],mo[7 + 1], my[7 + 2]}

Ideal world: %,,44;, sends ms to the simulator, which in turn, X

sends m3 on behalf on dealer to all corrupted parties in round 7.

Moreover, Fpdare sends mo on behalf of P; to & in round 7. Upon

this message is replied by m; from &, Fpdare sends my to the

simulator. After receiving this message, X sends my to all corrupted

parties on behalf of P; in round 7 + 1, which is received by &.
EXECH, paare.X.E = {ms[t+1],mo[r+ 1], ma[7 + 2]}

Case 2: P; honest, dealer corrupted

Real world: Because dealer is corrupted, we do not need to con-
sider messages from dealer to &. Other received message are similar
to the previous case.
EXECH,_;Z(’S = {mo[r + 1], my [T+ 2]}
Ideal world: No longer X is required to send ms on behalf of
dealer to &. Simulation of the behavior of P; is done same as the
previous case.
EXECH, gure.& = {mol7 + 1], ma[r+2]}
Case 3: P; corrupted, dealer honest
Real world: We do not to consider messages sent from P;. &
receives m3 From dealer on behalf of all corrupted parties.
EXECr, 7,6 = {m3[r+ 1]}
Ideal world: %44 sends ms to the simulator, which in turn, X
sends ms3 to all corrupted parties who are under the control of &.
EXECﬂpdate,X,S ={ms[rt+1]}

Lemma 2. The pre-setup phase of protocol II GUC-emulates the
pre-setup phase of the functionality %, pqate-

Proof. Again we compare observed messages by & in the ideal
world and the real world. Let 7 be the starting round, and consider
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the following definitions for all messages that are used for Pre-Setup
phase in Fp4qse and IL
e mg := (sid,pid,prefsetup,tx?p)
e my := (sid,pid, presetup-req, yi,tx?p)
e myp := (sid,pid, send-presetup, tX?p,y,'.receiver,Pj)
e myp = (sid,pid,presetup-acc, P;, Pj)

In this phase, for each channel y;, & receives message only from
yi-receiver, so we should consider only one case. The case that
yi.receiver is honest.

Real world: y;.receiver creates txil." and tx?ID and sends myg to all
other parties, so this message is received by & on behalf of all
corrupted parties in round 7 + 1.

EXECh, 4,8 = {mo[T+1]}

Ideal world: %44z first creates tx;” and tx?p transactions for
each channel y;. Then, F,pgqse Sends mi; to the simulator for all
corrupted parties Pj. When X receives this massage, sends mg to
the all corrupted parties on behalf of y;.receiver. The messages are
received by & in round 7 + 1.

EXEC(FupdateaX,S = {mg [T + l]}

Lemma 3. The setup phase of protocol I GUC-emulates the setup
phase of the functionality Fpaate-

Proof. Again we compare observed messages by & in the ideal
world and the real world. Let 7 be the starting round, and consider
the following definitions for all messages that are used for Setup
phase in F,pg4qre and IL
e mi3 := (sid, pid, REQ-VALUE, y;)
e my4 := (sid,pid, VALUE, y;, @)

e mys5 := (sid, pid, setup,)_/l-,tx?tate,

{(tXEj’ O'ylusender(txzj))}je[l,n])

e myg := (sid, pid, setup—ok)
e my7 := (sid,pid, send-setup,¥;, tx

{(txzj, O—y,-.sender(‘L'X?’j))}’je[l,n])

e myg := (sid,pid, setup-acc,y;, tx3t2te, {txzj}}je[l,n])
e myg := (sid, pid, send-setup-ok, y;.receiver, P;)
e myo := (sid,pid, setup-finalized, P;, Pj)

In this phase, for each channel y;, both the sender and the re-
ceiver have interactions with the environment. We need to consider
different corruption cases for these parties except the case that both
of them are corrupted.

state
i 3

Case 1: y;.sender honest, y;.receiver honest

Real world: y;.sender sends mj3 to & in round 7. Upon this mes-
sage is replied by m4, y;.sender generates tx$'', tx!, and the set
{thj }je[1,n]- Then she sends m5 to y;.receiver. When y;.receiver
gets this message, first asks & about the payment value via message
m13 in round 7 + 1. Upon this message is replied by m4, y;.receiver
checks validity of the transactions inside received m;s, and then
sends my¢ to all other parties, which is received by & on behalf of
corrupted parties in round 7 + 2. Note that two m3 messages are
received by & in different rounds. One from the sender and one
from the receiver.
EXEC a1, = {mis[r],mis[r + 1], mie [ + 2]}

Ideal world: %,544sc Sends my3 to & on behalf of y;.sender in

- state
round 7. After receiving the response mi4, Fypdare Creates tx; =<,



tx}, and the set {txzj}je[l,n]- Again, Fpdare sends mis to & this
time on behalf of yj.receiver in round 7 + 1. After receiving the
response, ¥ pdare Sends mig to the simulator, which in turn, X
sends mi¢ to all corrupted parties, which is received in round 7 + 2.
EXECTupdate,X,S = {mys[r], ms[r + 1], myg[7 + 2]}

Case 2: y;.sender honest, y;.receiver corrupted

Real world: In this case, we only consider messages that are sent
from the sender. Similar to the previous case, y;.sender sends mj3
to & in round 7, and waits for the response m14. Then she generates
tx?tate, tx], and the set {tx?’j}je[l,n] and sends mjs to y;.receiver.
This time the message mys is observed by & in round 7 + 1. because
the receiver is corrupted.

EXECH’_;Z(’S = {m13 [T], mis [T + l] }

Ideal world: Similar to the previous case, ,pgaze sends mi3 to
& on behalf of y;.sender in round 7. After receiving the response
mia, Fupdate Creates tx?tate, tx}, and the set {tx?j }je[1,n]- This time
Fupdate sends my7 to the simulator, which in turn, X sends mys to
the corrupted receiver in round .

EXEC(Fupdute,X,S = {mas[r],mis[r + 1]}
Case 3: y;.sender corrupted, y;.receiver honest

Real world: In this case, we only consider messages that are sent
from the receiver. At first, When y;.receiver gets m1s message from
the sender, sends m13 to & to get the payment value in round 7 + 1.
Then, this party after receiving the response from &, checks the
validity of the transactions inside mjs. Finally, she sends mj¢ to all
other parties, which received by & on behalf of corrupted parties
in round 7 + 2.
EXECr, @, = {m13[r + 1], mig[7 + 2]}

Ideal world: X gets transactions tx?tate, and the set

{(txzj, O—yi‘sender(tXEj))}jE[I,nJ from A and sends them to %, pgare
via myg if they are correct. ,,44¢, sends mi3 to & this time on
behalf of y;.receiver in round 7 + 1. If this message is reponsed by &
with mia, Fypdare checks correctness of tx?tate received from the
simulator. #,p4a¢e sends myg to the simulator, which in turn, X
sends mye to all corrupted parties in round 7 + 1.

EXECﬁpdate,Xﬂs = {mys[t+1],mie[7+ 2]}

Lemma 4. The confirmation phase of protocol Il GUC-emulates the
confirmation phase of the functionality F,paate-

Proof. Again we compare observed messages by & in the ideal
world and the real world. Let 7 be the starting round, and con-
sider the following definitions for all messages that are used for
Confirmation phase in %, p44¢, and I1.

o my1 = (ssidc,UPDATE,)_/i.id,tx?tate.output)

e myy = (ssidc, UPDATED, ¥;.id, tx32' output)

e my3 := (sid,pid, confirmation,O'Yi_sender(txj.p))

® my4 := (sid, pid, OPENED,Y;)

® mys := (sid,pid,confirmation-ok)

e mys = (sid, pid, send-sig, y;.sender, yj.receiver, txjp)

e myy := (sid,pid, confirmation-acc, y;.receiver, yj.sender)
e mpg := (sid, pid, send-confirmation-ok, y;.receiver, P;)
® myg := (sid,pid,confirmation-finalized,P;, Pj)

e ms := (sid,pid, agg-sig, {tx(;p}je[l,n],S)
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For each channel y;, both the sender and the receiver send mes-
sages to &. We need to consider different corruption cases for these
parties except the case that both of them are corrupted.

Case 1: y;.sender honest, y;.receiver honest

Real world: y;.sender sends m21 to Gopanner in round 7 to update
the state of y; using tx3'3'. If the update is executed correctly,
vi-sender sends my3 to each receiver. This message is received by
& in behalf of each corrupted receiver in round 7 + ¢, + 1. Again, if
the update is executed correctly, y;.receiver waits until receiving
signatures to tx;3p from all senders. Then, she sends my4 to € in
round 7 + t, + 1. Also, after verifying all signatures, she sends
mas messages to all parties, which are received by & on behalf of
corrupted parties in round 7 + t;, + 2.

EXECH,:;[,S = {m23 [t+t, +1],mog[T+1t, +1],mas[T+1y +2]} U
obsSet(m21, Gehannel> T)}
Ideal world: %544t sends ma; massage to Gepanner- 1f the update
is executed correctly, Fpdare via message mas, asks X to generate
a signature to each tx%” on behalf of y;.sender and sends it to the
corresponding receiver if the receiver is corrupted. This is done via
message mp3 which is received by & in round 7 + t;, + 1 . Moreover,
Fupdate Sends ma4 to & in round 7+, + 1 and myg to the simulator,
which in turn, X sends mys on behalf of y;.receiver to all corrupted
parties, which is received by & in round 7 + t,, + 2.

EXECTupdate:X,S = {mos[r+ty+1],mas[r+t, + 1], mos [T+, +
2]} U obsSet(ma1, Gehannet> T)}

Case 2: y;.sender honest, y;j.receiver corrupted

Real world: In this case, we only consider messages that are sent
from the sender. y;.sender sends ma1 to Gepanner in round 7. If the
update is executed correctly, she sends my3 to each receiver. This
message is received by & in behalf of each corrupted receiver in
round 7+t + 1.

EXECH)_ﬂ)g = {m23 [T +ty, + 1]} U ObSSet(le, gchannel, T)
Ideal world: Again, #,pgase sends ma1 massage to Gepanner and if
the update is executed correctly, 7 pdare sends mae to X to generate
a signature to each tx’’ on behalf of y;.sender. Then X sends it to
the corresponding receiver if she is corrupted via message ma3 in
round 7 + t,.

EXECﬂpda:e,X,S = {ma3[7+t, + 1]} UobsSet(m2a1, Gehannels T)

Case 3: y;.sender corrupted, y;.receiver honest

Real world: In this case, we only consider messages that are sent
from the receiver. If the update is executed correctly, y;.receiver
verifies received signatures to tx?p from all senders, sends my4 to &
in round 7 + t;, + 1, and sends my5 messages to all parties in round
T+t +2.
EXECH,_«;[,S = {m24 [T +1, + 1], mos [T +1, + 2]}
Ideal world: X receives signatures form a corrupted sender. If the
signature is valid X sends mz7 to %, pdare- If the update has already
executed correctly, then Fpgase sends ma4 to & inround 7+, + 1.
Moreover, sends mog to the simulator, which in turn, X sends mys
on behalf of y;.receiver to all corrupted parties in round 7 + #;, + 1.
EXEC(Fupdate,X,S = {mpa[T+1t, +1],mos [T+ t, + 2]}

Lemma 5. The finalizing phase of protocol II GUC-emulates the
finalizing phase of the functionality Fpdate-



Proof. Again we compare observed messages by & in the ideal
world and the real world. Let 7 be the starting round, and con-
sider the following definitions for all messages that are used for
Confirmation phase in %;,p44¢e and I1.

e m31 := (ssidc, UPDATE, 7,.id, tx!"a" output)
e m3y := (ssidc, UPDATED, ¥;.id, tx!"a"S output)
e mass3 := (ssidy,POST, (txfp,sigSet))

e ms4 := (sid,pid, FINALIZED,¥;)

e mss := (sid, pid, post—texp,}_/i,tx?p)

For each channel y;, both the sender and the receiver send mes-
sages to &. We need to consider different corruption cases for these
parties except the case that both of them are corrupted.

Case 1: y;.sender honest, y;.receiver honest

Real world: y;.sender generates txi.”, which transfers a; coins
from the sender to the receiver. Then, sends m31 to Gopannel I
round . If the update fails, the receiver sends ms3 to Gjedger in
round 7 + t;, and post tx?p to the ledger. Finally, y;.receiver sends
msq to & inround 7 + t,.

EXECr, 1,6 = {m3a[7 + tu]} U obsSet(ms1, Genanner, TV
obsSet(ms33, gledgers T+ )

Ideal world: %544 generates txi.n and updates the channel y;
via sending m31 to Gepanner in round 7. After the update execution,
Fupdate sends m34 to & inround 7 +1, and on behalf of the receiver.
If the update fails, %, pdqre sends mss to X and asks it to post tx?p
on the ledger via message m33 to Gledger in round 7 + ;, on behalf
of yj.receiver.

EXECH, paare.X.6 = {ms4[7 + t,]} U obsSet(ms1, Gephannel> T) YU
obsSet(ms33, Qledger, T+1ty)

Case 2: y;.sender honest, y;.receiver corrupted

Real world: In this case, we ignore messages that are sent directly
from the receiver to E. y;.sender generates txi.”, and sends ms3 to
G channel to update the channel.

EXECyy, 4, & = obsSet(m33, Gehannels T)

Ideal world: %544 generates txi.n and updates the channel y;
via sending m33 to Gepanner in round .
EXECﬂpdaze,X,S := obsSet(m33, Gehannels T)

Case 3: y;.sender corrupted, y;.receiver honest

Real world: In this case, we only consider messages that are sent
from the receiver. y;.receiver waits until time 7 + t,,. If message ms»
is received in this round, the final transfer has been performed, so
yi-receiver sends ms4 to &. If m3y is not received and the update
fails, sends m33 to Gedger in round 7 + £y,

EXECr A, = {msq[7 + t,]} U obsSet(mss, gledge,, T+ty)

Ideal world: %, Waits until receiving ms3; from Gepanner- If
this happens, the update is executed and ;,p44¢e sSends ms4 to & on
behalf of the receiver in round 7 +#,. Otherwise, #,pgqaze sends mss
to X and asks it to send ms33 to Gjegger on behalf of the receiver.
EXECﬁpdate’XsS := {ms3q[7 + ty]} U obsSet(mss, gledger, T+1ty)

Lemma 6. The respond phase of protocol Il GUC-emulates the re-
spond phase of the functionality Fypqate-
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Proof. Again we compare observed messages by & in the ideal
world and the real world. Let 7 be the starting round, and con-
sider the following definitions for all messages that are used for
Confirmation phase in F;,p44tc and IT.

e m3e := (ssid¢, CLOSE, ¥;.id)

o my7 = (ssidy,POST,tx} )

e mag := (sid,pid, PAID,)_/i)

o ms3g := (ssidp,POST, tx})

e myg := (sid, pid, FORCE-REFUND, 7;)
:= (sid, pid, post—pay,}_/i,txzj)

e myqy := (sid,pid, post-refund,y;, tx})

For each channel y;, both the sender and the receiver send mes-
sages to & independently. We consider cases that the parties are
honest.

® my

Case 1: y;.receiver honest, Pay

Real world: In every round, y;.receiver checks whether one of
transactions in {txjp }jel1,n] is observed on the ledger and 7 <
T — t. — 2A. If so, she closes the channel y; via message ms¢ to

G ehannel- When the channel become closed and tx$t€ is found on

i
the ledger, y;.receiver waits time A, and then, post transaction txfj,
which forces the payment. This is done by sending ms7 to Geqger-
The receiver finally sends msg to & in round 7 + t¢ + 2A
EXECH,ﬂ,g = {m3g [‘[ +tc + ZA]} U obsSet(mgé,gchannel, ’[') U

obsSet(ms7, Gledger» T + tc + A)

Ideal world: In every round, #,p4qre checks if one of transactions
in {txjp}jell,nj is observed on the ledger and 7 < T — t; — 24,
sends msg t0 Gehannel to close the channel y;. After a successful
closure, Fpdare after a time A, send my; to the simulator. The X
aggregates signatures required for spending txfj and sends ms7
t0 Gledger- When this transaction appears on the ledger, %pdare
sends msg to &E.

EXECTupdate,X,S = {msg[r+t.+2A]} UobsSet(mss, Gehannels T)
UobsSet(ms37, gledger, T+t +A)

Case 2: y;.sender honest, Revoke

Real world: In every round, when 7 is larger than T and channel
vi has been closed, but not any payment transaction tX?,j is on the
ledger, y;.sender signs tx] and post it on the ledger via message m39
to Gledger- After observing tx; on the ledger, y;.sender sends mao
to &.

EXEC a8 := {mao[7 + A]} U obsSet(m3o, g,edge,, T)

Ideal world: In every round, when 7 is larger than T and channel
¥i has been closed, F,pdqre Sends my; to the simulator, which in
turn, X sign tx] on behalf of y;.sender and sends m39 to Giedger-
When tx; is observed on the ledger, #,p44ze sSends mgg to & again
on behalf of y;.sender.

EXEC(]:upde’X,S = {myo[7 + A]} U obsSet(msg, gledger, T)

Theorem 2. For ideal functionalities Gepannels Gelock> ¥GDC> and
gledger and for any T, A € N, the protocol I1 GUC-emulates the the
functionality ﬁpdate-

This theorem follows directly from Lemmas 1 to 6.



C DISCUSSION ON SECURITY AND PRIVACY

In Section 3.1, we introduced the security and privacy goals of
interest, atomicity, and strong value privacy. In Section 5.3, we in-
formally showed that the security and privacy goals are achieved by
our construction. Further, in Appendix B.4 we defined an ideal func-
tionality #,p4qse for multi-channel updates, and then we proved
that the Thora protocol GUC-emulates the ideal functionality. In
this section, formalize our security and privacy properties and then
prove that 5447 fulfills them.

C.1 Atomicity

For our multi-channel updates, let U := {(yi, @i) };e[1,2] be the set
of updates. Each tuple (y;, a;) contains a channel y;, which will be
updated, and a value ; which determines the update amount of that
channel. For each channel y;, we define the following possible out-
comes. We define y; as successful if ; coins have been transferred
from the sender to the receiver. Le., y;.balance(y;.sender) has been
decreased by «; and additionally y;.balance(y;.receiver) has been
increased by «; at the end of the protocol execution. We define y; as
reverted if, at the end of the protocol execution, the channel balance
is the same as at the start of the protocol execution. A successful
or reverted channel y; can be compensated if one of the users is
malicious and deviates from protocol at the cost of losing her funds
to the neighboring user without affecting the security of other users.
We define y; as punished if there is an honest node that receives
the total channel balance via the channel punishment mechanism.
For every other outcome, we say a channel is invalid. A channel
can have multiple outcomes, e.g., reverted and compensated.

Now, we define a security game Atomg 11 as follows. The ad-
versary A selects a set of n channels {y1,y2,....,yn}, chooses the
corrupted users from the users of these channels, selects dealer
and sends these values to the challenger. The challenger sets sid
and pid to two random identifiers. With these parameters, the
challenger starts running Thora from the Initialization phase on
the input of the channels set for the given dealer. The behavior
of honest parties can be simulated directly by the challenger, and
every time a corrupted party needs to be contacted, the challenger
sends the query to A and waits for the corresponding answer. A
can respond correctly, wrongly, not at all, manipulate the ledger by
posting (valid) transactions, updating channels, etc.

After the protocol execution terminates, we say that A wins if
one of the following cases holds after the execution.

(1) There exists two channels y;, y;, each with at least one honest
user, where y; is successful, and y; is reverted, and none of
the channels are compensated.

(2) There exists any channel y; without two corrupted nodes
such that y; is invalid or channel y; with two honest users
such that y; is punished.

Definition 2. We say that a multi-channel updates protocol
achieves atomicity if for every PPT adversary A, the adversary
wins the Atom g ;1 game with negligible probability.

Theorem 3. The multi-channel updates functionality F,pqate
achieves atomicity property defined in Definition 3.
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Proof. Assume that there is an adversary A that can win the game
Atomg 11, which implies that at least one of the two conditions (1)
or (2) from the game definitions holds.

Suppose that (1) holds. We have two possible scenarios. First,
Fupdare has created txt'ans in the Finalizing phase, and has updated

i
. i trans ep
the channel y; using tx; "

and txf .. are on the ledger.

successfully. Second, at least one tx

If we are in the first case, both vi and y; have been entered into
the Finalizing phase of ;,44se because both have at least one

honest user. If y;.receiver is honest, #,p44t forces the payment of
trans
J
phase. Note that if one tx°P appears on the ledge, as y;.receiver is
honest, Fpdare forces the payment in the response phase.

Now consider the case that y;.receiver is malicious. By the as-
sumption y;.sender is honest. As ,544¢e has started the finalizing
trans

J
updated using tx}rans

yj either by updating with tx or posting txj.p in the finalizing

phase, tx should be generated, and y; should be tried to be

unless y;.receiver does not cooperate in the
updating. In this case, y; will be compensated.

If we are in the second case, if yj.receiver is honest, F,pqare
forces the payment on behalf of her in the response phase. If
yj-receiver is malicious, she has refused to force the payment by
posting txi’j and yj would be compensated. It follows that (1) can-
not hold.

Similarly, (2) cannot hold: The only possible outcomes that the
ideal functionality allows for channels with at least one honest
nodes are successful, reverted, or compensated. Since both (1) and
(2) cannot hold, it follows that such an adversary does not exist.

C.2 Strong value privacy

For a protocol IT and an adversary A, we define another game VPriv
to capture the strong value privacy property. A selects dealer, and
chooses a set of n channels {y1, y2, ..., yn}, where for each channel
vi both y;.receiver and y;.sender are honest or semi-honest parties.
In other words, corrupted parties involved in the protocol do not
deviate from the protocol during the execution. The goal A is to
guess the payment values regarding the channels with both honest
senders and honest receivers. A has access to messages sent from
honest parties to corrupted ones and publicly auditable parameters,
like transactions posted to the ledger.

A sends the set of channels to the challenger. The challenger sets
sid and pid to two random identifiers. Then, the challenger starts
simulating Thora from the Initialization phase on the input of the
channels set for the given dealer. We assume that messages honest
parties receive from & about the payment values (REQ-VALUE
messages) are not leaked to any other parties. Moreover, we assume
the values & sends to the receiver and the sender of a single channel
are the same.

By the end of the protocol simulation, A sends the set
{ai’l, (xl.’z, e ai’k} to the challenger, each alf_ is the guess of A for
the payment value in channel y;; where both the sender and the
receiver are honest. We say that A wins the game if there is at least
one j € [1,k] such that ai’j = aj;.



Definition 3. We say that a multi-channel updates protocol
achieves strong value privacy if for every PPT adversary A, the
adversary wins the VPriv # ;1 game with negligible probability.

Theorem 4. The multi-channel updates functionality ¥, paate
achieves the strong value privacy property.

Proof. We assume that k is negligible with regard to the size of the
domain which payment values can be chosen from. Thus, without
any leaked information about payment values, the probability of
the adversary winning the game is negligible.

Suppose that there is an adversary A that can win the game
VPriv # 1 with a non-negligible probability. It means that there is
a payment value a;;, where A is able to extract some information
about the value and guess alfj, such that alfj = a;;. The only ways

24

to get information about a;; are the messages ¥;pdare Sends to
corrupted parties and transactions that are posted to the ledger.
a;; is encoded only in four types of transactions.

tx State {txz k}ke[l nls txl , and txtrans vi;-sender is honest so all
Ly

trans

these transactions are created by ﬂpdate tx} i and tx are never

sent to other parties inside exchanged messages. Moreover because

state tx

Yi;-receiver is honest, #,5,4qse Will not sent tx Lk neither to

Yi; .receiver nor other parties.

On the other hand, since all parties are honest or semi-honest
and do not deviate from the protocol, we expect the final update
using transaction txtrzms to be executed successfully for all channels,

and no tx°P is requlred to be posted on the ledger. Therefore, in the

respond phase, txs‘tate tx or tx _are not required to be posted

s
on the ledger, and A has no way to observe these transactions.
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