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ABSTRACT
The verification of computations performed by an untrusted server

is a cornerstone for delegated computations, especially in multi-

clients setting where inputs are provided by different parties. As-

suming a common secret between clients, a garbled circuit offers the
attractive property to ensure the correctness of a result computed

by the untrusted server while keeping the input and the function

private. Yet, this verification can be guaranteed only once.
Based on the notion ofmulti-key homomorphic encryption (MKHE),

we propose RMC-PVC a multi-client verifiable computation proto-

col, able to verify the correctness of computations performed by an

untrusted server for inputs (encoded for a garbled circuit) provided

by multiple clients. Thanks toMKHE, the garbled circuit is reusable
an arbitrary number of times. In addition, each client can verify the

computation by its own. Compared to a single-key FHE scheme,

the MKHE usage in RMC-PVC allows to reduce the workload of

the server and thus the response delay for the client. It also enforce

the privacy of inputs, which are provided by different clients.

1 INTRODUCTION
Consider public hospitals, who depend on a trusted authority such

as some government, which want to perform some statistics over

COVID-19 statistics (see Fig. 1). In an ideal world, each hospital

sends its sensitive data as daily contamination statistics to the

server, which then returns the valid result. However, a server can

be either compromised by an attacker or malicious in the first place.

Therefore, hospitals are facing two problems when outsourcing

their data: first, an attacker could learn information about the sensi-

tive data provided by the hospitals and secondly, the attacker could

modify the behavior of the server in order to compute an invalid

result. Thus, it is crucial that both privacy of the data and integrity

of the computations be ensured when outsourcing computations.

Each hospital depends on the general authority such as a governe-

ment and hence is honest. However, each hospital’s local data must

remain private even after the computation of the statistics.

In a more general point of view, ensuring the privacy of data and

the correctness of computations when outsourcing computation

in a multi-client setting have been intensively studied by many

researchers. In [Gennaro et al. 2010], Gennaro et al. introduced the

notion of non-interactive verifiable-computation scheme allowing a
client to verify the computation 𝑓 (𝑥) = 𝑦 of a function 𝑓 over an in-

put 𝑥 , performed by a malicious server. In a verifiable-computation

scheme, the server does not perform the function 𝑓 over the input

𝑥 but over an encoding of 𝑥 denoted 𝜎𝑥 . It is possible to retrieve

𝑥 from 𝜎𝑥 by knowing some secret. Hence, given 𝜎𝑥 only, then

server cannot learn information about the input 𝑥 . The evaluation

of the function 𝑓 over the encoded input 𝜎𝑥 produces the encoding

Hospital Hospital

Untrusted server

Government

Local covid data Local covid data

Statistics

Figure 1: Use-case of RMC-PVCwhere two hospitals depend-
ing on a trusted government want to compute jointly some
statistics over local covid data through an untrusted server.

of the result 𝑦 denoted 𝜎𝑦 . At the end, if the computations done

by the server are valid, then the client retrieves 𝑓 (𝑥) = 𝑦 from 𝜎𝑦 .

Otherwise, the client detects that the computed result is not correct.

Note that the server cannot retrieve 𝑦 from 𝜎𝑦 (as explained in

more details in Section 2.1).

The seminal work of Andrew Yao in 1986 introduced the no-

tion of garbled circuit [Yao 1986] where non-interactive verifiable-

computation scheme was proposed. Garbled circuits ensure the

privacy of the input and correctness of computation for a single-

evaluation of a boolean circuit 𝑓 . Some works have shown how to

address the one-time limitation such as in [Gennaro et al. 2010]

using Fully Homomorphic Encryption (FHE). Introduced in [Gen-

try 2009], FHE allows a server to perform any computations over

encrypted data without relying on the decryption key. The idea

presented in [Gennaro et al. 2010] is to evaluate the garbled circuit

homomorphically over encrypted encoded input, allowing to reuse

the garbled circuit an arbitrary number of times.

The secure function evaluation in a multi-client setting has been

widely studied by researchers leading to a variety of approaches.

Garbled circuits and Multi-Key Homomorphic Encryption (MKHE)
have received less attention. This paper shows thatMKHE is notably
an interesting primitive to obtain privacy, but also surprisinglymore

efficient compared to single-key FHE in [Gennaro et al. 2010].

Contribution.We propose RMC-PVC a ReusableMulti-Client Pro-

tocol for Verifiable Computation designed to verify the computa-

tions of any function (common to every clients) performed by an

untrusted server using garbled circuits, over inputs provided bymul-

tiple clients. The usage of a MKHE scheme instead of a single-key

FHE is motivated to make the garbled circuit reusable an arbitrary

number of times, to ensure input-privacy against both the server

and other clients, and to obtain a shorter response delay from the
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server to the clients by encrypting the garbled circuit once (hence
not at every computation as done in [Gennaro et al. 2010]). Our

protocol uses one key uses to encrypt the garbled circuit once and
another key to encrypt the input.

More than the aforementionned properties ensured by our con-

struction, we present a feasability result in combiningMKHE and

garbled circuits in the multi-client setting. Combining FHE and

garbled circuits has already been shown to be feasible in [Gennaro

et al. 2010], which relies on a single-key FHE scheme. However,

generalizing this approach in the multi-client setting using the same

homomorphic encryption key for each client, does not prevent a
client to learn input of the other clients. In contrast, the usage of a

MKHE scheme instead of a single-key FHE scheme, and providing

for each client its own encryption key can overcome this problem,

but remains an interesting question. However, with MKHE, we
expect the result to be encrypted under multiple public encryption

keys. In a setting where related secret keys are owned by different

clients, the decryption is a non-trivial question. To overcome this

issue, we use a particular MKHE scheme having a distributed de-
cryption property [Chen et al. 2019], allowing each client to verify

the untrusted server’s computations by its own.

Related Work. The notion of non-interactive verifiable comput-

ing, introduced in [Gennaro et al. 2010], have been widely studied

and have led to a variety of solutions. The notion non-interactive
proofs are crucial for looking at correctness of computations over

a minimal number of rounds, to reduce as much as possible the

communications between clients and the server. Micali’s Computa-

tional Sound proofs [Micali 2000] are adapted for non-interactive

verifiable computations under the Random Oracle Model, as well

as [Goldwasser et al. 2015] but only for restricted class of functions.

We move away from this paradigm to focus on garbled circuits,

allowing to ensure the correctness of computations within two

rounds, independently of the size of the function to be evaluated.

The one-time limitation of garbled circuits has been addressed in

different approaches, either by usingCut-And-Choose [Gennaro et al.
2010; Huang et al. 2014; Lindell and Pinkas 2015] technique, or by

using homomorphic encryption [Gennaro et al. 2010], but only in a

single-client setting. Multi-client verifiable computation setting has

been addressed in numerous ways. For instance, Goldwasser et al.
used multi-party functional encryption, however restricted to bi-

nary function [Goldwasser et al. 2014] whereas our work handles

an arbitrary function.

The work of [Kamara et al. 2011] proposed a multi-client verifi-

able computation scheme where every client shares the same pool

of entropy in order to generate the same garbled circuit. The main

drawback of this solution is that a new garbled circuit has to be

generated for each round of computations, even if the function re-

mains the same. Our work adds a reusability property meaning that

the garbled circuit is computed only once for a given function (even

if the evaluation is done multiple times). Closer to our work, [Choi

et al. 2013] studied a multi-client verifiable computation scheme

based on garbled circuit using Proxy Oblivious Transfer, where the

first client is in charge of the creation of the garbled circuit and the

encoding of the input for the other clients. Rather to create an un-

balanced execution time among clients, only the first client verifies

computations performed by the server. In our protocol, every client

has the same workload and can verify computations by its own.

Functional Encryption (FE) has been shown to be an interest-

ing cryptographic primitive. Indeed, [Goldwasser et al. 2013] has

exposed a reusable garbled circuit. In summary, they rely on an

universal circuit which given a circuit 𝐶 and an input 𝑥 , outputs

𝐶 (𝑥). The circuit is given to the server, as well as 𝑥 encrypted using

the functional encryption scheme. The universal circuit, viewed as

a function, is linked with the decryption key of the FE scheme. To

obtain the result, they rely on the decryption function of the FE
scheme, by decrypting the encryption of 𝑥 , producing the desired

output. Their approach does not ensure the privacy of the output, in

constrast to our construction where the output privacy is ensured.

More recent work such that the construction of [Fiore et al.

2020] proposed to compute the function 𝑓 homomorphically and

later prove the validity of the computation using a Succint Non-

interactive Argument of Knowledge. Similarly in [Bois et al. 2021],

they suggested a verifiable computation scheme using Somewhat

Homomorphic Encryption (a FHE scheme supporting a bounded-

degree algrebraic circuit) and an Homomorphic Hash function al-

lowing to operate over hashs. Althrough efficient for the prov-

ing and verification, both of these works are limited to the single-

client setting. Moreover, work of [Bois et al. 2021] supports only a

bounded-degree functions. It contrast our work, designed for the

multi-client setting and supporting arbitratry functions.

Close to our work, [Lafourcade et al. 2022] presents a non-

interactive verifiable computation based on MKHE and garbled

circuits for the single-client setting. Conceptually, the client sends

to the server his input 𝜎𝑥 encrypted under anMKHE key pk𝑥 (with

sk𝑥 kept secret by the client). Then, given a garbled circuit en-

crypted under pk𝑓 (with sk𝑓 owned by the client), the server sends

back 𝜎𝑦 encrypted under both pk𝑥 and pk𝑓 . Their approach cannot
be generalized to the multi-client setting: assuming a client sending

its input encrypted under its own key, then the obtained encoded

result would be encrypted under the public key of all clients, ren-

dering the encoded output impossible without sharing the secret

keys to other clients, exposing the sent inputs. Our paper proposes

a solution for the multi-client setting where 𝜎𝑦 can be obtained by

other clients without exposing their secret keys and hence ensuring

the input privacy.

Outline.We recall in Section 2 the definition of a verifiable-computation

scheme as well as the building blocks used for RMC-PVC. In Sec-

tion 3, we detail the design of RMC-PVC. Finally, we analyse the
complexity of our scheme in Section 5.

2 PRELIMINARIES
We present the definition of a verifiable-computation scheme in the

general setting. We also describe the core primitives of RMC-PVC,
namely the Yao’s garbled circuit andMKHE scheme.

2.1 Definition of Verifiable Computation
Scheme

A verifiable computation scheme aims to verify outsourced com-

putations over an untrusted server. Suppose that a client wants to

delegate 𝑦 = 𝑓 (𝑥) the computation of the function 𝑓 over an input
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𝑥 to a server. We provide the model of the verifiable computation

defined in [Gennaro et al. 2010]:

Definition 2.1 (verifiable computation scheme [Gennaro et al. 2010]).
A verifiable computation scheme VC is composed of four algorithms

VC.KeyGen, VC.ProbGen, VC.Compute, VC.Verify defined as:

• VC.KeyGen(𝑓 , 𝜆) → (PK, SK): Given a function 𝑓 and a

security parameter 𝜆, output public key PK (that encodes

the function 𝑓 ) and secret key SK.
• VC.ProbGenSK (𝑥) → (𝜎𝑥 , 𝜏𝑥 ): Given the input 𝑥 and the

private key SK, return 𝜎𝑥 , the public encoding of input 𝑥 ,

(used by the server to compute 𝑦 = 𝑓 (𝑥)) and 𝜏𝑥 , a secret

verification string, (used for to verify the correctness of com-

putations).

• VC.ComputePK (𝜎𝑥 ) → 𝜎𝑦 : Given the public key PK and the

encoded input 𝜎𝑥 , return 𝜎𝑦 the encoded output.

• VC.VerifySK (𝜎𝑦, 𝜏𝑥 ) → 𝑦 ∪ ⊥: Given SK the private key,

𝜏𝑥 the secret verification string and 𝜎𝑦 the encoded output,

output 𝑦 if the output is verified, ⊥ otherwise.

A verifiable computation scheme VC must be correct, secure and
outsourceable. A VC scheme is correct for any input 𝑥 , an honest

server can compute 𝑓 (𝑥). A VC scheme is secure if the client is able
to detect if a malicious server returns 𝑦 an invalid result instead of

the valid result 𝑓 (𝑥). A VC scheme is outsourceable meaning that

the client must perform strictly less operations than computing the

function by himself. We give the formal definitions of usual security

properties of a verifiable computation scheme. Optionally, a VC
scheme is said private if the server cannot learn some information

about the inputs 𝑥 and the output 𝑓 (𝑥).

Definition 2.2 (Correctness [Gennaro et al. 2010]). Let VC be a

verifiable computation scheme. For every function 𝑓 , every input

𝑥 , given (PK, SK) ← VC.KeyGen(𝑓 , 𝜆), the equality holds:

𝑓 (𝑥) = VC.VerifySK (VC.ComputePK (VC.ProbGenSK (𝑥)))

Definition 2.3 (Outsourceability). For every function 𝑓 , a veri-

fiable computation scheme VC is outsourceable if the asymptotic

complexities of VC.ProbGen and VC.Verify are strictly lower than

the asymptotic complexity of the fastest algorithm to compute 𝑓 .

A verifiable computation scheme is secure if the server man-

ages to return an invalid result accepted by the client only with a

negligible probability. We formalize the security of the verifiable

computation scheme with the game ExpASec presented in Fig. 2; the

challenger expects from the adversary to produce invalid encoded

result 𝜎�̂� where 𝑦 ≠ 𝑓 (𝑥) for an input 𝑥 chosen by the adversary.

The adversary must also produce 𝜎𝑥 the encoding of the input 𝑥 .

The adversary has access to an oracle OPubProbGen which for an

input 𝑥 , computes the encoding 𝜎𝑥 as well as the private encoding

𝜏𝑥 before to output only 𝜎𝑥 . The oracle OPubProbGen can be called

by the adversary a polynomial number of times and until to output

the result. The adversary wins at ExpASec if the provided encoded

result is accepted by the verifiable computation scheme.

Definition 2.4 (Security [Gennaro et al. 2010]). Let VC be a veri-

fiable computation scheme and 𝜆 the security parameter, then for

every function 𝑓 , and every (PK, SK) ← VC.KeyGen(𝑓 , 𝜆), for ev-
ery PPT adversaryA we have: Pr[ExpASec [VC, 𝑓 , 𝜆] = 1] = negl(𝜆).

A verifiable computation scheme is private if the server does not
learn information about the input, or with a negligible probability.

We formalize the privacy of a verifiable computation scheme with

the game ExpAPriv introduced in Fig. 3. The challenger chooses one

input 𝑥𝑏 among 𝑥0 and 𝑥1 provided by the adversary A, where 𝑏

is a random bit. Then, the challenger computes and sends 𝜎𝑥𝑏 the

encoding of the input 𝑥𝑏 to A, which responds with
ˆ𝑏 a prediction

over the bit 𝑏. The adversary A wins at ExpAPriv if his prediction
ˆ𝑏 is valid i.e., ˆ𝑏 = 𝑏. Before the prediction, A can call the oracle

OPubProbGen (defined in Fig. 2) a polynomial number of times.

Definition 2.5 (Privacy [Gennaro et al. 2010]). Let VC be a veri-

fiable computation scheme and 𝜆 a security parameter. Then, for

every function 𝑓 and every (PK, SK) ← VC.KeyGen(𝑓 , 𝜆), for every
PPT adversaryA we have Pr[ExpAPriv [VC, 𝑓 , 𝜆] = 1] = 1

2
+ negl(𝜆).

2.2 Yao’s Garbled Circuit
Suppose that a client wants to delegate 𝑓 (𝑥), the computation of

a function 𝑓 over an input 𝑥 to an untrusted server. The first step

Game ExpASec [VC, 𝑓 , 𝜆]:
T ← ∅
(PK, SK) ← VC.KeyGen(𝑓 , 𝜆)
𝑥, 𝜎𝑥 , 𝜎�̂� ← AO

PubProbGen (T,VC,SK, ·) (PK)
retrieve 𝜏𝑥 associated with 𝜎𝑥 from T
𝑦 ← VC.VerifySK (𝜎�̂�, 𝜏𝑥 )
Outputs 1 if 𝑦 ≠ ⊥∧𝑦 ≠ 𝑓 (𝑥) else 0

Oracle OPubProbGen (T ,VC, SK, 𝑥):

(𝜎𝑥 , 𝜏𝑥 ) ← VC.ProbGenSK (𝑥)
T ← T ∪ {(𝜎𝑥 , 𝜏𝑥 )}
Outputs 𝜎𝑥

Figure 2: Experiment for security of a verifiable computa-
tion scheme. By poly(𝜆), we denote a polynomial function de-
pending on the security parameter 𝜆. Parameters provided
by the challenger are underlined.

Game ExpAPriv [VC, 𝑓 , 𝜆]

T ← ∅
(PK, SK) ← VC.KeyGen(𝑓 , 𝜆)
(𝑥0, 𝑥1) ← AO

PubProbGen (T,VC,SK, ·) (PK)
𝑏

$← {0, 1}
(𝜎𝑥𝑏 , 𝜏𝑥𝑏 ) ← VC.ProbGenSK (𝑥𝑏 )
ˆ𝑏 ← A(𝜎𝑥𝑏 )

Outputs 1 if 𝑏 = ˆ𝑏 else 0

Figure 3: Experiment for privacy property of a verifiable
computation scheme. Parameters provided by the chal-
lenger are underlined.
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performed by the client is to compute Δ𝑓 = (G,W,Win,Wout) the
boolean circuit corresponding to 𝑓 , where G is the set of gates in

Δ𝑓 ,W is the set of wires in Δ𝑓 ,Win (resp.Wout) are the wires at

the input (resp. output) of Δ𝑓 , withWin ⊂ W (resp.Wout ⊂ W).

Each gate 𝑔 ∈ G (see Fig. 4) takes as input two wires𝑤0,𝑤1 ∈ W
and as an output a wire𝑤2 ∈ W, denoted by 𝑔(𝑤0,𝑤1) → 𝑤2.

𝑏2 = 𝑔(𝑏0, 𝑏1)
𝑏0

𝑏1

g
𝑤0

𝑤1

𝑤2

Figure 4: Representation of the gate 𝑔(𝑤0,𝑤1) → 𝑤2 ∈ G.

To generate the garbled circuit, we require a symmetric encryp-

tion scheme denoted Sym composed of three functions Sym.KeyGen,
Sym.Enc and Sym.Dec:
• Sym.KeyGen(1𝜆) → 𝑘 : Given a security parameter 𝜆, output

a 𝜆-string 𝑘 .

• Sym.Enc𝑘 (𝑚) → c: Given a message𝑚, output ct the mes-

sage𝑚 encrypted under the key 𝑘 .

• Sym.Dec𝑘 (c) → 𝑚: Given a ciphertext c representing the

message𝑚 encrypted under the key 𝑘 , output𝑚.

Garbled circuit relies on a Yao-Secure symmetric encryption

scheme.

Definition 2.6 (Yao-Secure Symmetric Encryption [Yao 1986]). A
Yao-Secure symmetric encryption scheme must ensure:

• Indistinguishable under multiple messages, meaning that for

every two vectors of polynomial length 𝑥 and 𝑦, no polyno-

mial time adversary can distinguish between an encryption

of 𝑥 or 𝑦 under key 𝑘 .

• Elusive range meaning that the encryption of a message falls

under different key spaces depending on the encryption key

used.

• Efficient checkable rangewhere given a key 𝑘 and a ciphertext

𝑐 , there is a polynomial time algorithm able to check if 𝑐 has

been encrypted under 𝑘 .

For each wire𝑤 ∈ W, the client chooses uniformly random la-
bels 𝑘0

𝑤 ← Sym.KeyGen(1𝜆), 𝑘1

𝑤 ← Sym.KeyGen(1𝜆) correspond-
ing respectively to 0 (wire off) and 1 (wire on). Once each wire has

been affected with two labels, then for each gate 𝑔(𝑤0,𝑤1) → 𝑤2

we compute 𝛾𝑔 as follows:

𝛾𝑔 = (𝛾00

𝑔 , 𝛾01

𝑔 , 𝛾10

𝑔 , 𝛾11

𝑔 )

𝛾00

𝑔 = Sym.Enc𝑘0

𝑤
0

(Sym.Enc𝑘0

𝑤
1

(𝑘𝑔 (0,0)𝑤2
))

𝛾01

𝑔 = Sym.Enc𝑘0

𝑤
0

(Sym.Enc𝑘1

𝑤
1

(𝑘𝑔 (0,1)𝑤2
))

𝛾10

𝑔 = Sym.Enc𝑘1

𝑤
0

(Sym.Enc𝑘0

𝑤
1

(𝑘𝑔 (1,0)𝑤2
))

𝛾11

𝑔 = Sym.Enc𝑘1

𝑤
0

(Sym.Enc𝑘1

𝑤
1

(𝑘𝑔 (1,1)𝑤2
))

(1)

From Equation (1), we construct the garbled circuit 𝛾 = {𝛾𝑔 |𝑔 ∈ G}.

Definition 2.7 (Yao’s garbled circuit[Yao 1986]). Suppose Sym a

Yao-Secure symmetric encryption scheme. The verifiable computa-

tion schemeVCYao is composed ofVCYao.KeyGen,VCYao.ProbGen,
VCYao.Compute, VCYao.Verify where:

• VCYao.KeyGen(𝑓 , 𝜆) → (PK, SK): Compute the boolean cir-

cuit Δ𝑓 = (G,W,Win,Wout) corresponding to 𝑓 , where

G is the set of gates,W the set of wires,Win the set of

input wires and Wout the set of output wires. For each

wire 𝑤 ∈ W, compute 𝑘0

𝑤 ← Sym.KeyGen(1𝜆), 𝑘1

𝑤 ←
Sym.KeyGen(1𝜆). Compute the garbled circuit 𝛾 = {𝛾𝑔 |𝑔 ∈
G}. Output PK = 𝛾 and SK = ∪𝑤∈W {𝑘0

𝑤 , 𝑘
1

𝑤}.
• VCYao.ProbGenSK (𝑥) → 𝜎𝑥 : We denote the binary repre-

sentation of input 𝑥 composed of 𝑛 bits by 𝑥1, . . . , 𝑥𝑛 . Output

𝜎𝑥 = {𝑘𝑥1

𝑤1
, . . . , 𝑘

𝑥𝑛
𝑤𝑛
} the set of labels associated to the wire

𝑤𝑖 ∈ Win regarding on the input bits.

• VCYao.ComputePK (𝜎𝑥 ) → 𝜎𝑦 : Output𝜎𝑦 = {𝑘𝑦1

𝑤1
, . . . , 𝑘

𝑦𝑚
𝑤𝑚
}

the set of labels representing the binary encoding 𝑦1, . . . , 𝑦𝑚
of the output 𝑦 = 𝑓 (𝑥) using the garble circuit 𝛾 (simulating

the function 𝑓 ) over the encoded input 𝜎𝑥 .

• VCYao.VerifySK (𝜎𝑦) → 𝑦 ∪ ⊥: Output 𝑦 = 𝑦1, . . . , 𝑦𝑚 only

if for all 𝑖 ∈ [1,𝑚] we have 𝑘𝑦𝑖𝑤𝑖
∈ {𝑘0

𝑤𝑖
, 𝑘1

𝑤𝑖
}, otherwise the

server is cheating, thus we refuse the result with ⊥.

2.3 Multi-Key Homomorphic Encryption
Introduced in 2009 by Gentry [Gentry 2009], the Fully Homomor-

phic Encryption (FHE) allows to perform any circuit over encrypted

data. A traditional use-case of FHE starts by a client who sends

to a server an input 𝑥 encrypted under a public key pk. Then, the
server sends back the result of the function 𝑓 over 𝑥 , without rely-

ing on the decryption key sk. Multi-Key Homomorphic Encryption

(MKHE) is a natural extension of FHE where the evaluation of a

circuit is performed over inputs encrypted under different keys. In

this work, we consider theMKHE scheme in [Chen et al. 2017].

Definition 2.8 (Multi-Key Homomorphic Encryption). A MKHE
scheme withMKHE.KeyGen,MKHE.Enc,MKHE.Eval,MKHE.Dec:
• MKHE.KeyGen(1𝜆) → (pk, sk): Given the unary represen-

tation of the security parameter 𝜆, output a new key pair

(pk, sk) with pk the public key and sk the secret key.
• MKHE.Enc(pk,𝑚) → {𝑚}PK: Given a message𝑚 and a pub-

lic key pk, output {𝑚}PK the message𝑚 encrypted under the

set of public keys PK containing exactly one public key pk.
• MKHE.Eval(𝑓 , {𝑚0}PK0

, {𝑚1}PK1
) → {𝑓 (𝑚0,𝑚1)}PK0∪PK1

:

Given a boolean circuit 𝑓 , a ciphertext {𝑚0}PK0
containing

the message𝑚0 encrypted under the set of public keys PK0,

a ciphertext {𝑚1}PK1
containing a message 𝑚1 encrypted

under the set of public keys PK1, output {𝑓 (𝑚0,𝑚1)}PK0∪PK1

the evaluation of the function 𝑓 over the inputs𝑚0 and𝑚1

encrypted under the union of the sets of public keys PK0

and PK1.

• MKHE.Dec(SK, {𝑚}PK) → 𝑚: Given the set of secret keys

SK and a ciphertext {𝑚}PK containing amessage𝑚 encrypted

under the set of public keys PK, output𝑚.

In this paper, we consider theMKHE scheme of [Chen et al. 2019]

having the distributed decryption property. Conceptually, given a

ciphertext and its secret key, a party can extract a so-called partial

decryption. To obtain the plaintext, each party requires the par-

tial decryption of the other parties. Then, by merging all partial

decryptions, the party recovers the underlying plaintext.
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Definition 2.9 (Distributed Decryption[Chen et al. 2019]). Suppose
the set of public encryption keys PK = {pk

0
, . . . , pk𝑛}. Distributed

decryption property of aMKHE scheme considers two additional

functions MKHE.PartDec andMKHE.Merge where:
• MKHE.PartDec(sk𝑖 , {𝑚}PK) → Part𝑖 (𝑚): Given a secret

key sk𝑖 and a ciphertext {𝑚}PK containing a message 𝑚

encrypted under the set of public keys PK, output Part𝑖 (𝑚)
a partial decryption of {𝑚}PK using sk𝑖 .
• MKHE.Merge(Part0 (𝑚), . . . , Part𝑛 (𝑚)) →𝑚: Given partial

decryption Part𝑖 (𝑚) where 𝑖 ∈ {0, . . . , 𝑛}, output𝑚.

For clarity, given a ciphertext 𝑐 = {𝑚}PK a message𝑚 encrypted

under a short set of public keys e.g., PK = {pk
0
, pk

1
}, we denote 𝑐

directly by {𝑚}pk
0
,pk

1

.

Game ExpAMKICDD [𝜆] :

K ← ∅
(pk𝑚, sk𝑚) ← MKHE.KeyGen(1𝜆)
𝑥0, 𝑥1 ← AO

Enc (K,𝜆, ·),OPartDec (K,pk𝑚, ·, ·) (pk𝑚)
𝑏 ←$ {0, 1}
{𝑥𝑏 }pk𝑚 ← MKHE.Enc(pk𝑚, 𝑥𝑏 )
𝑏 ′ ← AOEnc (K,𝜆, ·),OPartDec (K,pk𝑚, ·, ·) (pk𝑚, {𝑥𝑏 }pk𝑚 )

Output 1 if 𝑏 = ˆ𝑏 else 0

Oracle OEnc (K, 𝜆, 𝑥) :

(pk, sk) ← MKHE.KeyGen(1𝜆)
{𝑥}pk ← MKHE.Enc(pk, 𝑥)
K ← K ∪ {(pk, sk)}

Output {pk, {𝑥}pk}

Oracle OPartDec (K, pk𝑚,𝜓, pk) :

if pk ≠ pk𝑚
Retreive (pk, sk) from K
Return MKHE.PartDec(sk,𝜓 )

else
Return ⊥

Figure 5: Experiment for the semantic security of a MKHE
scheme having the distributed decryption property.

In Fig. 5, we present the game modeling the semantic security of

the MKHE scheme having the distributed decryption property. In

this game, the adversary A is called by the challenger to produce

two inputs 𝑥0 and 𝑥1 of his choice. The challenger samples a random

bit 𝑏 and encrypts 𝑥𝑏 under the key pk𝑚 , denoted {𝑥𝑏 }pk𝑚 . Then,

the adversary A is called with the public encryption key pk𝑚 and

the ciphertext {𝑥𝑏 }pk𝑚 , which responds with a prediction bit
ˆ𝑏. The

challenger outputs 1 if
ˆ𝑏 equals to 𝑏, 0 otherwise. During the game,

the adversaryA can call a polynomial number of times two oracles

OEnc and OPartDec. Both have in common a setK allowing to share

generated keys among the oracles. Every parameters given by the

challenger to the oracles, underlined in the game, are assumed to

be hidden from A. The first oracle OEnc takes as an input three

parameters. Two first parameters, provided are the set K and the

security parameter 𝜆. The last parameter is a bitstring 𝑥 provided by

the adversary, which expects as an output the encryption of 𝑥 . The

second oracle OPartDec takes as an input four parameters. The two

first parameters, provided by the challenger, are the set K and the

public encryption key pk𝑚 . The two last parameters, provided by

the adversary, are a bistring𝜓 and a public encryption key pk. The
adversary expects from OPartDec to produce a partial decryption

of the bistring𝜓 with sk (obtained by the oracle by searching in K
with pk). If the adversary sends either a malformed ciphertext 𝜓

or public encryption key pk or a pk not contained in K , then the

oracle returns ⊥ and the adversary would not get any advantage.

3 OUR PROTOCOL RMC-PVC
We present our verifiable-computation protocol called RMC-PVC
(for Reusable Multi-Clients Protocol for Verifiable Computing) de-

signed to verify computations performed by an untrusted server

of an arbitrary function 𝑓 over inputs provided by multiple clients.

RMC-PVC is non-interactive: Communications between the server

and the clients occurs during the input providing, and during the

result verification steps.

For the sake of clarity, we present our protocol RMC-PVC in a

two-clients setting. We stress that RMC-PVCworks for an arbitrary
number of clients. After the presentation for two clients, we show

how to generalize our protocol for any number of clients. Still in

the search of clarity, we assume that one client provides one bit of

information, without loss of generalization.

3.1 Initial Setup
The initial setup of our protocol requires the knowledge of the

key pair (PK, SK) by clients 𝐶0 and 𝐶1. In our use-case, the key

pair (SK, PK) is initially computed by a trusted honest party such

as the government, and then shared to hospitals. The key pair is

constructed as follows: Assume a boolean circuit 𝑓 represented by

the tuple (G,W,Win,Wout) where G is the set of gates,W the set

of wires,Win ⊂ W the set of input wires andWout ⊂ Win the set

of output wires. The trusted authority computes (PKYao, SKYao) ←
VCYao.KeyGen(𝑓 , 𝜆)wherePKYao = {𝛾} = {𝛾𝑔 |𝑔 ∈ G} and SKYao =

∪𝑤∈W {𝑘0

𝑤 , 𝑘
1

𝑤}. Then, it generates the function-related key pair

(pk𝑓 , sk𝑓 ) ← MKHE.KeyGen(1𝜆), and finally computes the en-

crypted garbled circuit denoted {𝛾}pk𝑓 , which is equivalent to

{MKHE.Enc(pk𝑓 , 𝛾𝑔) |𝑔 ∈ G}. By {0}pk𝑓 , we denote the bit 0 en-

crypted with pk𝑓 . We set PK = {{𝛾}pk𝑓 } and SK = SKYao ∪ {sk𝑓 }.
In the general case with multi-clients, all clients must share SK.

3.2 RMC-PVC with Two Clients
Suppose two clients𝐶0 and𝐶1 having respectively inputs 𝑥0 and 𝑥1,

and want the server to compute 𝑦 = 𝑓 (𝑥0, 𝑥1) with 𝑓 : {0, 1}2 →
{0, 1}𝑚 . RMC-PVC works in five steps. Steps (1) and (2) are pre-

sented in Fig. 6a while Steps (3), (4) and (5) are depicted in Fig. 6b.

Step (1): Inputs encoding. Given his input 𝑥0, client 𝐶0 computes

(𝜎𝑥0
, 𝜏𝑥0
) by executing VCYao.ProbGenSKYao (𝑥0). Then, client 𝐶0

generates the input key pair (pk𝑥0

, sk𝑥0
) with MKHE.KeyGen(1𝜆),

dedicated for input 𝑥0. The public encoding 𝜎𝑥0
of the input 𝑥0
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Server (PK)

𝐶0 (SK, 𝑥0, sk𝑥0
) 𝐶1 (SK, 𝑥1, sk𝑥1

)

(1) {𝜎𝑥0
}pk𝑓 ,pk𝑥

0

(1) {𝜎𝑥1
}pk𝑓 ,pk𝑥

1

(2) {𝜎𝑦}pk𝑓 ,pk𝑥
0

,pk𝑥
1

(a) Computation of 𝑦 = 𝑓 (𝑥0, 𝑥1) where the function 𝑓 is sim-
ulated by the server using PK over 𝜎𝑥0

and 𝜎𝑥1
the encoding of

respectively the input 𝑥0 and 𝑥1.

Server (PK)

𝐶0 (SK, 𝑥0, sk𝑥0
) 𝐶1 (SK, 𝑥1, sk𝑥1

)

(5) (5)

(3) Part0 (𝜎𝑦) (3) Part1 (𝜎𝑦)

(4) Part1 (𝜎𝑦) (4) Part0 (𝜎𝑦)

(b) Decryption of the encrypted encoded result {𝜎𝑦 }pk𝑓 ,pk𝑥
0

,pk𝑥
1

,
where each client shares his own partial decryption to other
clients through the server.

Figure 6: Overview of RMC-PVC. Computation is presented in Figure 6a. Decryption and verification is presented in Figure 6b.

is encrypted under both pk𝑓 and pk𝑥0

, producing {𝜎𝑥0
}pk𝑓 ,pk𝑥

0

,

obtained by doing an homomorphic addition of the ciphertexts

MKHE.Enc(pk𝑥0

, 𝜎𝑥0
) and MKHE.Enc(pk𝑓 , 0). Client 𝐶1 does the

same operations over its own input𝑥1 in order to obtain {𝜎𝑥1
}pk𝑓 ,pk𝑥

1

.

Then, client 𝐶0 (resp. 𝐶1) sends {𝜎𝑥0
}pk𝑓 ,pk𝑥

0

(resp. {𝜎𝑥1
}pk𝑓 ,pk𝑥

1

)

to the server as depicted in Fig. 6a.

Step (2): Function evaluation. The server evaluates the function
𝑓 using the encrypted garbled circuit {𝛾}pk𝑓 and encrypted en-

coded inputs {𝜎𝑥0
}pk𝑓 ,pk𝑥

0

and {𝜎𝑥1
}pk𝑓 ,pk𝑥

1

, provided by clients

at Step (1). The function evaluation assumes a circuit denoted Γ
working at level of a gate 𝑔(𝑤0,𝑤1) → 𝑤2 ∈ G, which given two

labels 𝑘
𝑏0

𝑤0
, 𝑘

𝑏1

𝑤1
(corresponding to bits 𝑏0 and 𝑏1) and the set of

ciphertexts 𝛾𝑔 (detailed in Equation (1)), produces 𝑘
𝑔 (𝑏0,𝑏1)
𝑤2

. Exe-

cuted homomorphically, Γ allows to run a garbled circuit homo-

morphically without revealing the produced label 𝑘
𝑔 (𝑏0,𝑏1)
𝑤2

, ensur-

ing the reusability of the garbled circuit. Therefore, the server

performs the evaluation of the circuit 𝑓 by executing gate-by-

gate 𝑔(𝑤0,𝑤1) → 𝑤2 ∈ G the homomorphic evaluation function

MKHE.Eval(Γ, {𝑘𝑏0

𝑤0
}pk𝑓 ,pk𝑥

0

,pk𝑥
1

, {𝑘𝑏1

𝑤1
}pk𝑓 ,pk𝑥

0

,pk𝑥
1

, {𝛾𝑔}pk𝑓 ), which

produces the ciphertext {𝑘𝑔 (𝑏0,𝑏1)
𝑤2

}pk𝑓 ,pk𝑥
0

,pk𝑥
1

the label 𝑘
𝑔 (𝑏0,𝑏1)
𝑤2

corresponding to bit 𝑔(𝑏0, 𝑏1) for the wire 𝑤2 ∈ W, encrypted

under pk𝑓 , pk𝑥0

and pk𝑥1

. At the end of the circuit, the server

obtains a set of outputs labels {{𝑘𝑦𝑖𝑤𝑖
}pk𝑓 ,pk𝑥

0

,pk𝑥
1

}𝑖=1

𝑚 denoted as

{𝜎𝑦}pk𝑓 ,pk𝑥
0

,pk𝑥
1

, sent by as a response to every client (see Fig. 6a).

Step (3): Partial decryption. From {𝜎𝑦}pk𝑓 ,pk𝑥
0

,pk𝑥
1

, the client 𝐶0

computes Part0 (𝜎𝑦) ← MKHE.PartDec(sk𝑥0
, {𝜎𝑦}pk𝑓 ,pk𝑥

0

,pk𝑥
1

) its
own partial decryption. Client𝐶1 does the same to obtain the partial

decryption Part1 (𝜎𝑦), sent to the server, depicted in Fig. 6b.

Step (4): Partial decryptions sharing. In this step, the server is in

charge to perform the sharing of partial decryptions. The server

sends Part0 (𝜎𝑦) the partial decryption (computed and sent by 𝐶0)

to 𝐶1. Symmetrically, the server sends Part1 (𝜎𝑦) the partial de-

cryption computed by 𝐶1, to 𝐶0 as depicted in Fig. 6b. Note that

to retreive 𝜎𝑦 , the server has to merge every partial decryptions,

including Part𝑓 (𝜎𝑦). However, Part𝑓 (𝜎𝑦) cannot be computed by

the server since it does not know sk𝑓 kept secret by the clients.

Hence, the usage of pk𝑓 is legitimated both for efficiency (i.e., gar-
bled circuit is encrypted once) but also to prevent the server to

recover information.

Step (5): Result verification. Before ensuring the integrity of the

computation, client𝐶0 retrieves the encoding of the result returned

by the server. To retreive the encoded output 𝜎𝑦 ,𝐶0 requires the last

partial decryption related the with the public key pk𝑓 , computed

as Part𝑓 (𝜎𝑦) ← MKHE.PartDec(sk𝑓 , {𝜎𝑦}pk𝑓 ,pk𝑥
0

,pk𝑥
1

). Then, 𝐶0

computes 𝜎𝑦 ← MKHE.Merge(Part𝑓 (𝜎𝑦), Part0 (𝜎𝑦), Part1 (𝜎𝑦)).
Then, to verify the encoding 𝜎𝑦 , 𝐶0 computes the output 𝑦 ←
VCYao.VerifySKYao

(𝜎𝑦). Note that this step does not require com-

munication. Client 𝐶1 does the same to verify the computation.

3.3 Generalization for multiple clients
Our protocol RMC-PVC can be generalized for any number of

clients without modification. Assume 𝑓 : {0, 1}𝑛 → {0, 1}𝑚 a

boolean function where 𝑛 denotes the number of clients. By 𝐶𝑖
with 𝑖 ∈ {1, . . . , 𝑛} we denote a client. All clients want to compute

𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑦 where 𝑥𝑖 is an input known by 𝐶𝑖 . As stated in

the initial setup, we consider that all clients share SK. Each client

𝐶𝑖 sends {𝜎𝑥𝑖 }pk𝑓 ,pk𝑥𝑖 ← MKHE.Enc(pk𝑥𝑖 , 𝜎𝑥𝑖 ) + {0}pk𝑓 to the

server as explained in the two-client case. The server computes

and sends back to every client {𝜎𝑦}pk𝑓 ,pk𝑥
1

,...,pk𝑥𝑛
using PK. Each

client 𝐶𝑖 sends Part𝑖 (𝜎𝑦) to the server. The server sends to all

clients {Part1 (𝜎𝑦), . . . , Part𝑛 (𝜎𝑦)} the set of partial decryptions.

As presented in the two-case presentation, each client computes

the partial decryption of the encrypted encoded result Part𝑓 (𝜎𝑦) ←
MKHE.PartDec(sk𝑓 , {𝜎𝑦}pk𝑓 ,pk𝑥

1

,...,pk𝑥𝑛
) (with sk𝑓 obtained from

SK). From Part𝑓 (𝜎𝑦) and the received set of partial decryptions,

each client𝐶𝑖 computes the merge encoded output defined as 𝜎𝑦←
MKHE.Merge(Part𝑓 (𝜎𝑦), Part1 (𝜎𝑦), . . . , Part𝑛 (𝜎𝑦)). Each client

𝐶𝑖 is able to retrieve 𝑦 and to verify the computation performed

by the server by computing 𝑦 ← VCYao.VerifySKYao
(𝜎𝑦). If the

function outputs ⊥, then the evaluation performed by the server is

invalid and therefore rejected by the clients. Otherwise, each client

accepts the result 𝑦.
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4 SECURITY ANALYSIS OF RMC-PVC
We first present the security assumptions in which our protocol is

proven to be a verifiable computation scheme, before to present the

security properties ensured by RMC-PVC.

4.1 Correctness
We state that RMC-PVC is correct. Intuitively, this means that the

server can return a valid result by following our protocol, accepted

by all clients.

Theorem 4.1 (Correctness of RMC-PVC). Assuming Sym a
Yao-Secure symmetric encryption scheme andMKHE a correct seman-
tically secure homomorphic encryption scheme with distributed de-
cryption property, then RMC-PVC is a correct verifiable-computation
protocol.

Proof. Since the correctness does not imply a behavior on

the server, we consider the server to be honest. From the Sym
scheme, we can construct VCYao the Yao verifiable computationf

scheme [Yao 1986], which is by definition correct. By assumption,

we have a correct MKHE scheme having the distributed decryption

property.

At step (1), clients encodes their inputs using VCYao.ProbGen,
next encrypted using MKHE.Enc. At step (2), assuming the server

evaluates correctly the boolean circuit 𝑓 and that MKHE is correct,

then the server is able executed the garbled circuit homomorphi-

cally, producing a valid output labels encrypted with the public key

of every clients and the function-related key. Steps (3) and (4) are

focused on the decryption of the encrypted output labels. Assuming

a correct multi-key homomorphic encryption scheme, then each

client is able to retrieve the output labels as computed by the server.

Finally, at step (5), output labels are verified by each client using

VCYao.Verify which accept the labels since we assumed the server

has computed the function as expected. Therefore, RMC-PVC is

correct. □

4.2 Privacy
The privacy property ensured by RMC-PVC states that the server

cannot learn information about the input provided by the clients.

We formalize the privacy with the indistinguishability-based game

ExpAMPriv (presented in Fig. 7) simulated by the challenger C against

an adversary A. In this game, the challenger generates the Yao’s

garbled circuits (PKYao, SKYao), aMKHE key pair (pk𝑓 , sk𝑓 ) and the
scheme key pair (PK, SK) containing in particular the encryption

of the garbled circuit. The adversary A sends to the challenger

two distinct inputs {𝑥0

𝑖
}𝑛
𝑖=1

and {𝑥1

𝑖
}𝑛
𝑖=1

, where 𝑛 is the number

of clients, given as an input of the experiment. The challenger

samples a random bit𝑏 and then computes {𝜎
𝑥𝑏
𝑖
}pk𝑓 ,pk𝑖 the encoded

input encrypted under both pk𝑓 , pk𝑖 , and the private encoding 𝜏
𝑥𝑏
𝑖

for each 𝑖 from 1 to 𝑛. The adversary is called by the challenger

with the public key PK and the encryption of encoding of inputs

{{𝜎
𝑥𝑏
𝑖
}pk𝑓 ,pk𝑖 }

𝑛
𝑖=1

. The adversary A responds with a prediction bit

ˆ𝑏. At the end of the game, C outputs 1 if the A has successfully

guess the bit 𝑏 chosen by C i.e., when ˆ𝑏 is equals to 𝑏.

During the game, A is allowed to call a polynomial times two

distinct oracles OMPubProbGen
and OPartDec defined in Fig. 7. Both

oracles have in common the setK own by the challenger allowing to

communicate keys generated by oracles to the other oracles. Every

parameters provided by the challenger (including K), underlined
in the game, are assumed to be hidden from A. The first oracle

OMPubProbGen
takes as an input five parameters. The four three

parameters, provided by the challenger, are the set K , the Yao’s
garbled circuit secret key SKYao, the public encryption key pk𝑓
and the security parameter 𝜆. The adversary provides the input

𝑥 . The oracle computes the encoding of 𝑥 (as described in the

protocol) and returns the public part of the encoding {𝜎𝑥 }pk𝑓 ,pk
where pk𝑓 is owned by the challenger and pk is a fresh encryption

key generated by the oracle. The second oracle OPartDec takes as
an input four parameters. The first two parameters, provided by

the challenger, are the set K , the public encryption key pk𝑓 . The
two last parameters, provided by the adversary, are a bitstring

𝜓 and a public encryption key pk. The feature brought by this

oracle to the adversary is the possibility to partially decrypt a

ciphertext𝜓 using the secret sk (retreive by the oracle by searching

the key pair (pk, sk) in the set of keys K). However, we prevent
the oracle to produce a partial decryption for the public key pk𝑓 .
Indeed, in our protocol, the adversary does not have access to the

partial decryption related with pk𝑓 . We assume that if an adversary

provide either a malformed bitstring𝜓 or a public key pk, or if pk
has not been generated by the oracle OMPubProbGen

, then the oracle

responds with ⊥ and A would not get any advantage.

Theorem 4.2 (Privacy ofRMC-PVC). Suppose Sym a Yao-Secure
symmetric encryption scheme andMKHE a correct semantically se-
cure homomorphic encryption scheme with distributed decryption
property. Suppose a security parameter 𝜆and a number of clients 𝑛.
Then for every PPT adversary A playing at ExpAMPriv:

AdvMPriv
A [𝑓 , 𝜆, 𝑛] = | 1

2

− Pr[ExpAMPriv [𝑓 , 𝜆, 𝑛] = 1] | ≤ negl(𝜆)

Sketch of the proof. With original garbled circuits, the privacy

holds since the input provided by the client to the server is encoded.

At each bit 𝑏 of the input for a wire𝑤 ∈ Win corresponds a label

𝑘𝑏𝑤 . The server is not able to distinguish from label 𝑘𝑏𝑤 either if

𝑏 = 0 or 𝑏 = 1, since the label is randomly chosen independantly of

𝑏. In RMC-PVC, the privacy holds on the same principle. Therefore,

we show that if an adversary A is able to break the privacy of

RMC-PVC, then we can create an adversary B able to break the

privacy of the garbled circuit.

Proof. For the sake of contradiction, assume a PPT adversaryA
able to break the ExpAMPriv (presented in Fig. 7) with a non-negligible

advantage 𝜀. Hence:

AdvMPriv
A [𝑓 , 𝜆, 𝑛] = 𝜀 + negl(𝜆)

Consider the game ExpBPriv [VCYao, 𝑓 , 𝜆] (the instantiation of

ExpAPriv [VC, 𝑓 , 𝜆] for garbled circuits) challenging an adversary B
to break the privacy of the Yao’s garbled circuits scheme. We want

to prove that given the non-negligible advantage 𝜀 of A to win at

game ExpAMPriv, we can create the adversary B able to win at game

ExpBPriv [VCYao, 𝑓 , 𝜆] with same advantage 𝜀. By C, we denote the
challenger which simulates the game ExpBPriv [VCYao, 𝑓 , 𝜆] against
the adversary B. The reduction works as follows:
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Game ExpAMPriv [𝑓 , 𝜆, 𝑛] :

K ← ∅
(PKYao = {𝛾}, SKYao = {∪𝑤∈W {𝑘0

𝑤 , 𝑘
1

𝑤}}) ← VCYao.KeyGen(𝑓 , 𝜆)
(pk𝑓 , sk𝑓 ) ← MKHE.KeyGen(1𝜆)
(PK, SK) ← ({MKHE.Enc(pk𝑓 , 𝛾)}, SKYao ∪ {sk𝑓 })

({𝑥0

𝑖
}𝑖=1

𝑛 , {𝑥1

𝑖
}𝑖=1

𝑛 ) ← A
OMPubProbGen (K,SKYao,pk𝑓 ,𝜆, ·),OPartDec (K,pk𝑓 , ·, ·) (PK)

𝑏
$← {0, 1}

for 𝑖 ∈ {1, . . . , 𝑛}
𝜎
𝑥𝑏
𝑖
, 𝜏
𝑥𝑏
𝑖
← VCYao.ProbGenSKYao (𝑥𝑏𝑖 )

(pk𝑖 , sk𝑖 ) ← MKHE.KeyGen(1𝜆)
{𝜎

𝑥𝑏
𝑖
}pk𝑖 ← MKHE.Enc(pk𝑖 , 𝑥𝑏𝑖 )

{𝜎
𝑥𝑏
𝑖
}pk𝑓 ,pk𝑖 ← {𝜎𝑥𝑏𝑖 }pk𝑖 ·MKHE.Enc(pk𝑓 , 1)

ˆ𝑏 ← AO
MPubProbGen (K,SKYao,pk𝑓 , ·),OPartDec (K,pk𝑓 , ·, ·) (PK, {{𝜎

𝑥𝑏
𝑖
}pk𝑓 ,pk𝑖 }

𝑖=1

𝑛 )
Output 1 if 𝑏 = ˆ𝑏 else 0

Oracle OMPubProbGen (K, SKYao, pk𝑓 , 𝜆, 𝑥) :

(pk, sk) ← MKHE.KeyGen(1𝜆)
𝜎𝑥 , 𝜏𝑥 ← VCYao.ProbGenSKYao (𝑥)
{𝜎𝑥 }pk ← MKHE.Enc(pk, 𝑥)
{𝜎𝑥 }pk𝑓 ,pk ← {𝜎𝑥 }pk ·MKHE.Enc(pk𝑓 , 1)
K ← K ∪ {(pk, sk)}
Output {𝜎𝑥 }pk𝑓 ,pk

Oracle OPartDec (K, pk𝑓 ,𝜓, pk) :

if pk ≠ pk𝑓
Retreive (pk, sk) from K
Return MKHE.PartDec(sk,𝜓 )

else
Return ⊥

Figure 7: Experiment for the privacy of RMC-PVC. Parameters provided by the challenger to the oracles are underlined

• The challengerC generates (PKYao, SKYao) ← VCYao.KeyGen(𝜆),
where PKYao contains the garbled circuit𝛾 . In parallel,B gen-

erates a newMKHE key pair (pk𝑓 , sk𝑓 ) ← MKHE.KeyGen(1𝜆)
and computes PK← MKHE.Enc(𝛾, pk𝑓 ).
• The adversary A (playing against B which simulates the

game ExpAMPriv) sends to B two distinct inputs {𝑥0

𝑖
}𝑖=1

𝑛 and

{𝑥1

𝑖
}𝑖=1

𝑛 .

• B sent to the challenger C the concatened inputs 𝑥0 =

𝑥0

1
∥ . . . ∥𝑥0

𝑛 and 𝑥1 = 𝑥1

1
∥ . . . ∥𝑥1

𝑛 .

• C chooses a random bit 𝑏 and sends the encoding of 𝑥𝑏
denoted (𝜎𝑥𝑏 , 𝜏𝑥𝑏 ) ← VCYao.ProbGenSK (𝑥𝑏 ) to B.
• B splits the concatened encoded inputs 𝜎𝑥𝑏 into the 𝑛-sized

set {𝜎
𝑥𝑏
𝑖
}𝑖=1

𝑛 .

• At each index 𝑖 ∈ (1, . . . , 𝑛 ), B generates a newMKHE key

pair (pk𝑖 , sk𝑖 ) ← MKHE.KeyGen(1𝜆). B encrypts the en-

coding 𝜎𝑥𝑖 with the public encryption key pk𝑖 , producing
the ciphertext denoted {𝜎

𝑥𝑏
𝑖
}pk𝑖 ← MKHE.Enc(𝜎

𝑥𝑏
𝑖
, pk𝑖 ). In

order to integrate the public encryption key pk𝑓 in the cipher-
text, B multiplies the encryption of the encoding 𝜎

𝑥𝑏
𝑖
with

the bit 1 encrypted under pk𝑓 , denoted as {𝜎
𝑥𝑏
𝑖
}pk𝑓 ,pk𝑖 ←

{𝜎
𝑥𝑏
𝑖
}pk𝑖 ·MKHE.Enc(pk𝑓 , 1).

• Once every part of the input encoded and encrypted, the

adversary B provides to the adversary A every encrypted

encoded inputs {{𝑥𝑏
𝑖
}pk𝑓 ,pk𝑖 }

𝑖=1

𝑛 . The adversaryA responds

with the prediction bit
ˆ𝑏, forwarded by B to C as the predic-

tion for the game ExpBPriv [VCYao, 𝑓 , 𝜆].
The advantage of B to predict correctly the bit 𝑏 chosen by the

challenger C depends only on the prediction
ˆ𝑏 ofA. Therefore, the

advantage ofB to predict correctly𝑏 is equals to the advantage ofA
to have a valid prediction

ˆ𝑏. Hence, we conclude that given the non-

negligible advantage 𝜀 to win at ExpAMPriv, then the adversary B has

a non-negligible advantage 𝜀 to win at game ExpBPriv [VCYao, 𝑓 , 𝜆],
leading to equation Pr

[
ExpBPriv [VCYao, 𝑓 , 𝜆] = 1

]
= 𝜀 + negl(𝜆).

However, VCYao is a private verifiable-computation scheme as

shown in [Lindell and Pinkas 2008]. Thus, there is no PPT adver-

sary to break the privacy of VCYao i.e., to have a non-negligible

advantage to win at game ExpBPriv [VCYao, 𝑓 , 𝜆]. □

4.3 Security
The security property ensures that the server cannot manage to re-

turn an invalid result accepted by the clients. To produce an invalid

result with garbled circuits, the server should return a computa-

tion where at least one output label 𝑘𝑏𝑤 as been replaced by 𝑘1−𝑏
𝑤

for some wire 𝑤 ∈ W. Nevertheless, the server has only a neg-

ligible probability to recover the label 𝑘1−𝑏
𝑤 , at the condition that

the garbled circuit is executed only one time. Otherwise, the next
executions could return the other label 𝑘1−𝑏

𝑤 , letting the server to

cheat without being detected.

In RMC-PVC, the garbled circuit can be used an arbitrary num-

ber of times, thanks to the MKHE scheme. Indeed, at each new

execution of the garbled circuit, a fresh MKHE key pair is gener-

ated by clients. The server cannot reuse the labels from previous

executions since the keys differs between each execution.

We formalize the security property of RMC-PVC by introducing

the game ExpAMSec presented in Fig. 8, working as follows: the

challenger expects from the adversary to generate an input {𝑥𝑖 }𝑛𝑖=1

where 𝑛 denotes the number of clients. The adversary also provides

the encryption of the (possibly invalid) encoded result computed

by the adversary {𝜎�̂�}pk𝑓 ∪{pk𝑖 }𝑛𝑖=1

, as well as {Part𝑖 (𝜎�̂�)}𝑛𝑖=1
the

set of partial decryptions associated with the encrypted encoded

result. The challenger computes Part𝑓 (𝜎�̂�) the partial decryption
obtained using the secret key sk𝑓 . The challenger merges partial

decryptions to obtain 𝜎�̂� the encoded result, which is then verified

by the challenger. The adversary wins at the game ExpAMSec if the
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provided encoded result is accepted, but in the same time does not

correspond to a valid evaluation of the function 𝑓 over the inputs

{𝑥𝑖 }𝑛𝑖=1
. Until his answer to the challenger, the adversary has access

a polynomial number of times to two oracles OMPubProbGen
and

OPartDec presented in Fig. 5.

Theorem 4.3 (Security). Suppose Sym a Yao-Secure symmetric
encryption scheme andMKHE a correct semantically secure homo-
morphic encryption scheme with distributed decryption property. Sup-
pose a security parameter 𝜆and a number of clients 𝑛. Then for every
PPT adversary A playing against ExpAMSec:

AdvMSec
A [𝑓 , 𝜆, 𝑛] = Pr[ExpAMSec [𝑓 , 𝜆, 𝑛] = 1] ≤ negl(𝜆)

Sketch of the proof. We want to prove that there is no PPT

adversary A able to break the security property of our protocol.

More precisely, wewant to show that there is no adversaryA able to

win at game ExpAMSec with a non-negligible advantage. To prove the

non-existence of a such adversary, we consider an hybrid argument

where the initial game is ExpAMSec and the target game denoted H𝑝

with 𝑝 = Card(G) and G the gates composing the boolean circuit

of the function 𝑓 , is the same as ExpAMSec, except that the adversary

A is mandatory to cheat with a negligible advantage. In details,

at each game, we replace one gate by a fake gate returning only

one label, whathever the inputs. In the final game, each gate of

the garbled circuit contains only label 𝑘𝑏𝑤 amongst labels {𝑘𝑏𝑤 , 𝑘
1𝑏
𝑤 }

is present for each wire 𝑤 ∈ W. To win at the game ExpAMSec,

the adversary A must replace a valid output label 𝑘𝑏𝑤 with label

𝑘1−𝑏
𝑤 for a wire 𝑤 ∈ Wout of this choice. However, A knows 𝑘𝑏𝑤
only and the garbled circuit does not contains any occurence (even

encryptions) of the other label 𝑘1−𝑏
𝑤 . Hence, A is able to predict

the label 𝑘1−𝑏
𝑤 only with the probability

1

2
𝜆 since a label is a key

parameterized by the security parameter 𝜆.

Proof. Consider H0 the game working exactly as the same as

ExpAMSec. Let Fake(𝛾𝑔) → 𝛾 ′𝑔 the function with for a gabled table

𝛾𝑔 , returns the fake gate 𝛾
′
𝑔 outputting only the bit 0 whatever the

provided inputs. For 𝑘 ranging from 0 to 𝑝 = Card(G), the game

H𝑘 differ from H𝑘−1
with the gate 𝑔𝑘 which is replaced by a fake

gate Fake(𝑔𝑘 ). Therefore, the fake gate Fake(𝑔𝑘 ) contains only one
output label representing the bit 0. We show that H𝑘−1

and H𝑘 are

computationally indishtinguishable.

For the sake of contradiction, let assume an adversaryA able to

dishtinguish between the gameH𝑘−1
andH𝑘 . FromA, we construct

an adversary B able to break the indishtinguishability of theMKHE
scheme, expressed in Figure 5. The idea behind the reduction is

to challenge A to predict if is playing at game H𝑘−1
or H𝑘 . Let C

the challenger for the ExpMKICDD game. The reduction works as

follows:

• B generates a garbled circuit where the 𝑘 − 1 first gates are

replaced by faked ones, denoted by 𝛾0 = {Fake(𝛾𝑔𝑖 ) |𝑔𝑖 ∈
G, 𝑖 < 𝑘} ∪ {𝛾𝑔𝑖 |𝑔𝑖 ∈ G, 𝑖 ≥ 𝑘}.
• The challenger C generates aMKHE key pair (pk𝑓 , sk𝑓 ).
• From 𝛾0, B derive the garbled circuit where the 𝑘 first gates

are replaced by faked ones, denoted by 𝛾1 = {Fake(𝛾𝑔𝑖 ) |𝑔𝑖 ∈
G, 𝑖 ≤ 𝑘} ∪ {𝛾𝑔𝑖 |𝑔𝑖 ∈ G, 𝑖 > 𝑘}.

• B asks to the challenger C to encrypt {Fake(𝛾𝑔𝑖 ) |𝑔𝑖 ∈ G, 𝑖 <
𝑘} and {𝛾𝑔𝑖 |𝑔𝑖 ∈ G, 𝑖 > 𝑘}, in order to obtain {{Fake(𝛾𝑔𝑖 )}pk𝑓 |𝑔𝑖 ∈
G, 𝑖 < 𝑘} and {{𝛾𝑔𝑖 }pk𝑓 |𝑔𝑖 ∈ G, 𝑖 > 𝑘}.
• B sends to the challenger C two messages 𝑚0 = 𝛾𝑔𝑘 and

𝑚1 = Fake(𝛾𝑔𝑘 ), which responds with the encryption of𝑚𝑏

for a chosen bit 𝑏 ∈ {0, 1}, denoted {𝑚𝑏 }pk𝑓 .
• The adversary B constructs the encrypted garbled circuit

as follows: {𝛾𝑏 }pk𝑓 = {{Fake(𝛾𝑔𝑖 )}pk𝑓 |𝑔𝑖 ∈ G, 𝑖 < 𝑘} ∪
{𝑚𝑏 }pk𝑓 ∪ {{𝛾𝑔𝑖 }pk𝑓 |𝑔𝑖 ∈ G, 𝑖 > 𝑘}
• B provides {𝛾𝑏 }pk𝑓 to the adversaryA, which responds with

the prediction bit
ˆ𝑏 ∈ {0, 1}, equals to 0 ifA predicts that he

is challenged at game H𝑘−1
, and 1 for the game H𝑘 .

• B forward the bit
ˆ𝑏 to C the challenger C.

The advantage of A to distinguish between H𝑘−1
and H𝑘 highly

depends on the gate 𝑔. Indeed, if the gate always produce the same

label (before to be faked), therefore the adversary cannot distinguish.

This situation when the gate 𝑔 always outputs the bit 0 or the bit

1 occurs with a probability
2

2
4
(since we consider a gate taking

two inputs). Hence, the adversaryA is able to distinguish between

H𝑘−1
and H𝑘 only where the original gate 𝑔 outputs both bit 0 and

1, which occurs with probability 1 − 2

2
4
= 7

8
. By hypothesis, A has

a non-negligible probability 𝛼 to distinguish between H𝑘−1
and H𝑘 .

We provide the probability of B to break the indishtinguishability

of ExpMKICDD is Pr

[
ExpBMKICDD [MKHE, 𝜆] = 1

]
= 7

8
𝛼 . We can

conclude this reduction by saying that if an adversary A is able to

distinguish between games H𝑘−1
and H𝑘 , then we can construct

an adversary B able to win with a non-negligible probability at

MKICDD game for the MKHE scheme. Hence, H𝑘−1
and H𝑘 are

computionnally indishtinguishable.

At the end of the hybrid argument, we obtain the game H𝑝 for

𝑝 = |G| which corresponds to the game where the adversaryA has

no advantage and must predict the output label 𝑘1−𝑏
𝑤 randomly. By

induction, we have shown that the game H0 is is dishtinguishable

from the game H𝑝 with a probability | Pr[ExpAH0
= 1] | = |ExpAHp

=

1] | + ( 7
8
𝛼)𝑝 . By contradiction, we know that 𝛼 is negligible. Then,

we can rewrite the equation as | Pr[ExpAMSec = 1] | = |ExpAHp
=

1] | +negl(𝜆). Since |ExpAHp
= 1] | is negligible, then we can conclude

that | Pr[ExpAMSec = 1] | is negligible. □

5 COMPLEXITY ANALYSIS OF RMC-PVC
We study the asymptotic execution time of RMC-PVC. Let 𝑓 =

(G,W,Win,Wout) be an arbitrary boolean circuit 𝑓 where G is

the set of gates,W the set of wires,Win the set of input wires and

Wout the set of output wires.

Step (1). During step (1), each client encodes and encrypts his

input. We recall the considered function 𝑓 is expected to be a

boolean circuit, having Win input bits, the step (1) requires a

O (O (Win ) × O (MKHE.Enc) ) complexity.

Step (2). In this step, the server evaluates the function 𝑓 using

the encrypted garbled circuits {𝛾}pk𝑓 , over the encrypted encoded

inputs {{𝜎𝑥𝑖 }pk𝑓 ,pk𝑥𝑖 }
𝑖=1

𝑛 sent by clients. The server executes the

boolean circuit gate by gate as described in Section 3 until to get

{𝜎𝑦}pk𝑓 ,pk𝑥
1

,...,pk𝑥𝑛
. The server evaluates gate after gate from the
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Game ExpAMSec [𝑓 , 𝜆, 𝑛]:

K ← ∅
(PKYao = {𝛾}, SKYao = {∪𝑤∈W {𝑘0

𝑤 , 𝑘
1

𝑤}}) ← VCYao.KeyGen(𝑓 , 𝜆)
(pk𝑓 , sk𝑓 ) ← MKHE.KeyGen(𝜆)
(PK, SK) ← ({MKHE.Enc(pk𝑓 , 𝛾)}, SKYao ∪ {sk𝑓 })
{𝑥𝑖 }𝑛𝑖=1

, {𝜎�̂�}pk𝑓 ∪{pk𝑖 }𝑛𝑖=1

, {Part𝑖 (𝜎�̂�)}𝑛𝑖=1
←

AO
MPubProbGen (K,SKYao,pk𝑓 ,𝜆, ·),OPartDec (K,pk𝑓 , ·, ·) (PK)

Part𝑓 (𝜎�̂�) ← MKHE.PartDec({𝜎�̂�}pk𝑓 ∪{pk𝑖 }𝑛𝑖=1

, sk𝑓 )
𝜎�̂� ← MKHE.Merge(Part𝑓 (𝜎�̂�), {Part𝑖 (𝜎�̂�)}𝑛𝑖=1

)
𝑦 ← VCYao.VerifySKYao

(𝜎�̂�)

Output 1 if 𝑦 ≠ ⊥∧𝑦 ≠ 𝑓 ({𝑥𝑖 }𝑛𝑖=1
) else 0

Figure 8: Experiment ExpAMSec for security property of RMC-PVC.

input to the output of the boolean circuits. At each gate, the server

must execute the circuit Γ in order to obtain the label for the next

gate. Hence, the server requires a O ( |G| × O (Γ ) ) complexity. We

can refine the O (Γ ) complexity, since Γ tries to decrypt a cipher-

text (produced by the Sym scheme) among 𝛾𝑔 containing 2
𝑖
inputs

where 𝑖 is the number of inputs of each gate. Since we consider

gates with two input wires, then 𝑖 equals to 2, leading to get four

ciphertexts in 𝛾𝑔 . For each ciphertext, Γ executes the decryption

algorithm Sym.Dec twice, with the two provided labels. At most,

there is four decryptions using Sym.Dec, leading to the complexity

of O ( |G| × 8O (Sym.Dec) ).
Step (3). In this step, each client𝐶𝑖 computes Part𝑖 (𝜎𝑦) the partial

decryption of the ciphertext. Clearly, the complexity of this step

depends of the complexity of the MKHE.PartDec function, leading
to the complexity O (MKHE.PartDec).

Step (4). During this step, the server is in charge to broadcast the

partial decryptions to all clients. Only communications are required

in this step: the server receives the partial decryptions provided by

each client, creates a set of received partial decryptions then sent

to every clients. Therefore, the complexity is constant.

Step (5). Each client starts by computing the partial decryp-

tion Part𝑓 (𝜎𝑦). Given this last partial decryption, each client com-

putes the result using the functionMKHE.Merge, which is verified

with VCYao.Verify working in a constant time. Hence, we obtain

O (O (MKHE.PartDec) + O (MKHE.Merge) + |Wout | ).
Compared to the closest work of this paper [Gennaro et al.

2010], a client performs the same operations to encode his input

i.e., O ( |Win | ) × O (MKHE.Enc). Still on the client side, the result

decryption differs from [Gennaro et al. 2010] since we rely on the

distributed decryption. In their protocol a client is able to verify

the result in |Wout |O (FHE.Dec) operations whereas we requires
|Wout | (O (MKHE.PartDec) + O (MKHE.Merge)) operations. On
the other side, the server requires |G|𝑂 (Sym.Dec) operations for
the function evaluation which is stricly less than |G|𝑂 (Sym.Dec +
FHE.Enc) obtained in [Gennaro et al. 2010]. Hence, the function

evaluation in our protocol requires |G|FHE.Enc operations.

6 CONCLUSION
In RMC-PVC, each client can verify the correctness of the eval-

uation performed by the server, thanks to the partial decryption

property. We proved that RMC-PVC is correct. More importantly,

we proved that RMC-PVC is private in the sense that the server as

well as the other clients cannot learn a client’s input. RMC-PVC
is secure meaning that the server cannot produce an invalid result

accepted by the cients. Finally, we study the complexity of our pro-

tocol and shows that a client outsoucing computations performs

less computations compared to the locally computed function case.

In future, we plan to prepare an open-source implementation of

this protocol, proving the effectiveness we have claimed in this pa-

per. Moreover, developping a protocol secure even with verification

queries and against server-clients collusions will be an intersting

way of improvements.
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