
Concurrently Secure Blind Schnorr Signatures

Georg Fuchsbauer and Mathias Wolf

TU Wien, Austria
first.last@tuwien.ac.at, m.last@mailfence.com

24 May 2024

Abstract. Many applications of blind signatures, e.g. in blockchains, require compatibility of
the resulting signatures with the existing system. This makes blind issuing of Schnorr signa-
tures (now being standardized and supported by major cryptocurrencies) desirable. Concurrent
security of the signing protocol is required to thwart denial-of-service attacks.
We present a concurrently secure blind-signing protocol for Schnorr signatures, using the stan-
dard primitives NIZK and PKE and assuming that Schnorr signatures themselves are unforge-
able. Our protocol is the first to be compatible with standard Schnorr implementations over
256-bit elliptic curves. We cast our scheme as a generalization of blind and partially blind
signatures: we introduce the notion of predicate blind signatures, in which the signer can define
a predicate that the blindly signed message must satisfy.
We provide implementations and benchmarks for various choices of primitives and scenarios,
such as blindly signing Bitcoin transactions only when they meet certain conditions specified
by the signer.

Keywords: Schnorr signatures · (partially) blind signatures · concurrent security · implemen-
tation · Bitcoin

1 Introduction

Blind signatures, introduced by Chaum [Cha82], define a protocol between a signer and
a user that lets the latter obtain a signature on a message hidden from the signer. Initially
envisioned for e-cash systems [Cha82, CFN90, OO92, Bra94, HKOK06, BCKL09, BFQ21], they
have also become a central primitive for e-voting protocols [Cha88, FOO93, Her97, ROG07]
and anonymous credentials [Bra94, CL01, CL04, CG08, FP09, BCC+09, Fuc11, BL13, FHS15].

Recently, blind signatures have seen a renewed interest due to their applicability in privacy-
sensitive settings ranging from COVID-19 contact-tracing applications [BRS20, DLZ+20] to
advanced VPNs [Goo], private relays [App], private access tokens [HIP+] and Privacy Pass
[DGS+18]. In the context of blockchains, blind signatures have been considered for increasing
on-chain privacy, e.g. via blindly signing contracts, blind coin swaps or trustless tumbler services
[HBG16, HAB+17, Nic19, LLL+19].

While blind-signing protocols that yield signatures of a standardized scheme are desirable
in general, this can be a stringent requirement: changing the supported signature schemes for
blockchain systems requires consensus, which is a lengthy process; moreover, as participants
update their client software asynchronously, updates must be backwards compatible (i.e., soft
forks) to avoid a segregation of the network.

Schnorr signatures. One of the most important signature schemes today are Schnorr
signatures [Sch90]. Since their patent expired in 2008, they have been outpacing RSA signatures
in application counts. Schnorr signatures are much smaller and more efficiently verifiable for a
comparable security level. (EC)DSA, a NIST-standardized signature scheme, has efficiency
comparable to Schnorr, but it requires unrealistic idealizations to be proved secure [FKP16,
FKP17, HK23]. Schnorr signatures, in the form of EdDSA [BDL+12], are now considered for
standardization.1

The security of Schnorr signatures was proved under the discrete logarithm assumption (DL)
[PS00] in the random oracle model (ROM) [BR93], an idealized model that treats cryptographic
hash functions as random functions. While the proof incurs a security loss due to rewinding
techniques, tight security proofs have also been given [FPS20] under DL in more-idealized
models such as the algebraic group model (AGM) [FKL18] together with the ROM.2

Schnorr signatures are now supported by major blockchain systems such as Bitcoin [WNR20],
Bitcoin Cash, Litecoin or Polkadot, and, in the form of EdDSA (and other variants), in
Monero, Zcash, or Cardano. Their adoption was also motivated by the privacy and scalability
improvements [BDN18, MPSW19, BK22] they enable, properties, which Mimblewimble [Poe16,
FOS19, FO22] crucially relies on. Standardization and wide-spread usage makes blind signature
schemes that produce Schnorr signatures desirable, but using Schnorr can also be a necessity: for
example, blind coin swaps using scriptless scripts [Nic19] in Bitcoin and potential applications
we discuss below all require blind issuing of Schnorr signatures.

Blind Schnorr signatures. Schnorr signatures admit an elegant blind-signing protocol
[CP93] consisting of three messages (2 rounds). A drawback of multi-round protocols is that
they might be insecure when the signer runs several signing sessions simultaneously. In this
case, the signer can only engage in a signing session once the previous session has been finished
or canceled, which opens the door to denial-of-service (DoS) attacks. This motivated the
development of concurrently secure blind signature schemes, where the adversary is allowed
to interweave several signing sessions [Bol03, BNPS03, Oka06, KZ06, HKKL07, HKLN20,
KLR21, KLX22, CAHL+22, TZ22, HLW23], or even round-optimal schemes [Fis06, AFG+10,
FV10, GRS+11, GG14, FHKS16, Gha17], in which the user and the signer both only send a
single message and which thus provide concurrent security by default.

To analyze the (concurrent) security of the original blind Schnorr signing protocol [CP93],
Schnorr [Sch01] introduced the so-called “ROS problem” and showed that in the generic
group model [Nec94, Sho97] together with the ROM, and assuming ROS was hard, blind
Schnorr signatures were unforgeable. He also showed that solving ROS enables an attack on
the scheme when the adversary can engage in concurrent signing sessions. While Wagner’s
subexponential-time attack [Wag02] had showed that ROS was not as hard as conjectured,
Benhamouda et al. [BLL+21] presented a polynomial-time algorithm. They show how attackers
that open polynomially many signing sessions (concretely, 256, if that is the security parameter)
can efficiently forge signatures.

Earlier, Fuchsbauer, Plouviez and Seurin [FPS20] had proposed a variant for blind Schnorr
signing that does not succumb to the ROS attack. In their clause blind Schnorr scheme, the

1 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf
2 The AGM assumes the adversary against a cryptosystem defined over a group (G,+) to be algebraic, which
means that if, after having received group elements X1, . . . , Xn, the adversary returns a group element Z,
one can extract a representation (ζ1, . . . , ζn) so that Z =

∑
ζiXi.

2

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf

signer and the user run two parallel signing sessions of which the signer finishes only one picked
at random. They prove unforgeability in the algebraic group model and the ROM from the
one-more discrete logarithm (OMDL) assumption (which holds in the generic group model
[BFP21]) and the assumption that a new “modified ROS problem” (mROS) is infeasible. While
mROS appears harder than ROS, it can be solved in subexponential time, which reduces the
security of their scheme to 70-bit for standard instantiations of Schnorr.3

Security of the original blind Schnorr signature scheme [CP93] when signing sessions are
only performed sequentially was shown by Kastner, Loss and Xu [KLX22], who give a proof
from OMDL in the AGM+ROM. Katz, Loss and Rosenberg [KLR21] extend a technique
[Poi98], which applied to blind Schnorr [CP93, KLX22] yields a concurrently secure scheme.
However, the resulting signatures are not Schnorr signatures.4

Garg et al. [GRS+11] construct a round-optimal blind-signing protocol for any signature
scheme. They “stress that [their] result is only a feasibility result”, as it makes use of complexity
leveraging, leading to a “signature size of hundreds of kB” [HK16]. Moreover, the signing
protocol uses Yao’s garbled circuits [Yao82], which are another source of inefficiency.

The lack of concurrently secure blind signing protocols for Schnorr signatures with standard
parameters has led to today’s unsatisfactory situation: while Schnorr signatures are replacing
RSA signatures, the ongoing standardization effort by the IETF [DJW22] for blind signatures
only specifies RSA blind signatures [Cha82], which they prefer over clause blind Schnorr
[FPS20] – despite RSA having much larger key and signature sizes (and not lending themselves
as nicely to evaluation batching or efficient threshold signing as (blind) Schnorr signatures, as
the authors note [DJW22]).

Partially blind signatures. Blind Schnorr signatures, as well as most of the mentioned
schemes, provide “full” blindness, meaning the signer learns nothing about the message she
is signing (and she cannot link the signature to the signing session it was produced in). In
practice, this can be too strong and the signer might want to control parts of the message. This
is what “partially” blind signatures [AF96, AO00] provide. In this model, a message consists
of a public and a secret part and the signer gets to see the former during signing.

The state of the art in concurrently secure (partially) blind signatures schemes are on the
one hand “Schnorr-like” schemes (which do not require pairings): Tessaro and Zhu [TZ22] build
on blind Schnorr [FPS20] and obtain a scheme with signatures in G× Z3

p and a proof from
DL in the AGM+ROM (where p is the order of the underlying group G), which was recently
improved to G×Z2

p [CKM+23]; Barreto and Zanon [BZ23] achieve blindness by replacing parts
of the Schnorr signature by a Schnorr proof of knowledge of it; their scheme has signatures in
G× Z2

p and a proof from OMDL in the ROM.
One the other hand, Hanzlik, Loss and Wagner [HLW23] improve on recent techniques

[KLR21, CAHL+22] for a pairing-based scheme [Bol03] proven from (co-)CDH in the ROM,
with round-optimal issuing [Fis06] but relatively large signatures.5

3 The authors propose to generalize their scheme to t > 2 parallel runs (of which the signer finishes one). But
even assuming the best attack on mROS is guessing which sessions will be finished, for 128-bit security we
would require t > 214 parallel sessions, resulting in huge communication complexity.

4 Blind signing is a 7-move protocol and, due to a loose security proof, 12 000-bit groups would be needed
[CAHL+22]. The communication cost per signing session, which is linear in the number of preceding sessions,
was then reduced to logarithmic [CAHL+22] (but no Schnorr-based variants are mentioned).

5 A signature in [HLW23] consists of a BLS signature [BLS01], and K − 1 keys and commitment openings. For
128-bit security the authors suggest K = 33, yielding 5.71 kB per signature, compared to 128 bytes for [TZ22].

3

Our contributions

We present the first practical concurrently secure blind and partially blind signing protocol
for issuing standard Schnorr signatures with rigorous security guarantees. Our blind-signing
protocol consists of two rounds (four moves). In contrast to the only prior practical scheme
[FPS20] (which relies on an unstudied assumption), our scheme can be used for Schnorr
instantiations over 256-bit elliptic curves, yielding signatures of size 64 bytes.6

Overview of our scheme. Our starting point is the original protocol [CP93], against which
the recent forgery attack [BLL+21] proceeds as follows. The adversary, impersonating the user,
opens λ many signing sessions, where λ is the bit-length of the order of the underlying group.
For each session, the adversary samples two possible sets of “blinding values” (which represent
the user’s randomness during a session). The signer’s first protocol message, a group element
R, will then determine which set of blinding values the attacker will use in every session to
compute the forgeries. The crucial observation is that before receiving R, the attacker does
not know which blinding values it will use.

Attempting to prevent this specific attack, we could oblige the user to commit to her
secrets (blinding values and the message to be signed) before receiving the value R. In the
second round, the user must then prove that her protocol message is consistent with the
committed values; she does so using a zero-knowledge proof. Only if the proof verifies will the
signer send the last message, which lets the user compute the signature.7 It turns out that this
modification suffices to not only defend against the concrete attack [BLL+21], but to make
the scheme unforgeable under concurrent signing sessions, as we show in Theorem 1.

Observe that when the user sends a proof that her protocol message is consistent with
the message to be signed, she might additionally prove any property (predicate) about this
message. Our construction therefore naturally instantiates a more general primitive than blind,
and even partially blind, signatures, which we formally define (see below). Moreover, as shown
by our benchmarks, this can come at very little computational cost.

Concretely, our construction uses a public-key encryption scheme PKE for the “commitment”
in the first round8 and a non-interactive zero-knowledge (NIZK) argument system NArg
[BFM88, BCC88] for the proof in the second round. While the plain protocol [CP93] is
unconditionally blind, we show that our construction satisfies a computational notion assuming
that NArg is zero-knowledge and PKE satisfies standard chosen-plaintext security.

6 Assuming 128-bit security for DL on the curve and n-bit security for Schnorr signatures and NIZK soundness,
Theorem 1 yields n-bit security as long as log q ≤ 126 − n, where q is the number of signing session an
attacker closes successfully. In contrast, for 256-bit curves, clause blind Schnorr [FPS20] only achieves 70-bit
security due to attacks on mROS (cf. [TZ22]).

7 Having the user commit to her randomness upfront and later prove that her protocol messages are consistent
with it has been used in previous blind signature constructions via cut-and-choose [Poi98, KLR21, CAHL+22,
HLW23]. However, if the user revealed all of her secrets (in the “chosen” sessions), this would break blindness;
in these protocols the signer therefore signs a (hiding) commitment to the actual message (and hence the
resulting signatures need to contain the commitment opening).

8 This enables “straight-line” extraction of the committed values during the signing queries in our proof of
unforgeability. We cannot use commitments that assume non-blackbox extraction: the reduction would have
to run extractors that run other extractors, which would lead to an exponential blow-up of its running
time. Moreover, the efficiency gains in our implementation would be small. (See Appendix D for a detailed
discussion.) Note that replacing the NIZK by a proof of knowledge would not help since we need to extract
before the proven statement is known.

4

We prove unforgeability of our construction assuming that NArg is sound and that Schnorr
signatures themselves are secure for the underlying group and hash function (families). While
this is a non-standard assumption, it is a minimal assumption in any scenario that uses Schnorr
signatures (and for Schnorr instantiations such as using curve secp256k1 and SHA-256 it is
arguably uncontroversial). We make this assumption because the statement proved by the
NIZK scheme involves the hash function used by the signature scheme, so we cannot rely on
the security of Schnorr signatures in the random oracle model.9

The security of our scheme thus relies solely on the security of its building blocks and
we do not make any additional assumptions, such as OMDL or (variants of) ROS, nor work
in idealized models. Viewed differently, adding our blind-signing protocol to an application
already using Schnorr signatures only requires additionally assuming standard security of PKE
and NArg.

Avoiding a trusted setup. For the sake of generality, our security notions assume trusted
parameters (which is necessary for NIZKs in the standard model [GO94]). However, depending
on the instantiation of NArg and PKE, a trusted setup can easily be avoided in practice
(and formally, by working in the random oracle model): When instantiating PKE e.g. with
ElGamal [ElG85] over an elliptic-curve group (as we do in our implementations), one can
generate a public key for which no one knows the secret key by “hashing into the curve”
[BF01, BCI+10, WB19] (and model the hash function as a random oracle).

As proof system, one can use a scheme that is secure in the ROM or requires a “uniform
reference string” (which could also be created via a hash function modeled as a random
oracle) [BBHR18b, BBB+18, BCR+19, BFS20, BGH19, COS20, Set20, SL20, Com21, Zer,
KPV22, BC23, CBBZ23]. As the proof system NArg is the only computationally complex part
of our construction, we give a prototype implementation using the transparent-setup NIZK
Spartan [Set20].

If the signer sets up the NIZK parameters (and can thus be sure that no one knows a
simulation trapdoor), more efficient schemes can be used if they are subversion-zero-knowledge
[BFS16]; that is, they remain ZK even under adversarially generated parameters. Blindness
of our scheme, which protects against malicious signers, then still holds. Groth16 [Gro16],
the zk-SNARK with the shortest proofs, has been shown to satisfy this notion [Fuc18] if the
prover first performs a consistency check on the NIZK parameters. The users would have to
perform this check once.10 In practice, users could also optimistically trust the signer, since the
discovery of the inconsistency of her parameters would harm her reputation. We implemented
and benchmarked NArg using Groth16.

A third possibility is to accept trusted parameters, but use a scheme that has “universal”
parameters [GKM+18], such as Plonk [GWC19] and Marlin [CHM+20]. These parameters
need only be generated in a trusted way once and can then be used to prove any statement
(up to a certain size). We implemented and benchmarked NArg using Plonk.

EdDSA. Since EdDSA [BDL+12] is based on Schnorr signatures, our construction also yields
(predicate) blind EdDSA signatures. EdDSA, and other types of Schnorr signatures [WNR20]

9 This is also why we do not use the random oracle model for extractable commitments (but rely on PKE
instead), in contrast to other work [KLR21]. Assuming unforgeability of (Schnorr) signatures when proving
the security of a protocol built on top has also been done in the context of multi- and threshold signatures
[CKM21, BCK+22].

10 We analyze the computational complexity of this check in Appendix F.

5

derive the randomness r = logR used during signing deterministically, by hashing the message
and the signer’s secret key.11 This is not applicable during blind signing, as the signer does not
know the message. A blind signature would thus be distributed differently to a (derandomized)
standard signature, but computationally indistinguishable.

Generalizing blind signatures. We introduce the notion of predicate blind signatures
(PBS), which generalizes the concept of partially blind signatures [AF96] and improves on the
privacy guarantees. While in partially blind signatures, the signer agrees with the user on the
public part of the messages before blindly signing it, in PBS they agree on a predicate on the
message to be signed. After successful completion, the signer is guaranteed that the message
she signed satisfies the predicate and the user is guaranteed that the signer learned nothing
more than that. In addition, the signature does not reveal anything about the predicate. This
is in contrast to partially blind signatures, for which the public (i.e., agreed upon) part is part
of the message. PBS easily generalizes to predicates that take a witness as additional input, so
that NP-statements can be enforced on the message during blind signing.

Applications. Predicate blind signatures address conditional privacy-preserving authoriza-
tion in a general way. For example, a payment provider may want to protect customer privacy,
while only authorizing transactions compliant with the law or internal rules, like limiting the
amount of a transaction to certain countries or individuals. Using PBS, the provider learns
neither amount nor destination, only that the criteria are met.

Realizing this with partially blind signatures would require stating the conditions explicitly
in the public message part. Signature verification would be more cumbersome, since it is left
to the verifier to check whether the message conforms to its public part. Worse, the signature
would reveal the conditions, which remain hidden when using PBS.

We give a (concurrently secure) instantiation of PBS whose signatures are standard Schnorr
signatures. As these are supported by Bitcoin [WNR20], this enables concurrently secure blind
coin swaps [Nic19]. But using the “predicate” functionality also opens up new applications,
like adding anonymity to payments for users that entrust their coins to a cryptocurrency
exchange. In this scenario, the user can construct a payment from the exchange’s address and
has it blindly signed under a predicate that enforces (an upper-bound on) the paid amount;
the exchange then debits the user’s account by the amount stated in the predicate. When
the user posts the transaction on the blockchain, the exchange cannot link it to the user (it
only knows it cannot be one transferring more than the agreed amount). This is one of the
scenarios considered in our implementations.

But the (NP-)predicate can also encode further restrictions, like paying limits depending
on the user’s credentials (while preserving anonymity), or compliance with the law.12 We view
PBS as a means to reconcile privacy and compliance and our construction is compatible with
a number of existing systems.

11 If the same r was used for different messages, the secret key would be leaked, which is thereby prevented;
resilience to side-channel attacks is also increased [NS02].

12 Another potential application (not supported by partially blind signatures) is to rate-limiting in Privacy
Pass [DGS+18]: when obtaining the signed tokens, PBS could enforce that they are “linked” among them
(but unlinkable to the signing session), so that applications can enforce rate limits on linked tokens. (E.g., a
(long-enough) prefix of the signed string must be the preimage of a one-way-function evaluation that specifies
the predicate used during blind signing.)

6

Implementations

To give estimates of the efficiency of our construction, we implemented the computationally
heavy part, the proof system NArg. We consider blind, partially blind and predicate-blind
settings, in particular the conditional blind signing of Bitcoin transactions mentioned above.

We consider three choices for NArg: (G) Groth16 [Gro16] (Iden3 implementation [ide]),
a subversion-zero-knowledge SNARK requiring trusted parameters for soundness; (P) the
“universal” zk-SNARK PlonK [GWC19] (Fluidex implementation [Plo]); and (S) a prototype
by Tehrani and Sankar [TS] of the NIZK from the Spartan family [Set20], which does not
require a trusted setup. We wrote the circuits for various scenarios and made them publicly
available [mot]. Our benchmarks were conducted on a standard laptop as a proof of concept.

We instantiate the encryption scheme PKE using the DHIES [ABR98] KEM and the
one-time pad in the prime field of the NIZK as DEM. As the underlying group, we use the
Baby JubJub (BJB) curve group [BJB20] for (G) and (P) and secp256k1 for (S), and a sponge
hash from the Poseidon family [GKR+21]. (These choices are motived by their concise circuit
representations.)

We first consider scenarios in which the underlying Schnorr instantiation also uses BJB
and Poseidon. For both proof systems (G) and (P), the proving key, i.e., the (larger) part of
the CRS used by the user requesting a blind signature, is around 2MB long; computation of
proofs takes under one (G) or two (P) seconds; proofs are 402 bytes (G) or around 800 bytes
(P) and take under half a second to verify (see columns (A1)–(A3) in Table 1, page 25).

We then test our scheme for Bitcoin, that is, we use as Schnorr parameters the curve
secp256k1 and SHA-256 [WNR20]. These are not efficiently “arithmetizable” in the used
configurations of (G) and (P)13, therefore performance is worse, but still practical. The CRS
is now up to 550 MB and proofs take around 1 (G) or 3 minutes (P) to generate, while their
size does not increase; verification time also remains unchanged compared to the optimized
scenario. The computational burden on the signer’s side, like the cryptocurrency exchange
in the above example is thus small.14 As a scenario for “predicate-blind” signing we consider
signing a Bitcoin transaction when certain parts of the transaction (such as an upper bound on
the amount) are fixed by the signer (row (B2) in Table 1). Compared to “fully-blind” signing,
the CRS size and running times hardly change.

Finally, we give an outlook on how a proving system like (S), which interoperates well with
the secp256k1 curve compares to (G) and (P). Another advantage of (S) is that it does not
require a trusted setup. While the CRS size reduces to merely 36 kB (cf. Table 2), surprisingly,
with 2.5 minutes, the proving time is still comparable to (P). We conjecture that this is largely
due to the fact that the used prototype implementation [TS] does not, as far as we could tell,
leverage the huge potential for parallelization, nor does it optimize arithmetic in the “outside”
curve secq256k1 or the “inside” curve secp256k1.

Despite a lot of potential for improving efficiency, we stress that privacy-preserving appli-
cations that require minutes of computation are not uncommon in the blockchain space. For
example, computing a “private” transaction in the first generation of Zcash took around two

13 We implement both (G) and (P) over the BN254 curve [BN06], whose order is incompatible with the base
field of secp256k1.

14 We expect implementations for Schnorr instantiated over ed25519 (Circom 2.0 implementation of [EL]), i.e.,
blind signing of EdDSA [BDL+12] to yield similar benchmarks using BN254, since the base field of ed25519
is also incompatible with the BN254 scalar field.

7

minutes15 and their proving key was 868MB.16 The numbers we report should be viewed as
very rough upper bounds, as the implementations are far from optimized, the selected NIZKs
are not leading in terms of performance and results depend on machine specifics (e.g., proof
verification for (P) was reported [Bot] as 100 times faster than measured by us).

In Table 1 we also give estimates for the running time of the user’s check of the Groth16
parameters when not trusting them. These can range from under a second up to five hours
depending on the scenario. However, the user only needs to do this once (or trust someone
else has done it).

Efficiency of Generic Schemes. Blind signing for any scheme can be implemented using
generic two-party computation between signer and user [JLO97] (which would not be concur-
rently secure [HKKL07]). A generic technique are garbled circuits (GC) [Yao82], which are also
used in the round-optimal construction by Garg et al. [GRS+11]. As a rough estimate of the
efficiency of Schnorr blind signing using GC, we consider Jayaraman, Li and Evans’ [JLE17]
work, who use garbled circuits to implement two-party signing for ECDSA (of complexity
comparable to Schnorr) over secp192k1 (thus smaller parameters than ours). Their variant
providing security against malicious parties runs for around a day and requires 819GB of data
transfer per signing. Although GC have been shown to outperform custom protocols in other
contexts [HEK12], for blind Schnorr signing their efficiency appears to be several magnitudes
worse than our approach.

2 Preliminaries

2.1 Notation

For n ∈ N+ we denote by [n] the set {1, . . . , n}. We let a := b denote the declaration of variable
a in the current scope and assigning it the value b. The operator ‘=’, applied for example in
a = b, denotes either the overloading of variable a’s value with variable b’s value, or, if clear
from the context, it denotes the boolean comparison between a and b.

An empty list is initialized via ~a := []. A value x is appended to list ~a via ~a = ~a‖x. The
size of ~a is denoted by |~a|. We denote the j-th element of ~a by ~aj . Attempts to access a position
j 6∈ [|~a|] returns the empty symbol ε. Tuples of elements are denoted as x := (a, . . . , z) and
x[i] denotes the i-th element, which we set to ε if it does not exist.

We denote sets by calligraphic capital letters, e.g. A,B, C, and algorithms by Sans Serif
typestyle. Algorithms are considered to be efficient, i.e., run in probabilistic polynomial time
(p.p.t.) in the security parameter λ, which we usually keep as an implicit input. All adversaries
are assumed to be efficient algorithms. For a p.p.t. algorithm X with explicit randomness r
we write y := X(x; r) to denote assignment of X’s output on input x with randomness r to
variable y. We write y ← X(x) for sampling r uniformly at random and assigning y := X(x; r).

A function ε : N→ R+ is negligible if for every c > 0 there exists k0 s.t. ε(k) < 1/kc for all
k ≥ k0. We assume that uniform sampling from Zn is possible for any n ∈ N. We let a←$A
denote sampling the variable a uniformly from the set A. To enhance readability of pseudocode,
if a value a “implicitly defines” values b1, b2, . . . (that is, these can be parsed or obtained from
a in polynomial time), we write (b1, b2, . . .) :⊆ a. We shorten a ≡ b (mod q) to a ≡q b.
15 https://electriccoin.co/blog/software-usability-and-hardware-requirements/
16 https://download.z.cash/zcashfinalmpc/sprout-proving.key

8

https://electriccoin.co/blog/software-usability-and-hardware-requirements/
https://download.z.cash/zcashfinalmpc/sprout-proving.key

2.2 Discrete-Logarithm-Hard Groups

Definition 1. A group generation algorithm GrGen is a p.p.t. algorithm that takes as
input a security parameter λ in unary and returns (q,G, G), where G is the description of a
group of prime order q s.t. dlog2(q)e = λ, and G is a generator of G.

Definition 2. A group generation algorithm GrGen is discrete-logarithm-hard if for every
adversary (recall that these are assumed to be p.p.t. in λ) A the function

AdvDL
GrGen,A(λ) := Pr

[
DLA

GrGen(λ)
]

is negligible in λ, where game DL is defined by: DLA
GrGen(λ)

(q,G, G)←GrGen(1λ)
x←$Zq ; X := xG

y ← A(q,G, G,X)
return (y = x)

2.3 Non-Interactive Zero-Knowledge Arguments

We define non-interactive zero-knowledge argument (NIZK) systems with respect to pa-
rameterized relations R : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1}, which are ternary relations
that run in polynomial time in the first argument, the parameters, denoted parR. Given
parR, for a statement θ we call w a witness if R(parR, θ, w) = 1, and define the language
LparR := {θ | ∃w : R(parR, θ, w) = 1}. A NIZK for a relation R is a tuple of efficient p.p.t.
algorithms NArg[R] = (Rel,Setup,Prove,Vfy,SimProve) with the following syntax:

– Rel(1λ) → parR: the relation parameter generation algorithm, on input the security pa-
rameter λ in unary, returns the relation parameters parR s.t. 1λ :⊆ parR (i.e., 1λ can be
efficiently obtained from parR) and LparR is an NP-language.

– Setup(parR)→ (crs, τ): the setup algorithm, on input relation parameters parR, returns a
common reference string (CRS) crs and a simulation trapdoor τ ; the CRS contains the
description of parR, i.e. parR :⊆ crs.

– Prove(crs, θ, w) → π: the prover algorithm, on input a CRS crs, a statement θ and a
witness w, outputs a proof π.

– Vfy(crs, θ, π) =: 0/1: the deterministic p.t. verification algorithm, on input a CRS crs, a
statement θ and a proof π, outputs 1 (accept) or 0 (reject).

– SimProve(crs, τ, θ) → π: the simulation algorithm, on input a CRS crs, a simulation
trapdoor τ and a statement θ, outputs a proof π.

Definition 3. A system NArg[R] is (perfectly) correct if for every adversary A and λ ∈ N:

Pr


parR ← NArg.Rel(1λ)
(crs, τ)← NArg.Setup(parR)
(θ, w)← A(crs)
π ← NArg.Prove(crs, θ, w)

: R(parR, θ, w) = 0 ∨ NArg.Vfy(crs, θ, π) = 1

 = 1 .

9

Definition 4. A system NArg[R] is (adaptively) computationally sound if for every
adversary A

AdvSND
NArg[R],A(λ) := Pr

[
SNDA

NArg[R](λ)
]

is negligible in λ, where game SND is defined by:

SNDA
NArg[R](λ)

parR ← NArg.Rel(1λ) ; (crs, τ)← NArg.Setup(parR)
(θ, π)← A(crs)

return
(
NArg.Vfy(crs, θ, π) = 1 ∧ ∀w ∈ {0, 1}∗ : R(parR, θ, w) = 0

)

Definition 5. A system NArg[R] is computationally zero-knowledge if for every adver-
sary A

AdvZK
NArg[R],A(λ) :=

∣∣Pr
[
ZKA,0

NArg[R](λ)
]
− Pr

[
ZKA,1

NArg[R](λ)
]∣∣

is negligible in λ, where game ZK is defined by:

ZKA,b
NArg[R](λ)

parR ← NArg.Rel(1λ)
(crs, τ)← NArg.Setup(parR)

b′ ← AProve(crs)
return b′

Prove(θ, w)
if R(parR, θ, w) = 0 : return ⊥
π0 ← NArg.Prove(crs, θ, w)
π1 ← NArg.SimProve(crs, τ, θ)
return πb

2.4 Public-Key Encryption

A public-key encryption (PKE) scheme is a tuple of efficient algorithms PKE = (KeyGen,Enc,Dec),
where:

– KeyGen(1λ)→ (ek,dk), on input the security parameter, outputs an encryption key ek and
a decryption key dk, where ek defines the message spaceMek, the randomness space Rek
and the ciphertext space Cek.

– Enc(ek,M ; ρ) =: C, on input an encryption key ek, a message M , randomness ρ ∈ Rek,
outputs a ciphertext C ∈ Cek if M ∈Mek and ⊥ otherwise.

– Dec(dk,C) =: M is deterministic and on input a ciphertext C ∈ Cek and the decryption
key dk outputs a message M ∈Mek.

Definition 6. A public-key encryption scheme PKE is (perfectly) correct17 if for all λ ∈ N:

Pr
[

(ek, dk)← PKE.KeyGen(1λ)
M ←$Mek ; C← PKE.Enc(ek,M) : PKE.Dec(dk,C) = M

]
= 1 .

17 Since we require probability 1, perfect correctness holds for all messages inMek.

10

Definition 7. A public-key encryption scheme PKE is secure against chosen-plaintext
attacks (CPA-secure) if for all adversaries A

AdvCPA
PKE,A(λ) :=

∣∣Pr
[
CPAA,0

PKE(λ)
]
− Pr

[
CPAA,1

PKE(λ)
]∣∣

is negligible in λ, where game CPA is defined as:

CPAA,b
PKE(λ)

(ek, dk)← PKE.KeyGen(1λ)

b′ ← AEnc(ek)
return (b = b′)

Enc(M0,M1)

C ← PKE.Enc(ek,Mb)
return C

2.5 Signature Schemes

A signature scheme is a tuple of efficient algorithms Sig = (Setup,KeyGen,Sign,Ver) where:

– Setup(1λ)→ sp, on input the security parameter, outputs (signature) parameters sp, which
define the message spaceMsp.

– KeyGen(sp)→ (sk, vk), on input parameters sp, outputs a signing key sk and a verification
key vk.

– Sign(sk,m)→ σ, on input a signing key sk and a message m ∈Msp, outputs a signature σ.
– Ver(vk,m, σ) =: 0/1, is deterministic and on input a verification key vk, a message m and

a signature σ, outputs 1 if σ is valid and 0 otherwise.

Definition 8. A signature scheme Sig has (perfect) correctness if for all λ ∈ N:

Pr

 sp← Sig.Setup(1λ)
(sk, vk)← Sig.KeyGen(sp)
m←$Msp ;σ ← Sig.Sign(sk,m)

: Sig.Ver(vk,m, σ) = 1

 = 1 .

Definition 9. A signature scheme Sig satisfies strong existential unforgeability under
chosen-message attacks (sEUF-CMA) if for all adversaries A

AdvsEUF-CMA
Sig,A (λ) := Pr

[
sEUF-CMAA

Sig(λ)
]

is negligible in λ, where game sEUF-CMA is defined by:

sEUF-CMAA
Sig(λ)

sp← Sig.Setup(1λ)
(sk, vk)← Sig.KeyGen(sp) ; Q := ∅

(m∗, σ∗)← ASign(vk)

return
(
(m∗, σ∗) /∈ Q ∧ Sig.Ver(vk,m∗, σ∗) = 1

)

Sign(m)
σ ← Sig.Sign(sk,m)
Q = Q∪ {(m,σ)}
return σ

11

Sch.Setup(1λ)

(q,G, G)← GrGen(1λ)
H← HGen(q)
sp := (q,G, G,H)
return sp

Sch.Sign(sk,m)

(q,G, G,H, x) := sk ; r←$Zq ; R := rG

c := H(R, xG,m) ; s := (r + cx) mod q
σ := (R, s)
return σ

Sch.KeyGen(sp)

(q,G, G,H) := sp
x←$Zq ; X := xG

sk := (sp, x) ; vk := (sp, X)
return (sk, vk)

Sch.Ver(vk,m, σ)

(q,G, G,H, X) := vk
(R, s) := σ

c := H(R,X,m)
return (sG = R+ cX)

Fig. 1. The Schnorr signature scheme Sch[GrGen,HGen] with key-prefixing based on a group generator GrGen
and hash generator HGen.

2.6 Schnorr Signatures

The Schnorr signature scheme is defined w.r.t. a group generation algorithm (Definition 1)
returning a group of prime order q, and it requires a hash function that maps into Zq, which
we define as being generated as follows.

Definition 10. A (target-range) hash function generator HGen is a p.p.t. algorithm that
takes as input a number n ∈ N+ and returns the description of a function H : {0, 1}∗ → Zn.

In Figure 1 we define Schnorr signatures with “key-prefixing” [BDL+12], which is the
variant in use today. Key-prefixing means that the verification key is prepended to the message
when signing and verifying (this protects against certain related-key attacks [MSM+16]).
Unforgeability of Schnorr signatures has been studied extensively in the random oracle model
(ROM) [BR93, PS96, PS00] and more recently in the algebraic group model (AGM) and
the ROM [FPS20], with a tight security proof. These proofs are easily adapted to strong
unforgeability of the key-prefixing variant, which (in the AGM+ROM) also readily follows
from the discrete-logarithm assumption and key-prefixing Schnorr signatures being strongly
simulation-extractable proofs of knowledge of discrete logarithms in the AGM+ROM [FO22].

We consider these results and the fact that, despite their wide use, no vulnerabilities have
been found in Schnorr signatures as ample evidence for the following assumption, used in the
security proof of our predicate blind Schnorr signature scheme:

Assumption 1. There exists a group generator GrGen and a hash function generator HGen
s.t. the Schnorr signature scheme (Figure 1) is strongly unforgeable (Definition 9); in particular,
for all adversaries A, the function AdvsEUF-CMA

Sch[GrGen,HGen],A(λ) is negligible in λ.

3 Predicate Blind Signatures

We introduce predicate blind signatures (PBS), a generalization of partially blind signatures
[AF96, AO00]. PBS define an interactive protocol that enables a signer to sign a message

12

at the behest of another party, called the user, without learning anything about the signed
message, except that it satisfies certain conditions (defined by a predicate) on which the user
and signer agreed before the interaction.

A PBS scheme is parameterized by a family of polynomial-time-computable predicates,
which are implemented by a p.t. algorithm P, the predicate compiler : on input a predicate
description prd ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, P returns 1 or 0 indicating whether m
satisfies prd. A PBS scheme PBS[P] for P is defined by the following algorithms. We focus on
schemes with 2-round (i.e., 4-message) signing protocols for concreteness.

– Setup(1λ) → par: the setup algorithm, on input the security parameter, outputs public
parameters par, which define a message spaceMpar.

– KeyGen(par)→ (sk, vk): the key generation algorithm, on input the parameters par, outputs
a signing/verification key pair (sk, vk), which implicitly contain par, i.e., vk = (par, key)
and par :⊆ vk.

– 〈Sign(sk, prd),User(vk,prd,m)〉 → (b, σ): an interactive protocol with shared input par
(implicit in sk and vk) and a predicate prd is run between the signer and user. The signer
takes a secret key sk as private input, the user’s private input is a verification key vk and
a message m. The signer outputs b = 1 if the interaction completes successfully and b = 0
otherwise, while the user outputs a signature σ if it terminates correctly, and ⊥ otherwise.
For a 2-round protocol the interaction can be realized by the following algorithms:

(msgU,0, stU,0)← User0(vk,prd,m)
(msgS,1, stS)← Sign1(sk,prd,msgU,0) ; (msgU,1, stU,1)← User1(stU,0,msgS,1)

(msgS,2, b)← Sign2(stS ,msgU,1) ; σ ← User2(stU,1,msgS,2)

We write (b, σ)←〈Sign(sk,prd),User(vk,prd,m)〉 as shorthand for the above sequence.
– Ver(vk,m, σ) =: 0/1: the (deterministic) verification algorithm, on input a verification key

vk, a message m and a signature σ, outputs 1 if σ is valid on m under vk and 0 otherwise.

We generalize the definitions for blind signatures [JLO97] and partially blind signatures [AO00]
in the following.

Definition 11. A predicate blind signature scheme PBS for predicate compiler P is (perfectly)
correct if for any adversary A and λ ∈ N:

Pr


par← PBS.Setup(1λ)
(sk, vk)← PBS.KeyGen(par)
(m, prd)← A(sk, vk)
(b, σ)←

〈
PBS.Sign(sk, prd),PBS.User(vk,prd,m)

〉
b′ := PBS.Ver(vk,m, σ)

:
m /∈Mpar ∨
P(prd,m) = 0 ∨
(b ∧ b′)

 = 1 .

(Strong) unforgeability. For blind signatures this notion states that after the completion
of n signing sessions, the user cannot compute n+ 1 distinct valid message/signature pairs.
For partially blind signatures, after the completion of any number of signing sessions, of which
n share the same public message part, the user cannot compute n+ 1 pairs with this public
message part.

Generalizing this to predicate blind signatures is not straightforward as messages can
satisfy many predicates (whereas messages only have one public part). We therefore require

13

UNFA
PBS[P](λ)

par← PBS.Setup(1λ)
(sk, vk)← PBS.KeyGen(par)
~S := [] // list holding session details

P ~rd := [] // predicates of successful sessions

(m∗i , σ∗i)i∈[n] ← ASign1,Sign2 (vk)

return
(
n > 0

∧ ∀ i ∈ [n] : PBS.Ver(vk,m∗i , σ∗i) = 1
∧ ∀ i 6= j ∈ [n] : (m∗i , σ∗i) 6= (m∗j , σ∗j)
∧ @ f ∈ InjF([n], [|P ~rd|]) :

∀ i ∈ [n] : P(P ~rdf(i),m
∗
i) = 1

)
// there is no mapping of messages to

// predicates of successful sessions

Sign1(prd,msg)

(msg′, st)← PBS.Sign1(sk, prd,msg)
~S = ~S‖(st, prd) // store new session

return msg′

Sign2(j,msg)

if ~Sj = ε then // j-th session not open

return ⊥
(st, prd) := ~Sj
(msg′, b)← PBS.Sign2(st,msg)
if b = 1 then
~Sj := ε // close session j

P ~rd = P ~rd‖prd // store predicate prd

return msg′

Fig. 2. The strong unforgeability game for a predicate blind signature scheme PBS[P] with a 2-round signing
protocol. InjF(A,B) denotes the set of injective functions from set A to set B. (Standard) unforgeability is
obtained by replacing the winning condition ∀ i 6= j ∈ [n] : (m∗i , σ∗i) 6= (m∗j , σ∗j) with ∀ i 6= j ∈ [n] : m∗i 6= m∗j .

that anything the user can output after running signing sessions for predicates of its choice
can be “explained”. That is, when the user outputs signed messages m∗1, . . . ,m∗n, then there
exists an assignment to successfully closed signing sessions, so that each message satisfies the
predicate of the assigned session. In particular, let ` be the number of closed signing sessions
and prdj the predicate for the j-th closed session. Then there exists an injective mapping
f : [n]→ [`] so that P(prdf(i),m

∗
i) = 1 for all i ∈ [n].

Our notion is in the spirit of strong unforgeability as we consider the pairs of messages and
signatures to be distinct. It also gives strong guarantees in that it only considers closed signing
sessions when checking whether an attack was trivial; that is, opening and not finishing a
session never prevents the adversary from winning.

Definition 12. A predicate blind signature scheme PBS[P] satisfies (strong) unforgeability
if for all adversaries A

AdvUNF
PBS[P],A(λ) := Pr

[
UNFA

PBS[P](λ)
]

is negligible in λ, where game UNF is defined in Figure 2.

In game UNF the adversary A gets a verification key vk as input and has access to two oracles
Sign1 and Sign2. The oracles represent an honest signer and correspond to the two phases of
the interactive protocol. The adversary can concurrently engage in polynomially many signing
sessions for predicates of its choice to obtain blind signatures on messages. To win, A must
output a non-empty vector (m∗i , σ∗i)i∈[n] of distinct valid message/signature pairs; moreover,
there must not exist an injective mapping from the messages (m∗i) to the predicates (prdj)

14

BLDA,b
PBS[P](λ)

par← PBS.Setup(1λ)
(prd0,prd1,m0,m1, key, st)← A1(par)
if ∃ i, j ∈ {0, 1} : P(prdi,mj) = 0 then

return 0
(sess0, sess1) := (init, init)

b′ ← AUser0,User1,User2
2 (st)

return b′

User0(i)

if sessi 6= init then return ⊥
sessi = open

(msg, sti)

← PBS.User0
(
(par, key), prdi,mi⊕b

)
return msg

User1(i,msg)

if sessi 6= open then return ⊥
sessi = await

(msg′, sti)← PBS.User1(sti,msg)
return msg′

User2(i,msg)

if sessi 6= await then return ⊥
sessi = closed

σi⊕b ← PBS.User2(sti,msg)
if (sess0 = sess1 = closed) :

if (σ0 = ⊥ ∨ σ1 = ⊥) :
return (⊥,⊥)

return (σ0, σ1)
// in case other session is still open:

return ε

Fig. 3. The blindness game for a predicate blind signature scheme PBS[P] played by adversary A = (A1,A2).
The operator “⊕” is the XOR operation on bits, used to realize a swap of the message order if and only if b = 1.

used in successfully closed signing sessions (stored in the list P ~rd), so that every message is
mapped to a predicate it satisfies.18

Blindness. Blindness requires that whenever the signer gets to see one of its signatures, it
cannot determine in which session the signature was generated, except that it must have been
in a session with a predicate satisfied by the message. As a more general notion, we define
blindness for schemes with parameters. This also covers instantiations without (or with “empty”
parameters), as discussed in Section 5.1, and then yields the standard notion.

As in the malicious-signer model [Fis06], the adversary can choose its own verification key
key (which together with the parameters constitutes vk). It also chooses two messages m0 and
m1 as well as two predicates prd0 and prd1, which must both be satisfied by m0 and m1. The
challenger chooses a bit b and runs the protocol as the user with the adversary, asking for a
signature on message mb for predicate prd0 and then for m1−b for predicate prd1. Being given
the resulting signatures on m0 and m1, the adversary must determine the bit b.

Definition 13. A predicate blind signature scheme PBS[P] satisfies blindness if for all
adversaries A

AdvBLD
PBS[P],A(λ) :=

∣∣Pr
[
BLDA,1

PBS[P](λ)
]
− Pr

[
BLDA,0

PBS[P](λ)
]∣∣

is negligible in λ, where game BLD is defined in Figure 3.

18 Checking if no such injective function exists is efficiently computable using e.g. the Hopcroft–Karp or
Karzanov’s matching algorithm [HK73, Kar73].

15

The adversary consists of two parts A1 and A2 of which A1 outputs messages and predicates, a
verification key part key and a state st. The experiment only continues if both messages satisfy
both predicates. It runs the signing protocol with A2 and acts as the user (modeled via three
oracles User0,User1,User2) in two concurrent sessions. The experiment asks for a blind
signature on mb for predicate prd0 in the first session and on m1−b for prd1 in the second. If
none of the obtained signatures σb and σ1−b are ⊥, the signer is given σ0 (a signature on m0)
and σ1 (a signature on m1). Blindness requires that no signer strategy is noticeably better
than guessing the value of b.

All blindness notions (full, partial or predicate blindness) can only protect the user’s
privacy if at the time the user publishes a signature, the signer has blindly signed sufficiently
many messages under the same key, or (in the case of partial blindness) using the same public
message parts, or (in the case of predicate blindness) predicates satisfied by the message.

Hiding the predicates. By allowing the adversary to output distinct predicates prd0 and
prd1, our blindness notion yields an additional guarantee: that the resulting signature does
not reveal anything about the used predicate (apart from being satisfied by the message).
This could be formalized via a game in which the adversary defines a message m and two
predicates prd0 and prd1 (satisfied by m) and then plays the signer in two blind signings of m
using first prd0 and then prd1. If both sessions succeed, the adversary is given the signatures
in random order, which the adversary has to determine. This notion is implied by blindness
(Definition 13) via a straightforward reduction that sets m0 := m and m1 := m.

Predicate Blind Signatures Imply Partially Blind Signatures. Abe and Okamoto
(AO) [AO00]) define partially blind signatures using the following syntax: messages consist of a
public part info and a secret part m′, and verification is of the form Vfy(vk, info,m′, σ). When
issuing a signature, signer and user agree on the public part.

A partially blind signature scheme can be easily constructed from a predicate blind signature
scheme for the following predicate family, which parses messages as pairs (info,m′), which we
assume can be done unambiguously:

P(prd,m) :

(info,m′) := m

return info = prd
(1)

To issue a signature for info and secret part m′, the signer and user run the PBS signing
protocol for prd := info and user input m := (info,m′). A signature σ for a pair (info,m′) is
verified by running VfyPBS(vk, (info,m′), σ).

We show that unforgeability and blindness (as defined by AO [AO00]) of this construction
follow from the respective notions for PBS (Definitions 12 and 13). To break unforgeability of
a partially blind signature scheme, an adversary must output

(
info, (m∗i , σ∗i)i∈[n]

)
, for distinct

pairs (m∗i , σ∗i) with Vfy(vk, info,m∗i , σ∗i) = 1 for all i ∈ [n], and the adversary queried the
signing oracle n− 1 times with public part info.

An adversary A against this unforgeability notion for our construction implies B for game
UNF of the underlying PBS scheme that wins with equal probability. B runs A on the received
key vk, and when A asks for a signature for public part info, B asks for a signature for predicate
prd := info, relaying all of A’s protocol messages msg and oracle replies msg′. When A returns(
info, (m′i, σi)i∈[n]

)
, B returns

(
m∗i := (info,m′i), σi

)
i∈[n].

16

If A wins then all (m′i, σi) are distinct and valid w.r.t. info; therefore all ((info,m′i), σi) are
distinct and valid (under VfyPBS). Moreover, B made at most n− 1 queries for the predicate
info, which is therefore contained in at most n − 1 positions I in B’s challenger’s list P ~rd
(see Figure 2). For all j /∈ I, we have P(P ~rdj ,m∗i) = 0 (cf. (1), since P ~rdj 6= info and
m∗i = (info,m′i)). Since |I| ≤ n− 1, there is no injective function f with P(P ~rdf(i),m

∗
i) = 1

for all i ∈ [n]. Together, this means B has won UNF.
The definition of blindness by AO is similar but in the honest-signer model [JLO97], that is,

their challenger samples the key pair (vk, sk) for the adversary, while our adversary can choose
its own verification key part (yielding more realistic security guarantees). AO’s adversary must
output two pairs (info0,m

′
0) and (info1,m

′
1) with info0 = info1; our adversary must output

two messages (info0,m
′
0) and (info1,m

′
1) and two predicates satisfied by both messages, which

implies info0 = info1. The reduction generates the key pair for the AO adversary and then
simply relays the oracle calls.

4 Predicate Blind Schnorr Signatures

4.1 Construction

Signature issuing in “plain” blind Schnorr signatures, which are not concurrently secure
(Definition 12) [BLL+21], works as follows. Let (q,G, G) be the underlying group parameters
and (x,X) be the signer’s key pair. As with computing a Schnorr signature, the signer first
samples r←$ Zq and computes R := rG, which it sends to the user. The user samples two
blinding values (α, β)←$ Z2

q and computes R′ := R+αG+βX, which will be the first component
of the blind signature. The user then computes the corresponding value c′ := H(R′, X,m), blinds
it as c := (c′ + β) mod q and sends c to the signer. The signer replies with s := (r+ cx) mod q,
which the user transforms to s′ := (s+ α) mod q and outputs the signature (R′, s′). This is a
valid Schnorr signature (Figure 1) since:

s′G = sG+ αG = (r + cx)G+ αG =
(
r + (H(R′, X,m) + β)x

)
G+ αG

= R+ αG+ βX + H(R′, X,m)X (2)
= R′ + H(R′, X,m)X .

To make this protocol concurrently secure, we require the user to first send an encryption C
of m and the values α, β before receiving the value R. For this step we employ a public-key
encryption scheme PKE. In her second message, together with c, the user also sends a zero-
knowledge proof asserting that c was computed from the values m, α and β, and the signer
will only send the final value s if this proof verifies. To obtain predicate blind signatures, the
user’s proof will also assert that the encrypted m satisfies the agreed-upon predicate prd.

We therefore consider the following parameterized relation RSch:

RSch
(
(

parR︷ ︸︸ ︷
q,G, G,H), (

θ︷ ︸︸ ︷
X,R, c,C,prd, ek), (

w︷ ︸︸ ︷
m,α, β, ρ)

)
:

R′ := R+ αG+ βX // blind the group element R

return c ≡q H(R′, X,m) + β // c is computed from witness elements

∧ P(prd,m) = 1 // m satisfies the predicate prd

∧ PKE.Enc(ek, (m,α, β); ρ) = C // C encrypts witness elements under ek

(3)

17

This relation RSch checks, for given parameters (q,G, G,H), whether the user’s message c was
correctly computed for given X and R when the user’s message is m and her randomness
is α, β; whether m satisfies the predicate prd; and whether the ciphertext C encrypts these
values (m,α, β) using randomness ρ.

As the parameters of RSch are the Schnorr signature parameters, the relation-parameter
sampling algorithm Rel for NArg is simply Sch.Setup, i.e.,

NArg.Rel(1λ)

(q,G, G)← GrGen(1λ)
H← HGen(q)
return sp := (q,G, G,H)

Let GrGen be a group generation algorithm and HGen be a hash function generator (which
together define Sch.Setup; cf. Figure 1), let PKE be a public-key encryption scheme and P be a
predicate compiler (which together define relation RSch), and let NArg be an argument system
for RSch. Formalizing the ideas sketched above yields the 2-round predicate blind signature
scheme PBSch[P,GrGen,HGen,PKE,NArg] specified in Figure 4.

The message spaceMpar of PBSch can be arbitrary, as long as PKE can encrypt triples
of the form (m,α, β). We therefore assume that for all λ, all sp = (q,G, G,H) output by
NArg.Rel(1λ), all crs output by NArg.Setup(sp) and all ek output by PKE.KeyGen(1λ), we have
Mpar × Zq × Zq ⊆Mek for par := (crs, ek).

Correctness. Perfect correctness follows from perfect correctness of NArg and Eq. (2).

4.2 Security

Unforgeability. We bound the advantage in breaking the unforgeability (Definition 12) of
PBSch by the advantages in breaking the security of the underlying primitives. In Assumption 1
we directly assume sEUF-CMA security of the Schnorr signature scheme. The reason is that
all known security proofs of Schnorr signatures are in the random-oracle model [PS96, PS00,
FPS20], but the NArg relation RSch in (3) depends on the used hash function, which would
be replaced in the ROM by a random function, for which efficient proofs are not possible.
While Assumption 1 might be unconventional from a theoretical point of view, it is arguably
uncontroversial in practice, given the wide-spread use of Schnorr signatures; and it is a sine
qua non in any application involving Schnorr signatures anyway.

Theorem 1. Let P be a predicate compiler and GrGen and HGen be a group and a hash genera-
tion algorithm; let PKE be a perfectly correct public-key encryption scheme; let Sch[GrGen,HGen]
be the Schnorr signature scheme of Figure 1 instantiated with GrGen and HGen; and let
NArg[RSch] be a non-interactive argument scheme for the relation RSch from (3). Then for any
adversary A playing in game UNF against the PBS scheme PBSch[P,GrGen,HGen,PKE,NArg]
defined in Figure 4, successfully completing at most q sessions via the oracle Sign2, there exist
algorithms:

– F playing in game sEUF-CMA against the unforgeability of Sch[GrGen,HGen],
– S playing in game SND against the soundness of NArg[RSch],
– D playing in game DL against the discrete-logarithm hardness of GrGen,

18

PBSch.Setup(1λ)

(q,G, G)← GrGen(1λ)
H← HGen(q)
sp := (q,G, G,H)
(crs, τ)← NArg.Setup(sp)

(ek, dk)← PKE.KeyGen(1λ)
par := (crs, ek)
return par

PBSch.KeyGen(par)

(q,G, G) :⊆ par
x←$Zq ; X := xG

sk := (par, x) ; vk := (par, X)
return (sk, vk)

PBSch.Ver(vk,m, σ)

(q,G, G,H, X) :⊆ vk
(R, s) := σ

c := H(R,X,m)
return sG = R+ cX

PBSch.Sign(sk, prd) PBSch.User(vk,prd,m)

(q,G, G, crs, ek, x) :⊆ sk (q,G, G,H, crs, ek, X) :⊆ vk
α, β←$Zq ; ρ←$Rek

C := PKE.Enc(ek, (m,α, β); ρ)C←−−−−−−−−
r←$Zq ; R := rG R−−−−−−−−→ R′ := R+ αG+ βX

c := (H(R′, X,m) + β) mod q
θ := (X,R, c,C, prd, ek)
w := (m,α, β, ρ)
π ← NArg.Prove(crs, θ, w)c, π

←−−−−−−−−θ := (xG,R, c,C, prd, ek)
if NArg.Vfy(crs, θ, π) = 0 :

return 0
s := (r + cx) mod q s−−−−−−−−→

return 1

if sG 6= R+ cX : return ⊥
s′ := (s+ α) mod q
return σ := (R′, s′)

Fig. 4. The predicate blind Schnorr signature schemePBSch[P,GrGen,HGen,PKE,NArg] based on a pred-
icate compiler P, a group generation algorithm GrGen, a hash generator HGen, a public-key encryption scheme
PKE and a non-interactive zero-knowledge argument scheme NArg for the relation RPBS from (3).

s.t. for every λ ∈ N:

AdvUNF
PBSch,A(λ) ≤ AdvsEUF-CMA

Sch[GrGen,HGen],F(λ) + AdvSND
NArg[RSch],S(λ) + q · exp(1) ·AdvDL

GrGen,D(λ) . (4)

(Since unforgeability of Schnorr (tightly) implies DL, the security of the scheme follows
from that of the underlying building blocks.)

The proof of Theorem 1 can be found in Appendix B. The main idea is to reduce un-
forgeability of PBSch to unforgeability of Schnorr signatures. Given a verification key X, the
reduction sets up crs and the encryption key ek and answers the adversary’s signing queries.
When the adversary opens a signing session sending C, the reduction uses the decryption key
corresponding to ek to decrypt C to m, α, and β. It then queries its own signing oracle for a
signature (R̄, s̄) on m and sends R := R̄− αG− βX to the adversary. Upon receiving c, the

19

accompanying proof π attests that it is consistent with m,α and β, which, by the definition of
RSch in (3), implies that c ≡q H(R̄,X,m) + β.

By the definition of Schnorr signing (Figure 1), letting x := logX denote the secret key,
we have s̄ ≡q log R̄ + H(R̄,X,m) · x ≡q log R̄ + c · x− β · x. By the definition of PBSch, the
adversary expects s ≡q logR+c ·x ≡q log R̄−α−β ·x+c ·x, which the reduction can compute
as s := (s̄− α) mod q.

Formally, the proof proceeds via a sequence of game hops. In the first hop, the experiment
decrypts the user’s ciphertext C and checks whether c is consistent with the plaintext (m,α, β)
and whether m satisfies the predicate. If not, the game aborts. By perfect correctness of PKE,
any abort can be used to break soundness of NArg[RSch]. We then show that an adversary
cannot compute a signature in a session which it has not closed, unless it breaks the discrete
logarithm assumption (the factor q in the theorem statement comes from a guessing argument
following Coron [Cor00]). Finally, we show that for any adversary that can still win, that
is, there is no “explaining” mapping of the adversary’s messages to signing sessions, the
adversary’s output must contain a forged Schnorr signature.

Full tightness under a weaker unforgeability notion. If all opened sessions were
considered when checking “non-triviality” in Definition 12, our scheme would be fully tight.
This would mean that even when a signing session is not closed, a signer would consider this
an issued signature. Formally, in Figure 2 the line P ~rd = P ~rd‖prd would be included in
Sign1 rather than Sign2.

In the proof of Theorem 1 we would not need to consider the case when an adversary
completes a signature in a session it does not close, and there would be no reduction to DL
(cf. Remark 1 in Appendix B). Instead of (4), we would get

AdvUNF′
PBSch,A(λ) ≤ AdvsEUF-CMA

Sch[GrGen,HGen],F(λ) + AdvSND
NArg[RSch],S(λ) .

Blindness. Perfect blindness of the “plain” blind Schnorr signature scheme is shown as follows
[Sch01]: For every assignment of signature-issuing sessions to resulting message/signature pairs,
there exist unique values α and β that “explain” this assignment from the view of the signer.
The following theorem shows that what our protocol adds to the “plain” variant does not
reveal anything in a computational sense either, and it thus satisfies Definition 13.

Theorem 2. Let P be a predicate compiler, GrGen and HGen be a group and hash generation
algorithm; let PKE be a public-key encryption scheme and NArg[RSch] be an argument system
for the relation RSch from (3). Then for any adversary A playing in game BLD against the
PBS scheme PBSch[P,GrGen,HGen,PKE,NArg] defined in Figure 4, there exists algorithms:

– Z0 and Z1, playing in game ZK against zero knowledge of NArg[RSch], and
– C0 and C1, playing in game CPA against indistinguishability of PKE,

s.t for every λ ∈ N:

AdvBLD
PBSch,A(λ) ≤ AdvZK

NArg[RSch],Z0
(λ) + AdvZK

NArg[RSch],Z1
(λ) + AdvCPA

PKE,C0(λ) + AdvCPA
PKE,C1(λ) .

The proof of Theorem 2 can be found in Appendix C and proceeds via a sequence of game
hops. Starting with game BLDA,b

PBS[P] for an arbitrarily fixed b, we first replace the user’s proofs

20

π (in both signing sessions) by simulated proofs. We next replace the user’s ciphertexts C
by encryptions of a fixed message. These hops are indistinguishable by zero-knowledge of
NArg[RSch] and CPA security of PKE. Now using the argument for plain blind Schnorr, this
final game is independent of the bit b, which concludes the proof.

Alternative constructions. In Appendix D we discuss the necessity of straight-line
extraction (as provided by the use of a PKE), which precludes the use of non-blackbox
extractable commitments. We also argue why we cannot replace the proofs π by zaps [DN07]
(or zaks [FO18]), that is, witness-indistinguishable proofs (of knowledge) without parameters.

4.3 Generalizing Predicates to NP-Relations

As a simple extension of our construction, we could allow P to take, in addition to a description
prd ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, a witness w ∈ {0, 1}∗ attesting to m satisfying prd.

Model. The adaptations in the syntax and security definitions of PBS[P] are straightforward:
1) Algorithm PBS.User0(vk, prd,m) takes an additional argument w.
2) In game BLD, the adversary A1 additionally outputs w0 and w1 for which P(prdi,mj , wj) = 1
for all i, j ∈ {0, 1}. In User0, PBS.User0 takes additional argument wi⊕b.
3) When determining if A won game UNF, the check P(P ~rdf(i),m

∗
i) = 1 is replaced by

∃w∗i : P(P ~rdf(i),m
∗
i , w

∗
i) = 1 . (5)

As for soundness of proof systems, this might not be efficient. This could be remedied by an
extractability-based definition, requiring that from an adversary against UNF one can extract
witnesses (w∗i)i that satisfy (5).

Construction. The only change in the construction is that the prd-witness for m is now
included in the witness for RSch in (3) and then used by P.

The proof of unforgeability only changes slightly. If we assume knowledge soundness of
NArg, the reduction would extract the witness from π (in the hop from G0 to G1 in Appendix B)
and the rest of the proof proceeds as before. When only relying on soundness of NArg the
reduction would guess which proof π breaks soundness when G1 aborts and the security proof
would thus incur a security loss linear in the number of calls to Sign2.

5 Design Choices, Implementation Details and Benchmarks

5.1 Avoiding a Trusted Setup

When defining security for predicate blind signatures (Definition 12 and 13), the parameters
par are assumed to be generated in a trusted way, which in practice has to be dealt with. In our
scheme PBSch (Figure 4), for a security parameter λ and corresponding Schnorr parameters sp,
PBSch.Setup generates a common reference string via (crs, τ)← NArg.Setup(sp) and a PKE
encryption key via (ek,dk)← PKE.KeyGen(1λ).

The simulation trapdoor τ and the decryption key dk are the protocol’s “toxic waste”
[COS20]. A party that knows τ can simulate proofs, and if she engages in concurrent signing
sessions, she can break unforgeability by mounting the attack [BLL+21] against the “plain”

21

Schnorr blind-signing protocol [CP93]: in the first round of signature issuing, she commits
to anything and then simulates the proof (of a false statement) in the second round. On the
other hand, a party that knows dk is able to decrypt the user’s ciphertexts and thereby break
blindness.

Consequently, neither the signer nor the user should run PBSch.Setup. If the signer runs it,
this breaks the user’s security (blindness); if the user runs it, the signer’s security (unforgeability)
is at stake. A solution might seem to let the user run PKE.KeyGen and the signer run NArg.Setup.
But the former is not practical, since typical applications would have a single signer and
multiple users;19 and the latter is potentially insecure (see below).

PKE setup. An alternative to all users creating their own encryption key is to generate a
single ek transparently, that is, in a way so the corresponding secret key is not known to any
party. When ek is a group element whose discrete logarithm is the secret key dk = logG(ek),
this can be established by “hashing into the group” [BF01, BCI+10, WB19]: a fixed public
string is hashed to obtain the public key. Public keys for ElGamal encryption [ElG85] or DHIES
[ABR98], which we use to instantiate PKE in all our implementations, are group elements.

NIZK setup. As with PKE, we can also instantiate NArg with a scheme that has a transparent
setup, of which there now exists many (see the citations on p. 5). A SNARK scheme with
particularly short proofs is Groth16 [Gro16]. However, it requires a trusted setup, since it
has a “structured” common reference string (CRS). While the setup can be conducted in a
distributed manner [BGM17, KMSV21], this still requires trust, so it would be preferable if
the signer could set up her own CRS, which would protect her against attacks on soundness.
On the other hand, for blindness the user relies on NArg being zero-knowledge, a property
that also assumes a CRS that was set up in a trusted way.

This can be reconciled by using subversion zero-knowledge proof systems [BFS16]. These
guarantee that even when the CRS is maliciously set up, the prover is guaranteed that a proof
computed w.r.t. it will not leak anything about the used witness. Thus, blindness holds even
when the signer sets up the CRS. For Groth16 Fuchsbauer [Fuc18] defines a way to check if
a CRS is well-formed. He shows that, under a “knowledge-type” assumption, if provers only
accept a well-formed CRS, then subversion zero knowledge holds.20 Once a CRS is checked
(which only needs to be done once), the scheme can be used as before.

5.2 Hardwiring Parts of the Statement

The efficiency of NArg can be improved by moving elements of the statement θ to the parameters
parR. (E.g., multiplication by constants does not require a new gate, as opposed to multiplication
by variables, in both R1CS [BCR+19] as well as Plonk-ish [GWC19] arithmetization). For
relation RSch we can move the signature verification key X and/or the encryption key ek to
the relation parameters, which would turn minimal hardwiring considered in Eq. (3), i.e.,

RSch
(
(

parR︷ ︸︸ ︷
q,G, G,H), (

θ︷ ︸︸ ︷
X,R, c,C,prd, ek), (

ω︷ ︸︸ ︷
m,α, β, ρ)

)
(6)

19 Moreover, the user would have to prove knowledge of the corresponding secret key, so that the unforgeability
reduction can extract it.

20 There are attacks against Groth16 in which proofs constructed under a malformed CRS leak information on
the witness [CGGN17, Fuc19].

22

into maximal hardwiring:

R′Sch
(
(

parR′︷ ︸︸ ︷
q,G, G,H, X, ek), (

θ︷ ︸︸ ︷
R, c,C,prd), (

ω︷ ︸︸ ︷
m,α, β, ρ)

)
. (7)

An immediate consequence is improved verification time, since NArg verifier time grows at
least linearly in the statement size. It moreover reduces circuit complexity and therefore prover
time and CRS size. This is the recommended setting when signers generate their own CRS
and thus need not worry about proper deletion of the simulation trapdoor. We discuss further
implications of this modification in Appendix E.

5.3 Schnorr Parameters

We consider two types of scenarios:

(A) The group and hash function used for Schnorr (q,G, G,H) can be chosen in consideration
of the specifics of the argument system NArg.

(B) The protocol is intended to extend an existing implementation of Schnorr signatures for
given parameters (q,G, G,H), such as the ones used by Bitcoin.

In scenario (A) we can choose a group that is natively supported by the argument system, as
well as an “arithmetic-circuit-friendly” hash function [AGR+16, ACG+19, BGL20, AAB+20,
GKR+21]. This means that expressing the computation of H in the language underlying NArg
only requires a moderate number of addition and multiplication gates (and/or lookups). This
can lead to a CRS of size only a few MBs and proving times of under a second (see Table 1).

Scenario (B) concerns blockchain protocols that add (predicate-)blind signing on top of
existing Schnorr parameters. Standard hash functions like SHA-256 and elliptic curves like
secp256k1 are typically not arithmetic-circuit-friendly, which increases the CRS size and
proving time.21

5.4 Implementation

To assess the efficiency of our predicate blind signature construction PBSch from Section 4,
we benchmark the NArg component, which is the computationally heavy component. For
several variants of both scenarios (A) and (B) from Section 5.3 we consider three proof
systems: The Iden3 implementation [ide] of the trusted-setup zk-SNARK Groth16 [Gro16];
the Fluidex22 implementation [Plo] of the universal-setup zk-SNARK PlonK [GWC19]; and a
prototype23 [TS] of the transparent-setup NIZK Spartan [Set20]. We wrote the circuits in the
domain-specific language of Circom 2.0 [ide] and made them available [mot].

21 One invocation of the SHA-256 compression function requires around 26 000 R1CS (see Footnote 24)
constraints [CGGN17, KPS18, ide].

22 Fluidex builds on the [ide] code base and does not consider PlonK-specific optimization techniques such as
[PFM+22].

23 [TS] builds on the reference implementation of Spartan [Set] where the curve has been replaced by secq256k1
and combines this with a modified version of [Bha] which compiles Circom projects into the format required
by Spartan.

23

In Tables 1 and 2 we give the arithmetic complexity of the relation RElGm from Eq. (8) in
terms of number of constraints for the considered scenarios.24 For each proof system we report
the time it takes to compute the proof (which includes computing the witness). As for Groth16
and PlonK the CRS can be split into a “proving key” (used by the user during blind signing)
and a “verification key” (used by the signer), we report both sizes. We also state the proof
size and the verification time. All experiments were run on an Intel R© CoreTM i7-10850H CPU
@ 2.70GHz× 12 with 31 GB of RAM.

Since we discussed the possibility of checking CRS consistency in Groth16 [Fuc18] to avoid
a trusted setup, we also give estimates of its time complexity in Table 1. We propose and use
a probabilistic verification of the “proving key” using batching techniques, which we discuss in
Appendix F.

Groups and PKE. We instantiate Groth16 and PlonK over the pairing-friendly curve BN254
[BN06]. The prime order p of the curve group has 254 bits and defines the modulus of the
arithmetic circuit over which we instantiate RSch; hence all inputs are effectively elements of
Fp. We therefore represent the messages in our scheme as elements from Fnp for some n (which
allows us to handle messages of n · 253 bits). The field Fp is the base field of the curve Baby
JubJub (BJB) [BJB20]. Its elements can be represented as two elements of Fp, and the group
operation is efficiently arithmetizable in Fp. To distinguish BJB elements from the group G
used by Schnorr, we represent them in roman font, e.g., the generator is G.

We instantiate Spartan over the curve secq256k1. This curve is sometimes referred to as
“twin” of secp256k1, since they share the same curve equations and the order of one is the base
field size of the other [SS11]. As a consequence, the arithmetization is over a 256-bit field and
messages can be slightly larger.

To instantiate the encryption scheme PKE (used to encrypt α, β and m in Figure 4) we use
the DHIES [ABR98] key encapsulation mechanism of ElGamal [ElG85] over the BJB curve
group and the additive one-time pad over Fp as the data encapsulation mechanism. That is,
to encrypt a message under a public key K, one chooses ρ←$ Fq and computes the hash of ρK.
The ciphertext consists of the message blinded by this hash together with the element ρG.

We use an arithmetic-circuit-friendly sponge hash Ψn+2
p : F2

p → F2+n
p from the Poseidon

family [GKR+21] to obtain field elements α, β, r1, . . . , rn. The last n elements are used to
additively blind the message m (we use α and β directly rather than first choosing and then
blinding them). These choices lead to the following instantiation of RSch from Eq. (3) (for
which the Schnorr parameters (q,G, G,H) still depend on the scenario):25

24 Arithmetization is given as a R1CS relation, which consists of instance-witness pairs ((A,B,C, θ), w), where
A,B,C are matrices and θ, w are vectors over a finite field F, such that Az ◦ Bz = Cz for z := (1, θ, w),
where “◦” denotes the entry-wise product [BCR+19]. We refer to each such product as a “constraint” or
“gate”.

25 Note that the first line in the return statement of (8) checks a congruence modulo q, whereas the third line
requires modulo p. We stress the importance of type checks when inputs are not Fp elements; for elements
of the statement θ these can be directly performed when verifying a NIZK proof, which saves on CRS size
and prover time.

24

Table 1. Benchmark NArg for the relation RElGm in Eq. (8) for different scenarios. The first two rows specify
the used Schnorr parameters. ‘Hardwiring’ can be maximal Eq. (7) or minimal Eq. (6). ‘Constraints’ capture
the complexity of the arithmetization of RElGm using the circuit compiler of [ide] over the scalar field of the
BN254 curve. We present proof and proving key sizes after applying point compression. (Note that results
depend heavily on machine specifics; e.g., Groth16 proof verification is reported [Bot] to be 100 times faster
than our numbers using the same zk-SNARK library.) ‘pk verif. time’ is an estimate on proving-key verification
based on results discussed in Appendix F.

Scenario (A1) (A2) (A3) (B1) (B2) (B3)
Schnorr curve BJB BJB BJB secp256k1 secp256k1 BJB
Schnorr hash Poseidon Poseidon Poseidon SHA-256 SHA-256 SHA-256
Blindness type full full partial full predicate predicate
Message size 253 b 253B 252B 256 b 256B 256B
Hardwiring max. min. min. min. min. min.

Proving system Groth16 [Gro16] implementation of [ide]
Constraints 4 226 8 830 8 404 1 564 556 1 716 794 219 740
Prov. key (pk) size 0.8MB 2.15MB 2.05MB 530MB 566MB 62.5MB
pk verif. time (≈) 0.64 s 0.97 s 0.93 s 3 h 55min 4 h 43min 4min 38 s
Verif. key size 1.75 kB 2.75 kB 2.1 kB 3.75 kB 3.6 kB 2.2 kB
Proving time 0.5 s 0.8 s 0.7 s 50 s 60 s 4.7 s
Proof size 402B
Proof verif. time 0.4 s

Proving system Plonk [GWC19] implementation of [Plo]
Constraints 4 226 8 830 8 404 1 564 556 1 716 794 219 740
Proving key size 0.92MB 1.6MB 1.5MB 336MB 354MB 60.5MB
Verif. key size 0.55 kB 0.55 kB 0.55 kB 2.75 kB 0.55 kB 0.55 kB
Proving time 1.2 s 1.5 s 1.7 s 2m 50 s 2m 53 s 33 s
Proof size 1.4 kB
Proof verif. time 12ms

RElGm
(
(q,G, G,H), (X,R, c,C, (ci)i∈[n],prd,K), ((mi)i∈[n], ρ)

)
:

(α, β, r1, . . . , rn) := Ψn+2
p (ρK) // use Poseidon-DHIES to derive a key

R′ := R+ αG+ βX // blind R in Schnorr group G

return c ≡q H(R′, X,m1, . . . ,mn) + β // c is computed from witness elements

∧ P
(
prd, (m1, . . . ,mn)

)
= 1 // (mi)i∈[n] satisfies the predicate prd

∧ ∀i ∈ [n] : ri +mi ≡p ci // check consistency of DHIES . . .

∧ C = ρG // . . . encryption in the BJB group

(8)

Our instantiation of PKE leads to a small circuit size of RElGm, since “sponge squeezing”
for Ψp has very low complexity compared to standard ElGamal encryption of the individual
components (due to the required variable-base group multiplications; it would also require
cumbersome mappings of messages to group elements). Note that the outputs of Ψp are in Fp,
whereas α and β should be uniform in Fq. For our choice of Groth16 and PlonK parameters we
have p = (8− ε) · q with ε < 2−124, and for our Spartan configuration we have p = (1 + ε) · q
with ε < 2−127. Therefore taking uniform values in Fp modulo q is statistically close to uniform

25

values in Fq, and (assuming security of DHIES with Poseidon) α and β modulo q are distributed
(almost) as required.

Optimized Schnorr parameters. We start with scenario (A) (see Section 5.3) considering
NArg-“friendly” choices of the group G and the hash function H, namely BJB and Poseidon,
resp., as in the implementation of PKE. Performance details of an implementation of fully
blind signatures in this configuration for 253-byte messages are given in Table 1, column (A2).
A run-time optimized and minimalist scenario is (A1), where we hardwire the signature
verification key X and the encryption key ek (as in Eq. (7)) and support 253-bit messages.26

In scenario (A3), we implement partially blind signatures for messages that have 126
public bytes and 126 secret bytes. We optimized the generic construction from any PBS for
the predicate from Eq. (1) as follows. Since only messages m = (info,m′) with info = prd will
be signed, it suffices if the user encrypts m′ instead of m in its first protocol message. This
makes partially blind signing slightly more performant than fully blind signing for messages of
the same length, since only m′ is contained in the witness of the circuit.

Fixed Schnorr parameters. As a concrete scenario of type (B), we consider blind signing
of Bitcoin transactions, that is, blind issuing of Schnorr signatures (supported by Bitcoin
since the Taproot upgrade [WNR20]) over the group secp256k1 and using SHA-256. We consider
“Pay To Public Key Hash”, which is the most common form of pubkey script when creating a
transaction. A serialized transaction is hashed twice using SHA-256 and then signed [Wik]; we
thus need to handle 256-bit messages.

(B1) in Table 1 gives performance upper bounds for fully blind signature issuing, which
deteriorate compared to scenario (A). An inherent reason is that secp256k1 and SHA-256 are
not efficiently arithmetizable when using Groth16 and PlonK over the BN254 curve. This is
aggravated by the prototype implementation of the secp256k1 curve using simulated modulo
reduce by [0xP].

Scenario (B2) showcases the possibilities offered by predicate blind signatures. We consider
a signer that blindly signs a transaction, but wants to ensure that the transferred amount is
below a certain threshold. Since Bitcoin signs the hash of a transaction, this requires PBS
for NP-relations (Section 4.3). Concretely, the relation P(prd,m,w) takes as witness w the
transaction (254 bytes suffice for a standard Bitcoin transaction), checks if the transaction
value is smaller than a value specified by prd and whether the hash of w equals m. Note that
that this generalization has very small repercussions on efficiency compared to (B1).

Scenario (B3) is the same as (B2), but using the curve BJB instead of secp256k1. This
could give a rough estimate for what performance could be achieved when PlonK and Groth16
are instantiated over a pairing-friendly curve of appropriate order, for example following
the approach by Sun et al. [SSS+22] combined with recently developed FFT techniques for
non-smooth fields [BCKL21].

26 Since elliptic-curve scalar multiplication in the BJB group for fixed base requires roughly 770 R1CS con-
straints as opposed to about 2 530 constraints for variable base (incl. bit-decomposition; in the current [ide]
implementation), the bulk of constraints saved from (A2) to (A1) comes from this hardwiring aspect, rather
than the smaller message size.

26

Table 2. Benchmarking scenario (B2) when instantiating NArg with Spartan [Set20] (which does not require a
trusted setup) using a custom adaptation with efficient support for secp256k1 arithmetization by [TS], which is
based on [Set] and [Bha]. The implementations are prototypes and currently do not make use of parallelization
techniques and do not yet consider various optimizations for the secq256k1 curve used in the commitment
scheme, and the secp256k1 curve used in the circuit.

Proving system Constraints crs size Proving time Proof size Proof verif. time
Spartan [Set20, TS] 224 555 36 kB 2m 34 s 36.6 kB 14 s

5.5 NIZKs with secp256k1 Support

The bulk of state-of-the-art NIZK implementations do not support efficient arithmetization for
arbitrary choices of the Schnorr group G, in particular not for the secp256k1 group. Non-native
simulation of group operations creates significant overhead [0xP, EL], which we identify as
the main source of inefficiency in scenarios (B1) and (B2) in Table 1. There are essentially
three requirements that can restrict the possible choices of the arithmetization field of a NIZK:
(i) The field must be large enough to bound the soundness error. (ii) The NIZK requires
explicit properties of the field (e.g., having smooth multiplicative subgroups for FFT or FRI
[BBHR18a] support). (iii) The NIZK requires implicit properties of the field (e.g., it uses a
commitment scheme whose messages are elements of the field).

There now exist elegant ways around these requirements: (i) is commonly addressed
by making use of extension fields and repeated proving [BBHR18b, Zer]. Ben-Sasson et al.
[BCKL21] overcome (ii) by devising an FFT algorithm for arbitrary fields. To avoid (iii), there
are generic solutions when the NIZK uses elliptic-curve-based commitments: one generates a
new curve by using for example the Cocks-Pinch method to obtain pairing-friendly curves,27
or complex multiplication for ordinary curves [BS08].

As the pairing-based schemes Groth16 and PlonK are particularly subject to (ii) and (iii),
we used Spartan as an alternative. It does not suffer from restriction (ii), as it does not require
FFTs, and it alleviates (iii), as it requires ordinary rather than pairing-friendly curves, which
are significantly easier to construct with lower overhead in the base field size. In the particular
case of the secp256k1 base field, its size is large enough to satisfy (i), and a matching curve
does not even need to be generated as it has the aforementioned “twin” curve secq256k1, whose
order is equal to the field size of secp256k1 [SS11].

We follow Tehrani and Sankar [TS] and use this “twin” for Spartan’s commitment scheme
to get a NIZK that is fine-tuned for scenario (B), i.e., blindly signing Bitcoin transactions.
In Table 2 we give the results of testing scenario (B2) using this instantiation of Spartan.
We remark that [TS] and the projects it builds upon [Set, Bha] are in an early development
stage and therefore lack certain run-time optimizations. This is reflected by comparing the
proving time in Table 2 to the one for (B2) in Table 1. However, due to the efficient support
for secp256k1, the circuit complexity was reduced by more than a factor 7, which indicates
the potential for further improvements in running time.

Acknowledgements. This work has been funded by the Vienna Science and Technology
Fund (WWTF) [10.47379/VRG18002]. We would like to thank Tim Ruffing for preliminary
discussions and the anonymous reviewers for EUROCRYPT’24 for their helpful comments.
27 The drawback of using Cocks-Pinch is that the bit length of the base filed is up to twice as long [FST10],

and, more importantly, it only yields the curve parameters, but no security guarantees, let alone efficient
implementations.

27

References
[0xP] 0xPARC. Big integer arithmetic and secp256k1 ECC operations in circom. Available at

https://github.com/0xPARC/circom-ecdsa.
[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepieniec. Design

of symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Symm. Cryptol.,
2020(3):1–45, 2020.

[ABR98] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHIES: An encryption scheme based on
the Diffie-Hellman problem. Contributions to IEEE P1363a, 1998.

[ACG+19] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger,
Christian Rechberger, and Markus Schofnegger. Algebraic cryptanalysis of STARK-friendly
designs: Application to MARVELlous and MiMC. In Steven D. Galbraith and Shiho Moriai,
editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 371–397. Springer, 2019.

[AF96] Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In Kwangjo Kim and
Tsutomu Matsumoto, editors, ASIACRYPT’96, volume 1163 of LNCS, pages 244–251. Springer,
1996.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Structure-preserving signatures and commitments to group elements. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 209–236. Springer, 2010.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. MiMC:
Efficient encryption and cryptographic hashing with minimal multiplicative complexity. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of
LNCS, pages 191–219. Springer, 2016.

[AO00] Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 271–286. Springer, 2000.

[App] Apple. iCloud private relay. Available at https://www.apple.com/privacy/docs/iCloud_Private_
Relay_Overview_Dec2021.PDF.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334. IEEE Computer Society Press, 2018.

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon interactive
oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and
Donald Sannella, editors, ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl,
2018.

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046,
2018. https://eprint.iacr.org/2018/046.

[BC23] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumulation/folding for special-
sound protocols. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part II, volume
14439 of LNCS, pages 77–110. Springer, 2023.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci., 37(2):156–189, 1988.

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and
Hovav Shacham. Randomizable proofs and delegatable anonymous credentials. In Shai Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 108–125. Springer, 2009.

[BCI+10] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi
Tibouchi. Efficient indifferentiable hashing into ordinary elliptic curves. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 237–254. Springer, 2010.

[BCK+22] Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi
Zhu. Better than advertised security for non-interactive threshold signatures. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages
517–550. Springer, 2022.

[BCKL09] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Compact e-cash
and simulatable VRFs revisited. In Hovav Shacham and Brent Waters, editors, PAIRING 2009,
volume 5671 of LNCS, pages 114–131. Springer, 2009.

[BCKL21] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic curve Fast Fourier
Transform (ECFFT) part I: Fast polynomial algorithms over all finite fields. Electron. Colloquium
Comput. Complex., 28:103, 2021.

28

https://github.com/0xPARC/circom-ecdsa
https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF
https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF
https://eprint.iacr.org/2018/046

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. In David B. Shmoys, editor, 46th ACM STOC, pages 505–514. ACM Press,
2014.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
2019.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures. Journal of Cryptographic Engineering, 2(2):77–89, 2012.

[BDLO12] Daniel J. Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk. Faster batch
forgery identification. In Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT 2012,
volume 7668 of LNCS, pages 454–473. Springer, 2012.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller blockchains.
In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of
LNCS, pages 435–464. Springer, 2018.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, 2001.

[BFI+10] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, and
Damien Vergnaud. Batch Groth-Sahai. In Jianying Zhou and Moti Yung, editors, ACNS 10,
volume 6123 of LNCS, pages 218–235. Springer, 2010.

[BFL20] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of computational assump-
tions in the algebraic group model. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part II, volume 12171 of LNCS, pages 121–151. Springer, 2020.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applica-
tions (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, 1988.

[BFP21] Balthazar Bauer, Georg Fuchsbauer, and Antoine Plouviez. The one-more discrete logarithm
assumption in the generic group model. In Mehdi Tibouchi and Huaxiong Wang, editors,
ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages 587–617. Springer, 2021.

[BFQ21] Balthazar Bauer, Georg Fuchsbauer, and Chen Qian. Transferable e-cash: A cleaner model and
the first practical instantiation. In Juan Garay, editor, PKC 2021, Part II, volume 12711 of
LNCS, pages 559–590. Springer, 2021.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS:
Security in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804. Springer, 2016.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 677–706. Springer, 2020.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a trusted
setup. Cryptology ePrint Archive, Report 2019/1021, 2019. https://eprint.iacr.org/2019/1021.

[BGL20] Eli Ben-Sasson, Lior Goldberg, and David Levit. STARK friendly hash – survey and recommen-
dation. Cryptology ePrint Archive, Report 2020/948, 2020. https://eprint.iacr.org/2020/948.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050, 2017.
https://eprint.iacr.org/2017/1050.

[Bha] Nalin Bhardwaj. Middleware to compile circom circuits to nova prover. Available at https:
//github.com/nalinbhardwaj/Nova-Scotia.

[BJB20] WhiteHat Barry, Baylina Jordi, and Marta Bellés. Baby Jubjub elliptic curve. Ethereum
Improvement Proposal, EIP-2494, 29, 2020.

[BK22] Dan Boneh and Chelsea Komlo. Threshold signatures with private accountability. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages
551–581. Springer, 2022.

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 1087–1098. ACM Press, 2013.

[BLL+21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On
the (in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part I, volume 12696 of LNCS, pages 33–53. Springer, 2021.

29

https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2020/948
https://eprint.iacr.org/2017/1050
https://github.com/nalinbhardwaj/Nova-Scotia
https://github.com/nalinbhardwaj/Nova-Scotia

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin
Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, 2001.

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In
Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 319–331.
Springer, 2006.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-
more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of
Cryptology, 16(3):185–215, 2003.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567 of
LNCS, pages 31–46. Springer, 2003.

[Bot] Gautam Botrel. gnark: high-performance, open-source library that enables effective
zkSNARK applications. Available at https://consensys.net/blog/research-development/
gnark-your-guide-to-write-zksnarks-in-go/.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, 1993.

[Bra94] Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract). In
Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 302–318. Springer, 1994.

[BRS20] Samuel Brack, Leonie Reichert, and Björn Scheuermann. CAUDHT: decentralized contact
tracing using a DHT and blind signatures. In Hwee-Pink Tan, Lyes Khoukhi, and Sharief Oteafy,
editors, Local Computer Networks LCN 2020, pages 337–340. IEEE, 2020.

[BS08] Reinier Bröker and Peter Stevenhagen. Constructing elliptic curves of prime order. Contemp.
Math, 463:17–28, 2008.

[BZ23] Paulo L. Barreto and Gustavo H. M. Zanon. Blind signatures from zero-knowledge arguments.
Cryptology ePrint Archive, Paper 2023/067, 2023. https://eprint.iacr.org/2023/067.

[CAHL+22] Rutchathon Chairattana-Apirom, Lucjan Hanzlik, Julian Loss, Anna Lysyanskaya, and Benedikt
Wagner. PI-cut-choo and friends: Compact blind signatures via parallel instance cut-and-choose
and more. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 3–31. Springer, 2022.

[CBBZ23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with linear-
time prover and high-degree custom gates. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part II, volume 14005 of LNCS, pages 499–530. Springer, 2023.

[CFN90] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi Goldwasser,
editor, CRYPTO’88, volume 403 of LNCS, pages 319–327. Springer, 1990.

[CG08] Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In Peng Ning,
Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 345–356. ACM Press, 2008.

[CGGN17] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-knowledge
contingent payments revisited: Attacks and payments for services. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 229–243. ACM
Press, 2017.

[Cha82] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest,
and Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA,
1982.

[Cha88] David Chaum. Elections with unconditionally-secret ballots and disruption equivalent to breaking
RSA. In C. G. Günther, editor, EUROCRYPT’88, volume 330 of LNCS, pages 177–182. Springer,
1988.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, 2020.

[CKM21] Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove Schnorr assuming Schnorr:
Security of multi- and threshold signatures. Cryptology ePrint Archive, Paper 2021/1375, 2021.
https://eprint.iacr.org/2021/1375.

[CKM+23] Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu. Snowblind:
A threshold blind signature in pairing-free groups. In Helena Handschuh and Anna Lysyanskaya,
editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 710–742. Springer, 2023.

30

https://consensys.net/blog/research-development/gnark-your-guide-to-write-zksnarks-in-go/
https://consensys.net/blog/research-development/gnark-your-guide-to-write-zksnarks-in-go/
https://eprint.iacr.org/2023/067
https://eprint.iacr.org/2021/1375

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 93–118. Springer, 2001.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 56–72.
Springer, 2004.

[Com21] The Electric Coin Company. The halo2 book, 2021. Available at https://zcash.github.io/halo2/
index.html.

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 229–235. Springer, 2000.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent
recursive proofs from holography. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 769–793. Springer, 2020.

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, 1993.

[DGS+18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda. Privacy
pass: Bypassing internet challenges anonymously. Proc. Priv. Enhancing Technol., 2018(3):164–
180, 2018.

[DJW22] Frank Denis, Frederic Jacobs, and Christopher A. Wood. RSA blind signatures [work in progress],
2022. Available at https://datatracker.ietf.org/doc/draft-irtf-cfrg-rsa-blind-signatures/.

[DLZ+20] Aaqib Bashir Dar, Auqib Hamid Lone, Saniya Zahoor, Afshan Amin Khan, and Roohie Naaz.
Applicability of mobile contact tracing in fighting pandemic (COVID-19): Issues, challenges and
solutions. Cryptology ePrint Archive, Report 2020/484, 2020. https://eprint.iacr.org/2020/484.

[DN07] Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM Journal on Computing,
36(6):1513–1543, 2007.

[EL] Electron-Labs. Ed25519 implementation in circom. Available at https://github.com/
Electron-Labs/ed25519-circom.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[FGHP09] Anna Lisa Ferrara, Matthew Green, Susan Hohenberger, and Michael Østergaard Pedersen.
Practical short signature batch verification. In Marc Fischlin, editor, CT-RSA 2009, volume
5473 of LNCS, pages 309–324. Springer, 2009.

[FHKS16] Georg Fuchsbauer, Christian Hanser, Chethan Kamath, and Daniel Slamanig. Practical round-
optimal blind signatures in the standard model from weaker assumptions. In Vassilis Zikas and
Roberto De Prisco, editors, SCN 16, volume 9841 of LNCS, pages 391–408. Springer, 2016.

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind
signatures in the standard model. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 233–253. Springer, 2015.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference string
model. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer,
2006.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of
LNCS, pages 33–62. Springer, 2018.

[FKP16] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the provable security of (EC)DSA
signatures. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 2016, pages 1651–1662. ACM Press, 2016.

[FKP17] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the one-per-message unforgeability of
(EC)DSA and its variants. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume
10678 of LNCS, pages 519–534. Springer, 2017.

[FO18] Georg Fuchsbauer and Michele Orrù. Non-interactive zaps of knowledge. In Bart Preneel and
Frederik Vercauteren, editors, ACNS 18, volume 10892 of LNCS, pages 44–62. Springer, 2018.

[FO22] Georg Fuchsbauer and Michele Orrù. Non-interactive Mimblewimble transactions, revisited. In
Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS,
pages 713–744. Springer, 2022.

[FOO93] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for large
scale elections. In Jennifer Seberry and Yuliang Zheng, editors, AUSCRYPT’92, volume 718 of
LNCS, pages 244–251. Springer, 1993.

31

https://zcash.github.io/halo2/index.html
https://zcash.github.io/halo2/index.html
https://datatracker.ietf.org/doc/draft-irtf-cfrg-rsa-blind-signatures/
https://eprint.iacr.org/2020/484
https://github.com/Electron-Labs/ed25519-circom
https://github.com/Electron-Labs/ed25519-circom

[FOS19] Georg Fuchsbauer, Michele Orrù, and Yannick Seurin. Aggregate cash systems: A cryptographic
investigation of Mimblewimble. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part I, volume 11476 of LNCS, pages 657–689. Springer, 2019.

[FP09] Georg Fuchsbauer and David Pointcheval. Proofs on encrypted values in bilinear groups and an
application to anonymity of signatures. In Hovav Shacham and Brent Waters, editors, PAIRING
2009, volume 5671 of LNCS, pages 132–149. Springer, 2009.

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 63–95. Springer, 2020.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology, 23(2):224–280, 2010.

[Fuc11] Georg Fuchsbauer. Commuting signatures and verifiable encryption. In Kenneth G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 224–245. Springer, 2011.

[Fuc18] Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla and Ricardo Dahab,
editors, PKC 2018, Part I, volume 10769 of LNCS, pages 315–347. Springer, 2018.

[Fuc19] Georg Fuchsbauer. WI is not enough: Zero-knowledge contingent (service) payments revisited.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM
CCS 2019, pages 49–62. ACM Press, 2019.

[FV10] Georg Fuchsbauer and Damien Vergnaud. Fair blind signatures without random oracles. In
Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT 10, volume 6055 of LNCS, pages
16–33. Springer, 2010.

[GG14] Sanjam Garg and Divya Gupta. Efficient round optimal blind signatures. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 477–495.
Springer, 2014.

[Gha17] Essam Ghadafi. Efficient round-optimal blind signatures in the standard model. In Aggelos
Kiayias, editor, FC 2017, volume 10322 of LNCS, pages 455–473. Springer, 2017.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and
universal common reference strings with applications to zk-SNARKs. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728.
Springer, 2018.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger.
Poseidon: A new hash function for zero-knowledge proof systems. In Michael Bailey and Rachel
Greenstadt, editors, USENIX Security 2021, pages 519–535. USENIX Association, 2021.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, 1994.

[Goo] Google. VPN by Google One. Available at https://one.google.com/about/vpn/howitworks.
[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe,

editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, 2010.
[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-

Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, 2016.

[GRS+11] Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Dominique Unruh. Round
optimal blind signatures. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,
pages 630–648. Springer, 2011.

[GWC19] A. Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over Lagrange-
bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint Arch.,
2019:953, 2019.

[HAB+17] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon Goldberg.
TumbleBit: An untrusted bitcoin-compatible anonymous payment hub. In NDSS 2017. The
Internet Society, 2017.

[HBG16] Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg. Blindly signed contracts: Anonymous
on-blockchain and off-blockchain bitcoin transactions. In Jeremy Clark, Sarah Meiklejohn, Peter
Y. A. Ryan, Dan S. Wallach, Michael Brenner, and Kurt Rohloff, editors, FC 2016 Workshops,
volume 9604 of LNCS, pages 43–60. Springer, 2016.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits
better than custom protocols? In NDSS 2012. The Internet Society, 2012.

32

https://one.google.com/about/vpn/howitworks

[Her97] Mark Allan Herschberg. Secure electronic voting over the world wide web. PhD thesis, Mas-
sachusetts Institute of Technology, 1997.

[HIP+] Scott Hendrickson, Jana Iyengar, Tommy Pauly, Steven Valdez, and Christopher A. Wood.
Private Access Tokens. Internet-Draft draft-private-access-tokens-00, Internet Engineering Task
Force. Work in Progress.

[HK73] John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on computing, 2(4):225–231, 1973.

[HK16] Lucjan Hanzlik and Kamil Kluczniak. A short paper on blind signatures from knowledge
assumptions. In Jens Grossklags and Bart Preneel, editors, FC 2016, volume 9603 of LNCS,
pages 535–543. Springer, 2016.

[HK23] Dominik Hartmann and Eike Kiltz. Limits in the provable security of ECDSA signatures. In
Guy N. Rothblum and Hoeteck Wee, editors, TCC 2023, Part IV, volume 14372 of LNCS, pages
279–309. Springer, 2023.

[HKKL07] Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell. Concurrently-secure blind
signatures without random oracles or setup assumptions. In Salil P. Vadhan, editor, TCC 2007,
volume 4392 of LNCS, pages 323–341. Springer, 2007.

[HKLN20] Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based blind signatures,
revisited. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume
12171 of LNCS, pages 500–529. Springer, 2020.

[HKOK06] Yoshikazu Hanatani, Yuichi Komano, Kazuo Ohta, and Noboru Kunihiro. Provably secure
electronic cash based on blind multisignature schemes. In Giovanni Di Crescenzo and Avi Rubin,
editors, FC 2006, volume 4107 of LNCS, pages 236–250. Springer, 2006.

[HLW23] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. Rai-choo! Evolving blind signatures to the
next level. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume
14008 of LNCS, pages 753–783. Springer, 2023.

[Hou21] Youssef El Housni. Benchmarking pairing-friendly elliptic curves libraries, 2021. Available at
https://hackmd.io/@gnark/eccbench.

[ide] iden3. Circom 2.0. Available at https://iden3.io/circom.
[JLE17] Bargav Jayaraman, Hannah Li, and David Evans. Decentralized certificate authorities. CoRR,

abs/1706.03370, 2017.
[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended

abstract). In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 150–164.
Springer, 1997.

[Kar73] Alexander V Karzanov. An exact estimate of an algorithm for finding a maximum flow, applied
to the problem on representatives. Problems in Cybernetics, 5:66–70, 1973.

[KLR21] Jonathan Katz, Julian Loss, and Michael Rosenberg. Boosting the security of blind signature
schemes. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume
13093 of LNCS, pages 468–492. Springer, 2021.

[KLX22] Julia Kastner, Julian Loss, and Jiayu Xu. On pairing-free blind signature schemes in the algebraic
group model. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022,
Part II, volume 13178 of LNCS, pages 468–497. Springer, 2022.

[KMSV21] Markulf Kohlweiss, Mary Maller, Janno Siim, and Mikhail Volkhov. Snarky ceremonies. In
Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, volume 13092 of
LNCS, pages 98–127. Springer, 2021.

[KPS18] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark: A framework for efficient
verifiable computation. In 2018 IEEE Symposium on Security and Privacy, pages 944–961. IEEE
Computer Society Press, 2018.

[KPV22] Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transparent SNARKs
from list polynomial commitments. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022, pages 1725–1737. ACM Press, 2022.

[KZ06] Aggelos Kiayias and Hong-Sheng Zhou. Concurrent blind signatures without random oracles.
In Roberto De Prisco and Moti Yung, editors, SCN 06, volume 4116 of LNCS, pages 49–62.
Springer, 2006.

[LLL+19] Yi Liu, Zhen Liu, Yu Long, Zhiqiang Liu, Dawu Gu, Fei Huan, and Yanxue Jia. TumbleBit++:
A comprehensive privacy protocol providing anonymity and amount-invisibility. In Ron Steinfeld
and Tsz Hon Yuen, editors, ProvSec 2019, volume 11821 of LNCS, pages 339–346. Springer,
2019.

33

https://hackmd.io/@gnark/eccbench
https://iden3.io/circom

[mot] mottla. (Concurrently secure) blind Schnorr signature reference circuits. Available at https:
//github.com/mottla/Blind-Schnorr-Signatures.

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple Schnorr multi-
signatures with applications to Bitcoin. Des. Codes Cryptogr., 87(9):2139–2164, 2019.

[MSM+16] Hiraku Morita, Jacob C. N. Schuldt, Takahiro Matsuda, Goichiro Hanaoka, and Tetsu Iwata. On
the security of the schnorr signature scheme and DSA against related-key attacks. In Soonhak
Kwon and Aaram Yun, editors, ICISC 15, volume 9558 of LNCS, pages 20–35. Springer, 2016.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55(2):165–172, 1994.

[Nic19] Jonas Nick. Blind signatures in scriptless scripts. Presentation given at Building on
Bitcoin, 2019. Slides and video available at https://jonasnick.github.io/blog/2018/07/31/
blind-signatures-in-scriptless-scripts/.

[NS02] Phong Q. Nguyen and Igor Shparlinski. The insecurity of the digital signature algorithm with
partially known nonces. Journal of Cryptology, 15(3):151–176, 2002.

[Oka06] Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles. In
Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 80–99. Springer,
2006.

[OO92] Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 324–337. Springer, 1992.

[PFM+22] Luke Pearson, Joshua Fitzgerald, Héctor Masip, Marta Bellés-Muñoz, and Jose Luis Muñoz-Tapia.
PlonKup: Reconciling PlonK with plookup. Cryptology ePrint Archive, Report 2022/086, 2022.
https://eprint.iacr.org/2022/086.

[Pip76] Nicholas Pippenger. On the evaluation of powers and related problems. In 17th Annual
Symposium on Foundations of Computer Science (sfcs 1976), pages 258–263. IEEE Computer
Society, 1976.

[Plo] Plonkit. A zksnark toolkit to work with circom zkp DSL in plonk proof system. Available at
https://github.com/fluidex/plonkit.

[Poe16] Andrew Poelstra. Mimblewimble, 2016. Available at https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.pdf.

[Poi98] David Pointcheval. Strengthened security for blind signatures. In Kaisa Nyberg, editor, EURO-
CRYPT’98, volume 1403 of LNCS, pages 391–405. Springer, 1998.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer, 1996.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, 2000.

[ROG07] Francisco Rodríguez-Henríquez, Daniel Ortiz-Arroyo, and Claudia García-Zamora. Yet another
improvement over the Mu–Varadharajan e-voting protocol. Computer Standards & Interfaces,
29(4):471–480, 2007.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, 1990.

[Sch01] Claus-Peter Schnorr. Security of blind discrete log signatures against interactive attacks. In
Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou, editors, ICICS 01, volume 2229 of LNCS,
pages 1–12. Springer, 2001.

[Set] Srinath Setty. Spartan: High-speed zkSNARKs without trusted setup. Available at https:
//github.com/microsoft/Spartan.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of
LNCS, pages 704–737. Springer, 2020.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, 1997.

[SL20] Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zkSNARKs. Cryptology
ePrint Archive, Report 2020/1275, 2020. https://eprint.iacr.org/2020/1275.

[SS11] Joseph H Silverman and Katherine E Stange. Amicable pairs and aliquot cycles for elliptic
curves. Experimental Mathematics, 20(3):329–357, 2011.

[SSS+22] Huachuang Sun, Haifeng Sun, Kevin Singh, Akhil Sai Peddireddy, Harshad Patil, Jianwei Liu,
and Weikeng Chen. The inspection model for zero-knowledge proofs and efficient Zerocash with
secp256k1 keys. Cryptology ePrint Archive, Report 022/1079, 2022. https://eprint.iacr.org/
2022/1079.

34

https://github.com/mottla/Blind-Schnorr-Signatures
https://github.com/mottla/Blind-Schnorr-Signatures
https://jonasnick.github.io/blog/2018/07/31/blind-signatures-in-scriptless-scripts/
https://jonasnick.github.io/blog/2018/07/31/blind-signatures-in-scriptless-scripts/
https://eprint.iacr.org/2022/086
https://github.com/fluidex/plonkit
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://github.com/microsoft/Spartan
https://github.com/microsoft/Spartan
https://eprint.iacr.org/2020/1275
https://eprint.iacr.org/2022/1079
https://eprint.iacr.org/2022/1079

[TS] Daniel Tehrani and Lakshman Sankar. The fastest in-browser verification of ECDSA signatures
in ZK, using Spartan on the secq256k1 curve. Available at https://github.com/personaelabs/
spartan-ecdsa.

[TZ22] Stefano Tessaro and Chenzhi Zhu. Short pairing-free blind signatures with exponential security.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276
of LNCS, pages 782–811. Springer, 2022.

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 288–303. Springer, 2002.

[WB19] Riad S. Wahby and Dan Boneh. Fast and simple constant-time hashing to the BLS12-381 elliptic
curve. IACR TCHES, 2019(4):154–179, 2019. https://tches.iacr.org/index.php/TCHES/article/
view/8348.

[Wik] Bitcoin Wiki. The op_checksig script opcode. Available at https://en.bitcoin.it/wiki/OP_
CHECKSIG.

[WNR20] Pieter Wuille, Jonas Nick, and Tim Ruffing. Schnorr signatures for secp256k1. Bitcoin Improve-
ment Proposal, 2020. See https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,
pages 160–164. IEEE Computer Society Press, 1982.

[Zer] Polygon Zero. Plonky2: Fast recursive arguments with PLONK and FRI. Available at https:
//github.com/mir-protocol/plonky2.

A Weak OMDL

We introduce the weak one-more discrete logarithm (wOMDL) problem as a stepping stone in
our proof of unforgeability of our predicate blind signature construction in Appendix B. The
wOMDL problem consists in computing the discrete logarithm of any of the group elements
obtained from a challenge oracle, while being given access to a discrete-logarithm oracle that
can be called on all other elements. In contrast to the original OMDL game [BNPS03], here
the DL oracle can only be queried on challenge group elements, as opposed to arbitrary group
elements. This makes the wOMDL assumption significantly weaker than OMDL; in particular,
it is implied by DL (while such an implication is unlikely to hold for OMDL [BFL20]). The
reduction embeds its DL challenge randomly in one of the wOMDL adversary’s challenges,
which results in a security loss linear in the number of challenge queries. Using a proof technique
by Coron [Cor00], we reduce the loss to the number of DL oracle calls.

Definition 14. A group generation algorithm GrGen satisfies the weak one-more-discrete
logarithm assumption if for every p.p.t. adversary A

AdvwOMDL
GrGen,A(λ) := Pr

[
wOMDLA

GrGen(λ)
]

is negligible in λ, where the game wOMDL is defined by:

wOMDLA
GrGen(1λ)

(q,G, G)←GrGen(1λ)
~x := [] ; ~q := []

y ← AChal,DLog(q,G, G)

return
(
|~x| > 0 ∧ y ∈ ~x ∧ y /∈ ~q

)

Chal()

x←$Zq ; X := xG

~x = ~x‖x
return X

DLog(i)

~q = ~q ‖~xi
return ~xi

Lemma 1. For every p.p.t. algorithm A playing in game wOMDL that calls the DLog oracle
q times, there exists a p.p.t. algorithm B playing in game DL s.t.

AdvwOMDL
GrGen,A(λ) ≤ q

1(
1− 1

q+1
)q+1 · AdvDL

GrGen,B(λ) , (9)

35

https://github.com/personaelabs/spartan-ecdsa
https://github.com/personaelabs/spartan-ecdsa
https://tches.iacr.org/index.php/TCHES/article/view/8348
https://tches.iacr.org/index.php/TCHES/article/view/8348
https://en.bitcoin.it/wiki/OP_CHECKSIG
https://en.bitcoin.it/wiki/OP_CHECKSIG
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/mir-protocol/plonky2
https://github.com/mir-protocol/plonky2

which for large q approaches

AdvwOMDL
GrGen,A(λ) ' q · exp(1) · AdvDL

GrGen,B(λ) . (10)

Proof. We construct B playing against DL, which on input (q,G, G, Z) must compute logG(Z).
B simulates game wOMDL for A, except that, when answering a call to Chal(), with probability
1− P , for some value P , it embeds Z in its response and aborts if A ever queries DLog at a
position at which Z was embedded:

B(q,G, G, Z)

~x := [] // empty list of tuples

y ← AChal,DLog(q,G, G)
foreach (b, x) in ~x :

if Z = (y − x)G :
return y − x

return 0

Chal()

δ←$ [0, 1]
x←$Zq ; X := xG

if δ > P : ~x = ~x‖(0, x)
return Z +X

~x = ~x‖(1, x)
return X

DLog(i)

if ~xi[0] = 0 :
abort

return ~xi[1]

Consider an adversary A against wOMDL that makes q DLog queries. The probability that
B does not abort its simulation is at least P q. If B does not abort, the simulation is perfect.
Moreover, if A wins wOMDL, then the probability that its output y corresponds to an entry
(0, xi) is 1− P . In this case y = log(Z + xiG) and thus B returns logZ. Since we must have
y /∈ ~q, this probability is independent of B’s abort probability and B succeeds thus with
probability at least α(P) := P q · (1− P). Since α(P) is maximal for Pmax = q

q+1 , we obtain
α(Pmax) = 1

q

(
1− 1

q+1
)q+1.

B Proof of Theorem 1

We give a formal proof that our predicate blind signature scheme PBSch from Figure 4
satisfies strong unforgeability according to Definition 12 by providing reductions to the security
properties of its building blocks. We proceed by a sequence of games specified in Figure 5.

G0. This is game UNF from Figure 2 with PBS instantiated by PBSch from Figure 4. The
generic PBS.Setup hence is replaced by the setup from Figure 4. In Sign1, the call PBS.Sign1
is instantiated by sampling r←$ Zq and returning R = rG, and in Sign2, we instantiate
PBS.Sign2 as defined in Figure 4, by a NIZK verification and return 0 if verification failed.

G1 . In G1 we introduce three lists ~m, ~α and ~β and modify Sign1, so that on each call with
input (prd,C) we decrypt C to obtain the values (m,α, β), which we then append to the lists
~m = ~m‖m, ~α = ~α‖α, ~β = ~β‖β. In each Sign2 call on input

(
j, (c, π)

)
, we check if for the

decrypted values at index j, we either have c 6≡q H(R′, X, ~mj) + ~βj for R′ := R+ ~αjG+ ~βjX,
or P(prd, ~mj) = 0. If either is the case, we stop the game and return 0.

Reduction from Soundness of NArg. We show that the difference between AdvUNF
PBSch,A(λ)

and AdvG1
A (λ) is bounded by the advantage in winning the game SND (Definition 4) against

soundness of NArg[RSch] played by adversary S which returns the statement/proof pair whenever
G1 aborts (defined in Figure 6).

36

UNFA
PBSch(λ), G1 , G2 , G3

(q,G, G,H)← Sch.Setup(1λ)
(crs, τ)← NArg.Setup(q,G, G,H)

(ek, dk)← PKE.KeyGen(1λ)
x←$Zq ; X := xG

vk := (crs, ek, X)
~S := [] ; P ~rd := []

~m := []; ~α := []; ~β := [];

~D := [] ; Q := ∅(
m∗i , σ

∗
i := (R∗i , s∗i)

)
i∈[n]

← ASign1,Sign2 (vk)

if
(
∃ i ∈ [n] ∃ j ∈ [|~S|] : m∗i = ~mj ∧
~Sj 6= ε ∧ ~Sj [0] + ~αjG+ ~βjX = R∗i

)
:

return 0 (II)

return
(
n > 0

∧ ∀ i ∈ [n] : PBSch.Ver(vk,m∗i , σ∗i) = 1
∧ ∀ i 6= j ∈ [n] : (m∗i , σ∗i) 6= (m∗j , σ∗j)
∧ @ f ∈ InjF([n], [|P ~rd|]) :

∀ i ∈ [n] : P(P ~rdf(i),m
∗
i) = 1

)

Sign1(prd,C)

r←$Zq ; R := rG

(m,α, β) := PKE.Dec(dk,C)
~m = ~m‖m ; ~α = ~α‖α ; ~β = ~β‖β

(R̄, s̄)← Sch.Sign
(
(q,G, G,H, x),m

)
Q = Q‖

(
m, (R̄, s̄)

)
R = R̄− αG− βX
~D = ~D‖

(
(s̄− α) mod q

)
~S = ~S‖(R, r,C, prd)
return R

Sign2
(
j, (c, π)

)
if ~Sj = ε : return ⊥

(R, r,C, prd) := ~Sj
θ := (X,R, c,C, prd, ek)
if NArg.Vfy(crs, θ, π) = 0 :

return 0

R′ := R+ ~αjG+ ~βjX

if c 6≡q H(R′, X, ~mj) + ~βj ∨ P(prd, ~mj) 6= 1 :
abort and return 0 (I)

~Sj := ε ; P ~rd = P ~rd‖prd

return ~Dj

return (r + cx) mod q

Fig. 5. The unforgeability game from Figure 2 for the scheme PBSch[P,GrGen,HGen,PKE,NArg] from Figure 4
and hybrid games used in the proof of Theorem 1. Gi includes all boxes with an index ≤ i and ignores all boxes
with and index > i.

According to the definition of game SND for NArg for relation RSch, S gets as input the
common reference string crs, generated by NArg.Setup(parR), where parR is generated by
NArg.Rel, which is defined as Sch.Setup. Reduction S, run in game SND therefore perfectly
simulates G1 to adversary A until abort. In Sign2, it checks whether for a valid statement/proof
pair (θ, π) parts of the supposed witness m,α and β satisfy c 6= (H(R′, X,m) + β) mod q or
P(prd,m) 6= 1 and returns the pair (θ, π), if either is the case. S thus returns a pair (θ, π) if
and only if G1 aborts in line (I). It remains to show that when this happens, S wins game SND.

Assume S reaches line (I) in a call Sign2 on input (j, (c, π)) and let (θ := (X,R, c,C,prd, ek),
π) be its output. The condition is only reached if π is an accepting proof for statement θ. It
suffices thus to show that θ is not a valid statement. Towards contradiction, assume θ is a

37

S(crs)

(q,G, G,H) :⊆ crs
(ek, dk)← PKE.KeyGen(1λ)
x←$Zq ; X := xG

vk := (crs, ek, X)
~S := []; ~m := []; ~α := []; ~β := [](
m∗i , σ

∗
i

)
i∈[n]

← ASign1,Sign2 (vk)

return ⊥

Sign1(prd,C)

r←$Zq ; R := rG

(m,α, β) := PKE.Dec(dk,C)
~m = ~m‖m ; ~α = ~α‖α ; ~β = ~β‖β

~S = ~S‖(R, r,C, prd)
return R

Sign2
(
j, (c, π)

)
if ~Sj = ε : return ⊥

(R, r,C, prd) := ~Sj
θ := (X,R, c,C, prd, ek)
if NArg.Vfy(par, θ, π) = 0 :

return 0

R′ := R+ ~αjG+ ~βjX

if c 6≡q H(R′, X, ~mj) + ~βj ∨ P(prd, ~mj) 6= 1 :
stop and return (θ, π) (I)

~Sj := ε

return
(
(r + cx) mod q

)

Fig. 6. Adversary S playing against soundness of NArg[RSch]

valid statement, meaning that there exists w′ := (m′, α′, β′, ρ′) s.t. RSch(parR, θ, w
′) = 1, which

means:

c ≡q H(R′, X,m′) + β′ ∧ P(prd,m′) = 1 ∧
PKE.Enc(ek, (m′, α′, β′); ρ′) = C , (11)

where R′ := R+α′G+β′X. By definition of S we have (m,α, β) = PKE.Dec(dk,C). By perfect
correctness of PKE, together with the first clause in Eq. (11), this can only be the case if

m′ = m and α′ = α and β′ = β . (12)

Again by the definition of S, we have c 6≡q H(R+αG+βX,X,m) +β ∨ P(prd,m) 6= 1, which
is a contradiction to Eq. (11) and (12). Therefore such a witness w′ does not exist. This means
that whenever (I) is reached in G1, then S wins SND and thus

AdvUNF
PBSch,A(λ) ≤ AdvSND

NArg[RSch],S(λ) + Pr
[
GA

1 (λ)
]
. (13)

G2. In G2 we introduce the event

E :⇔ ∃ i ∈ [n] ∃ j ∈ [|~S|] : m∗i = ~mj ∧ ~Sj 6= ε ∧ ~Sj [0] + ~αjG+ ~βjX = R∗i , (14)

which we check after the adversary made its final output, and return 0 if it is satisfied. If E
occurs, our final reduction to the unforgeability of Schnorr signatures will not work, since
A might only return signatures that the reduction asked to its signing oracle. Concretely,
the event E states that for at least one of the messages m∗i in A’s final output, there exists

38

a session j where this particular message was decrypted in Sign1 (formalized by ~mj = m∗i)
and session j was not successfully closed via a call to Sign2 (formalized by ~Sj 6= ε) and
yet the first part of the message’s Schnorr signature R∗i is related to Rj := ~Sj [0] that was
returned in the j-th Sign1 call s.t. Rj + ~αjG + ~βjX = R∗i , where ~αj and ~βj were obtained
via decryption in the j-th session. We have Pr

[
GA

2 (λ)
]

= Pr
[
GA

1 (λ) ∧ ¬E
]
. Together with

Pr
[
GA

1 (λ)
]

= Pr
[
GA

1 (λ) ∧ E
]

+ Pr
[
GA

1 (λ) ∧ ¬E
]
we obtain:

Pr
[
GA

1 (λ)
]

= Pr
[
GA

1 (λ) ∧ E
]

+ Pr
[
GA

2 (λ)
]
. (15)

Reduction to DL. We bound Pr
[
GA

1 (λ)∧E
]
by the advantage against the discrete-logarithm

(DL) hardness of GrGen of an algorithm D. The reduction proceeds in two steps. First we
provide a reduction to wOMDL via the adversary L given in Figure 7; then we apply Lemma 1
to reduce to the hardness of DL.

LChal,DLog(q,G, G)

H← HGen(q)

(crs, τ)← NArg.Setup
(
(q,G, G,H)

)
(ek, dk)← PKE.KeyGen(1λ)
x←$Zq ; X := xG

vk := (crs, ek, X)
~S := [] ; P ~rd := []

~m := []; ~α := []; ~β := [](
m∗i , (R∗i , s∗i)

)
i∈[n]

← ASign1,Sign2 (vk)

if
(
∃ i ∈ [n] ∃ j ∈ [|~S|] : m∗i = ~mj ∧
~Sj 6= ε ∧ ~Sj [0] + ~αjG+ ~βjX = R∗i

)
:

rj :=
(
s∗i − ~αj − ~βj · x

− H(R∗i , X,m∗i) · x
)

mod q
return rj (II)

return ⊥

Sign1(prd,C)

R← Chal()

(m,α, β) := PKE.Dec(dk,C)
~m = ~m‖m ; ~α = ~α‖α ; ~β = ~β‖β

~S = ~S‖(R,C, prd)
R′ := R+ αG+ βX

return R

Sign2
(
j, (c, π)

)
if ~Sj = ε : return ⊥

(R,C, prd) := ~Sj
θ := (X,R, c,C, prd, ek)
if NArg.Vfy(crs, θ, π) = 0 :

return ⊥

R′ := R+ ~αjG+ ~βjX

if c 6≡q H(R′, X, ~mj) + ~βj ∨ P(prd, ~mj) 6= 1 :
abort and return 0 (I)

~Sj := ε;P ~rd = P ~rd‖prd

r := DLog(j)

return
(
(r + cx) mod q

)
Fig. 7. Adversary L playing in game wOMDL from Definition 14

By the definition of game wOMDL, L receives as input the group parameters (q,G, G).
With that it chooses a hash function H← HGen(q) and then simulates G1 for A, where in each
call of Sign1, L queries its challenge oracle R← Chal(). Since the oracle returns uniformly

39

sampled elements, the simulation is perfect up to this point. If A closes a session with session
number j successfully with a call to Sign2, L obtains r := DLog(j) from its oracle DLog.

Assume A satisfies condition E from (14). Thus some session number j with challenge
Rj := ~Sj [0] was not closed, and so the oracle rj := DLog(j) was not called either. Also for some
index i ∈ [n], we have Rj + ~αjG+ ~βjX = R∗i and by the assertion that A wins G1, we know by
the validity of the signatures that s∗iG = R∗i + H(R∗i , X,m∗i)X. Combining these two equations
yields s∗iG = rjG+~αjG+~βjxG+H(R∗i , X,m∗i)xG, and thus s∗i ≡q rj+~αj+~βjx+H(R∗i , X,m∗i)x.
From this, L computes and returns rj := logG(Rj) and thereby wins game wOMDL, since rj is
the discrete logarithm of a challenge that was not solved by the oracle DLog, as required by
the game.

Therefore we obtain:
Pr
[
GA

1 (λ) ∧ E
]
≤ AdvwOMDL

GrGen,L .

Now let q be an upper-bound of successfully closed sessions via queries to the Sign2 oracle
made by A. Then L’s number of queries to its DLog oracle is also bounded by q, and by
applying Lemma 1 we obtain an adversary D playing in the game DL where

Pr
[
GA

1 (λ) ∧ E
]
≤ q · exp(1) · AdvDL

GrGen,D . (16)

G3 . In G3 we prepare the reduction to sEUF-CMA security of the Schnorr signature scheme
Sch[GrGen,HGen] underlying PBSch, by making the following changes: First we introduce two
empty lists ~D and Q.

Then we modify Sign1 so that after decrypting C to (m,α, β), we compute a Schnorr
signature on m under the signing key sk := (q,G, G,H, x) by running (R̄, s̄)← Sch.Sign(sk,m).
Next we replace the random signer challenge R := rG by R := R̄ − αG − βX. Note that
Sch.Sign returns a uniform R̄ and hence R is a uniform element and thus the simulation is
perfect up to here. As a last change in Sign1, we compute and append (s̄− α) mod q to the
list ~D. In Sign2 instead of returning s := (r + cx) mod q we return the value we previously
stored in ~D, that is s := s̄− α = ~Dj .

The user now obtains simulated elements (R, s) = (R̄− αG− βX, s̄− α). By definition of
Sch.Sign we have s̄G = R̄+ H(R̄,X,m)X, and by the assertion that line (I) was not reached,
we have c ≡q H(R+αG+ βX,X,m) + β. We show that for any choice of α, β, message m and
signing key sk, the user’s view in G3 is distributed equivalently to its view in G2. The latter is

{
(R, s)

∣∣ r←$ Zq ; R = rG ; s ≡q r + (H(R+ αG+ βX,X,m) + β)x
}

≡
{
(R̄− αG− βX, s)

∣∣ r̄←$ Zq ; R̄ = r̄G ; s ≡q r̄ − α− βx+ H(R̄,X,m)x+ βx
}

(since r̄ − α− βx is distributed as r; now setting s̄ = s+ α, this is distributed as follows)

≡
{
(R̄− αG− βX, s̄− α)

∣∣ r̄←$ Zq ; R̄ = r̄G ; s̄ ≡q r̄ + H(R̄,X,m)x
}

≡
{
(R̄− αG− βX, s̄− α)

∣∣ (R̄, s̄)← Sch.Sign(sk,m)
}
,

which is precisely the view in G3. Thus the simulation remains perfect and we obtain:

Pr
[
GA

2 (λ)
]

= Pr
[
GA

3 (λ)
]
. (17)

40

FSign(sp, X)

(crs, τ)← NArg.Setup(sp)
(ek, dk)← PKE.KeyGen(1λ)
vk := (crs, ek, X)
~S := [] ; P ~rd := []

~m := []; ~α := []; ~β := [];

~D := [];Q := []
F ← ASign1,Sign2 (vk)
(m∗, σ∗)←$F \ Q
return (m∗, σ∗)

Sign1(prd,C)

(m,α, β) := PKE.Dec(dk,C)
~m = ~m‖m ; ~α = ~α‖α ; ~β = ~β‖β

(R̄, s̄)← Sign(m)

Q = Q‖
(
m, (R̄, s̄)

)
R := R̄− αG− βX
~D = ~D‖

(
(s̄− α) mod q

)
~S = ~S‖(R, r,C, prd)
return R

Fig. 8. F paying against sEUF-CMA security of Sch[GrGen,HGen]. The oracle Sign2 is simulated to A is as
defined in game G3 in Figure 2.

Reduction of sEUF-CMA of Schnorr to G3. To finish the proof, we construct adver-
sary F in Figure 8 that succeeds in the game sEUF-CMA against the Schnorr signature scheme
Sch[GrGen,HGen] with probability Pr

[
GA

3 (λ)
]
.

By the definition of sEUF-CMA, F receives as challenge input a Schnorr verification key
(sp, X) := vk and has access to a signing oracle Sign. With the Schnorr parameters sp it
completes PBSch.Setup computing the common reference string crs for NArg and a key pair
(ek, dk) for PKE. Moreover, F initializes a list Q used to store the message/signature pairs from
its signing oracle Sign. When F simulates G3 for A, it embeds its challenge Schnorr public key
X into the verification key for PBSch. The corresponding secret key is not required since F on
each Sign1 query by A forwards the call to its signing oracle Sign. The simulation is perfect.

We show that if A wins G3 outputting F = (m∗i , σ∗i)i∈[n], then this set must contain a
successful forgery for F, that is, an element that is not contained inQ = (mj , σj := (R̄j , s̄j))j∈[|~S|]
(where index j corresponds to the signing session number in which the pair was added to
Q). Letting J be the set of indices of the sessions that were eventually closed, we can define
Qcls := (mj , σj)j∈J .

We first show that there exists an element (m∗i∗ , σ∗i∗) ∈ F that is not in Qcls. If we
had F ⊆ Qcls then there would exist an injective function f : [n] → J mapping elements
of F to elements of Qcls, in particular, m∗i = mf(i). For all j ∈ J (the closed sessions),
we have P ~rdj(mj) = 1, as otherwise G3 would have aborted in line (I). We thus have
1 = P ~rdf(i)(mf(i)) = P ~rdf(i)(m∗i) for all i ∈ [n], which contradicts the winning condition of
G3, which requires that no such f exists.

We next show that (m∗i∗ , σ∗i∗) /∈ Q\Qcls, that is, it was not obtained in an unfinished session
either. Towards a contradiction, assume for some j /∈ J : (m∗i∗ , (R∗i∗ , s∗i∗)) = (mj , (R̄j , s̄j)). Then
we would have (a) m∗i∗ = mj = ~mj (since ~m stores the same messages as Q), (b) ~Sj 6= ⊥
(since the session was not closed), and (considering the value R in the definition of Sign1)
~Sj [0] = R̄j − ~αjG− ~βjX, which together with R∗i∗ = R̄j yields (c) R∗i∗ = ~Sj [0] + ~αjG+ ~βjX.
Now the existence of values i∗ and j with (a)–(c) leads precisely to an abort of G3 in line (II).

41

We have thus shown that (m∗i∗ , σ∗i∗) is neither in Qcls, nor in Q \Qcls, and thus not in Q,
which means it is thus a valid forgery for F. We have thus:

Pr
[
GA

3 (λ)
]
≤ AdvsEUF-CMA

Sch[GrGen,HGen],F(λ) . (18)

Theorem 1 now follows from Equations (13) and (15)–(18).

Remark 1. If we considered the weaker definition of unforgeability obtained by moving P ~rd =
P ~rd‖prd from Sign2 to Sign1, the predicates of all opened sessions are included in P ~rd.

The argument in the 3rd-to-last paragraph in the above proof would then directly yield
that there exists an element (m∗i∗ , σ∗i∗) ∈ F that is not in Q (i.e., all sessions and not only
the closed ones in Qcls). Since the argument that (m∗i∗ , σ∗i∗) /∈ Q \ Qcls is therefore no longer
required, neither is the abort condition E and thus the game hop from G1 to G2. This means
that the last term in the security bound of Theorem 1 vanishes.

C Proof of Theorem 2

We give a formal proof that our predicate blind signature scheme PBSch from Figure 4 satisfies
blindness as defined in Definition 13. The proofs works via reductions to the security of the
underlying building blocks, that is, the zero-knowledge property of NArg and CPA-security of
the scheme PKE. For succinctness and readability we sometimes omit the security parameter
λ in the proof but keep it as an implicit input to the games and advantage definitions. We
proceed by a sequence of games specified in Figure 9.

G0. This is game BLD from Figure 3 with PBS instantiated with PBSch from Figure 4,
that is, PBS.Setup, PBS.User0, PBS.User1 and PBS.User2 are replaced by the instantiations
defined in Figure 4. The variables st0 and st1 in BLD are replaced by the session variables
αi, βi, ρi, R

′
i, ci,Ci for both sessions i ∈ {0, 1}. As αi, βi, ρi are uniform values, we can sample

them right away. R′i⊕b is part of sti, but we renamed it since in User2 it becomes part of σi⊕b.

G1. In G1 we make the following change: On oracle call User1, instead of creating a proof
via NArg.Prove we use the simulator NArg.SimProve to simulate a proof for the statement θ.
We show that this change is not efficiently noticeable by defining adversaries Z0 and Z1 in
Figure 10 that play in game ZK against the NArg[RSch].

According to the definition of game ZK, Zb receives as input crs generated by NArg.Setup
on input sp generated by NArg.Rel, which is defined as Sch.Setup. With this, Zb simulates the
game BLDb for A, using its oracle Prove to generate the proofs π required to answer A’s
queries to User1.

When A2 outputs its decision bit b′, Zb returns b′ to its challenger. By the definition of Zb
for b ∈ {0, 1}, we have Pr

[
ZKZb,0

NArg[RSch]
]

= Pr
[
BLDA,b

PBSch
]
, and Pr

[
ZKZb,1

NArg[RSch]
]

= Pr
[
GA,b

1
]
and

therefore

AdvZK
NArg[RSch],Zb :=

∣∣Pr
[
ZKZb,0

NArg[RSch]
]
− Pr

[
ZKZb,1

NArg[RSch]
]∣∣ =

∣∣Pr
[
BLDA,b

PBSch
]
− Pr

[
GA,b

1
]∣∣ .

Together with the triangular inequality this yields:

AdvBLD
PBSch,A :=

∣∣Pr
[
BLDA,1

PBSch
]
− Pr

[
BLDA,0

PBSch
]∣∣

=
∣∣Pr
[
BLDA,1

PBSch
]
− Pr

[
GA,1

1
]

+ Pr
[
GA,1

1
]
− Pr

[
BLDA,0

PBSch
]

+ Pr
[
GA,0

1
]
− Pr

[
GA,0

1
]∣∣

≤ AdvZK
NArg[RSch],Z1

+
∣∣Pr
[
GA,1

1
]
− Pr

[
GA,0

1
]∣∣+ AdvZK

NArg[RSch],Z0
. (19)

42

BLDA,b
PBSch(λ), GA,b

1 , GA,b
2

(q,G, G,H) = sp← Sch.Setup(1λ)
(crs, τ)← NArg.Setup(sp)
(ek,dk)← PKE.KeyGen(1λ)
(prd0, prd1,m0,m1, X, st)← A1(crs, ek)
if (∃ i, j ∈ {0, 1} : P(prdi,mj) = 0) :

return 0
(sess0, sess1) := (init, init)
// sample randomness used by User0(·):

(α0, α1, β0, β1)←$Z4
q

(ρ0, ρ1)←$R2
ek

b′ ← AUser0,User1,User2
2 (st)

return b′

User0(i)

if sessi 6= init : return ⊥
sessi = open

M := (mi⊕b, αi, βi)

// encrypt fixed vector instead:
M := (m̄, 0, 0) // m̄ . . . arbitrary fixed msg

Ci := PKE.Enc(ek,M ; ρi)
return Ci

User1(i, R)

if sessi 6= open : return ⊥
sessi = await

Ri = R

R′i⊕b = Ri + αiG+ βiX

ci = (H(R′i⊕b, X,mi⊕b) + βi) mod q
θ := (X,Ri, ci,Ci, prdi, ek)
w := (mi⊕b, αi, βi, ρi)
π ← NArg.Prove(crs, θ, w)

// simulate the proof instead

π ← NArg.SimProve(crs, τ, θ)

return (ci, π)

User2(i, s)

if sessi 6= await : return ⊥
sessi = closed

if sG = Ri + ciX :

σi⊕b =
(
R′i⊕b , (s+ αi) mod q

)
else : σi⊕b = ⊥
if (sess0 = sess1 = closed) :

if (σ0 = ⊥ ∨ σ1 = ⊥) :
return (⊥,⊥)

return (σ0, σ1)
return ε

Fig. 9. The blindness game from Figure 3 for the scheme PBSch[P,GrGen,HGen,PKE,NArg] from Figure 4
(ignoring all boxes) and hybrid games used in the proof of Theorem 2. G1 includes the light green box and G2
includes both boxes.

G2. In G2 we modify the User0 and encrypt an arbitrary fixed message m̄ ∈Msp and (0, 0)
instead of α and β. To show that this only changes A’s behavior in a negligible way, in Figure 11
we define adversaries C0 and C1 playing in game CPA for scheme PKE.

By the definition of game CPA, Cb, for b ∈ {0, 1}, gets as input the encryption key ek, from
which it reads out the security parameter 1λ, uses it to generate the parameters q,G, G,H
and crs and simulates GA,b

1 to A. During a call of User0(i), Cb sets M0 := (m̄, 0, 0) and
M1 := (mi⊕b, αi, βi), calls its encryption oracle on (M0,M1) and sends the received ciphertext
Ci to A2. (Note that the randomness used to generate Ci is not known to Cb, but since the
proofs in User1 are simulated, the witness containing this randomness is no longer required.)

By construction of Cb we have Pr
[
CPACb,0

PKE
]

= Pr
[
GA,b

2
]
and Pr

[
CPACb,1

PKE
]

= Pr
[
GA,b

1
]
for

b ∈ {0, 1}, and hence

AdvCPA
PKE,Cb :=

∣∣Pr
[
CPACb,1

PKE
]
− Pr

[
CPACb,0

PKE
]∣∣ =

∣∣Pr
[
GA,b

1
]
− Pr

[
GA,b

2
]∣∣

43

ZProve
b (crs)

(q,G, G,H) :⊆ crs
(ek,dk)← PKE.KeyGen(1λ)
(prd0, prd1,m0,m1, X, st)← A1(crs, ek)
if ∃ i, j ∈ {0, 1} : P(prdi,mj) = 0 :

return 0
(sess0, sess1) := (init, init)
(α0, α1, β0, β1)←$Z4

q

(ρ0, ρ1)←$R2
ek

b′ ← AUser0,User1,User2
2 (st)

return b′

User1(i, R)

if sessi 6= open : return ⊥
sessi = await

Ri = R

R′i⊕b = Ri + αiG+ βiX

ci = (H(R′i⊕b, X,mi⊕b) + βi) mod q
θ := (X,Ri, ci,Ci, prdi, ek)
w := (mi⊕b, αi, βi, ρi)

π ← Prove(θ, w)
return (ci, π)

Fig. 10. Zb playing against zero-knowledge of the NArg[RSch]. The oracles User0 and User2 simulated to A2
are as defined in game G0 in Figure 9.

for b ∈ {0, 1} . Together with the triangular inequality, this yields:

∣∣Pr
[
GA,1

1
]
− Pr

[
GA,0

1
]∣∣ =

∣∣Pr
[
GA,1

1
]
− Pr

[
GA,1

2
]

+ Pr
[
GA,1

2
]
− Pr

[
GA,0

2
]

+ Pr
[
GA,0

2
]
− Pr

[
GA,0

1
]∣∣

≤ AdvCPA
PKE,C1 +

∣∣Pr
[
GA,1

2
]
− Pr

[
GA,0

2
]∣∣+ AdvCPA

PKE,C0 . (20)

Reducing G2 to perfect blindness of “plain” Blind Schnorr. The signer’s view af-
ter the successful completion of the two signing sessions consists of the parameters (crs, ek) and
the signatures with the corresponding messages:

(
m0, (R′0, s′0)

)
and

(
m1, (R′1, s′1)

)
, as well as

{(Ci, Ri, ci, πi, si,)i∈{0,1}} where i = 0 denotes values obtained in the first session, and for i = 1
values of the second session respectively. Since the ciphertext Ci is an encryption of fixed values,

CEnc
b (ek)

1λ :⊆ ek
(q,G, G,H) := sp← Sch.Setup(1λ)
(crs, τ)← NArg.Setup(sp)
(prd0, prd1,m0,m1, X, st)← A1(crs, ek)
if ∃ i, j ∈ {0, 1} : P(prdi,mj) = 0 :

return 0
(sess0, sess1) := (init, init)
(α0, α1, β0, β1)←$Z4

q

b′ ← AUser0,User1,User2
2 (st)

return b′

User0(i)

if sessi 6= init : return ⊥
sessi = open

M0 := (m̄, 0, 0)
M1 := (mi⊕b, αi, βi)
Ci ← Enc(M0,M1)
return Ci

Fig. 11. Cb playing against CPA security of PKE. The oracles User1 and User2 simulated to A2 are defined as
in game G1 in Figure 9.

44

and the argument πi is simulated, they hold no information on bit b. Now take (mj , (R′j , s′j))
for j ∈ {0, 1} and assume it corresponds to session i with (Ri, ci, si). Fix α := s′j − si. Now
there exists exactly one β s.t. R′j = Ri + αG + βX. This means, that both session tuples
(R0, c0, s0) and (R1, c1, s1) explain (R′j , s′j). Hence the advantage in distinguishing G2 with
b = 0 from G2 with b = 1 is ∣∣Pr

[
GA,1

2
]
− Pr

[
GA,0

2
]∣∣ = 0 .

This, together with (19) and (20), concludes the proof.

D On Alternative Constructions of PBS

While trusted parameters can be avoided in practice by assuming the random-oracle model (as
we discuss in Section 5.1), one might wonder whether we can directly instantiate our blueprint
using building blocks without parameters. (So blindness would automatically hold against
signers that set up the system.)

Zaps. Without increasing the round-complexity of the signing protocol, we cannot use NIZK
proofs [GO94], but could replace NArg by a zap [DN07], which is a witness-indistinguishable
(WI) proof system without parameters. However, when relying on WI only, the first user
message in the signing protocol (C in Figure 4) must perfectly hide its content. (Since proofs
cannot be simulated, in the blindness game there must exist two witnesses that explain C as
containing either m0 or m1.) This precludes the use of an encryption scheme.

Extractable commitments. In a parameter-free setting, we cannot use public-key encryp-
tion, but could use a commitment for the first user message (which would have to be perfectly
hiding when using it with a zap). Since in the proof of unforgeability we need to extract the
committed value, we would need a knowledge commitment [Gro10] (or combine a commitment
with a (parameter-less) proof of knowledge).

In either case we would have to resort to (strong) extractability assumptions. That is, for
any adversary B that returns a commitment C, there exists an extractor E, which on input B’s
internal randomness, returns a committed value and randomness that yields C. We moreover
need to assume auxiliary input for B, which B can use in the computation of C, and which is
also given to E.

For an adversary A in game UNF, we can define B1, which on (“auxiliary”) input the Schnorr
parameters and key X simulates UNF for A and stops at A’s first call to User1 and returns
A’s value C. For B1 there exists an extractor E1, which the reduction R for unforgeability runs
(on A’s randomness and its own input) to obtain the committed value (m1, α1, β1). Then R
queries m1 to its signing oracle and uses the reply (R̄1, s̄1) to answer A’s query.

Now to extract from A’s second signing query, we would have to define B2, which however
needs to answer A’s first query, for which it would have to run E1 to obtain m1 and needs
(R̄1, s̄1) as auxiliary input.

The two issues with this approach are:

45

1) Every adversary Bi needs to run the extractors E1, . . . ,Ei−1 to extract the messages
m1, . . . ,mi−1. Even if Ei ran in the same time as Bi, still Bi would run in time exponential
in i, and thus R would not be efficient.28
2) The second issue is that the auxiliary input for Bi (signatures (R̄j , s̄j)j∈[i−1]) depends
on (mj)j∈[i−1]. We would thus have to assume extractability in the presence of auxiliary
input whose distribution depends on the adversary’s randomness, necessitating a stronger
extractability definition.

Finally, we note that even if we replaced the encryption of the message by a hash of it
(which would mean making random-oracle style extractability assumptions), the efficiency
gains would be modest: Proving time (the most complex part) would not improve much, as the
circuit size would decrease by one elliptic-curve scalar multiplication, but would still require
the same number of invocations of the hash function. (A minor advantage would be the reduced
communication complexity and verification time if the blindly signed message is very long.)

E Further Discussion of Hardwiring

Minimal hardwiring refers to using the relation RSch as defined in Section 4, that is, with
parR = (q,G, G,H) and statements of the form θ = (X,R, c,C, prd, ek). The same CRS, and
thus scheme parameters parR, can thus be used by multiple signers since they are independent
of their signature verification keys X.

If a non-transparent scheme, such as Groth16 is used, parR should be set up in a “ceremony”
using multiparty computation [BGM17, KMSV21], since the signer’s security relies on the
secrecy of the simulation trapdoor. On the other hand, due to subversion zero knowledge
of Groth16, the users need not trust the ceremony to obtain blindness if they perform a
(potentially complex) CRS-consistency check [Fuc19]. But since the CRS can be used by many
signers, users can expect that a malformed CRS would be recognized and reported quickly.
They can therefore optimistically not check the CRS themselves.

A theoretical advantage of minimal hardwiring is that unforgeability of the PBS can be
reduced to standard soundness of NArg. In Theorem 1, the reduction against soundness receives
the CRS and creates the signature and PKE key pairs (x,X) and (ek,dk) itself. It thus knows
the values x and dk required to simulate the game.

Maximal hardwiring corresponds to a relation RSch
′ (cf. Eq. (7)) with modified syntax

parR′ = (q,G, G,H, X, ek) and θ = (R, c,C, prd), which yields performance gains in terms of
CRS size, as well as prover and verification time. This is the recommended setting when signers
generate their own CRS and thus need not worry about proper deletion of the simulation
trapdoor.

From a theoretical point of view, including X and ek in parR′ (cf. Eq. (7)) requires allowing
auxiliary input in the definition of soundness of argument systems (Definition 4). This means
that the relation generator NArg.Rel can output auxiliary information aux in addition to the
relation parameters, which the soundness adversary gets as input in addition to crs. This
notion of soundness is standard but stronger than Definition 4, since one needs to argue that
the auxiliary input comes from a distribution that does not undermine soundness [BCPR14].
28 Let tA,i be A’s running time until the i-th signing query. Let tB,i be Bi’s running time, which is tA,i plus the

running time of Ej for j = 1 . . . i−1. Since we assumed Ej runs in time tB,j , we have tB,i := tA,i+
∑i−1

j=1 tB,j =
tA,i +

∑i−1
j=1 2i−j−1tA,j .

46

Concretely, the relation generator for RSch
′ runs (q,G, G,H)← Sch.Setup(1λ) (as for RSch),

and in addition (ek,dk) ← PKE.KeyGen(1λ); x←$ Zq and X := xG. It returns (x, dk) as
auxiliary input. In the proof of unforgeability (Theorem 1), when reducing to soundness of
NArg, the reduction thus still has the values x and dk it requires to simulate the game.

F Probabilistic Verification of a Groth16 CRS

Verifying the well-formedness of a CRS (proving key) pk in Groth16 is done by evaluating
(and comparing) pairings e : G1 ×G2 → GT on components pk1, pk2, . . . ,pk′ from the groups
G1 and G2 of the key [Fuc18]. Since for many sets of pairings, one of the arguments is the
same, we can use probabilistic batch-verification techniques [FGHP09, BFI+10] to speed up
computation considerably.

For example consider a set of equations

LHSi := e(
∑d
j=1 ai,jpkj , pk′) ?= RHSi

for i ∈ [n] (where ai,j are from the relation description). Instead of checking each equation
individually, we choose r←$ Fp and check whether

∏
i LHS rii =

∏
i RHS rii . (By the Schwartz-

Zippel lemma (a.k.a., the polynomial identity lemma), if this equation holds then with all but
negligible probability over the choice of r, all individual equations hold.) By bilinearity of e,
we have ∏

i LHS rii = e
(∑d

j=1
(∑m

i=1 r
iai,j

)
pkj ,pk′

)
,

whose computation requires m · d multiplications (and m additions) in Fp and a multiscalar
multiplication (MSM)29 of size d in G1 as well as 1 pairing.

This reduces the computation in the consistency check in [Fuc18] from (7d + 4m + 2)
pairings and m ·(2 ·MSMd

1 +MSMd
2)+MSMd

1 multiscalar multiplications (where d is the number
of gates and m the number of wires of an R1CS instance) to 15 pairings and 3 · MSMd

1 +
MSMd

2 + 3 ·MSMm
1 + MSMm

2 MSMs, as well as 3 ·m · d multiplications in Fp.
The “Proving key verification” times we list in Table 1 are estimated based on benchmark

results for BN254 (go implementation of ConsenSys) conducted by [Hou21]. We estimate the
cost of one multiplication in the base field to be 1/10-th the cost of a group operation. For
the MSM problem we take the runtime asymptotics of the algorithm from [BDLO12], which
is a modification of Pippenger’s multi-scalar-multiplication method [Pip76]. We assume that
our number of constraints d is equal to m (which is approximately correct for most R1CS
instances). We further assumed full parallelizability of our probabilistic proving key checking
algorithm and hence bluntly divided our results by 12, which is the number of cores we used
for our experiments.

29 MSM denotes the problem of computing S =
∑

i
aiGi for coefficients (ai) and group elements (Gi). For k

elements from Gi we denote this MSMk
i .

47

	 Concurrently Secure Blind Schnorr Signatures
	Introduction
	Preliminaries
	Notation
	Discrete-Logarithm-Hard Groups
	Non-Interactive Zero-Knowledge Arguments
	Public-Key Encryption
	Signature Schemes
	Schnorr Signatures

	Predicate Blind Signatures
	(Strong) unforgeability.
	Blindness.
	Hiding the predicates.

	Predicate Blind Schnorr Signatures
	Construction
	Correctness.

	Security
	Unforgeability.
	Blindness.

	Generalizing Predicates to NP-Relations

	Design Choices, Implementation Details and Benchmarks
	Avoiding a Trusted Setup
	Hardwiring Parts of the Statement
	Schnorr Parameters
	Implementation
	NIZKs with secp256k1 Support

	Weak OMDL
	Proof of Theorem 1
	Proof of Theorem 2
	On Alternative Constructions of PBS
	Further Discussion of Hardwiring
	Probabilistic Verification of a Groth16 CRS

