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Abstract. The security of many powerful cryptographic systems such as secure multiparty computation,
threshold encryption, and threshold signatures rests on trust assumptions about the parties. The de-facto
model treats all parties equally and requires that a certain fraction of the parties are honest. While this
paradigm of one-person-one-vote has been very successful over the years, current and emerging practical
use cases suggest that it is outdated.
In this work, we consider weighted cryptosystems where every party is assigned a certain weight and the
trust assumption is that a certain fraction of the total weight is honest. This setting can be translated to
the standard setting (where each party has a unit weight) via virtualization. However, this method is quite
expensive, incurring a multiplicative overhead in the weight.
We present new weighted cryptosystems with significantly better efficiency: our proposed schemes incur
only an additive overhead in weights.

– We first present a weighted ramp secret-sharing scheme (WRSS) where the size of a secret share is𝑂 (𝑤)
(where𝑤 corresponds to the weight). In comparison, Shamir’s secret sharing with virtualization requires
secret shares of size 𝑤 · 𝜆, where 𝜆 = log |F| is the security parameter.

– Next, we use our WRSS to construct weighted versions of (semi-honest) secure multiparty computation
(MPC), threshold encryption, and threshold signatures. All these schemes inherit the efficiency of our
WRSS and incur only an additive overhead in weights.

Our WRSS is based on the Chinese remainder theorem-based secret-sharing scheme. Interestingly, this secret-
sharing scheme is non-linear and only achieves statistical privacy. These distinct features introduce several
technical hurdles in applications to MPC and threshold cryptosystems. We resolve these challenges by devel-
oping several new ideas.

Keywords: Weighted cryptography, Secret-sharing, Secure multiparty computation, Threshold cryptogra-
phy

1 Introduction

Cryptography enables mutually distrusting parties to accomplish various tasks as long as a certain subset of the
parties are honest. For example, a secure multiparty computation protocol (MPC) [Yao86,GMW87] allows a group
of parties to jointly compute a public function over their private inputs such that nothing beyond the function
output is revealed if a subset of the participants are honest. Specific instances such as threshold signatures (resp.,
encryption) [Des88,DF90] work by distributing a secret signing (resp. decryption) key among multiple parties
such that it is possible to sign a message (resp., decrypt a ciphertext) if and only if a threshold number of parties
participate honestly.
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FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by the Sloan Foundation, and Visa Inc. The second author
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Award FA9550-19-1-0200, JP Morgan Faculty Award, and research gifts from Ethereum, Stellar and Cisco. Any opinions,
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views of the United States Government or DARPA.



This paradigm of trust has been immensely successful over the years. Threshold cryptosystems have seen
widespread use in recent years, especially within the blockchain ecosystem [SC17]. Furthermore, efforts to stan-
dardize threshold cryptosystems have already begun [oST]. MPC protocols have also started seeing increased
adoption due to recent dramatic improvements in their efficiency.

Traditionally, in such systems, parties are considered as equals. For instance, it is assumed that all parties are
equally motivated to participate in the protocol actively; or that it is equally hard for an adversary to corrupt any
party. However, the “everyone is equal” paradigm does not suffice for many emerging applications. For instance,
in stake-based blockchains [KRDO17], parties are associated with stakes that are not necessarily binary. Similarly,
in oracle networks [EJN17,BCC+21], parties have reputation scores with high variance. In these scenarios, parties
in the system are naturally asymmetrical and unequal. Therefore, it is appropriate to consider a weighted setting
where every party is associated with a weight: the adversarial capability (i.e., privacy threshold) is modeled in
terms of the total weight that can be compromised, and a successful protocol execution requires a sufficiently
weighted set of participants (i.e., reconstruction threshold). Naturally, the reconstruction threshold is strictly
larger than the privacy threshold.

Despite being a natural problem, essentially, the only general approach in the literature [Sha79,IB05] to
realize weighted cryptography is via virtualization. That is, a party with assigned weight𝑤 is treated as𝑤 virtual
parties, and then a standard unweighted system is used for all the virtual parties. This straightforward solution,
however, is extremely inefficient: a party with weight 𝑤 has to bear 𝑤 times the amount of computation and/or
communication cost that one does in the unweighted setting. When the weights are large, this multiplicative
overhead in efficiency can be prohibitive.

In this work, we ask the following question:

Can we realize weighted cryptography with better efficiency?
Specifically, could the efficiency degradation depend additively on the weights?

Summary of this work. Our work answers this question positively. Our first contribution is an efficient
weighted secret sharing scheme (WRSS) where the size of the secret share of a party with weight 𝑤 is only
𝑂 (𝑤). We obtain this result in the ramp setting [BM84], where there is a gap between the privacy and recon-
struction thresholds. In comparison, the virtualized version of Shamir’s secret sharing requires a share of size
𝑤 · log |F|, where F is the underlying field. We obtain our result by lifting secret-sharing schemes based on
the Chinese Remainder Theorem (CRT) [Mig83,AB83,GRS99] to the weighted setting and leveraging the ramp
structure to achieve our desired efficiency.

Building on our efficient WRSS scheme, we construct several efficient distributed cryptographic protocols:
a secure (semi-honest) MPC protocol for general functionalities, a threshold (public-key) encryption scheme,
and a threshold signature scheme. In all of these schemes, the computation/communication cost of the parties
only degrades additively in their weights. Interestingly, as our WRSS scheme is both non-linear and imperfect
(i.e., it only achieves statistical privacy in contrast with Shamir’s, which achieves perfect privacy), several new
technical ideas are required for each application.

1.1 Our Contribution

Secret Sharing. Our first contribution is a construction of a weighted ramp secret-sharing with succinct share
sizes. Recall that a ramp secret sharing scheme is parameterized by two thresholds: a reconstruction threshold𝑇
and a privacy threshold 𝑡 . Any collection of parties with cumulative weights ⩾ 𝑇 should be able to reconstruct
the secret; any collection of parties with cumulative weights ⩽ 𝑡 should not learn anything about the secret (see
Definition 1).

We prove the following theorem.

Theorem 1 (Efficient WRSS). Let (𝑤1, . . . ,𝑤𝑛,𝑇 , 𝑡) define a weighted access structure, where𝑤𝑖 are weights and
𝑇 and 𝑡 are reconstruction and privacy thresholds, respectively. Assume 𝑇 − 𝑡 = Θ(𝜆). There exists a weighted ramp
secret sharing scheme realizing (𝑤1, . . . ,𝑤𝑛,𝑇 , 𝑡) such that

– The share size of a party with weight𝑤 is 𝑂 (𝑤).2
– It has perfect correctness.

2 In all theorems, the size and the communication complexity are measured by bits.
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– It is 2−𝜆-statistically private.

Our WRSS scheme is built upon CRT-based secret sharing scheme previously studied by [Mig83,AB83,GRS99].
Our contribution lies in identifying that by relaxing the “sharp” threshold setting (i.e., 𝑇 = 𝑡 + 1) to the ramp
setting (i.e., 𝑇 − 𝑡 = Θ(𝜆)), it is possible to achieve significant efficiency improvement.

While the ramp structure has been previously used to obtain more efficient secret-sharing schemes (and their
applications), our specific application to the weighted setting is novel. Indeed, as we discuss in Section 1.2, lever-
aging the ramp structure with Shamir-style secret-sharing schemes does not seem to offer significant benefits
in the weighted setting. In contrast, by exploiting the ramp setting in CRT-based secret-sharing, we obtain our
desired efficiency while also preserving the algebraic structure of the secret. This enables our applications to
MPC and threshold cryptosystems.
Weighted Secure Multiparty Computation. Next, we consider weighted MPC where every party is assigned
a weight. We aim for information-theoretic security in the honest majority setting, where the cumulative weight
of the malicious parties is less than half of the total weight.

Using our new WRSS scheme, we construct a weighted MPC protocol following the BGW framework [BGW88].
Our result is summarized as follows.

Theorem 2 (Efficient Weighted MPC). Let 𝐶 be an arithmetic circuit over a field F with depth 𝑑 . There exists
a weighted MPC protocol for 𝑛 parties with weights 𝑤1, . . . ,𝑤𝑛 and total weight𝑊 for computing 𝐶 satisfying the
following:

– The round complexity is 𝑑 +𝑂 (1).
– In the pre-processing phase, the communication cost per party per gate is 𝑂 (𝑊 ).
– In the online phase, the communication cost per gate for party P𝑖 with weight𝑤𝑖 is 𝑂 (𝑤𝑖 ).
– For any semi-honest (computationally unbounded) adversary who may corrupt a total weight of 𝑡 , this protocol

is exp(−𝜆)-secure given𝑊 − 2𝑡 = Θ(𝜆).
In comparison, the BGW protocol based on Shamir’s secret sharing with virtualization would require a com-

munication cost𝑊 · log |F| and 𝑤𝑖 · log |F| in the preprocessing and online phase, respectively.
While MPC protocols provide a generic solution to threshold cryptography, it would incur a large overhead

if one needs to transform group operations into an arithmetic circuit over F. Therefore, our next objectives are
to construct efficient weighted threshold encryption and signature schemes.
Weighted (Ramp) Threshold Encryption. We construct a weighted threshold encryption scheme based on
the ElGamal cryptosystem. As typical in the literature, we aim for a scheme with one-round threshold decryption
and a reusable setup. Our result is summarized as follows.

Theorem 3. For any privacy threshold 𝑡 and decryption threshold 𝑇 such that 𝑇 − 𝑡 = Θ(𝜆), there is a weighted
(ramp) threshold ElGamal encryption satisfying:

– Assume all weights are sufficiently large3 (in particular,⩾ log2 (𝜆)), it is CPA-secure against any adversary that
corrupts any subset of parties with cumulative weights ⩽ 𝑡 .

– Any subset of parties with cumulative weight𝑇 could decrypt the ciphertext. The computation work for the party
with weight𝑤 is 𝑂 (𝑤) + poly(𝜆).
In contrast, a virtualization approach to existing threshold encryption schemes that use Shamir’s secret shar-

ing would require a computation cost of 𝑂 (𝑤) group operations (in contrast to bit operations).
The communication cost in our scheme is only 𝜆 as partial decryption only consists of one group element.

This is identical to the Shamir-based approach (See Remark 1).
Weighted (Ramp) Threshold Signature. Finally, we construct a weighted threshold signature scheme based
on the ECDSA signature. In particular, building on our weighted MPC protocol, we construct a special protocol
for ECDSA signing functionality summarized as follows.

Theorem 4. For any privacy threshold 𝑡 , reconstruction threshold 𝑇 , and total weight𝑊 such that 𝑇 − 𝑡 = Θ(𝜆)
and𝑊 − 2𝑡 = Θ(𝜆), there is a weighted MPC protocol realizing ECDSA signing functionality such that:

– It has a semi-honestly secure two-round pre-signing protocol in which all the parties participate. The communi-
cation/computation cost per party is 𝑂 (𝑊 + 𝜆).

– It has a non-interactive signing phase where each party 𝑖 broadcasts a partial signature. The communication/-
computation cost per party is𝑂 (𝑤𝑖 ). As long as the cumulative weight of parties who send their partial signature
is ⩾ 𝑇 , one could correctly aggregate the signature.

3 This can always be achieved by multiplying all weights by a large enough factor.
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1.2 Related Work

Weighted Secret-sharing. The notion of weighted secret-sharing was proposed in the original work of Shamir [Sha79].
It is well-known that the maximum weight for the worst weighted threshold function is 𝑂 (𝑛𝑛) [BW06]. Beimel
and Weinreb [BW06] studied the share size of weighted secret sharing in both the information-theoretic and
computational settings. In more detail, for any access structure given by a set of (potentially exponentially large)
weights, [BW06] constructs a circuit of polynomial size and logarithmic depth that computes this access struc-
ture. Given such a circuit, one can generically transform it into a secret-sharing scheme in the information-
theoretic or computational setting. In the information-theoretic setting, applying the compiler on [BW06] yields
a secret sharing scheme with the share size 𝑛log𝑛 . This is worse than our scheme for any weights < 𝑛log𝑛 , but
better than ours for even higher weights. In the computational setting, they use techniques similar to Yao’s gar-
bling to garble the circuit that computes the access structure. This compiler is explicitly written in [VNS+03],
which states that the share size resulting from this compiler depends (linearly) on the number of fan-out gates in
the circuit. It is, thus, unclear what polynomial describes the share size of the computational scheme and how it
compares to our scheme when the weights are polynomially large. When the weight is super-polynomially large,
their computational scheme will have a smaller share size than ours. However, we stress that the computational
secret-sharing scheme completely breaks the algebraic structure; hence, it is not clear if one could apply it to
threshold cryptography and MPC.

The works of [MPSV99] and [BTW05] studied the information rate of the weighted threshold access structure.
In a secret-sharing scheme, the information rate is the ratio between the secret size and the (maximum) share size.
A secret sharing scheme is called “ideal” if its information rate is 1. [MPSV99,BTW05] asked when the weighted
threshold access structure admits an ideal secret sharing scheme. In particular, they gave a characterization for
such weighted threshold access structures. These works, however, do not give constructions for weighted secret
sharing.

Also, it should be mentioned that any secret sharing schemes for general access structure also realize weighted
secret sharing. The state-of-the-art construction [AN21] achieves a share size of 1.5𝑛 . This is worse than virtual-
ization for any polynomially large weights.

CRT-based Secret-sharing. The Chinese remainder theorem-based secret-sharing was first proposed by Mignotte
[Mig83] and Asmuth and Bloom [AB83]. Subsequently, Iftene and Boureanu [IB05] (also see [HM14]) proposed
an extension of Mignotte’s construction to the weighted setting. However, their approach essentially applies the
naı̈ve virtualization technique4 to CRT-based secret sharing. This is as inefficient (if not more) as the scheme
obtained by applying virtualization to Shamir’s secret sharing. Zou et al. [ZMB+11] also investigated the prob-
lem of weighted secret sharing using CRT-based secret sharing. Experimentally, they showed that their scheme
could be more efficient than the virtualization approach.

We emphasize, however, that none of the above works provide any formal proof of security.5 As we show in
this paper, the efficiency of CRT-based secret-sharing is closely related to its security parameter. Hence, without
formal security analysis, it is not at all clear what efficiency they achieve. Moreover, in the (sharp) threshold
setting considered in the above works (as opposed to the ramp setting), it is unclear if any efficiency improvement
(over the naı̈ve virtualization) is even possible. Based on our formal security analysis (see Theorem 6), we identify
that efficiency can be improved in the ramp setting instead.

Ramp Secret-sharing. Ramp secret-sharing was first introduced by Blakley and Meadows [BM84]. Historically,
the ramp structure has been used to improve the share size and achieve features such as packing [FY92] that have
found significant applications over the years in the design of efficient MPC protocols (see, e.g., [FY92,DIK+08,DIK10])
and other primitives such as broadcast encryption [SW99]. We observe that packed secret-sharing [FY92] based
on Shamir’s secret-sharing to obtain slightly improved weighted secret-sharing, but with significant caveats.
Specifically, one can treat the secret 𝑠 ∈ F as a binary string (𝑠 (1) , 𝑠 (2) , . . . , 𝑠 (𝜆) ), where each 𝑠 (𝑖) is treated as
a field element of some small field F′. Next, one uses packed secret-sharing (over F′) to share the 𝜆 secrets
(𝑠 (1) , 𝑠 (2) , . . . , 𝑠 (𝜆) ) among the 𝑊 virtual parties. This scheme can be proven secure with 𝑡-privacy and (𝑡 + 𝜆)-
reconstruction. Furthermore, a party with weight 𝑤 has share size 𝑤 · log |F′ | (which is smaller than the share
size 𝑤 · log |F| obtained by naı̈ve virtualization).

4 Their scheme is described informally on Page-6, after Remark 1. See the online version at https://core.ac.uk/download/
pdf/147979029.pdf of the paper [IB05].

5 To our best knowledge, the only formal security analysis for CRT-based secret sharing appears in [GRS99], where they
studied how to error-correct CRT-based codes.
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However, there are several issues with this approach. First, the size of F′ cannot be too small. In particular, F′
needs to contain >𝑊 elements to share it among𝑊 (virtual) parties, which means that the share size is at least
𝑤 · log𝑊 (compared to just𝑤 in our construction). Second, and more crucially, this approach entirely breaks the
algebraic structure of the secrets. In particular, one cannot hope to locally compute the secret share of 𝑥 +𝑦 ∈ F,
given secret shares of both 𝑥 and 𝑦.

Additionally, we note that, if there are multiple secrets and we are considering the amortized cost of storing
all such secrets, then packed secret sharing (over the original field F) does provide efficiency gains similar to our
improvement. Indeed, many recent works on multiparty computation [BGJK21,GPS21,EGPS22] take advantage
of this to improve the communication complexity of the MPC protocol. Compared to our work, these MPC
protocols either only applies to circuits with specific topological structure (e.g., SIMD) or requires an expensive
one-time compilation step, which introduces additional overheads.

Concurrent Work. Recently, Benhamouda, Halevi, and Stambler [BHS23] also studied weighted ramp secret
sharing schemes. They considered a ramp setting with reconstruction threshold𝑇 = 𝛽 ·𝑊 and privacy threshold
𝑡 = 𝛼 ·𝑊 , where 0 < 𝛼 < 𝛽 < 1 are constants. They present two schemes based on different techniques. The
first scheme, based on rounding techniques, has share size 𝑛

𝛽−𝛼 · log |F|. The second scheme, based on wiretap
channel techniques, has share size 𝑓 (𝛼, 𝛽), where 𝑓 is a fixed function depending on the employed wiretap
channel techniques.6

Our work, in comparison, considers a more “fine-grained” ramp setting, where we only require𝑇 − 𝑡 = Θ(𝜆).
In contrast, their results only work when both𝑇 and 𝑡 are a constant fraction of the total weights. Furthermore,
the share size in their rounding-based scheme depends on the number of parties, which might be undesirable
in some scenarios (e.g., imagine a threshold signature scheme among 1000 parties with weights 0 < 𝑤𝑖 ⩽ 50).
The share size in their wiretap-channel-based scheme is independent of both the weight𝑤𝑖 and 𝑛. However, this
scheme breaks the algebraic structure of the secret; hence, it is not clear how one could apply this scheme to
MPC and threshold cryptosystems.7

Other Work. A standard way of reducing the dependence on the number of (virtual) parties is to rely on small
committees. In this approach, a small number of parties are selected as committee members to perform the task
on behalf of all parties. This approach has been considered both in the MPC setting [GHK+21,CGG+21] and
threshold signature schemes [CK21]. This approach, however, is not generally preferable because it incurs high
costs for specific parties, and is typically vulnerable to adaptive corruption attacks.

2 Technical Overview

The secret-sharing scheme is essential to any threshold cryptosystem. To build any efficient weighted threshold
primitive, an efficient weighted secret-sharing scheme is usually the first objective. Hence, we start our discussion
with weighted secret-sharing.

Linear Secret-sharing. 8 We first observe that it is not clear if an efficient linear weighted secret-sharing scheme
exists. For a particular set of weights (for instance, if all the weights are the same), one might be able to construct
a linear secret with a small overhead. However, to construct a general linear scheme that works an arbitrary set of
weights, it seems inevitable that the secret share of a party with weight𝑤 contains at least Ω(𝑤) field elements.9
Therefore, in order to obtain a more efficient weighted secret-sharing scheme, we have to resort to non-linear
schemes.

6 For instance, if the wiretap channel in use is the binary symmetric channel, the share size is Θ
(

1
(𝛼−𝛽)2

)
. We refer the

readers to their paper for details.
7 To elaborate, in their scheme, the secret 𝑠 is viewed as a binary string and encoded using some binary error-correcting

code Enc(𝑠) padded with 𝑛 instances of noises 𝜌1, 𝜌2, . . . , 𝜌𝑛 , i.e., Enc(𝑠) ⊕𝜌1 ⊕ · · · ⊕𝜌𝑛 . The noisy encoding is public, while
the secret share of party 𝑖 is 𝜌𝑖 , Intuitively, one could reconstruct the secret by canceling the noise in noisy encoding with
the secret shares. If one gets sufficient many secret shares, one could reconstruct the secret; if one has few secret shares,
the encoding is noisy enough to hide 𝑠 . Clearly, one could not locally compute a secret sharing of, for instance, 𝑥 + 𝑦 ∈ F
given the secret shares of both 𝑥 and 𝑦.

8 We consider linear scheme over the natural field F that the secret lives in. In particular, the discussion here does not include
the linear ramp scheme that we discussed in Section 1.2, which is over some unnatural field F′ that breaks the algebraic
structure of the secret.

9 Unless one could generically transform a set of weight {𝑤𝑖 } to another set of weights {𝑤 ′
𝑖
} that are significantly smaller

(i.e., 𝑤 ′
𝑖
= 𝑜 (𝑤𝑖 )), but define the same access structure. However, this seems extremely challenging, if at all possible.
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Non-linear secret-sharing. Compared to linear secret-sharing schemes, non-linear secret-sharing schemes
are much less well-understood. Most of the non-linear secret-sharing schemes that have been studied are either
for specialized access structures [BI01] or for general access structures [LV18,ABF+19,ABNP20]. These schemes
either cannot realize the weighted threshold structure or have an exponential-size secret share. The only excep-
tion of a non-linear secret sharing scheme for threshold structure is the Chinese remainder theorem-based secret
sharing scheme [Mig83,AB83,GRS99]. Indeed, as we explain later, CRT-based secret-sharing can help construct
efficient weighted secret-sharing schemes.

CRT-based Secret-sharing. Let us first recall the (unweighted) CRT-based secret-sharing. Let 𝑝0 be the or-
der of the field F. In CRT-based secret-sharing, parties are associated with distinct integers 𝑝1, . . . , 𝑝𝑛 , where
𝑝0, 𝑝1, . . . , 𝑝𝑛 are required to be coprime. To share a secret 𝑠 ∈ F𝑝0 , one picks a random integer

𝑆 = 𝑠 + 𝑢 · 𝑝0,

where the operations are over the integer and 𝑢 is uniform over some range {1, 2, . . . , 𝐿}. The choice of 𝐿 will
become clear as we proceed to discuss the correctness and security. Now, the 𝑖𝑡ℎ party shall get

𝑠𝑖 = 𝑆 mod 𝑝𝑖

as its secret share. For an authorized set 𝐴 of parties, one may reconstruct the field element 𝑠 by finding the
unique integer 𝑆 such that

0 ⩽ 𝑆 ⩽ 𝑃𝐴 − 1 and ∀𝑖 ∈ 𝐴, 𝑆 = 𝑠𝑖 mod 𝑝𝑖 ,

where 𝑃𝐴 =
∏

𝑖∈𝐴 𝑝𝑖 . Once one finds 𝑆 , 𝑠 can be reconstructed by computing 𝑠 = 𝑆 mod 𝑝0. Therefore, to ensure
perfect correctness, it must hold that (𝑝0 +1) ·𝐿 ⩽ 𝑃𝐴 −1 for all authorized set 𝐴. On the other hand, for privacy,
consider an unauthorized set 𝐴. The adversary’s view is equivalent to

{𝑆 mod 𝑝𝑖 }𝑖∈𝐴 ⇐⇒ 𝑆 mod 𝑃
𝐴
.

Hence, it suffices to prove that 𝑆 mod 𝑃
𝐴

is statistically close to the uniform distribution. This is indeed the case
as long as 𝑃

𝐴
/𝐿 is exponentially small (see Claim 1). To summarize, we can construct a CRT-based secret sharing

as long as we can pick 𝐿 such that
max
𝐴

𝑃
𝐴
≪ 𝐿 ⩽ min

𝐴
𝑃𝐴/2𝜆 .

For example, for a threshold secret sharing with reconstruction threshold𝑇 . One may pick 𝑝𝑖 as 𝑛 distinct primes
with length 2𝜆. Then, max

𝐴
𝑃
𝐴

and min𝐴 𝑃𝐴 are approximately 22𝜆 (𝑇−1) and 22𝜆 ·𝑇 , respectively. Consequently,
letting 𝐿 to be 22𝜆 ·𝑇−𝜆 satisfies the constraint above.

Note that one could again use virtualization to realize weighted secret-sharing through (unweighted) CRT-
based secret-sharing (as done by [IB05]). This approach will result in a secret share of length Θ(𝑤 ·𝜆) for a party
with weight 𝑤 , similar to Shamir’s secret sharing.

Main Idea: Weighted Ramp Secret-sharing can be efficient. In this work, we observe that in the ramp
setting, where there is a gap between the privacy and reconstruction threshold, one could construct an extremely
efficient weighted secret sharing based on CRT secret sharing. Let 𝑤𝑖 be the weight of the 𝑖𝑡ℎ party. One may
pick the associated number 𝑝𝑖 to be of length 𝑐 · 𝑤𝑖 (as opposed to the aforementioned share size of Θ(𝑤 · 𝜆)).
Here, the same constant 𝑐 is picked for all parties. Then, the constraint naturally transforms into

max
𝐴

2
∑

𝑖∈𝐴 𝑐 ·𝑤𝑖 ≪ 𝐿 ⩽ min
𝐴

2
∑

𝑖∈𝐴 𝑐 ·𝑤𝑖 /2𝜆 .

In a threshold setting, where max
𝐴
(∑

𝑖∈𝐴𝑤𝑖 ) can be as high as 𝑇 − 1 and min𝐴 (
∑

𝑖∈𝐴𝑤𝑖 ) can be as low as 𝑇 ,
one has to pick 𝑐 to be Θ(𝜆). However, if we consider a ramp secret-sharing with a privacy threshold 𝑡 and
reconstruction threshold 𝑇 , it suffices to pick 𝑐 such that 𝑐 · (𝑇 − 𝑡) = Θ(𝜆). In particular, in the case where
𝑇 − 𝑡 = Θ(𝜆), one may pick 𝑐 = 1. In other words, we observe

There is a natural trade-off between the gap of privacy and reconstruction threshold and the efficiency for
CRT-based secret sharing.

Indeed, for the applications that we envision, it is often reasonable to assume a large gap between the privacy
and reconstruction threshold. For instance, one may assume that ⩽ 1/3 fraction of the weights are corrupted
and ⩾ 1/2 fraction of the weights will come online during reconstruction. In this scenario, as long as the total
weight

∑𝑛
𝑖=1𝑤𝑖 is Θ(𝜆), the large gap is guaranteed.
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2.1 Challenges in using the WRSS scheme

Our ultimate goal is to use the efficient WRSS to realize weighted cryptosystems with efficient communication/-
computation costs. Now, although the WRSS is well-suited for efficient weighted secret-sharing, it comes with
several critical challenges. We shall discuss them next.

1. Non-linearity. One prominent feature of the WRSS is its non-linearity. Given secret shares 𝑠1, . . . , 𝑠𝑛 , one
needs to reconstruct the secret through a non-linear function as(

(𝜆1 · 𝑠1 + 𝜆2 · 𝑠2 + · · · + 𝜆𝑛 · 𝑠𝑛) mod 𝑃

)
mod 𝑝0,

where 𝑃 = 𝑝1𝑝2 · · · 𝑝𝑛 . Similar to Lagrange coefficients, here, 𝜆𝑖 is the integer satisfying10

𝜆𝑖 mod 𝑝𝑖 = 1 and ∀𝑗 ≠ 𝑖, 𝜆𝑖 mod 𝑝 𝑗 = 0.

Now, imagine we want to reconstruct 𝑔𝑠 for some generator 𝑔 from the group G of order 𝑝0. In Shamir’s
secret sharing, parties may simply broadcast 𝑔𝑠𝑖 , and later one can use Lagrange interpolation to find 𝑔𝑠 . In
WRSS scheme, however, interpolation using group elements𝑔𝑠𝑖 will only give𝑔𝜆1 ·𝑠1+···+𝜆𝑛 ·𝑠𝑛 , whose exponent
is effectively equal to (

𝜆1 · 𝑠1 + 𝜆2 · 𝑠2 + · · · + 𝜆𝑛 · 𝑠𝑛
)

mod 𝑝0,

which is not necessarily equal to 𝑠 . Evidently, the non-linearity poses a challenge to correctness.
2. Integer Growing Problem. Although the reconstruction procedure of the WRSS is non-linear, it does pre-

serve the algebraic structure and support local computations similar to Shamir’s secret sharing. For instance,
suppose 𝑥 and 𝑦 are secret shared. Intuitively, parties can locally compute 𝑥𝑖 + 𝑦𝑖 mod 𝑝𝑖 as a secret share
of the secret 𝑥 + 𝑦. This, however, is not always correct. The issue is that the associated integer might grow
out of range. Recall that 𝑥 is re-randomized as some integer 𝑋 = 𝑥 + 𝑢 · 𝑝0 and 𝑦 as 𝑌 = 𝑦 + 𝑢 ′ · 𝑝0. For any
authorized set 𝐴 and the product 𝑃𝐴, the correctness guarantees that both 𝑋 and 𝑌 is < 𝑃𝐴. Nonetheless, it
is not guaranteed that 𝑋 + 𝑌 < 𝑃𝐴. Therefore, when parties use secret shares 𝑥𝑖 + 𝑦𝑖 mod 𝑝𝑖 to reconstruct
𝑥 + 𝑦, they are trying to reconstruct the secret integer 𝑋 + 𝑌 first. And they can only correctly reconstruct
𝑋 + 𝑌 when 𝑋 + 𝑌 < 𝑃𝐴.
Similar issues arise when one wants to locally compute the secret shares of −𝑥 , 𝑥 · 𝑦, and scalar multipli-
cation 𝑐 · 𝑥 for some constant 𝑐 . Therefore, one must be careful with correctness when trying to do local
computations.

3. Challenges for Simulation. Consider a secret-sharing-based MPC protocol. At the end of the protocol,
parties typically broadcast the secret share 𝑠𝑖 of the output wire to allow reconstruction of the output 𝑠 . A
simulator, given the output 𝑠 , needs to simulate all the secret shares of the honest parties. This is usually not
an issue for linear secret sharing schemes as, at each wire 𝑠 , it is maintained that 𝑠𝑖 ’s are identically distributed
as freshly sampled secret sharing of 𝑠 (and, hence, simulatable). However, consider a WRSS secret sharing
of 𝑥 and 𝑦. Observe that the secret shares of 𝑥𝑖 + 𝑦𝑖 mod 𝑝𝑖 is not identically distributed as a fresh secret
sharing of 𝑥 +𝑦.11 Therefore, given the output 𝑥 +𝑦, it is not clear how to simulate the broadcast secret shares.
One may hope to resolve this issue by masking the secret shares with a fresh secret sharing of 0. However,
note that we are essentially trying to mask an integer 𝑋 +𝑌 over integer operations (instead of over a field).
Consequently, extra care is required for this to go through.

Next, we discuss how we address these issues in different settings.

2.2 Weighted Threshold Encryption

For expository purposes, we start with a threshold encryption scheme. Recall that we aim for a scheme with one-
round threshold decryption. Typically, this is done by combining a PKE scheme with a secret sharing scheme,
where the secret key is shared among parties. In this work, we consider the ElGamal encryption scheme for the
underlying PKE scheme. Let us recall it first. In the ElGamal encryption scheme, a group G with order 𝑝0 and
10 We note that 𝜆𝑖 could be efficiently computed. Refer to Remark 2.
11 In fact, their statistical distance is quite far. In particular, the distribution of the integer 𝑋 + 𝑌 , where 𝑋 = 𝑥 + 𝑢 · 𝑝0 and

𝑌 = 𝑦 + 𝑢 ′ · 𝑝0 is very different from the integer (𝑥 + 𝑦) + 𝑢 ′′ · 𝑝0.
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generator 𝑔 is sampled. The secret key sk and public key pk are sampled as 𝑠 and 𝑔𝑠 where 𝑠 ← F𝑝 . To encrypt a
message msg, one sample a random 𝑟 ← F𝑝 , and the ciphertext is defined as (msg · pk𝑟 , 𝑔𝑟 ). Given a ciphertext
(𝑐1, 𝑐2), one could decrypt it as 𝑐1 · 𝑐−sk2 . This encryption scheme is semantically secure as long as DDH is hard.

Now, suppose we sample a public key and secret key (𝑔𝑠 , 𝑠) from ElGamal and secret share 𝑠 using our WRSS
scheme. Given a ciphertext (msg · 𝑔𝑟 ·𝑠 , 𝑔𝑟 ), what should parties send as a partial decryption? As we discussed
earlier, if parties simply send 𝑔𝑟 ·𝑠𝑖 , one cannot correctly aggregate it to obtain 𝑔𝑟 ·𝑠 .

Towards resolving this challenge, we first observe that the reconstruction of CRT-based secret sharing can
be rewritten as((

(𝜆1 · 𝑠1 mod 𝑃) + (𝜆2 · 𝑠2 mod 𝑃) + · · · + (𝜆𝑛 · 𝑠𝑛 mod 𝑃)
)

mod 𝑃

)
mod 𝑝0.

For simplicity, let us write (𝜆𝑖 ·𝑠𝑖 mod 𝑃) as 𝛼𝑖 . There are several benefits to writing the reconstruction as above.
First, parties can locally compute 𝛼𝑖 . Second, given 𝛼1, 𝛼2, . . . , 𝛼𝑛 , we know that the secret 𝑠 is of the form

𝑠 = (𝛼1 + 𝛼2 + · · · + 𝛼𝑛 − Δ · 𝑃) mod 𝑝0, where Δ ∈ {0, 1, . . . , 𝑛 − 1}.

Crucially, the overflow number Δ has only polynomially many possibilities. Therefore, given the partial decryp-
tion 𝑔𝑟 ·𝛼𝑖 , one knows that the one-time pad 𝑔𝑟𝑠 is one of the following

𝑔𝑟 · (
∑

𝑖 𝛼𝑖 ) , 𝑔𝑟 · (
∑

𝑖 𝛼𝑖 )−𝑟 ·𝑃 , . . . , 𝑔𝑟 · (
∑

𝑖 𝛼𝑖 )−𝑟 · (𝑛−1) ·𝑃 .

To get statistical correctness, we shall ask the encryptor to include a hash of the encapsulated key𝐻 (𝑔𝑟 ·𝑠 ) (using,
for example, a universal hash function). Consequently, the decryptor could check all possibilities of the encap-
sulated key against the hash 𝐻 (𝑔𝑟 ·𝑠 ) to find 𝑔𝑟 ·𝑠 . Finally, since 𝐻 (𝑔𝑟 ·𝑠 ) leaks information about 𝑔𝑟 ·𝑠 , we shall add
a randomness extractor Ext to extract uniform randomness from 𝑔𝑟 ·𝑠 . Overall, the ciphertext would be

msg · Ext(seed, 𝑔𝑟 ·𝑠 ), seed, 𝑔𝑟 , 𝐻 (𝑔𝑟 ·𝑠 ).

This presents the main ideas behind our efficient weight threshold decryption scheme. To prove the security, we
need the additional guarantee that the weights cannot be too small (for example, a constant). Indeed, if the weight
𝑤𝑖 is too small, one could use an exhaustive search to find party P𝑖 ’s secret share using its partial decryption
output. We refer the readers to Section 6 for more details.

Remark 1 (Raise hand setting.). We note that our scheme is in the “raise hand” setting. That is, parties need
to know what authorized set will participate in the partial decryption process. This is because the Lagrange
coefficient 𝜆𝑖 depends on this information. In contrast, Shamir’s secret sharing-based scheme does not need this
information for partial decryption. Indeed, parties could directly send 𝑔𝑠𝑖 and the aggregator could do Lagrange
interpolation over the group elements.

However, we note that, even for Shamir’s secret sharing, “raise hand” might be preferable in the weighted
setting as the communication cost is much lower compared to the non-raise-hand setting. Indeed, a party with
weight 𝑤 would need to broadcast 𝑤 many group elements in the non-raise-hand setting; while in the “raise
hand” setting, parties aggregate the partial decryption locally first and only need to broadcast one group element.

2.3 Weighted MPC

Next, we consider weighted MPC. In a weighted MPC protocol, every party is assigned some weights. And it
is assumed that the cumulative weight of the corrupted parties is upper-bounded by a certain fraction. In this
work, we restrict to the information-theoretic honest majority setting and semi-honest adversaries. Crucially,
the communication/computation cost (per party 𝑖 and gate) should be 𝑂 (𝑤𝑖 ) + poly(𝜆).

On a high level, our protocol adopts the secret-sharing-based MPC framework (e.g., BGW protocol [BGW88]),
where we shall use the WRSS scheme as the underlying secret sharing scheme. Consequently, the efficiency of
the WRSS scheme will determine the efficiency of the weighted MPC protocol. As we have mentioned, this
approach involves several issues. We discuss how to address these issues next.

Multiplication. We consider the multiplication gate first. Let 𝑊 = 𝑤1 + · · · + 𝑤𝑛 be the total weight and
assume that the adversary may corrupt parties with weight at most 𝑡 . The security of the WRSS requires that:
if the value 𝑥 of a wire is secret shared, it must be the case that the random integer 𝑋 = 𝑥 + 𝑢 · 𝑝0 is sampled
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from 𝑢 ← {1, . . . , 𝐿} with 𝐿 ≫ 2𝑡 (e.g., 𝐿 = 2𝑡+𝜆). Therefore, the integer 𝑋 associated with every wire 𝑥 is
(approximately) of size 2𝑡+2𝜆 . Now, suppose we want to compute the product 𝑥 · 𝑦. The corresponding integer
𝑋 · 𝑌 may be as large as 22𝑡+4𝜆 . This integer 𝑋𝑌 (henceforth, the secret 𝑥𝑦) could only be reconstructed if the
total weight𝑊 satisfies 2𝑊 ⩾ 22𝑡+4𝜆 . Therefore, our protocol only works in the setting where there is an honest
majority and a large enough gap (i.e., Θ(𝜆)) between the corruption threshold 𝑡 and half of the total weight𝑊 /2.

Although the secret could be reconstructed after one multiplication gate, one cannot let the integer grow
indefinitely. Therefore, after every multiplication gate, one has to use a “degree reduction” protocol12 to reduce
the integer 𝑍 associated with 𝑧 = 𝑥𝑦 to a smaller range. Our degree reduction protocol follows the standard
approach in the MPC literature. In particular, in the preprocessing phase, we ask parties to generate two secret
shares [𝑟 ]0 and [𝑟 ]1 of a random value 𝑟 . Here, in the share [𝑟 ]0, 𝑟 is re-randomized as some integer over the
small range 𝐿 = 2𝑡+𝜆 ; while in the share [𝑟 ]1, 𝑟 is re-randomized as some integer over the large range 𝐿 = 22𝑡+4𝜆 .
The idea is that parties will use the secret shares of [𝑟 ]1 to reconstruct 𝑟 + 𝑥𝑦 in the clear. Afterward, they may
locally subtract 𝑟 + 𝑥𝑦 from [𝑟 ]0 to obtain a secret share of 𝑥𝑦 with a small integer range.

However, there is one crucial issue here. One has to guarantee that the reconstruction of 𝑟 + 𝑥𝑦 leaks only
the value 𝑟 + 𝑥𝑦 and nothing else. While this comes for free in Shamir’s secret sharing, it is not the case here.
Indeed, the secret shares of 𝑟 + 𝑥𝑦 reveal its associated integer, whose distribution may not be indistinguishable
from a fresh secret sharing of the secret 𝑟 + 𝑥𝑦. We defer the discussion of this issue to the discussion on the
output reconstruction procedure.

Addition. Similarly to the multiplication gate, the addition gate also has integer growing issues. One might
think if we can handle the multiplication gate, we can certainly handle the addition gate in the same way. While
this is true, we do not want to invoke a degree reduction protocol for addition gates, which incurs additional
interactions and consumes correlations.

Instead, we observe that the growth of the integer for addition gates is very slow. In particular, if a circuit
has size poly(𝜆), the integer associated with a wire, which is a sum of several other wires, is upper-bounded by
poly(𝜆) · 2𝑡+2𝜆 ≪ 2𝑊 . Hence, reconstructing the sum of wires is not an issue. However, it becomes problematic
when we want to reconstruct 𝑥 · 𝑦, where 𝑥 and 𝑦 are the sums of several wires. Indeed, both 𝑋 and 𝑌 are now
upper-bounded by poly(𝜆) · 2𝑡+2𝜆 and 𝑋 · 𝑌 might be ⩾ 2𝑊 if𝑊 ≈ 2𝑡 + 4𝜆. However, this is not an issue as long
as𝑊 is large enough (e.g.,𝑊 ⩾ 2𝑡 + 5𝜆). In other words, if the total weight is large enough, the integer growing
for the addition gates is not an issue.

Output Reconstruction. As we have mentioned, unlike Shamir’s secret sharing, it is not clear if parties could
broadcast the secret shares of the output wire for reconstruction. To resolve this issue, we shall use a freshly
sampled secret share [0] to mask the secret shares [out] of the output wire. Parties will reconstruct out + 0 as
the output of the protocol. Again, here, we need to argue that the secret shares of out + 0 leak only out + 0. In
particular, the integer associated with the secret out + 0 should only depend on out + 0. We observe that if the
integer associated with out is (arbitrarily) distributed over some range {1, . . . , 𝐿}, it suffices to sample the integer
associated with 0 uniformly randomly from an exponentially large range {1, . . . , 𝐿 · 2𝜆}. The sum of these two
integers will be exponentially close to a freshly sampled secret share of 0 + out from the range {1, . . . , 𝐿 · 2𝜆}.
We formally prove this by our integer masking lemma (Lemma 1).

2.4 Weighted Threshold Signature

Lastly, we consider the threshold signature protocol. In particular, we consider a weighted multiparty signing
protocol based on the ECDSA signatures.

Let us first recall the signing functionality of the ECDSA signature. Let sk be the signing key,𝐺 be the curve
base point, 𝐻 be a cryptographic hash function and𝑚 be the message. To sign message𝑚 with sk, one computes
the following:

1. (Pre-signing Phase) Generate a secret random value 𝑘 ← F𝑞 , and then compute (public) group element
𝑘 ×𝐺 .

2. (Signing Phase) Parse 𝑘 ×𝐺 as curve point (𝑟𝑥 , 𝑟𝑦). Then compute 𝜎 = 𝑘−1 · (𝐻 (𝑚) + 𝑟𝑥 · sk).
3. Output the signature (𝑟𝑥 , 𝜎).

12 We call this a degree reduction protocol as it is reminiscent of the degree reduction protocol in the BGW protocol based on
Shamir’s secret sharing. In Shamir’s secret sharing, the product of two secrets shared by a degree-𝑡 polynomial is shared
by a degree-2𝑡 polynomial. A degree reduction protocol in this case brings down the degree of the polynomial back to 𝑡 .
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Note that we could generically use our MPC protocol to compute all the field operations. However, parties do
need to construct the group element 𝑘 ×𝐺 in the clear. We further note that parties need to agree on the exact
value of𝑘×𝐺 in order to proceed in the signing phase (i.e., step 2). Hence, our ideas from the threshold encryption
section, where parties agree that 𝑘 ×𝐺 is one of 𝑛 possibilities, are not applicable.

However, note that our task at hand is significantly simpler compared to the threshold encryption setting.
In the pre-signing phase, we simply need all parties to collectively sample a random group element 𝑘 ×𝐺 while
also obtaining a secret sharing of 𝑘 . This is different from the threshold encryption setting, where parties start
with a secret share of 𝑘 . And later in the online phase, they need to reconstruct (𝑔′)𝑘 for some random group
element 𝑔′.

To collectively sample 𝑘 × 𝐺 and the secret shares [𝑘], we simply ask party P𝑖 sample a random 𝑘𝑖 and (i)
secret share [𝑘𝑖 ] among all the parties; (ii) broadcast the group element 𝑘𝑖 ×𝐺 . Afterward, parties could locally
reconstruct 𝑘 ×𝐺 as

∑
𝑖 (𝑘𝑖 ×𝐺). Party P𝑖 locally computes the secret share of 𝑘 by computing

∑
𝑗 [𝑘 𝑗 ]𝑖 . This is

secure simply because 𝑘𝑖 ×𝐺 forms an additive secret share of 𝑘 ×𝐺 and could be simulated given only 𝑘 ×𝐺 .
Finally, by standard techniques in ECDSA, one could prepare the secret shares of the correlated values [𝑘−1]

and [𝑟𝑥 · sk] in the pre-signing protocol, which leads to a one-round signing phase. We refer the readers to
Section 7 for details.

2.5 Open Problems

Our work initializes the use of CRT-based secret-sharing and ramp secret-sharing techniques in the weighted
threshold cryptosystem. It leaves open several exciting problems. We discuss some of them below.

Weighted Threshold Secret-sharing. How efficiently we could realize weighted secret-sharing is an intriguing
question in its own right. In this work, we leverage the ramp setting to improve its efficiency. The concurrent
work [BHS23] showed that, if the gap between the privacy and reconstruction threshold is sufficiently large, the
share size could even be independent of the weight. Nonetheless, we do not know if any such improvement is
possible in the sharp threshold setting (i.e., 𝑇 = 𝑡 + 1). Could we hope to prove a lower bound? This question
is especially hard given that we do not have a strong lower bound for secret sharing against the general access
structure (as any weighted threshold access structure is a particular general access structure).

Maliciously Secure MPC. For the weighted MPC protocol, a natural question is achieving malicious security.
In the literature, several approaches have been developed for achieving information-theoretic malicious security
such as verifiable secret-sharing schemes [CGMA85]. Could we construct an efficient WRSS with verifiability
while still being efficient?

Scalable MPC. A large body of the MPC literature works on removing the dependency of efficiency on the
number of parties. For instance, to generate one instance of secret shares of a random value, our MPC protocol
requires𝑂 (𝑛2) amount of total communication. In the Shamir secret sharing-based MPC, the Vandemonde matrix
randomness extraction [DN07] is a standard technique for reducing this dependency to linear. Is there a similar
technique for CRT-based secret sharing? Note that this problem is challenging as we are essentially trying to
extract randomness over the integers (instead of over a field).

Another standard efficiency-saving technique is the packed secret sharing scheme [FY92]. Could one pack
secrets similarly in the CRT-based secret sharing? We note that CRT-based secret sharing naturally supports
packing two secrets 𝑠 ∈ F𝑝0 and 𝑠 ∈ F𝑝′0 from fields with different characteristics (as they could be treated as one
secret modulo 𝑝0 · 𝑝 ′0). It is, however, surprisingly challenging to pack two secrets from the same field for CRT
secret sharing.

CCA Threshold Encryption. Currently, our weighted threshold encryption scheme only achieves CPA secu-
rity. It is a natural problem whether one could construct CCA-secure efficient weighted threshold encryption
using similar techniques.

3 Preliminaries

We use 𝜆 for the security parameter. Let negl(𝜆) denote a negligible function. That is, for all polynomial 𝑝 (𝜆),
it holds that negl(𝜆) < 1/𝑝 (𝜆) for large enough 𝜆. For any two distributions 𝐴, 𝐵 over the finite universe Ω, the
statistical distance between 𝐴 and 𝐵 is defined as SD (𝐴, 𝐵) = 1

2
∑

𝜔 ∈Ω |Pr[𝐴 = 𝜔] − Pr[𝐵 = 𝜔] |. For an integer
𝑛, we shall use [𝑛] for the set {1, 2, . . . , 𝑛}. For an integer 𝑀 , we also use 𝑈𝑀 for the uniform distribution over
{0, 1, . . . , 𝑀 − 1}.
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Next, we define secret-sharing schemes.

Definition 1 (Secret-sharing Scheme). The access structure of the secret-sharing scheme consists of two sub-
sets A,A ⊆ 2[𝑛] , where A consists of all authorized subsets of parties and A consists of all unauthorized sub-
sets of parties. A secret-sharing scheme among 𝑛 parties for access structure (A,A) consists of two algorithms
(Share,Reconst), which satisfies the following.

– Perfect Correctness. For all secret 𝑠 and authorized set 𝐴 ∈ A, it holds

Pr

[
𝑠 ′ = 𝑠 :

(𝑠1, 𝑠2, . . . , 𝑠𝑛) ← Share(𝑠)
𝑠 ′ = Reconst ({𝑠𝑖 }𝑖∈𝐴)

]
= 1.

– 𝜀-Statistical Security. For any unauthorized set 𝐴 ∈ A and two secrets 𝑠, 𝑠 ′, it holds that the following two
distributions are 𝜀-statistically close.{

(𝑠1, 𝑠2, . . . , 𝑠𝑛) ← Share(𝑠)
Output {𝑠𝑖 }𝑖∈𝐴

}
≈

{
(𝑠 ′1, 𝑠 ′2, . . . , 𝑠 ′𝑛) ← Share(𝑠 ′)

Output
{
𝑠 ′𝑖
}
𝑖∈𝐴

}
.

In particular, for a weighted ramp secret sharing scheme with privacy threshold 𝑡 and reconstruction threshold 𝑇 ,
each party is associated with a weight𝑤𝑖 and the authorized A and unauthorized A set are defined as Figure 2.

The security of CRT-based secret sharing relies heavily on the following claim.

Claim 1 ([GRS99]) Let𝑀 < 𝐿 be arbitrary integers. Let 𝑝 be an arbitrary integer that is coprime with𝑀 . Let 𝑠 be
any integer. We have

SD ( (𝑠 + 𝑝 ·𝑈𝐿) mod 𝑀 , 𝑈𝑀 ) < 𝑀/𝐿.

Intuitively, this claim states the following. Suppose we have a secret 𝑠 ∈ F, where the order of F is 𝑝 . If
we pick a sufficiently random13 integer 𝑆 = 𝑠 + 𝑝 · 𝑈𝐿 , it is guaranteed that 𝑆 mod 𝑀 is statistically close to
uniformly random. This claim is crucial in proving the security of the CRT-based secret-sharing scheme. We
include a formal proof in Section A.

4 Efficient Weighted Ramp Secret-sharing Scheme

In this section, we show how to construct an efficient weighted ramp secret-sharing (WRSS) scheme. Our scheme
is based on the Chinese Remainder Theorem-based (CRT-based) secret-sharing scheme. This scheme is intro-
duced by [Mig83,AB83,GRS99] in the unweighted setting. Let us recall their scheme and formally present its
security. Next, we show how to transform this scheme to the weighted setting, where the size of the secret share
is small.

4.1 Unweighted CRT-based Secret-sharing

Let F𝑝0 be a field, where 𝑝0 ≈ 2𝜆 . Suppose we want to secret share a secret 𝑠 ∈ F𝑝0 . Unlike Shamir’s secret-sharing
scheme, the CRT-based scheme is non-linear. In particular, the secret shares are not elements from F𝑝0 . Instead,
for all 𝑖 ∈ [𝑛], the 𝑖𝑡ℎ party is associated with an integer 𝑝𝑖 and its secret share shall be an integer 𝑠𝑖 such that
0 ⩽ 𝑠𝑖 < 𝑝𝑖 − 1. Formally, the CRT-based secret-sharing scheme among 𝑛 parties is constructed as follows.

– Access Structure. Let A be the set of authorized subsets and A be the set of unauthorized subsets.
– Parameters. The scheme is parametrized by a set of integers 𝑝1, 𝑝2, . . . , 𝑝𝑛 and an additional integer 𝐿. It is required

that all the 𝑝𝑖 ’s (including 𝑝0) are coprime with each other. These parameters implicitly define the following two
products. (Note that 𝑃max < 𝑃min.)

𝑃max = max
𝐴∈A

©«
∏
𝑖∈𝐴

𝑝𝑖
ª®¬ and 𝑃min = min

𝐴∈A

(∏
𝑖∈𝐴

𝑝𝑖

)
.

– Share the secret. To share a secret 𝑠 , one picks a random integer

𝑆 = 𝑠 + 𝑝0 ·𝑈𝐿 .

13 Measured by the parameter 𝐿.
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Recall that𝑈𝐿 is uniformly distributed over [𝐿]. We will refer to the integer 𝑆 as the lifting of 𝑠 and write the above
step as 𝑆 = Lift(𝑠,𝑈𝐿). When it is clear from the text, we also write 𝑆 = Lift(𝑠). The secret share of the 𝑖𝑡ℎ party
shall be

𝑠𝑖 = 𝑆 mod 𝑝𝑖 .

– Reconstruct the secret. For an authorized set𝐴 ∈ A, parties in𝐴 reconstruct the secret as follows. Using Chinese
remainder theorem, they can find a set of Lagrange coefficients {𝜆𝑖 }𝑖∈𝐴 such that 𝑆 =

∑
𝑖∈𝐴 𝜆𝑖 · 𝑠𝑖 mod 𝑃 . Then they

can reconstruct the secret 𝑠 as
𝑠 = 𝑆 mod 𝑝0 .

Fig. 1: A generic CRT-based Secret-sharing Scheme

Remark 2. The Lagrange coefficient 𝜆𝑖 here are integers such that

𝜆𝑖 mod 𝑝𝑖 = 1 and ∀𝑗 ≠ 𝑖, 𝜆𝑖 mod 𝑝 𝑗 = 0.

We note that the Lagrange coefficients 𝜆𝑖 could be efficiently computed as follows. Let 𝑄 =
∏

𝑗≠𝑖 𝑃 𝑗 be the
product of 𝑝 𝑗 ’s except for 𝑝𝑖 . Then,

𝜆𝑖 = 𝑄 ·𝑄−1,

where 𝑄−1 is the inverse of 𝑄 modulo 𝑝𝑖 . That is, 𝑄 ·𝑄−1 mod 𝑝𝑖 = 1.

Theorem 5. The secret-sharing scheme in Figure 1 satisfies the following.

– Correctness.The scheme is perfectly correct if (𝐿 + 1) · 𝑝0 < 𝑃min .

– Security.The insecurity of scheme is⩽ 𝑃max/𝐿. That is, for any unauthorized set, the statistical distance between
the distributions of its secret shares for any two distinct secrets is at most 𝑃max/𝐿.

Proof. Suppose (𝐿 + 1) · 𝑝0 < 𝑃min. For any authorized set 𝐴 and secret 𝑠 , observe the following. The random
integer 𝑆 = 𝑠 + 𝑝0 ·𝑈𝐿 always satisfies

𝑆 ⩽ (𝐿 + 1) · 𝑝0 < 𝑃min ⩽
∏
𝑖∈𝐴

𝑝𝑖 .

Consequently, given the secret shares 𝑠𝑖 for 𝑖 ∈ 𝐴, parties can always correctly recover the integer 𝑆 and, conse-
quently, correctly reconstruct the secret 𝑠 = 𝑆 mod 𝑝0.
Next, we argue the security. For any unauthorized set𝐴 and any secret 𝑠 , observe the following. Let 𝑃 =

∏
𝑖∈𝐴 𝑝𝑖 .

By the Chinese remainder theorem, there is a bijection between the secret shares {𝑠𝑖 }𝑖∈𝐴 and the integer in
{0, 1, . . . , 𝑃 − 1}. Therefore, instead of considering the distribution of the secret shares, i.e.,

{𝑠 + 𝑝0 ·𝑈𝐿 mod 𝑝𝑖 }𝑖∈𝐴,

we shall equivalently consider the distribution of the following integer

𝑠 + 𝑝0 ·𝑈𝐿 mod 𝑃 .

By Claim 1, for any secret 𝑠 , this distribution is (𝑃/𝐿)-close to the uniform distribution over 𝑈𝑃 . Therefore, for
any unauthorized set 𝐴, the insecurity is ⩽ (∏

𝑖∈𝐴 𝑝𝑖 )/𝐿 and, by definition, the insecurity of the whole scheme
is ⩽ 𝑃max/𝐿.

Threshold secret-sharing. As a representative example, we illustrate how one can implement a 𝑡-threshold
secret-sharing using the CRT-based scheme. The parameters can be set up as follows. Pick 𝑝1, . . . , 𝑝𝑛 as 𝑛 distinct
prime numbers of length 2𝜆. By definition, 𝑃max is the maximum product of 𝑡−1 integers, which is approximately
𝑃max ≈ 2(2𝜆) · (𝑡−1) ; 𝑃min is the minimum product of 𝑡 integers, which is approximately 𝑃min ≈ 2(2𝜆) ·𝑡 . Then, if one
picks 𝐿 to be 𝐿 ≈ 22𝑡𝜆−𝜆 , one can verify by Theorem 5 that the scheme is a threshold secret-sharing with perfect
correctness and 2−𝜆-insecurity.
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4.2 Realizing Efficient WRSS using CRT-based Secret-sharing

Weighted Secret-sharing. In a weighted secret-sharing among 𝑛 parties, every party 𝑖 is associated with a
weight 𝑤𝑖 ∈ N. We consider the ramp secret-sharing setting. That is, there is a reconstruction threshold 𝑇 and
also a privacy threshold 𝑡 . A set of parties is authorized if their collective weight is ⩾ 𝑇 ; a set of parties is
unauthorized if their collective weight is ⩽ 𝑡 . In a ramp scheme, a set of parties with collective weight ∈ (𝑡,𝑇 )
may learn partial information about the secret.

– Reconstruction threshold 𝑇 . A set 𝐴 ∈ A is authorized if
∑
𝑖∈𝐴𝑤𝑖 ⩾ 𝑇 .

– Privacy threshold 𝑡 . A set 𝐴 ∈ A is unauthorized if
∑
𝑖∈𝐵 𝑤𝑖 ⩽ 𝑡 .

Fig. 2: The access structure of the weighted ramp secret-sharing scheme.

Naı̈ve Construction with Large Share Size: Shamir’s Secret-sharing with Virtual Parties. It is not hard to
see that one can construct the (threshold) weighted secret-sharing scheme using Shamir’s secret-sharing scheme.
In particular, one thinks of the 𝑖𝑡ℎ party with weight 𝑤𝑖 as 𝑤𝑖 virtual parties. That is, one can use the standard
Shamir’s secret-sharing scheme with 𝑤1 + 𝑤2 + · · · + 𝑤𝑛 parties. Afterward, the 𝑖𝑡ℎ party shall get 𝑤𝑖 secret
shares as its secret share. In words, the 𝑖𝑡ℎ party represents𝑤𝑖 virtual parties in this secret-sharing scheme with
𝑤1 + · · · +𝑤𝑛 virtual parties.
However, the size of the secret share in this naı̈ve construction is quite large. In particular, party with weight𝑤𝑖

shall get 𝑤𝑖 field elements ∈ F𝑝0 as its secret share. Therefore, the total length of the secret share is 𝑤𝑖 · 𝜆.

CRT-based Construction with Small Share Size. To realize the access structure of the weighted secret-
sharing scheme, we shall pick each 𝑝𝑖 to be an integer of 𝑤𝑖 length.14 In particular, we shall pick 𝑝𝑖 in the range
2𝑤𝑖 /(1 + 1/𝑛) ⩽ 𝑝𝑖 < 2𝑤𝑖 .15 By definition,

𝑃max = max
𝐴∈A

©«
∏
𝑖∈𝐴

𝑝𝑖
ª®¬ < max

𝐴∈A

©«
∏
𝑖∈𝐴

2𝑤𝑖
ª®¬ ⩽ 2𝑡 .

On the other hand,

𝑃min = min
𝐴∈A

(∏
𝑖∈𝐴

𝑝𝑖

)
⩾ max

𝐴∈A

(∏
𝑖∈𝐴

2𝑤𝑖 /(1 + 1/𝑛)
)
⩾ 2𝑇 /(1 + 1/𝑛)𝑛 = 2𝑇−𝑂 (1) .

Therefore, if one picks the parameter 𝐿 to be 2𝑡+𝜆 . One may verify by Theorem 5 that this secret-sharing scheme
is 𝑂 (2−𝜆)-insecure and is perfectly correct as long as 𝑇 ⩾ 𝑡 + 2𝜆 + Θ(1). Furthermore, observe that the secret
shares of the 𝑖𝑡ℎ party is simply an integer between 0 and 𝑝𝑖 . Therefore, the total length of the 𝑖𝑡ℎ secret share is
𝑤𝑖 . In conclusion, this construction gives rise to the following theorem.

Theorem 6. Assume 𝑇 ⩾ 𝑡 + 2𝜆 + Θ(1), the CRT-based secret-sharing scheme described above realizes the access
structure in Figure 2 with perfect correctness and 2−𝜆 insecurity. Furthermore, the length of the secret share with
weight𝑤𝑖 is𝑤𝑖 .

Observe that, if the gap 𝑇 − 𝑡 could always be amplified at the cost of efficiency. In particular, for any integer 𝑐 ,
the access structure of parties with weights 𝑐 ·𝑤1, 𝑐 ·𝑤2, . . . , 𝑐 ·𝑤𝑛 and reconstruction (resp. privacy) threshold
𝑐 ·𝑇 (resp. 𝑐 · 𝑡 ) is identical to the original access structure. Hence, this gives us the following corollary.

Corollary 1 (Efficient WRSS). For any integer 𝑐 such that 𝑐 · (𝑇 − 𝑡) ⩾ 2𝜆 + Θ(1), the weighted ramp secret-
sharing scheme described above realizes the access structure in Figure 2 with perfect correctness and 2−𝜆 insecurity.
Furthermore, the length of the secret share with weight𝑤𝑖 is 𝑐 ·𝑤𝑖 .

In particular, as long as 𝑇 − 𝑡 = Ω(𝜆), we can construct a weighted ramp secret sharing scheme with share size
𝑂 (𝑤𝑖 ).
14 To ensure they are coprime, we may pick 𝑝𝑖 to be a distinct prime of length 𝑤𝑖 .
15 There are 2𝑤𝑖 /(𝑛+1)many integers between 2𝑤𝑖 /(1+1/𝑛) and 2𝑤𝑖 , among which, there are asymptotically 2𝑤𝑖 /((𝑛+1) ·𝑤𝑖 )

many primes numbers. Therefore, as long as𝑤𝑖 is large enough, e.g., polylog(𝜆), one could always pick a 𝑝𝑖 for all parties.
Even if the smallest 𝑤𝑖 is a small constant, one could always multiply every weight by some small factor to enable this.
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5 Efficient Weighted MPC

In this section, we shall present a weighted MPC protocol against semi-honest adversaries. Moreover, we consider
an honest majority in the weighted setting16 and information-theoretic security. Let us first define security. We
follow the definition in [AL17] with appropriate adaptation to the weighted setting.

Definition 2 (Semi-honestly Security). Let W = (𝑤1, . . . ,𝑤𝑛) be the weights of a total of 𝑛 parties. Let 𝐶 :
X1 × X2 × · · · × X𝑛 → Y be an arithmetic circuit over F𝑝0 . We say that a protocol 𝜋 𝜀-securely realized 𝐶 with
corruption threshold 𝑡 in the weighted setting if the following holds. For any input ®𝑥 and any subset 𝐼 ⊂ [𝑛] such
that

∑
𝑖∈𝐼 𝑤𝑖 ⩽ 𝑡 , there exists an efficient simulator S such that

SD
((
S

(
𝐼 , ®𝑥𝐼 ,𝐶 ( ®𝑥)𝐼

)
,𝐶 ( ®𝑥)

)
,

(
View𝜋

𝐼 ( ®𝑥),Output
𝜋 ( ®𝑥)

))
⩽ 𝜀.

Notations. We use the following notations for the WRSS in our weighted MPC protocol. Let W = (𝑤1, . . . ,𝑤𝑛)
be the weights of a total of 𝑛 parties, P = (𝑝0, 𝑝1, . . . , 𝑝𝑛) be the corresponding bases and let (𝑇, 𝑡) be the recon-
struction and privacy threshold. In the MPC case, the reconstruction threshold 𝑇 =𝑊 is the total weight of all
parties. We denote the weighted ramp secret sharing of some secret 𝑠 by {[𝑠]𝑖 }𝑖∈[𝑛] ← Share(P,𝑇 , 𝑡, 𝑠), where
[𝑠]𝑖 is party P𝑖 ’s share of the secret 𝑠 . Furthermore, we express the associated lifting of 𝑠 as 𝑆 = Lift(𝑠) where
the randomness𝑈𝐿 is implicit. Correspondingly we let 𝑆 = Reconstruct({[𝑠]𝑖 }𝑖∈[𝑛]) be the reconstructed integer
Lift(𝑠) value. For every secret 𝑠 , we have 𝑠 = 𝑆 mod 𝑝0.

Overview of the protocol. For every input wire 𝑠 , we secret share the value 𝑠 using our WRSS where the
parameter 𝐿 is 2𝑡+𝜆 . Therefore, Lift(𝑠) is of size at most (2𝑡+𝜆 + 1) · 𝑝0 ⩽ 2𝑡+2𝜆 . Throughout the MPC protocol,
we shall maintain the invariant that the for every wire 𝑠 , the secret integer 𝑆 = Lift(𝑠) associated with the secret
share of 𝑠 is upper-bounded by some poly(𝜆) ·2𝑡+2𝜆 . Intuitively, this invariant is maintained for each addition gate.
However, after each multiplication gate (including scalar multiplication where the scalar is superpolynomial in
𝜆), this invariant is broken. Hence, we shall employ a degree reduction protocol to re-establish this invariant.
For degree reduction, in the preprocessing phase, every party shall generate two secret shares of a random value
𝑟 , denoted by [𝑟 ]0 and [𝑟 ]1. The instance [𝑟 ]0 is sampled where the corresponding parameter 𝐿 is 2𝑡+𝜆 ; while
the instance [𝑟 ]1 is sampled where the corresponding parameter 𝐿 is 22𝑡+5𝜆 . Parties shall use [𝑟 ]1 as a mask
to reconstruct the value 𝑟 + 𝑠 in the clear and then deduct it from the secret share [𝑟 ]0 locally. To successfully
reconstruct the value 𝑟 + 𝑠 , which corresponds to an integer of size at most 22𝑡+5𝜆 · 𝑝0, we need the total weights
to satisfy𝑊 ⩾ 2𝑡 + 6𝜆 + Θ(1). Therefore, as long as𝑊 − 2𝑡 = Θ(𝜆), we have the following theorem.

Theorem 7. Let 𝐶 be an arithmetic circuit over F with depth 𝑑 . There is a weighted MPC protocol realizing 𝐶 with
the following property.

– The round complexity is 𝑑 +𝑂 (1).
– In the online phase, the communication/computation cost per party per gate is 𝑂 (𝑤𝑖 ).
– In the preprocessing phase, the communication/computation cost per party per gate is 𝑂 (𝑊 ).
– For any semi-honest adversary who may corrupt a total weight of 𝑡 , this protocol is exp(−𝜆)-secure given𝑊 −

2𝑡 = Θ(𝜆).

We next describe our protocol in detail.

5.1 Generating shares of random value 𝑭Random

In this sub-protocol, parties generate a secret sharing of a random value. Observe that the communication cost
per party is 𝑂 (𝑊 ) as it sends 𝑂 (𝑤𝑖 ) bits to the 𝑖𝑡ℎ party.

– For all 𝑖 ∈ [𝑛], the 𝑖𝑡ℎ party samples a random value 𝑟𝑖 ∈ F. It secret shares 𝑟𝑖 : {[𝑟𝑖 ] 𝑗 } 𝑗 ∈[𝑛] ← Share(P,𝑊 , 𝑡, 𝑟𝑖 )
and sends the shares to each party.

– For all 𝑖 ∈ [𝑛], the 𝑖𝑡ℎ party locally computes [𝑟 ]𝑖 =
(
[𝑟1]𝑖 + [𝑟2]𝑖 + · · · + [𝑟𝑛]𝑖

)
mod 𝑝𝑖 as its secret share of the

random field element 𝑟 = 𝑟1 + · · · + 𝑟𝑛 ∈ F.

16 I.e., the cumulative weight of the corrupted party is less than half of the total weight.
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We note that the threshold parameter 𝐿 in generating the WRSS secret shares is either 2𝑡+𝜆 or 22𝑡+5𝜆 .
Furthermore, we also use this protocol for generating secret shares of the value 0 among all the parties. The only
difference is that parties sample a fresh secret share of 0 instead of a random 𝑟𝑖 . The threshold 𝐿 is generating
the secret sharing of 0 is 2𝑡+3𝜆 .
We will sometimes refer to the above protocol as 𝐹Random (𝑟 =

∑
𝑖∈[𝑛] 𝑟𝑖 ) to specify the individual randomness 𝑟𝑖

from each party.

5.2 Degree reduction protocol 𝑭deg

In this sub-protocol, parties re-sample the secret share of some wire 𝑥 such that the corresponding integer Lift(𝑥)
is small enough. Observe that the communication cost per party is 𝑂 (𝑤𝑖 ).

– Input. Parties hold the secret shares [𝑥] of some wire 𝑥 . Additionally, parties hold two secret shares (i.e.,
{[𝑟 ]0

𝑖
}𝑖∈[𝑛] and {[𝑟 ]1

𝑖
}𝑖∈[𝑛] ) of a random 𝑟 . Both [𝑟 ]0 and [𝑟 ]1 are sampled using the 𝐹Random protocol, where

the threshold parameters are 2𝑡+𝜆 and 22𝑡+5𝜆 , respectively.
– Party P𝑖 locally computes and broadcasts

(
[𝑥]𝑖 + [𝑟 ]1𝑖

)
mod 𝑝𝑖 as the secret shares of 𝑥 + 𝑟 .

– Given all the secret shares, parties locally reconstruct 𝑥 +𝑟 ∈ F and subtract (𝑥 +𝑟 ) mod 𝑝𝑖 from the secret shares
{[𝑟 ]0

𝑖
}𝑖∈[𝑛] .

5.3 Opening secret shares 𝑭open

In this sub-protocol, parties open the value of the output wire. Observe that the communication cost per party
is 𝑂 (𝑤𝑖 )

– Input. Parties hold a secret share [out] of the output wire. Parties also hold a secret sharing of [0] generated
similarly as in the 𝐹Random sub-protocol.

– Party P𝑖 locally computes and broadcasts
(
[0]𝑖 + [out]𝑖

)
mod 𝑝𝑖 as the secret shares of 0 + out.

– Parties locally reconstruct 0 + out as the value of out.

5.4 Realizing negation gate 𝑭neg

In this (non-interactive) sub-protocol, parties switch the secret shares [𝑥] of 𝑥 to the secret shares of [−𝑥].
Negation gate usually comes for free in the Shamir secret share-based MPC. However, in our scheme, it requires
some special care.
Observe that if parties simply invert their secret share from [𝑥]𝑖 to 𝑝𝑖 − [𝑥]𝑖 . The lifted integer goes from Lift(𝑥)
to 𝑃 − Lift(𝑥), where 𝑃 is the product of 𝑝𝑖 . Crucially, note that

Lift(𝑥) = 𝑥 mod 𝑝0 ≠⇒ 𝑃 − Lift(𝑥) = −𝑥 mod 𝑝0

as 𝑃 is not a multiple of 𝑝0. Therefore, this approach has a correctness issue. We realize negation by the following
protocol.

– Input. Parties hold WRSS of some secret 𝑥 .
– Parties (locally) identify a bound 𝐵 · 𝑝0 on the integer Lift(𝑥). For example, if 𝑥 is an input wire, Lift(𝑥) is at most
(2𝑡+𝜆 + 1) ·𝑝0. Hence, one set 𝐵 = 2𝑡+𝜆 + 1. If 𝑥 is the secret share of the sum of two input wires, the corresponding
bound 𝐵 will be 2 · (2𝑡+𝜆 + 1). If 𝑥 is the output of a degree reduction protocol, the maximum value of Lift(𝑥) is
reset to be (2𝑡+𝜆 + 1) · 𝑝0. Hence, one could again pick 𝐵 = 2𝑡+𝜆 + 1. Consequently, this bound 𝐵 only depends on
the topology of the circuit, and parties could identify the same bound 𝐵 without interaction.

– Party P𝑖 locally computes [−𝑥]𝑖 = (𝐵 · 𝑝0 − [𝑥]𝑖 ) mod 𝑝𝑖 .

Observe that the lifting integer of the secret shares [−𝑥]𝑖 is now the integer 𝐵 ·𝑝0 −Lift(𝑥) and we have (𝐵 ·𝑝0 −
Lift(𝑥)) = −𝑥 mod 𝑝0. Therefore, this sub-protocol correctly realizes the negation gate.
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– Preprocessing Phase.
• Parties generate |𝐶 | fresh samples of [𝑟 ]0, [𝑟 ]1 (as described in 𝐹Random).
• Parties generate samples of the secret sharing [0] of 0 (as described in 𝐹Random). The number of instances

equals to the number of output wires of 𝐶 .
– Online Phase.
• Parties sample a WRSS of their inputs and send it to all parties. The threshold parameter 𝐿 in generating the

secret shares is 2𝑡+𝜆 .
• Addition Gate 𝑥 + 𝑦: Parties locally compute ( [𝑥]𝑖 + [𝑦]𝑖 ) mod 𝑝𝑖 as the secret share of 𝑥 + 𝑦.
• Multiplication Gate 𝑥 · 𝑦: Parties locally compute ( [𝑥]𝑖 · [𝑦]𝑖 ) mod 𝑝𝑖 as the secret share of 𝑥 · 𝑦. They then

employ a degree reduction protocol 𝐹deg and obtain [𝑧]𝑖 as the new share where 𝑧 = 𝑥 · 𝑦. In subsequent
sections we will refer to this as 𝐹Mult.

• Negation Gate −𝑥 : Parties use the sub-protocol 𝐹neg.
• Scalar Multiplication Gate 𝑐 · 𝑥 : Parties locally compute (𝑐 · [𝑥]𝑖 ) mod 𝑝𝑖 as the secret share of 𝑐 · 𝑥 . They

then employ a degree reduction protocol 𝐹deg and obtain [𝑧]𝑖 as the new share where 𝑧 = 𝑐 · 𝑥 . In subsequent
sections we will refer to this as 𝐹sMult.

– Reconstruct the Output. For each output wire out, parties use the 𝐹Open with input [out] to reconstruct the
value out.

Fig. 3: Our Efficient Weighted MPC Protocol

5.5 Our Protocol

We are now ready to state our protocol in Figure 3. The correctness is straightforward as the reconstruction of
the secret is correct for each sub-protocol.
For security, the following lemma is helpful. The proof is included in Section A.

Lemma 1 (Integer Masking Lemma). Let 𝑝 and 0 ⩽ 𝑟1, 𝑟2 < 𝑝 be any integers. Let 𝑀 < 𝑁 also be arbitrary
integers. Let 𝐷 be an arbitrary distribution over the universe {𝑟1, 𝑝 + 𝑟1, 2𝑝 + 𝑟1, . . .} ∩ [𝑀]. Then,

SD
((
𝐷 +𝑈𝑁

��� 𝑈𝑁 mod 𝑝 = 𝑟2

)
,

(
𝑈𝑁

��� 𝑈𝑁 mod 𝑝 = 𝑟1 + 𝑟2

))
⩽ 𝑀/𝑁 + 2𝑝/𝑁,

where the addition is over the integers.

We provide some intuition about this lemma and why it is relevant to the security of the MPC protocol. Take the
multiplication sub-protocol as an example. We need to argue that the reconstructed integer [𝑥] · [𝑦] + [𝑟 ]1 could
be simulated. Here, the integer corresponds to [𝑥] · [𝑦] is the distribution 𝐷 and the integer corresponds to [𝑟 ]1
is the distribution𝑈𝑁 . The conditioning on𝑈𝑁 mod 𝑝 is because of the adversary’s secret share of [𝑟 ]1. That is,
it knows that the remainder of𝑈𝑁 modulo some product of 𝑝𝑖 . Now, this lemma states that as long as the range
of the integer [𝑟 ]1 is sampled from a much larger domain (measured by 𝑁 ) compared to the maximum value of
[𝑥] · [𝑦] (measured by 𝑀), one may simply sample the integer corresponds to [𝑥] · [𝑦] + [𝑟 ]1 as a uniformly
random one (given that it is consistent with the adversary’s secret share).17

Security. The security proof essentially follows from the security of the WRSS and Lemma 1. Due to space
constraints, we defer the security proof to Appendix A.3.

6 Efficient Weighted Threshold Encryption Scheme

In this section, we will demonstrate the utility of our secret-sharing scheme by constructing a weighted threshold
encryption scheme, where the size of the secret-key shares is small. Let us first define the primitive.

Definition 3. A public-key encryption scheme with weighted threshold decryption consists of a tuple of PPT algo-
rithms (Gen, Enc, PartialDec,Reconstruct).

–
(
pk, {sk𝑖 }𝑛𝑖=1

)
← Gen(1𝜆, {𝑤1}𝑛𝑖=1,𝑇 , 𝑡): The Gen algorithm takes the security parameter 1𝜆 as input and a

weighted access structure with privacy threshold 𝑡 and reconstruction threshold 𝑇 as inputs. It outputs a public
key pk and a set of secret-key shares {𝑠𝑘𝑖 }𝑛𝑖=1, where sk𝑖 is given to the 𝑖𝑡ℎ party.

17 The term 𝑝/𝑁 will always be small since 𝑝 is the product of the adversary’s 𝑝𝑖 , which is at most 2𝑡 . The WRSS scheme
requires that whenever we pick a random lift integer, we shall always pick a domain much larger than 2𝑡 .
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– 𝑐 ← Enc(pk,𝑚): The Enc algorithm takes as input the public key pk, a message𝑚, and outputs a ciphertext 𝑐 .
– 𝜇 ← PartialDec(𝑆, sk′, 𝑐): The PartialDec algorithm takes as input a subset 𝑆 ⊆ [𝑛], secret-key share sk′,

ciphertext 𝑐 , and outputs partial decryption 𝜇.
– 𝑚 ← Reconstruct({𝜇𝑖 }𝑖∈𝑆 , 𝑐): The Reconstruct is a deterministic algorithm that takes as input a set of partial

decryptions {𝜇𝑖 }𝑖∈𝑆 from a subset 𝑆 of parties, a ciphertext 𝑐 , and outputs a message𝑚. When fails, it outputs
⊥.

It shall satisfy the following guarantees.

– Statistical Correctness. For any weighted access structure
(
{𝑤𝑖 }𝑛𝑖=1,𝑇 , 𝑡

)
, authorized subset 𝑆 ⊆ [𝑛], and

message𝑚, it holds that

Pr


𝑚∗ =𝑚 :

(
pk, {sk𝑖 }𝑛𝑖=1

)
← Gen(1𝜆, {𝑤1}𝑁𝑖=1,𝑇 , 𝑡)

𝑐 ← Enc(pk,𝑚)
∀𝑖 ∈ 𝑆 : 𝜇𝑖 ← PartialDec(𝑆, sk𝑖 , 𝑐)
𝑚∗ ← Reconstruct({𝜇𝑖 }𝑖∈𝑆 , 𝑐)


⩾ 1 − negl(𝜆).

– 𝜀-Strong CPA Security. For any PPT adversary𝐴, any weighted access structure
(
{𝑤𝑖 }𝑛𝑖=1,𝑇 , 𝑡

)
, and any unau-

thorized subset 𝑆 ⊆ [𝑛], it holds that

Pr


𝑏∗ = 𝑏 :

(
pk, {sk𝑖 }𝑛𝑖=1

)
← Gen(1𝜆, {𝑤1}𝑁𝑖=1,𝑇 , 𝑡)

(𝑚0,𝑚1) ← 𝐴O(·) (pk, {sk}𝑖∈𝑆 )
𝑏 ← {0, 1}; 𝑐 ← Enc(pk,𝑚𝑏)

𝑏∗ ← 𝐴O(·) (pk,
{
sk𝑖

}
𝑖∈𝑆 ,𝑚0,𝑚1, 𝑐)


⩽ 1/2 + 𝜀.

Here, the oracle O(𝐴, 𝐵,𝑚) takes as input an authorized set 𝐴 and a subset 𝐵 such that 𝐵 ∪ 𝑆 is unauthorized,
and a message𝑚. Its outputs are sampled from the following distribution{

𝑐 ← Enc(pk,𝑚), ∀𝑖 ∈ 𝐵, 𝜇𝑖 = PartialDec(𝐴, sk𝑖 , 𝑐)
Output

(
𝑐, {𝜇𝑖 }𝑖∈𝐵

) }
.

In other words, the adversary is given access to the partial decryption oracle on honestly sampled ciphertexts.

Remark 3. We notice that, in the threshold setting, the plain CPA security (where the adversary does not have
any access to partial decryption) is trivial to achieve. For instance, consider the following trivial scheme. Take
any CPA-secure PKE scheme and any secret-sharing scheme. Sample the public key and secret key pair from the
underlying PKE scheme and secret share the secret key with all parties. Now, the partial decryption algorithm
simply outputs the secret share. Observe that even this scheme satisfies the plain CPA security.
Due to this observation, we consider a stronger definition, where the adversary has access to partial decryption
on ciphertexts that are honestly sampled. This stronger CPA-security definition excludes the trivial construction
above.

6.1 Building Blocks

ElGamal Encryption. Our construction is based on the ElGamal encryption system. Let us recall it. In the
ElGamal encryption scheme, a group G with order 𝑝 and generator 𝑔 is sampled as (G, 𝑔) ← Setup(1𝜆). The
secret key sk and public key pk are sampled as 𝑠 and 𝑔𝑠 where 𝑠 ← F𝑝 . To encrypt a message 𝑚, one sample a
random 𝑟 ← F𝑝 , and the ciphertext is defined as (𝑚 · pk𝑟 , 𝑔𝑟 ). Given a ciphertext (𝑐1, 𝑐2), one could decrypt it as
𝑐1 · 𝑐−sk2 . This encryption scheme is semantically secure as long as the Decisional Diffie-Hellman (DDH) problem
is hard in G, which states that the following two distributions are computationally indistinguishable

(𝑔,𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) ≈ (𝑔,𝑔𝑎, 𝑔𝑏, 𝑔𝑐 ),

where 𝑎, 𝑏, 𝑐 ← F𝑝 .
We need the following definitions regarding min-entropy and randomness extractor. For a distribution 𝑋 , its
min-entropy is defined as

𝐻∞ (𝑋 ) = − log
(
max
𝑥

Pr[𝑋 = 𝑥]
)
.
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Definition 4 (Randomness Extractor). A function Ext : {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 is called a (𝑘, 𝜀)-strong
randomness extractor if, for all distributions 𝑋 over {0, 1}𝑛 such that 𝐻∞ (𝑋 ) ⩾ 𝑘 , we have

SD
( (

𝑠, Ext(𝑋, 𝑠)
)

;
(
𝑈 {0,1}𝑑 ,𝑈 {0,1}𝑚

) )
⩽ 𝜀,

where the seed 𝑠 is chosen uniformly at random from {0, 1}𝑑 .

For our purpose, we may use the leftover hash lemma [HILL99] as a concrete instantiation of the randomness
extractor.

Definition 5 (Universal Hashing). A family of hash function {ℎ𝑘 : {0, 1}𝜆 → {0, 1}𝛼 }𝑘 , where 𝑘 ∈ {0, 1}𝛽 is
called a universal hashing function family if, for any two distinct inputs 𝑥,𝑦 ∈ {0, 1}𝜆 , it holds that

Pr
𝑘←{0,1}𝛽

[ℎ𝑘 (𝑥) = ℎ𝑘 (𝑦)] = 1/2𝛼 .

Instantiation. We provide a simple instantiation as follows. Given a message space {0, 1}𝜆 , one picks 𝛼 = 𝜆/2
and 𝛽 = 𝜆. A message 𝑥 ∈ {0, 1}𝜆 is treated as a vector (𝑥1, 𝑥2) ∈ F2𝛼 × F2𝛼 . Similarly, the index of the hash
function 𝑘 ∈ {0, 1}𝜆 is also treated as (𝑘1, 𝑘2) ∈ F2𝛼 × F2𝛼 . Define the hash function output as

ℎ𝑘1,𝑘2 (𝑥1, 𝑥2) = 𝑘1 · 𝑥1 + 𝑘2 · 𝑥2,

where the operations are over F2𝛼 . One may verify that it is indeed a universal hash function.
For our purpose, observe that for any key (𝑘1, 𝑘2) ≠ (0, 0) and any hash output 𝜎 ∈ {0, 1}𝜆/2, it holds that

𝐻∞
(
𝑈 {0,1}𝜆

��� (𝑘1, 𝑘2), ℎ𝑘1,𝑘2

(
𝑈 {0,1}𝜆

)
= 𝜎

)
= 𝜆/2.

That is, a uniformly sampled message has at least 𝜆/2 bits of entropy after being conditioned on the hash function
output.

6.2 Our Construction

Our construction based on the ElGamal encryption scheme is in Figure 4.

Efficiency. The efficiency of our threshold encryption scheme inherits the efficiency of the WRSS scheme as the
size of the secret key share is𝑂 (𝑤𝑖 ). Moreover, the partial decryption and reconstruction time is𝑂 (𝑊 ) +poly(𝜆),
where𝑊 is the total weights

∑
𝑖∈𝑆 𝑤𝑖 . This is because every party is computing an 𝑂 (𝑊 )-bit integer, i.e., sk𝑖 · 𝜆𝑖

mod 𝑃𝑆 , which takes 𝑂 (𝑊 ) time and the rest of the reconstruction time is independent of the weight and takes
poly(𝜆) time.
In comparison, if one uses Shamir’s secret sharing with the virtualization approach, every party needs to inter-
polate a degree-(𝑊 − 1) polynomial and evaluate it at 0. This needs at least𝑊 log𝑊 field operations based on
fast Fourier transform techniques, which takes at least 𝑂 (𝑊 · 𝜆) time.

Correctness. Observe that the decryption is correct as long as it finds the correct index 𝑗∗. Furthermore, it might
not find the correct 𝑗∗ if and only if there is a collision for the universal hash function ℎ𝑘 . By the property of the
universal hash function, for any 𝑗 ≠ 𝑗∗, the probability of the collision between 𝑗 and 𝑗∗ is exp(−𝜆). Therefore,
by union bound, the probability of incorrectness is upper-bounded by 𝑛 · exp(−𝜆).
We note that, with a slight modification, we can achieve perfect correctness. That is, the encryptor can ensure
the decryption is correct by picking a “good” universal hash function.

18



Gen(1𝜆, {𝑤1}𝑛𝑖=1,𝑇 , 𝑡). The public key and secret keys are set up as follows.

– Sample (G, 𝑔) ← Setup(1𝜆) and 𝑠 ← F𝑝 .
– Set pk = 𝑠 . Use the WRSS scheme with access structure ({𝑤1}𝑛𝑖=1,𝑇 , 𝑡) to secret share 𝑠 as 𝑠1, . . . , 𝑠𝑛 . Set sk𝑖 = 𝑠𝑖 .

Enc(pk,𝑚). To encrypt a message𝑚, one computes:

– Sample a random exponent 𝑟 ← F𝑝 , a hash function 𝑘 ← {0, 1}𝛽 , and a seed for the randomness extractor
sd← {0, 1}𝑑 .

– The ciphertext is defined as
𝑚 ⊕ Ext(sd, pk𝑟 ), sd, 𝑔𝑟 , 𝑘, ℎ𝑘 (pk𝑟 ) .

𝜇 ← PartialDec(𝑆, sk′, 𝑐). The partial decryption is defined as follows. Note that the authorized set 𝑆 implicitly defined
𝑃𝑆 =

∏
𝑖∈𝑆 𝑝𝑖 and also the Lagrange coefficients 𝜆𝑖 . That is, the unique integer 𝜆𝑖 that satisfies

𝜆𝑖 = 1 mod 𝑝𝑖 and ∀𝑗 ∈ 𝑆 \ {𝑖}, 𝜆𝑖 = 0 mod 𝑝 𝑗 .

Parse the ciphertext 𝑐 as above and the partial decryption outputs(
𝑔𝑟

) (sk′ ·𝜆𝑖 mod 𝑃𝑆 ) .

𝑚 ← Reconstruct({𝜇𝑖 }𝑖∈𝑆 , 𝑐). Given all the partial decryptions {𝜇𝑖 }𝑖∈𝑆 , the reconstruction does the following. It set
𝜇 =

∏
𝑖∈𝑆 𝜇𝑖 and computes

𝜇, 𝜇 ·
(
𝑔𝑟

)−𝑃𝑆 , . . . , 𝜇 · (𝑔𝑟 )−( |𝑆 |−1) ·𝑃𝑆 .

It checks if there exists an 𝑗 such that
ℎ𝑘

(
𝜇 ·

(
𝑔𝑟

)−𝑗 ·𝑃𝑆 ) = ℎ𝑘 (pk𝑟 ) .

If such an 𝑗 does not exist, it output ⊥; otherwise, it finds any such 𝑗∗ and outputs

𝑐 ⊕ Ext
(
sd, 𝜇 ·

(
𝑔𝑟

)−𝑗∗ ·𝑃𝑆 ) .
Fig. 4: Our Efficient Threshold Encryption Scheme

Security. We now show the CPA security of our weighted public-key threshold encryption scheme. In particular,
in the generic group model [Sho97], we shall prove that our scheme satisfies 𝜀-strong CPA-security where 𝜀 =

poly(𝜆)/𝑝min where 𝑝min = min𝑖 𝑝𝑖 . Therefore, as long as the minimum weight is large enough, e.g.,𝑤min ⩾ log2 𝜆,
our threshold encryption scheme satisfies the negl(𝜆)-strong CPA security.
We briefly explain why 𝑝min needs to be large, and we need the generic group model (instead of DDH). Note
that if 𝑤𝑖 is small, the total possibility of the secret share of party P𝑖 is also small 2𝑂 (𝑤𝑖 ) . Therefore, given the
partial decryption output of P𝑖 , one could use an exhaustive search (in time 𝑝𝑖 ) to find the exact 𝑠𝑖 . Therefore, it
is inevitable that the security depends on the minimum 𝑤𝑖 .
Next, our proof relies on the generic group model as our WRSS is non-linear. In particular, for a linear partial
decryption, given 𝑔𝑠𝑖 , one could easily simulate (𝑔𝑟 , (𝑔𝑠𝑖 )𝑟 ), where 𝑟 ← F𝑝 . However, in our case, given 𝑔𝑠𝑖 , it is
not clear how to simulate (𝑔𝑟 , (𝑔𝑟 ) (𝑠𝑖 ·𝜆𝑖 mod 𝑁 ) ). Therefore, we have to rely on the generic group to argue that this
distribution is indistinguishable from two random group elements. We defer the security full proof to Section
A.4.

7 Efficient Weighted Threshold Signature

ECDSA Signature Scheme
Let 𝐺 be the elliptic curve base point which generates a subgroup of some prime order 𝑞. Let 𝐻 (·) be a cryptographic
hash function. We use 𝑎 ×𝐺 to denote the multiplication of curve point 𝐺 by a scalar 𝑎.

– Gen(1𝜆) : Sample signing key as sk← F𝑞 and then set verification key as vk = sk ×𝐺 .
– Sign(sk,𝑚) : Sample random element 𝑘 ← F𝑞 . Compute curve point (𝑟𝑥 , 𝑟𝑦) = 𝑘 × 𝐺 and let 𝑟 = 𝑟𝑥 . Then set

𝜎 = 𝑘−1 · (𝐻 (𝑚) + 𝑟 · sk). Output (𝑟, 𝜎).
– Verify(vk,𝑚, (𝑟, 𝜎)) : Compute (𝑟𝑥 , 𝑟𝑦) = 𝜎−1 · 𝐻 (𝑚) ×𝐺 + 𝜎−1 · 𝑟 × vk. Then, output 1 if and only if 𝑟𝑥 = 𝑟 .
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Fig. 5: ECDSA Signature

We show how to apply our weighted MPC protocol in the context of threshold signatures. More specifically,
we show how to construct a weighted multiparty signing protocol for ECDSA signatures. Such protocol is also
known as weighted threshold signature.

7.1 ECDSA Signatures

We first briefly recall the ECDSA signature scheme in Figure 5.
Following the same general framework as previous approaches [LN18,GG18], our weighted threshold ECDSA
signature scheme starts with a WRSS of the secret signing key sk among all parties. We described this step next.

Weighted Threshold ECDSA Key Generation Functionality FGen (1𝜆,𝑇 , 𝑡) :
FGen takes as input the security parameter 1𝜆 and CRT-based weighted (Ramp) secret-sharing scheme with respect to
reconstruction threshold 𝑇 and privacy threshold 𝑡 . Then it does the following:

1. Sample a secret signing key sk← F𝑞 . Then it sets verification key as vk = sk ×𝐺 .
2. Generate a WRSS of sk : {[sk]𝑖 } ← Share(P,𝑇 , 𝑡, sk) . Then send (vk, {[sk]𝑖 }) to each party 𝑖 .

In order to build a weighted multiparty signing protocol for ECDSA signing functionality, we begin by describing
the ideal signing functionality, step by step as follows:

ECDSA Signing Functionality 𝐹Sign

1. Generate a secret random value 𝑘 ← F𝑞 , and then compute (public) group element 𝑘 ×𝐺 .
2. Parse 𝑘 ×𝐺 as curve point (𝑟𝑥 , 𝑟𝑦).
3. Compute multiplication between inverse of secret random value 𝑘 and secret signing key sk. We denote this by

𝑠 = 𝑘−1 · sk.
4. Compute two scalar multiplications: 𝑘−1 · 𝐻 (𝑚) and 𝑟𝑥 · 𝑠 .
5. Add up the above two values and obtain 𝜎 .

Our weighted MPC protocol will proceed as follows: For the first step of signing, the secret random value 𝑘 shall
be contributed by all parties. More specifically, each party 𝑖 will sample its own secret random value 𝑘𝑖 , broadcast
the group element 𝑘𝑖 ×𝐺 , and then distribute the WRSS of 𝑘𝑖 among all parties. This allows each party to obtain
a share of the combined random value 𝑘 =

∑
𝑖∈[𝑛] 𝑘𝑖 as well as the group element 𝑘 × 𝐺 =

∑
𝑖∈[𝑛] 𝑘𝑖 × 𝐺 . The

subsequent steps naturally fit into our MPC protocol: step 2 only incurs public operations, and step 5 only incurs
addition, both of which can be computed locally by every party. Step 3 involves first computing the inversion 𝑘−1

and then multiplying it with sk. Using the inversion protocol as suggested in [Bea92], these operations can be
handled via 𝐹Mult and 𝐹Open. Finally, step 4 involves scalar multiplications. While in our weighted MPC protocol
parties need to run degree reduction to keep the integer value of share small for subsequent multiplications; here
each party can perform scalar multiplication locally since there are no multiplications afterward.
We describe our weighted multiparty ECDSA signing protocol which realizes the ideal ECDSA signing func-
tionality in Figure 6. We split our signing protocol into two phases: a pre-signing protocol which only depends
on the shares of the signing key, followed by a non-interactive signing protocol which depends on the actual
message.

Correctness and Security Both correctness and security of our weighted multiparty ECDSA signing protocol
follow from these of weighted MPC protocol. The only catch is that we also need to simulate the value 𝑘𝑖 × 𝐺
sent by each honest party. However, since those values form an additive sharing of 𝑘 ×𝐺 , they can be simulated
given only 𝑘 ×𝐺 .
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Weighted Threshold ECDSA Signing Protocol
Let there be a total of 𝑛 parties where each party 𝑖 has base 𝑝𝑖 , its secret input [sk]𝑖 , public input vk and𝑚. Let 𝑆 ⊆ [𝑛]
be the subset of parties participating in the weighted threshold ECDSA signing protocol and let𝑊 be the total weight
of these parties. We will rely on the following protocols: (𝐹Random, 𝐹Mult, 𝐹Open).

Pre-signing Phase

1. Parties generate CRT shares of random values {[𝛾]𝑖 }𝑖∈𝑆 ← 𝐹Random (𝛾 =
∑
𝑖∈𝑆 𝛾𝑖 ), and {[𝑘]𝑖 }𝑖∈𝑆 ← 𝐹Random (𝑘 =∑

𝑖∈𝑆 𝑘𝑖 ). Each party 𝑖 also broadcasts 𝑘𝑖 ×𝐺 .
2. Parties compute {[𝛿]𝑖 }𝑖∈𝑆 = 𝐹Mult ({[𝛾]𝑖 }𝑖∈𝑆 , {[𝑘]𝑖 }𝑖∈𝑆 ), and {[𝜃 ]𝑖 }𝑖∈𝑆 = 𝐹Mult ({[𝛾]𝑖 }𝑖∈𝑆 , {[sk]𝑖 }𝑖∈𝑆 ).
3. Parties compute 𝛿 = 𝐹Open ({[𝛿]𝑖 }𝑖∈𝑆 )). Then they compute 𝑅 =

∑
𝑖∈𝑆 𝑘𝑖 ×𝐺 and set curve point 𝑅 = (𝑟𝑥 , 𝑟𝑦)

4. Each party 𝑖 computes [𝜎0]𝑖 = 𝛿−1 · [𝛾]𝑖 and [𝜎1]𝑖 = 𝑟𝑥 · 𝛿−1 · [𝜃 ] .
Note that [𝜎0]𝑖 is a share of 𝑘−1 and [𝜎1]𝑖 is a share of 𝑘−1 · sk.

5. Each party 𝑖 saves the values (𝑟𝑥 , [𝜎0]𝑖 , [𝜎1]𝑖 ).

Signing Phase

1. Each party 𝑖 locally computes [𝜎]𝑖 = 𝐻 (𝑚) · [𝜎0]𝑖 + [𝜎1]𝑖 .
2. Parties compute 𝜎 = 𝐹Open ({[𝜎]𝑖 }𝑖∈𝑆 )). The signature of𝑚 is (𝜎, 𝑟𝑥 ).

Fig. 6: Weighted Threshold ECDSA Signing

Efficiency. The aforementioned pre-signing phase involves three rounds. However, instead of having the parties
perform a multiplication protocol on [𝛾]𝑖 · [𝑘]𝑖 and then open the result, we can directly let the parties open the
multiplication of their local shares, thus bringing the pre-signing phase to two rounds. The communication cost
per party in the pre-signing phase is 𝑂 (𝑊 + 𝜆).
The online signing phase is non-interactive. Each party 𝑖 broadcasts a share of final signature [𝜎]𝑖 which has
size 𝑂 (𝑤𝑖 ).
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DIK+08. Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam Smith. Scalable multiparty com-
putation with nearly optimal work and resilience. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 241–261. Springer, Heidelberg, August 2008. 4
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HILL99. Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator from any
one-way function. SIAM J. Comput., 28(4):1364–1396, 1999. 18

HM14. Lein Harn and Fuyou Miao. Weighted secret sharing based on the chinese remainder theorem. Int. J. Netw. Secur.,
16(6):420–425, 2014. 4

IB05. Sorin Iftene and Ioana Boureanu. Weighted threshold secret sharing based on the chinese remainder theorem.
Sci. Ann. Cuza Univ., 15:161–172, 2005. 2, 4, 6

KRDO17. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure proof-
of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 357–388. Springer, Heidelberg, August 2017. 2

LN18. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key generation and ap-
plications to cryptocurrency custody. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 1837–1854. ACM Press, October 2018. 20

LV18. Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. In Ilias Diakonikolas,
David Kempe, and Monika Henzinger, editors, 50th ACM STOC, pages 699–708. ACM Press, June 2018. 6

Mig83. Maurice Mignotte. How to share a secret? In Thomas Beth, editor, EUROCRYPT’82, volume 149 of LNCS, pages
371–375. Springer, Heidelberg, March / April 1983. 2, 3, 4, 6, 11

22

https://eprint.iacr.org/2021/916
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A Missing Proofs

A.1 Proof of Claim 1

Proof. Suppose 𝐿 = 𝑀 · 𝑞 + 𝑟 for some 0 ⩽ 𝑟 < 𝑀 . Let 𝐿′ = 𝑀 · 𝑞. We have

SD ((𝑠 + 𝑝 ·𝑈𝐿) mod 𝑀 , 𝑈𝑀 )
⩽SD ((𝑠 + 𝑝 ·𝑈𝐿) mod 𝑀 , (𝑠 + 𝑝 ·𝑈𝐿′) mod 𝑀) + SD ((𝑠 + 𝑝 ·𝑈𝐿′) mod 𝑀 , 𝑈𝑀 ) (Triangle inequality)
⩽SD (𝑈𝐿,𝑈𝐿′) + SD ((𝑠 + 𝑝 ·𝑈𝐿′) mod 𝑀 , 𝑈𝑀 ) . (Data processing inequality)

Observe that
SD ((𝑠 + 𝑝 ·𝑈𝐿′) mod 𝑀 , 𝑈𝑀 ) = 0

since 𝑝 is coprime with 𝑀 and 𝐿′ is a multiple of 𝑀 . On the other hand,

SD (𝑈𝐿,𝑈𝐿′) = 𝑟/𝑁 < 𝑀/𝑁 .

This completes the proof.

A.2 Proof of Lemma 1

Proof. We first truncate 𝑁 to be a multiple of 𝑝 . Suppose 𝑁 = 𝑁 ′ + 𝑟 ′, where 𝑁 ′ = 𝑚 · 𝑝 and 0 ⩽ 𝑟 ′ < 𝑝 . Note
that for any 𝑟 ,

SD ((𝑈𝑁 |𝑈𝑁 mod 𝑝 = 𝑟 ) , (𝑈𝑁 ′ |𝑈𝑁 ′ mod 𝑝 = 𝑟 )) ⩽ 𝑝/𝑁 .

Hence, it suffices to prove

SD
((
𝐷 +𝑈𝑁 ′

��� 𝑈𝑁 ′ mod 𝑝 = 𝑟2

)
,

(
𝑈𝑁 ′

��� 𝑈𝑁 ′ mod 𝑝 = 𝑟1 + 𝑟2

))
⩽ 𝑀/𝑁 .

Define the set 𝑆 as
𝑆 = {𝑥 | 𝑀 + 1 ⩽ 𝑥 < 𝑁 ′, 𝑥 mod 𝑝 = 𝑟1 + 𝑟2}

Observe that for all 𝑥 ∈ 𝑆 , conditioned on 𝑈𝑁 ′ mod 𝑝 = 𝑟2, we have

Pr[𝐷 +𝑈𝑁 ′ = 𝑥] =
∑︁

𝑦∈supp
Pr[𝐷 = 𝑦] · Pr[𝑈𝑁 ′ = 𝑥 − 𝑦] =

𝑀∑︁
𝑦=1

Pr[𝐷 = 𝑦] · 𝑝
𝑁 ′

=
𝑝

𝑁 ′
.

Moreover, conditioned on 𝑈𝑁 ′ mod 𝑝 = 𝑟1 + 𝑟2, Pr[𝑈𝑁 ′ = 𝑥] = 𝑝

𝑁 ′ . Therefore, the statistical distance is strictly
bounded by the maximum probability that the distribution 𝐷 + 𝑈𝑁 ′ and 𝑈𝑁 ′ falls outside the set 𝑆 . Since the
probability mass of the set 𝑆 is already

𝑝

𝑁 ′
· |𝑆 | = 𝑝

𝑁 ′
· 𝑁
′ −𝑀
𝑝

= 1 −𝑀/𝑁 ′.

This concludes that the statistical distance is at most 𝑀/𝑁 .

A.3 Security Proof for Weighted MPC Protocol

Now, we argue the security of our weighted MPC protocol. In particular, the simulator S does the following.

– Preprocessing: The simulator simulates the protocol honestly. There is no simulation error for this.
– Input Sharing: For any malicious party 𝑖 ∈ 𝐼 , the simulator samples a fresh secret sharing of its input 𝑥𝑖 .

For any honest party 𝑗 ∈ 𝐼 , the simulator samples a fresh secret sharing of 0 as the secret share that the
adversary receives. The simulation error in this step is 2−𝜆 since the adversary corrupts at most 𝑡 weights
and the WRSS is sampled with threshold 𝐿 = 2𝑡+𝜆 . By the security of the WRSS, the statistical distance
between the simulated view and the real view is at most 2−𝜆 .

– Addition: The simulator locally computes the addition of the secret shares of the adversary. There is no
simulation error in this step.
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– Negation: The simulator locally computes the negation of the secret shares of the adversary. There is no
simulation error in this step.

– Multiplication 𝑥 ·𝑦: The simulator locally computes the secret share [𝑥]𝑖 · [𝑦]𝑖 + [𝑟 ]1𝑖 . Recall that 𝑟 = 𝑟1+· · ·+
𝑟𝑛 is the summation of randomness from every party. For the malicious party 𝑟𝑖 , the simulator knows the
corresponding integer 𝑅𝑖 . For all honest parties 𝑟𝑖 , it samples the integer 𝑅𝑖 honestly except for one honest
party, say party P1. It samples 𝑅1 as follows. It picks a random element 𝑟 ′ ← F and picks a random integer
𝑅′1 = 𝑟 ′ + 𝑢 · 𝑝0 where 𝑢 ← {1, . . . , 22𝑡+5𝜆} conditioned on that

∀𝑖 ∈ 𝐼 , 𝑅′1 mod 𝑝𝑖 = [𝑥]𝑖 · [𝑦]𝑖 + [𝑟1]1𝑖 .

Finally, it computes
𝑅′ = 𝑅′1 + 𝑅2 + · · · + 𝑅𝑛 .

It proceeds to simulate the view of the adversary by using 𝑅′ mod 𝑝𝑖 as party P𝑖 ’s message in the degree
reduction protocol. It then subtracts 𝑟 ′ from the secret shares [𝑟 ]0 as the sharing of 𝑥 · 𝑦.
Next, we argue that the simulation error is exp(−𝜆). Note that the adversary’s view in the degree reduction
protocol is uniquely determined by the reconstructed integer 𝑅′. Hence, we directly argue that the distri-
bution of 𝑅′ is exp(−𝜆)-close to the distribution of the integer associated with [𝑥] · [𝑦] + [𝑟 ]. In particular,
it suffices to argue that the distribution of 𝑅′1 is exp(−𝜆)-close to the distribution of the integer associated
with [𝑥] · [𝑦] + [𝑟1]1.
Now, this is exactly what Lemma 1 proves. That is, the distribution 𝐷 describes the distribution of the integer
associated with [𝑥] · [𝑦]. Due to our invariant, both integers 𝑋 and 𝑌 are at most poly(𝜆) · 2𝑡+2𝜆 . Hence,
the integer associated with [𝑥] · [𝑦] is some distribution over the range poly(𝜆) · 22𝑡+4𝜆 . The distribution𝑈𝑁

describes the distribution of 𝑅1 = Lift( [𝑟 ]1) and 𝑅′1, which is uniformly distributed over the range 22𝑡+5𝜆 .
Lemma 1 implies that the simulation error here is bounded by

poly(𝜆) · 22𝑡+4𝜆

22𝑡+5𝜆 = exp(−𝜆).

– Output Reconstruction: The simulator locally computes [out]𝑖 + [0]𝑖 mod 𝑝𝑖 . It proceeds to simulate the
reconstruction message by simulating the reconstructed integer. This is entirely analogous to the multipli-
cation gate case. Recall that the sharing [0] is the summation of all parties’ share of [0]. The simulator picks
one honest party, say P1, and proceeds to simulate the integer associated with [01] + [out]. This is again by
our integer masking lemma (Lemma 1). Note that the integer associated with [out] is of range poly(𝜆) ·2𝑡+2𝜆
and [01] is sampled by picking an integer over range 2𝑡+3𝜆 . Hence, the simulation error in this step is at most

poly(𝜆) · 2𝑡+2𝜆

2𝑡+3𝜆
= exp(−𝜆).

Overall, the simulation error of the simulator is at most exp(−𝜆), which completes the proof.

A.4 Security Proof for Weighted Threshold ElGamal Encryption Scheme

Proof. In Shoup’s generic group model [Sho97], there is an injective labeling oracle 𝜉 : F𝑝 → {0, 1}𝛼 that maps
an exponent 𝑟 to the label of the group element 𝑔𝑟 . Additionally, there is an oracle 𝐹 : {0, 1}𝛼 × {0, 1}𝛼 → {0, 1}𝛼
that maps (𝑢, 𝑣) to 𝜉 (𝑔𝑎+𝑏) if 𝑢 = 𝜉 (𝑔𝑎) and 𝑣 = 𝜉 (𝑔𝑏). That is, 𝐹 is the oracle that helps compute the group
operations on the labels. Now, consider a generic adversary A that plays the CPA security game. Without loss
of generality, we may assume that all the queries thatA asks to 𝐹 are on labels that it receives from 𝜉 , since we
may assume that the range {0, 1}𝛼 is large enough such that it is exponentially hard to guess a valid label.
Our simulation strategy is as follows. For all the group elements in the security game, instead of querying 𝜉 ,
we shall give a random string from {0, 1}𝛼 as its label. This includes the following queries. For every partial
decryption query to O, it receives

𝑔𝑟 ,

{
(𝑔𝑟 ) (𝑠𝑖 ·𝜆𝑖 mod 𝑃𝐴)

}
𝑖∈𝐵

,

where 𝑟 is freshly sampled for each query. In the setup and challenge ciphertext, we also sample 𝑔𝑠 , 𝑔𝑟
∗
, 𝑔𝑟

∗ ·𝑠 .
Therefore, all the queries thatA makes to 𝐹 will be a linear combination of these group elements. Now ifA asks
a linear combination that has not been queried before, we answer this query with a random label. Otherwise,
we answer it with the same label, consistent withA’s view. This simulated view is identically distributed as the
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real view except when there is a collision on the exponent. For instance, if it happens that 𝑠 = 𝑟 ∗, then 𝑔𝑠 and
𝑔𝑟
∗ should have the same label in the real view, but in our simulated view, they have different labeling. We next

argue that the collision probability is small. Consider any linear combination of these group elements. Note that
if there exists an 𝑟 such that the coefficient on 𝑟 is non-zero, then the probability of collision is 1/𝑝0. This is
because 𝑟 is a random exponent. Therefore, it suffices to argue that the probability that the adversary may find
a set of 𝛽𝑖 such that

𝛽0 · 1 +
∑︁
𝑖∈𝐵

𝛽𝑖 · (𝑠𝑖 · 𝜆𝑖 mod 𝑃𝐴) = 0

is small. Note that since 𝐵 ∪ 𝑆 is unauthorized, {𝑠𝑖 }𝑖∈𝐵 are uniformly random by the security of the WRSS.
Therefore, for any such linear combination 𝛽𝑖 , the probability that 𝑠𝑖 satisfies the above equation is at most
1/𝑝min. Since the adversary makes some 𝑞 = poly(𝜆) queries, by a union bound, the probability that any two
of those queries cause a collision is at most 𝑞2/𝑝min = poly(𝜆)/𝑝min. In conclusion, if we simulate all the group
elements in the security game as a random group element, this simulated view is at most poly(𝜆)/𝑝min far from
the real view.
Finally, in this simulated view, the choices bit 𝑏 is hidden from the adversary because Ext(sd, 𝑔𝑟 ∗ ·𝑠 ) is statisti-
cally close to uniformly random by the property of the randomness extractor. This completes the proof that our
threshold encryption scheme is poly(𝜆)/𝑝min-strong CPA secure.
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