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Abstract. We provide an expressive framework that allows analyzing
and generating provably secure, state-of-the-art Byzantine fault-tolerant
(BFT) protocols. Our framework is hierarchical, including three layers.
The top layer is used to model the message pattern and abstract key
functions on which BFT algorithms can be built. The intermediate layer
provides the core functions with high-level properties su�cient to prove
the security of the top-layer algorithms. The bottom layer carefully de-
�nes predicates according to which we o�er operational realizations for
the core functions. All three layers in our framework are extensible and
enable innovation. One may modify or extend any layer to theoretically
cover all BFT protocols, known and unknown. Indeed, unlike prior BFT
frameworks, our framework can analyze and recast BFT protocols in an
exceedingly �ne-grained manner. More importantly, our framework can
readily generate new BFT protocols by simply enumerating the parame-
ters in the framework. In this paper, we show that the framework allows
us to fully specify and formally prove the security for 23 BFT proto-
cols, including protocols matching HotStu�, Fast-HotStu�, Jolteon, and
Marlin, and among these protocols, seven new protocols outperforming
existing ones or achieving meaningful trade-o�s among various perfor-
mance metrics.

1 Introduction

Byzantine fault tolerance (BFT) is the only generic software approach that tol-
erates arbitrary failures and malicious attacks. BFT is now known as the core
building block for permissioned blockchains and is increasingly used in permis-
sionless blockchains. As a classic primitive that regained its prominence in recent
years, a myriad of BFT protocols has been proposed. The situation, together
with the common belief that there is no one-size-�ts-all BFT, unfortunately,
quickly turns into a nightmare for scientists, practitioners, and especially for new
learners. Indeed, people would have to compare and implement many protocols
to convince others their protocols are superior. Reviewers, for instance, would
have a hard time telling if a BFT protocol is both valid and novel. Meanwhile,
practitioners are easily overwhelmed by the increasing number of protocols and
implementations. The situation is only exacerbated by various other issues, such
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Fig. 1: The three layers of BG framework.

as the re-invention of existing techniques, subtle design errors (e.g., [1, 11, 31]),
and insecure extensions and optimizations to existing protocols (see [11]).

At �rst glance, the problems discussed above appear inevitable: the BFT pro-
tocols are notoriously complex and the BFT techniques are inherently versatile.
This paper, however, proposes a new, "uni�ed" framework for BFT replication.
First, our framework is highly expressive, capturing and recasting several exist-
ing protocols. In all cases, we gain in modularity and simplicity. More important,
unlike prior frameworks focusing primarily on explaining existing protocols, our
framework can systematically generate novel BFT protocols that outperform ex-
isting protocols or o�er interesting trade-o�s among key metrics, all with rigor-
ous proofs of security. In this work, we study leader-based partially synchronous
BFT. As illustrated in Fig. 1, our BG framework is hierarchical and includes
three layers. Each layer is extensible.

Layer 1. The top layer models the message pattern (e.g., all-to-all communi-
cation, one-to-all communication, chained communication) and abstracts core
functions on which BFT protocol can be built. The layer also models some
key parameters, such as thresholds. As in prior works, our algorithms have a
normal-case protocol and a view change protocol. We de�ne two core functions:
the fsb() and vv() functions for the epicenter of partially synchronous BFT�
the view change protocol. As we show in layer 2 and layer 3, the two functions
are crucial to the correctness of the protocols and enabling innovation.

The syntax we use to describe Layer 1 algorithms has a circumscribed focus:
BFT replication over graph of nodes [31] formalized in HotStu�, where safety is
speci�ed through voting and commit graph rules, and liveness is modeled through
extending graph with new nodes. HotStu� is a 3-phase (7-step) BFT protocol
with optimal linear communication complexity even during view changes. As in
HotStu�, all the instantiations in our framework support the chained (pipelined)
optimization and the leader rotation strategy.

Layer 2. The intermediate layer speci�es the core functions and security prop-
erties which are su�cient to prove the security of our Layer 1 algorithms. In
this layer, we reduce the safety and liveness of a BFT protocol to the correct-
ness of the properties of the core functions, making it easy to reason about
the correctness of the protocol. We introduce a dichotomy for BFT protocols:
BG[x, z] and BG[x, y, z]. BG[x, z] models protocols without lock state, where the
view change rules rely purely on the information collected in the view change
messages. BG[x, y, z] represents protocols with lock state, where the view change
rules depend on both the information collected during view changes and on the
block locked in the y-th phase of the normal case (for some y < z).
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protocol predicates replicas
message

steps
authenticator complexity message complexity

pattern normal-case view change normal-case view change

1-phase
FaB5[23] � 5f + 1 AtoA 2 O(n2) O(n3) O(n2) O(n2)

BG[1, 1] DP1 5f + 1 1toA 3 O(n) O(n)/O(n2) O(n) O(n)

2-phase

PBFT[12] � 3f + 1 AtoA 3 O(n2) O(n3) O(n2) O(n2)

Fast-Hotstu�[20] � 3f + 1 1toA 5 O(n) O(n2) O(n) O(n)

BG[1, 2] DP3 3f + 1 1toA 5 O(n) O(n2) O(n) O(n)

BG[1, 1, 2] DP1 5f + 1 1toA 5 O(n) O(n) O(n) O(n)

BG[1, 1, 2] DP2 4f + 1 1toA 5/7 O(n) O(n) O(n) O(n)

BG[1, 1, 2] DP5 3f + 1 1toA 5 O(n) O(n)/O(n2) O(n) O(n)

BG[1, 1, 2]∗ DP5 3f + 1 1toA 5/9 O(n) O(n) O(n) O(n)

3-phase
Hotstu�[31] � 3f + 1 1toA 7 O(n) O(n) O(n) O(n)

BG[1, 2, 3] DP3 3f + 1 1toA 7 O(n) O(n) O(n) O(n)

Table 1: Representative BG BFT protocols generated using BG[x, z] and BG[x, y, z]
for z ≤ 3. One can have many instantiations for the same parameters (e.g., BG[1, 1, 2])
by using di�erent dominant predicates. AtoA denotes all-to-all communication and
1toA represents one-to-all or all-to-one (linear) communication.

Layer 3. The bottom layer carefully de�nes dominant predicates of the core
functions, according to which we provide operational realizations. In this layer,
we show that by de�ning di�erent concrete rules of the core functions (i.e., the
dominant predicates) that satisfy the security properties de�ned in layer 2, one
could realize the core functions in a novel way, enabling the generation of new
protocols. With the above paradigm, we provide �ve such dominant predicates
(DP1 to DP5), each of which can lead to novel BFT protocols. With our framework
speci�ed and key theorems proved, we can generate BFT protocols by simply
enumerating the parameters.

Instantiations. For each dominant predicate, one could enumerate the param-
eters x, y, and z for BG[x, z] and BG[x, y, z] (z ≤ 3) to generate BFT protocols.
In total, we obtain from our framework 23 candidate BFT protocols. Among
them, seven are strictly better than others, improving some existing protocols
in at least one aspect, as illustrated in Table 3.

For 3-phase protocols, BG[1, 2, 3] with the predicate DP3 is similar to HotStu�
(with only minor di�erences) and achieves the same complexity as HotStu�.

For 2-phase protocols, BG[1, 2] with DP3 is similar to Fast-HotStu� [20] and
Jolteon [16], both of which can be viewed as a 2-phase version of HotStu�. Be-
sides, we generate three novel protocols. BG[1, 1, 2] with DP1 requiring 5f + 1
replicas has linear authenticator complexity and message complexity but has
one less phase (two steps) than HotStu�. BG[1, 1, 2] with DP2 requiring 4f + 1
replicas has linear authenticator complexity and message complexity. The other
BG[1, 1, 2] instantiation for DP5 with n ≥ 3f+1 replicas has optimal complexities
for both the normal-case and the view change. The protocol has O(n) authen-
ticator complexity during view changes by default and O(n2) complexity only
in rare cases. The protocol strictly outperforms Fast-HotStu�, especially when
a rotating leader strategy is used. We also show how DP5 leads to Marlin [30]
(BG[1, 1, 2]∗), a BFT protocol with linearity and only 2 phases in normal cases.
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As a 1-phase protocol, BG[1, 1] with DP1 improves FaB5 [23] in terms of
all complexity metrics for both normal case and view change. BG[1, 1] has 3
steps (the minimum number of steps that is derived from our framework). Both
BG[1, 1] and FaB5 assume n ≥ 5f + 1.

Besides, our framework can capture protocols with weak liveness (in DP4), a
property achieved by some existing protocols (e.g., Tendermint [8], Casper [9]).
The notion is known as a "bad practice." We show that, by adopting another
dominant predicate (DP5), we could transform protocols with weak liveness to
ones with optimistic responsiveness.
Discussion. While our work is not the �rst to propose a generic framework for
fault-tolerant distributed computing, our framework goes far beyond previous
approaches. The HotStu� framework focuses on syntactically a casting of four
existing protocols and one of their own. Regarding Byzantine agreement proto-
cols, a number of generic algorithms have been proposed for both benign failures
(e.g., [25, 18, 22]) and Byzantine failures [28, 26, 19, 24]. Our framework has much
more �ned-grained modeling on various parameters, systematically leading to a
large number of interesting and cleanly speci�ed protocols, including the state-
of-the-art BFT protocols with linearity. We believe our framework is right in the
sweet spot of what is required for an e�cient BFT framework.

2 System Model

BFT Model. We consider a BFT system consisting of n replicas, where f
of them may fail arbitrarily (Byzantine failures). Let C be the set of correct
replicas in the system. We consider the partially synchronous model [15], where
there exists an unknown global stabilization time (GST) such that after GST,
messages sent between two correct replicas arrive within a �xed delay.
Cryptographic building blocks. We use a (t, n) threshold signature scheme
consisting of the following algorithms (tgen, tsign, tcombine, tverify) [27, 7]. tgen
outputs a system public key and a vector of n private keys. A partial signature
signing algorithm tsign takes as input a message m and a private key ski and
outputs a partial signature σi. A combining algorithm tcombine takes as input
pk, a message m, and a set of t valid partial signatures, and outputs a signature
σ. A signature veri�cation algorithm tverify takes as input pk, a message m, and
a signature σ, and outputs a bit. We also use a collision-resistant hash function
hash mapping a message of arbitrary length to a �xed-length output.

3 Syntax and Properties for BFT over Graphs

The �rst layer in our BG framework to be described extends the syntax of the
BFT replication over graphs (trees) of nodes [31]. A leader-based, partially syn-
chronous BFT protocol has a normal-case protocol and a view change protocol
(triggered periodically or when the leader appears faulty). The BFT protocols
proceed in a succession of views numbered by monotonically increasing view
numbers. The view number maintained by a replica is denoted as cview. Each
view has a unique leader. Every replica can obtain the identity of the leader by
calling Leader(cview). Each replica stores a tree of nodes, as in Fig. 2. Each
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node is also known as a block, denoted as b. We use nodes and blocks inter-
changeably. A block contains a batch of client requests req, a parent link pl,
and their metadata. A parent link for b is a unique identi�er to its parent node,
e.g., a hash digest of a parent node. A branch led by a given block b is the path
from b all the way to the root of the tree. The metadata for a block b include
height and view: height for b is the number of blocks on the branch led by b,
while view for b is the view during which b is added to the tree. The view for
b is equal to or greater than that of the parent block of b. Two branches are
con�icting, if neither one is an extension of the other. Two nodes are con�icting
if the branches led by them are con�icting. In BFT, a monotonically growing
branch becomes committed. Each time a block extends the branch led by its
parent block. A block b′ is an extension of b if b is on the branch led by b′.

An example is illustrated in Fig. 2. b1 is committed in view 1, while b2 and
b3 are committed in view 2. A branch led by b2 is the path from b2 to b0. b3 is
an extension of b2 and also an extension of b1. The height of b3 is 4, equal to the
depth of the tree. The parent link for a block b2 is a hash of its parent block b1.
b3 and d3 are con�icting, as the branches led by them are con�icting.

Note that our syntax is more general than that of HotStu�. In HotStu�,
the leader rotates and each replica proposes only one block in its turn. In our
syntax, a leader may propose one block before it is replaced (if the leader rotation
strategy is used) or many blocks (as in conventional BFT protocols).

We recast the safety de�nition for BFT replication in the language of graph
of blocks. For liveness, we adopt the notion of optimistic responsiveness [31].

− Safety I: If b and d are con�icting blocks, then they cannot be both committed in
the same view, each by at least a correct replica.

− Safety II: If b and d are con�icting blocks, then they cannot be committed in
di�erent views, each by at least a correct replica.

− Optimistic responsiveness: After GST, any correct leader needs just to wait for
at most n − f responses to guarantee that it can create a proposal that will make
progress.

4 BG Framework: Layer 1

4.1 High-Level Overview

As illustrated in Fig. 3, the normal-case protocol in our framework consists of z
successive phases, where z ≤ 3 and each phase involves only linear communica-
tion. After the z phases, there is a commit step that involves only a best-e�ort
broadcast. Among the z phases, the 1st phase deserves a careful speci�cation,
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as replicas need to decide whether to vote for a block. The view change protocol
is triggered periodically or when the current leader is suspected to be faulty. As
shown in Fig. 3, the new leader collects new-view messages signaling a view
change, selects a safe branch using a fsb() function, extends the branch, and
broadcasts the new block in a view-update message. Each replica veri�es the
new block by executing the vv() function. Replicas then switch to the normal-
case operation.

4.2 Data Structures

Messages. We use ⟨type, view, height, block, justify⟩ to denote the messages
sent among replicas. Some �elds can be set as ⊥. For the normal-case operation,
m.type ∈ {msg-j , vote-j , commit}, where j ∈ [1..z] is the phase number. As
shown in Fig. 3, the j-th phase involves two steps: the leader broadcasts a msg-j
message and replicas votes for it with a vote-j message. m.height is set as the
height of m.block. m.justify is an optional �eld that the leader uses to carry
a quorum certi�cate QC (to be described shortly) in msg-j messages. For the
view change protocol, m.type∈{new-view, view-update}. When m.type=
new-view, m.block and m.height are set as ⊥. When m.type=view-update,
m.block is an associated block and m.height is the height of the block. In both
cases, m.justify contains information needed for a correct view change.
Quorum certi�cates. A quorum certi�cate for a message (de�ned above) is a
data type that combines a collection of signatures for the same tuple signed by
t < n signatures. We use a (t, n) threshold signature to reduce the authenticator
complexity. In this setting, replicas run the tsign algorithm to generate partial
signatures for a message. One can run the tcombine algorithm to combine the t
partial signatures into a threshold signature. A quorum certi�cate for a message
m is valid if the threshold signature is valid. To distinguish the authenticator
using partial signatures, we let qcVote(m) denote the output of the tsign al-
gorithm for m. Otherwise, we implicitly use a signature or a threshold signature
for authentication. To hide the implementation detail, let qcCreate(m) be a
quorum certi�cate generated for m.

For di�erent messages, we may use di�erent thresholds for their quorum
certi�cates. The quorum certi�cate for a vote-j message m is denoted by QCj

and also by b.QCj where m.block = b. b.QCj is also called a QCj for b. The
threshold for QCj is set as Tj . For any quorum certi�cate qc, if qc is a QC for
block b, we let qcBlock(qc) denote b.
Rank of QCs and blocks. We introduce a notion of rank for QCs and blocks,
which is similar to that de�ned in [16]. For each block b, rank(b) depends on
b.view and b.height. We only care if the rank of a block is higher than that of
another one. Blocks are compared lexicographically by rank (i.e., �rst by the
view number, then by the height). In addition, the rank of b.QCj is de�ned the
same as that of block b.
Local state at replicas. Each replica maintains several state parameters, in-
cluding the current view number cview, the highest quorum certi�cates (received
in di�erent phases) QC1, · · · , QCz, and last voted block vb. In protocols with
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Algorithm 1: Normal-case protocol for pi
1 localstate: the current view cview, the last voted block vb, the locked block lb (in

BG[x, y, z]), certi�cates QC1, QC2, · · · , and QCz .
2 parameters: thresholds for di�erent voting phases T1, T2, · · · , and Tz .
3 As a leader: //Leader(cview) = pi

4 - propose a block b extending qcBlock(QCx), broadcast ⟨msg-1⟩ message m for b, where
m.justify is QCx

5 • upon receiving Tj signed ⟨vote-j⟩ messages for block b: //j ∈ [1, z)
6 - propose b.QCj , update QCj ← b.QCj

7 - broadcast a ⟨msg-(j+1)⟩ message m for b, where m.justify is QCx

8 • upon receiving Tz signed ⟨vote-z⟩ messages for block b′:
9 - propose b.QCz , update QCz ← b.QCz

10 - broadcast a commit message m for b, where m.justify is QCz , propose another block
11 As a replica:
12 • upon receiving a valid ⟨msg-1⟩ message for a block b: //rank(b)>rank(vb)
13 - update vb← b, QCx ← m.justify //vote for a new block
14 - send a ⟨vote-1⟩ message for b to Leader(cview)
15 • upon receiving a valid ⟨msg-j⟩ message m for b: //j ∈ (1, z)
16 - update QCj−1←m.justify, send a ⟨vote-j⟩ message for b to Leader(cview)
17 • upon receiving a valid ⟨msg-(y+1)⟩ for b in BG[x, y, z]: update lb← b
18 • upon receiving a valid commit message m for b:
19 - update QCz ← m.justify, commit b //execute the requests in b in order
20 - wait for a ⟨msg-1⟩ message for another block

lock state, replica need to store locked block lb. criticalState of a replica contains
several parameters in local state, which contains information replicas send in the
new-view messages.

Note that the data structures for messages and quorum certi�cates are more
general than those de�ned in HotStu�. In our framework, we introduce a system
parameter flag. The flag is used to specify whether vb should be taken into
account in selecting the safe branch during view changes.

4.3 Normal-Case Protocol (Algorithm 1)

In the normal-case protocol, there are z phases. Each phase includes two steps
with linear communication.

▷ In phase 1, the leader extends a branch in the tree it maintains with a new block
b, and broadcasts a msg−1 message m for b to all replicas, where m.justify
is set to QCx. Upon receiving m, each replica veri�es whether the rank of b is
larger than that of the last voted block vb. If so, the replica updates its QCx

with m.justify and then sends the leader a signed vote−1 message for b.

▷ In phase 2 to phase z, replicas repeat the same procedure. In particular, in
the j-th phase, after collecting Tj−1 matching threshold signature shares for b,
the leader combines them into a b.QCj−1, broadcasts b.QCj−1 in a msg−j to
all replicas and enters the next phase. Upon receiving a valid msg-j message, a
replica updates its QCj−1 and sends the leader a signed vote-j message for b.
In BG[x, y, z], if a replica voted for a block in the (y + 1)-th phase, it sets its lb
to the block at the same time.

▷ In the commit step, the leader broadcasts b.QCz in a commit message. Upon
receiving a valid commit essage, each replica commits the corresponding block.



8 Xiao Sui, Sisi Duan, and Haibin Zhang

Algorithm 2: View change protocol for pi
1 criticalstate: contains many variables in localstate speci�ed in layer 3.
2 parameters: thresholds T1, T2, · · · , and Tz , and the view change threshold T .
3 • upon timeout:
4 - update cview ← cview + 1
5 - send the criticalState in a new-view message to Leader(cview)
6 As a new leader: //Leader(cview) = pi

7 • upon receiving a set M of T signed new-view messages for view cview:

8 - (b′.π)← fsb(M), propose a block b extending b′

9 - broadcast a view-update message m for b, where m.justify is π
10 - (flag = 1): : vote for b but does not update localstate
11 wait until b.QCx is collected:
12 - update QCx ← b.QCx, propose a block b1 extending b
13 - broadcast b1 in a ⟨msg-1⟩ message m, where m.verify is b.QCx

14 - switch to normal case operation
15 As a replica:
16 • upon receiving a view-update essage m from Leader(cview) for a block b:
17 - if vv(m,·)=0 in BG[x, z] or vv(m, lb) = 0 in BG[x, y, z], discard m
18 - broadcast a ⟨vote-1⟩ message for b to Leader(cview)
19 - (flag = 1): : vote for b but does not update localstate
20 wait until a ⟨msg-1⟩ message m for a block b∗ extending b is received:
21 - update vb←b, QCx←m.justify, send a ⟨vote-1⟩ message for b∗ to Leader(cview)
22 - switch to normal-case protocol

4.4 View Change Protocol (Algorithm 2)

We now present the view change protocol. Crucially, we introduce two key func-
tions for the view change protocol, fsb() and vv(). Intuitively, fsb() is used for
the leader to obtain a safe branch to extend during view changes. vv() is used
for replicas to decide whether to accept a view-update message.

Similar to prior works, a timer is started when a replica enters a new view or
when a replica waits for a message from the current leader. When the timer of
replica pi expires, a pi triggers view change by incrementing cview by one. Then
pi sends criticalState in a new-view message to the next leader.

▷ The new leader collects a set of T new-view messages, denoted as M . It then
executes fsb(M) to obtain (b′, π), where b′ is a block and π is a proof that b′

is a safe block to extend. Then the leader extends the branch led by b′ with a
new block b and broadcasts b in a view-update message m. There are two cases
depending on the parameter flag (speci�ed in Sec. 6). If flag = 0, the leader
directly switches to normal-case protocol. If flag = 1, the leader still switches
to phase 2 but does not update its lockState until b.QCx is collected.

▷ A replica accepts a view-update message m in view v from the new leader
only if vv(m) outputs 1 in BG[x, z] or vv(m, lb) outputs 1 in BG[x, y, z]. Then
the replica sends a vote−1 message form.block. Similar to the two cases for the
leader, according to the flag parameter, the replica may take di�erent actions.
If flag = 0, the replica switches to normal-case protocol. If flag = 1, the replica
still votes for the �rst block b proposed by the new leader but does not update
localstate or commit b. If later the replica receives a msg−1 message for b∗ that
extends b, the replica then votes for b∗ and switches to normal-case protocol.

We present pseudocode and discuss the details of layer one in Appendix B.
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5 BG Framework: Layer 2

Overview of layer 2 in BG. This section speci�es properties for the core
functions�fsb(), and vv(). These properties are su�cient to prove the security
of our Layer 1 algorithms. However, one can de�ne other appropriate properties
that may lead to secure BFT protocols.

When de�ning properties for our functions, we explicitly distinguish safety
properties and liveness properties, which correspond to the safety and liveness
of the BFT protocols. The �ne-grained characterization of function properties
allows us to better understand our framework and generate novel BFT protocols.
We then introduce a dichotomy for BFT protocols: BG[x, z] and BG[x, y, z]. The
two kinds of BFT protocols are di�erent in terms of the information each replica
maintains in its local state, which could lead to novel BFT protocols. We then
de�ne properties of fsb() and vv() for BG[x, z] and BG[x, y, z], respectively.
Finally, we show that with these properties properly de�ned in Layer 2 of our
framework, any protocol generated by our framework is safe and live.
BG[x, z] and BG[x, y, z]. As mentioned earlier, we introduce both BG[x, z]
(x ≤ z) and BG[x, y, z] (where x ≤ y < z). The properties of the core functions
are di�erent, as BG[x, z] and BG[x, y, z] have rather di�erent features.

Both BG[x, z] and BG[x, y, z] are z-phase protocols. BG[x, z] models proto-
cols without lock state, where the view change rules rely purely on the information
provided by replicas during the view change. BG[x, y, z] represents protocols with
lock state, where the view change rules rely on the information collected during
the view change and the information on the block locked in the y-th phase (for
some y < z).

The parameter x applies to both BG[x, z] and BG[x, y, z]. Let b be a block
and m be a msg-1 message for b. m.justify is set as b′.QCx, where b′ is the
parent block of b and QCx is the QC formed in the x-th phase for b′.

The parameter y in BG[x, y, z] represents the phase where a replica updates
its state parameter lockState in the normal-case protocol. We say b a locked
block, if at least one correct replica has updated its lockState to b. Intuitively,
lockState is crucial for a replica in BG[x, y, z] to decide whether to accept a
view-update message.
A key lemma and de�ning bv. We now present Lemma 1, a key lemma to
specify the properties of fsb() and vv(). The lemma essentially claims that
before a view v, there exists a unique block bv committed with the highest rank.
The existence of block bv is essential in de�ning function properties. Intuitively,
from the protocol perspective, the core functions should ensure that block bv

stills remain committed after the view change.
Lemma 1. Let Bv = {b | block b has been committed before view v}. If Tj > f for
j ∈ [1..z], and T1 ≥

⌈
n+f+1

2

⌉
, then there exists bv ∈ Bv such that for all b′ ∈ Bv and

b′ ̸= bv, we have rank(bv) > rank(b′).

FSB() and VV() for BG[x, z]. We now elaborate the properties of fsb()
and vv() functions for BG[x, z]. There is �exibility in de�ning the properties
of the functions. These properties are just some su�cient conditions to prove
the algorithms in the Layer 1 framework. Given a set Mv of T new-view mes-
sages (where we call the set Mv a view change snapshot), fsb() takes as input
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Mv and outputs some (b, π). For fsb(), we consider two properties: FSB-safety
and FSB-liveness. FSB-safety ensures that a correct leader selects the longest
committed branch in the tree to extend. On the other hand, FSB-liveness is
relatively straightforward. Here we emphasize that the threshold T cannot be
more than n − f , as there are f faulty replicas. T could be less than n − f for
some protocols.

Given a view-update message m, let b denote the parent block of m.block,
and let v denote m.view. vv() takes as input m and outputs a binary value,
representing whether a replica will accept m in view v. We consider VV-safety
and VV-liveness properties for vv(m). Intuitively, VV-safety requires that a
correct replica will not vote for a con�icting block of bv. Our de�nition is actually
stronger: it requires there exists a set Mv that is the input of fsb(). Essentially,
VV-safety ensures that a committed block by any correct replica will remain
committed after the view change.

− FSB-safety: If fsb(Mv) outputs (b, π), then π is a proof that b is either bv

or an extension of bv.
− FSB-liveness: Let T ≤ n− f . fsb(Mv) outputs some (b, π).
− VV-safety: vv(m) outputs 1 by a correct replica only if there exists a set Mv

such that (b, m.justify) is the output of fsb(Mv).
− VV-liveness: If fsb(Mv) outputs (b, m.justify), vv(m) outputs 1.

Both fsb() properties and vv() properties are carefully de�ned. Several al-
ternative approaches to de�ning properties fail to "work." All these properties
are de�ned in a way that is neither too restricted nor too broad. We comment,
however, that one can de�ne other appropriate properties for the two functions.
FSB() and VV() for BG[x, y, z]. We now turn to BG[x, y, z]. Compared to
BG[x, z], vv() in BG[x, y, z] takes as input an additional value lockState locally
maintained by each replica. To distinguish the properties in BG[x, y, z] from
those in BG[x, z], we add an "L" (standing for "Lock state") for all the properties.

fsb() takes as inputMv and outputs some (b, π). We �nd that we do not have
to de�ne the safety property, as BG[x, y, z] has the lockState that is crucial to
ensure safety. Accordingly, we only de�ne a liveness property that happens to be
identical to that of BG[x, z], i.e., FSBL-liveness. Given a view-update message
m, let b denote the parent block of m.block and v denote m.view. vv() takes as
an input m together with lockState of a replica and outputs a binary value. we
de�ne both safety and liveness properties for vv(m, lockState) in VVL-safety
and VVL-liveness.

− FSBL-liveness: Let T ≤ n− f . fsb(Mv) outputs some (b, π).
− VVL-safety: Let P = {pi|pi ∈ C (the set of correct replicas), vv(m, lockState)

outputs 1 by pi in view v}. If b is con�icting with bv or b.height is lower than
bv.height, then |P | < T1 − f .

− VVL-liveness: If (b,m.justify) is the output of fsb(Mv) function on some
Mv, vv(m, lockState) outputs 1 at all correct replicas.

Above, VVL-safety intuitively requires that not so many correct replicas will
vote for a con�icting block of bv. VVL-safety ensures that a block bv committed
by any correct replica will remain committed after the view change. On the other
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hand, VVL-liveness intuitively ensures that all correct replicas will move to the
new view after receiving the view-update message from a correct leader.
Correctness for BG[x, z] and BG[x, y, z].We now present the following core
theorems showing how the framework parameters and the properties of the core
functions a�ect the safety and liveness of the BG[x, z] or BG[x, y, z] protocols.

Theorem 1. BG[x, z] achieves safety-I, if T1 ≥
⌈
n+f+1

2

⌉
and Tj > f for all j ∈ [1..z].

Theorem 2. BG[x, z] achieves safety-II, if T1 ≥
⌈
n+f+1

2

⌉
, Tj > f for all j ∈ [1..z],

and FSB-safety and VV-safety hold.

Theorem 3. BG[x, z] achieves optimistic responsiveness, if Tj ≤ n − f for all j ∈
[1..z], T ≤ n− f , and FSB-liveness, and VV-liveness hold.

Theorem 4. BG[x, y, z] achieves safety-I, if T1 ≥
⌈
n+f+1

2

⌉
and Tj > f for all j ∈

[1..z].

Theorem 5. BG[x, y, z] achieves safety-II, if T1 ≥
⌈
n+f+1

2

⌉
, Tj > f for all j ∈ [1..z],

and VVL-safety holds.

Theorem 6. BG[x, y, z] achieves responsiveness, if Tj ≤ n − f for all j ∈ [1..z],
T ≤ n− f , and FSBL-liveness and VVL-liveness hold.

These theorems are �nd-grained: we pinpoint the conditions "needed" for
safety-I, safety-II, and optimistic responsiveness of BFT. The results provide
important insights on BFT protocols in our framework and facilitate the design
of new BFT protocols. For instance, with Theorem 1 and Theorem 2, while

designing a BFT protocol using our framework, one may set T1 =
⌈
n+f+1

2

⌉
and

try to set some Tj for j ∈ [2..z] as f + 1.

6 BG Framework: Layer 3

This section provides the most technical and innovative part of our framework:
the realizations of the fsb(), and vv() functions satisfying the properties we
de�ne in our Layer 2 framework.

We �nd that directly working on fsb() and vv() for the set Mv (the view
change snapshot for view v) is di�cult. Intuitively, there are just many ways of
forming Mv, and it is hard to enumerate all meaningful choices. Thus, we take
a detour and propose a real vs. virtual paradigm with the following steps:

− Rather than directly de�ning fsb() and vv() for Mv (a real view change
snapshot), we introduce the concept of virtual view change snapshot M b for
a block b. Intuitively, the information included in a virtual snapshot M b is
mainly decided by the state (committed or locked) of b.

− We de�ne for M b dominant predicates that specify criticalState and the fsb()
and vv() functions. We can show that realizations of fsb() when taking M b

as input�according to these dominant predicates�can satisfy the properties
de�ned in layer 2.
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bb’ b’’	

(a)  

(b)  

(c)  

a block

A branch including b:

……    ……    

……1 z ……1 z-1

……1 z ……1 z

……1 z ……1 z ……1 z

j QCj  for a block

Fig. 4: Examples of virtual view change snapshots.

− We are �nally able to prove that using our framework, as long as all committed
blocks in BG[x, z] (resp., locked blocks in BG[x, y, z]) satisfy a dominant pred-
icate, then our realizations for fsb() and vv() when replacing M b (virtual)
using Mv (real) would also satisfy the properties de�ned in layer 2.

Under this paradigm, we design �ve interesting dominant predicates that re-
alize fsb() and vv(). In our framework, these realizations lead to useful BFT
protocols achieving safety and optimistic responsiveness. One can, however, de-
�ne new predicates, enabling novel BFT constructions.

6.1 De�ning Virtual Snapshot Mb for a Block b

We begin by de�ning virtual (view change) snapshot on which our predicates
and realizations of fsb() and vv() can be built.

Like a real view change snapshot, a virtual snapshot M b also contains a set
of T new-view messages from replicas. The di�erence is that M b is associated
with a block b. In particular, M b contains the information stored at replicas
regarding b. Let v denote b.view. We show an example in Fig. 4, where blocks b′,
b, and b′′ are all proposed in view v, b′ is on the branch led by b, and b′′ extends
b. We distinguish three cases for the criticalState contained in each m ∈ M b

from a correct replica pi:

− Case 1 (Fig. 4 (a)): Block b is the highest block pi has voted for in view v.
Then the criticalState inm contains the block (and certi�cates) stored by pi with
the highest rank in view v. Speci�cally, criticalState could contain b, b.QC1, ...,
b.QCz−1, and b′.QCz.

− Case 2 (Fig. 4 (b)): Replica pi has voted for b′ and b′′, but not b. Then the
criticalState in m contains the block (and certi�cates) stored by pi with a lower
height than that of b in view v. In this case, while pi has stored information for
b′′, criticalState could contain only b′ and certi�cates for b′.

− Case 3 (Fig. 4(c)): Replica pi has voted for b
′, b, and b′′.. Then the criticalState

in m contains the block (and certi�cates) stored by pi with the same rank with
b in view v. Speci�cally, criticalState could only contain b and certi�cates for b.

We consider the real state of b at a correct replica before the view change
(i.e., locked, committed, neither locked nor committed). For a block bv de�ned in
layer 2, a correct protocol should ensure that the real state of bv can be obtained
from Mv. If there exists a correct fsb() function satisfying the properties de�ned
in layer 2, then the output of fsb(Mv) should be b

v or an extension of bv. Hence,
bv still remains committed after the view change.

M bv , emphasizing the information for block bv, focuses on whether the real
state of bv can be obtained. Therefore, M bv can be viewed as a special case of
Mv but includes more information about bv. Indeed, criticalState in m ∈ M bv
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sent by a correct replica always contains information the replica stored for block
bv, while the replica may have changed its localstate when view change occurs.
If m ∈ Mv is sent at another moment, m may not directly include any evidence
about the real state of bv. Accordingly, a correct fsb() function should also
output bv or an extension of bv taking M bv as input. Later on in this section,
we de�ne dominant predicates for virtual snapshots and show how they can be
used to construct fsb() and vv() accordingly.

6.2 Dominant Predicates and Realizations of fsb() and vv()

We now present the �ve predicates we introduce in the paper. Depending on the
information (criticalState) each replica provides in the new-view message, we
could capture the properties of the virtual snapshots to de�ne the predicates. We
focus on two critical information: each replica's last voted block vb and the high-
est QC. In DP1, the criticalState contains vb and QCx. Via DP1, BFT protocols
achieving optimal complexity with 5f + 1 replicas can be derived. DP2 modi�es
DP1 and allows us to cover BFT protocols with 4f + 1 replicas. In contrast, in
DP3 and DP4, the criticalState only contains QCx and the corresponding fsb()
and vv() functions are also simpler. Using DP3, we can obtain many interesting
BFT protocols with 3f+1 replicas, including [20] and [31]. In DP4, we aim at for-
malizing protocols with weak liveness such as Tendermint [8, 9] and Casper [9].
DP5 is based on DP4 and the criticalState contains vb and QCx. Compared with
DP4, we elaborate the additional information (vb) contained in criticalState in
DP5 and essentially turn protocols with weak liveness property into ones with
optimistic responsiveness. Below we describe DP1 in detail and brie�y describe
the rest of them. Here, for any snapshot, we let M.vb and M.QCx denote all vb's
and all QCx's contained in M , respectively.

The pseudocode for all the core functions (i.e., fsb() and vv()) are summa-
rized in Table 2.
Dominant predicate DP1. Given a block b where the real state of b is com-
mitted, we consider the following situation in DP1: "enough" correct replicas
have already voted for b but not "enough" correct replicas have received the
quorum certi�cate. To simplify the description, we de�ne Votes(b, T, k) and
Certs(b, T, x, y). In BG[x, z] and BG[x, y, z],Votes(b, T, k) represents the lower
bound on the number of b contained inM b.vb when a correct replica has received
b.QCk in normal-case operations in view b.view. Similarly, Certs(b, T, x, y) rep-
resents the lower bound on the number of b.QCx contained in M b.QCx when a
correct replica has received b.QCy in normal-case operations in view b.view.

We now de�ne DP1 for BG[x, z] and BG[x, y, z]. BG[x, z] satis�es DP1 i�
Votes(b, T, z) > T/2 (i.e., more than a half of elements in M b.vb are b for a
committed block b); BG[x, y, z] satis�es DP1 i� Votes(b, T, y) > T/2 (i.e., more
than a half of elements in M b.vb are b for a locked block b); .

We show an example in Fig. 5 for a BG[x, y, z] satisfying DP1 with 6 replicas
in total (i.e., f = 1 and n = 5f + 1) and we set T to 5 (i.e., 4f + 1). If a correct
replica has committed b, any virtual snapshot contains messages from at least 3
(i.e., 2f + 1 and more than T/2) correct replicas whose vb is b. Accordingly, a



14 Xiao Sui, Sisi Duan, and Haibin Zhang

pred protocol fsb() vv()

DP1

BG[x,z]
(vb,QCx)
flag=1

funcfsb(Mv)
01 b1 ← null, b2 ← null
02 forb ∈Mv.vb
03 if num(b,Mv.vb)>T/2

then b1 ← b
06-1 π1←Mv

return(b1, π1) //BG[x, z]
06-2 π1←Mv.vb

return(b1,π1) //BG[x, y, z]
04 forb : b.QCx ∈Mv.QCx

05 if rank(b)>rank(b2)thenb2 ← b
07-1 π2←(b2.QCx,Mv)

return(b2, π2) //BG[x, z]
07-2 π2←(b2.QCx)

return(b2, π2) //BG[x, y, z]

funcvv(⟨view-update, v, b′.height, b′, π⟩)
08 b←theparentblockofb′,vb ← b.view
09 ifMv∈πand(b, π)=fsb(Mv)andvb<v
10 thenreturn1
11 return0

BG[x,y,z]
(vb,QCx)
flag=1

funcvv(⟨view-update, v, b′.height, b′, π⟩, lb)
12 b←theparentblockofb′,vb ← b.view
13 ifMv.vb∈πandnum(b,Mv.vb)>T/2
14 if rank(lb) ≤ rank(b)andvb < v then

return 1
15 if b.QCx∈πandvb<v
16 if rank(lb) ≤ rank(b)then return 1
17 return0

DP2 BG[x,y,z]
(vb,QCx)
flag=1

funcfsb(Mv)
18 b0, b1, b2, b3 ← null
19 forb∈Mv.vb
20 if num(b,Mv.vb)≥ f + 1

andrank(b)>rank(b1)
21 thenb1 ← b,b0 ← b1
22 elseif num(b,Mv.vb)≥ f + 1

andrank(b)>rank(b2)
23 thenb2 ← b
24 forb : b.QCx∈Mv.QCx

25 if rank(b)>rank(b3)thenb3 ← b
26 if rank(b0)>rank(b3)then
27 if rank(b1)=rank(b2)then
28 π←(b3.QCx,Mv.QCx)

return(b3,π)
29 return(b0, π)s.t.π=(Mv.vb)
30 return(b3, π)s.t.π=(b3.QCx)

funcvv(⟨view-update, v, b′.height, b′, π⟩, lb)
31 b←theparentblockofb′,vb ← b.view
32 if b.QCx∈ πandrank(b)≥rank(lb)
33 andvb < v then return 1
34 ifMv.vb∈πandnum(b,Mv.vb)≥ f+1
35 if rank(b) > rank(lb)andvb < v

then return 1
36 ifMv.vb∈πandnum(b,Mv.vb)≥ f + 1
37 if b = lb then return 1
38 ifMv.QCx∈πandb.QCx∈πandvb<v
39 if num(b.QCx,Mv.QCx)> 2f + 1

then return 1
40 return 0

DP3

BG[x, z]
(QCx)
flag=0

funcfsb(Mv)
41 b2 ← null
42 forb : b.QCx∈Mv.QCx

43 if rank(b)>rank(b2)thenb2 ← b
44-1 π←(b2.QCx,Mv)

return(b2,π) //BG[x, z]
44-2 π←(b2.QCx)

return(b2,π) //BG[x, y, z]

funcvv(⟨view-update, v, b′.height, b′, π⟩)
45 b←theparentblockofb′,vb ← b.view
46 ifMv∈πand(b, π)=fsb(Mv)andvb<v
47 thenreturn1
48 return0

BG[x,y,z]
(QCx)
flag=0

funcvv(⟨view-update, v, b′.height, b′, π⟩, lb)
49 b←theparentblockofb′,vb ← b.view
50 if b.QCx∈πandvb<v
51 if rank(b)≥rank(lb)thenreturn1
52 return0

DP5
BG[x,y,z]
(vb,QCx)
flag=0

funcfsb(Mv)
53 b1 ← null, b2 ← null
54 forb∈Mv.vb
55 if rank(b)>rank(b1)thenb1 ← b
56 forb : b.QCx∈Mv.QCx

57 if rank(b)>rank(b2)thenb2 ← b
58 if rank(b1)>rank(b2)then
59 π←(b2.QCx,Mv.QCx)

return(b2,π)
60 π←(b2.QCx),return(b2, π)

funcvv(⟨view-update, v, b′.height, b′, π⟩, lb)
61 b←theparentblockofb′,vb ← b.view
62 if b.QCx∈πandvb<v
63 if rank(b)≥rank(lb)thenreturn1
64 if b.QCx∈πandMv.QCx∈πandvb<v
65 ford : d.QCx∈Mv.QCx

66 if rank(d)>rank(b)thenreturn0
67 return1
68 return0

Table 2: Realization of fsb(),vv() and criticalState according to di�erent dominant
predicates. We use num(d,D) to denote the number of d's in a set D.
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Fig. 5: Examples of DP1

correct fsb(M b) function should output block b if the number of b in M b.vb is
larger than T/2, i.e., at least T/2 replicas have voted for b.

We now specify fsb() and vv() functions. The pseudocode of core functions
for DP1 is presented in lines 1-17 in Table 2. For DP1, we set flag as 1.

fsb() takes as input a snapshot Mv for view v and outputs (b, π). Based on
Mv, we can obtain two intermediate blocks b1 and b2. If there exist a b such that
num(b,Mv.vb)> T/2, b1 is set as b (lines 02-03). Then fsb() outputs (b1,Mv) in
BG[x, z] and (b1,Mv.vb) in BG[x, y, z] (lines 06-1 and 06-2). Otherwise, we have
b1 = null. Block b2 (lines 04-05) is the block with the highest rank such that
b2.QCx is included in Mv.QCx. Then fsb() returns (b2, b2.QCx,Mv) in BG[x, z]
and (b2, b2.QCx) in BG[x, y, z] (lines 07-1 and 07-2).

As the output of fsb() is di�erent for BG[x, z] and BG[x, y, z], the vv()
function is also di�erent. For BG[x, z], vv() takes as input a view-update

messagem and outputs a binary value. According to the output of fsb() function
for BG[x, z], m, justify should be Mv. Let b denote the parent block of m.block
and v be the view of the replica. vv(m) outputs 1 if (b, π) = fsb(Mv) and
b.view < v, i.e., the replica has to verify whether the leader indeed extends a
safe branch given Mv. Otherwise, vv() outputs 0.

For BG[x, y, z], the vv() function additionally takes as input lockState (i.e.,
lb). vv(m, lb) outputs 1 if one of the following conditions holds: 1) m.justify is
Mv, more than T/2 elements in Mv.vb are b, b.view < v, and rank(b) ≥ rank(lb),
i.e., T/2 replicas have voted for a higher block than lb; 2) m.justify is b.QCx,
b.view < v, and rank(b) ≥ rank(lb), i.e., a QCx has been formed for b and the
rank of b is no less than that of lb. Otherwise, vv() outputs 0.

For DP1, we obtain the following theorems.

Lemma 2. If T − (n− T1 + f) > T/2, then BG[x, z] or BG[x, y, z] satis�es DP1.

Theorem 7. BG[x, z] (in Table 2) achieves safety and optimistic responsiveness if the
following are satis�ed: 1) BG[x, z] satis�es DP1; 2) 2f < T ≤ n − f ; 3)

⌈
n+f+1

2

⌉
≤

T1 ≤ n− f ; and 4) f < Tj ≤ n− f for j ∈ [1..z].

Theorem 8. BG[x, y, z] (in Table 2) achieves safety and optimistic responsiveness if
the following are satis�ed: 1) BG[x, y, z] satis�es DP1; 2) 2f <T ≤n− f ; 3)

⌈
n+f+1

2

⌉
≤

T1 ≤ n− f ; 4) f < Tj≤n− f for j∈ [1..z]; and 5) n− T1 + f + 1 ≤ Ty+1.

We present the proofs of these theorems in Appendix F and Appendix G.
Dominant predicate DP2. DP1 has restricted on the number of replicas that
vote for certain block, i.e., Votes(b, T, y) > T/2. An interesting question to
answer is whether we could relax the T/2 threshold for a meaningful predicate.
So we relax the threshold from T/2 to f + 1 in DP2. For BG[x, y, z], it satis�es
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DP2 i� Votes(b, T, y) ≥ f + 1 and Certs(b, T, x, z) ≥ T − (2f + 1). DP2 allows
us to cover protocols with 4f + 1 replicas. (We did not �nd interesting DP2

constructions for BG[x, z] though.)
The constructions of core functions for DP2 are shown in lines 18-40 in

Table 2. We set flag as 1. fsb() takes as input Mv and outputs (b, π), where b is
a block and π is a proof showing that b is a safe block to extend. Based on Mv,
we can obtain four intermediate variables (block b0, b1, b2 and b3). We �rst use
b1, b2 to store (at most) two di�erent blocks, each appears more than f times
in Mv.vb. If such a block does not exist, b1 or b2 (or both) is set as null. If b1 or
b2 (or both) exists, block b0 is set as the block with a higher rank. (lines 20-23).
Furthermore, block b3 (see lines 24-25) is the block with the highest rank such
that b3.QCx is included in Mv.QCx. Then there are three possible outputs for
fsb().

1) If rank(b0) > rank(b3) and rank(b1) = rank(b2), fsb() outputs (b3, π) where
π = (b3.QCx,Mv.QCx) (see lines 26-28).

2) If rank(b0) > rank(b3) and rank(b1) ̸= rank(b2), fsb() outputs (b0, π) where
π = (Mv.vb) (see lines 26-29).

3) Otherwise, fsb() outputs b3 and a proof π where π = b3.QCx (see line 30).

In case 1), the parent block of b1 and b2 must be the same block b. More
than 2f +1 replicas set their QCx to the QCx for b. Therefore, neither b1 nor b2
was committed and Mv.QCx is a proof that b is a safe block to extend. In case
2), b0 is the locked block with the highest rank or b0 has a higher rank than any
locked block by a correct replica. In case 3) b3 has the same or a higher rank
than any locked block by a correct replica.

vv() takes as input a view-update message m and lockState (i.e., lb). Let
b′ denote the parent block of m.block, then vv() outputs 1 if one of the following
four conditions is satis�ed: 1) b′.QCx ∈ π and rank(b′) ≥ rank(lb) (lines 32-33);
2) Mv.vb ∈ π and num(b′,Mv.vb) ≥ f + 1 and rank(b′) > rank(lb) (lines 34-
35); 3) Mv.vb ∈ π and num(b′,Mv.vb) ≥ f + 1 and b′ = lb (lines 36-37); 4)
Mv.QCx ∈ π and b′.QCx ∈ π and num(b′.QCx,Mv.QCx) > 2f +1 (lines 38-39).

For DP2, we obtain the following theorems:

Lemma 3. If T − (n− T1 + f) ≥ f + 1 and T − (n− Tx+1 + f) ≥ T − (2f + 1), then
BG[x, y, z] satis�es DP2.

Theorem 9. BG[x, y, z] (in Table 2) achieves safety and optimistic responsiveness if
the following are satis�ed: 1) BG[x, y, z] satis�es DP2; 2) f < T ≤ n−f ; 3)

⌈
n+f+1

2

⌉
≤

T1 ≤ n− f ; 4) f < Tj ≤ n− f for j ∈ [1..z]; and 5) x ≤ y < z, n− T1 + f +1 ≤ Ty+1.

We present proofs for the above theorems in Appendix H.
Dominant predicate DP3. Both DP1 and DP2 require each replica to maintain
its last vote vb and the QCs as part of the criticalState. In DP3, criticalState
contains only the highest QCx. In particular, we consider the following situa-
tion for DP3 : "enough" correct replicas have received the quorum certi�cate
for b. BG[x, z] satis�es DP3 i� Certs(b, T, x, z) ≥ 1; BG[x, y, z] satis�es DP2 i�
Certs(b, T, x, y) ≥ 1.
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The constructions of core functions for DP3 are shown in lines 41-52 in
Table 2. Block b2 (lines 42-43) is the block with the highest rank such that
b2.QCx is included in Mv.QCx. fsb(Mv) outputs (b2, (b2.QCx,Mv)) (line 44-1)
for BG[x, z] and (b2, b2.QCx) (line 44-2) for BG[x, y, z].

Let m denote a view-update message for view v, let b denote the parent
block of m.block and π denote m.justify. Then vv(m) for BG[x, z] returns 1
in view v if m.justify is Mv, (b, π) = fsb(Mv), and b.view is lower than v (see
lines 45-48). For BG[x, y, z], vv() has an additional input lb. vv(m, lb) outputs
1 if b.QCx ∈ π, b.view < v and rank(b) ≥ rank(lb) (see lines 49-52). Otherwise,
vv() outputs 0.

We obtain the following theorems for BG[x, z] and BG[x, y, z]:

Lemma 4. If x < z and T − (n−Tx+1 + f) > 0 or if x ≥ z and T − (n− 1) > 0, then
BG[x, z] satis�es DP3.

Lemma 5. If x < y and T − (n−Tx+1 + f) > 0 or if x = y and T − (n− 1) > 0, then
BG[x, y, z] satis�es DP3.

Theorem 10. BG[x, z] (in Table 2) achieves safety and optimistic responsiveness if
the following are satis�ed: 1) BG[x, z] satis�es DP3; 2) f < T ≤ n− f ; 3)

⌈
n+f+1

2

⌉
≤

T1 ≤ n− f ; and 4) f < Tj ≤ n− f for j ∈ [1..z].

Theorem 11. BG[x, y, z] (in Table 2) achieves safety and optimistic responsiveness if
the following are satis�ed: 1) BG[x, y, z] satis�es DP3; 2) f < T ≤ n−f ; 3)

⌈
n+f+1

2

⌉
≤

T1 ≤ n− f ; 4) f < Tj ≤ n− f for j ∈ [1..z]; and 5) n− T1 + f + 1 ≤ Ty+1.

We present the proofs for these theorems in Appendix I and Appendix J.
Dominant predicate DP4. DP4 aims at capturing protocols with weak liveness.
In particular, during the view changes, any correct leader needs to wait for new-
view messages from all correct replicas. While protocols with weak liveness are
considered a bad practice [31], we use DP4 to cover well-known protocols of this
kind such as Tendermint and Casper [8, 9]. We discuss DP4 in detail in Appendix
D.
Dominant predicate DP5. Since DP4 captures protocols with weak liveness
property, a natural question is whether we can de�ne a dominant predicate that
can transform a protocol with weak liveness to one with optimistic responsive-
ness. We answer this question a�rmatively in DP5. In DP5, criticalState is set to
QCx and vb. Given a block b, DP5 is based on two situations. The �rst situation is
that b has been committed by at least one correct replica and "enough" correct
replicas have locked b. The second situation is more subtle: "enough" correct
replicas may have already voted for a block b but not "enough" correct replicas
have locked b. In this situation, Mv.QCx may include no information about b.
Then correct replicas having locked b may reject a view-update message from
a correct new leader as in DP4.

BG[x, y, z] satis�es DP5 i� Certs(b, T, x, z) ≥ 1 and Votes(b, T, y) ≥ 1. In
our concrete constructions of fsb() and vv(), a view-update message may need
to optionally include Mv.

The constructions of core functions for BG[x, y, z] based on DP5 are shown in
Table 2, ln 53-68. fsb() takes as input Mv and outputs some (b, π). From Mv,
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protocols pred replicas thresholds features

BG[1, 1] DP1 5f+1 T =T1=4f+1
∗ an improvement of FaB5
∗ the most e�cient 1-phase protocol

BG[1, 2] DP3 3f+1 T =T1=2f+1
∗ almost identical with Fast-Hotstu�
∗ the most e�cient 2-phase protocol without lock state

BG[1, 1, 2] DP1 5f+1
T =T1=T2

=4f+1
∗ the �rst 2-phase protocol which achieves O(n) message complexity and
O(n) authenticator complexity for both normal-case and view change

BG[1, 1, 2] DP2 4f+1
T =T1=T2

=3f+1
∗ the �rst 4f+1 BFT protocol to the best of our knowledge
∗ O(n) authenticator complexity for normal case and view change

BG[1, 1, 2] DP5 3f+1
T =T1=T2

=2f+1
∗ O(n) authenticator complexity in the normal case and view change
in the fast path

BG[1, 1, 2]∗ DP5 3f+1
T =T1=T2

=2f+1

∗ the protocol can be further optimized to cover Marlin [30]
∗ a variant of BG[1, 1, 2] that achieves O(n) authenticator complexity
at the cost of two more phases for view change

BG[1, 2, 3] DP3 3f+1
T =T1=T2

=T3=2f+1

∗ almost identical with HotStu�
∗ with minor di�erences in data structure and information carried
in the new-view message

Table 3: Representative BG BFT protocols generated using our framework for z ≤ 3.

we can obtain two intermediate variables (block b1 and block b2). In lines 54-55,
block b1 is set as (any) one block with the highest rank in Mv.vb. The way of
obtaining b2 (lines 56-57) is exactly the same as that of DP1 and b is set to b2.
Then fsb() outputs (b2, b2.QCx,Mv.QCx), if rank(b1) > rank(b2). Otherwise,
fsb() outputs (b2, b2.QCx).

Let m denote a view-update message for view v, b denote the parent block
of m.block, and π denote m.justify. vv(m, lb) outputs 1 if one of the following
conditions is satis�ed: 1) b.QCx ∈ π and rank(b) ≥ rank(lb) (see lines 62-63); or
2) b.QCx ∈ π and Mv.QCx ∈ π and b is the block with the highest rank such
that b.QCx ∈ Mv.QCx (see lines 64-67).

We present the main theorems for DP5 as follows:

Lemma 6. If T − (n − T1 + f) > 0 and T − (n − Tx+1 + f) > 0, then BG[x, y, z]
satis�es DP5.

Theorem 12. BG[x, y, z] (in Table 2) achieves safety and responsiveness if the follow-
ing are satis�ed: 1) BG[x, y, z] satis�es DP5; 2) f <T ≤n− f ; 3)

⌈
n+f+1

2

⌉
≤T1≤n− f ;

4) f < Tj≤n− f for j∈ [1..z]; and 5) n− T1 + f + 1 ≤ Ty+1.

We present the proof for the above theorems in Appendix K.
A DP5 variant. According to the construction of fsb() function for DP5, a new
leader may need to includeMv in its view-update essage. One can alternatively
use one more phase to remove this Mv. We discuss the variant in detail in
Appendix C.2. The idea is at the core of Marlin [30], one of the state-of-the-art
2-phase BFT protocols with linearity.

7 BG Instantiations

The section discusses the selective BFT protocols generated from the BG frame-
work. To generate BFT protocols, we could simply enumerate the parameters x,
y, z for each dominant predicate and generate either a BG[x, z] or a BG[x, y, z]
protocol. For each BG[x, z] or BG[x, y, z], using the realizations for core func-
tions generated in layer 3, we can check whether the system of inequalities with
thresholds (T , T1, · · · , Tz) being unknown is achievable according to the theo-
rems described in Sec. 6.
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In light of the existence of e�cient 3-phase BFT protocols (e.g., HotStu�,
PBFT), we only enumerate x, y, and z for z ≤ 3. We obtain 23 candidate
protocols in total. In Appendix C, we present all the system inequalities and
ranges of the thresholds in Table 5 and Table 7, and a complete list of all 23
protocols in Table 6.

Among the protocols, seven of them compare favorably with existing ones
in terms of at least one characteristics, as summarized in Table 3. For each
protocol, we specify the dominant predicate and their features. We then present
in this section how to generate the protocols using our frameworks and how
the protocols outperform prior works. We present in Table 3 a summary of the
conditions (which are crucial to determining whether a protocol is achievable) for
all the protocols described in this section. The full list is presented in Appendix
Sec. C.1, Table 5.

predicates candidates
conditions to other conditions (from layer 2)

Thmsatisfy predicates* x, y-dependent conditions other general conditions

DP1

Votes(b, T, z)>T/2

BG[1, 1]
T−(n−T1+f)>T/2

� 2f <T ≤ n−f⌈
n+f+1

2

⌉
≤ T1 ≤ n−f

f <Tj ≤ n−f for j ∈ [1..z]

7

BG[1, 1, 2] n−T1+f+1 ≤ T2 ≤ n−f 8

DP2

Votes(b, T, y)≥f+1 and
Certs(b, T, x, z)≥T−(2f+1)

BG[1, 1, 2]
T−(n−T1+f)≥f+1

T−(n−T2+f)≥T−(2f+1)
n−T1+f+1 ≤ T2 ≤ n−f

f <T ≤ n−f⌈
n+f+1

2

⌉
≤ T1 ≤ n−f

f <Tj ≤ n−f for j ∈ [1..z]

9

DP3

Certs(b, T, x, z)>0 for BG[x, z]
Certs(b, T, x, y)>0 for BG[x, y, z]

BG[1, 2] T−(n−T2+f)>0 � f <T ≤ n−f⌈
n+f+1

2

⌉
≤ T1 ≤ n−f

f <Tj ≤ n−f for j ∈ [1..z]

10

BG[1, 2, 3] T−(n−T2+f)>0 n−T1+f+1 ≤ T3 ≤ n−f 11

DP5

Certs(b, T, x, z)>0
and Votes(b, T, y)>0

BG[1, 1, 2]
T−(n−T1+f)>0
T−(n−T2+f)>0

n−T1+f+1 ≤ T2 ≤ n−f

f <T ≤ n−f⌈
n+f+1

2

⌉
≤ T1 ≤ n−f

f <Tj ≤ n−f for j ∈ [1..z]

12

Table 4: Conditions for some BG candidates summarized from the Lemmas and The-
orems for the dominant predicates.

BG[1, 2, 3] with DP3. We begin with a 3-phase protocol BG[1, 2, 3], a protocol
with lockState based on DP3. To generate BG[1, 2, 3], we need to determine the
values of n, f , T1 T2, T3, and T . According to Table 4, we can obtain a system
of inequalities (2) as follows:



T − (n− T2 + f) > 0

n− T1 + f + 1 ≤ T3 ≤ n− f

f < T < n− f⌈
n + f + 1

2

⌉
≤ T1 ≤ n− f

f < T1 ≤ n− f

f < T2 ≤ n− f

f < T3 ≤ n− f

(1)

While the inequalities have many solutions, we set n as 3f + 1, and set
T1, T2, T3 and T as 2f + 1 to achieve optimal resilience. Accordingly, we obtain
BG[1, 2, 3], as shown in Fig. 6. The protocol is similar to HotStu� in performance
and message �ow except minor di�erences in data structure and information
carried in the new-view message.
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BG[1, 2] with DP3. To specify the details of the protocol, we need to determine
the values of n, f , T1, T2 and T . According to Table 4, we can obtain a system
of inequalities (2) as follows:



T − (n− T2 + f) > 0

f < T < n− f⌈
n + f + 1

2

⌉
≤ T1 ≤ n− f

f < T1 ≤ n− f

f < T2 ≤ n− f

(2)

The system of inequalities have (many) solutions. To achieve optimal re-
silience, we set n as 3f + 1, and set T1, T2 and T as 2f + 1. Then using Algo-
rithm 3, Algorithm 4, and the realization of the fsb() and vv() in Table 2, we
obtain BG[1, 2] as shown in Fig. 7.

p1

p2

p3

p4

VV()

vote for a block b if the parent block b’ of b 

satisfies b’.QC 1 π , b’.view<v and rank(b’ ) ≥ 

rank (QcBlock(QC 1))  (lines 54-55)

                 FSB()

1.select the block b2  with the highest rank for 

which QC 1 M v.QC 1   (lines 44-46)

2.return  QcBlock(qc)  and a proof (lines 47-2)

  Parameters : T=T 1=T 2=T 3=2f+1    localState : cview, lb,  QC1 , QC2 , QC3

  criticalState : lb, QC 1                              lockState : QC 2

View Change Normal Case
phase 1 phase 2 phase 3 commit

Fig. 6: BG[1,2,3] with DP3.

p1

p2

p3

p4

                    FSB()

select the block b2  with highest rank for 

which QC 1 M v.QC 1 ,  return a proof 

and b2  (lines 44-47-1)   

  Parameters : T=T 1=T 2=2f+1    localState : cview, lb, QC 1 , QC 2

  criticalState : lb, QC 1  

View Change Normal Case

    VV()

vote for a block b if  the parent block b’ of b 

satisfies: ( b’ ,π) is the output of FSB( M v)  

(lines 49-51) and 

phase 1 phase 2 commit

b’.view<v 

Fig. 7: BG[1,2] with DP3.

BG[1, 1, 2] with DP1. Again, we need to specify the values of n, f , T1, T2 and
T . According to Table 4, we obtain the following system of inequalities (3):



T − (n− T1 + f) > T/2

n− T1 + f + 1 ≤ T2 ≤ n− f

f < T < n− f⌈
n + f + 1

2

⌉
≤ T1 ≤ n− f

f < T1 ≤ n− f

f < T2 ≤ n− f

(3)

The above system of inequalities has solution only if n > 5f . We thus set n
as 5f+1, and set T1, T2 and T as 4f+1. According to Algorithm 3, Algorithm 4,
and the realization of the fsb() and vv() in Table 2, we obtain BG[1, 1] as shown
in Fig. 8.

BG[1, 1, 2] with DP2. According to Table 2, we have the following system of
inequalities (4):
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p1

p2

p3

p4

VV()

vote for a block b if the parent block b’ of b 

satisfies rank (b’)≥  rank (QcBlock(QC 1)) 

     and: 1. num(b ’,M v.lb) ≥ 2f+1 ; or

             2 . b’.QC 1 π  (lines 13-16)  

                       FSB()

1.select the block b1 such that num(b 1,M v.lb) ≥ 2f+1, if   b1 

exists,  return a proof and b1  (lines 02-06-2)

2.select the block b2  with the highest rank such that b2 .QC 1  

M v.QC 1 , return a proof and b2  (lines 04-07-2)  

  Parameters : T=T 1=T 2=4f+1    localState : cview, lb, QC1, QC 2

  criticalState : lb, QC1                     lockState : QC1

View Change Normal Case
phase 1 phase 2 commit

b’.view<v 

Fig. 8: BG[1,1,2] with DP1



T − (n− T1 + f) ≥ f + 1

T − (n− T2 + f) > 0

n− T1 + f + 1 ≤ T2 ≤ n− f

f < T < n− f⌈
n + f + 1

2

⌉
≤ T1 ≤ n− f

f < T1 ≤ n− f

f < T2 ≤ n− f

(4)

The above system of inequalities has solutions only if n > 4f . This time, we
set n as 4f +1, and set T1, T2 and T as 3f +1. From Algorithm 3, Algorithm 4,
and the realization of the fsb() and vv() in Table 2, we obtain BG[1, 1] as
depicted in Fig. 9.

VV()

Let b1  denote Qcblock(QC 1). Vote for a block b  if the parent block b’ of b satisfies 

b’.view<v and one of the four following conditions:

1. if b’.QC 1  π and rank (b’) ≥ rank (b1 )  (lines 32-33)

2. if M v.lb  π and num(b ’,M v.lb) ≥ f+1 and rank (b’)> rank (b1 )  (lines 34-35)  

3. if M v.lb  π and num(b ’,M v.lb) ≥ f+1  and b’ = b1    (lines 36-37) 

4. if M v.QC 1  π and b’.QC 1  π and num(b ’.QC 1,M v.QC 1) > 2f+1 (lines 38-39)

    FSB()

1.select the block(s) b1 (and b2) such that num(b 1(b2),M v.lb) ≥ f+1, let b 0  denote 

the block with the higher rank between b1 and b2   (lines 19-23)

2.select the block b3  with highest rank for which QC 1 M v.QC 1   (lines 24-25)

3.if rank( b0)>rank( b3) and rank( b1)=rank( b2), return ( b3 , ) (lines 26-28)

4.if rank( b0)>rank( b3) and rank( b1)≠rank( b2),  return ( b0 , ) (lines 26-29)

5.else return b3  and a proof (line 30)

  Parameters : T=T 1=T 2=3f+1    localState : cview, lb,  QC 1, QC 2

  criticalState : lb, QC 1                   lockState : QC1

View Change Normal Case

p1

p2

p3

p4

phase 1 phase 2 commit

Fig. 9: BG[1,1,2] with DP2
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p1

p2

p3

p4

VV()

vote for a block b if the parent block b’ of b 

satisfies  b’.QC 1 π and:

1. rank (b’)≥  rank (Qcblock(QC 1))  (line 62-63), or

2. b2  is a block with the highest rank for which 

QC 1 M v.QC 1   (lines 64-67)

                 FSB()

1.select (any) one block b1 with the highest 

rank in M v.lb   (lines 54-55)

2.select the block b2  with the highest rank for 

which QC 1 M v.QC 1   (lines 56-57)

3.return a proof and the block with the 

higher rank between b 1 and b2  (lines 58-60)  

  Parameters : T=T 1=T 2=2f+1    localState : cview, lb, QC 1 , QC2

  criticalState : lb, QC 1                  lockState : QC 1

View Change Normal Case

b’.view<v ,

phase 1 phase 2 commit

Fig. 10: BG[1,1,2] with DP5

p1

p2

p3

p4

                       FSB()

1.select the block b1 such that num(b 1,M v.lb) ≥ 2f+1, if   b1 

exists,  return a proof and b1  (lines 02-06-1)

2.select the block b2  with the highest rank for which QC 1 

M v.QC 1 , return a proof and b2  (lines 04-07-1)  

  Parameters : T=T 1=4f+1    localState : cview, lb, QC 1

  criticalState : lb, QC 1    

View Change Normal Case

VV()

vote for a block b if  the 

parent block b’ of b satisfies: 

(b’,π) is the output 

of  FSB(M v)  (lines 09-11)

 

,

phase 1 commit

b’.view<v 

Fig. 11: BG[1,1] with DP1

BG[1, 1, 2] with DP5. According to Table 4, we obtain the following system of
inequalities (5): 

T − (n− T1 + f) > 0

T − (n− T2 + f) > 0

n− T1 + f + 1 ≤ T2 ≤ n− f

f < T < n− f⌈
n + f + 1

2

⌉
≤ T1 ≤ n− f

f < T1 ≤ n− f

f < T2 ≤ n− f

(5)

The system of inequalities has solutions only if n > 3f . We then set n to
3f + 1, and T1, T2 and T to 2f + 1 and obtain BG[1, 1, 2] as shown in Fig. 10.
BG[1, 1] with DP1. This time, we have the following system of inequalities (6):



T − (n− T1 + f) > T/2

f < T < n− f⌈
n + f + 1

2

⌉
≤ T1 ≤ n− f

f < T1 ≤ n− f

(6)

The system of inequalities has solutions only if n > 5f . We thus set n as
5f + 1, and T1 and T as 4f + 1 and the protocol BG[1, 1] is shown in Fig. 11.
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A Additional Related Work

We have discussed the most relevant work throughout the paper. This section
now discusses additional related work.

First of all, the idea of using the local state variables stems from the HotStu�
technique [31], a novel technique that originally used by HotStu� BFT proto-
col [31] and implicitly used in AMS validated Byzantine agreement (VBA) [4].
Such a technique is later used to build various other Byzantine fault-tolerant pro-
tocols [29, 3, 2]. In the partial synchronous setting, a number of HotStu� BFT
variants have been proposed, including [20, 16, 17, 5, 30].

Some of our protocols admit a threshold of f+1 for some (but not all) phases.
A threshold signature with f+1 as the threshold, in general, compared to a high-
threshold (2f +1) signature, has many bene�ts. First, a low-threshold signature
is more e�cient, as one now only waits for f + 1 partial threshold signatures
to form a combined signature [14]. Second, without assuming trusted setup, it
is computationally less e�cient to build high-threshold signature [21, 2, 13, 6].
Also, some prior protocols explore using low thresholds in their constructions
(e.g., [10]).

B Algorithms for Layer 1

In this section, we provide the deferred formal description of our framework
de�ned in layer 1. The normal-case protocol is presented in Algorithm 3, and
the view change protocol is presented in Algorithm 4. Both protocols use the
data structures de�ned in Sec. 4.2

B.1 Formal Description for Normal-Case Protocol

We present normal-case protocol for BG[x, z] and BG[x, y, z] in Algorithm 3.
In the normal-case protocol, there are z phases. Each phase includes two steps
with linear communication. Note that x, y, and z are integers such that x ≤ z
in BG[x, z] and x ≤ y ≤ z in BG[x, y, z].
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▷ In lines 6-14 (phase 1), the leader extends a branch in the tree it maintains, cre-
ates a new block b, and broadcasts a messagem =⟨msg-1, cview, b.height, b,QCx⟩
to all replicas. Upon receiving a msg-1 message m, each replica veri�es m.block.
The replica then sends the leader qcVote(⟨vote-1, b.height, curV iew, b,QCx⟩).
▷ In lines 15-24, starting from phase 2, replicas repeat the same procedure until
the z-th phase completes. In particular, in the j-th phase, after collecting Tj−1
matching threshold signature shares, the leader runs qcCreate() to obtain a
QCj−1 for block b, broadcasts ⟨msg-j, cview, b.height, b, b.QCj−1⟩ to all replicas
and enters the next phase. Upon receiving a valid msg-j message, a replica sends
the leader qcVote(m) using a vote-j message. In BG[x, y, z], if a replica voted
for a block in the (y+1)-th phase of normal-case protocol, it sets its lb to the
block at the same time.

▷ In lines 25-32 (the commit step), the leader broadcasts QCz to all replicas
in a commit message. Upon receiving a valid QCz, each replica commits the
corresponding block.

Algorithm 3: Normal-case protocol for BG[x, z] and BG[x, y, z]

1 Initialization:
2 localState: cview←1, vb←⊥. QC1, QC2, · · · , and QCz are initialized to ⊥.
3 criticalState: set by layer 3 of the framework; contain variables in localState.
4 lockState: QCy (in BG[x, y, z]) or ⊥ (in BG[x, z])
5 flag: a system parameter set by layer 3 of the framework.
6 ▷ Phase 1:
7 as a leader

8 b′ ← qcBlock(QCx), b ← ⟨cview, b′.height + 1, req, hash(b′)⟩
9 broadcast ⟨msg-1, cview, b.height, b, b′.QCx⟩

10 as a replica

11 wait for message ⟨msg-1, cview, b.height, b, b′.QCx⟩ from leader(cview)

12 if b′.view=b.view=cviewand b.height=b′.height+1and b.pl=hash(b′)and rank(b′)≥rank(vb)
13 QCx←b′.QCx, vb← b, m←⟨vote-1,cview,b.height,b,⊥⟩
14 send qcVote(m) to Leader(cview)
15 ▷ Phase 2 to Phase z (for 2 ≤ j ≤ z):
16 as a leader
17 wait for Tj−1 matching votes: M←{σ|σ is a signature for ⟨vote-(j-1), cview,b.height,b,⊥⟩}:
18 broadcast ⟨msg-(j), cview, b.height, b,qcCreate(M)⟩
19 as a replica
20 wait for message ⟨msg-(j), cview, b.height, b, b.QCj−1⟩ from Leader(cview):

21 if b.view = cview and rank(b) > rank(qcBlock(QCj−1))
22 QCj−1←b.QCj−1, m←⟨vote-j, cview,b.height,b,⊥⟩
23 if j = y + 1 then lb← b
24 send qcVote(m) to leader(cview)
25 ▷ Commit
26 as a leader
27 wait for Tz matching votes: M←{σ|σ is a signature for ⟨vote-(z), cview,b.height,b,⊥⟩}
28 broadcast ⟨commit, cview, b.height, b,qcCreate(M)⟩
29 as a replica
30 wait for message ⟨commit, cview, b.height, b, b.QCz⟩ from leader(cview)

31 if b.view = cview and rank(b) > rank(qcBlock(QCz))
32 QCz←b.QCz , execute the requests in b in order
33 ▷ Finally
34 switch to New-view phase of view change protocol if timeout occurs in any phase
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Algorithm 4: View change protocol for BG[x, z] and BG[x, y, z]

1 ▷ New-view:
2 as a replica
3 cview← cview +1, send ⟨new-view, cview,⊥,⊥, criticalState⟩ to Leader(cview)
4 ▷ View-update
5 as a new leader

6 (b′, π)← fsb(Mv) //Mv is a set of T new-view messages collected in v

7 b←⟨b′.height + 1, cview, req, hash(b′)⟩
8 broadcast m = ⟨view-update, cview, b.height, b, π⟩
9 if flag = 0 then switch to Phase 2 of normal-case operation

10 if flag = 1 then
11 wait for T1 matching votes:
12 M←{m | m = ⟨vote-1, cview, b.height, b,⊥⟩}: QC1←qcCreate(M)
13 execute Phase 2 to Phase (x+1) without updating lockState until b.QCx is generated
14 then update QCx with b.QCx and switch to phase 1 of normal-case operation
15 as a replica
16 wait for ⟨view-update, cview, b.height, b, π⟩ from Leader(cview)
17 if (vv(m)=0 in BG[x, z] or vv(m, vb)=0 in BG[x, y, z]) then discard m
18 if flag=0 then switch to Line 13 of normal-case without updating QCx

19 if flag = 1 then
20 execute Phase 1 to Phase x of normal-case operation without updating lockState
21 if a ⟨msg-1⟩ message for a block b∗ extending b is received
22 switch to Phase 1 of normal-case operation
23 ▷ Finally
24 switch to New-view phase of view change protocol if timeout occurs in any phase

B.2 View Change Protocol

We now present the view change protocol using the core functions fsb() and
vv() in a black-box manner. As is described in Sec. 4.4, view change is triggered
by pi when timeout occurs.

▷ In lines 1-3, a replica triggers view change by incrementing cview by one.
Then pi sends criticalState in a new-view message to the next leader.

▷ In lines 4-14, the new leader collects a set of T new-viewmessages, denoted
as Mv. It then executes fsb(Mv) to obtain (b′, π), where b′ is a block and π is
a proof that b′ is a safe block to extend. Then the leader extends the branch
led by b′ with a new block b and broadcasts b in a view-update message m.
Depending on the parameter flag, there are two cases. If flag = 0, the leader
directly switches to phase 2 of normal-case operation. If flag = 1, the leader still
switches to phase 2 but does not update its lockState until b.QCx is generated.

▷ In lines 15-22, a replica accepts a view-update message m in view v from
the new leader only if vv(m) outputs 1 in BG[x, y, z] or vv(m, lb) outputs 1
in BG[x, y, z]. Similar to the two cases for the leader, according to the flag
parameter, the replica may take di�erent actions upon receiving m. If flag = 0,
the replica switches to Line 13 of normal-case without updatingQCx. If flag = 1,
the replica still votes for m but does not update lockState or commit any block
until a msg-1 message for a block b∗ extending b is received. Then the replica
switch to phase 1 of normal-case operation.

C Protocols and Inequalities

In this section, we discuss all the 23 BFT protocols generated in our framework.
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predicates candidates
conditions to other conditions (from layer 2)

solvable?
satisfy predicates x, y-dependent conditions other general conditions

DP1

Votes(b, T, z) > T/2

BG[1, 1]

T−(n−T1+f) > T/2

�

f < T ≤ n−f⌈
n+f+1

2

⌉
≤ T1 ≤ n−f

f < Tj ≤ n−f for j ∈ [1..z]

✓
BG[1, 2] � ✓
BG[2, 2] � ✓
BG[1, 3] � ✓
BG[2, 3] � ✓
BG[3, 3] � ✓
BG[1, 1, 2] n−T1+f+1 ≤ T2 ≤ n−f f < T ≤ n−f⌈

n+f+1
2

⌉
≤ T1 ≤ n−f

f < Tj ≤ n−f for j ∈ [1..z]

✓
BG[1, 1, 3] n−T1+f+1 ≤ T2 ≤ n−f ✓
BG[1, 2, 3] n−T1+f+1 ≤ T3 ≤ n−f ✓
BG[2, 2, 3] n−T1+f+1 ≤ T3 ≤ n−f ✓

DP2

Votes(b, T, y) ≥ f+1 and

Certs(b, T, x, z) ≥ T−(2f+1)

(for BG[x, y, z])

BG[1, 1, 2]
T−(n−T1+f) ≥ f+1

T−(n−T2+f)≥T−(2f+1)
n−T1+f+1 ≤ T2 ≤ n−f

f < T ≤ n−f⌈
n+f+1

2

⌉
≤ T1 ≤ n−f

f < Tj ≤ n−f for j ∈ [1..z]

✓

BG[1, 1, 3]
T−(n−T1+f) ≥ f+1

T−(n−T2+f)≥T−(2f+1)
n−T1+f+1 ≤ T2 ≤ n−f ✓

BG[1, 2, 3]
T−(n−T1+f) ≥ f+1

T−(n−T2+f)≥T−(2f+1)
n−T1+f+1 ≤ T3 ≤ n−f ✓

BG[2, 2, 3]
T−(n−T1+f) ≥ f+1

T−(n−T3+f)≥T−(2f+1)
n−T1+f+1 ≤ T3 ≤ n−f ✓

DP3

Certs(b, T, x, z) > 0

(for BG[x, z])

BG[1, 1] T−(n−1) > 0 �

f < T ≤ n−f⌈
n+f+1

2

⌉
≤ T1 ≤ n−f

f < Tj ≤ n−f for j ∈ [1..z]

×
BG[1, 2] T−(n−T2+f) > 0 � ✓
BG[2, 2] T−(n−1) > 0 � ×
BG[1, 3] T−(n−T2+f) > 0 � ✓
BG[2, 3] T−(n−T3+f) > 0 � ✓
BG[3, 3] T−(n−1) > 0 � ×

DP3

Certs(b, T, x, y) > 0

(for BG[x, y, z])

BG[1, 1, 2] T−(n−1) > 0 n−T1+f+1 ≤ T2 ≤ n−f f < T ≤ n−f⌈
n+f+1

2

⌉
≤ T1 ≤ n−f

f < Tj ≤ n−f for j ∈ [1..z]

×
BG[1, 1, 3] T−(n−1) > 0 n−T1+f+1 ≤ T2 ≤ n−f ×
BG[1, 2, 3] T−(n−T2+f) > 0 n−T1+f+1 ≤ T3 ≤ n−f ✓
BG[2, 2, 3] T−(n−1) > 0 n−T1+f+1 ≤ T3 ≤ n−f ×

DP5

Certs(b, T, x, z) > 0

and Votes(b, T, y) > 0

(for BG[x, y, z])

BG[1, 1, 2]
T−(n−T1+f) > 0

T−(n−T2+f) > 0
n−T1+f+1 ≤ T2 ≤ n−f

f < T ≤ n−f⌈
n+f+1

2

⌉
≤ T1 ≤ n−f

f < Tj ≤ n−f for j ∈ [1..z]

✓

BG[1, 1, 3]
T−(n−T1+f) > 0

T−(n−T2+f) > 0
n−T1+f+1 ≤ T2 ≤ n−f ✓

BG[1, 2, 3]
T−(n−T1+f) > 0

T−(n−T2+f) > 0
n−T1+f+1 ≤ T3 ≤ n−f ✓

BG[2, 2, 3]
T−(n−T1+f) > 0

T−(n−T3+f) > 0
n−T1+f+1 ≤ T3 ≤ n−f ✓

Table 5: Solvability for each BG candidate summarized from the Lemmas and Theo-
rems for the dominant predicates. To see if a speci�c BG candidate protocol achieves
safety and optimistic responsiveness, one needs to see if a system of inequalities for
conditions is solvable. For instance, the system of inequalities for BG[1, 1] includes the
condition for DP1 (row 1, column 3), x, y-dependent conditions (which are null here),
and other general conditions (row 1, column 5). If a system of inequalities is solvable
for a speci�c BG candidate, the range for its thresholds is illustrated in Table 7.

C.1 Enumerating the BG Protocols

While protocols presented in Sec. 7 outperform existing BFT protocols, we could
enumerate x, y, z for the predicates, creating 23 protocols in total. Table 5
presents the system of inequalities for these protocols, and Table 6 presents the
system features of all the protocols. We also present the ranges of framework
parameters (e.g., the thresholds) of these protocols in Table 7 (as summarized
from the theorems presented in layer 3).

C.2 The DP5 Variant

We present the constructions for core functions for the variant of DP5. In this
variant, we set flag as 0 and the core functions remains the same as those in DP5.
However, the view change protocol of the DP5 variant is slightly di�erent from
that mentioned in the framework. In this variant, a new leader uses one more
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protocol predicates replicas
message

steps
authenticator complexity message complexity

pattern normal-case view change normal-case view change

1-phase
FaB5[23] � 5f + 1 AtoA 2 O(n2) O(n3) O(n2) O(n2)

BG[1, 1] DP1 5f + 1 1toA 3 O(n) O(n2) O(n) O(n)

2-phase

PBFT[12] � 3f + 1 AtoA 3 O(n2) O(n3) O(n2) O(n2)

Tendermint[8] � 3f + 1 AtoA 3 O(n2) O(n2) O(n2) O(n2)

Casper[9] � 3f + 1 AtoA 3 O(n2) O(n2) O(n2) O(n2)

Fast-Hotstu�[20] � 3f + 1 1toA 5 O(n) O(n2) O(n) O(n)

BG[1, 2] DP1 5f + 1 1toA 5 O(n) O(n2) O(n) O(n)

BG[2, 2] DP1 5f + 1 1toA 5 O(n) O(n2) O(n) O(n)

BG[1, 2] DP3 3f + 1 1toA 5 O(n) O(n2) O(n) O(n)

BG[1, 1, 2] DP1 5f + 1 1toA 5 O(n) O(n) O(n) O(n)

BG[1, 1, 2] DP2 4f + 1 1toA 5 O(n) O(n) O(n) O(n)

BG[1, 1, 2] DP5 3f + 1 1toA 5 O(n) O(n2)/O(n) O(n) O(n)

3-phase

Hotstu�[31] � 3f + 1 1toA 7 O(n) O(n) O(n) O(n)

BG[1, 3] DP1 5f + 1 1toA 7 O(n) O(n2) O(n) O(n)

BG[2, 3] DP1 5f + 1 1toA 7 O(n) O(n2) O(n) O(n)

BG[3, 3] DP1 5f + 1 1toA 7 O(n) O(n2) O(n) O(n)

BG[1, 3] DP3 3f + 1 1toA 7 O(n) O(n2) O(n) O(n)

BG[2, 3] DP3 3f + 1 1toA 7 O(n) O(n2) O(n) O(n)

BG[1, 1, 3] DP1 5f + 1 1toA 7 O(n) O(n2) O(n) O(n)

BG[1, 2, 3] DP1 5f + 1 1toA 7 O(n) O(n2) O(n) O(n)

BG[2, 2, 3] DP1 5f + 1 1toA 7 O(n) O(n2) O(n) O(n)

BG[1, 1, 3] DP2 4f + 1 1toA 7 O(n) O(n) O(n) O(n)

BG[1, 2, 3] DP2 4f + 1 1toA 7 O(n) O(n) O(n) O(n)

BG[2, 2, 3] DP2 4f + 1 1toA 7 O(n) O(n) O(n) O(n)

BG[1, 2, 3] DP3 3f + 1 1toA 7 O(n) O(n) O(n) O(n)

BG[1, 1, 3] DP5 3f + 1 1toA 7 O(n) O(n)/O(n2) O(n) O(n)

BG[1, 2, 3] DP5 3f + 1 1toA 7 O(n) O(n)/O(n2) O(n) O(n)

BG[2, 2, 3] DP5 3f + 1 1toA 7 O(n) O(n)/O(n2) O(n) O(n)

Table 6: BFT protocols generated using BG[x, z] and BG[x, y, z] for z ≤ 3. For in-
stance, BG[1, 1] with a predicate DP1 is a 1-phase protocol. One can have many instan-
tiations for the same parameters (e.g., BG[1, 1, 2]) by using di�erent predicates. AtoA
denotes all-to-all communication and 1toA represents one-to-all or all-to-one (linear)
communication.



BG: A Modular Treatment of BFT Consensus 29

protocol pred T T1

BG[1, 1] DP1 (f, n−f ] (max{
⌈

n+f+1
2

⌉
, n+f − T

2 }, n−f ]

protocol pred T T1 T2

BG[1, 2] DP1 (f, n−f ] (max{
⌈

n+f+1
2

⌉
, n+f − T

2 }, n−f ] [f+1, n−f ]

BG[2, 2] DP1 (f, n−f ] (max{
⌈

n+f+1
2

⌉
, n+f − T

2 }, n−f ] [f+1, n−f ]

BG[1, 2] DP3 (f, n−f ] [
⌈

n+f+1
2

⌉
, n−f ] [n+f − T+1, n−f ]

BG[1, 1, 2] DP1 (f, n−f ] (max{
⌈

n+f+1
2

⌉
, n+f − T

2 }, n−f ] [n+f − T1+1, n−f ]

BG[1, 1, 2] DP2 (f, n−f ] [max(n−T+2f+1,
⌈

n+f+1
2

⌉
), n−f ] [max(n−f+1, n−T1+f+1), n−f ]

BG[1, 1, 2] DP5 (f, n−f ] [max(n−T+f+1,
⌈

n+f+1
2

⌉
), n−f ] [max(n−T+f+1, n−T1+f+1), n−f ]

protocol pred T T1 T2 T3

BG[1, 3] DP1 (f, n−f ] (max{
⌈

n+f+1
2

⌉
, n+f − T

2 }, n−f ] [f+1, n−f ] [f+1, n−f ]

BG[2, 3] DP1 (f, n−f ] (max{
⌈

n+f+1
2

⌉
, n+f − T

2 }, n−f ] [f+1, n−f ] [f+1, n−f ]

BG[3, 3] DP1 (f, n−f ] (max{
⌈

n+f+1
2

⌉
, n+f − T

2 }, n−f ] [f+1, n−f ] [f+1, n−f ]

BG[1, 3] DP3 (f, n−f ] [
⌈

n+f+1
2

⌉
, n−f ] [n+f − T+1, n−f ] [f+1, n−f ]

BG[2, 3] DP3 (f, n−f ] [
⌈

n+f+1
2

⌉
, n−f ] [f+1, n−f ] [n+f − T+1, n−f ]

BG[1, 1, 3] DP1 (f, n−f ] (max{
⌈

n+f+1
2

⌉
, n+f − T

2 }, n−f ] [n+f − T1+1, n−f ] [f+1, n−f ]

BG[1, 2, 3] DP1 (f, n−f ] (max{
⌈

n+f+1
2

⌉
, n+f − T

2 }, n−f ] [f+1, n−f ] [n+f − T1+1, n−f ]

BG[2, 2, 3] DP1 (f, n−f ] (max{
⌈

n+f+1
2

⌉
, n+f − T

2 }, n−f ] [f+1, n−f ] [n+f − T1+1, n−f ]

BG[1, 1, 3] DP2 (f, n−f ] [max{n−T+2f+1,
⌈

n+f+1
2

⌉
}, n−f ] [n+f+1−min{2f, T1}, n−f ] [f+1, n−f ]

BG[1, 2, 3] DP2 (f, n−f ] [max{n−T+2f+1,
⌈

n+f+1
2

⌉
}, n−f ] [n−f+1, n−f ] [n−T1+f+1, n−f ]

BG[2, 2, 3] DP2 (f, n−f ] [max{n−T+2f+1,
⌈

n+f+1
2

⌉
}, n−f ] [f+1, n−f ] [n+f+1−min{2f, T1}, n−f ]

BG[1, 2, 3] DP3 (f, n−f ] [
⌈

n+f+1
2

⌉
, n−f ] [n+f − T+1, n−f ] [n+f − T1+1, n−f ]

BG[1, 1, 3] DP5 (f, n−f ] [max{n−T+f+1,
⌈

n+f+1
2

⌉
}, n−f ] [n+f+1−min{T, T1}, n−f ] [f+1, n−f ]

BG[1, 2, 3] DP5 (f, n−f ] [max{n−T+f+1,
⌈

n+f+1
2

⌉
}, n−f ] [n−T+f+1, n−f ] [n−T1+f+1, n−f ]

BG[2, 2, 3] DP5 (f, n−f ] [max{n−T+f+1,
⌈

n+f+1
2

⌉
}, n−f ] [f+1, n−f ] [n+f+1−min{T, T1}, n−f ]

Table 7: Ranges for the thresholds of BG protocols that are achievable given the
system of inequalities presented in Table 5. All DP1 protocols use 5f +1 replicas, while
protocols with other predicates have optimal resilience.

phase to achieve linear communication while satisfying VVL-safety. Speci�cally,
basing on a setMv of n−f new-view messages, a new leader pi decides whether
to start an additional phase. If the rank of the highest block in Mv.vb is larger
than that of the highest QCx qc inMv.QCx, then pi broadcasts qc to ask replicas
whether qc is indeed the highest QCx they receive.

If T replicas respond "yes", then according to DP5, pi knows that a block
with a higher rank than that of qc cannot be committed. These responses form a
certi�cate, and pi can use this certi�cate to validate its new block that extends
qc.

When a replica responds no, the replica is also required to send its QCx

qc′ in this response, where rank(qc′) > rank(qc). Then pi will propose a block
b extending qc′. Note that the rank of qc′ is no less than the locked block of
any replica, and all correct replicas will vote for b. In particular, if a correct
replica pj locked at b, then the parent block of b (denoted b′) satis�es that
b′.view = b.view. Meanwhile, if pj sets its vb as b, pj must have stored a QCx

for b′. In DP5, Votes(b, T, y) ≥ 1, so the rank of the highest QCx qc contained
in a view change snapshot is at most one less than that of the highest locked
block.
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This additional ask-respond phase ensures that the new block proposed by
pi will be voted by all correct replicas without being sent with n− f new-view

messages.
We use BG[1,1,2]∗ to denote the protocol generated using the variant of DP5.

As shown in Fig. 12, BG[1,1,2]∗ achieves O(n) authenticator complexity at the
cost of two more (optional) phases for view change.

p1

p2

p3

p4

VV()
vote for a block b if the parent block b’	of b 
satisfies  b’.QC1∈π and:
1. rank(b’)≥		rank(Qcblock(QC1)) , or
2. b’ is a block with a certificate for “yes”

FSB()
1.select (any) one block b1 with the 
highest rank in Mv.lb 
2.select the block b2  with the highest 
rank for which QC1 ∈Mv.QC1 
3. if rank(b2)≥		rank(b1), propose b 
that extends b2 skip the optional phase
4. if rank(b2)<		rank(b1), start the 
optional phase

Parameters: T=T1=T2=2f+1    localState: cview, lb, QC1, QC2

  criticalState: lb, QC1                  lockState: QC1

View Change Normal Case

ASK()
1. if rank(b2)≥		rank(QC1), 
repond “yes”
2. if rank(b2)<		rank(QC1), 
repond “no”with QC1

<ask,b2.QC1>

RESPOND()
1. if  n-f votes for “yes” for  
b2.QC1, generate a certificate for 
“yes”for b2，propose block b 
that extends b2

2. if b3.QC1 is received and 
rank(b2)<		rank(b3), propose 
block b that extends b3

<YES>

<NO,QC1>

phase 1 phase 2 commitoptional phase  

Fig. 12: BG[1,1,2]∗ with DP5

The above mechanism is at the core of Marlin [30]. Marlin, however, does
further optimizations, including one where the ask-response phase is combined
with the broadcast-vote phase of two new blocks.

C.3 Optimizations of The Protocols

Here we present optimizations for our protocols with DP1 to reduce the number
of steps for view changes. Recall that flag is set to 1 in DP1. According to
Algorithm 4, after the view change, the new leader proposes its �rst block b.
Replicas can vote for b but do not update their lockState or commit b. After
replicas receive another proposed block extending b from the leader, they then
switch to normal case operation. Accordingly, the �rst block proposed by a new
leader needs one more phase to be committed, i.e., the block can be committed
only after its extension is committed.

Fortunately, we can make some modi�cation to our view-update protocol
to reduce this additional phase for view change. In this section, we provide the
optimized implementation of protocols with DP1. We follow the notations de�ned
in Sec. 4.2 despite some minor modi�cation.
Message. For the view change protocol, we extend the de�nitions of the new-
view message. There are two types of new-view messages. One remains the
same as that de�ned in our main framework. The new one we de�ne sets the
justify �eld as ⊥ but other �elds are used to store information for a block.
View-change certi�cate(VC). We introduce a certi�cate called view-change
certi�cate (VC). Recall that during the view change, each replica sends a signed
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new-view message containing its criticalState. A view-change certi�cate for
a message m is a collection of signatures for a new-view message m, where
m.justify is ⊥. For a VC vc for m, vc.view is m.view and we also called vc a
view-change certi�cate for m.block. The threshold for a VC is set as ⌈(T +1)/2⌉,
where T is the threshold of new-view messages the new leader needs to collect.

Local state. In the modi�ed protocol, each replica needs to maintain the latest
view-change certi�cate received during the view change in its lockState, denoted
as QCvc. The criticalState of a replica is set to vb, QCx, and QCvc of the replica.

In the modi�ed protocol, we ask replicas to create partial signatures for the
block proposed in the new-view messages so QCs can be formed during the
view change as well. These combined signature (if any) naturally becomes a
certi�cate for the �rst block proposed by a new leader. Besides, replicas need
to locally stores the certi�cate for such a block. This certi�cate ensures that no
votes for a committed block can be overwritten and should been included in the
new-view message if another view change occurs.

We make modi�cation to view change protocol in layer 2 and provide new
realizations of fsb() and vv() in layer 3.

View change protocol. We present the modi�ed view change protocol in Al-
gorithm 5. Similar to Algorithm 4, we present the modi�ed protocol using fsb()
and vv() functions in a black-box manner. When the timer of replica pi expires
in cview, view change is triggered.

▷ In lines 1-6, a replica starting view change by incrementing cview by one.
Then pi sends criticalState in a new-view message to the next leader. If the
last voted block vb of pi has a higher rank than QCx of pi, pi also creates a partial
signature for vb and include the partial signature in the new-view message.

▷ In lines 7-14, the new leader collects a set of T new-viewmessages, denoted
as Mv. It then executes fsb(Mv) to obtain (b′, π), extends the branch led by b′

with a new block b, and broadcasts b in a view-update message m. Then the
leader waits for T1 matching votes to form a QC1 for b. After receiving b.QCx,
the leader set its QC1 to b.QCx and directly switches to phase 2 of normal-case
operation.

▷ In lines 15-20, a replica accepts a view-update message m in view v from
the new leader only if vv(m, ·) outputs 1. If m.justify contains a view change
certi�cate or a QCx, then the replica sets its QCvc to the certi�cate and switches
to Line 13 of our algorithm but does not update its QCx.

Realization of fsb() and vv() for DP1. We present a modi�ed realization of
the fsb() and vv() functions for BG[x, z] and BG[x, y, z] in Table 8. fsb() takes
as input Mv and outputs (b, π). Based on Mv, we can obtain three intermediate
blocks b1, b2, and b3. Block b1 represents the block more than T/2 replicas have
voted for, if any. Block b2 represents the highest block with a QC. If there exist
a b such that num(b,Mv.vb)> T/2, then these votes for b1 can form a VC vc
and b1 is set as b (lines 02-04). Then fsb() outputs (b1, (Mv, vc)) in BG[x, z] and
(b1, (⊥, vc)) in BG[x, y, z] (lines 05-1 and 05-2). Otherwise, we have b1 = null.
Block b2 (lines 06-07) is the block with the highest rank such that b2.QCx is
included in Mv.QCx. Block b3 (lines 08-10) is the block such that a VC vc for
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Algorithm 5: View change protocol

1 ▷ New-view:
2 as a replica
3 cview← cview +1, m← ⊥ m1 ← ⟨new-view, cview,⊥,⊥, criticalState⟩
4 if rank(vb) > rank(qcBlock(QCx))
5 m← ⟨new-view, cview, vb, vb.height,⊥⟩
6 send m1 and qcVote(m) to Leader(cview)
7 ▷ View-update
8 as a new leader
9 (b′, π)← fsb(Mv) //Mv is a set of T new-view messages collected in v
10 b←⟨b′.height+ 1, cview, req, hash(b′)⟩
11 broadcast m = ⟨view-update, cview, b.height, b, π⟩
12 wait for T1 matching votes:
13 M←{m | m = ⟨vote-1, cview, b.height, b,⊥⟩}: QC1←qcCreate(M)
14 //switch to Phase 2 of normal-case operation
15 as a replica
16 wait for ⟨view-update, cview, b.height, b, π⟩ from Leader(cview)
17 if vv(m, ·) = 1 and π = (π1, π2)
18 if π2 is a view change certi�cate then QCvc ← π2

19 if π2 is a QCx and rank(π2) > rank(QCx)then QCx ← π2

20 //switch to line 13 of normal-case without updating QCx

21 ▷ Finally
22 switch to New-view phase of view change protocol if timeout occurs in any

phase

b3 is included in Mv.QCvc and vc is the view-change certi�cate with the highest
view contained inMv.QCvc. If the view of vc is larger than b2, then fsb() returns
(b2, (Mv, vc)) in BG[x, z] and (b2, (⊥, vc)) in BG[x, y, z] (lines 12-1 and 12-2)
Otherwise, fsb() returns (b2, (Mv, b2.QCx)) in BG[x, z] and (b2, (⊥, b2.QCx)) in
BG[x, y, z] (lines 13-1 and 13-2).

In BG[x, z], vv() is the same with that shown in Table 2. For BG[x, y, z],
besides m, the function additionally takes as input lb. vv() outputs 1 in view
v if one of the following two conditions is satis�ed: 1) a VC for b is included
in m.justify, b.view < v, and rank(b) ≥ rank(lb) (see lines 19-20); 2) b.QCx

is included in m.justify, b.view < v, and rank(b) ≥ rank(lb) (see lines 21-22).
The �rst condition proves that a VC is formed during the view change while
the second condition proves that a block formed before the view change has
potentially been committed by at least one correct replica.

D BG Protocols with Weak Liveness

Weak liveness is used to capture the liveness property of some existing protocols
(e.g., Tendermint, Casper), where a correct leader needs to wait for the messages
from all correct replicas. Protocols achieving the notion would rely on synchrony
for liveness. This notion is de�ned in HotStu� [31], as shown below.



BG: A Modular Treatment of BFT Consensus 33

pred protocol fsb() vv()

DP1

BG[x, z]
(vb,QCx)
flag=1

func fsb(Mv)
01 b1 ← null, b2 ← null, b3 ← null
02 for b ∈Mv.vb
03 if num(b,Mv.vb)>T/2 then b1 ← b
04 π2← a VC for b
05-1 return (b1, (Mv, π2)) BG[x, z]
05-2 return (b1, (⊥, π2)) BG[x, y, z]
06 for b : b.QCx ∈Mv.QCx

07 if rank(b)>rank(b2) then b2 ← b
08 for b : a ceriti�cate qc for b ∈Mv.QCvc

09 if qc.view>b3.view
10 b3 ← b, vc← qc
11 if vc.view>b3.view
12-1 return (b3, (Mv, vc)) BG[x, z]
12-2 return (b3, (⊥, vc)) BG[x, y, z]
13-1 return (b2, (Mv, b2.QCx)) BG[x, z]
13-2 return (b2, (⊥, b2.QCx)) BG[x, y, z]

func vv(⟨view-update, cview, b′.height, b′, π⟩)
14 b← the parent block of b′

15 if Mv∈π and (b, π)=fsb(Mv) and b.view<v
16 then return 1
17 return 0

BG[x, y, z]
(vb,QCx)
flag=1

func vv(⟨view-update, v, b′.height, b′, π⟩, lb)
18 b← the parent block of b′

19 if a VC vc for b∈π and b.view<cview
20 if rank(lb)≤rank(b) then return 1
21 if b.QCx∈π and b.view<v
22 if rank(lb) ≤ rank(b) then return 1
21 return 0

Table 8: The realization of fsb() and vv() for the optimized protocols according to
DP1.

− Weak liveness: After GST, any correct leader needs to wait for responses
from all correct replicas to guarantee that it can create a proposal that will
make progress.

D.1 Weak Liveness: Layer 2

Our Layer 2 framework can easily and formally capture protocols achieving weak
liveness rather than optimistic responsiveness. Take BG[x, y, z] for example. Let
S(Mv) denote the set of senders of snapshot Mv. We can de�ne a weak liveness
property for the fsb() function:

− FSBL-wliveness: If C ⊆ S(Mv), then fsb(Mv) outputs (b, π).

The other properties are exactly the same as those for BG[x, y, z]. We have
the following liveness theorem:

Theorem 13. BG[x, y, z] achieves weak liveness, if Tj ≤ n−f for all j ∈ [1..z],
and FSBL-wliveness and VVL-liveness hold.

D.2 Weak Liveness: Layer 3 and Instantiations

To capture weak liveness, we propose predicate DP4 in layer 3. DP4 is similar to
DP3 except that any correct leader needs to wait for new-view messages from
all correct replicas to guarantee that it can received QCx for the locked block
with the highest rank. Therefore, the leader can create a proposal that will make
progress. We let such a set of new-view messages for view v be Mv(C). We also
de�ne M b(C) such that M b(C) is identical to M b, except that M b(C) contains
messages from all correct replicas.

While DP3makes sense for both BG[x, z] and BG[x, y, z], we focus on BG[x, y, z]
to capture existing protocols also with weak liveness property (e.g., Tendermint
and Casper): flag is set to 0, BG[x, y, z] satis�es DP4 i� b.QCx ∈ M b(C) for any
locked block b.
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We present a realization of the fsb() and vv() for BG[x, y, z] in Table 9.
These constructions of core functions are identical to that for DP3 except for the
di�erent inputs of fsb().

pred critical fsb() vv()
state

DP4
BG[x, y, z]
(QCx)
flag = 0

func fsb(Mv)
b2 ← null
for b : b.QCx ∈Mv.QCx

if rank(b)>rank(b2) then b2 ← b
return (b2, π) s.t. π = (b2.QCx)

func vv(⟨view-update, cview, b′.height, b′, π⟩, lb)
b← the parent block of b′

if b.QCx ∈ π and rank(b) ≥ rank(lb) then
if b.view < cview then return 1
return 0

Table 9: Realizing fsb() and vv() according to DP4.

We have the following theorem for BG[x, y, z] with DP4:

Theorem 14. BG[x, y, z] (in Table 2) achieves safety and weak liveness if the

following are satis�ed: 1) BG[x, y, z] satis�es DP4 for locked blocks; 2)
⌈
n+f+1

2

⌉
≤

T1 ≤ n − f ; 3) f < Tj ≤ n − f for 1 ≤ j ≤ z; and 4) x ≤ y < z,
n− T1 + f + 1 ≤ Ty+1.

The proof of Theorem 14 is the same as that for Theorem 9 except that the
threshold T is replaced by a requirement that a view-update message should
include M b(C) in contrast to M b.

By adopting the notion, a communication-optimal 2-phase BFT (WBG[1, 1, 2],
resembling 2-phase HotStu�) can be directly obtained from our framework and
it outperforms Tendermint and Casper.

E Proofs of Theorems for Layer 2 Algorithms

Lemma 7. Given a block b, if Tj > f for all j ∈ [1..z] and if b.QCk has been
formed in view b.view for some k ∈ [1..z], then b.QC1, · · · , b.QCk were formed
in the same view.

Proof. For k = 1, correctness is trivial. For k ∈ [2..z], since b.QCk exists, at
least Tk replicas have sent vote-k messages for b. As Tk > f , at least one
correct replica pi has sent vote-k messages for b. Hence, pi must have received
b.QCk−1 contained in a msg-k message for the same view. This completes the
proof of the lemma.

Lemma 8. Let b and d be two blocks proposed in view v such that the view of
the parent block of b (denoted b′) and the view of the parent block of d (denoted

d′) are lower than v. If Tj > f for all j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
, and the QCx

for b and d are both formed in view v, then b = d and QCx for b is the QCx with
the lowest rank formed in view v.
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Proof. Let bv be the block with the lowest height for which a QCx was formed
in view v. Let bv

′ denote the parent block of bv. According to Lemma 7, at least
a correct replica pi has sent a vote−1 message for bv to form the bv.QC1 in
view v. If bv

′.view = v, then pi must have received a QCx for bv
′ and rank(bv

′) <
rank(bv). This causes a contradiction, because the QCx for bv is de�ned to be
the QCx with the lowest height formed in view v. Thus, bv

′.view < v. As T1 ≥⌈
n+f+1

2

⌉
and the QCx's for b, d, and bv are all formed in view v, at least one

correct replica has sent a vote−1 message for b, d, and bv to form QC1 for
these blocks. Note that in view v, a correct replica sends a vote−1 message for
at most one block whose parent block is proposed before view v. Thus, it must
hold that b = d = bv.

Lemma 9. Let Tj > f for any j ∈ [1..z] and T1 ≥
⌈
n+f+1

2

⌉
. Let bv and b1 be

blocks such that QCx for both bv and b1 have been formed in view v and the view
of the parent block of bv is lower than v. Then b1 = bv or b1 is an extension of
bv.

Proof. According to Lemma 8, bv.QCx is the QCx with the lowest rank formed
in view v. Let b0 denote the block with the lowest rank on the branch led b such
that b0.view = v.

For any block b, according to Lemma 7, the formation of b.QCx implies that
b.QC1 has also been formed in view b.view. Then, at least a correct replica has
sent a vote−1 message for b since T1 > f . Besides, if the view of the parent
block b′ of b is equal to b.view, a correct replica will send vote−1 message for
b only after receiving b′.QCx. Then the existence of b1.QCx implies that QCx's
for b′ has been formed in view v. Furthermore, QCx for b0 and any block that
is an extension of b0 on the branch led by b1 have been formed in view v. Then
according to Lemma 8, b0 equals bv and b1 = b0 = bv or b1 is an extension of bv.

Lemma 10. If Tj > f for all j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
, b and d are two

con�icting blocks and b.view = d.view = v, then b.QCx and d.QCx cannot be
formed in view v.

Proof. Let bv be the block with the lowest rank such that a QCx for bv was
formed in view v. If there exists QCx for two con�icting blocks b and d formed
in view v, then according to Lemma 9, b and d should be the same as bv or both
b and d are extension of bv. Additionally, according to Lemma 7, the QC1 has
been formed for both b and d in view v. Accordingly, b.height ≥ bv.height and
d.height ≥ bv.height. Then, we distinguish two cases:

1) b.height = d.height. If b.height = bv.height, Obviously, we have b =
d = bv, contradicting to the assumption that b and d are con�icting blocks. If
b.height > bv.height, then b and d are blocks with the same rank and the view
of the parent blocks of b and d are v. Then vote−1 message for b or d are sent
during normal-case protocol. Note that each correct replica sends a vote−1
message only once for blocks with a speci�c height in a view during the normal
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case. Since T1 ≥
⌈
n+f+1

2

⌉
, QC1 for b and d cannot be formed in the same view

v.
2) b.height ̸= d.height.We assume w.l.o.g., b.height > d.height. If d.height =

bv.height, then d = bv and b is an extension of bv, contradicting to the assump-
tion. If d.height > bv, b and d are also extension block of bv. Let b0 denote the
block on the branch led by b such that b0.height = d.height, then b0 is also an
extension of bv, b0.view = v and b0 ̸= d. Note the existence of b.QCx implies
that b0.QCx has been formed in view v. However, according to the discussion in
Case 1), QCx's for b0 and d cannot be formed in view v. That's a contradiction.

This completes the proof of the lemma.

Lemma 1 Let Bv = {b | block b has been committed before view v}. If Tj > f

for j ∈ [1..z] and T1 ≥
⌈
n+f+1

2

⌉
, then there exists bv ∈ Bv such that for all

b′ ∈ Bv and b′ ̸= bv and rank(bv) > rank(b′).

Proof. For any block b ∈ Bv, according to Lemma 7, a QCx for b is formed
in b.view. We can �nd a set of blocks with the highest view by traversing all
blocks in Bv. According to Lemma 10, any two blocks contained in the set have
di�erent heights. Therefore, we can �nd a block bv with the highest height in
the set. Obviously, bv satis�es the conditions described in the lemma.

Theorem 1 BG[x, z] achieves safety-I, if T1 ≥
⌈
n+f+1

2

⌉
and Tj > f for all

j ∈ [1..z].

Proof. If two con�icting blocks b and d are committed in the same view v, each
by a correct replica, then there must exist QCz for b and d formed in view v.
This is a contradiction with Lemma 7 and Lemma 10 .

Theorem 4 BG[x, y, z] achieves safety-I, if T1 ≥
⌈
n+f+1

2

⌉
and Tj > f for all

j ∈ [1..z].

Proof. The proof follows from Theorem 1.

Lemma 11. In BG[x, z], if a block b has been committed by at least one correct
replica in view v and FSB-safety and VV-safety hold in view v + 1, · · · , v + k
(k ≥ 1), then for any QCx qc formed in view v′ (v+ 1 ≤ v′ ≤ k), qcBlock(qc)
is an extension of b.

Proof. For a QCx qc formed in view v′ (v + 1 ≤ v′ ≤ v + k), let b′ denote
qcBlock(qc). We need to prove that b′ is an extension of b.

Let bv′ denote the block with the lowest height for which a QCx has been
formed in view v′. According to Lemma 1, we know bv

′
exists for any view v′

such that v + 1 ≤ v′ ≤ k. Then we prove the lemma by induction over the view
v′, starting from view v + 1.
Base case: Suppose v′ = v + 1. In this case, we know bv

′
.height ≥ b.height

and bv
′
.view = b.view = v. From Theorem 1, we have either bv

′
equals b or bv

′

extends b. According to Lemma 7 and Lemma 8, the view of the parent block of
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bv′ is lower than v′ and a QC1 has been formed in view v′. Since T > f + 1, at
least one correct replica has sent vote−1 for bv′ during view change. According
to FSB-safety and VV-safety, bv′ must be an extension of bv

′
. According to

Lemma 9, b′ is equal to bv′ or b′ is an extension of bv′ . Then b′ must be an
extension of b.
Inductive case: Assume v′ = v + k0 + 1 (1 ≤ k0 < k) and for any QCx qc
formed in view v + 1, · · · , v + k0, qcBlock(qc) is an extension of b. We prove
that b′ is an extension of b. Note correct replicas will commit a block only after
receiving aQCz for the block and x ≤ z. According to Lemma 7 and the inductive
hypothesis, we know bv

′
= b or bv

′
extends b. According to Lemma 7 and Lemma

8, the view of the parent block of bv′ is lower than v′ and a QC1 has been formed
in view v′. Since T > f + 1, at least one correct replica has sent vote−1 for
bv′ during view change. According to FSB-safety and VV-safety, bv′ must be an
extension of bv

′
. According to Lemma 9, b′ is equal to bv′ or b′ is an extension

of bv′ . Then b′ must be an extension of b.
Thus, for any qc formed in view v′ (v + 1 ≤ v′ ≤ v + k), qcBlock(qc) is an

extension of b.

Lemma 12. In BG[x, y, z], if a block b has been committed by at least one cor-
rect replica in view v and VVL-safety hold in view v, · · · , v+k (k ≥ 1), then for
any QCx qc formed in view v, · · · , v + k, qcBlock(qc) is an extension of b.

Proof. For a QCx qc formed in view v′ (v + 1 ≤ v′ ≤ v + k), let b′ denote
qcBlock(qc). We need to prove that b′ is an extension of b.

Let bv′ denote the block with the lowest height for which a QCx has been
formed in view v′. According to Lemma 1, we know bv

′
exists for any view v′.

Then we prove the lemma by induction over the view v′, starting from view v+1.
Base case: Suppose v′ = v + 1. In this case, we know bv

′
.height ≥ b.height

and bv
′
.view = b.view = v. From Theorem 1, we have either bv

′
equals b or bv

′

extends b. According to Lemma 7 and Lemma 8, the view of the parent block
of bv′ is lower than v′ and a QC1 for bv′ has been formed in view v′. Thus,
more than T1 − f correct replica has sent vote−1 for bv′ during view change.
According to VVL-safety, bv′ must be an extension of bv

′
. According to Lemma

9, b′ is equal to bv′ or b′ is an extension of bv′ . Then b′ must be an extension of
b.
Inductive case: Assume v′ = v + k0 + 1 (1 ≤ k0 < k) and any QCx formed
in view v + 1, · · · , v + k0 is a QCx for an extension of b. We prove that b′ is
an extension of b. Note correct replicas will commit a block only after receiving
a QCz for the block and x ≤ z. According to Lemma 7 and the inductive
hypothesis, we know bv

′
= b or bv

′
extends b. According to Lemma 7 and Lemma

8, the view of the parent block of bv′ is lower than v′ and a QC1 for bv′ has been
formed in view v′. Thus, more than T1 − f correct replica has sent vote−1 for
bv′ during view change. According to VVL-safety, bv′ must be an extension of
bv

′
. According to Lemma 9, b′ is equal to bv′ or b′ is an extension of bv′ . Then b′

must be an extension of b.
Thus, for any qc formed in view v′ (v + 1 ≤ v′ ≤ v + k), qcBlock(qc) is an

extension of b.



38 Xiao Sui, Sisi Duan, and Haibin Zhang

Theorem 2 BG[x, z] achieves safety-II, if T1 ≥
⌈
n+f+1

2

⌉
, Tj > f for all

j ∈ [1..z], and FSB-safety and VV-safety hold.

Proof. According to Lemma 1, we know bv exists for any view v. To prove
BG[x, z] satis�es safety II, we need to show the following: if a block b has been
committed by at least one correct replica in view v, then any blocks committed
after view v is an extension of b.

Assume that there exist a block b′ committed in view v′ (v′ > v) such that
b′ is not an extension of b. According to Lemma 7, b′.QCx qc is formed in view
v′. Note that FSB-safety and VV-safety hold in view v, · · · , v′. By Lemma 11,
qcBlock(qc) must be an extension of b, a contradiction.

Now we can conclude that for any block b that has been committed by at
least one correct replica proposed in view v, any blocks committed after view v
should be an extension of b. Hence, BG[x, z] satis�es safety II.

Theorem 5 BG[x, y, z] achieves safety-II, if T1 ≥
⌈
n+f+1

2

⌉
, Tj > f for all

j ∈ [1..z], and VVL-safety holds.

Proof. According to Lemma 1, we know bv exists for any view v. To prove
BG[x, y, z] satis�es safety II, we need to show the following: if a block b has
been committed by at least one correct replica in view v, then any blocks com-
mitted after view v is an extension of b.

Assume that there exist a block b′ committed in view v′ (v′ > v) such that b′

is not an extension of b. According to Lemma 7, b′.QCx qc is formed in view v′.
By Lemma 12, qcBlock(qc) must be an extension of b, a contradiction. This
completes the proof of the lemma.

Theorem 3 BG[x, z] achieves optimistic responsiveness, if Tj ≤ n − f for all
j ∈ [1..z], T ≤ n− f , and FSB-liveness and VV-liveness hold.

Proof. Suppose after GST, in a new view, the leader pi is correct. Since T ≤ n−f ,
pi can collect T new-view messages from correct replicas. By FSB-liveness, pi
can run fsb() and obtain some (b, π). Then pi sends a view-update message
m such that m.block = bv. We distinguish two case:

1) flag = 1. According to VV-liveness, bv can be voted by enough repli-
cas to form bv.QC1. Then bv will be voted by all the correct replicas to form
bv.QC2, · · · , bv.QCx. As Tj ≤ n− f for all j ∈ [1..x], bv.QCx can be formed and
pi will propose a block b′ extending bv. Since bv.QCx is the �rst QCx formed in
view v, the condition on Line 11 of Algorithm 1 is satis�ed. Since Tj ≤ n− f for
all j ∈ [1..z], it is clear that b′.QC1, · · · , b′.QCz can be formed by pi. Hence, bv
can be committed.

2) flag = 0. Since Tj ≤ n−f for all j ∈ [1..z], it is clear that bv.QC1, · · · , bv.QCz

can be formed by pi. Hence, bv can be committed.

BG[x, z] achieves optimistic responsiveness, because there is no step that
requires a speci�c timeout in both cases.
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Theorem 6 BG[x, y, z] achieves optimistic responsiveness, if Tj ≤ n − f for
all j ∈ [1..z], T ≤ n− f , and FSBL-liveness and VVL-liveness hold.

Proof. Suppose after GST, in a new view, the leader pi is correct. Since T ≤ n−f ,
pi can collect T new-view messages from correct replicas. Then by FSBL-
liveness, pi can run fsb() and obtain some (b, π). Then pi sends a view-update
message m such that m.block = bv. Note Tj ≤ n− f for all j ∈ [1..z]. According
to VVL-liveness, pi can received enough vote−1 messages to form a QCx for
bv. Then no matter flag = 1 or flag = 0, a block can be committed. Therefore,
BG[x, y, z] achieves optimistic responsiveness.

F Proofs of Theorems for BG[x, z] with DP1

Lemma 2. If T − (n−T1+ f) > T/2, then BG[x, z] or BG[x, y, z] satis�es DP1.

Proof. In a BG[x, z] or BG[x, y, z] protocol, for any block b, if b.QCz is received
by a correct replica pi and pi set its QCz to b.QCz in view v, then b.view = v.
According to Lemma 7, b.QC1 is also formed by the leader in view v. Accordingly,
at least T1−f correct replicas have sent vote−1 messages for b such that b.QC1

is formed. As pi set its QCz to b.QCz in view v, b is block proposed in normal
case and the T1 − f replicas set their vb to b in view v. Thus, fewer than n− T1

correct replicas have not yet set their vb to b in view v. Therefore, for any M b,
at most n− T1 + f messages are sent by replicas who have not set their vb to b,
i.e., there are at least T − (n−T1+ f) b in M b.vb. Since T − (n−T1+ f) > T/2,
more than T/2 elements in M b.vb are b. That means that Votes(b, T, z) > T/2
and the BG[x, z] or BG[x, y, z] satis�es DP1.

Lemma 13. If Tj > f for all j ∈ [1..z], and T1 ≥
⌈
n+f+1

2

⌉
, then FSB-liveness

holds for BG[x, z].

Proof. Given a Mv, we need to prove that fsb(Mv) outputs some (b, π). Based
on Mv, we can obtain two intermediate variables, block b1 and block b2. Since
num(b1,Mv.vb)> T/2, b1 is a unique block or null. By Lemma 10, b2 is also a
unique block. Therefore, after comparing ranks of b1 and b2, fsb(Mv) will output
a block together with a proof π.

Lemma 14. If BG[x, z] satis�es DP1, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

T > 2f , and there exists a block committed by at least one correct replica in view
v − 1, then FSB-safety holds in view v for BG[x, z].

Proof. Let Bv = {b | block b has been committed before view v}. According to
Lemma 1, we let bv denotes a block in Bv such that for all b′ ∈ Bv and b′ ̸= bv,
we have rank(bv) > rank(b′). Since there exists a committed block in view v− 1,
we know bv.view = v − 1. From Lemma 7, there must exist QCx for bv, which
is formed in view v− 1. By Lemma 13, fsb(Mv) will output some (b, π). Note b
is equal to either b1 or b2, where b1 and b2 are two intermediate variables based
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on Mv. We now prove that b is either bv or an extension of bv. Since DP1 holds
in BG[x, z], we consider two cases:

1) num(bv,Mv.vb) > T/2. Then both b and b1 equal to bv. Hence, b is either
bv or an extension of bv.

2) num(bv,Mv.vb) ≤ T/2. Since num(bv,M b.vb) > T/2 and T > 2f , it is
clear that at least one correct sender pi of a message in Mv has changed its
vb from bv to some other block b′ in view v − 1. According to the condition
on Line 11 of Algorithm 1, we have rank(b′) > rank(bv) and pi has received
a QCx for b′′, the parent block of b′. We further know that b′′.view = v − 1
and b′′.height ≥ bv.height. Then according to Lemma 10, b′′ is either bv or
an extension of bv and b′ must be an extension of bv. Similarly, the vb of pi
contained in its new-view message must be an extension of bv. So b1 must
be an extension of bv or null. In addition, pi will send its QCx qc′ in a new-
view message, qcView(qc′) = v − 1, and qcHeight(qc′) ≥ bv.height. Then
rank(b2) ≥ rank(qc′). According to Lemma 10, we now know b2 is bv or an
extension of bv. Hence, b must be bv or an extension of bv no matter b equals b1
or b equals b2.

This completes the proof of the lemma.

Lemma 15. If BG[x, z] satis�es DP1, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
, and

2f < T ≤ n− f , then FSB-safety holds for BG[x, z].

Proof. For any view v, let Bv = {b | block b has been committed before view v}.
According to Lemma 1, we let bv denote a block in Bv such that for all b′ ∈ Bv

and b′ ̸= bv, we have rank(bv) > rank(b′).
We prove that FSB-safety holds for BG[x, z] by proving that FSB-safety

holds in every view. For a speci�c view v′, let w denote bv
′
.view. We prove that

FSB-safety holds in view v′ iteratively. First, we prove that FSB-safety holds in
view w + 1. Then we prove that if FSB-safety holds in view w + 1, · · · , w + k
(for any constant k such that 1 ≤ k ≤ v′−w− 1), FSB-safety also holds in view
w + k + 1. When k = v′ − w − 1, we know that FSB-safety holds in view v′.

According to Lemma 14, we know that FSB-safety holds in view w + 1.
Then, assume that FSB-safety holds in view w+1, · · · , w+k (for any integer

k such that 1 ≤ k ≤ v′ − w − 1), we need to show that FSB-safety holds in
view w + k + 1. By Lemma 13, fsb(Mw+k+1) will output some (b, π). Note b
is either b1 or b2, where b1 and b2 are two intermediate variables obtained from
Mw+k+1. We now prove that b is either bv

′
or an extension of bv

′
. Since DP1

holds in BG[x, z], we consider two cases:
1) num(bv

′
,Mv.vb) > T/2. Then both b and b1 equal to bv

′
. Hence, b is either

bv
′
or an extension of bv

′
.

2) num(bv
′
,Mw+k+1.vb) ≤ T/2. Since num(bv,M b.vb) > T/2 and T > 2f ,

it is clear that at least one correct sender pi of a message in Mv has changed
its vb from bv

′
to some other block b′ during view w,w + 1, · · · , w + k. Since

flag = 1, pi changed its vb only if rank(b′) > rank(bv
′
). According to Algorithm

1, pi has received a QCx qc for the parent block b′′ of b′ and rank(b′′) ≥ rank(bv
′
).

By Lemma 10, Lemma 11 and the hypothesis, we know that b′′ is either bv
′
or
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an extension of bv
′
and b′ must be an extension of bv

′
. Similarly, the vb of pi

contained in its new-view message must be an extension of bv. So b1 must be
an extension of bv

′
or null. In addition, pi will send its QCx qc′ in a new-view

message. Since correct replicas only change its QCx qc to QCx with the same or
a higher rank, we have rank(qcBlock(qc′)) ≥ rank(qcBlock(qc)). Therefore,
rank(b2) ≥ rank(bv

′
) and b2.QCx is included in Mw+k+1.QCx. If b2.view = w,

then according to Lemma 10, b2 is either b
v′
or an extension of bv

′
. If b2.view > w,

then according to Lemma 11 and the inductive hypothesis, b2 is either b
v′
or an

extension of bv
′
. Hence, b is either bv

′
or an extension of bv

′
no matter b equals

b1 or b equals b2.
In both cases b is either bv

′
or an extension of bv

′
, then FSB-safety holds in

view w + k + 1. When k = v′ − w − 1, we know that FSB-safety holds in view
v′. This completes the proof of the lemma.

Lemma 16. If T1 > f , VV-safety holds in BG[x, z].

Proof. Given any view-update message m, let b denote the parent block of
m.block. According to the instantiation of vv(), vv(m) outputs 1 only if Mv ∈
m.justify and fsb(Mv) = (b,m.justify). Hence, vv() outputs 1 by a correct
replica in view v only if there exists a set Mv such that (b,m.justify) is the
output of fsb(Mv).

Lemma 17. If Tj ≤ n− f for 1 ≤ j ≤ z, VV-liveness holds in BG[x, z].

Proof. Given any view-update message m, let b denote the parent block of
m.block. If (b,m.justify) is an output of fsb(Mv), then Mv ∈ m.justify and
vv(m) outputs 1. This completes the proof.

Theorem 7. BG[x, z] (in Table 2) achieves safety and optimistic responsiveness
if the following are satis�ed: 1) BG[x, z] satis�es DP1 2) f < T ≤ n − f ; 3)⌈
n+f+1

2

⌉
≤ T1 ≤ n− f ; and 4) 2f < Tj ≤ n− f for j ∈ [1..z].

Proof. Correctness follows from Theorem 1, Theorem 2, Theorem 3, Lemma 13,
Lemma 15, Lemma 16 and Lemma 17.

G Proofs of Theorems for BG[x, y, z] with DP1

Lemma 18. If BG[x, y, z] satis�es DP1, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

and f < T ≤ n− f , then FSBL-liveness holds for BG[x, y, z].

Proof. The proof resembles the proof of Lemma 13. In any view v, the leader
can obtain two intermediate variables, block b1 and block b2 based on a Mv and
output (b, π) after comparing ranks of b1 and b2.

Lemma 19. If BG[x, y, z] satis�es DP1, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

T > 2f , x ≤ y < z, Ty+1 ≥ n − T1 + f + 1, and there exists a block committed
by at least one correct replica in view v− 1, then VVL-safety holds in view v for
BG[x, y, z].
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Proof. Let Bv = {b | block b has been committed before view v}. According to
Lemma 1, we can �nd bv ∈ Bv such that for all b′ ∈ Bv and b′ ̸= bv, we have
rank(bv) > rank(b′). Since there exists a committed block in view v−1, we know
bv.view = v − 1.

As there exists QCz formed for b
v in view v−1 and y < z, at least Ty+1−f ≥

n − T1 + 1 correct replicas have locked bv and sent vote-(y+1) for bv such
that bv.QCy+1 is formed in view v − 1. Let m denote a view-update message
such that m.view = v and the parent block bv of m.block is con�icting with
bv or rank(bv) < rank(bv). Let P = {pi | pi ∈ C (the set of correct replicas),
vv(m, lockState) outputs in view v by pi}.

For any one correct replica pi who has locked bv, let qc be its lockState
when receiving m. Let bl denote qcBlock(qc). Since a correct replica only
change its QCx to a QCx with the same or a higher rank, rank(qc) ≥ rank(bv).
vv(m, lockState) returns true by pi if one of the following two conditions is
satis�ed:

1) m.justify contains bv.QCx, bv.view < v and rank(bv) ≥ rank(bl) (lines 15-16
in Table 2).

2) m.justify contains Mv.vb, num(bv,Mv.vb) > T/2, bv.view < v and rank(bv)
≥ rank(bl) (lines 13-14 in Table 2).

Suppose that rank(bv) < rank(bv). In this case, vv(m, lockState) outputs 0
since none of the above conditions is satis�ed. Suppose that rank(bv) ≥ rank(bv).
If case 1) is satis�ed, then according to Lemma 10, bv must be equal to bv or
an extension of bv. If case 2) is satis�ed, then at least one correct sender of a
message in Mv has changed its vb from bv to bv in view v − 1 since BG[x, y, z]
satis�es DP1. According to Algorithm 3, rank(bv) > rank(bv) and the QCx for
the parent block of bv is received by the replica in view v − 1. By Lemma 10,
bv must be an extension of bv. According to the assumption that either bv is
con�icting with bv or rank(bv) < rank(bv), for all the correct replicas who have
locked bv, vv(m, lockState) return false. Since Ty+1 ≥ n−T1+f+1 and at least

Ty+1−f ≥ n−T1+1 correct replicas have locked bv
′
, we know that |P | < T1−f

and VVL-safety holds in view v.

Lemma 20. If BG[x, y, z] satis�es DP1, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

T > 2f , x ≤ y < z, and Ty+1 ≥ n − T1 + f + 1, then VVL-safety holds in
BG[x, y, z].

Proof. For any view v, let Bv = {b | block b has been committed before view
v}. According to Lemma 1, we can �nd bv ∈ Bv such that for all b′ ∈ Bv and
b′ ̸= bv, we have rank(bv) > rank(b′).

We prove that VVL-safety holds for BG[x, y, z] by proving that VVL-safety
holds in every view. For a speci�c view v′, let w denote bv

′
.view. We need to prove

that VVL-safety holds in view v′. To do this, we need to do the following: First,
we prove that VVL-safety holds in view w+1. Then we prove that if VVL-safety
holds in view w+ 1, · · · , w+ k (for any integer k such that 1 ≤ k ≤ v′ −w− 1),
VVL-safety also holds in view w+ k+1. Then for k = v′−w− 1, we know that
VVL-safety holds in view v′.
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According to Lemma 19, we know that VVL-safety holds in view w + 1.
Then, assume that VV-safety holds in view w+1, · · · , w+ k (for any integer

1 ≤ k ≤ v′−w−1). We need to show that VV-safety also holds in view w+k+1.
As bv

′
has been committed in view w and y < z, at least Ty+1 − f ≥ n− T1 + 1

correct replicas have locked bv
′
and sent vote-(y+1) for bv

′
to form bv

′
.QCy+1

in view w. Let m denote a view-update message such that m.view = w+k+1
and the parent block b′ of m.block is con�icting with bv

′
or rank(b′) < rank(bv

′
).

Let P = {pi | pi ∈ C (the set of correct replicas), vv(m, lockState) returns true
in view w + k + 1 by pi}.

For any one correct replica pi who has locked bv
′
, let qc be its lockState

when receiving m. Let bl denote qcBlock(qc). Since a correct replica only
change its QCx to a QCx with the same or a higher rank, rank(qc) ≥ rank(bv

′
).

vv(m, lockState) returns true by pi if one of the following two conditions is
satis�ed:

1) m.justify contains b′.QCx, b
′.view < w+ k+1 and rank(b′) ≥ rank(bl) (lines

15-16 in Table 2).
2) m.justify contains Mw+k+1.vb, b

′.view < w+ k+1 and num(b′,Mw+k+1.vb)
> T/2 and rank(b′) ≥ rank(bl) (lines 13-14 in Table 2).

Suppose that rank(b′w+1) < rank(bv
′
). In this case, vv(m, lockState) outputs

0 since both conditions are not satis�ed. Suppose that rank(b′) ≥ rank(bv
′
).

If case 1) is satis�ed, then according to Lemma 7, Lemma 10, Lemma 12 and
the inductive hypothesis, b′ must be equal to bv

′
or an extension of bv

′
. If case

2) is satis�ed, then at least one correct sender of a message in Mw+k+1 has
changed its vb from bv

′
to b′ in view w, · · · , w + k since BG[x, y, z] satis�es

DP1 and T > 2f . According to Algorithm 3, rank(b′) > rank(bv
′
), the QCx

for the parent block b′′ of b′ is received by the replica, b′′.view = b′.view and
rank(b′′) ≥ rank(bv

′
). By Lemma 10, Lemma 12 and the inductive hypothesis,

b′ must be an extension of bv
′
. According to the assumption that either b′ is

con�icting with bv
′
or rank(b′) < rank(bv

′
), for all the correct replicas who have

locked bv
′
, vv(m, lockState) outputs 0. Since Ty+1 ≥ n−T1+ f +1 and at least

Ty+1−f ≥ n−T1+1 correct replicas have locked bv
′
, we know that |P | < T1−f

and VVL-safety holds in view w + k + 1.
Then for k = v′ − w − 1, we know that VVL-safety holds in view v′.

Lemma 21. If BG[x, y, z] satis�es DP1, f < Tj ≤ n − f for j ∈ [1..z], and

T1 ≥
⌈
n+f+1

2

⌉
, then VVL-liveness holds in BG[x, y, z].

Proof. For any view v, let Bv
l = {b | block b has been locked before view v}.

According to Lemma 7 and Lemma 10, we can �ne bvl ∈ Bv
l such that for all

b′ ∈ Bv
l and b′ ̸= bvl , rank(b

v
l ) > rank(b′). Given a view-update message m in

view v, let b denote the parent block of m.block. If (b,m.justify) is the output
of fsb(Mv) on some Mv, there are two cases to consider:

1) bvl .QCx ∈ Mv.QCx. In this case, b is a block such that rank(b) ≥ bvl .
That's because b is either equal to b1 or equal to b2, where b1 and b2 are two
intermediate variables obtained fromMv. Since b

v
l .QCx ∈ Mv.QCx, we have that
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rank(b2) ≥ bvl . If b1 exists, we can also have that rank(b1) ≥ bvl since BG[x, y, z]
satis�es DP1. Therefore, we know that vv(m, lockState) outputs 1 by all correct
replicas since either condition 1) (lines 15-16 in Table 2) or condition 2) (lines
13-14 in Table 2) is satis�ed for them.

2) bvl /∈ Mv.QCx. We distinguish two cases. If there exists a block bv such
that bv.QCx ∈ Mv.QCx and rank(bv) ≥ rank(bvl ), then block b should satis�es
that rank(b) ≥ rank(bvl ). Therefore, we know that vv(m, lockState) will output 1
by all correct replicas. If any qc ∈ Mv.QCx satis�es that rank(qcBlock(qc)) <
rank(bvl ), we prove that the output of fsb(Mv) is (b

v
l ,Mv.vb). Since BG[x, y, z]

satis�es DP1, we have num(bvl ,M
bvl .vb) > T/2. Any correct replica changes

its vb and QCx only in the case that it has received a QCx qc such that
rank(qcBlock(qc)) ≥ rank(vb). Therefore, no correct replica of any message
in Mv has changed its vb from bvl to some other block and num(bvl ,M

bvl .vb)
> T/2. Then the output of fsb(Mv) is (bvl ,Mv.vb) and vv(m, lockState) out-
puts 1 by all correct replicas since condition 2) (lines 13-14 in Table 2) is satis�ed
for them.

Theorem 8. BG[x, y, z] (in Table 2) achieves safety and optimistic responsive-
ness if the following are satis�ed: 1) BG[x, y, z] satis�es DP1; 2) 2f < T ≤ n−f ;

3)
⌈
n+f+1

2

⌉
≤ T1 ≤ n − f ; 4) f < Tj ≤ n − f for j ∈ [1..z]; and 5) x ≤ y < z,

n− T1 + f + 1 ≤ Ty+1.

Proof. Correctness follows from Theorem 4, Theorem 5, Theorem 6, Lemma 18,
Lemma 20 and Lemma 21.

H Proofs of Theorems for BG[x, y, z] with DP2

Lemma 3. If T − (n− T1 + f) ≥ f +1 and T − (n− Tx+1 + f) ≥ T − (2f +1),
then BG[x, y, z] satis�es DP2.

Proof. In a BG[x, y, z], for any block b, if b has been locked by a correct replica
pi in view v, then b.view = v and pi has also set its QCy to b.QCy. According
to Lemma 7, b.QC1 is also formed by the leader in view v. Accordingly, at least
T1 − f correct replicas have sent vote−1 messages for b such that b.QC1 is
formed. As pi set its QCy to b.QCy in view v, b is block proposed in normal
case and the T1 − f replicas set their vb to b in view v. Thus, fewer than n− T1

correct replicas have not yet set their vb to b in view v. Therefore, for any M b,
at most n− T1 + f messages are sent by replicas who have not set their vb to b,
i.e., there at least T − (n− T1 + f) b in M b.vb. Since T − (n− T1 + f) ≥ f + 1,
we have that Votes(b, T, z) > f + 1.

Besides, for any block d, if d.QCz is received by a correct replica pi and pi
set its QCz to d.QCz in view v, then d.view = v. According to Lemma 7 and
x ≤ y < z, d.QCx is also formed in view v. Accordingly, at least Tx+1−f correct
replicas have received d.QCx and sent vote−(x+ 1) messages for d such that
d.QCx+1 is formed. As pi set its QCz to d.QCz in view v, d is block proposed
in normal case and the Tx+1 − f correct replicas set their QCx's to d.QCx in
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view v. Thus, fewer than n− Tx+1 correct replicas have not yet set their QCx's
to d.QCx in view v. Therefore, for any M b, at most n − Tx+1 + f messages
are sent by replicas who have not set their QCx's to d.QCx, i.e., there at least
T − (n − Tx+1 + f) b in M b.vb. Since T − (n − Tx+1 + f) ≥ T − (2f + 1), we
have that Certs(d, T, x, z) ≥ T − (2f + 1).

Therefore, BG[x, y, z] satis�es DP2.

Lemma 22. If BG[x, y, z] satis�es DP2, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

and f < T ≤ n− f , then FSBL-liveness holds for BG[x, y, z].

Proof. Given a Mv, we need to prove that fsb(Mv) outputs some (b, π). Based
on Mv, we can obtain four intermediate variables, block b0, b1, b2 and b3. Since
num(b1,Mv.vb)> f + 1 and num(b2,Mv.vb)> f + 1, b1, b2 and b0 are unique
blocks or null. By Lemma 10, b3 is also a unique block. Therefore, after com-
paring ranks of b0, b1, b2 and b3, fsb(Mv) will output a block together with a
proof π.

Lemma 23. If BG[x, y, z] satis�es DP2, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

x ≤ y < z, Ty+1 ≥ n− T1 + f +1, and there exists a block committed by at least
one correct replica in view v−1, then VVL-safety holds in view v for BG[x, y, z].

Proof. Let Bv = {b | block b has been committed before view v}. According to
Lemma 1, we can �nd bv ∈ Bv such that for all b′ ∈ Bv and b′ ̸= bv, we have
rank(bv) > rank(b′). Since there exists a committed block in view v−1, we know
bv.view = v − 1.

As there exists QCz formed for bv in view v − 1 and y < z, at least Ty+1 −
f ≥ n − T1 + f + 1 correct replicas have locked bv and sent vote-(y+1) for
bv to form bv.QCy+1 in view v − 1. Let m denote a view-update message
such that m.view = v and the parent block bv of m.block is con�icting with
bv or rank(bv) < rank(bv). Let P = {pi | pi ∈ C (the set of correct replicas),
vv(m, lockState) outputs 1 in view v by pi}.

For any correct replica pi who has locked bv, let bl be its lb when receiving
m. Since a correct replica only change its lb to a block with the same or a higher
rank, rank(bl) ≥ rank(bv). Note that x ≤ y. According to Lemma 7 and Lemma
10, bl.QCx is formed in view v − 1 and bl is equal to bv or an extension of
bv. vv(m, lockState) outputs 1 by pi if one of the following four conditions is
satis�ed:

1) m.justify contains bv.QCx, and rank(bv) ≥ rank(bl) and bv.view < v (lines
32-33 in Table 2).

2) m.justify contains Mv.vb, num(bv,Mv.vb) ≥ f + 1 and rank(bv) > rank(bl)
and bv.view < v (lines 34-35 in Table 2).

3) m.justify contains Mv.vb, num(bv,Mv.vb) ≥ f+1 and bv = bl and bv.view <
v (lines 36-37 in Table 2).

4) m.justify containsMv.QCx, and num(bv.QCx,Mv.QCx)> 2f+1 and bv.view <
v (lines 38-39 in Table 2).
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Suppose that rank(bv) <rank(bv). In this case, vv(m, lockState) outputs 1
only when condition 4) is satis�ed. Since BG[x, y, z] satis�es DP2 and bv is com-
mitted in view v−1, we have num(bv.QCx,M

bv .QCx)≥ T−(2f+1). As rank(bv)
<rank(bv) and a correct replicas only updates its QCx to a QCx for a block with
a higher rank, num(bv.QCx,Mv.QCx) ≤ 2f + 1, a contradiction.

Suppose that rank(bv) ≥rank(bv). If condition 1) or condition 4) is satis�ed,
then according to x ≥ y, Lemma 7 and Lemma 10, bv must be equal to bv or
is an extension of bv. If case 2) is satis�ed, then at least one correct replica has
received a QCx for the parent block b′ of bv such that b′.view = bv.view. Since
rank(bv) >rank(bl) ≥ rank(bv), we have that rank(b′) ≥rank(bv). According to
x ≤ y, Lemma 7 and Lemma 10, b′ must be equal to bv or an extension of bv.
Therefore, bv must be an extension of bv, If case 3) is satis�ed, then bv = bl.
Therefore, bv is equal to bv or an extension of bv.

According to the assumption that either bv is con�icting with bv or rank(bv) <
rank(bv), for all the correct replicas who have locked bv, vv(m, lockState) return
false. Since Ty+1 ≥ n − T1 + f + 1 and at least Ty+1 − f ≥ n − T1 + 1 correct
replicas have locked bv, we know that |P | < T1−f and VVL-safety holds in view
v.

Lemma 24. If BG[x, y, z] satis�es DP2, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

and Ty+1 ≥ n− T1 + f + 1, then VVL-safety holds in BG[x, y, z].

Proof. For any view v, let Bv = {b | block b has been committed before view
v}. According to Lemma 1, we can �nd bv ∈ Bv such that for all b′ ∈ Bv and
b′ ̸= bv, we have rank(bv) > rank(b′).

We prove that VVL-safety holds for BG[x, y, z] by proving that VVL-safety
holds in every view. For a speci�c view v′, let w denote bv

′
.view. We need to prove

that VVL-safety holds in view v′. Our proof consists of the following steps. First,
we prove that VVL-safety holds in view w+1. Then we prove that if VVL-safety
holds in view w+1, · · · , w+ k (for any integer 1 ≤ k ≤ v′ −w− 1), VVL-safety
also holds in view w+ k+1. Then for k = v′−w− 1, we know that VVL-safety
holds in view v′.

According to Lemma 23, we know that VVL-safety holds in view w + 1.
Then, assume that VVL-safety holds in view w+1, · · · , w+k (for any integer

1 ≤ k ≤ v′ − w − 1). We need to show that VVL-safety also holds in view
w + k + 1. As there exists QCz formed for bv

′
in view w and y < z, at least

Ty+1 − f ≥ n − T1 + 1 correct replicas have locked bv
′
and sent a vote-(y+1)

message for bv
′
to form bv

′
.QCy+1 in view w. Let m denote a view-update

message such that m.view = w + k + 1 and the parent block b′ of m.block is
con�icting with bv

′
or rank(b′) < rank(bv

′
). Let P = {pi | pi ∈ C (the set of

correct replicas), vv(m, lockState) outputs 1 in view w + k + 1 by pi}.
As there exists QCz formed for bv

′
in view w and y < z, at least Ty+1 −

f ≥ n − T1 + 1 correct replicas have locked bv
′
and sent vote-(y+1) for bv

′

to form bv
′
.QCy+1 in view w. For any correct replica pi who has locked bv

′
,

let qc be its lockState when receiving m. Let bl denote qcBlock(qc). Since a
correct replica only change its QCx to a QCx with the same or a higher rank,
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rank(qc) ≥ rank(bv
′
). According to Lemma 7, Lemma 10, Lemma 12 and the

inductive hypothesis, bl.view ∈ {w, · · · , w + k} and bl is equal to bv
′
or an

extension of bv
′
. vv(m, lockState) returns true by pi if one of the following four

conditions is satis�ed:

1) m.justify contains Mw+k+1.QCx, and rank(b′) ≥ rank(bl) and bv.view <
w + k + 1 (lines 32-33 in Table 2).

2) m.justify contains Mw+k+1.vb, num(b′,Mw+k+1.vb) ≥ f + 1 and rank(b′) >
rank(bl) and b′.view < w + k + 1 (lines 34-35 in Table 2).

3) m.justify contains Mw+k+1.vb, num(b′,Mv.vb) ≥ f + 1 and bv = bl and
b′.view < w + k + 1 (lines 36-37 in Table 2).

4) m.justify contains Mw+k+1.QCx, and num(b′.QCx,Mv.QCx) > 2f + 1 and
b′.view < w + k + 1 (lines 38-39 in Table 2).

Suppose that rank(b′) <rank(bv
′
). In this case, vv(m, lockState) returns true

only when condition 4) is satis�ed. Since BG[x, y, z] satis�es DP2 and bv
′
is

committed in view w, we have num(bv
′
.QCx,M

bv
′

.QCx)≥ T − (2f + 1). As
rank(b′) <rank(bv

′
) and correct replicas only change its QCx to a QCx the same

or a higher rank, num(b′.QCx,Mw+k+1.QCx) ≤ 2f + 1, a contradiction.
Suppose that rank(b′) ≥rank(bv

′
). If condition 1) or condition 4) is satis�ed,

then according to x ≤ y, Lemma 10, Lemma 7, Lemma 12 and the inductive
hypothesis, b′ must be equal to bv

′
or is an extension of bv

′
. If case 2) is satis�ed,

then at least one correct replica has received a QCx for the parent block b′′ of
b′ such that b′′.view = b′.view. Since rank(b′) >rank(bl) ≥ rank(bv

′
), we have

that rank(b′′) ≥rank(bv
′
). According to x ≤ y, Lemma 10, Lemma 7, Lemma 12

and the inductive hypothesis, b′′ must be equal to bv
′
or is an extension of bv

′
.

Therefore, b′ must be an extension of bv
′
, If case 3) is satis�ed, then b′ = bl.

Therefore, b′ is equal to bv
′
or an extension of bv

′
.

According to the assumption that b′ is con�icting with bv
′
, for all the correct

replicas who have locked bv
′
, vv(m, lockState) will output 0. Since Ty+1 ≥ n−

T1 + f + 1 and at least Ty+1 − f ≥ n − T1 + 1 correct replicas have locked bv
′
,

we know that |P | < T1 − f and VVL-safety holds in view w + k + 1.
Then for k = v′ − w − 1, we know that VVL-safety holds in view v′.

Lemma 25. If BG[x, y, z] satis�es DP2, f < Tj ≤ n − f for j ∈ [1..z], and

T1 ≥
⌈
n+f+1

2

⌉
, x < y ≤ z, then VVL-liveness holds in BG[x, y, z].

Proof. For any view v, let Bv
l = {b | block b has been locked before view v}.

According to x ≤ y and Lemma 10, we can �nd bvl ∈ Bv
l such that for all b′ ∈ Bv

l

and b′ ̸= bvl , we have rank(bvl ) > rank(b′). Given a view-update message m in
view v, let b denote the parent block of m.block. If (b,m.justify) is the output
of fsb(Mv) on some Mv, there are two cases to consider:

1) bvl .QCx ∈ Mv.QCx. In this case, b is a block such that rank(b) ≥ bvl . There-
fore, vv(m, lockState) outputs 1 by all correct replicas since either condition 1)
(lines 34-35 in Table 2) or condition 2) (lines 36-37 in Table 2) is satis�ed for
them.

2) bvl /∈ Mv.QCx. Let b3 denote the block with the highest rank such that
b3.QCx ∈ Mv.QCx. We distinguish two sub-cases. If rank(b3) ≥ rank(bvl ), then
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we know that the block b should satis�es that rank(b) ≥ rank(bvl ). Therefore, we
know that vv(m, lockState) outputs 1 by all correct replicas.

If rank(b3) < rank(bvl ), we prove that num(bvl ,Mv.vb)≥ f+1. Since BG[x, y, z]
satis�es DP2, we have num(bvl ,M

bvl .vb) > f + 1. Any correct replica changes
its vb and QCx only in the case that it has received a QCx qc such that
rank(qcBlock(qc)) ≥ rank(vb). Thus, for any correct sender of a message in
Mv, if a replica has sent a vote−1 message for bvl , it will not change its vb be-
fore sending new-view message. We have that num(bvl ,Mv.vb) ≥ f +1. If there
exists another block d such that num(d,Mv.vb) ≥ f + 1 and rank(d) =rank(bvl ),
Then the output of fsb(Mv) is (b3, b3.QCx,Mv.QCx). As num(d,Mv.vb) ≥ f+1
and num(bvl ,Mv.vb) ≥ f + 1, QCx for the parent block of bvl and d are both
formed in view bvl .view. According to Lemma 10, bvl and d have the same par-
ent block b3. Then num(b3.QCx,Mv.QCx) ≥ 2f + 2. Therefore, we know that
vv(m, lockState) outputs 1 by all correct replicas since condition 4) (lines 34-
35 in Table 2) is satis�ed for them. If no such block d exists, then the output
of fsb(Mv) is (bvl ,Mv.vb). Therefore, according to Lemma 10, we know that
vv(m, lockState) outputs 1 by all correct replicas since either condition 2) (lines
36-37 in Table 2) or condition 3) (lines 38-39 in Table 2) is satis�ed. This com-
pletes the proof.

Theorem 9. BG[x, y, z] (in Table 2) achieves safety and responsiveness if
the following are satis�ed: 1) BG[x, y, z] satis�es DP2; 2) f < T ≤ n − f ; 3)⌈
n+f+1

2

⌉
≤ T1 ≤ n−f ; 4) f < Tj ≤ n−f for j ∈ [1..z]; and 5) n−T1+f +1 ≤

Ty+1.

Proof. Correctness follows from Theorem 4, Theorem 5, Theorem 6, Lemma 22,
Lemma 24 and Lemma 25.

I Proofs of Theorems for BG[x, z] with DP3

Lemma 4. If x < z and T − (n−Tx+1+f) > 0 or if x ≥ z and T − (n−1) > 0,
then BG[x, z] satis�es DP3.

Proof. We consider two cases in the lemma separately.
In a BG[x, z] (x < z), for any block b, if b.QCz is received by a correct replica

pi and pi set its QCz to b.QCz in view v, then b.view = v. According to x < z
and Lemma 7, b.QCx+1 is also formed by the leader in view v. Accordingly, at
least Tx+1− f correct replicas have sent vote−(x+ 1) messages for b such that
b.QCx+1 is formed. As pi set its QCy to b.QCy in view v, b is block proposed
in normal case and the Tx+1 − f correct replicas set their QCx's to b.QCx+1 in
view v. Thus, fewer than n− Tx+1 correct replicas have not yet set their QCx's
to b.QCx in view v. Therefore, for any M b, at most n − Tx+1 + f messages
are sent by replicas who have not set their QCx's to d.QCx, i.e., there at least
T − (n − Tx+1 + f) b in M b.vb. Since T − (n − Tx+1 + f) > 0, we have that
Certs(b, T, x, z) > 0.
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In a BG[x, z] (x = z), for any block b, if b.QCz is received by a correct replica
pi and pi set its QCz to b.QCz in view v, then b.view = v. In this case, b.QCx

is received by at least only one replica. If T − (n − 1) > 0, a new leader needs
to collect new-view messages from all the replicas in the system. Then b.QCx

is included in M b.QCx and we have that Certs(b, T, x, z) > 0.
That completes the proof.

Lemma 26. If Tj > f for all j ∈ [1..z], and T1 ≥
⌈
n+f+1

2

⌉
, then FSB-liveness

holds for BG[x, z].

Proof. Given a Mv, we need to prove that fsb(Mv) outputs some (b, π). By
Lemma 10, b2 is a unique block based on Mv. Therefore, after comparing ranks
of blocks whose QCx in Mv, fsb(Mv) will output a unique block together with
a proof π.

Lemma 27. If BG[x, z] satis�es DP3, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

T > f , and there exists a block committed by at least one correct replica in view
v − 1, then FSB-safety holds in view v for BG[x, z].

Proof. Let Bv = {b | block b has been committed before view v}. According to
Lemma 1, there exists bv ∈ Bv such that for all b′ ∈ Bv and b′ ̸= bv, we have
rank(bv) > rank(b′). Since there exists a committed block in view v−1, we know
bv.view = v−1. By Lemma 26, fsb(Mv) outputs some (b2, π). We now prove
that b2 is either bv or an extension of bv. Since DP3(bv, T, x) holds in BG[x, z],
we consider two cases:

1) bv.QCx ∈ Mv.QCx. In this scenario, the output should satisfy that b2.QCx ∈
Mv.QCx and rank(b2) ≥ rank(bv). According to Lemma 10, we have that b2
equals bv or b2 is an extension of bv.

2) bv.QCx /∈ Mv.QCx. Since DP3 holds in BG[x, z], it is clear that at least
one correct sender pi of a message in Mv has changed its QCx from bv.QCx to
QCx for some other block b′ before sending the new-view message. According
to Algorithm 3, pi changes its QCx in view v − 1 only if it receives b′.QCx and
rank(b′) ≥ rank(bv). By Lemma 10, we know that b′ must be equal to or an
extension of bv, and b2 must be an extension of bv.

Hence, FSB-safety holds in view v in BG[x, z].

Lemma 28. If BG[x, z] satis�es DP3, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
, and

f < T ≤ n− f , then FSB-safety holds for BG[x, z].

Proof. For any view v, let Bv = {b | block b has been committed before view
v}. According to Lemma 1, there exists bv ∈ Bv such that for all b′ ∈ Bv and
b′ ̸= bv, we have rank(bv) ≥ rank(b′)

We prove that FSB-safety holds for BG[x, z] by proving that FSB-safety holds
in every view. For a speci�c view v′, let w denote bv

′
.view. We prove that FSB-

safety holds in view v′ by iterative method. The proof consists of the following
steps. First, we prove that FSB-safety holds in view w + 1. Then we prove that
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if FSB-safety holds in view w+1, · · · , w+k (for any integer 1 ≤ k ≤ v′−w−1),
FSB-safety also holds in view w + k + 1. When k = v′ − w − 1, we know that
FSB-safety holds in view v′.

According to Lemma 27, we know that FSB-safety holds in view w + 1.
Now we assume that FSB-safety holds in view w + 1, · · · , w + k (for any

integer 1 ≤ k ≤ v′ − w − 1). We need to show that FSB-safety holds in view
w + k + 1. Let (b, π) denote the output of fsb(Mw+k+1) based on a snapshot
Mw+k+1. There are two situations to consider:

1) bv
′
.QCx ∈ Mw+k+1.QCx. In this scenario, the output should satisfy that

b.QCx ∈ Mw+k+1.QCx and rank(b) ≥ rank(bv
′
). According to Lemma 10, Lemma

11 and the inductive hypothesis, we have that b equals bv
′
or b is an extension

of bv
′
.

2) bv
′
.QCx /∈ Mw+k+1.QCx. In this scenario, b isn't equal to bv

′
, we need

to prove that b must be an extension of bv
′
. Since DP3 holds in BG[x, z], it is

clear that at least one correct sender pi of a message in Mw+k+1 has changed its
QCx from bv

′
.QCx to QCx for some other block b′ before sending a new-view

message. According to Algorithm 3, pi changes its QCx only if it receives b
′.QCx

and rank(b′) ≥ rank(bv
′
). Therefore, we have that rank(b) ≥ rank(b′) ≥ rank(bv

′
),

QCx for blocks b, b
′, bv

′
are formed in view {w, · · · , w+k} and b ̸= bv

′
. By Lemma

10, Lemma 11 and the inductive hypothesis, we know that b′ must be equal to
or an extension of bv

′
, and b must be an extension of bv

′
.

In both cases b is either bv
′
or an extension of bv

′
, then FSB-safety holds in

view w + k + 1. When k = v′ − w − 1, we know that FSB-safety holds in view
v′. We conclude that FSB-safety holds for any v′. Hence, FSB-safety holds in
BG[x, z].

Lemma 29. If T1 > f , VV-safety holds in BG[x, z].

Proof. The proof is the same with that of Lemma 16

Lemma 30. If Tj ≤ n− f for 1 ≤ j ≤ z, VV-liveness holds in BG[x, z].

Proof. The proof is the same with that of Lemma 17

Theorem 10. BG[x, z] (in Table 2) achieves safety and optimistic responsive-
ness if the following are satis�ed: 1) BG[x, z] satis�es DP3; 2) f < T ≤ n − f ;

3)
⌈
n+f+1

2

⌉
≤ T1 ≤ n− f ; and 4) f < Tj ≤ n− f for j ∈ [1..z].

Proof. Correctness follows from Theorem 1, Theorem 2, Theorem 3, Lemma 26,
Lemma 28, Lemma 29 and Lemma 30.

J Proofs of Theorems for BG[x, y, z] with DP3

Lemma 5. If x < y and T − (n−Tx+1+f) > 0 or if x = y and T − (n−1) > 0,
then BG[x, y, z] satis�es DP3.
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Proof. We consider two cases in the lemma separately: x < z and x = z.
In a BG[x, y, z] protocol such that x < z, for any block b, we know that if b

has been locked by any correct replica pi in view v, then b.view = v and pi has
also set its QCy to b.QCy. According to x < y and Lemma 7, b.QCx+1 is also
formed by the leader in view v. Accordingly, at least Tx+1 − f correct replicas
have sent vote−(x+ 1) messages for b such that b.QCx+1 is formed. As pi set
its QCy to b.QCy in view v, b is block proposed in normal case and the T1 − f
replicas set their vb to b in view v.The Tx+1 − f correct replicas set their QCx's
to b.QCx in view v. Thus, fewer than n− Tx+1 correct replicas have not yet set
their QCx's to b.QCx in view v. Therefore, for any M b, at most n − Tx+1 + f
messages are sent by replicas who have not set their QCx's to b.QCx, i.e., there
at least T − (n − Tx+1 + f) b.QCx in M b.QCx. Since T − (n − Tx+1 + f) > 0,
we have that Certs(b, T, x, y) > 0.

In a BG[x, y, z] protocol such that x = z, for any block b, we know that if
b has been locked by any correct replica pi in view v, then b.view = v and pi
has also set its QCy to b.QCy. In this case, b.QCy is received by at least only
one replica. If T − (n− 1) > 0, a new leader need to collect new-view messages
from all the replicas in the system. Then b.QCy is included in M b.QCx and we
have that Certs(b, T, x, y) > 0.

That completes the proof.

Lemma 31. If BG[x, y, z] satis�es DP3, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

and f < T ≤ n− f , then FSBL-liveness holds for BG[x, y, z].

Proof. The proof resembles the proof of Lemma 26. In any view v, the leader
can obtain block b2 based on any Mv (a valid view change snapshot) and output
(b2, b2.QCx) according to Lemma 10.

Lemma 32. If BG[x, y, z] satis�es DP3, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

T > 2f , Ty+1 ≥ n−T1+f+1, and there exists a block committed by at least one
correct replica in view v − 1, then VVL-safety holds in view v for BG[x, y, z].

Proof. Let Bv = {b | block b has been committed before view v}. According to
Lemma 1, we can �nd bv ∈ Bv such that for all b′ ∈ Bv and b′ ̸= bv, we have
rank(bv) > rank(b′). Since there exists a committed block in view v−1, we know
bv.view = v − 1.

As there exists QCz formed for bv in view v − 1 and z < y, at least Ty+1 −
f ≥ n − T1 + f + 1 correct replicas have locked bv and sent vote-(y+1) for
bv to form bv.QCy+1 in view v − 1. Let m denote a view-update message
such that m.view = v and the parent block b′ of m.block is con�icting with
bv or rank(b′) < rank(bv). Let P = {pi | pi ∈ C (the set of correct replicas),
vv(m, lockState) returns true in view v by pi}.

For any one correct replica pi who has locked bv, let bl denote the locked
block of pi when pi received m. Since a correct replica only change its QCx to
a QCx with the same or a higher rank, rank(bl) ≥ rank(bv). vv(m, lockState)
returns true by pi if m.justify contains b′.QCx, b

′.view < v and rank(b′) ≥
rank(bl) (lines 50-51 in Table 2).
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If the condition is satis�ed, then we know that rank(b′) ≥ rank(bl) ≥ rank(bv)
and b′.QCx is formed in view v − 1. According to Lemma 10, b′ must be equal
to bv or an extension of bv, contradicting to the assumption.

Therefore, for all the correct replicas who have locked bv, vv(m, lockState)
return false. Since Ty+1 ≥ n − T1 + f + 1 and at least Ty+1 − f ≥ n − T1 + 1

correct replicas have locked bv
′
, we know that |P | < T1−f and VVL-safety holds

in view v.

Lemma 33. If BG[x, y, z] satis�es DP3, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

and Ty+1 ≥ n− T1 + f + 1, then VVL-safety holds in BG[x, y, z].

Proof. For any view v, let Bv = {b | block b has been committed before view
v}. According to Lemma 1, we can �nd bv ∈ Bv such that for all b′ ∈ Bv and
b′ ̸= bv, we have rank(bv) > rank(b′).

We prove that VVL-safety holds for BG[x, y, z] by proving that VVL-safety
holds in every view. For a speci�c view v′, let w denote bv

′
.view. We need to prove

that VVL-safety holds in view v′. Out proof consists of the following steps. First,
we prove that VVL-safety holds in view w+1. Then we prove that if VVL-safety
holds in view w+1, · · · , w+ k (for any integer 1 ≤ k ≤ v′ −w− 1), VVL-safety
also holds in view w+ k+1. Then for k = v′−w− 1, we know that VVL-safety
holds in view v′.

According to Lemma 32, we know that VVL-safety holds in view w + 1.
Then, assume that VV-safety holds in view w+1, · · · , w+ k (for any integer

1 ≤ k ≤ v′ − w − 1). We need to show that VV-safety also holds in view
w + k + 1. As there exists QCz formed for bv

′
in view w and z > y, at least

Ty+1−f ≥ n−T1+f +1 correct replicas have locked bv
′
and sent a vote-(y+1)

message for bv
′
to form bv

′
.QCy+1 in view w. Let m denote a view-update

message such that m.view = w + k + 1 and the parent block b′ of m.block is
con�icting with bv

′
or rank(b′) < rank(bv

′
). Let P = {pi | pi ∈ C (the set of

correct replicas), vv(m, lockState) outputs 1 in view w + k + 1 by pi}.
For any one correct replica pi who has locked bv

′
, let bl denote the locked

block of pi when pi received m. Since a correct replica only change its QCx to
a QCx with the same or a higher rank, rank(bl) ≥ rank(bv

′
). vv(m, lockState)

outputs 1 by pi if m.justify contains b′.QCx, b
′.view < w + k + 1 and rank(b′)

≥ rank(bl) (lines 50-51 in Table 2).
If the condition is satis�ed, then we know that rank(b′) ≥ rank(bl) ≥ rank(bv).

According to Lemma 7, Lemma 10, Lemma 12 and the inductive hypothesis, b′

must be equal to bv or an extension of bv, contradicting to the assumption
that either b′ is con�icting with bv

′
or rank(b′) < rank(bv

′
). Therefore, for all

the correct replicas who have locked bv
′
, vv(m, lockState) return false. Since

Ty+1 ≥ n−T1+1 and at least Ty+1−f ≥ n−T1+1 correct replicas have locked

bv
′
, we know that |P | < T1 − f and VVL-safety holds in view w + k + 1.
Then for k = v′ − w − 1, we know that VVL-safety holds in view v′.

Lemma 34. If BG[x, y, z] satis�es DP3, f < Tj ≤ n − f for j ∈ [1..z], and

T1 ≥
⌈
n+f+1

2

⌉
, then VVL-liveness holds in BG[x, y, z].
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Proof. For any view v, let Bv
l = {b | block b has been locked before view v}.

According to x ≤ y and Lemma 10, we can �nd a block bvl in Bv
l such that

for all b′ ∈ Bv
l and b′ ̸= bvl , we have rank(bvl ) > rank(b′). Given a view-update

message m in view v, let b denote the parent block of m.block. If (b,m.justify)
is the output of fsb(Mv) on a snapshot Mv, there are two cases to consider:

1) bvl .QCx ∈ Mv.QCx. In this case, b is a block such that rank(b) ≥ rank(bvl ).
Therefore, we know that vv(m, lockState) outputs 1 by all correct replicas since
conditions (lines 50-51 in Table 2) are satis�ed for all of them.

2) bvl .QCx /∈ Mv.QCx. Note that any correct replica changes its vb and QCx

only in the case that it has received a QCx qc such that rank(qcBlock(qc)) ≥
rank(vb). Since BG[x, y, z] satis�es DP3, at least one correct sender of a message
in Mv has change its QCx from bvl .QCx to QCx for another block b′. Then
rank(b′) ≥ rank(bvl ). In this case, b is a block such that rank(b) ≥ rank(bvl ).
Therefore, we know that vv(m, lockState) outputs 1 by all correct replicas since
conditions (lines 54-55 in Table 2) are satis�ed for all of them. This complete
the proof.

Theorem 11 BG[x, y, z] (in Table 2) achieves safety and optimistic responsive-
ness if the following are satis�ed: 1) BG[x, y, z] satis�es DP1; 2) 2f < T ≤ n−f ;

3)
⌈
n+f+1

2

⌉
≤ T1 ≤ n−f ; 4) f < Tj ≤ n−f for j ∈ [1..z]; and 5) n−T1+f+1 ≤

Ty+1.

Proof. Correctness follows from Theorem 4, Theorem 5, Theorem 6, Lemma 31,
Lemma 33 and Lemma 34.

K Proofs of Theorems for BG[x, y, z] with DP5

Lemma 6. If T − (n−T1+ f) > 0 and T − (n−Tx+1+ f) > 0, then BG[x, y, z]
satis�es DP5.

Proof. In a BG[x, y, z], for any block b, we know that if b has been locked by
any correct replica pi in view v, then b.view = v and pi has also set its QCy to
b.QCy. According to x ≤ y and Lemma 7, b.QC1 is also formed by the leader in
view v. Accordingly, at least T1−f correct replicas have sent vote−1 messages
for b such that b.QC1 is formed. The T1 − f replicas set their vb to b in view v.
Thus, fewer than n − T1 correct replicas have not yet set their vb to b in view
v. Therefore, for any M b, at most n− T1 + f messages are sent by replicas who
have not set their vb to b, i.e., there are at least T − (n − T1 + f) b in M b.vb.
Since T − (n− T1 + f) > 0, we have that Votes(b, T, y) ≥ 1.

Besides, for any block d, if d.QCz is received by a correct replica pi and pi
set its QCz to d.QCz in view v, then d.view = v. According to Lemma 7 and
x ≤ y < z, d.QCx+1 is also formed by the leader in view v. Accordingly, at least
Tx+1 − f correct replicas have received d.QCx and sent vote−x+ 1 messages
for d such that d.QCx+1 is formed. The Tx+1−f correct replicas set their QCx's
to d.QCx in view v. Thus, fewer than n− Tx+1 correct replicas have not yet set
their QCx's to d.QCx in view v. Therefore, for any M b, at most n − Tx+1 + f
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messages are sent by replicas who have not set their QCx's to d.QCx, i.e., there
at least T − (n − Tx+1 + f) b.QCx in M b.QCx. Since T − (n − Tx+1 + f) > 0,
we have that Certs(d, T, x, z) ≥ 1.

Therefore, BG[x, y, z] satis�es DP1.

Lemma 35. If BG[x, y, z] satis�es DP5, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

and f < T ≤ n− f , then FSBL-liveness holds for BG[x, y, z].

Proof. The proof resembles the proof of Lemma 18. In any view v, the leader
can obtain two intermediate variables, block b1 and block b2 based on a Mv and
output (b, π) after comparing ranks of b1 and b2.

Lemma 36. If BG[x, y, z] satis�es DP5, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

Ty+1 ≥ n − T1 + f + 1, and at least one block has been committed by correct
replica in view v − 1, then VVL-safety holds in view v for BG[x, y, z].

Proof. Let Bv = {b | block b has been committed before view v}. According to
Lemma 1, we let bv denote a block in Bv such that for all b′ ∈ Bv and b′ ̸= bv,
we have rank(bv) > rank(b′). Since there exists a committed block in view v− 1,
we know bv.view = v − 1.

As there exists QCz formed for bv in view v − 1 and y < z, at least Ty+1 −
f ≥ n − T1 + 1 correct replicas have locked bv and sent vote-(y+1) for bv to
form bv.QCy+1 in view v − 1. Let m denote a view-update message such that
m.view = v and the parent block b′ ofm.block is con�icting with bv or rank(b′) <
rank(bv). Let P = {pi | pi ∈ C (the set of correct replicas), vv(m, lockState)
outputs 1 in view v by pi}.

For any one correct replica pi who has locked bv, let bl denote the locked
block of pi when pi received m. Since a correct replica only change its QCx to
a QCx with the same or a higher rank, rank(bl) ≥ rank(bv). vv(m, lockState)
outputs 1 by pi if one of the following two conditions is satis�ed:

1) m.justify contains b′.QCx, b
′.view < v and rank(b′) ≥ rank(bl) (lines 62-63

in Table 2).
2) m.justify contains Mv.QCx, b

′.view < v and b′.QCx is the QCx with the
highest rank in Mv.QCx (lines 64-67 in Table 2).

If condition 1) is satis�ed, then b′ must be equal to or an extension of bv

according to Lemma 10, contradicting the assumption that either b′ is con�icting
with bv or rank(b′) < rank(bv). If the condition 2) is satis�ed, then we know that
b′ is the block with highest rank for which a QCx is included in Mv.QCx. Since
BG[x, y, z] satis�es DP5, we have that num(bv.QCx,M

bv .QCx)≥ 1. Note that
any correct replica changes its QCx with a QCx with the same or higher rank.
We have rank(b′) ≥ rank(bv). According to Lemma 10, b′ must be equal to bv

or an extension of bv, contradicting the assumption that either b′ is con�icting
with bv or rank(b′) < rank(bv).

Therefore, for all the correct replicas who have locked bv, vv(m, lockState)
return false. Since Ty+1 ≥ n − T1 + f + 1 and at least Ty+1 − f ≥ n − T1 + 1
correct replicas have locked bv, we know that |P | < T1−f and VVL-safety holds
in view v.
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Lemma 37. If BG[x, y, z] satis�es DP5, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
,

and Ty+1 ≥ n− T1 + f + 1, then VVL-safety holds in BG[x, y, z].

Proof. For any view v, let Bv = {b | block b has been committed before view
v}. According to Lemma 1, we can �nd bv ∈ Bv such that for all b′ ∈ Bv and
b′ ̸= bv, we have rank(bv) > rank(b′).

We prove that VVL-safety holds for BG[x, y, z] by proving that VVL-safety
holds in every view. For a speci�c view v′, let w denote bv

′
.view. We need to prove

that VVL-safety holds in view v′. The proof consists of the following steps. First,
we prove that VVL-safety holds in view w+1. Then we prove that if VVL-safety
holds in view w+1, · · · , w+ k (for any integer 1 ≤ k ≤ v′ −w− 1), VVL-safety
also holds in view w+ k+1. Then for k = v′−w− 1, we know that VVL-safety
holds in view v′.

According to Lemma 36, we know that VVL-safety holds in view w + 1.
Then, assume that VV-safety holds in view w+1, · · · , w+ k (for any integer

1 ≤ k ≤ v′ − w − 1). We need to show that VV-safety also holds in view
w + k + 1. As there exists QCz formed for bv

′
in view w and y < z, at least

Ty+1 − f ≥ n− T1 + 1 correct replicas have locked bv
′
and sent vote-(y+1) for

bv
′
to form bv

′
.QCy+1 in view w. Let m denote a view-update message such

that m.view = w + k + 1 and the parent block b′ of m.block is con�icting with
bv

′
or rank(b′) < rank(bv

′
). Let P = {pi | pi ∈ C (the set of correct replicas),

vv(m, lockState) outputs 1 in view w + k + 1 by pi}.
For any one correct replica pi who has locked bv

′
, let bl the locked block of pi

when pi received m. Since a correct replica only change its QCx to a QCx with
the same or a higher rank, rank(bl) ≥ rank(bv

′
). vv(m, lockState) outputs 1 by

pi if one of the following four conditions is satis�ed:

1) m.justify contains b′.QCx, b
′.view < w+ k+1 and rank(b′) ≥ rank(bl) (lines

62-63 in Table 2).
2) m.justify contains Mw+k+1.QCx, b

′.view < w+k+1 and b′.QCx is the QCx

with the highest rank in Mw+k+1.QCx (lines 64-67 in Table 2).

If condition 1) is satis�ed, then b′ must be equal to or is an extension of
bv

′
according to Lemma 7, Lemma 10, Lemma 12 and the inductive hypothesis.

This is a contradiction with the assumption that either b′ is con�icting with bv

or rank(b′) < rank(bv). If the condition 2) is satis�ed, then we know that b′ is the
block with the highest rank for which a QCx is included in Mw+k+1.QCx. Since

BG[x, y, z] satis�es DP5, we have that num(bv
′
.QCx,M

bv
′

.QCx)≥ 1. Note that
any correct replica changes its QCx only with QCx with the same or a higher
rank, rank(b′) ≥ rank(bv

′
). According to Lemma 7, Lemma 10, Lemma 12 and the

inductive hypothesis, b′ must be equal to bv
′
or an extension of bv

′
, contradicting

the assumption that either b′ is con�icting with bv or rank(b′) < rank(bv). .
Then for k = v′ − w − 1, we know that VVL-safety holds in view v′. That

completes the proof.

Lemma 38. If BG[x, y, z] satis�es DP5, Tj > f for j ∈ [1..z], T1 ≥
⌈
n+f+1

2

⌉
, ,

x ≤ y < z and f < T ≤ n− f , then VVL-liveness holds in BG[x, y, z].
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Proof. For any view v, let Bv
l = {b | block b has been locked before view v}.

According to x ≤ y and Lemma 10, we can �nd bvl ∈ Bv
l such that for all b′ ∈ Bv

l

and b′ ̸= bvl , we have rank(bvl ) > rank(b′). Given a view-update message m in
view v, let b denote the parent block of m.block. If (b,m.justify) is the output
of fsb(Mv) on some Mv, there are two cases to consider:

1) bvl .QCx ∈ Mv.QCx. In this case, the output of fsb(Mv) is (b, b.QCx) or
(b,Mv.QCx). For both situations, b is a block such that rank(b) ≥ rank(bvl ).
Hence, vv(m, lockState) returns true by all correct replicas since condition 1)
(lines 62-63 in Table 2) is satis�ed.

2) bvl /∈ Mv.QCx. We need to consider two sub-cases. If rank(b) ≥ rank(bvl ),
then we know that vv(m, lockState) returns true by all correct replicas since
condition 1) (lines 77-78 in Table 2) is satis�ed. If rank(b) < rank(bvl ), we need
to prove that the output of fsb(Mv) is of the form (b, b.QCx,Mv.QCx). Since
BG[x, y, z] satis�es DP5, then we have bvl ∈ M bvl .vb. Recall again any correct
replica changes its vb and QCx only in the case that it has received a QCx qc
such that rank(qcBlock(qc)) ≥ rank(vb). Therefore, for any replica that sends
a message m such that m ∈ Mv, it will not change its vb or updates QCx, as the
replica previously sets vb to bvl and we know bvl ∈ Mv.vb. Then the output of
fsb(Mv) is (b,Mv.QCx) and vv(m, lockState) returns true by all correct replicas
since condition 2) (lines 64-67 in Table 2) is satis�ed for them.

That completes the proof.

Theorem 12 BG[x, y, z] (in Table 2) achieves safety and responsiveness if the
following are satis�ed: 1) BG[x, y, z] satis�es DP5; 2) f < T ≤ n − f ; 3)⌈
n+f+1

2

⌉
≤ T1 ≤ n − f ; 4) f < Tj ≤ n − f for j ∈ [1..z]; and 5) x ≤ y < z,

n− T1 + f + 1 ≤ Ty+1.

Proof. Correctness follows from Theorem 4, Theorem 5, Theorem 6, Lemma 35,
Lemma 37 and Lemma 38.


