
Sublinear-Round Dishonest-Majority Broadcast
without Trusted Setup

Andreea B. Alexandru1, Julian Loss2, Charalampos Papamanthou3 and
Giorgos Tsimos4

1 Duality Technologies
aalexandru@dualitytech.com

2 CISPA Helmholtz Center for Information Security
lossjulian@gmail.com

3 Yale University
charalampos.papamanthou@yale.edu

4 University of Maryland, College Park
tsimos@umd.edu

Abstract. Byzantine broadcast is one of the fundamental problems in
distributed computing. Many practical applications from secure multi-
party computation to consensus mechanisms for blockchains require in-
creasingly weaker trust assumptions, as well as scalability for an ever-
growing number of users, which rules out existing solutions with linear
number of rounds or trusted setup requirements. In this paper, we pro-
pose the first sublinear-round and trustless Byzantine broadcast protocol.
Unlike previous sublinear-round protocols, our protocol does not assume
the existence of a trusted dealer who honestly issues keys and common
random strings to the parties, but only relies on an untrusted bulletin-
public key infrastructure and time delay assumptions.

Our protocol is based on a new cryptographic protocol called verifiable
graded consensus, designed to act as an untrusted online setup, enabling
n parties to almost agree on shared random strings. We propose an imple-
mentation of the verifiable graded consensus protocol using verifiable de-
lay functions and random oracles, which is then used to run a committee-
based Byzantine protocol, similar to Chan et al. (PKC 2020), in an un-
biased fashion. Finally, we obtain a polylog-round trustless Byzantine
broadcast with amortized communication complexity of Õ(n2), which
can be further improved to Õ(n) per instance for multiple instances of
parallel broadcast.

1 Introduction

In the problem of Byzantine broadcast, a sender distributes its input v to n par-
ties. A protocol for broadcast is deemed secure if it satisfies two properties in the
presence of any t < n Byzantine corruptions: (1) consistency : all honest parties
output the same value, and (2) validity : all honest parties output v if the sender
honestly follows the protocol. Broadcast is essential in ensuring a consistent view

between parties, and has important applications in protocols for multiparty com-
putation (MPC), verifiable secret sharing (VSS) and state machine replication
(SMR). To reduce the overhead of such applications, a long line of works has
focused on minimizing two metrics: (1) round-efficiency : how many synchronous
rounds does the protocol run for? and (2) communication-efficiency : how many
bits does the protocol exchange? By the famous works of Dolev and Strong [23],
and Dolev and Reischuk [22], t + 1 synchronous rounds and Ω(n · t) communi-
cation are both necessary and sufficient to achieve broadcast deterministically.
This severely limits the practicality of such protocols as n grows large.

Fortunately, randomized protocols are known to bypass these lower bounds.
Thus, an active area of research has studied robust and efficient randomized
broadcast protocols for the most challenging setting with a dishonest majority
of n/2 < t < n corrupted parties. While major progress has been made, existing
round-efficient protocols fall into one of two unsatisfactory categories.

Protocols of the first category [15,52,53] achieve o(n) rounds for any constant
fraction of corrupted parties. However, they rely on a trusted dealer who securely
generates and distributes cryptographic parameters during a setup phase (e.g.,
signing key pairs). Unfortunately, assuming a trusted dealer is unacceptable
for high-stake scenarios as it lies at odds with the primary goal of distributed
systems: to eliminate single points of failure.

Due to the lower bound of Lamport, Pease and Shostak [45,40], we cannot
hope to avoid some form of cryptographic setup altogether. A natural question
is whether it is possible to design a round-efficient broadcast protocol for the
dishonest majority setting in the plain public key model. Rather than relying on a
trusted dealer, protocols for this model allow parties to generate their own secret
and public keys. In this manner, trusted setup is minimized to a public bulletin-
board to which parties can post their public keys before commencing protocol
execution. On the downside, protocols of this second category by Garay et al. [30]
and Fitzi and Nielsen [27] achieve security only for a very small margin where
the number t of corrupted parties must satisfy t− n/2 ≤ o(n).

In this work, we significantly improve over the state of the art. Concretely,
we design broadcast protocols in the plain public key model that are secure
against an adaptive dishonest majority of t ≤ (1 − ϵ)n, for constant ϵ ∈ (0, 1),
except for negligible probability in a statistical security parameter λ. Our contri-
butions assume random oracles, a bulletin-board public key infrastructure, and
the existence of delay functions, and can be summarized as follows.

- Broadcast. We provide a stand-alone binary broadcast protocol with Õ(λ)
round complexity and Õ(n3) total communication complexity. Our protocol
compares favorably to the Dolev-Strong protocol [23], as it reduces the round
complexity from O(n) without introducing trusted dealers at the cost of only
logarithmic increase in the communication cost compared to O(n3).

- Amortized Broadcast. We show how to amortize the setup cost, when
multiple broadcast instances have to be run. This problem comes up natu-
rally in many applications in which broadcast is relevant, e.g., VSS, MPC,
SMR. We obtain an amortized broadcast communication complexity of Õ(n2)

2

at a round complexity of Õ(λ) using n instances. This compares favorably to
Chan et al. [15], which achieves the same complexity using a trusted setup.
Our techniques do not require these instances to be run in parallel.
We can even further amortize the communication complexity per sender
instance if we are willing to consider the problem of parallel broadcast (n
instances of broadcast run in parallel). In this case, we show that it is possible
to run n instances of parallel broadcast at an amortized cost of Õ(n2) per
instance. (This amounts to Õ(n) per single sender instance of broadcast
within each parallel invocation.)
Our broadcast protocols are build over a Verifiable Graded Consensus on

Random Strings protocol, which provides an online setup for graded shared
randomness that has O(λ) round complexity and Õ(n4) communication com-
plexity. We show how to reduce the communication to Õ(n3) by using the gossip
techniques of Tsimos et al. [51], with a round complexity polylogarithmic in n.

Our solution relies on the random oracle heuristic and delay functions, but we
believe this to be a minor restriction. Indeed, many works have considered setup-
free protocols in the random oracle model and resource-restricted cryptography
assumptions, e.g., Andrychowicz and Dziembowski [3] and Garay et al. [31,32].

1.1 Technical Overview

We now provide an overview of our techniques.

Chan et al.’s Protocol. Our starting point is the construction of Chan et
al. [15] which achieves sublinear round complexity against (1− ϵ)n adaptive cor-
ruptions, for constant ϵ > 0. At a high level, it delegates the message signing
steps in the Dolev-Strong [23] protocol to a small ad-hoc committee of roughly
O(λ) parties. (To counter adaptive corruptions, there is one committee per bit.)
If at least one party in the committee is honest, their protocol achieves O(λ)
round complexity and O(λ2n2) communication. For committee election, a ver-
ifiable random function (VRF) is used, which allows a party P to evaluate a
pseudorandom function F on a point v privately, as y ← F (sk, v), where sk is
P ’s private key. The VRF also produces a proof π that can be used to verify
y against P ’s public key pk. Thus, each party can be independently elected a
committee member with λ/n probability if its VRF output y evaluated on, e.g.,
a fixed identifier id, falls below a certain threshold.

In [15], a trusted dealer generates the key pairs on behalf of all parties and se-
curely distributes them before the protocol execution. The approach as sketched
above fails if parties generate their VRF keys and register them to a public
bulletin-board. Namely, a malicious party P can choose its key to minimize its
output when evaluated on the fixed identifier, thus becoming a committee mem-
ber with high probability. As such, an adversary controlling any constant fraction
of the parties can degrade Chan et al.’s protocol to O(n) rounds by electing all
of them to the committee.

Removing the Trusted Dealer. One way of addressing the above issue is
for parties to agree on an unpredictable identifier id, but after registering their

3

keys to the public bulletin-board. Intuitively, this should thwart any attempt of
generating VRF keys in a way that minimizes the output when evaluated on id.
Unfortunately, this introduces a circular issue: how can parties agree on an unpre-
dictable string id if their ultimate goal is to agree on the sender’s output? To add
to the difficulty, the round complexity of the resulting broadcast protocol now
has to account for the process of agreeing on id, in addition to other steps. Thus,
agreement on id is only helpful if it can be achieved in a round-efficient manner.

To break this circularity, our approach follows the template (see [24,37,3,32])
of boosting a weak form of agreement on an unpredictable string to a strong form
of agreement on an arbitrary sender input. Compared to prior work, however,
we face a major challenge: we are in a dishonest majority setting with any
constant fraction of adaptive corruptions. This disqualifies typical approaches
such as VSS [24,37] (which requires an honest majority) or reducing the number
of Byzantine parties to run an honest-majority broadcast protocol [30,27] (which
requires either t− n/2 ≤ o(n) or trusted setup). Thus, we have to develop novel
techniques in order to reach our objective.

Verifiable Randomness. Let us describe the difficulty of agreeing on an un-
predictable and unbiased random string id. Consider a naïve protocol where
parties locally generate random seeds and share them (these could also be their
public keys from the bulletin-PKI); then, parties combine them into an output.
Setting aside for the moment the issue of reaching agreement on these outputs,
there is an obvious problem with bias: dishonest parties could observe the hon-
est parties’ strings and accordingly adjust or simply withhold their own strings,
thus biasing the outcome. These issues can be overcome using, e.g., VSS (if in
honest majority), which commits a party P to a value s in such a way that s can
be forcibly revealed without P ’s contribution. Our idea is to try to mirror the
properties of VSS in a dishonest majority setting, which would be equivalent to
associating to P an unpredictable random value that can be obtained and veri-
fied by the honest parties even without the participation of P . More exactly, we
will ensure that a dishonest party P ’s value which passes the honest verification
is guaranteed to be unpredictable and random.

To this end, we assume the existence of a verifiable delay function (VDF)
D. Critically, D cannot be evaluated faster than within a certain predetermined
time ∆, even when given access to parallel computation. This suggests the fol-
lowing approach: first, have parties agree on locally sampled random strings,
then evaluate D on their concatenation S and set the output of D to be the
final identifier id that will be used as an input to the VRF. If ∆ is larger than
the time it takes to agree on S, it should be impossible for Byzantine parties to
pick their contributions to S in a manner that significantly biases id. Converting
this approach into a working solution, however, turns out to be very challenging.
While there are prior works [50,49,20] on random beacons using verifiable delay
functions, they either require a trusted setup and/or additional assumptions on
the computational resources of Byzantine parties, an honest majority, broadcast,
or do not run in o(n) rounds.

4

To avoid another circular problem—that of requiring a trusted setup for the
VDFs—we base D on class groups of imaginary order [54]. Crucially, the order
of the class group should not known by any party in our construction, and it
suffices to generate the parameters from a biased discriminant. In particular, the
solution of applying a random oracle over the concatenation of all public keys,
which was too weak for generating the randomness to be input to the VRF, is
now sufficient for the veriafiable delay function setup.

Resolving the Remaining Challenges. Our sketch above on how to use a
VDF D as a “substitution” for VSS in the dishonest majority setting implicitly
assumed that parties can broadcast their individual contributions to the string
S to be input to D. Naturally, we need to find a means of replacing this with a
suitable primitive that can be achieved using only a plain public key setup.

Following classical works in the area of round-efficient agreement, we con-
sider a weaker primitive commonly referred to as gradecast (GC). In GC, parties
output a grade g together with the output v. Intuitively, g indicates their con-
fidence in v. Thus, if the sender is honest, every party should output the grade
expressing the highest possible confidence. If the sender is dishonest, parties’
grades can be lower and some parties might not learn the output at all. In this
case, we would still like to ensure that (i) even low grades correspond to the
same output v (if any), and (ii) grades of honest parties differ by at most one.
The solution is not as straightforward as simply replacing all broadcast channels
with gradecasts. We need all Byzantine parties to evaluate D on some input S
that includes the contribution of at least one honest party. To this end, we study
a generalized notion of moderated gradecast (Mod-GC), introduced in [37].

In GC, the sender’s behaviour fully determines the parties’ confidence in the
output. Mod-GC designates a different party M as a moderator responsible for
relaying the GC output of the sender to all parties. Parties now output a grade
that reflects their confidence in M rather than in the sender directly. While the
honest grades’ properties closely mirror those of GC, Mod-GC enables a more
refined strategy against dishonest parties. The main idea is for each party M to
moderate each other party P ’s GC instance. Parties then assign M the minimum
grade over all the instances it moderated. This way, a party M who incorrectly
forwards an honest party’s contribution is punished with a lower grade. To en-
sure that honest parties do not punish each other for GCs received initially with
low grades, our grading scheme takes into account both the grades of the original
senders P and the efforts of M in relaying those GCs. The outcome is a scenario
in which, for all parties M , the honest parties attain graded agreement on a
string id which they attribute to M along with a grade g, regardless of the hon-
esty of P . Unpredictability follows because a dishonest party M can only obtain
an id that holds a positive grade in the view of any honest party if id was com-
puted using the contributions of all honest parties. In addition, all honest parties
will have high grades in the view of the other honest parties (the maximum grade
or the maximum grade minus one). We call this protocol, along with the use of
the verifiable delay function, a verifiable graded consensus on random strings.

5

Wrapping up. Now that all parties have unpredictable ids and associated
grades in the view of honest parties, we can use them in Chan et al.’s protocol. We
set the maximum grade equal to the number of stages in [15]. There, if a party re-
ceives r signatures on a message b ∈ {0, 1} in stage r (consisting of two rounds), it
accepts it as a possible output. If that party is on the committee, it signs this mes-
sage and forwards it to all parties so they can accept it in the next round. In our
protocol, we additionally require that for a party P to accept a bit b in stage r,
all the accompanying signatures must come from committee members who have
an id with grade at least a value depending on r. Then, these signatures will have
a sufficiently large grade in the next round as well, and can safely be forwarded
by P before accepting b. The result is a sublinear-round broadcast protocol.

Communication Complexity Reduction. At this point, we have reached
our primary goal of achieving a sublinear round complexity in the number of
parties. In the remaining, we turn our attention toward reducing the communi-
cation complexity. Concretely, we show it is possible to amortize the expensive
setup when multiple instances of our protocol need to be run. Note that many
applications of broadcast such as MPC and SMR naturally require repeated
invocations of broadcast. To this end, we first show how to amortize the com-
munication complexity to Õ(n2) bits per instance when O(n) instances at Õ(λ)
rounds are run. We stress that it is not necessary to run the instances in parallel.

To achieve this, we adapt the gossip-based techniques introduced by Tsi-
mos et al. [51] to reduce the communication complexity when running many
moderated gradecasts in parallel. However, adapting the results of [51] to non-
binary messages is highly non-trivial. In our case, parties have to drop conflicting
non-binary messages in order to reduce communication, while ensuring the con-
flicts reach all honest parties in due time to guarantee a difference of at most one
in their grades. Using these techniques reduces the communication complexity
for the verifiable graded consensus (and thus, for broadcast as well) to cubic in
the number of parties n, with a round complexity polylogarithmic in n.

The online setup can be used to obtain random ids for multiple broadcast
instances via a random oracle. Therefore, the amortized communication cost for
a broadcast instance is quadratic, over n instances. Extending the techniques
of Tsimos et al. even further, amortized complexity per sender instance can
be improved all the way down to Õ(n), given that we run O(n) instances of
parallel broadcast, i.e., where all senders send n values in parallel. This problem,
also known as interactive consistency, is of central importance in several of the
aforementioned applications, in particular VSS and MPC. In the latter type of
protocol, it is frequently the case that up to O(n) parties distribute some value
or accuse each other of incorrect behaviour within the same round.

Open questions. While we weaken the setup assumptions compared to a
trusted dealer, our solutions require random oracles. We leave open to design
sublinear round broadcast in the standard model without trusted setup. In par-
ticular, this requires to reach graded agreement on the random strings fed to the
VRFs without relying on random oracles, which rules out our current approach.

6

One of the main bottlenecks is that in order to prevent biasing from an adversary
controlling t = O(n) parties, honest parties might need to evaluate O(n) VDFs,
which is not o(n)-round. Using polylogarithmic samplers has the potential to
reduce the number of VDF evaluations to sublinear in n, but comes at an enor-
mous increase in the required values of n. Finally, we would also need VDF and
VRF constructions in the standard model that do not rely on a trusted setup.

1.2 Related Work

We start with the related literature for broadcast protocols in the setup-free case
apart from a bulletin-board public key infrastructure (bulletin-PKI). The cele-
brated FLP result [26] disallows any broadcast protocol in the asynchronous set-
ting tolerating n/3 or more corruptions, so we focus on the synchronous setting.
Dolev and Strong [23] give a protocol against an adaptive dishonest majority
t < n with O(n3) total communication complexity. A line of work initiated by
King et al. [39,38] and Boyle et al. [10] proposed protocols with reduced com-
munication complexity of Õ(n3/2) but only for honest super-majority t < n/3.
Momose and Ren [43] also proposed a protocol with reduced communication
complexity Õ(n2) but for honest majority t < n/2. All these works require a lin-
ear number of rounds. Abraham et al. [1] achieve constant rounds for broadcast
but in the honest majority with trusted setup. In a recent work, Abraham et
al. [2] achieve expected constant rounds for Parallel Broadcast, with Õ(κn3)
expected communication complexity against a static adversary in the honest
majority setting with bulletin-board PKI.

Our work, like most of the ones described here, considers an atomic send
model and uses property-based definitions. In the case of a stronger adversarial
model of non-atomic sends, where an adaptive adversary can corrupt a party
and revert or modify its send action before it reaches all the other parties, Co-
hen et al. [18] investigate the feasibility of property-based and simulation-based
adaptive broadcast (also assuming TLPs).

We now survey the literature on synchronous broadcast protocols for a dis-
honest majority that achieve sublinear round complexity. The first works ob-
tained a sublinear number of rounds only in a narrow case t/n − 1/2 ≤ o(n):
Garay et al. [30] achieved O((2t−n)2) rounds, and Fitzi and Nielsen [27] achieved
O(2t− n) rounds, against a strongly adaptive adversary.

Chan et al. [15] was the first result achieving broadcast with sublinear rounds
O(n

n−t) and Õ(n2) communication in a dishonest majority t/n− 1/2 ≥ ω(1). It
requires a trusted setup for the common random strings and keys. The adversary
is weakly adaptive, meaning it cannot perform after-the-fact removals. Wan et
al. [53] further improved this result by presenting a protocol for synchronous
broadcast that achieves expected constant rounds O((n

n−t)
2) and Õ(n4) com-

munication complexity, but still with trusted setup (in particular, this avoids
having maliciously generated keys for the VRF, which we treat in this work).
The solution requires building a trust graph which allows honest parties to iden-
tify the corrupted parties.

7

Wan et al. [52] tolerates stronger adversaries that can also erase messages.
In [52], parties distribute during each round their real or dummy votes through
time-lock puzzles as a means of encryption against the adaptive adversary. In
order to not have each honest party solve a linear number of puzzles, parties
probabilistically sample which puzzle to solve based on the puzzles’ age and
then multicast the solution and the validity proof. This guarantees that after a
logarithmic number of rounds, all honest puzzles are solved and their solutions
are received by all honest nodes. However, this solution does not guarantee that
corrupt puzzles are also solved or that honest parties have a consistent view
of puzzles originating from the adversary. This is the main reason this solution
cannot be used in our case of emulating random beacons, where an adversary
can bias the result by observing the intermediate opened puzzles and deciding
to not allow some corrupt puzzles to be opened.

Hou et al. [36] describe a blockchain that tolerates dishonest majority, loosely
based on the Chan et al. broadcast protocol [15], proof of stake, proof of work in
the random oracle model (ROM). Other works in the adaptive dishonest majority
case [51,44] studied the amortized communication complexity of protocols over a
number of broadcast instances, but achieve a linear number of rounds. Tsimos et
al. [51] study the parallel version of broadcast for t ≤ (1 − ϵ)n, where every
party has some input and, after the protocol, the properties of broadcast need
to hold per each separate sender. By combining gossiping and a variation of the
protocol from Chan et al. [15], they achieve parallel broadcast with amortized
communication Õ(n2) assuming bulletin-board PKI, or Õ(n) assuming trusted
PKI. More recently, Momose et al. [44] study a version of multi-shot broadcast,
where there are multiple sequential broadcast calls. They achieve a synchronous
protocol with amortized O(n2) communication over a number of consecutive
executions for any t < n, assuming only signatures, and against strongly adaptive
adversaries. Blum et al. [6] present communication bounds in the number of
messages required for dishonest majority in the static corruptions in the stronger
adversarial model and for adaptive corruptions in the weakly adaptive model.

Graded broadcast, graded consensus, graded verifiable secret sharing, have
been proposed in various settings as a stepping stone to stronger primitives
of Byzantine broadcast or Byzantine agreement, see [24,19,37,30] for instance.
Recently, in the honest majority case, [28] generalized graded consensus to the
multi-dimensional case which deals with a vector of inputs.

Time-lock puzzles (TLP) [48], timed commitments [9] and verifiable delay
functions [7] are cryptographic tools relying on time assumptions, which involve
“slow functions” that can be opened or evaluated only after an a priori cho-
sen amount of time passes. Several constructions of VDFs have been proposed
in [7,46,54,21,35]. VDFs are currently used in blockchain applications such as
Ethereum and Chia [13,17].

In the context of timing assumptions and broadcast, Das et al. [20] describe
a Byzantine agreement protocol with VDF in ROM, which achieves an expected
constant round complexity without trusted setup, tolerating t < n/2 adaptive
corruptions. Their construction differs conceptually from ours: Das et al. [20]

8

generate a graded PKI with only two grades, then use VDFs both in this con-
struction and to elect a leader on which honest parties agree with high proba-
bility, in order to augment a graded byzantine agreement into a full byzantine
agreement. Moreover, their constructions heavily rely on t < n/2.

The use of VDFs for multi-party unbiased randomness generation was first
exemplified by Lenstra et al. [41]. Constructing randomness from VDF/TLP with
transparent setup in ROM, but assuming broadcast, is also addressed by Bhat et
al. [5], who tolerate t < n only if the adversary is covert, and by Thyagarajan et
al. [50] who tolerate t < n. Freitag et al. [29] propose a fair coin flipping protocol
that assumes either a public bulletin-PKI and a partially trusted setup called
all-but-one model (non-interactive but where parties need to solve all TLPs) or
a trusted setup and ROM (interactive but publicly verifiable).

We compare the relevant related work and our results in Table 1.

Table 1. Comparison between works for synchronous broadcast in the dishonest ma-
jority case. Here, n is the number of parties, ϵ is the honest constant fraction, κ is a
computational security parameter and λ is a statistical security parameter (not neces-
sarily the same across all entries). If unspecified, the calls in the last column can be
either parallel or sequential. ∗means in the strong adaptive adversarial model, while
the others are in the weak adaptive adversarial model.

Protocol Corruptions t Assumptions Rounds Communication BC instances
Dolev & Strong [23] < n∗ bulletin-PKI O(n) O(n3 · κ) 1 call

Chan et al. [15] < (1− ϵ)n trusted-PKI O(λ) O(n2 · λκ) 1 call
Wan et al. [52] < (1− ϵ)n∗ trusted-PKI O(λ) Õ(n3 · λκ) 1 call
Wan et al. [53] < (1− ϵ)n trusted-PKI O(λ) Õ(n4 · κ) 1 call

Tsimos et al. [51] < (1− ϵ)n bulletin-PKI O(n logn)
Õ(n2 · λκ)
amortized

n parallel
calls

Tsimos et al. [51] < (1− ϵ)n trusted-PKI O(λ logn)
Õ(n · λ3κ)
amortized

n parallel
calls

Momose et al. [44] < n∗ bulletin-PKI O(n)
O(n2 · κ)
amortized

n2 sequential
calls

ΠBC (Thm. 3) < (1− ϵ)n
bulletin-PKI, ROM,

delay functions O(λ) O(n4 · λκ) 1 call

Π ′
BC (Thm. 4) < (1− ϵ)n

bulletin-PKI, ROM,
delay functions O(λ logn) Õ(n3 · λ2κ) 1 call

Π ′
BC (Thm. 5.1) < (1− ϵ)n

bulletin-PKI, ROM,
delay functions O(λ logn)

Õ(n2 · λ2κ)
amortized

n calls

ΠBC (Thm. 5.2) < (1− ϵ)n
bulletin-PKI, ROM,

delay functions O(λ)
O(n2 · λκ)
amortized n2 calls

Π ′
BC w. gossiping
(Thm. 5.3) < (1− ϵ)n

bulletin-PKI, ROM,
delay functions O(λ logn)

Õ(n · λ3κ)
amortized

n calls of
n parallel
calls each

9

1.3 Note

An extensive update of this work, which includes additional authors can be found
in https://eprint.iacr.org/2024/770.

2 Model and Preliminaries

Network. We consider n parties P1, . . . , Pn that have access to a bulletin-board
public key infrastructure (bulletin-PKI). Every party generates a pair of keys (for
signing and verifiable random function) and posts the public key to the public
bulletin-board before the protocol starts. The posted keys are not guaranteed to
have been generated correctly.

We consider a synchronous network, i.e., messages between parties are de-
livered with a finite, known delay ∆r, and the local clocks of the parties are
synchronized. Our protocols execute in rounds: every round r of the protocol
has length ∆r and parties start executing round r at time (r − 1) · ∆r. We
assume atomic send operations, i.e., parties can send a message to multiple par-
ties simultaneously such that the adversary cannot corrupt them in between
individual sends.

Security parameters. We assume all cryptographic hash functions are modeled
as random oracles (ROs). This means that for any input x in the domain, a hash
function H returns H(x) if it was queried on x before and otherwise returns a
random value from the codomain. For a computational security parameter κ,
we assume that the hash function outputs, signatures, verifiable delay function
outputs and verifiable random function outputs are of size O(κ). For a statistical
security parameter λ, we use a failure probability δ ∈ (0, 1) that is negligible in λ
but independent of n, e.g., log(1/δ) = polylog(λ). In general, the computational
security parameter is larger than the statistical security parameter. An extended
discussion on the security parameters is given in Section 6.

Threat model. We consider a Byzantine fault model, in which some fraction
of the parties t ≤ (1 − ϵ)n, may be corrupted by an adversary, for a constant
ϵ ∈ (0, 1). The adversary controls the messages and current state of any corrupted
party, and can coordinate the actions of all corrupted parties. The adversary is
adaptive and rushing, i.e., it can adaptively corrupt parties over the course of
a protocol execution and wait until all honest parties have sent their messages
before making a decision. Uncorrupted parties are called honest. The adversary
cannot perform after the fact removals, i.e., it cannot indefinitely prevent a
message from being delivered once it is sent by an honest party, even if the
adversary corrupts it at some point after the send action.

We assume the adversary accesses a probabilistic polynomial-time (ppt) ma-
chine. Looking ahead, the adversary is ∆-limited, i.e., to evaluate a VDF with dif-
ficulty parameter ∆ the adversary’s machine takes sequential time at least ∆ even
with poly(∆,κ) processors. Honest users might have slightly weaker machines.

Signatures. We use the notation sigi(m) to denote a signature of party Pi

using ski on message m and veri(s,m) to denote the verification of signature s

10

https://eprint.iacr.org/2024/770

on message m using public key pki. We assume idealized signatures that achieve
perfect correctness: for any message m, it holds that veri(sigi(m),m) = 1, and
unforgeability under chosen-message attack : for a pair of honestly generated keys
(ski, pki), a party that does not have access to ski, cannot generate a signature
s such that veri(s,m) = 1.

In the following, we implicitly assume the definitions are for protocols toler-
ating t malicious parties, i.e., the conditions hold whenever there are at most t
corrupted parties. We focus our presentation on binary broadcast, where input
values are bits, but it can be extended to multi-bit values.

Broadcast. Introduced in the seminal work by Lamport et al. [40], broadcast
ensures agreement of honest parties on a sender’s message.

Definition 1. A protocol executed by parties P1, P2, . . . , Pn, where a sender
P ∗ ∈ {P1, . . . , Pn} begins holding input x∗, is a broadcast protocol if the fol-
lowing notions hold:

(Validity) If P ∗ is honest, then every honest party outputs x∗.
(Consistency) Every honest party outputs the same value x.
(Termination) Each honest party Pi outputs (xi) and terminates.

Gradecast and Moderated Gradecast. Gradecast, introduced by Feldman
and Micali in [25] and generalized for an arbitrary grade by Garay et al. [30],
is a relaxation of broadcast, where honest parties are allowed to disagree by a
“small amount”.

Definition 2. A protocol executed by parties P1, P2, . . . , Pn, where a sender
P ∗ ∈ {P1, . . . , Pn} begins holding input x∗, is a g∗-gradecast protocol if the
following notions hold:

(Validity) If P ∗ is honest, then every honest party outputs (x∗, g∗).
(Soundness) Let Pi, Pj be two honest parties outputting (xi, gi) and (xj , gj),
respectively. If gi ≥ 2, then xi = xj and |gi − gj | ≤ 1. If gi = 1, then either
xi = xj or gj = 0.
(Termination) Each honest party Pi outputs (xi, gi) where g ∈ {0, . . . , g∗}
and terminates.

We also define moderated gradecast where a moderator M re-gradecasts the
value it received from the sender in gradecast P ∗. The goal is for the honest
parties to use the two pieces of information coming from the two gradecasts
with different senders, to obtain “similar” outputs and to grade the moderator.

Definition 3. A protocol executed by parties P1, P2, . . . , Pn, where a sender
P ∗ ∈ {P1, . . . , Pn} begins holding input x∗, and a moderator M ∈ {P1, . . . , Pn}
moderates for the sender P ∗, is a g∗-moderated gradecast protocol if the following
notions hold:

(Validity) If P ∗ is honest and moderator M is also honest, every honest
party Pi outputs (x∗, g∗).

11

(M-Validity) If moderator M is honest, then every honest party Pi outputs
(x, gi) for some x and for gi ∈ {g∗ − 1, g∗}.
(Soundness) Let Pi, Pj be two honest parties outputting (xi, gi) and (xj , gj),
respectively. If gi ≥ 2, then xi = xj and |gi − gj | ≤ 1. If gi = 1, then either
xi = xj or gj = 0.
(Termination) Each honest party Pi outputs (xi, gi) where gi ∈ {0, . . . , g∗}
and terminates.

In this work, we are also interested in the parallel version of moderated
gradecast, where each party acts as an initial sender and as a moderator for all
other senders. Each party will output a vector of values and grades, with each
tuple corresponding to a different party.

Verifiable Random Functions. Verifiable Random Functions (VRFs), intro-
duced by Micali et al. [42] are functions whose output is unique and pseudoran-
dom and, moreover, the validity of the function evaluation relative to a binding
commitment can be efficiently proved and verified.

A VRF consists of algorithms VRF.Gen,VRF.Prove and VRF.Verify, and should
satisfy Uniqueness, Provability, Pseudorandomness (Definition 8 in Appendix A).
Usually, the literature using VRFs considers that the key generation is run at a
trusted setup. We are interested in a variation where the key pair is generated by
a potentially malicious party, yet we still want to satisfy uniqueness, provability
and pseudorandomness in a modified setting. Chen and Micali [16] and Gilad et
al. [33] also require that the VRF security holds for adaptive adversaries and
adversarially generated key pairs, as long as the public keys have been chosen
in advance of the seeds, but do not provide a formal definition. Their VRF con-
struction uses random oracles and unique signatures. Goldberg et al. [34] discuss
this issue and propose VRF constructions based on RSA or elliptic curves in the
random oracle model, which have a validation predicate for the public key in
order to detect maliciously generated key pairs.

In this work, we follow the approach suggested in Goldberg et al. First, we
require a VRF to have an additional efficient predicate VRF.Validate to check that
the public key corresponds to an admissible secret key. Second, we formalize the
property of input indistinguishability of partially random inputs in the context
of a maliciously generated key pair, which we call extended pseudorandomness
(Appendix A), and we require that the VRF satisfies it.

In our constructions, we can either instantiate the VRF via ROs and unique
signatures, e.g., BLS [8] with the validity predicate VRF.ValidatePK(1

κ) = 1 if
PK ̸= 1 and 0 otherwise, or we can use the elliptic curve-based VRF via ROs
from [34] with the validity predicate described there.

Verifiable Delay Functions. Verifiable Delay Functions (VDFs), defined by [7],
are functions with a unique unpredictable output that can only be evaluated af-
ter a sequential number of steps, and moreover, the validity of the function
evaluation can be efficiently proved and verified.

A VDF consists of the algorithms VDF.Setup,VDF.Eval and VDF.Verify, and
should satisfy Correctness, Soundness, Sequentiality (Definition 9 in Appendix A).

12

We adapted the σ-sequentiality definition from Boneh et al. [7] and Wesolowski
[54] to the following case: no adversary is able to compute an output for VDF.Eval
on the honest random challenge concatenated with an adversarial input in par-
allel time σ(∆) < ∆, even with up to a polynomially large number of parallel
processors and after a potentially large amount of precomputation. The sequen-
tiality property implies the unpredictability of the VDF output, and in the RO
model, any unpredictable string can be used to extract an unpredictable κ-bit
uniform random string.

Wesolowsky [54] gives a construction for a VDF without trusted setup, based
on class groups of unknown order, which we adopt in our constructions.

Verifiable Graded Randomness. One of our goals in this paper is to generate
strings that act as random beacons [47] that could also be validated by the
network. First, these strings should satisfy unpredictability and bias resistance
(which can be extended to indistinguishability from random in RO model) and
termination, as random beacons do. Second, we want honest parties to agree
between themselves on the beacons associated to every other party, but since
broadcast is not available, we relax this requirement to graded agreement. Third,
we want these beacons to be verifiable in the sense that once a party outputs
such a string, the honest participants in the network should be able to validate
that string as belonging to that party based on their previous information. We
call a string generation protocol satisfying the requirements above a verifiable
graded consensus on random strings protocol.

Definition 4. A protocol executed by parties P1, . . . , Pn is a verifiable graded
consensus on random strings (VGC) with maximum grade g∗ composed of algo-
rithms Gen, Process, Verify and protocol Toss:

- Gen(1κ) outputs public parameters pp;
- Toss(pp) outputs n pairs (x

(j)
i , g

(j)
i) to party Pi;

- Process(pp, x) outputs (w, ρ);
- Verify(pp, x, w, ρ) outputs 0 or 1.

Gen is a ppt algorithm, Verify is a deterministic algorithm, while Process can
be a ppt algorithm but w is a deterministic evaluation of x. A verifiable graded
consensus protocol on random strings should satisfy the following notions, for
any i, j, k:
(Graded consensus properties)

(Graded Validity) If party Pj is honest, then every honest party Pi outputs
(x(j), g

(j)
i) for some x(j) and for g

(j)
i ∈ {g∗ − 1, g∗}.

(Graded Agreement) Let Pi, Pk be two honest parties outputting (x
(j)
i , g

(j)
i),

(x
(j)
k , g

(j)
k), for some j. If g(j)i ≥ 2, then x

(j)
i = x

(j)
k and |g(j)i − g

(j)
k | ≤ 1. If

g
(j)
i = 1, then either x

(j)
i = x

(j)
k or g

(j)
k = 0.

(Termination) An honest party Pi terminates with output (x(j)
i , g

(j)
i) for ev-

ery j ∈ [n], after executing Toss, and terminates with (wi, ρi) after executing
Process.

(Verifiable randomness properties)

13

(Indistinguishable Randomness) If all honest grades associated to Pi (and
implicitly to wi) are strictly positive, then wi is indistinguishable from ran-
dom, i.e., no ppt adversary A can win the Indistinguishable Randomness
game with probability more than negl(κ).
(Correctness) For all κ, pp← Gen(1κ), if (x(j)

i , ·)← Toss(pp) and (wj , ρj)←
Process(pp, x(j)

i), then Verify(pp, x(j)
i , wj , ρj) = 1.

(Soundness) For a ppt adversary A, it holds that for all pp← Gen(1κ):

Pr

[
Verify(pp, x(j)

i , wj , ρj) = 1

(wj , ·) ̸= Process(pp, x(j)
i)

:
(x

(j)
i , ·)← Toss(pp)

(wj , ρj)← AToss,Process(κ, pp)

]
≤ negl(κ).

Note that Process is deterministic with respect to the output w, so it follows
that the outputs of Process on the output strings of Toss also satisfy graded
agreement and graded validity.

Since the verifiable graded consensus on random strings protocol can be of
independent interest, above we gave a more general definition where the adver-
sary is not limited in sequential processing time. Nevertheless, in this paper, we
are working under the assumption of existence of delay functions, hence we par-
ticularize Definition 4 to this setting. The only changes in the definition are that
(i) a time parameter ∆ will be part of the public parameters, (ii) the adversary
is limited to run in time O(poly(∆,κ)) instead of only being limited to ppt, and
(iii) we particularize the indistinguishable randomness property to:

(σ-Indistinguishable Randomness) For σ(∆) ≤ σ′(∆), where Process is σ′-
sequential, no pair of randomized algorithmsA0, running in time O(poly(∆,κ)),
and A1, running in parallel time σ(∆) can win the ∆-Indistinguishable Ran-
domness game with probability more than negl(κ).

The ∆-indistinguishable randomness game captures both the unpredictability
and unbiasedness notions, as in [4,50], and is based on the σ-sequentiality defi-
nition, which says that the adversary cannot run in more time than σ(∆).

Definition 5. [∆-Indistinguishable Randomness Game] An adversary A := (A0,
A1) and a challenger C play the next game with security parameter κ and time ∆:

1. C sends to the adversary ∆.
2. A selects the parties it wants to corrupt and sends their identities to C.
3. C computes pp ← Gen(1κ, ∆) and sets the key pairs for the honest parties

and sends them to A.
4. A chooses the public keys for the corrupted parties and sends them to C.
5. C discards the parties whose public keys are not valid.
6. C and A execute the protocol AToss(pp)

0 ; A can corrupt additional parties.
7. The protocol ends when all remaining honest parties Pi ∈ Honest have gen-

erated output ({x(j)
i , g

(j)
i }, wi). Denote by st the state of A obtained so far.

8. For each j, A computes w
(j)
A ← AProcess(pp,·)

1 (pp, st).

The adversary A wins the game if for at least one index j, w
(j)
A = w(j) for

(w(j), ·)← Process(pp, x(j)
i) and for g

(j)
i ≥ 1 for any honest party Pi ∈ Honest.

14

In other words, the adversary should not be able to guess the honest party
Pi’s output from Process(pp, x(i)), and even for corrupted parties Pj for which
it manipulated x(j), it should not be able to guess the output Process(pp, x(j))
as long as all honest parties Pi have strictly positive grades for Pj . The in-
distinguishable randomness game can be easily obtained from Definition 5 by
removing the dependence on ∆.

3 Emulating a Common Random String

Consider that each party Pi, i ∈ [n], samples a seed (honest parties sample
random seeds). Each honest party needs to create and “almost” agree on aggre-
gate strings based on these seeds, via a protocol we call moderated gradecast.
The output string is then input to a VDF, and the VDF evaluation produces
an unpredictable and unbiased random string that serves as a common random
string. However, parties might not all hold the same common value, because the
adversary can send different seeds to the honest parties. The grades that honest
parties hold for the final strings will quantify how much confidence they have
that their output strings coincide. In particular, grades greater than 2 certify
that honest parties have the same VDF input and hence, VDF evaluation.

We start by describing the Toss protocol, which can be seen as a parallel mod-
erated gradecast, which ensures the pairwise graded agreement of honest parties
on their output strings. In designing Toss, we mind the randomness and verifia-
bility requirements on the output of Process. Then, we show how to employ the
VDFs to obtain the full verifiable graded consensus on random strings protocol.

3.1 Moderated Gradecast and Graded Consensus on Seeds

We note that a single run of a parallel gradecast protocol is sufficient to achieve
graded agreement as in Definition 4. Concretely, each party Pj would output for
each sender Pi a message and a grade (mi,j , gi,j). However, this would not be
sufficient to achieve both graded validity with a high grade for honest parties
and unpredictability (after running Process). For instance, if Pj would set its
final string in Toss for Pi to be mi,j , then this would not be random if Pi is
malicious. To achieve unpredictability later on, we need intuitively the condi-
tion that every output string of Toss contains the input of at least one honest
party. However, this is still insufficient, as another failed attempt with Toss im-
plemented as only one parallel gradecast shows: if Pj would set as its random
string ∥i∈[n],gi,j≥1mi,j

5, the associated grade of the aggregation could always
be determined by malicious parties, potentially yielding low grades for honest
parties or high grades for dishonest parties.

Therefore, we propose a second step where parties moderate the values they
received in the first step. The message of a moderator Ps is thus made up of

5 Throughout the text, we use the notation a∥b to refer to the concatenation of a and
b. More generally, ∥i∈[n]ai = a1∥a2∥ . . . ∥an.

15

messages that it gradecasts itself, but since it gradecasts values from other parties
as well, the aggregation is random (if it has high grade). Moreover, moderators
have their grade penalized by the difference in the outputs of their moderated
gradecast and the initial gradecast. This ensures that a moderator who honestly
gradecasts a value sent by a malicious initial sender will not be penalized by
more than 1 in its final grade. Thus, malicious parties cannot arbitrarily modify
the final grades of honest parties.

In our constructions, we use the GC protocol described in [30] (see Ap-
pendix A.3), with maximum grade g∗. We construct a moderated gradecast
protocol based on several instances of GC as described above, which we call Mod-
GC. In Figure 1, we introduce directly the Toss protocol, which is comprised of
a parallel moderated gradecast. We note that in Figure 1, and the rest of this
section, M (j)

i replaces the message notations xi and x
(j)
i in Definitions 3 and 4.

Toss(pp)

Step 0: Each party Pi randomly samples a seed mi.
Step 1: Each party gradecasts their seed.

1. Each party Pi calls GC(mi, g
∗).

2. Denote the output at Pj of the gradecast with sender Pi as (mi,j , gi,j),
where mi,j is the message from party Pi and gi,j is the associated grade.

Step 2: Each party acts as moderator.

1. For each party Ps, let m
(s)
i := [mi,s, sigi(mi,s)].

2. Each party Ps calls GC(m(s)
i , g∗), for all i ̸= s.

3. For moderator Ps, party Pj holds (ms,j , gs,j), {(m(s)
i,j , g

(s)
i,j) : i ∈ [n] \ {s}}.

Step 3: Each party decides its output value and grade for each moderator.

1. For each party Pj , for each moderator Ps and each i ∈ [n], Pj sets Ps’s
value m

(s)
i,j , with grade:

G
(s)
i,j =

{
g
(s)
i,j , if m(s)

i,j = mi,j ,
min{g(s)i,j , g

∗ − gi,j} , otherwise.

2. Pj sets its general grade for the moderator Ps as G
(s)
j = mini∈[n]{G(s)

i,j }
and the message M

(s)
j = ∥

i∈[n],G
(s)
i,j≥1

m
(s)
i,j .

Fig. 1. Toss protocol (or Parallel Moderated Gradecast on random inputs).

To analyze the properties of Toss, consider first one moderator Ps and one
sender Pi running the subprotocol in Figure 1 starting from step 1. We show
that this is an instance of a moderated gradecast protocol, Mod-GC(mi), which
satisfies validity, M-validity, soundness and termination against an adaptive ad-
versary controlling t ≤ (1−ϵ)n parties. Then, based on the properties of Mod-GC,

16

we show that Toss satisfies the graded consensus set of properties specified in
Definition 4. The proofs of these results are given in Appendix C.1.

Lemma 1. Mod-GC is a moderated gradecast protocol as in Definition 3.

Theorem 1. Protocol 1 is a Toss protocol with maximum grade g∗ satisfying
Graded Validity and Graded Agreement and Termination as in Definition 4.

Communication and Round Complexity. The GC protocol takes 2g∗ + 1
rounds and has O(g∗(κ + ℓ)n2) communication complexity. Toss takes 4g∗ + 2
rounds, determined by running n-parallel instances of GC followed by n2-parallel
instances of GC. The total communication complexity for n parties with inputs
of length ℓ and signature size κ is n2 ·CCGC(ℓ, κ, g

∗), so the total communication
complexity is O(g∗ · (ℓ+ κ) · n4).

3.2 Verifiable Graded Consensus for Random Strings

Recall the main challenges: (i) lack of trusted setup, (ii) the obvious lack of
broadcast channels, (iii) dishonest majority, and (iv) requirement of sublinear
number of rounds. To address point (i), we use Wesolowski’s VDF construc-
tion [54] based on class group of imaginary quadratic fields, which does not
contain trapdoors and does not require trusted setup. Point (iii) is addressed by
the Toss construction above which is secure against a dishonest majority.

Points (ii) and (iv) limit the use of the homomorphic properties of the VDF
evaluation. Parties cannot gradecast (mi,VDF.Eval(mi)) because the rushing
adversary can wait to see all such messages, then bias the result by checking
the parity of the aggregation of the results. Using timed commitments can help
solve this issue. However, in the worst case, the lack of broadcast causes each
honest party to open the timed commitment of every malicious party, which is
not sublinear time.

We aim for each party to only have to evaluate a single VDF, namely, its own.
To this end, we need the graded agreement to happen on the aggregation of the
VDF inputs, which in our case, is the concatenation of the parties’ seeds, as in the
random beacon construction described in [41]. Strings that have grade greater
than 1 have the guarantee that they contain seeds of honest parties, therefore
the value of this concatenated string will be unpredictable. The hash of these
concatenated seeds will be fed into the VDF evaluation, so a rushing adversary
that has parallel time smaller than the VDF difficulty parameter cannot bias the
input to the VDF. Finally, looking ahead, the VDF evaluation output (wi, ρi) will
be used in a setting where it is multicast by the computing party Pi. An honest
party Pj will have the graded input (M

(i)
j , G

(i)
j) and will confidently be able to

check the validity of the VDF output VDF.Verify(M
(i)
j , wi, ρj , ·) if G(i)

j ≥ 1.
To summarize, we use the VDF construction [54] for the algorithms Process

and Verify, and the Toss protocol as a parallel Mod-GC protocol with local seeds
sampling, to construct a verifiable graded consensus (VGC) on random strings.
To achieve security against the adaptive rushing adversary, the delay required

17

to evaluate the VDF should be at least twice the time required to run GC (in
terms of the synchronous rounds’ length). Below, we give more technical details.

VGC steps and parameters. Each party Pi generates a random value mi ∈
{0, 1}q(κ), for a polynomial q, such that an adversary can guess mi only with neg-
ligible probability negl(κ). Then, each party shares mi via the Mod-GC protocol.
After the end of step 1 of Protocol 1, all honest parties Pj are guaranteed to have
obtained their own M

(j)
j = m

(j)
j := ∥i∈[n],gi,j≥1mi,j , so they can start Process

before the termination of Toss. Note that the adversary can decide on its final
local strings M

(j)
j for all malicious parties Pj from the first round of the grade-

cast in step 1, since honest parties will relay their messages from the beginning.
After the end of step 1, each party Pj is able to compute VDF.EvalEK(H(m

(j)
j)).

Importantly, security holds only when we do not use trapdoor-VDFs, otherwise
malicious parties would have an advantage in biasing the output.

We now specify how to obtain the evaluation and verification keys for the
VDF. It is sufficient to choose a large enough random discriminant d in order
to guarantee that the class group order cannot be computed [54,14,12,11]. In
particular, given a random oracle Hd and the bulletin-PKI, parties can com-
pute the discriminant d as the closest negative prime (of size κ) to coinVDF :=
Hd(PK1∥PK2∥. . . ∥PKn) such that d mod 4 ≡ 1. In short, we specify the ran-
dom tape used in VDF.Setup by coinVDF. Then, each party can choose the group
G = Cl(d) as the class group of the imaginary quadratic field Q(

√
d). While the

adversary can choose its public keys to try to bias the outcome of Hd, it is still
unfeasible to compute the order of G even for a biased d. The only advantage the
adversary could have is to obtain the exact discriminant d′ for which, somehow,
it know the corresponding order, but this is infeasible given only a polynomial
number of queries to the random oracle. To complete the VDF key generation,
two more random oracles are specified: HG that maps to G, and Hprime that is
required for the Fiat-Shamir transform and has to map the inputs which are bi-
nary representation of group elements to prime numbers of size dependent of the
security parameter (see [54]). One can build deterministic algorithms that take
as input G and output the hash function HG, starting e.g., from SHA (Hprime as
well). The output of VDF.Setup is deterministic given the discriminant d, so all
parties will have EKi = VKi = (G, HG, Hprime). Having the same evaluation and
verification keys for all parties is not necessary (but it is also not a problem since
no party can compute the group order), so in the following, we prefer to keep
a general notation for different EKi and VKi to accommodate other potential
VDF constructions. We include this deterministic setup for VDF in the Process
algorithm, since honest parties do not require the evaluation and verification
keys before obtaining their own evaluation input M

(i)
i .

We now compute the required difficulty parameter ∆VGC. Let ∆G := (2g∗ +
1) ·∆r denote the duration of the gradecast protocol, where ∆r is the duration of
a round. Toss in Protocol 1 takes double this amount, 2 ·∆G. We want to choose
the time difficulty parameter such that the adversary cannot finish evaluating
the VDF before the end of the Toss protocol. The adversary can do damage even

18

in the last round of Toss, i.e., change the values of the honest parties’ strings for
a malicious moderator.

Therefore, we set the puzzle difficulty parameter ∆VGC of the VDF employed
in Process to be ∆VGC = 2·∆G. Then, the VDF (and Process) will be σ-sequential,
for σ(∆VGC) = (1−ξ) ·2 ·∆G, and the adversary takes at least 2 ·∆G/(1−ξ) total
time to evaluate the VDF. (Note that we account for the adversary’s speed-up
by a very small ξ > 0, see Appendix A.2). Finally, let the total time it takes
the slowest honest party to evaluate the VDF with difficulty ∆VGC = 2 ·∆G be
2 ·∆G + qh ·∆r ≥ 2 ·∆G/(1 − ξ), where qh > 0 is the largest slow-down of an
honest party.

We instantiate the algorithms and protocols of the VGC in Figure 2. Gen is
the PKI and coin generation required for the VDF setup, Toss is the protocol in
Figure 1, Process is the (untrusted) setup for the VDF and the inherited VDF.Eval
on the hash of the output, and Verify is the inherited VDF.Verify. Then, we prove
that ΠVGC satisfies the desired properties (Appendix C.1).

ΠVGC(∆VGC, g
∗)

1. Gen(1κ,∆VGC): Each party Pi posts the keys on the bulletin-PKI, computes
coinVDF ← Hd(PK1∥PK2∥. . . ∥PKn) and sets pp = (∆VGC,PKI, coinVDF).

2. Toss(pp): Parties execute the protocol in Figure 1 and each party Pi sets
as output (M (j)

i , G
(j)
i) for each other party Pj and M

(i)
i for itself.

3. Process(pp,M (i)
i): Each party Pi computes (EKi,VKi) ←

VDF.Setup(1κ,∆VGC, coinVDF), where coinVDF replaces the internal
random tape of VDF.Setup. Each party Pi evaluates its own random string
as (wi, ρi) = VDF.EvalEKi(H(M

(i)
i)) (they can start computing this value

before Toss terminates).
4. Verify(pp, x, y, π): On receiving (wj , ρj) from Pj , party Pi outputs

VDF.VerifyVKj
(H(M

(j)
i), wj , ρj ,∆VGC).

Fig. 2. Verifiable graded consensus protocol for generating random strings.

Theorem 2. Protocol ΠVGC is a verifiable graded consensus protocol on random
strings, cf. Definition 4, against an adaptive ∆VGC-limited adversary who runs
in at most (1− ξ) ·∆VGC = 2 ·∆G parallel time, and can adaptively corrupt up
to (1− ϵ)n parties.

Communication and Round Complexity. Protocol ΠVGC takes 4g∗ + 2
rounds to complete Toss, but after 2g∗ + 1 rounds, (after parties obtain their
local values M

(i)
i), they start Process which takes at most 4g∗ + 2 + qh rounds.

This means that the total round complexity for ΠVGC is slightly over 6g∗ + 3,
i.e., 6g∗ + 3 + qh. The total communication complexity is O(g∗ · (ℓ+ κ) · n4).

19

4 Sublinear-Round Broadcast

We now construct our sublinear broadcast protocol. Our concrete tools are:
1. A Verifiable Graded Consensus on random strings (VGC) protocol satisfying

Definition 4—in our case, instantiated via Gradecast and Verifiable Delay
Functions (VDFs);

2. An adaptively secure Verifiable Random Function (VRF) that achieves the
properties in Definition 8 (even with maliciously generated keys).

The VGC can be seen as an online setup phase that generates graded random
identifier strings and proofs of the validity of these identifiers. The VRF will be
applied on these identifiers and used to correctly and verifiably elect bit-specific
committees. We need bit-specific committees instead of a single committee to
prevent the adaptive adversary from corrupting a party who voted for one bit
and make it also vote for the other bit. The VGC outputs also help validate the
committee membership against a dishonest majority. To that end, we also need:

3. A bound for the output of the VRFs such that the committees have at least
one honest party and fewer malicious parties than half of the number of
rounds, with overwhelming probability.

However, we do not exactly obtain the equivalent of a trusted setup via VGC,
and the only guarantees that parties have are related to the grades of these
distributed random strings, where the maximum grade is denoted as g∗ and the
minimum grade can be 0. This can be seen as a graded mining functionality,
with the terminology of mining as in Chan et al. [15], taken to mean consistent
committee election and membership verification. Below, we will describe how to
use the grades to our advantage over a number of rounds, in order to obtain true
agreement between parties.

Let us first review in more detail the broadcast protocol of Chan et al. A party
checks if it is in the committee for the bit b via an (ungraded) ideal mining func-
tionality, which also allows other parties to validate this statement. This mining
functionality is instantiated via an adaptively secure VRF (in [15] implemented
with non-interactive zero-knowledge proofs and commitment schemes). This en-
ables parties to secretly but verifiably self-elect in a committee for a specific
bit and only reveal their membership after they have performed their commit-
tee task, thus achieving security against an adaptive adversary. The protocol is
composed of stages, each stage r having two rounds: distribution and voting.
For a fixed number of rounds, each party observing a batch of r valid signatures
from the committee members of b echoes this batch to all parties (distribution
round). A party that is in the committee adds its vote if it observes a batch of r
votes on the bit b for the first time, and multicasts the updated batch of r + 1
signatures (voting round). Chan et al. show that it is possible to achieve consis-
tency with overwhelming probability even if the number of rounds is constant
and the committee size is also constant, against a constant corrupted fraction.

In our case, there is a key difference with respect to the mining functionality
from Chan et al., which is that the verification performed by other parties on the

20

membership of one party will return a binary answer and a grade in {0, . . . , g∗}.
This mining functionality does not necessarily return the same grade to all par-
ties, but the returned grades to two honest parties can differ by at most one.
Dishonest parties might try to convince honest parties to accept their mem-
bership despite having lower grades. To address this, we will interconnect the
validity of the membership at a given round with the grade associated to the
party that wants to prove is a committee member.

Specifically, we set the maximum grade g∗ that can be returned by the VGC
to be equal to the number of rounds the Chan et al. protocol requires. We also
say that a batch of r signatures is valid only if there are r signatures from parties
on which the verification predicate returns 1 and which have a sufficiently large
grade, greater than g∗ − 2r + 1 (we will define this more formally below). A
symmetric way to view this is that at each round ρ, the value of the grades have
to be at least g∗ − ρ, and the number of signatures has to be at least half of
the round number. This ensures that parties that have a grade of 1 can only
submit their signatures in the last possible round and parties that have grade
of 0 cannot submit their signatures at all.

Since the grades obtained by the honest parties might differ by one (even
honest parties might not receive g∗), an honest party Pi might accept a batch
with r signatures, i.e., all grades for the signers that Pi has are at least g∗−2r+1,
but another honest party Pj might not accept it if it has a lower grade g∗−2r for
one of the same signers. To avoid this, in stage r, in the distribution round 2r−1,
where parties just echo what they received, honest parties accept r-batches with
grade at least g∗−2r+1. At the end of voting round 2r however, where committee
parties multicast their votes after seeing a valid batch for that round (with grades
at least g∗− 2r), committee parties are allowed to have a lower grade of at least
g∗ − 2r, in order to be picked up in the distribution round of stage r + 1.

Recall that we only assume a bulletin-PKI. Every party Pi has generated
a signing key pair (ski, pki), a VRF key pair (SKi,PKi). Every party Pi posts
on the public bulletin-board the public keys, so all parties have access to the
bulletin-PKI before commencing the broadcast protocol (i.e., before starting the
VGC). Honest parties check the predicate VRF.ValidatePKj (1

κ) and discard the
parties Pj for which it does not return 1.

After running Toss from VGC, each party has access to the strings for the rest
of the network, with their accompanying grades, and the accompanying proofs
for their own output string after running Process. The local string w obtained
by a party for itself in VGC should be hashed first to achieve randomness from
unpredictability and unbiasedness. As long as the output of Process (in our case,
the output of a VDF) has length polynomial in the security parameter κ, the
output of a hash function H modeled as a random oracle H(b||w) is random.
The outputs of Toss and Process are then enough for the parties to run g∗/2
stages (with g∗ rounds) as described above, where in each stage parties vote and
echo the votes of the valid members of the committee, via the VRF.

Now we finalize the technical points for the trustless sublinear-round protocol.

21

Electing a committee member. Each party Pi maintains two variables,
named call0i and call1i , both initialized by −1. The role of the variable callbi
is to store the local view of whether Pi is in the committee for bit b ∈ {0, 1}.

Given a bit b, SKi the VRF secret key of Pi, wi the Process output of Pi

on M
(i)
i , and boundϵ,δ the appropriate bound for the VRF, the party Pi checks

(once) whether it is in the committee for b:

(i) Retrieve from memory (yi, πi)← VRF.ProveSKi
(H(b||wi)).

(ii) If callbi = −1 and yi < boundϵ,δ, set callbi = 1, else set callbi =⊥.

Following the notation in Chan et al., we use pmine to refer to the probability
of a party self-electing in a committee. We set this mining probability to take
the value pmine = min{1, 1

ϵn log
(
2
δ

)
}, where ϵ is a constant in (0, 1) denoting

the fraction of honest parties and δ is a failure probability, which is constant
and negligible in the statistical security parameter λ: δ = exp(−ω(lnλ)). The
bound for the VRF output check for committee election is boundϵ,δ = pmine ·
2m(κ), where the VRF output length is m(κ). Finally, we set the maximum
grade and the number of rounds g∗ to be g∗ = 2 · ⌈ 1ϵ ln

(
2
δ

)
⌉ = O(λ/ϵ). For this

choice of parameters, the generated bit-specific committees contain at least one
honest party, and at most g∗/2 dishonest parties with overwhelming probability
(Lemmata 14 and 15 given in Appendix C.2).

Verifying membership, valid batches and certificates. The protocol con-
sists of stages, where each stage is composed of two rounds. We denote the stage
number by r for r ∈ {1, . . . , g∗/2}. Then round 1 of stage r will be the 2r− 1’th
round, and round 2 of stage r will be the 2r’th round. We prefer this notation
because we want to have sets of r signatures in every stage r.

Each party collects batches of signatures. Parties (except for the sender) will
send the previously collected signatures in a batch batch, as well as proofs of
the committee elections for the bit b in a certificate called cert. To address the
difference in grades in the two rounds, we define (r, 1)-batches and (r, 2)-batches.
Moreover, each party Pi will maintain a set Extractedi, initialized to the empty
set. A party Pi adds a bit b to their Extractedi set in a round if it receives a valid
batch and a valid certificate on b for that round, as described below.

A batch consists of a number of signatures associated to distinct parties. A
certificate consists of a number of tuples (w, ρ, y, π). Recall that a party Pi has
obtained M

(j)
i for a party Pj , which it can use to validate the evaluation output

wj claimed by Pj . We define a valid certificate only with respect to a certain
batch. Namely, for a batchb consisting of a number of signatures (sigj(b)), we say
certificate certb is associated to batchb if it consists of tuples (wj , ρj , yj , πj) for
every j-signature in batchb. A certificate certb is a valid certificate for a batch
batchb from the perspective of a verifying party Pi, if for all j-signatures in batchb
not coming from the sender, it holds that:

(i) VRF.VerifyPKj
(H(b||wj), yj , πj) = 1,

(ii) VGC.Verify(pp,M (j)
i , wj , ρj) = 1, where (M

(j)
i , ·)← Toss(pp), and

(iii) yj ≤ boundϵ,δ.

22

We say that a batch batchb, consisting of tuples (sigj(b)) in stage r for a bit b,
is a valid (r, 1)-batch from the perspective of a verifying party Pi if:

(i) It contains at least r valid distinct signatures and one of the signatures is
from the sender Ps,

(ii) For every signature sigj(b), the grade G
(j)
i ≥ g∗ − 2r + 1, where (·, G(j)

i) ←
Toss(pp) for Pi, and

(iii) It has associated a valid certificate certb (Pi receives both batchb and certb).

Similarly, a batch is a valid (r, 2)-batch if it contains at least r distinct signa-
tures coming from parties in the b-committee, each with grade G

(j)
i ≥ g∗ − 2r,

and with a valid certificate.
If at any point, a valid batch has accumulated more than g∗/2 signatures,

parties only need to send g∗/2 of them. We assume implicitly that parties send at
most g∗/2 signatures in a batch batchb, and always include the sender’s signature.

We call a pair of one batch and one certificate a ballot, and say that the ballot
is valid if the batch is valid and the certificate is the valid certificate linked to that
batch. For clarity, we preferred to define separately the validity of the batches
and of the certificates, rather than lumped in a single definition of a valid ballot.

We describe the full protocol in Figure 3. We first run ΠVGC. Parties need
the random strings from ΠVGC starting from round 1, since they are only used in
proofs, not in the sender’s initial transmission. Recall that ΠVGC takes 6g∗+3+qh
rounds, where qh captures the delay of the slowest honest parties. The proof of
Theorem 3 is given in Appendix C.2.

Theorem 3. Consider a ∆VGC-limited adversary who can adaptively corrupt
(1− ϵ)n parties, for a constant ϵ ∈ (0, 1). Fix a small constant failure probability
δ ∈ (0, 1). Then, Protocol ΠBC (Figure 3) is a broadcast protocol with probability
1− δ − negl(κ).

Communication and Round Complexity. The broadcast protocol has round
complexity O(g∗+RVGC) = O

(
1
ϵ log

(
1
δ

))
and communication complexity O(g∗ ·

κ · n2 + CCVGC) = O(1ϵ log
(
1
δ

)
· κ · n4). For δ = exp(−ω(log λ)) negligible in

the security parameter, we obtain a round complexity of O(λ/ϵ) and a total
communication complexity of O(κ · λ · n4/ϵ).

5 Communication Reduction for Parallel Gradecast

The communication complexity of sharing and agreeing on random strings is the
dominating term in our ΠBC communication. To improve upon that, in this sec-
tion we leverage parallelization and randomization. We take inspiration from the
recent work [51] and use gossiping to lower the communication cost of performing
parallel gradecast by a factor of O(n/polylog(n)), improving the communication
of the verifiable graded consensus protocol (and thus of broadcast) to Õ(n3).

Tsimos et al. [51] formulates the notion of honest parties disseminating mes-
sages via gossiping in a communication-efficient way that is adaptively secure.

23

ΠBC: Sublinear-round, trustless Broadcast

Rounds −6g∗ − 3− qh to 0:

1. Parties run ΠVGC. Each party Pi obtains the following quantities
(pp, {M (j)

i , G
(j)
i }j∈[n], wi, ρi).

Stage 0:

1. (Round 0) Each party Pi initializes Extractedi = ∅ and call0i = call1i = −1.
The designated sender Ps sends [bs, sigs(bs),⊥] to all parties.

Stage r = 1 to g∗/2− 1:

1. (Round 2r − 1) Each party Pi accepts a message b /∈ Extractedi, i.e., sets
Extractedi ← Extractedi ∪ {b}, only if it is accompanied by some valid
ballot (batchb, certb), where batchb is a valid (r, 1)-batch and certb is a
valid certificate for batchb.
Pi then propagates (b, batchb, certb) to all parties.

2. (Round 2r) Each party Pi ̸= Ps checks all bits b that it received on whether
they are accompanied by a valid ballot (batchb, certb), where batchb is a
valid (r, 2)-batch and certb is a valid certificate for batchb.
For each such b, Pi checks whether callbi = −1 and if yes, it computes
(yi, πi)← VRF.ProveSKi(H(b||wi)). If yi ≤ boundϵ,δ, Pi does:

- sets callbi = 1;
- sets Extractedi ← Extractedi ∪ {b};
- constructs a (r + 1, 1)-batch batch′

b := batchb∥sigi(b), cert′b :=
certb∥(wi, ρi, yi, πi).

Else, Pi sets callbi =⊥.
Pi sends (b, batch′

b, cert′b) to all n parties.

Stage r = g∗/2:

1. (Round g∗ − 1) Each party Pi accepts each message b /∈ Extractedi, i.e.,
sets Extractedi ← Extractedi∪{b}, that is accompanied by a valid (g∗/2, 1)-
batch and a valid certificate for that batch.
Pi then outputs either the message b′ ∈ Extractedi, if |Extractedi| = 1, or
a canonical message otherwise.

Fig. 3. Broadcast protocol for designated sender Ps and parties P1, . . . , Pn.

In their model, input values are single bits and are defined per pairs of sender
and signer, meaning that the total number of valid messages is less than 2n2.
This formulation does not apply well to our moderated gradecast step, which
works on messages of size q(κ). In our case, in the moderated gradecast, the
adversary can provide as many valid different messages as it wants (up to q(κ))
for pairs of dishonest sender and dishonest moderator, so dishonest moderators
can send a large number of messages from the same dishonest sender to the
honest parties at the beginning of the protocol. Calling the main dissemination
protocol from Tsimos et al. on that many messages could lead to Õ(n3 · 2q(κ))
communication. For our protocol, in order to keep the communication low, we

24

require honest parties to propagate a constant number of messages per pair of
sender and moderator, while maintaining the required properties of gradecast.

To this end, we modify a different formulation from [51] to meet our needs,
which uses a function that takes a set and outputs only one message per each
k-bit prefix. We define a set of valid input values to be the set of all possible
messages mj,s for each pair of sender Pj and moderator Ps. However, in this set,
we consider any two pairs of two messages for the same (j, s) as the same. We
want honest parties to propagate at most two valid messages per each prefix that
defines a pair of sender and moderator, as well as for each prefix that defines
a separate sender during the initial gradecast, while maintaining the required
properties of gradecast. We note that if a dishonest sender attempts to send
multiple valid values, propagating at least two of those values is sufficient to
guarantee that honest parties will output grades in {0, 1} for that sender. We
call this variation of their protocol M-Converge∗ and formalize it below.

Protocol for M-Converge∗. We first describe a function which, given a set S
of bit-strings and an integer value k, outputs a subset of S. This subset contains
for each k-bit prefix, either exactly all strings of S with that prefix if they are
at most 2, or any of the strings in S otherwise. Looking ahead, this function
is combined with gossiping during the communication rounds of Parallel Mod-
erated Gradecast. It ensures that for each k prefix (defining a specific sender)
honest parties propagate at most two values. This accounts for dishonest senders
attempting to flood the communication of gradecast with any number of values.

Definition 6 (couplesk function). For any set M , couplesk(M) is a subset
of M that contains for each distinct k-bit prefix at most two messages with
that prefix, i.e., if there are fewer than two message with k-bit prefix PR, then
couplesk(M) contains exactly those messages, and if there are more than two
messages with prefix PR, then couplesk(M) contains only two of them.

For example, for M = {00101, 01000, 01100, 11001, 11010, 11111} we have
couples2(M) = {00101, 01000, 01100, 11001, 11111}. Since couplesk is an one-to-
many function, couples2(M) might also output {00101, 01000, 01100, 11010, 11111}.

We now present M-Converge∗, which captures how parties can propagate
their values, so that they are all guaranteed to receive at least all the intended
values from honest senders. We show an instantiation with more efficient com-
munication than parties multicasting their values.

Definition 7 (M-Converge∗ protocol). Let M ⊆ {0, 1}∗ be an efficiently
recognizable set (i.e. a set with efficient membership decidability). A protocol Π
executed by n parties, where every honest party Pi initially holds input set Mi ⊆
M and a set Ci ⊆M, is a secureM-Converge∗ protocol if all remaining honest
parties upon termination, output a set Si ⊇ couplesk

(⋃
j∈H Mj −

⋃
j∈H Cj

)
,

when at most t parties are corrupted and where H is the set of honest parties in
the beginning of Π.

25

Let pprop = (10/ϵ+λ)/n. We consider the ideal functionality Fprop from [51],
which allows for each party Pi to send a set of messages to an average number
of n · pprop randomly chosen parties out of a set of n parties, while achieving the
property that the adversary does not gain information on which honest parties
received the message. This functionality is the conceptual building block behind
gossiping against an adaptive adversary; it is invoked by our ΠCV protocol in
every of its rounds by all honest parties with input (SendRandom,Mi). The
adversary can also call it with input (SendDirect,x, J), to send messages in x to
parties Pj , for j ∈ J . A formal description and a secure instantiation of Fprop is
provided for completeness in Appendix A.4.

We present protocol ΠCV in the Fprop-hybrid world in Figure 4 and we state
its properties in Lemma 2. The proof is given in Appendix C.3.

Lemma 2. Let κ > 0. Protocol ΠCV is an adaptively secureM-Converge∗ proto-
col for all t ≤ (1−ϵ) ·n and fixed ϵ ∈ (0, 1), with probability 1−negl(λ). The total
number of bits sent by all parties is O(n log(ϵn) ·max{n, |couplesk(M)|} ·m · s).

Gradecast viaM-Converge∗. We propose a new protocol for parallel gradecast
with one instance per pair of (j ∈ senders, k ∈ casts). Each party Pj , j ∈ senders,
is expected to gradecast |casts| many messages. The trivial (and less efficient)
way to do so would be for each sender Pj to call GC(mj

k), for k ∈ casts. Instead,
by calling ΠCV, all senders can gradecast simultaneously all their |casts| many
messages, with less communication, at the small additional cost of multiplicative
O(log ϵn) rounds.

ΠCV(Mi, Ci, k)

For round 1 to ⌈log(ϵ · n)⌉:
- ReceiveFprop ← Fprop(SendRandom, couplesk(Mi − Ci));
- Locali ← Locali ∪ReceiveFprop ;
- Ci = Ci ∪Mi;
- Mi = Locali ∩M;

return Mi;

Fig. 4. Protocol ΠCV is a secureM-Converge∗ protocol. It uses a logarithmic number of
rounds, each of which utilizes gossiping (via the call to Fprop) to securely and efficiently
disseminate a list of messages between parties.

Parallel Vector GC in Figure 5 is a secure gradecast protocol, for each separate
value each sender sends. We prove the next Lemma in Appendix C.3.

Lemma 3. Protocol Parallel Vector GC(·,·)
i (·, g∗) is a g∗-gradecast protocol with

probability 1−negl(λ), with round complexity 2g∗ ·⌈log(ϵn)⌉+1. The total commu-
nication complexity for all parties is O(n log ϵn·g∗·max{n, |senders|·|casts|}·m·s).

26

Parallel Vector GC(senders,casts)
i (Mi, g

∗)

Round 1:

1. Each party Pi initializes Si
(j,k) := ∅, mi

(j,k) =⊥, ḡi(j,k) = 0, for all j ∈
senders, k ∈ casts.

2. If i ∈ senders, then Pi computes a signature σk = sigi(mk ∈Mi), for each
k ∈ casts and multicasts (mk, σk) to all parties.

Round 2 to 2g∗ + 1 from the perspective of party Pi:

1. Let M contain m′
(j,k) from each pair (m′

(j,k), σ
′
(j,k)) received by the end of

the previous round, where vers(σ
′
(j,k),m

′
(j,k)) = 1 and m′

(j,k) /∈ Si
(j,k). Then

for m′
(j,k) ∈M set Si

(j,k) := Si∪{m′
(j,k)}. If |Si

(j,k)| = 1, set mi
(j,k) = m′

(j,k).
2. Call and receive messages from ΠCV(M, ∅, ksc), where ksc is the bit-length

needed to express the prefix for every pair of (j ∈ senders, k ∈ casts).
3. If mi

(j,k) ̸=⊥ and |Si
(j,k)| = 1, then set ḡi(j,k) := ḡi(j,k) + 1.

Output determination: Each party Pi sets gi(j,k) := ⌊ḡi(j,k)/2⌋ and outputs
(mi

(j,k), g
i
(j,k)).

Fig. 5. Gradecast protocol with maximum grade g∗ using gossiping.

6 Communication-Efficient Broadcast

Finally, we discuss how to reduce the communication complexity of our trustless
sublinear-round broadcast protocol.

In a formal analysis, the requirements inherited by the previous works of [15]
and [51] respectively, mean that we may need two distinct statistical security
parameters. Therefore, in this section, we consider two statistical security pa-
rameters λδ and λg. Concretely, λδ is the statistical security parameter used for
the committee-election (in Section 4), and λg is the statistical security parameter
used for the gossiping analysis (in Section 5). Chan et al. [15] requires the statis-
tical security parameter λδ to be independent of n, so that the failure probability
of secure election δ—which relates to λδ as log(1/δ) = polylog(λδ)—is indepen-
dent of n as well. Tsimos et al. [51] requires the statistical security parameter λg

to be polylog(n), so that the failure probability of gossiping is negligible in λg.
(However, λg does not affect round complexity of our broadcast protocol, only
its communication complexity.) Below, we specify each separate protocol with
their respective statistical security parameters. Nevertheless, for simplicity, we
could also set and use a single statistical security parameter as λ = max{λδ, λg}.

Consider our Protocol 1 for Toss. During its step 2.2, instead of GC, let each
party Pi call Parallel Vector GC([n],n−1)

i ({m(s)
i }s∈[n]−{i}, g

∗), given in Figure 5, to
moderate the values it received previously. Let ℓ be the individual message length
(ℓ = |m(s)

i |). This allows parties to moderate the n random strings they each
received during step 1 with Õ(g∗·(ℓ+κ)λg ·n3) total communication, while adding
a multiplicative factor of ⌈log ϵn⌉ to the round complexity of the moderated step.
Similarly, the updated Π ′

VGC protocol that now calls the updated Toss has the

27

same communication and round complexity as the updated Toss. The updated
moderated gradecast step has duration ∆′

G := (2g∗ · ⌈log(ϵn)⌉ + 1) · ∆r. We
update the difficulty parameter to account for the increased number of rounds:
∆′

VGC = (∆G +∆′
G)/(1− ξ).

Putting it all together, the broadcast protocol with the updated VGC pro-
tocol using gossiping described in Section 5, Π ′

VGC, achieves the following result.
The proof is given in Appendix C.3.

Theorem 4. Consider a ∆′
VGC-limited adversary who can adaptively corrupt

(1− ϵ)n parties, for a constant ϵ ∈ (0, 1). Fix a small constant failure probability
δ ∈ (0, 1). Then, Protocol 3 using Π ′

VGC is a broadcast protocol, called Π ′
BC, with

probability 1− δ − negl(κ)− negl(λg).

Communication and Round Complexity. The broadcast protocol Π ′
BC that

calls Π ′
VGC, has round complexity O(g∗ + RVGC′) = O

(
1
ϵ log

(
1
δ

)
⌈log(ϵn)⌉

)
and

communication complexity O(g∗ · κ · n2 + CCVGC′) = O(1ϵ log
(
1
δ

)
· λδ · κ · n3).

For δ = exp(−ω(log λδ)), we obtain a round complexity of Õ(λδ/ϵ) and a total
communication complexity of Õ(λδ · κ · n3/ϵ).

Notice that Protocol 3 uses the online setup of VGC for a single broadcast.
However, we can bootstrap the randomness created by ΠVGC to obtain VRF
seeds that are still unpredictable and verifiable for multiple broadcast instances.
This allows us to amortize the communication cost over multiple instances (either
sequential or parallel). The proof of the following result is given in Appendix C.4.

Theorem 5. We obtain broadcast protocols secure against adaptive dishonest
majority of t ≤ (1−ϵ)n with overwhelming probability in the security parameters
κ, λg, λδ with the amortized cost of:

1. Õ(λδ) rounds and Õ(n2) communication over n instances, with prob. 1−δ−
negl(λg)− negl(κ);

2. O(λδ) rounds and Õ(n2) communication over n2 instances, with prob. 1 −
δ − negl(κ);

3. Õ(λδ) rounds and Õ(n) communication over n2 instances, with prob. 1−δ−
negl(λg)− negl(κ).

28

References

1. I. Abraham, T.-H. H. Chan, D. Dolev, K. Nayak, R. Pass, L. Ren, and E. Shi.
Communication complexity of byzantine agreement, revisited. In P. Robinson and
F. Ellen, editors, 38th ACM PODC, pages 317–326. ACM, July / Aug. 2019.

2. I. Abraham, K. Nayak, and N. Shrestha. Communication and round efficient
parallel broadcast protocols. Cryptology ePrint Archive, Paper 2023/1172, 2023.
https://eprint.iacr.org/2023/1172.

3. M. Andrychowicz and S. Dziembowski. PoW-based distributed cryptography with
no trusted setup. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 379–399. Springer, Heidelberg, Aug. 2015.

4. A. Bhat, A. Kate, K. Nayak, and N. Shrestha. OptRand: Optimistically responsive
distributed random beacons. Cryptology ePrint Archive, Report 2022/193, 2022.
https://eprint.iacr.org/2022/193.

5. A. Bhat, N. Shrestha, Z. Luo, A. Kate, and K. Nayak. RandPiper - reconfiguration-
friendly random beacons with quadratic communication. In G. Vigna and E. Shi,
editors, ACM CCS 2021, pages 3502–3524. ACM Press, Nov. 2021.

6. E. Blum, E. Boyle, R. Cohen, and C.-D. Liu-Zhang. Communication lower bounds
for cryptographic broadcast protocols. In 37th International Symposium on Dis-
tributed Computing (DISC 2023). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2023.

7. D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In
H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 757–788. Springer, Heidelberg, Aug. 2018.

8. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
In C. Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532.
Springer, Heidelberg, Dec. 2001.

9. D. Boneh and M. Naor. Timed commitments. In M. Bellare, editor, CRYPTO 2000,
volume 1880 of LNCS, pages 236–254. Springer, Heidelberg, Aug. 2000.

10. E. Boyle, R. Cohen, and A. Goel. Breaking the o (
√
n)-bit barrier: Byzantine

agreement with polylog bits per party. In Proceedings of the 2021 ACM Symposium
on Principles of Distributed Computing, pages 319–330, 2021.

11. L. Braun, I. Damgård, and C. Orlandi. Secure multiparty computation from thresh-
old encryption based on class groups. In Annual International Cryptology Confer-
ence, pages 613–645. Springer, 2023.

12. J. Buchmann and S. Hamdy. A survey on iq cryptography. In Public-Key Cryp-
tography and Computational Number Theory, pages 1–15, 2011.

13. V. Buterin. Ethereum white paper. White paper, Ethereum, 2013.
14. G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Bandwidth-

efficient threshold EC-DSA. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas,
editors, PKC 2020, Part II, volume 12111 of LNCS, pages 266–296. Springer, Hei-
delberg, May 2020.

15. T.-H. H. Chan, R. Pass, and E. Shi. Sublinear-round byzantine agreement under
corrupt majority. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors,
PKC 2020, Part II, volume 12111 of LNCS, pages 246–265. Springer, Heidelberg,
May 2020.

16. J. Chen and S. Micali. Algorand: A secure and efficient distributed ledger. Theo-
retical Computer Science, 777:155–183, 2019.

17. B. Cohen and K. Pietrzak. The chia network blockchain. Technical report, Chia
Network, 2019.

29

https://eprint.iacr.org/2023/1172
https://eprint.iacr.org/2022/193

18. R. Cohen, J. Garay, and V. Zikas. Completeness theorems for adaptively secure
broadcast. In CRYPTO 2023, 2023.

19. J. Considine, M. Fitzi, M. Franklin, L. A. Levin, U. Maurer, and D. Metcalf.
Byzantine agreement given partial broadcast. Journal of Cryptology, 18(3):191–
217, 2005.

20. P. Das, L. Eckey, S. Faust, J. Loss, and M. Maitra. Round efficient byzantine
agreement from VDFs. Cryptology ePrint Archive, Report 2022/823, 2022. https:
//eprint.iacr.org/2022/823.

21. L. De Feo, S. Masson, C. Petit, and A. Sanso. Verifiable delay functions from
supersingular isogenies and pairings. In S. D. Galbraith and S. Moriai, editors,
ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages 248–277. Springer, Hei-
delberg, Dec. 2019.

22. D. Dolev and R. Reischuk. Bounds on information exchange for byzantine agree-
ment. In R. L. Probert, M. J. Fischer, and N. Santoro, editors, 1st ACM PODC,
pages 132–140. ACM, Aug. 1982.

23. D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

24. P. Feldman and S. Micali. Optimal algorithms for byzantine agreement. In 20th
ACM STOC, pages 148–161. ACM Press, May 1988.

25. P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous byzan-
tine agreement. SIAM Journal on Computing, 26(4):873–933, 1997.

26. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 1985.

27. M. Fitzi and J. B. Nielsen. On the number of synchronous rounds sufficient for
authenticated byzantine agreement. In International Symposium on Distributed
Computing, pages 449–463. Springer, 2009.

28. A. Flamini, R. Longo, and A. Meneghetti. Multidimensional byzantine agreement
in a synchronous setting. Applicable Algebra in Engineering, Communication and
Computing, pages 1–19, 2022.

29. C. Freitag, I. Komargodski, R. Pass, and N. Sirkin. Non-malleable time-lock puzzles
and applications. In K. Nissim and B. Waters, editors, TCC 2021, Part III, volume
13044 of LNCS, pages 447–479. Springer, Heidelberg, Nov. 2021.

30. J. A. Garay, J. Katz, C.-Y. Koo, and R. Ostrovsky. Round complexity of authen-
ticated broadcast with a dishonest majority. In 48th FOCS, pages 658–668. IEEE
Computer Society Press, Oct. 2007.

31. J. A. Garay, A. Kiayias, N. Leonardos, and G. Panagiotakos. Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In M. Abdalla and
R. Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS, pages 465–495.
Springer, Heidelberg, Mar. 2018.

32. J. A. Garay, A. Kiayias, R. M. Ostrovsky, G. Panagiotakos, and V. Zikas. Resource-
restricted cryptography: Revisiting MPC bounds in the proof-of-work era. In
A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part II, volume 12106
of LNCS, pages 129–158. Springer, Heidelberg, May 2020.

33. Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. Cryptology ePrint Archive, Report
2017/454, 2017. https://eprint.iacr.org/2017/454.

34. S. Goldberg, J. Vcelak, D. Papadopoulos, and L. Reyzin. Verifiable random func-
tions (VRFs), 2018.

35. C. Hoffmann, P. Hubáček, C. Kamath, and T. Krňák. (verifiable) delay functions
from lucas sequences. Cryptology ePrint Archive, 2023.

30

https://eprint.iacr.org/2022/823
https://eprint.iacr.org/2022/823
https://eprint.iacr.org/2017/454

36. R. Hou, H. Yu, and P. Saxena. Using throughput-centric byzantine broadcast to
tolerate malicious majority in blockchains. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 1263–1280. IEEE, 2022.

37. J. Katz and C.-Y. Koo. On expected constant-round protocols for byzantine agree-
ment. In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 445–462.
Springer, Heidelberg, Aug. 2006.

38. V. King and J. Saia. Breaking the O(n2) bit barrier: scalable byzantine agreement
with an adaptive adversary. In A. W. Richa and R. Guerraoui, editors, 29th ACM
PODC, pages 420–429. ACM, July 2010.

39. V. King, J. Saia, V. Sanwalani, and E. Vee. Scalable leader election. In 17th SODA,
pages 990–999. ACM-SIAM, Jan. 2006.

40. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

41. A. K. Lenstra and B. Wesolowski. Trustworthy public randomness with sloth,
unicorn, and trx. International Journal of Applied Cryptography, 3(4):330–343,
2017.

42. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In 40th
FOCS, pages 120–130. IEEE Computer Society Press, Oct. 1999.

43. A. Momose and L. Ren. Optimal communication complexity of authenticated
byzantine agreement. In 35th International Symposium on Distributed Computing
(DISC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

44. A. Momose, L. Ren, E. Shi, J. Wan, and Z. Xiang. On the amortized communication
complexity of byzantine broadcast. Cryptology ePrint Archive, Paper 2023/038,
2023. https://eprint.iacr.org/2023/038.

45. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

46. K. Pietrzak. Simple verifiable delay functions. In A. Blum, editor, ITCS 2019,
volume 124, pages 60:1–60:15. LIPIcs, Jan. 2019.

47. M. O. Rabin. Transaction protection by beacons. Journal of Computer and System
Sciences, 27:256–267, 1983.

48. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Massachusetts Institute of Technology, 1996.

49. P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. R. Weippl. Ran-
dRunner: Distributed randomness from trapdoor VDFs with strong uniqueness.
In NDSS 2021. The Internet Society, Feb. 2021.

50. S. A. K. Thyagarajan, G. Castagnos, F. Laguillaumie, and G. Malavolta. Efficient
CCA timed commitments in class groups. In G. Vigna and E. Shi, editors, ACM
CCS 2021, pages 2663–2684. ACM Press, Nov. 2021.

51. G. Tsimos, J. Loss, and C. Papamanthou. Gossiping for communication-efficient
broadcast. CRYPTO 2022, 2022.

52. J. Wan, H. Xiao, S. Devadas, and E. Shi. Round-efficient byzantine broadcast under
strongly adaptive and majority corruptions. In R. Pass and K. Pietrzak, editors,
TCC 2020, Part I, volume 12550 of LNCS, pages 412–456. Springer, Heidelberg,
Nov. 2020.

53. J. Wan, H. Xiao, E. Shi, and S. Devadas. Expected constant round byzantine
broadcast under dishonest majority. In R. Pass and K. Pietrzak, editors, TCC 2020,
Part I, volume 12550 of LNCS, pages 381–411. Springer, Heidelberg, Nov. 2020.

54. B. Wesolowski. Efficient verifiable delay functions. In Y. Ishai and V. Rijmen,
editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 379–407.
Springer, Heidelberg, May 2019.

31

https://eprint.iacr.org/2023/038

Table of Contents

1 Introduction . 1
1.1 Technical Overview . 3
1.2 Related Work . 7
1.3 Note . 10

2 Model and Preliminaries . 10
3 Emulating a Common Random String . 15

3.1 Moderated Gradecast and Graded Consensus on Seeds 15
3.2 Verifiable Graded Consensus for Random Strings 17

4 Sublinear-Round Broadcast . 20
5 Communication Reduction for Parallel Gradecast 23
6 Communication-Efficient Broadcast . 27

References . 29

Appendices . 32
A More Preliminaries and Primitives . 32

A.1 Verifiable Random Functions . 32
A.2 Verifiable Delay Functions . 34
A.3 Gradecast . 35
A.4 Parallel Vector Gradecast . 36

B Inequalities . 36
C Deferred Proofs . 37

C.1 Verifiable Graded Consensus . 37
C.2 Broadcast . 43
C.3 Parallel Vector Gradecast . 48
C.4 Communication Reduction . 49

A More Preliminaries and Primitives

A.1 Verifiable Random Functions

Definition 8. A verifiable random function (VRF) F = (VRF.Gen,VRF.Prove,
VRF.Verify,VRF.Validate) is a tuple of algorithms, where VRF.Gen is a ppt algo-
rithm, and VRF.Prove, VRF.Verify,VRF.Validate are deterministic algorithms:

- VRF.Gen(1κ) outputs a pair of keys (PK,SK);
- VRF.ProveSK(x) outputs a pair (y, πSK(x)), where y ∈ {0, 1}m(κ) is the eval-

uation on input x using secret key SK and πSK(x) is the proof of correctness
of this evaluation;

- VRF.VerifyPK(x, y, π) outputs 1 if y is the correct output of input x associated
to key SK using proof π and 0 otherwise;

- VRF.ValidatePK(1
κ) outputs 1 if PK corresponds to an admissible SK with

respect to VRF.Gen and 0 otherwise.

32

A VRF should satisfy the following properties:

(Uniqueness) No values (PK, x, y1, y2, π1, π2) can satisfy both predicates
VRF.VerifyPK(x, y1, π1) = 1 and VRF.VerifyPK(x, y2, π2) = 1 if y1 ̸= y2 with
more than negligible probability.
(Provability) If (y, π) ← VRF.ProveSK(x) and VRF.ValidatePK(1

κ) = 1, then
VRF.VerifyPK(x, y, π) = 1.
(Pseudorandomness) For any probabilistic polynomial time algorithms A =
(A1,A2) who has not yet called the oracle on x, it holds that:

Pr

AVRF.Prove(·)
2 (yb, st) = b :

(PK,SK)← VRF.Gen(1κ)

(x, st)← AVRF.Prove(·)
1 (PK, l(κ))

y0 ← VRF.ProveSK(x), y1 ← {0, 1}m(κ)

b← {0, 1}

≤ negl(κ) +

1

2
.

(Extended pseudorandomness) For any probabilistic polynomial time algo-
rithms A = (A0,A1,A2) and B who has not yet called the oracle on x||u, it
holds that:

Pr

BSK,x(yb, st0, st1) = b :

(PK,SK, st0)← A0(1
κ)

(x, st1)← AVRF.Prove(·)
1 (PK, l(κ)− n(κ), st0)

If

{
VRF.ValidatePK(1

κ) = 1

x ∈ {0, 1}l(κ)−n(κ)
, then u

$← {0, 1}n(κ)

z
$← {0, 1}l(κ)

(y0, π0, y1, π1)← ASK
2 (x||u, z, st1)

If

{
VRF.VerifyPK(x||u, y0, π0) = 1

VRF.VerifyPK(z, y1, π1) = 1
, then b

$← {0, 1}

≤ negl(κ) +

1

2
.

The input x to be fed to VRF.Prove has length l(κ) and the output length of
y is m(κ); in the case of extended pseudorandomness, the adversarial input has
length l(κ) − n(κ) and the challenger generated input has length n(κ), where
l,m, n are polynomials in κ.

This extended pseudorandomness property is different from the pseudoran-
domness property where the adversary only chooses the input but not the key
pair and thus can’t evaluate the VRF. The extended pseudorandomness game
given above works as follows. The adversary generates the key pair and an input,
and a challenger samples a random string that should be concatenated with the
input and a random input. The adversary has to generate VRF outputs and
proofs for the concatenated input and random string and for the random input.
A distinguisher is given the secret key, the input chosen by the adversary (but
not the random strings of the challenger) and the two outputs, and should not
be able to distinguish between the last two.

33

Note that we formulated the definition of extended pseudorandomness to
be more general and to account for a partial input x chosen by the adversary.
However, in our protocols, x will be the empty string.

A.2 Verifiable Delay Functions

Definition 9. A Verifiable Delay Function (VDF) V = (VDF.Setup,VDF.Eval,
VDF.Verify) is a triplet of algorithms:

- VDF.Setup(1κ, ∆) → pp = (EK,VK) takes the security parameter κ and
target puzzle difficulty ∆ that outputs public parameters pp that consist of an
evaluation key EK and verification key VK;

- VDF.EvalEK(x)→ (w, ρ) outputs w ∈ Y, the evaluation on input x ∈ {0, 1}l(κ)
with evaluation key EK and ρ, the proof of correctness of this evaluation;

- VDF.VerifyVK(x,w, ρ,∆) outputs 1 if w is the correct output of input x asso-
ciated to verification key VK and difficulty ∆, possibly using proof ρ, and 0
otherwise.

For all pp generated by VDF.Setup(1κ, ∆) and all x ∈ {0, 1}l(κ), algorithm
VDF.EvalEK(x) must run in parallel time ∆ with poly(log∆,κ) processors and
evaluates a deterministic function of x. Algorithm VDF.Verify is deterministic
and must run in total time polynomial in log∆ and κ.

A VDF should satisfy the following properties:
(Correctness) A VDF V is correct if ∀κ,∆, pp ← VDF.Setup(1κ, ∆) and
∀x ∈ {0, 1}l(κ), if (w, ρ)← VDF.EvalEK(x) then VDF.VerifyVK(x,w, ρ,∆) = 1.
(Soundness) A VDF V is sound if for all algorithms A that run in time
O(poly(∆,κ)), it holds:

Pr

[
VDF.VerifyVK(x,w, ρ,∆) = 1

w ̸= VDF.EvalEK(x)
:

pp = (EK,VK)← VDF.Setup(1κ, ∆)
(x,w, ρ)← A(κ, pp, ∆)

]
≤ negl(κ).

((p, σ)-Sequentiality) For functions σ(∆) and p(∆), a VDF V is (p, σ)-
sequential if no pair of randomized algorithms A0, which runs in total time
O(poly(∆,κ)), and A1, which runs in parallel time σ(∆) on at most p(∆)
processors, can win the sequentiality game (Definition 10) with probability
greater than negl(κ).

Definition 10. [Sequentiality Game] An adversary A := (A0,A1) and a chal-
lenger C play a sequentiality game with security parameter κ and time ∆:

1. C runs setup and obtains pp← VDF.Setup(κ,∆).
2. A processes the public parameters and obtains L← A0(κ, pp, ∆).
3. C samples a uniform random string x1

$← {0, 1}l(κ)−n(κ).
4. A chooses a string x2 ∈ {0, 1}n(κ), processes x1 and computes an output

wA ← A1(L, pp, x1||x2).

The adversary A wins the game if wA = w for (w, ρ)← VDF.EvalEK(x1||x2).

34

The underlying group of the VDF in [54] is a class group G of an imaginary
quadratic field. For a specific parametrization, there is no efficient algorithm to
compute the order of the group, so this VDF construction does not have trap-
doors. The construction uses two hash functions modeled as random oracles. We
detail the setup algorithm, for later reference, while for the rest of the algorithms
we refer to [54].

VDF.Setup(1κ, ∆) → pp = (EK,VK): Sample a random value of κ bits coin.
Find the closest negative prime number d to coin that satisfies d mod 4 ≡ 1.
Set the group G = Cl(d) as the class group of the imaginary quadratic
field Q(

√
d). Given G, find HG : {0, 1}l(κ) → G, and Hprime : {0, 1}∗ →

Primes(2κ), where Primes(2κ) is the set containing the 22κ first prime num-
bers, e.g., by adapting the SHA family of hashes. Set EK = VK = (G, HG,
Hprime).
VDF.Setup is a randomized algorithm, but with coin given, it can be seen as

a determistic algorithm. Note that given the discriminant d, honest parties can
check whether VK,EK are valid.

Furthermore, the VDF in [54] is (·, σ)-sequential for any number p of proces-
sors and σ = (1−ξ) ·∆, for very small ξ > 0. Therefore, we drop the p parameter
and say that the Wesolowski VDF with difficulty parameter ∆ is ((1− ξ) ·∆)-
sequential against a ∆-limited adversary that runs in parallel time σ(∆).

Lemma 4. The VDF proposed in [54] achieves σ-Sequentiality in the random
oracle model (ROM) for any p and for any σ(∆) = (1− ξ) ·∆.

Proof. The proof follows from the properties of the evaluation function from
Wesolowski’s VDF and their proof of Proposition 1 from [54].

Since HG is a random oracle, HG(x1||x2) is random, and for large enough
polynomial n(κ), it is also unpredictable by the adversary, despite its choice of
x1. The challenger C instructions in the construction from Proposition 1 only
differ in the check where it performs to abort. In particular, instead of aborting if
x

$← {0, 1}l(κ) is already queried by the oracle HG, C now aborts if x1∥x2 : x1
$←

{0, 1}l(κ)−n(κ) is already queried by the oracle. This still occurs with probability
at most q/2−κ, where q = O(poly(∆,κ)), so the rest follows. ⊓⊔

A.3 Gradecast

Lemma 5. Protocol 6 is a g∗-gradecast protocol with round complexity 2g∗ + 1
and communication complexity O(g∗ · (κ+ ℓ) · n2) for messages of length ℓ.

Proof. The round complexity is by construction. The termination, validity and
soundness are proved in [30]. Note that the third condition in round r ≥ 1
step 1, which limits honest parties to only multicast two valid tuples per round
does not change the proof, since any conflicting set of tuples stops the grade
increase, and honest parties can receive conflicting values at most one round
apart. This extra condition ensures that the total communication per round can
be at most O((ℓ+κ) ·n2) per round. Hence, the total communication complexity
of gradecast is O(g∗ · (κ+ ℓ) · n2).

35

GC(m, g∗)

Round 1:

1. Each party Pi initializes Si := ∅, mi =⊥, ḡi = 0.
2. The sender Ps computes a signature σ = sigs(m) and multicasts (m,σ) to

all parties.

Round 2 to 2g∗ + 1 from the perspective of party Pi:

1. For each pair (m′, σ′) received by the end of the previous round, if
vers(σ

′,m′) = 1 and m′ /∈ Si, then:
- Set Si := Si ∪ {m′}. If |Si| = 1, set mi = m′.
- Multicast (m′, σ′).
- If multicasted two pairs, stop multicasting this round.

2. If mi ̸=⊥ and |Si| = 1, then set ḡi := ḡi + 1.

Output determination: Each party Pi sets gi := ⌊ḡi/2⌋ and outputs (mi, gi).

Fig. 6. Gradecast protocol with maximum grade g∗.

A.4 Parallel Vector Gradecast

Fprop is an ideal functionality required for randomly propagating an average
number of n ·pprop values in a private fashion, for a probability pprop. We instan-
tiate Fprop (Figure 7) via the protocol Propagate (Figure 8) as it appears in [51],
assuming a CPA-secure public key encryption scheme and erasures, cf. Lemma 8
in [51]. This secure instantiation requires a one-time use of a CPA-secure public
key encryption scheme:

Definition 11 (PKE). A public key encryption (PKE) scheme is a tuple of
ppt algorithms (KeyGen,Enc,Dec) such that:

- KeyGen takes as input the security parameter κ and outputs a pair of keys
(pk, sk), where pk is referred to as the public key and sk as the private key.

- Enc takes as input a public key pk and a message m and outputs a ciphertext
c, denoted as c← Enc(pk,m).

- Dec takes as input a private key sk and a ciphertext c and outputs a mes-
sage m or a special symbol ⊥ denoting failure to decrypt. We denote m :=
Dec(sk, c). The decryption algorithm is deterministic.

B Inequalities

Lemma 6 (Chernoff’s inequality). Let X1, X2, . . . , Xn be independent ran-
dom binary variables such that, for 1 ≤ i ≤ n, P[Xi = 1] =: pi. Then, for
X :=

∑n
i=1 Xi and µ := E[X] =

∑n
i=1 pi:

P[X ≥ (1 + ζ)µ] ≤ e−
ζ2µ
ζ+2 , 0 ≤ ζ. (1)

36

Functionality: Fprop

Let pprop = (10/ϵ+ λ)/n. For every party i ∈ [n], Fprop keeps a set Oi which is
initialized to ∅. Let Mi be party i’s input messages’ set.

On input (SendRandom,Mi) by honest party i:
– For all x ∈ Mi and for all j ∈ [n] add (i, x) to Oj with probability

pprop;
– return Mi to adversary A;
– return Oi to party i.

On input (SendDirect,x, J) by adversary A (for a corrupted party i):
– Add (i, x[j]) to Oj for all j ∈ J ;
– return Oi to adversary A.

Fig. 7. Functionality Fprop for parties P1, . . . , Pn.

Propagate(SendRandom,Mi)

Let m = 10/ϵ+ λ, Λi = 2m
⌈

|Mi|
n

⌉
, Oi = ∅ and for all j ∈ [n] let Lj = ∅.

1. Pi samples a new pair of keys: (pkprop
i , skprop

i)← KeyGen(1κ).
2. Pi posts pkprop

i on the bulletin-PKI and reads the public keys of the other
n parties.

3. For all x ∈Mi and for all j ∈ [n] add x to list Lj with probability m/n.
4. For all j ∈ [n]:

- Pad list Lj to maximum size Λi;
- ctj ← Enc(pkprop

j ,Lj);
- Erase Lj from memory;

5. For all j ∈ [n] send (ctj , j) to Pj .
6. Receive messages, say set C.
7. For all ct ∈ C decrypt ct using skprop

i and output a list L and add L to Oi.
8. Erase skprop

i from memory.
9. return Oi.

Fig. 8. A secure instantiation of Fprop.

Lemma 7 (Bernoulli’s inequality). For every x ∈ R and any positive expo-
nent r > 0, it holds:

(1 + x)r ≤ exp(xr). (2)

C Deferred Proofs

C.1 Verifiable Graded Consensus

Proof of Lemma 1. Let Mod-GC be the subprotocol in Figure 1 for a single
pair of sender Pi and moderator Ps, between step 1 and step 3.1. We show that
Mod-GC satisfies validity, M-validity, soundness, and termination.

37

Validity and M-validity : Let Ps be the honest moderator and let Pj be an
honest party. Ps will gradecast the value obtained from sender Pi correctly, thus
g
(s)
i,j = g∗. If Pi is also honest, then mi = mi,j = m

(s)
i,j , which implies G

(s)
i,j = g∗.

Thus, all honest parties Pj output the same tuple (mi, g
∗), and validity holds.

However, if Pi is dishonest, then it could be that mi,j ̸= m
(s)
i,j . If that is the

case, then Pi gradecasts different values to Ps and Pj in step 1, so from the
consistency of GC we have gi,j ≤ 1. Therefore, honest party Pj has G

(s)
i,j =

min{g(s)i,j , g
∗−gi,j} ≥ g∗−1. Finally, since Ps is honest, all honest parties receive

(and output) the same message from Ps, m
(s)
i,j = mi,s, and M-validity holds.

Before proving the soundness of Mod-GC, we make the following observation.

Proposition 1. Let a1, b1, a2, b2, g such that |a1−a2| ≤ 1, |b1−b2| ≤ 1 and g ≥
max{a1, a2, b1, b2}. Let Gi = min{ai, g − bi}, for i = 1, 2. Then, |G1 −G2| ≤ 1.

Proof. We have the following cases:
Case 1. a1 ≤ g − b1 and a2 ≤ g − b2. Then |G1 −G2| = |a1 − a2| ≤ 1.
Case 2. g− b1 ≤ a1 and g− b2 ≤ a2. Then |G1 −G2| = |g− b1 − (g− b2)| =

|b2 − b1| ≤ 1.
Case 3. g−b1 ≤ a1 and a2 ≤ g−b2. Then |G1−G2| = |g−b1−a2|. Notice that

a2+b2 ≤ g ≤ a1+b1, so b2−b1 ≤ g−b1−a2 ≤ a1−a2. Both the lower and upper
bound can take values in [−1, 1], which constrains |G1−G2| = |g− b1− a2| ≤ 1.

Case 4. a1 ≤ g − b1 and g − b2 ≤ a2. This mirrors case 3. ⊓⊔

Soundness: For any moderator Ps and a sender Pi, let Pj , Pk be two honest
parties obtaining (m

(s)
i,j , G

(s)
i,j) and (m

(s)
i,k , G

(s)
i,k) respectively. We have the following

cases:
Case 1. m(s)

i,j = mi,j and m
(s)
i,k = mi,k. Then, G(s)

i,j = g
(s)
i,j and G

(s)
i,k = g

(s)
i,k ,

which originate both from the same gradecast and thus, by the soundness of
GC, |G(s)

i,j − G
(s)
i,k | ≤ 1. If both G

(s)
i,j , G

(s)
i,k are greater or equal to 1, then by GC

soundness m
(s)
i,j = m

(s)
i,k .

Case 2. m
(s)
i,j = mi,j and m

(s)
i,k ̸= mi,k. Then, G

(s)
i,j = g

(s)
i,j and G

(s)
i,k =

min{g(s)i,k , g
∗ − gi,k}. Also, either g

(s)
i,k ≤ 1 or gi,k ≤ 1, since one of the two

gradecasts has two honest parties outputting different messages. Therefore,

- if g(s)i,k ≤ 1, then G
(s)
i,k ≤ 1 and by GC soundness, |g(s)i,j − g

(s)
i,k | ≤ 1. There are two

subcases. Subcase 1): g(s)i,k = G
(s)
i,k , which immediately implies |G(s)

i,j −G
(s)
i,k | ≤ 1. If

both G
(s)
i,j , G

(s)
i,k are greater or equal to 1, then by the moderator’s GC soundness

m
(s)
i,j = m

(s)
i,k . Subcase 2): g(s)i,k = 1 and G

(s)
i,k = 0, meaning that gi,k = g∗. By the

initial GC soundness, we also have gi,j ∈ {g∗− 1, g∗} and mi,j = mi,k. To obtain
|G(s)

i,j − G
(s)
i,k | ≤ 1, we need to show it cannot hold that g

(s)
i,j = 2. If g

(s)
i,j = 2,

then m
(s)
i,k = m

(s)
i,j , which is also equal to mi,j , contradicting the assumption that

38

m
(s)
i,k ̸= mi,k.

- if gi,k ≤ 1, then there are again two subcases. Subcase 1): g(s)i,k = g∗, in which

case G
(s)
i,k ∈ {g∗ − 1, g∗} and G

(s)
i,j ∈ {g∗ − 1, g∗} and by the moderator’s GC

soundness, m(s)
i,j = m

(s)
i,k . Subcase 2): g(s)i,k ≤ g∗ − 1, in which case G

(s)
i,k = g

(s)
i,k ,

and by GC soundness, it holds that |G(s)
i,j − G

(s)
i,k | ≤ 1, as well as that if both

G
(s)
i,j , G

(s)
i,k are greater or equal to 1, then m

(s)
i,j = m

(s)
i,k .

Case 3. m
(s)
i,j ̸= mi,j and m

(s)
i,k ̸= mi,k. Then G

(s)
i,j = min{g(s)i,j , g

∗ − gi,j}
and G

(s)
i,k = min{g(s)i,k , g

∗ − gi,k}, and we can use Proposition 1 to get that

|G(s)
i,j − G

(s)
i,k | ≤ 1. If both G

(s)
i,j , G

(s)
i,k are greater or equal to 1, then following

the soundness of the appropriate GC instance in the four cases in Proposition 1,
i.e., the sender’s or the moderator’s, we obtain m

(s)
i,j = m

(s)
i,k .

To finish the proof of soundness for Mod-GC, we need to consider the case
where where G

(s)
i,j = 1 and m

(s)
i,j ̸= m

(s)
i,k . Then, by the soundness property of

GC for sender Ps gradecasting its value m
(s)
i , we know that m

(s)
i,j ̸= m

(s)
i,k implies

g
(s)
i,j = 0 or g

(s)
i,k = 0. Assume g

(s)
i,k ̸= 0, then g

(s)
i,j = 0 which would lead to

G
(s)
i,j = 0, contradiction. Thus, G(s)

i,k = 0 and the proof is complete.

Termination: Each honest party generates a value and an accompanying grade
for every moderator, by construction, regardless of the adversary’s behaviour.

This completes the proof of Lemma 1. ⊓⊔

Proof of Theorem 1. We argue the graded validity, graded agreement and
termination of Toss.

Graded validity : Since each Mod-GC instance called by a honest moderator Ps

achieves M-validity, then it holds that any honest party Pj has (m
(s)
i,j , G

(s)
i,j) for

any sender Pi, with G
(s)
i,j ∈ {g∗, g∗ − 1}. This implies that all honest parties will

also have G
(s)
j ∈ {g∗, g∗−1}. Finally, all honest parties form their output strings

M
(s)
j in step 2.2 with all m(s)

i,j for i ∈ [n] since all associated grades are strictly
positive when the moderator is honest. Again by M-validity of Mod-GC, another
honest party Pk will have m

(s)
i,k = m

(s)
i,j for all i ∈ [n], immediately implying that

M
(s)
j = M

(s)
k for any honest moderator Ps.

Graded agreement : We reformulate the statement as follows. Let Pj , Pk be two
honest parties outputting (M

(s)
j , G

(s)
j) and (M

(s)
k , G

(s)
k), respectively. For any

moderator Ps, after the execution of the protocol, it holds that |G(s)
j −G

(s)
k | ≤ 1.

Moreover, if G
(s)
j > 1 then M

(s)
j = M

(s)
k , otherwise if G

(s)
j = 1, then either

M
(s)
j = M

(s)
k or G

(s)
k = 0. We prove this below.

Let α such that mini∈[n]{G
(s)
i,j } = G

(s)
α,j . Similarly, let β so that mini∈[n]{G

(s)
i,k}

= G
(s)
β,k. Suppose without loss of generality that G

(s)
β,k ≥ G

(s)
α,j . This implies also

39

that G
(s)
α,k ≥ G

(s)
α,j , since otherwise, G(s)

α,k < G
(s)
β,k, contradiction. Then, |G(s)

k −
G

(s)
j | = |mini∈[n]{G

(s)
i,k} − mini∈[n]{G

(s)
i,j }| = |G

(s)
β,k − G

(s)
α,j | = G

(s)
β,k − G

(s)
α,j ≤

G
(s)
α,k −G

(s)
α,j = |G

(s)
α,k −G

(s)
α,j | ≤ 1, from the soundness part of Lemma 1.

If both G
(s)
j , G

(s)
k are greater or equal to 1, then all G(s)

i,j ≥ 1 and G
(s)
i,k ≥ 1 and

then by the soundness of Mod-GC, it holds that for all parties Pi, m
(s)
i,j = m

(s)
i,k .

This also implies that M
(s)
j = M

(s)
k . To finish the proof, consider a case where

G
(s)
j = 1 and M

(s)
j ̸= M

(s)
k . Then, by definition, there exists some i ∈ [n] for

which m
(s)
i,j ̸= m

(s)
i,k . Thus, from the soundness of Mod-GC, G(s)

i,j = 0 or G
(s)
i,k = 0.

Assume G
(s)
i,k ̸= 0, then G

(s)
i,j = 0 which would lead to G

(s)
j = 0, contradiction.

Thus, G(s)
i,k = 0, meaning that G

(s)
k = 0 and the proof is complete.

Termination: Follows immediately from the termination of all Mod-GC in-
stances and the fact that the sampling in step 0 is guaranteed to return a result.

This completes the proof of Theorem 1. ⊓⊔

Proof of Theorem 2. We need to show that ΠVGC satisfies termination,
graded agreement, graded validity, indistinguishable randomness, correctness
and soundness. Theorem 1 covers the first three properties, while the results
in the Lemmata below prove the rest of the properties. We first prove an inter-
mediate result about strictly positive grades and about the σ-indistinguishable
property of the VDF construction with untrusted setup.

Lemma 8. If a party Pj is graded as G
(j)
i ≥ 1 by an honest party Pi in Toss,

then M
(j)
i contains at least one entry mk from an honest party Pk.

Proof. Recall that the final grade for a party Pj is set by honest party Pi as
G

(j)
i = mink∈[n]{G

(j)
k,i} and the final output string as M

(j)
i = ∥

k∈[n],G
(j)
k,i≥1

m
(j)
k,i .

The fact that G
(j)
i ≥ 1 means that for all k ∈ [n], G(j)

k,i ≥ 1. For an index k
corresponding to an honest party Pk, it means that honest party Pi has observed
m

(j)
k,i = mk,i, which implies that an honest value mk,i = mk was included in

G
(j)
i . To see why party Pi could not have observed m

(j)
k,i ̸= mk,i and set G

(j)
k,i =

min{g(j)k,i , g
∗ − gk,i} > 0, note that since gk,i = g∗, the rule from step 3 in

Protocol 1 specifies that G
(j)
k,i = 0.

Lemma 9. Given access to the bulletin-PKI, the VDF construction with setup
VDF.Setup(1κ, ∆, coinVDF) achieves σ-indistinguishable randomness.

Proof. All parties obtain coinVDF as Hd(∥i∈[n]PKi) from the PKI. Given the use
of the random oracle Hd on a pseudorandom input (the keys of the honest par-
ties have randomness in them), coinVDF is random. Then, parties can determin-
istically obtain EKj = VKj = (G, HG, Hprime) from VDF.Setup(1κ, pp, coinVDF)
(Appendix A.2), based on coinVDF, as specified in Section 3.2.

40

The idea of a distributed setup for the class group parameters is natural,
see also [14, Sec 3.2] and [11, Sec 2.2]. The adversary can select its public keys
after seeing honest parties’ public keys, in an attempt to obtain a discriminant
d′ for which it somehow knows the group order for the associated class group
G′. But the adversary only gets access to a polynomial number of queries to
the random oracle Hd, therefore its advantage in knowing the group order and
being able to evaluate faster than ∆VDF is also a negligible function negl(λ), as
otherwise we would obtain a distinguisher for the unknown order assumption
and the time-lock assumption [54]. Therefore, the VDF with untrusted setup
based on a random oracle applied on pseudorandom inputs is also σ-sequential.

⊓⊔

Lemma 10. ΠVGC achieves σ-indistinguishable randomness, for σ(∆VGC) =
(1− ξ) ·∆VGC and ∆VGC = 2 ·∆G.

Proof. Recall the ∆-indistinguishable randomness game in Definition 5. The
adversary A receives ∆VGC and the public keys of the honest users from the
challenger C, and sets the public keys of the currently corrupted parties M
(representing the malicious set). Every time the adversary corrupts a new party,
it will add its identity toM, but cannot change the public keys.

The public keys (PKI) do not formally include the VDF evaluation and
verification keys, since these are obtained by applying a deterministic algorithm
on all public keys. All parties can deterministically obtain EKj = VKj = EK =
VK = (G, HG, Hprime), based on the output of a random oracle that takes as
input the PKI. Therefore, for each j ∈ M, EKj and VKj can be checked by
the challenger to be valid, since they should be the same as what the challenger
obtains in Process. Moreover, the adversary can start evaluating the VDF on
any string it wishes after it has the evaluation key (which is obtained after the
PKI is published).

The challenger and adversary start executing Toss. The challenger selects
the input seeds mi ∈ {0, 1}q(κ) for every Pi ∈ [n] \ M and sends them to the
adversary in the first round of GC. The event that the adversary guesses the
input seed mi of an honest party before seeing it in round 1 has probability
negl(κ). A union bound over all such events still yields a negligible probability
p0 = negl(κ). Therefore, any VDF evaluation the adversary has computed so far
is independent of the strings mi.

From round 1, the adversary can start evaluating VDF.Eval on any combi-
nation of strings mi of the honest parties and any other strings. Because the
VDF is σ-sequential, the adversary will obtain the evaluations only after Toss
has completed, since the duration of Toss is less than ∆VGC. The VDF does
not have trapdoors despite the untrusted setup as shown above, therefore the
adversary cannot obtain the output faster.

The adversary participates in the GC instances in step 1 and step 2 of Proto-
col 1 with whatever behavior A0 it chooses. In step 3 of Protocol 1, the remaining
honest parties Pi (at least ϵn), set for every j ∈ [n] the output (M

(j)
i , G

(j)
i). At

any point, the adversary also chooses output values (M
(j)
j) for Pj ∈ M, based

41

on all values it has seen so far and all computations done so far. It starts Process
using behavior A1 to obtain w

(k)
A , for any party Pk, either honest or corrupted.

By the fact that A is σ(∆VGC)-parallel time limited and the VDF is σ-
sequential (Lemmata 4 and 9), it holds that for any value M (i) obtained after the
start of Toss as a function of the honest parties, the advantage of the adversary
guessing w(i) = VDF.EvalEKi(H(M

(i)
i)) for honest Pi is p1 = negl(κ).

We now turn to corrupted parties Pj , j ∈ M. To obtain a biased output
w(j), by the σ-sequentiality of the VDF, the adversary must have computed it
on values not depending on the honest parties’ random seeds, with overwhelming
probability. Lemma 8 shows that the only way a corrupted party can obtain a
strictly positive grade from another honest party is if it relays correctly at least
one honest string corresponding to an honest party. This implies that each value
M

(j)
j for which A could have guessed w(j) has to have grade G

(j)
i = 0 by all

other honest parties.
Therefore, the advantage the adversary A can have in winning the ∆VGC-

indistinguishability game is at most p0 + p1 = negl(κ), so ΠVGC is σ(∆VGC)-
indistinguishable. ⊓⊔

Lemma 11. ΠVGC achieves soundness.

Proof. In the definition of the soundness of VGC, the inputs x(j) are fixed to be
obtained through Toss for an honest party, and can be any string chosen by the
adversary for a corrupted party (if it does not care to have a positive grade).
We want to show that an honest party Pi will never validate a string wj and
a proof ρj , for which (wj , ρj) ̸= Process(pp, x(j)

i). Note that even if the locally
held string x

(j)
i at Pi differs from the string x(j) obtained by a different party

from Toss, Pi would not accept a pair (wj , ρj) ̸= Process(pp, x(j)).
The result follows from the soundness of the VDF construction (Definition 9)

with difficulty parameter ∆VGC, which holds for any VDF inputs, outputs and
proofs that a σ(∆VGC)-limited adversary chooses, as long as the adversary does
not set the output and proof to what was obtained from VDF.Eval. Therefore,
as long as the adversary does not honestly follow Toss to obtain a string x(j) =

x
(j)
i and does not compute (wj , ρj) ← Process(pp, x(j)

i) = VDF.EvalEKj (x
(j)
i),

an honest party Pi will return 0 as the output VGC.Verify(pp, x(j)
i , wj , ρj) with

overwhelming probability. ⊓⊔

Lemma 12. ΠVGC achieves termination and correctness.

Proof. The termination of Toss was proved above, and the termination of Process
is guaranteed by the property of VDF.Eval that an output is generated after time
∆VGC. Correctness is inherited from the correctness of the VDF construction
(Definition 9). ⊓⊔

This concludes the proof of Theorem 2. ⊓⊔

42

C.2 Broadcast

We first give the intuition of the proof of Theorem 3. The ΠVGC protocol achieves
indistinguishable randomness for a difficulty parameter of ∆VGC, graded validity,
graded agreement, termination, correctness and soundness. Therefore, we are
guaranteed that by the start of Stage 1, each party Pi has a random string wi

that they feed to the VRF, and a corresponding proof πi. Moreover, by the start
of Stage 1, each party Pi also holds graded strings (M

(j)
i , G

(j)
i) for each other

party Pj . Honest parties are certain that the grades for the local strings they
hold for the other parties differ by at most 1, and moreover, local strings with
grades greater than 2 are the same among honest parties.

The indistinguishable randomness of the ΠVGC guarantees that malicious par-
ties cannot bias the output of Process while having grade greater than 0 in the
views of honest parties. Each party evaluates only one VDF, the one correspond-
ing to its own election process, and it only reveals it when it wants to prove it
is elected in a bit-committee—the election depends both on its local secret key
and the beacon. Furthermore, the VRF satisfies uniqueness, provability, pseudo-
randomness and extended pseudorandomness. Therefore, if malicious parties do
not compute their VRF on the bit value concatenated with the random string,
they cannot produce a valid proof for membership in the bit-committee that will
be accepted by the honest parties.

We note that to streamline this proof, we prove this result as a composition
of the properties of the protocols and algorithms for the online setup, election
and voting, that comprise the protocol; nevertheless, it could be proved as a
monolithical protocol that does not assume composition results.

We first prove some intermediate results on valid batches and certificates,
and on the number of honest and dishonest parties elected in the committees.
Notice that parties with associated grades equal to zero from the perspective of
an honest party Pi do not affect the outcome of the election, since the conditions
of validity for the allowed (r, ·)-batches always require a strictly positive grade.
Therefore, we focus on strictly positive grades.

Lemma 13. If a party Pj is graded with G
(j)
i ≥ 1 by Pi as a result of Toss,

then Pj can add a valid contribution to a batch batch′b with an associated valid
certificate cert′b, only if Pj correctly executes Toss,Process and VRF.Prove to
obtain yj, unless with negligible probability negl(κ).

Proof. Let the adversary submit a maliciously generated tuple (wj , ρj , yj , πj)
to a certificate cert′b = certb||(wj , ρj , yj , πj) associated to a (r + 1, 1)-batch
batch′b = batchb||sigj(b), where batchb and certb were valid. Towards a contradic-
tion, assume that the resulting batch and certificate are valid with more than
negligible probability. Party Pj needs to be corrupted, otherwise, the unforge-
ability of the signatures would immediately prevent the adversary from imper-
sonating an honest party Pj and batch′b would not be validated.

Recall that an honest party Pi validates a certificate tuple (wj , ρj , yj , πj)
associated to a signature sigj(b) if the following hold:

43

(i) VRF.VerifyPKj
(H(b||wj), yj , πj) = 1,

(ii) VGC.Verify(pp,M (j)
i , wj , ρj) = 1, where (M

(j)
i , ·)← Toss(pp), and

(iii) yj ≤ boundϵ,δ.
Maliciously generated strings yj that do not satisfy condition (iii) are trivially
discarded, so we assume (iii) holds for yj .

Let us look at condition (ii). The soundness of ΠVGC (Lemma 11) states that a
malicious party Pj can compute (w(j), ρ(j)) in another way than as the output of
Process on a string equal to M

(j)
i , so that Pi accepts VGC.Verify(pp,M (j)

i , wj , ρj)
= 1, with only negligible probability. Furthermore, since the evaluation in Pro-
cess is deterministic, and Toss satisfies graded agreement and graded validity
by Theorem 1, the outputs w

(j)
i ← Process(pp,M (j)

i), where wj := w
(j)
j , with

the grades G
(j)
i obtained from Toss, also satisfy graded agreement and graded

validity over all parties Pi, which holds unconditionally (since we assume ideal-
ized signatures). Note that no party has to compute Process for all n strings it
outputs from Toss and this is just a global view. Therefore, if condition (ii) of
the certificate check holds with more than negligible probability for a maliciously
generated certificate tuple, since the graded validity and agreement properties
hold unconditionally, then the adversary can break the soundness of ΠVGC (which
can happen with probability negl(κ)). We remark that this implies that if an hon-
est party Pi receives a value wj for which VGC.Verify(pp,M (j)

i , wj , ρj) = 0, then
either Pi has grade 0 associated to Pj , which contradicts the assumption from
the statement that G

(j)
i ≥ 1, or (wj , ρj) ̸= Process(pp,M (j)

i) by the soundness
property.

Assume now that the given tuple passes conditions (ii) and (iii), and let us
look at condition (i). Passing condition (ii) means that the string wj has grade
≥ 1 and is unbiased, with overwhelming probability, against a σ(∆VGC)-limited
adversary, according to the indistinguishable randomness of ΠVGC (Lemma 10).
Note that in the ROM, applying a hash function implies that H(b||wi) are ran-
dom, not just unpredictable, as required in the VRF definition.

Assume first the adversary corrupted Pj after it posted its keys on the public
bulletin-board, so the key pair (SKj ,PKj) was honestly generated. An adversary
for which an honest Pi would return VRF.VerifyPKj

(H(b||wj), yj , πj) = 1, for
maliciously generated yj and πj , breaks the uniqueness and provability of the
VRF (Definition 8), which can happen with only negligible probability. Second,
assume Pj was corrupted from the beginning, and the key pair was not honestly
generated, but satisfies VRF.ValidatePKj

(1κ) = 1. Still, if yi was not computed
as the output of VRF.Prove on the bit value concatenated with the random
string wj , and if an honest Pi returns VRF.VerifyPKj

(H(b||wj), yj , πj) = 1, the
adversary would break the extended pseudorandomness property of VRF since
wi is random, and this happens with only negligible probability.

Therefore, condition (i) on the certificate check holds only with negligible
probability for a maliciously generated tuple, contradicting the assumption made
in the beginning of the proof. ⊓⊔

44

Corollary 1. The adversary cannot bias yj for a corrupted party Pj such that
it is less than the bound boundϵ,δ.

Proof. The pseudorandomness and extended pseudorandomness properties of
the VRF (Definition 8) when applied on the random input H(b||wj) means that
(yj , πj)← VRF.ProvePKj

(H(b||wj)) is pseudorandom. Therefore, Pj cannot bias
yj such that it is less than the bound boundϵ,δ. ⊓⊔

This corollary enables the proofs of Lemma 15, since it ensures that unless
with negligible probability negl(λ), the election succeeds as dictated by pmine.

Lemma 14 (Honest Lower Bound). For pmine = min
{
1, 1

ϵn log
(
2
δ

)}
, at

least one honest party self-elects in a committee for a bit b with probability 1−δ/2.

Proof. There are at least ϵn parties that are forever honest by assumption. Let
X denote the number of honest parties that elect themselves in a committee for
a given bit b. The expected value of X is:

E[X] = ϵn · pmine = ϵn ·min

{
1,

1

ϵn
log

(
2

δ

)}
=

{
ϵn if log

(
2
δ

)
≥ ϵn

log
(
2
δ

)
if log

(
2
δ

)
< ϵn

.

The first case corresponds to all honest parties always getting elected with
pmine = 1. In the second case, the probability that no honest party can ever
self-elect is given by:

P[X = 0] ≤ (1− pmine)
ϵn ≤ exp(−ϵnpmine) = exp(log(2/δ)) = δ/2.

The second inequality holds by Bernoulli’s inequality (equation (2) in Appendix B).
The VRF constructions we consider use random oracles, so we can assume the

output is distributed uniformly at random. Then, the statement in the Lemma
holds, P[X ≥ 1] ≥ 1− δ/2. Since δ is negligible in the security parameter λ, the
result holds with overwhelming probability in λ. ⊓⊔

Lemma 15 (Dishonest Upper Bound). For pmine = min
{
1, 1

ϵn log
(
2
δ

)}
, at

most g∗/2 = ⌈ 1ϵ · log
(
2
δ

)
⌉ dishonest parties can self-elect in a committee for a

bit b with probability 1− δ/2− negl(κ), for any ϵ ∈ (0, 1).

Proof. There are at most (1− ϵ)n parties that can be corrupted at any time by
assumption. Let X denote the number of dishonest parties managing to elect
themselves in a committee for a given bit b. Even if nodes are corrupted adap-
tively, the election probability does not change. The expected value of X is:

E[X] = (1− ϵ)n · pmine = ϵn ·min

{
1,

1

ϵn
log

(
2

δ

)}
=

{
ϵn if log

(
2
δ

)
> ϵn

1−ϵ
ϵ log

(
2
δ

)
if log

(
2
δ

)
≤ ϵn

.

45

The first case corresponds to all parties always getting elected with pmine = 1,
but which also means g∗/2 > 2n, which is a case we are not interested in, since
we want g∗ to be sublinear.

Therefore we focus on the second case. For simplicity, set R := g∗/2. We want
to use Chernoff’s inequality (equation (1) in Appendix B). Therefore, setting
R = (1 + ζ) · E[X] yields ζ = R/E[X]− 1.

The probability that more than R dishonest parties can ever self-elect is
given by:

P[(1 + ζ) · E[X]] ≤ exp

(
−ζ2 · E[X]

2 + ζ

)
= exp

(
− ζ2

2 + ζ
· 1− ϵ

ϵ
· log

(
2

δ

))
∗
≤ exp

(
− log

(
2

δ

))
= δ/2,

where ∗ holds if
ζ2

2 + ζ
· 1− ϵ

ϵ
≥ 1. (3)

We want to find ζ that satisfies (3) for any value of ϵ ∈ (0, 1) and from it find
the minimum R for which P[X ≥ R] ≤ δ/2.

The roots of (3) are ϵ−
√
8ϵ−7ϵ2

2(1−ϵ) and ϵ+
√
8ϵ−7ϵ2

2(1−ϵ) and inequality holds outside
of the roots. To account for any value of ϵ ∈ (0, 1), we choose to set

R ≥

(
1 +

ϵ+
√
8ϵ− 7ϵ2

2(1− ϵ)

)
· E[X] =

2− ϵ+
√
8ϵ− 7ϵ2

2(1− ϵ)
· 1− ϵ

ϵ
· log

(
2

δ

)
=

2− ϵ+
√
8ϵ− 7ϵ2

2ϵ
· log

(
2

δ

)
≥ 2

2ϵ
· log

(
2

δ

)
.

Thus we get R := ⌈ 1ϵ · log
(
2
δ

)
⌉, obtaining the g∗/2 value in the statement.

Since the VRF verification can fail with probability negligible in the compu-
tational parameter κ, the result holds with probability 1− δ/2− negl(κ). ⊓⊔

Proof of Theorem 3. We now prove the main result of the paper. First, ter-
mination holds by the termination of the ΠVGC, where Toss and Process act like
an online setup, and by construction of the subsequent g∗/2 stages. Then, we
prove validity and consistency.

Lemma 16. Protocol ΠBC achieves validity with probability 1− negl(κ).

Proof. In stage 0, the sender Ps sends [bs, sigs(bs),⊥] to all parties. By round 1,
all honest parties have a valid (1, 1)-batch for bs and add bs to their extracted
sets. Since Ps is honest, the security of the signature scheme ensures no malicious
party can inject another validly signed message, so parties only elect themselves
in a single committee for bs and will not accept as valid any batch batchb̄s .

Then, by the correctness of ΠVGC (Definition 4, proved in Theorem 2) and
the correctness of the VRF (Definition 8), honest parties will correctly form
valid batches on b, such that the after g∗ rounds, all honest parties Pi will have
Extractedi = {bs} unless with negligible probability. ⊓⊔

46

Lemma 17. Protocol ΠBC achieves consistency with probability 1− δ− negl(κ).

Proof. Suppose that an honest party Pi adds message b to Extractedi at stage r.
We prove that by the end of the protocol, all honest parties add b to their
Extracted sets with overwhelming probability. Assume first that until the last
round, there are no more than g∗/2 signatures in a valid batch.

Case 1. Pi adds message b to Extractedi during the first round of stage
r < g∗/2: Then, b is accompanied by a valid (r, 1)-batch, say batchb. Also, b is
accompanied by a valid certificate for batchb, say certb. Note that by Lemma 13,
Pi accepts a certb as valid for batchb if it was honestly formed, unless with
probability negl(κ). So, for all signatures sigk(b) ∈ batchb it holds that G

(k)
i ≥

g∗ − 2r+ 1. Thus, during the second round of stage r, all honest parties receive
[b, batchb, certb]. Note that with probability 1 − δ/2 − negl(κ) by Lemma 14, at
least one honest party is in the b-committee.

Such a party, say Pj , checks that batchb is a valid (r, 2)-batch for b and that
certb is a valid associated certificate. For all signatures sigk(b) ∈ batchb, from the
graded agreement property of ΠVGC, it holds that |G(k)

i −G
(k)
j | ≤ 1. Since G(k)

i ≥
g∗ − 2r + 1, it holds that G

(k)
j ≥ g∗ − 2r. From the graded agreement property

of ΠVGC, it also holds that M
(k)
i = M

(k)
j for all k ∈ [n] : sigk(b) ∈ batchb, since

G
(k)
i , G

(k)
j > 1. So, VGC.Verify(pp,M (k)

j , wk, ρk) = VGC.Verify(pp,M (k)
i , wk, ρk) =

1. Moreover, VRF.VerifyPKk
(H(b||wk), yk, πk) = 1 and yk ≤ boundϵ,δ, by unique-

ness of the VRF. Therefore, certb is considered a valid certificate for batchb
from Pj . So, Pj adds b to its Extractedj set and adds its own signature to the
batch, producing a (r + 1, 1)-batch batch′b, and adds its proof to the updated
certificate cert′b. This batch′b is valid for all honest parties Pl, because for all
signatures sigk(b) ∈ batch′b either 1) k ̸= j and from graded agreement of ΠVGC,
|G(k)

l − G
(k)
j | ≤ 1, meaning that G

(k)
l ≥ g∗ − 2r − 1, or 2) k = j and from the

graded validity property of ΠVGC, G(j)
l ≥ g∗ − 1. For similar reasons as above,

the updated certificate is also valid. Thus, during the first round of stage r + 1,
all honest parties observe a valid (r+1, 1)-batch for message b, accompanied by
a valid certificate and thus add b to their Extracted sets.

Case 2. Pi adds message b to Extractedi during the second step of stage
r < g∗/2: Then, Pi holds a valid (r, 2)-batch batchb and a valid certificate for
it, say certb. Pi is in the committee for b, thus Pi adds their own signature to
batchb, creating a valid (r + 1, 1)-batch batch′b, and also adds (wi, ρi, yi, πi) to
an updated certificate cert′b. So, Pi sends (b, batch′b, cert′b) to all parties. Thus,
during the first round of stage r+1, all honest parties observe a valid (r+1, 1)-
batch for b, and a valid certificate (validity holds from the same arguments as
in Case 1.) and add b to their Extracted sets.

Case 3. Pi adds message b to Extractedi during stage r = g∗/2: Then, Pi

holds a valid (g∗/2, 1)-batch, i.e. a batchb of more than g∗/2 signatures from
parties Pj , where one of the signatures is from Ps and the rest of them have
grade G

(j)
i ≥ 1, and an associated certificate certb. By Lemma 15, at least one of

the signatures is from another honest party, so every honest party received this

47

valid (g∗/2, 1)-batch batchb and the associated valid certb, and added b to their
Extracted set by this stage.

Now, assume that at any point in the protocol, the batch batchb received
already contained g∗/2 valid signatures with grades G

(j)
k ≥ g∗ − 1. Since it

is a valid (r, 1)-batch, then it will also be a valid (r + 1, 1)-batch, and more
specifically, a valid (g∗/2, 1)-batch (the rules for the valid certificates also hold).
With overwhelming probability, there cannot be g∗/2 malicious parties in the
committee (Lemma 15) and there is at least one honest party in the b-committee
(Lemma 14), so limiting the size of the transmitted batches to g∗/2 does not
impact consistency. ⊓⊔

This concludes the proof of Theorem 3. ⊓⊔

C.3 Parallel Vector Gradecast

Proof of Lemma 2. The proof can be adapted from the proof of Theorem 2
in [51]. Each honest party always calls couplesk before sending. The use of
couplesk for the input sets means that each party at any point can input at
most the set couplesk(M). Thus, the number of bits sent by a single party is,
with probability 1− negl(λ):

⌈log ϵn⌉∑
i=1

O
(
m · (n+ |couplesk(M)|) · s

)
=

O(m · log(ϵ · n) ·max{n, |couplesk(M)|} · s). ⊓⊔

Proof of Lemma 3. We prove validity and consistency separately.

Validity : Let Ps be an honest sender with some value m∗
(s,k) for k ∈ casts,

and let Pi be any honest party still honest by the end of the protocol. In the
first round, all parties receive (m∗

(s,k), σ
∗
(s,k)). The adversary is unable to forge

signatures of honest parties, thus honest party Pi holds |Si
(s,k)| = 1 and mi

(s,k) =
m∗

(s,k) at all times throughout the protocol. Therefore, at the end of the protocol
it holds that gi(s,k) = 2g∗ and Pi outputs (m∗

(s,k), g
∗).

Consistency : Assume an honest party Pi for some (s ∈ senders, k ∈ casts)
with output grade gi(s,k) ≥ 1. So, ḡi(s,k) ≥ 2gi(s,k) at the end of the protocol.
Assume that some round r is the round during which Pi adds message mi

(s,k) in
Si
(s,k). We claim that if some honest party Pj gets (mj

(s,k), σ
j
(s,k)), m

j
(s,k) ̸= mi

(s,k)

in round r′ with valid signature σj
(s,k), then r′ > r + 2gi(s,k) − 3. Assume that

r′ ≤ r+2gi(s,k) − 3. Pj is honest, thus it calls ΠCV(Mj , ∅, ·) during round r′ +1,
with mj

(s,k) ∈Mj . From Lemma 2, by the end of round r′ + 1 all honest parties
received two distinct messages for (s, k); either exactly mi

(s,k),m
j
(s,k), if no other

valid messages are propagated from adversarial sender s for its k-th cast, or any

48

two valid messages else. Thus, by the end of step 1 of round r′ +2, it holds that
|Si

(s,k)| ≥ 2 and thus ḡi(s,k) ≤ r′ + 2 − r ≤ 2gi(s,k) − 1, which is a contradiction.
So, r′ > r + 2gi(s,k) − 3.
Party Pi, therefore calls ΠCV(Mi, ∅, ·) during round r, with mi

(s,k) ∈Mi. Thus,
by the end of round r all honest parties receive at least one message. If some
honest party does not receive mi

(s,k) by the end of round r, then by the construc-
tion of ΠCV each honest party received at least two distinct messages for (s, k),
with probability 1− negl(λ). From the previous claim it then holds, 2gi(s,k) < 3,
i.e. gi(s,k) ≤ 1 and thus from the assumption: gi(s,k) = 1. At the same time, from
the previous claim, no honest party Pj receives mj

(s,k) ̸= mi
(s,k) before round

r′ > r − 1. Since by the end of round r it is |Sj
(s,k)| ≥ 2, then ḡj(s,k) ≤ 1 if Pj

outputs mj
(s,k) , i.e. gj(s,k) = 0, if mi

(s,k) ̸= mj
(s,k).

Else, if all honest parties receive mi
(s,k) by the end of round r, then let us

consider the value of ḡj(s,k) at the end of the protocol:

- If gi(s,k) ≥ 2, then ḡj(s,k) > (r + 2gi(s,k) − 3)− r ≥ (r + 2gi(s,k) − 3)− r + 1 =

2gi(s,k) − 2. Thus, Pj outputs mi with grade gj(s,k) > gi(s,k) − 1.
- If gi(s,k) = 1, then from the previous claim, no honest party Pj receives
mj

(s,k) ̸= mi
(s,k) before round r − 1. Since by the end of round r Pj receives

mi
(s,k) (it is mi

(s,k) ∈ |S
j
(s,k)| by round r + 1), then either gj(s,k) = 0 or

mj
(s,k) = mi

(s,k).
The total number of rounds for our protocol is 1 (for Round 1) +2g∗ (Rounds

2 to 2g∗ + 1), where for each of the latter 2g∗ rounds, a call to ΠCV is made,
adding ⌈log ϵn⌉ additional rounds in each, leading to the stated total number of
rounds.

The total communication complexity is O(g∗·n log ϵn·max{n, |couplesksc
(M)|}·

m·s), whereM is the set containing all valid messages from pairs of (senders, casts).
Since, ksc is the prefix size defined exactly to differentiate between messages of
different (j ∈ senders, k ∈ casts), it holds that |couplesksc

(M)| = 2|senders| ·
|casts| and the proof follows. ⊓⊔

C.4 Communication Reduction

We denote by Π ′
Toss the protocol obtained by replacing in the Toss protocol from

Figure 1 the call to GC in step 1.1. with a call to Parallel Vector GC. We have
the following lemma.

Lemma 18. Protocol Π ′
Toss is a Toss protocol with maximum grade g∗ satisfying

Graded Validity and Graded Agreement and Termination as in Definition 4, with
probability 1− negl(λg).

Proof. The proof follows similarly to the proof of Theorem 1, with the use of
Lemma 3 instead of Lemma 1 in the respective arguments. Since the result of

49

Lemma 3 holds with probability 1 − negl(λg), the current result inherits this
same probability of success. ⊓⊔

As described in Section 6, the use of Π ′
Toss leads to a new VGC protocol,

called Π ′
VGC, that is used during Π ′

BC. Mirroring the previous analysis, we can
prove the following lemma for Π ′

VGC.

Lemma 19. Protocol Π ′
VGC is, with probability 1− negl(λg), a verifiable graded

consensus protocol on random strings, cf. Definition 4, against an adaptive
∆′

VGC-limited adversary who runs in at most (1− ξ) ·∆′
VGC = ∆G +∆′

G parallel
time, and can adaptively corrupt up to (1− ϵ)n parties.

Proof. All properties follow from arguments similar to the ones in the proof of
Theorem 2. Lemma 18 covers the properties of termination, graded agreement
and graded validity, while we can argue about the rest of the properties of
indistinguishable randomness, correctness and soundness following the proofs
of Lemmata 10, 11 and 12 respectively (with the respective changes of ∆′

VGC
and the additional failure probability term of negl(λg) incurred from calling ΠCV
instead of multicasting). ⊓⊔

Proof of Theorem 4. The modularity of the changes to the updated broadcast
protocol allow us to argue about the proof of Theorem 4 without repeating the
same arguments made for the proof of Theorem 3. Note that the gossiping part
in Toss′ does not affect the stages 0 through g∗/2 from the broadcast protocol.
We briefly sketch all the distinctions between the two proofs.

Termination follows from the termination of the protocols and algorithms
of Π ′

VGC, and the following g∗/2 stages. Validity is argued as in Lemma 16;
since it requires the correctness of the underlying Π ′

VGC protocol, it inherits
the additional probability of Lemma 19, and thus validity holds with probability
1−negl(λg)−negl(κ). Consistency is argued as in Lemma 17, again inheriting the
additional probability and thus holding with probability 1−negl(λg)−δ−negl(κ).

⊓⊔

Proof of Theorem 5. First, we describe how to amortize the communication
cost of broadcast over multiple instances. Concretely, instead of feeding (b||wi) in
broadcast instance brid to the VRF, Pi can feed (b||H(wi||brid)), which is also ran-
dom, as long as wi has length polynomial in the security parameter κ. Thus, the
adversary can not predict the committee membership for a broadcast instance
brid

′ even after seeing the committee membership for all broadcast instances
brid < brid

′. Since the broadcast executions are independent with the exception
of wi, their composition is secure.

Therefore, in order to self-elect as a member in a committee, a party Pi

now computes (yi, πi) = VRF.ProveSK(H(b||wi||brid)). As part of the verifica-
tion of the membership of a different party Pj , Pi now computes in Verify:
VRF.VerifyPKj

(H(b||wj ||brid), yj , πj). Define Π̄BC to be the subprotocol run be-
tween stages 0 and g∗/2 in the broadcast protocol ΠBC from Figure 3, with the

50

committee-related computations described above. Then, multiple secure broad-
cast instances are obtained by running the ΠVGC protocol (with any given in-
stantiation) and then run Π̄BC(brid), for brid = 1, . . . , brmax.

For item 1 in Theorem 5, we use one instance of Π ′
VGC to generate random

strings for brid ∈ {1, . . . , n}. Using Π ′
VGC where we instantiate the parallel GC via

Protocol 5, and brid ∈ {1, . . . , n}, yields an amortized communication complexity
of broadcast of Õ(n2), and Õ(λδ) round complexity.

For item 2, using the online setup Toss from ΠVGC without gossiping (using
the GC from Appendix A.3) and brid ∈ {1, . . . , n2} yields an amortized commu-
nication complexity of broadcast of Õ(n2), and O(λδ) round complexity.

For item 3, we amortize the communication cost of parallel broadcast with
techniques from Tsimos et al. [51]. Specifically, we use the Π ′

VGC protocol with
communication cost Õ(n3) to bootstrap randomness for n2 broadcast instances.
We then run n separate parallel broadcast instances where we apply the gos-
siping techniques of [51] on Protocol 3. The sole difference from Π̄BC is in the
distribution round of stages 1 to g∗/2− 1. Now parties, instead of multicasting
their tuples of values, batches and certificates to all, propagate them via the gos-
siping dissemination protocol presented for the trusted setup broadcast in [51].
However, our Π ′

VGC replaces the trusted setup. Thus, we obtain an amortized
cost of Õ(n) per broadcast instance, Õ(λδ) rounds, and without trusted setup.

Related to the composition of multiple broadcast instances, we make the
following observations. The verifiable graded consensus protocol is run only once,
before the “online” part of the broadcast instances start, and is independent of
those. The sequentiality of ΠVGC (Π ′

VGC) thus guarantees the unpredictability
of the graded beacons that are used in any of the broadcast instances. The
parties obtain the graded beacons for all other parties from Toss in ΠVGC (Toss’
in Π ′

VGC). Then in Process, using the ROM, they evaluate only the VDF on
the hash of their own beacon for each instance of broadcast, and store the other
inputs for later verification. Even if the adversary obtains any of its inputs faster
than the rest of the honest parties (as long as it still takes ∆VGC (∆′

VGC) with
overwhelming probability), it cannot bias the beacons. The VRF properties will
guarantee that the elections are verifiable and cannot be falsified. Moreover, we
can add a time buffer between VGC and the stages of broadcast to ensure all
honest parties finish evaluating their VDF with overwhelming probability before
stage 0 of the first broadcast instance (in the parallel case, stage 0 of all instances
starts at the same time). Security of the multiple broadcast instances is ensured
as long as one honest committee member participates in stage 1 of that instance
even if the adversary slows down some honest parties. Finally, note that there is
no “gossiping composition” since gossiping is only used in ΠVGC and not in the
rest of the broadcast protocols. ⊓⊔

51

	Sublinear-Round Dishonest-Majority Broadcast without Trusted Setup
	Introduction
	Technical Overview
	Related Work
	Note

	Model and Preliminaries
	Emulating a Common Random String
	Moderated Gradecast and Graded Consensus on Seeds
	Verifiable Graded Consensus for Random Strings

	Sublinear-Round Broadcast
	Communication Reduction for Parallel Gradecast
	Communication-Efficient Broadcast

	References
	Appendices
	More Preliminaries and Primitives
	Verifiable Random Functions
	Verifiable Delay Functions
	Gradecast
	Parallel Vector Gradecast

	Inequalities
	Deferred Proofs
	Verifiable Graded Consensus
	Broadcast
	Parallel Vector Gradecast
	Communication Reduction

