
Improved Progressive BKZ with Lattice Sieving

Wenwen Xia1,4,⋆, Leizhang Wang3,⋆, Geng Wang4, Dawu Gu4,1, and Baocang
Wang3

1 School of Cyber Engineering, Xidian University, Xi’an, 710071, China
xiawenwen@stu.xidian.edu.cn

2 Lab of Cryptology and Computer Security, Shanghai Jiao Tong University,
Shanghai, 200240, China

3 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an,
710071, China

lzwang_2@stu.xidian.edu.cn, bcwang@xidian.edu.cn
4 School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong

University, Shanghai, 200240, China
{wanggxx, dwgu}@sjtu.edu.cn

Abstract. The unique Shortest Vector Problem (uSVP) is one of the
core hard problems in lattice-based cryptography. In our current knowl-
edge, G6K-GPU-Tensor (Ducas et al, Eurocrypt 2021), which includes
the code implementation for the heuristic uSVP solving algorithm in
G6K-GPU-Tensor, is considered the fastest and contains the state-of-
art BKZ and sieving implementations currently. In this paper, we pro-
pose a new way named Improved Progressive BKZ with Lattice Siev-
ing(ProPnJBKZ) to accelerate the uSVP solving algorithm in G6K-
GPU-Tensor. We break the TU Darmstadt LWE Challenges with (n, α) ∈
{(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)}. We test the
efficiency of our ProPnJBKZ with the TU Darmstadt LWE Challenge.
The experiment result shows that ProPnJBKZ is 7.2∼17.0 times faster
than the heuristic uSVP solving algorithm in G6K-GPU-Tensor un-
der same benchmark in solving TU Darmstadt LWE Challenges with
(n, α) ∈ {(40, 0.025), (40, 0.030), (45, 0.025), (50, 0.015)}. Besides, our
algorithm also answers the open question Q7 mentioned in Kyber. We
discuss the novel techniques used in ProPnJBKZ as follows: (1) Based
on PnJBKZ and Sieve, this paper solves the problem of how to do the
reduction and when to move from the first step (the reduction process us-
ing PnJBKZ) to the second step (search process using Sieve) to minimize
the total time cost of solving uSVP by using our new designed strategy
selection algorithms EnumBS, BSSA; (2) Present a PnJBKZ simulator
that can predict PnJBKZ with a large jump and an estimation method
for sieve algorithm in second step.

Keywords: Lattice cryptanalysis· uSVP· progressive BKZ· PnJBKZ
Simulator· Optimized blocksize and jump strategy selection.

1 Introduction

To date, many post-quantum cryptosystems are lattice-based, e.g. Dilithium
[1], Kyber [2] which have been accepted as NIST standards and are considered to
be immune from both classical and quantum attacks. A large fraction of lattice-
based cryptographic mechanisms are built upon the LWE [3] and its variants [2–
5]. One of the best-known cryptanalytic techniques against LWE is primal attack
[6] which solves the LWE by reducing it to the unique Shortest Vector Problem
(uSVPγ). BKZ [7] as the most popular lattice reduction algorithm usually used
in solving uSVPγ . BKZ is a combination of the LLL [8] and an SVP algorithm
to balance the time cost and the success probability using blocksize β. Many
cryptanalysts improved the BKZ algorithm, e.g. the extreme pruning [9] to speed
up enumeration, BKZ 2.0 [10] based on [9], approximate enumeration oracle
[11], and parameters optimization in BKZ such as Improved Progressive BKZ
(ProBKZ) [12]. [13] showed that the unique shortest vector is recovered by first
finding its projection in a projected sublattice then lifting it to the full lattice
and verifying the BKZ successful condition of solving uSVPγ in [14].

In 2019, Albrecht et al. [15] designed the General Sieve Kernel (G6K), imple-
mented the progressive sieving algorithm [16] named Pump which can selectively
call the Gauss sieve [17,18], NV sieve [19], k-list sieve [20,21] or BGJ1 sieve [22].
Progressive sieve and dimension-for-free (d4f) technique [23] are used in Pump for
acceleration. Pump is a sieve and insertion algorithm that sieves on the projected
sublattice and can insert more than one vector into the lattice basis. Ducas et
al. [24] improved G6K using GPU (named G6K-GPU-Tensor) and implemented
the fastest sieving algorithm BDGL16 [25] in both G6K and G6K-GPU-Tensor.
G6K provides an algorithm to solve LWE (uSVPγ), which will conditional call
Pump to find short vectors on the projected sublattice and lift them into the full
lattice basis after running several tours of PnJBKZ. PnJBKZ uses Pump as its
SVP oracle so that even if it calls the SVP oracle with a jump value, it still can
ensure the skipped basis vector is reduced by Pump.1 It solves TU Darmstadt
LWE Challenges 400 times faster than the previous records. However, the de-
fault mode in G6K still has room to improve: (1) The condition in G6K calls
Pump heuristically, not to minimize the total time cost of solving uSVPγ . (2) The
inserted Pump possibly fails to find the target vector and G6K will return to call
PnJBKZ for further reduction and the cost of a failed Pump is wasted. (3) It only
considers PnJBKZ with jump=1 during the reduction, while Fig. 6 shows that
PnJBKZ with a large jump is more efficient. (4) The blocksize strategy used in
G6K is trivial and optimizable.

In fact, behind the improvement of (3) how to optimize the reduction param-
eters in the reduction like the selection of the blocksize in progressive BKZ has
long been an open question (Q7 in Section 5.3 of Kyber [2]) in Two-step mode.
Here the Two-step mode means that first calls several BKZ or PnJBKZ tours to
improve the quality of lattice basis and then calls a sieve algorithm in the end.

1 https://github.com/WvanWoerden/G6K-GPU-Tensor/blob/main/lwe_challenge.py

2

https://github.com/WvanWoerden/G6K-GPU-Tensor/blob/main/lwe_challenge.py

Two-step Mode. The idea of the Two-step mode was first proposed in
solving BDD and LWE problems in [26]. [12] uses it in solving approximate
SVPγ with 1.05 GH approximate factor. [27] proves that given the same blocksize
strategy and assume GSA holds, the Two-step mode can solve an uSVPγ in less
time than BKZ-only mode. [28] also shows that a Two-step mode uses progressive
BKZ or PnJBKZ as preprocessing and only applies HKZ-slide reduction in the
final step finding the short vector is more efficient than other solving modes.

BKZ Simulator. In 2020, Li and Nguyen [29] present the first rigorous dy-
namic analysis of BKZ which proves that after at most Θ

(
(d2/β2) log d

)
tours

reduction of BKZ-β, the norm of the first basis vector output from BKZ-β at
most γ

d−1
2(β−1)

+
β(β−2)
2d(β−1)

β ·det(L) 1
d . However, the estimation proposed in [29] consid-

ers the reduction effort of fixed blocksize BKZ-β after running a large number
of tours. In our work, we need a polynomial-time BKZ simulator to predict the
practical reduction effect of BKZ with more flexible tours. Since the running
tours of a blocksize fixed BKZ-β are very small in most cases during our reduc-
tion. A BKZ simulator is necessary to optimize the selection of the blocksize
during reduction, which is a polynomial time algorithm to predict the reduction
effort of the exponential time BKZ algorithm. Based on the Gaussian heuris-
tic, [10] refined the sandpile model from [30] and provided a BKZ simulator.
Using the property of HKZ reduced basis and Gaussian heuristic, [12] proposed
a simulator for predicting BKZ-β fully reduced basis. Bai et al. [31] proposed
a simulator to predict and explain the phenomenon of head concavity of lattice
basis reduced by multiple tours of BKZ-β. However, as above simulators cannot
be directly used for PnJBKZ simulation when it uses the jump strategy.

Strategy Selection Algorithm. Based on the BKZ simulator, in 2016,
Aono et al. presented an improved progressive BKZ (ProBKZ) [12] which pro-
posed a blocksize strategy selection algorithm to generate the progressive block-
size for reduction. It uses the shortest path algorithm to give an optimized block-
size strategy by setting multiple different middle reduction qualities as the inner
nodes. But ProBKZ only considers enumeration as its subroutine, without us-
ing the more efficient lattice sieving algorithm. Besides, in this paper, we shall
show that their method is not supposed to generate a blocksize strategy with
minimum expected time cost, and their strategy still can be improved.

3

Fig. 1: LWE Challenges and the Algorithms to Solve it

Contribution. In this work, we aim to further solve the above three prob-
lems and then propose the Improved Progressive PnJBKZ(ProPnJBKZ, Alg. 1)
based on the following optimizations: Firstly, the experiments in Sec. 3.1 show
that the Two-step mode is not only faster than the BKZ-only mode, which has
been proven under GSA in Theorem 1 of [27], but also faster than the default
G6K mode if we use the same reduction strategy and find an appropriate tim-
ing to enter the search step. Then, to simulate the quality improvement of the
lattice basis during progressive lattice reduction and estimate the expected cost
of the last sieve algorithm, we design a polynomial-time PnJBKZ simulator to
predicate the reduction effect of exponential-time PnJBKZ algorithm even in
jump>1. Finally, based on the PnJBKZ simulator and a Pump sieving dimension
estimation, we design several strategy selection algorithms (including BSSA and
EnumBS) to find the optimized blocksize and jump strategy and the most suit-
able timing of entering Pump to minimize the total time cost of solving uSVPγ .

Our ProPnJBKZ executable code are made public on GitHub2 which success-
fully cracked the TU Darmstadt LWE Challenge3 by ProPnJBKZ_for_lwe.py.
This challenge generates LWE instances with varying difficulty levels based on
parameters n and α to test the efficiency of algorithms for solving LWE. Our
approach detailed in Fig. 1, significantly improves solving uSVPγ and effec-
tively tackles practical challenges. All the experimental results except Table 7
are tested with 32 threads and 2 GPUs on a workstation with Intel Xeon 5128
16c 32@2.3GHz, 1.48T RAM and NVIDIA RTX 3090*2, denoted as machine C.

Besides, we also test the performance of ProPnJBKZ for solving uSVPγ based
on our blocksize and jump strategy selection algorithm and the Two-step mode.
Using the blocksize and jump strategy chosen from EnumBS, the algorithm sig-
nificantly increases the efficiency at most 17.0 times (at least 7.2 times) under the

2 https://github.com/Summwer/pro-pnj-bkz
3 https://www.latticechallenge.org/lwe_challenge/challenge.php

4

https://github.com/Summwer/pro-pnj-bkz
https://www.latticechallenge.org/lwe_challenge/challenge.php

same benchmark in solving some of TU Darmstadt LWE Challenges compared
with that of the default LWE solver in G6K shown in Fig. 2(a) with an acceptable
memory cost (Fig. 2(b)). Meanwhile, Fig. 2(c) shows that the ProPnJBKZ using
the strategy generated by EnumBS (abbreviated as ProPnJBKZ(EnumBS(·)))
is faster than ProPnJBKZ using the strategy generated by BSSA (abbreviate
as ProPnJBKZ(BSSA(·))). ProPnJBKZ(EnumBS(·)) is 3.71∼9.81 times faster
than default G6K and ProPnJBKZ(BSSA(·)) is 2.43∼8.63 times faster than de-
fault G6K in testing the given LWE instances (n, α) ∈ {(n, 0.010)|n=55, · · · , 61},
especially in the case of large n with the acceptable memory cost(Fig. 2(d)). Es-
pecially, the cost of LWE instance with (n, α) ∈ {(55, 0.010), (59, 0.010)} in Fig.
2(c) shows that the time cost of default G6K is high since it calls the reduction
first then enter the Pump and repeated such a process twice before default G6K
found the solution. We test various Jmax to illustrate the effect of jump > 1
in accelerating solve LWE. For instance, set S1 as the strategy generated by
EnumBS with Jmax=d4fslope(s) and S2 as the strategy generated by EnumBS
with Jmax=1. Then the computational cost incurred using strategy S1 is 2.02 to
2.91 times faster than that of S2 and 4.88 to 7.85 times faster than the scenario
where J is set to 1 in S1. Here s is the slope of the lattice basis during the sim-
ulated process. It demonstrates a substantial improvement in efficiency when
the maximum jump exceeds 1, potentially by streamlining the computational
steps involved. Furthermore, one can also limit the maximum memory usage
of solving uSVPγ by changing parameter “--max_RAM” to generate the solving
strategy. We also designed an LWE sample optimized selection algorithm (Alg.
6) to optimize the number of chosen LWE samples in Appendix F, although its
efficiency improvement is not significant (at most 2.2% in our test).

5

(a) LWE Challenges: Time. (b) LWE Challenges: Memory.

(c) LWE Instances (α = 0.010): Time. (d) LWE Instances (α = 0.010): Memory.

§ The experiment used “dd” float type and pump/down=True, under identical benchmark
conditions on a machine C (Sec. 6.4) with threads=32 and GPUs=2. “default G6K”
refers to the method in g6k implemented in lwe_challenge.py. ProPnJBKZ(EnumBS(·))
(ProPnJBKZ(BSSA(·))) represents the cost of running ProPnJBKZ with strategies from
EnumBS (BSSA). Jmax denotes the maximum jump value in the strategy. “Set J=1 in S”
means generating a strategy S and then setting the jump value as 1.

Fig. 2: Comparison of Different LWE-solving Algorithms under same benchmark. §

Key idea. Four main parts of ProPnJBKZ: Two-step mode, PnJBKZ Sim-
ulator, Pump Estimation method and Strategy Selection Algorithm (Fig. 3):

- We show that the Two-step mode can solve an uSVPγ in less time than the
BKZ-only mode and default mode in G6K through experiments. Concretely, to
minimize the total time cost of solving uSVPγ , based on our PnJBKZ simulator
and Pump sieving dimension estimation, we give a Two-step mode, which firstly

6

calls a series of PnJBKZs following a blocksize and Jump selection strategy to do
reduction then at a suitable timing, calling a Pump to search the target vector.
Besides it saves the time cost of a failed Pump that occurs during the solving
process in G6K’s default strategy by a non-negligible probability.

Table 1: Technical comparison from ProBKZ and G6K.

Technique ProBKZ [12] G6K [15,24] Our Algorithm

Reduction
Strategy

Approximate minimum
simulated cost by progres-
sive BKZ and enumeration

Trival block-
size strategy

Minimum simulated cost
by progressive PnJBKZ
and Pump

Strategy
Generation

Shortest Path Algorithm No EnumBS (in Parallel)

Search Cost Esti-
mation FEC based New Hope [25]

with d4f [23]
New Pump dimension es-
timation and PSC based

Search Timing Minimize total time cost Heuristic Minimize total time cost

Predicting ∥b∗
i ∥ Plain BKZ simulator No PnJBKZ simulator J≥1

- Construct PnJBKZ simulator. To improve the efficiency of reduction by
using a more flexible jump and blocksize strategy, we construct a polynomial-
time PnJBKZ simulator, which can accurately predicate the behavior of PnJBKZ
even jump>1 without actually running exponential time PnJBKZ. Specifically,
since the Pump used by PnJBKZ to do the reduction in each block, inserts more
than one vector into the lattice basis, and each of the projected sub-lattice basis
reduced by a Pump is almost HKZ-reduced, we predicate the reduction effect
of PnJBKZ with jump>1 by calculating these unknown Gram-Schmidt norms
based on the property of HKZ reduced basis. It has been verified experimentally.

- Provide a new estimation for Pump. Our experiment (Fig. 9) demonstrates
that using the estimated dimension [14,32] from Sec. 6.4 of the G6K paper [15]
has a non-negligible probability of causing failure in finding the target vector.
Therefore, we introduce a new method for estimating the dimension of Pump
and provide the Pump Solvable Time Cost (PSC, see Sec. 4.2) by considering the
distribution of the projected target vector to ensure the accuracy. Our new esti-
mation ensures solving the uSVPγ problem by Pump with estimated dimension.

- Design two new strategy selection algorithms EnumBS, BSSA. Based on
the simulators and Two-step mode, to improve the efficiency of the reduction
step, we give two new reduction strategy generation algorithms, which generate
the blocksize and jump strategy and the suitable sieving dimension for Pump to
minimize the expected cost of solving uSVPγ . The reduction strategy generation
algorithms proposed in this work solved the problem of how to do the reduction
most efficiently (improving the quality of lattice basis to any specified level with
minimum time cost), while most of the previous works [10,15,24,33] choose the
heuristic reduction strategy. In addition, we also solved the problem of when to
end the reduction. The code for strategy selection algorithms for solving LWE is
available in the folder “strategy_gen” of the code2. We borrow the same shortest

7

path algorithm as in ProBKZ to design our first algorithm called blocksize and
jump strategy selection algorithm based on ProBKZ (BSSA) by replacing the
estimated cost and simulation algorithm of BKZ and enumeration algorithm with
PnJBKZ and Pump respectively. Then to obtain a reduction strategy to minimize
the simulated cost for ProPnJBKZ, we design a new strategy selection algorithm
named blocksize and jump strategy enumeration (EnumBS). EnumBS can obtain
a blocksize and jump selection strategy that can solve an uSVPγ instance in less
time but at a higher theoretical complexity than BSSA in generating, but the
time is still acceptable for low-dimensional lattices. EnumBS first generates the
reduction strategy list BS to store the information about the strategy, whose
child may be the strategy with minimum simulated cost(if Heuristic 6 holds).
All the strategies in BS are ordered from the growth of estimated PnJBKZ cost
and decrease of PSC. Let S be a father strategy in BS, the child strategy denotes
S joined with another strategy S′ such that the child strategy could improve the
basis quality. The main process of EnumBS is to iteratively determine whether
each child of the strategy in BS would have a shorter time overhead. If so, add
the child strategy and delete the strategies in BS of which the simulated PnJBKZ
cost and PSC are both longer than the added strategy.

Fig. 3: Roadmap: ProPnJBKZ Process

Comparison and discussion. Table 1 compares the techniques used in the
ProBKZ [12], G6K [15,24] and our algorithm. Our Algorithm uses the strategy
selection algorithm EnumBS which has a smaller time cost in solving LWE com-
pared with that of ProBKZ. Our algorithm terminates the PnJBKZ strategy by
using a sieve dimension estimation proposed in [27] and we give a Pump Solvable
Cost(PSC) estimation for the last Pump considering the distribution of the norm
of the projected target vector on the sublattice, instead of the Full Enumera-
tion Cost(FEC) estimation in ProBKZ. To predict the reduction effect of the
PnJBKZ (especially with jump>1), we design the PnJBKZ simulator.

Roadmap. The paper is organized as Fig. 3. Sec. 2 presents the notations
and preliminaries. We firstly show the efficiency of Two-step mode in Sec. 3.1
and give the sketch of ProPnJBKZ in Sec. 3.2. Next, we propose a PnJBKZ

8

simulator and PSC estimation for generating blocksize and jump strategy in
Sec. 4 and give a practical cost model of PnJBKZ and Pump for designing the
strategy selection algorithm. Then, Sec. 5 gives a detailed description of our two
blocksize and jump strategy selection algorithms BSSA and EnumBS. Besides,
we experiment compare their cost with default G6K, give the optimized strategy
of LWE Challenge, and verify the simulation accuracy of ProPnJBKZ in Sec. 6.

2 Preliminaries

2.1 Notations for algorithms description.

Let BKZ-β (or PnJBKZ(β, J)) be an abbreviation of a one-tour BKZ (or Pn-
JBKZ) with blocksize β and jump value J . Assume B = (b0, · · · ,bd−1), its
Gram-Schmidt basis is B∗ = (b∗

0, · · · ,b∗
d−1). Denote li by the logarithm of

Gram-Schmidt norm, i.e. li = ln(∥b∗
i ∥), for i ∈ {0, · · · , d− 1}. Let rr(B) =

(l0, · · · , ld−1), abbreviate to rr, rr[i:j] = (li, · · · , lj−1).
Denote BKZSim by the BKZ simulator proposed in [10]. The simulation for

PnJBKZ is denoted as PnJBKZSim(rr, β, J, t), which simulates a PnJBKZ(β, J)
with t tours on the lengths rr and return the new lengths. Moreover, if we have a
blocksize and jump strategy S that stores a series of (βi, Ji), then PnJBKZSim(rr, S)
means iteratively calling a tour of PnJBKZ(βi, Ji) simulator on rr, where (βi, Ji) ∈
S. Assume the input basis is B, and the basis B reaches a basis quality after
calling sufficient tours of BKZ-β. To simplify the above step, we use β to im-
ply the quality of a BKZ-β reduced basis. Let ♯tours(rr, BKZ-β) (or ♯tours(rr,
PnJBKZ(β, J))) be the minimum tours for BKZ-β (or PnJBKZ(β, J)) from a
lattice basis with GS-lengths rr to reach a BKZ-β (or PnJBKZ(β, J)) reduced
basis. Denote t or ♯tours as the number of tours for implementing BKZ (or Pn-
JBKZ) with a fixed blocksize β. Let TBKZ(β) (or TPnJBKZ(β, J)) be the time
cost of one-tour BKZ (or PnJBKZ) with blocksize β and jump value J . Let
TPnJBKZs(S) be the total time cost for a series of PnJBKZ with a specific reduc-
tion strategy S={(β0, J0), · · · , (βn−1, Jn−1)}, abbreviate it as TPnJBKZs. Denote
TPump(dsvp) as the time cost of Pump with dsvp sieving dimension, abbreviate it
as TPump. Let Pump Solvable Cost (abbreviate as PSC) be the expected Pump
cost to find the target vector (See Sec. 4.2).

2.2 Technologies in G6K

Dimension for Free (d4f) Technique. D4f technology [23] can bring sub-
exponential time speedup and memory decrease for sieve algorithms. [23] has
given two theoretical d4f estimations for solving β-dimension SVP as d4f(β) =
β ln(4/3)/ ln(β/2π) and d4f(β) = β ln(4/3)/ ln(β/2πe), while in the implementa-
tion of G6K [15], it gives a more relaxed value d4f(β) : when β < 40, d4f(β) = 0;
when 40 ≤ β ≤ 75, d4f(β) = ⌊β−40/2⌋; when β > 75, d4f(β) = ⌊11.5+0.075β⌋.
However above d4f estimations are fixed according to the β, [34] also proposed
an upper bound of d4f value estimation function based the quality of current

9

lattice basis that under GSA one can use δ to measure the quality of lattice basis
and [34] illustrates that d4fδ = lnδ

√
4/3 ≈ ln (4/3)

/
(−slope). Here the slope is

the slope value of the logarithm of Gram-Schmidt norms li for ∀i ∈ {1, ..., d}.
More detail about d4fslope (s) can see the Eq. (5) in [34].
Pump in G6K. Albrecht et al. proposed Pump in [15], which is improved based
on Progressive Sieve [16] with d4f technique [23] and the insertion tricks in [15].
There are four input parameters for Pump algorithm: lattice basis B, left insertion
bound κ, insertion upper bound dsvp and d4f value d4f(dsvp). Here κ+dsvp=d and
the upper bound of sieve dimension is dsvp − d4f(dsvp). It’s worth emphasizing
that the Pump algorithm will insert up to dsvp − d4f(dsvp) short vectors into the
basis index from κ to d by the short vector that has the shortest norm in the
short vector set obtained by each sieve on the projected sublattice Lπ[d−dsvp+i:d]

for i from κ to d. Thus, it performs a partial HKZ reduction and outputs a nearly
HKZ-reduced context as the paper of G6K [15] mentioned.
Slope in G6K. To measure the quality of lattice basis [15] use the averaged
quality measurement. It is the least squares fit coefficient of the slope of log∥b∗

i ∥,
which means that the slope closer to 0, the better basis quality.
PnJBKZ in G6K. PnJBKZ (Pump and Jump BKZ) is a BKZ-type reduction
algorithm that uses Pump as its SVP oracle. The main difference from Pump to
the traditional SVP oracle is that it can insert more than one vector into the
inputting basis of sublattice and will output a nearly HKZ-reduced context.
Thus, PnJBKZ can perform such an SVP oracle with an adjustable jump no less
than 1. Specifically, running a PnJBKZ with blocksize β and jump=J means that
after executing SVP oracle on a certain block B[i:i+β], the next SVP oracle will
be executed on the B[i+J:i+β+J] block with a jump = J rather than B[i+1:i+β+1].

3 ProPnJBKZ in Two-step mode for solving uSVPγ

In solving the uSVPγ problem, we typically use either reduction algorithms like
BKZ or search algorithms like Sieve and Enumeration, sometimes combining
them. However, the best way to combine them effectively remains uncertain.
We’ll discuss the Two-step Mode, which first applies several reduction algorithms
to improve the lattice basis quality and then uses a search algorithm to ensure
finding the target vector. This comparison is detailed in Sec. 3.1. Then, we give
a sketch of ProPnJBKZ in Sec. 3.2, where we use the Two-step mode with a
strategy selection method for solving uSVPγ .

3.1 Comparison of uSVPγ solving Mode

In this part, we introduce BKZ-only Mode and Default Mode in G6K for solving
the uSVPγ in the literature and compare them with the Two-step mode. We also
give an experiment to prove the comparison result. The main differences among
the above three modes are as follows: (1) The reduction ability of a reduction
algorithm (such as BKZ and its variants) or a special search algorithm (such as
Pump as the blue boxes in Fig. 4 shown. Pump inserts vectors into lattice basis

10

more than once, so it can also be used to improve the quality of lattice basis.
(2) The ability to find the short vector using a reduction algorithm or search
algorithm as the orange boxes in Fig. 4 shown. (3) Rather than a Heuristic
condition to call Pump in Default Mode in G6K, the Two-step mode gives the
most suitable timing of when to call the Pump in the search step.

Fig. 4: Different mode to solve the uSVPγ : BKZ-only (Left Column), Two-step (Middle Col-
umn), Default Mode in G6K (Right Column). t is the target vector of uSVPγ .

BKZ-only Mode BKZ-only mode [14, 35] (Fig. 4, left column) implements
multiple tours of lattice reduction algorithm (such as BKZ or its variants) until
solving the uSVPγ problem. The BKZ-only mode is the mainstream method in
the security estimation of LWE-based cryptosystems, such as in [25,36].

Default uSVPγ solving Mode in G6K G6K [15,24] solve the LWE problem
by primal attack, i.e. reduce LWE to the uSVPγ and solve it by calling progres-
sive PnJBKZ and a conditional Pump (The algorithm calls Pump only if the esti-
mated time cost of Pump is shorter than an upper bound computed) repeatedly.
We can extract a uSVPγ solving mode from their implement lwe_challenge.py
and name it as the Default uSVPγ solving Mode in G6K, abbreviated as default
Mode in G6K (Fig. 4, right column).

In the default uSVPγ solving mode of G6K, it will reduce the basis by a
heuristic specific blocksize strategy S0

4. After each lattice reduction by PnJBKZ
β ∈ S0, J=1, default Mode in G6K will record the time cost of the reduction
process and determine whether a Pump will finish in the same or smaller time
cost: TPump ≤ TBKZs. If it does, it will call a Pump; If not, it will skip to the next
PnJBKZ. Therefore, the condition for calling Pump is a heuristic condition in the
default uSVPγ solving Mode of G6K, which is not a condition set to solve uSVPγ

within the minimum total time cost. Meanwhile, if a Pump is triggered but this
Pump fails to find the target vector of LWE, G6K also goes back to reducing the
4 S0 = list(range(10, 50)) + [b−20, b−17] + list(range(b−14, b+25, 2)).

11

basis with progressive BKZ and resets the time recorder. The search of Pump
may also succeed before reaching the Pump dimension. For more detail, see the
“Implemented strategy and performance” part in Section 6.4 of [15].

The benefit of the default uSVPγ solving mode in G6K is that if we do not
have an accurate simulator for BKZ or PnJBKZ and we are not sure of the
solvability by a final Pump calling, then a Default uSVPγ solving Mode in G6K
will make sure in outputting the required result in a reasonable time. However,
the condition for calling Pump in G6K is heuristic, not to minimize the total time
cost and G6K sometimes enters a Pump with solving failure (see Fig. 9) because
of its over-optimistic dimension estimation and waste processing time heavily
since a Pump call is costly. Here a failed Pump means that the dimension setting
of the sieving in the Pump is over-optimistic, which makes the Pump fail to find
the target vector (Fig. 9). Besides, it might enter a Pump late and waste the
processing time of extra cost for several PnJBKZs with large blocksizes.

Two-step Mode The Two-step mode (Fig. 4, middle column) was firstly in-
formally stated in [26] for solving BDD problem and LWE problem, which calls
a series of BKZ (or its variant) first for lattice reduction and calls a search
algorithm to find the target vector at last.

In this paper, we show that a Two-step mode adapted to PnJBKZ and Pump
is more efficient in solving uSVPγ , which calls a series of PnJBKZ for reduction
first and at a good timing uses a Pump to search the unique shortest vector. Unlike
the heuristic condition of calling Pump in the default uSVPγ solving Mode in G6K,
here the main difference between our Two-step mode and default uSVPγ solving
Mode in G6K is that to minimize the total uSVPγ solving time cost, based on
our PnJBKZ simulator Alg. 2 and Pump sieving dimension estimation Alg. 3 in
Sec. 4.1, we can give the most suitable timing of calling the Pump in search step.

Experiments of Comparison among BKZ-only Mode, Default Mode
in G6K, and Two-step Mode In this part, we give an experimental result
to illustrate that for solving uSVPγ , the Two-step mode can solve an uSVPγ

instance in less time than both BKZ-only mode, and the G6K default mode while
it enters Pump at least twice. For ease of comparison, let the blocksize strategy
used in different modes be the same and simply set jump=1. We assume all of
the above three modes can solve the uSVPγ instance after running all the steps.

In our test the Two-step mode and the BKZ-only mode both run the same
BKZ tours at the beginning with blocksize from 10 to 39. However, in their
final stages to find the unique shortest vector, the Two-step mode calls a Pump,
while the BKZ-only mode calls one or more BKZ tours (as orange boxes in Fig.
4).We call a Pump-(κ, dsvp, f) and a PnJBKZ(β, J) (β<dsvp) separately on the
same lattice basis, denote cost of Pump as TPump. Table 2 shows that the reduced
shortest vector b0 after a Pump is shorter than that after a PnJBKZ(55, 1) while
TPump ≤ TPnJBKZ. Thus calling a Pump is more likely to find a shorter vector
compared to the PnJBKZ in no more time cost than PnJBKZ. So the Two-step
mode can solve an uSVPγ instance in less time than the BKZ-only mode.

12

On the other hand, both the Two-step mode and the G6K default mode ends
with a Pump which outputs the unique shortest vector. Their differences are at
the earlier stage, where the Two-step mode always calls BKZ, while the G6K
default mode may call an early Pump without a solution and such a Pump is less
beneficial than calling a BKZ in same cost to increase the quality of lattice basis.

Table 2: Norm of b0 after PnJBKZ
and Pump with equal time limits.

(n,α)† Cost‡ ln(∥b0∥2)
PnJBKZ Pump(L[κ:d])

(55,0.005) 23.9 15.82 10.55
(40,0.015) 6.6 14.76 11.27
(45,0.010) 18.0 15.04 11.12
(40,0.020) 17.1 14.76 12.05

† LWE Challenge Lattice basis with (n,α).

Table 3: PSC after PnJBKZ and Pump
with equal time limits.

(n,α) Cost‡ log2(PSC§)
PnJBKZ Pump(L[κ:d])

(55,0.010) 6.0 7.94 8.44
(60,0.005) 10.3 11.69 12.01
(70,0.005) 12.6 16.01 17.34
(75,0.005) 14.9 21.68 22.76

§ Here the cost unit of PSC is second.
‡ The cost in minutes while calling the

corresponding algorithm.

The comparison between the Two-step mode and G6K default mode when
G6K enters Pump at least twice, we show that an early Pump is less helpful in
solving uSVPγ than an early PnJBKZ if both of them run in same time cost. Let
the time cost of Pump for finding the target norm on the specific lattice basis, i.e.
PSC, be a standard of measuring the quality of the lattice basis. Lattice basis
with low PSC can be regarded as better quality. Our experiments separately call
a PnJBKZ or Pump on the same lattice basis with the same reduction of BKZ-β, β
from 10 to 19. Table 3 shows that basis quality after a PnJBKZ(60, 5) reduction
is better than that after a Pump reduction while TPnJBKZ ≤ TPump. The latter
basis quality is estimated by the PSC estimation Alg. 3. So, in the G6K-default
mode, if it enters a Pump with no solution, the quality of the returned lattice
basis will be worse than that after a PnJBKZ reduction under the same time
limit. In conclusion, the G6K-default mode is slower than the Two-step mode.

In Fig. 5, we compared the time cost among these three modes under the same
blocksize strategy4. The remaining time cost in Fig. 5 has different meanings in
each mode. In the case of BKZ-only mode, the remaining time represents the
time cost of BKZ-only mode will continue to run progressive BKZ with remaining
strategy 4 until finding the target vector after finishing the reduction of Pre-BKZ
as Tab. 4 shown. In the case of G6K mode, the remaining time is the time cost of
G6K mode to continue to run remaining reductions as strategy4 first and enters
a conditional Pump (if Pump fails it continues the above process) until finding the
target vector. As for Two-step mode, the remaining time means the time cost of
running the final Pump. Here the terminal condition of the reduction in Two-step
mode is considered to minimize the total time cost of solving uSVPγ . In Fig. 5,
the Two-step mode is 1.2∼2.9 times faster than that of default G6K mode and
3.1∼18.9 times faster than that of BKZ-only mode in tested LWE instances.

13

(n,α)⊛ Pre-BKZ strategy [β]

(67,0.005) [10,11,· · · ,49,48]
(55,0.010) [10,11,· · · ,49]
(59,0.010) [10,11,· · · ,49, 69,72,75,77]
(61,0.010) [10,11,· · · ,49,71,74,77,79,81,85]

⊛ Lattice basis from randomly generated LWE
instance with (n, α).

Table 4: Pre-BKZ strategy4 in Fig. 5. Fig. 5: Different Modes Comparison on Machine
C with threads = 32 and gpus = 2.

3.2 Algorithm overview

Our Improved Progressive BKZ with Sieve(ProPnJBKZ) Algorithm is designed
in Two-step mode and a strategy selection algorithm, which will be introduced
in Sec. 5. It aims to speed up the efficiency for solving the uSVPγ and can be
described as the following: input a lattice basis B, and the distribution function
F (⋆,D) of the (projected) target norm (see Sec. 4.2). Although F (⋆,D) can also
be either simplified as a fixed value or a function solely related to the degree ⋆
of the distribution of (projected) target norm and the probability distribution
D of each element in target vector (e.g. F (β,N(0, σ2)) = σ2 ·χ2

β). To accurately
estimate the length of short vectors, we use a function to represent the actual
distribution as input. This approach makes the estimation of the length of the
shortest vector in the lattice more accurate, thereby enhancing the success rate of
the final sieving process by setting an appropriate sieving dimension. To minimize
the total cost, it first generates an optimized blocksize and jump strategy S using
a strategy selection algorithm (EnumBS or BSSA, see Sec. 5) and reduce B by a
series of PnJBKZ(β, J) according to S. Then it will call a Pump to find the target
vector. The parameter selection of Pump follows Alg. 3, which leads to finding
the unique shortest vector after Pump. The detailed process is as Alg. 1.

We improve the heuristic uSVPγ solver in G6K from two aspects: firstly,
we use a Two-step mode with the optimized blocksize strategy. Besides, we can
choose the optimized jump(≥1) strategy rather than always keeping the jump=1.

Although the experiments in [15] suggest that compared with the reduction
strategy of jump=1, the reduction strategy of jump value with (1<jump<4) is not
beneficial in small blocksize (around 60∼80), we show that it is beneficial in large
blocksize (from 80 to 134) and large jump (with 1, 4 and 9). More precisely, [15]
shows that the reduction strategy of jump=3 requires similar running time to
obtain the same quality of lattice basis reduced by the strategy of jump=1, with
a larger memory consumption. However in our experiments, we give the experi-
ment with a setting of larger jump strategy (with 1, 4, and 9), and find out that
the wall time for reaching the same lattice basis quality decreases significantly.
More details can be found in Fig. 6, which shows that the PnJBKZ with the

14

jump>1 has a smaller time cost (3∼6 times faster) while achieving the same re-
duction quality as that of the PnJBKZ with jump=1. Therefore, to find proper
PnJBKZ reduction parameters, it is essential to construct a PnJBKZ simulator
to handle the case for jump>1 which we will discuss in Sec. 4.1.

input : B, F (⋆,D);
output: The unique shortest vector v;

1 Function ProPnJBKZ(B, F (⋆,D)):
2 B = LLL(B);
3 Generate Strategy S using EnumBS or BSSA;
4 for (β, J) ∈ S do
5 B← Run a PnJBKZ(β, J) tour on basis B;
6 dsvp, _ ← PumpDimEst(rr(B), F (⋆,D)); f ← d4f(dsvp);
7 B ← Pump(B,d− dsvp, dsvp, f);
8 return v← b0;

Algorithm 1: Improved Progressive PnJBKZ

4 Simulators in Two-step Mode of Solving uSVPγ

In this section, we construct the simulators we need to design the optimized
Blocksize and Jump Strategy for obtaining the expected minimum cost of the
Two-step mode of solving uSVPγ . Specifically, in Sec. 4.1, we first give the con-
struction of the PnJBKZ simulator and show the validation experiments of the
PnJBKZ simulator. Then we give the Pump cost model and the sieving dimension
estimation of the last Pump in Two-step solving mode in Sec. 4.2.

Set Gram-Schmidt vectors reduced by one tour of BKZ-β and PnJBKZ(β, J)
respectively as l

′

i=ln(∥b∗′

i ∥) and l
′′

i =ln(∥b∗′′

i ∥), for i ∈ {0, · · · , d− 1}. Denote
BKZSim by the BKZ simulator proposed in [10]. Denote our PnJBKZ simulator
as PnJBKZSim to simulate the change of lattice basis B after calling a PnJBKZ.

4.1 PnJBKZ Simulator

The first step in the Two-step solving mode is using a series of well-chosen
PnJBKZ(β, J, t) to reduce the lattice basis. As we shown in Fig. 6, a reduc-
tion strategy of PnJBKZ with jump>1 can improve the reduction efficiency and
how to properly choose the PnJBKZ reduction parameters (β, J, t) is the key.
The reduction strategy of PnJBKZ with jump>1 shown in Fig. 6 is a heuris-
tic reduction strategy that can be improved. Thus, it is necessary to construct
a polynomial time-accurate PnJBKZ simulator that can accurately predict the
reduction effort of the PnJBKZ algorithm. Since the time cost of a PnJBKZ is
exponential according to β, we can not find the optimized reduction strategy by
actually running all possible reduction strategies in practice. Especially, when
trying to solve high dimension LWE challenges, the β needed is quite big.
The PnJBKZ Simulator Construction. Before we give the detailed con-
struction of PnJBKZ simulator, let’s briefly review the main idea of the BKZ
simulator proposed in [10], which uses Gaussian Heuristic to predicate BKZ-β.

15

Fig. 6: Efficiency Speedup in Reduction by Jump strategy.Test on a 252-dimension lattice
basis. The wall time and slope are averaged over 5 instances for each test. Each instance ran on
machine C with 2 GPUs, and 32 threads. The points are labeled by β.

Let L(B(i)) to represent the lattice basis after the first i blocks’ reduction and
L(B(0)) be the initial lattice basis. For ∀i ∈ [1, d], set li = ln ∥b∗

i ∥ and l
′

i be the ln
value of ∥b∗

i ∥ after one tour reduction of BKZ-β. The BKZ simulator proposed
in [10] first will calculate Sim(l

′

0) = ln
(
GH(L(B(0)

π[0:β−1])
)
≈ 1

2 ln (β/2πe) +

1
β ln

(
Vol(L(B(0)

π[0:β−1]))
)

under Gaussian Heuristic (GH). Then it calculates

Sim(l
′

1) :=ln
(
GH(L(B(1)

π[1:β]))
)
≈ 1

2 ln (β/2πe)+ 1
β

(
ln Vol(L(B(0)

π[0:β]))− Sim(l
′

0)
)

under GH and the information of Sim(l
′

0). Since the insertion of new b0 will lead
to the changes of the length of Gram-Schmidt (GS) vectors, i.e. for ∀i ∈ {2, ..., d},
li changes to some unknown values. In particular, Vol(L(B(1)

π[0:β]))=Vol(L(B(0)

π[0:β])),
but l0 changes to l

′

0 after the insert of new b0. So Vol(L(B(0)

π[1:β])) =
∏β

i=1∥b
∗
i ∥,

after the insert of new b0 it will change to Vol(L(B(1)

π[1:β])) =
(∏β

i=0∥b
∗
i ∥
) /
∥b∗′

0 ∥.
Here Sim(l

′

0) is a simulated approximate value of l
′

0 by GH. Iteratively cal-
culating all remaining unknown Sim(l

′
i) by Sim(l

′
i) = ln

(
GH(L(B(i)

π[i:i+β−1]))
)

≈ 1
2
ln (β/2πe) + 1

β

(
ln Vol(L(B(0)

π[0:i+β−1]))−
∑i−1

j=0 Sim(l
′
j)
)
, for ∀i ∈ [0, d− β]. For

the last β Sim(l
′

i) it gradually decrease the blocksize to 2. Then such a simulator
can predict the value of each l

′

i in B∗′ which is reduced by one tour of BKZ-β.
However, the BKZ 2.0 simulator [10] cannot be used directly to simulate the

behavior of PnJBKZ when jump>1. Set jump = J . Let L(B(i)) to represent the
lattice basis after the first i vector was inserted in i-th position of GS vectors and
L(B(0)) be the initial lattice basis. We observe that when J > 1, each time after
a new b∗

i inserting at the first position of the block B
(i)
π[i:k], the J − 1 norms of

Gram-Schmidt vectors b∗
i+1, ...,b

∗
i+J−1 will change and remain unknown. These

unknown norms prevent the BKZ 2.0 simulator [10] from predicting the norm of
the first Gram-Schmidt vector in the next block. Our idea is that when J > 1, we

16

use the property of HKZ reduced lattice basis to predict these unknown norms
between adjacent blocks. Because as the description of Pump given in Section 4.1
of G6K [15], it illustrates that when turning on sieving during the pump-down
stage, one can ideally obtain an HKZ reduced lattice basis after the reduction
of a Pump. Meanwhile, turning on sieving during the pump-down stage already
be the default operation in the implementation of the GPU version of G6K [24].
We conclude this result in Heuristic 1. Later our experiments will show that in
practice, Heuristic 1 indeed holds under the property reduction parameter.

Heuristic 1 (Pump outputs HKZ reduced basis) Given a d-dimensional
lattice basis B with reduction quality that slope equals s. Under reduction param-
eter J ≤ d4fslope (s) ≪ β ≤ d. For κ ≡ 1 mod J, κ < d − 1, Bπ[κ,min{κ+β,d}]
reduced by a Pump(Bπ[κ,min{κ+β,d}], κ, β, f ≤ d4fslope (s)), the first J vectors in
each block Bπ[κ,min{κ+β,d}] are almost HKZ reduced, i.e. under Heuristic 4, for
i ∈ [κ, κ+ J − 1], the expected norms of ∥b∗

i ∥ ≈ GH(L(Bπ[i:min{κ+β,d}])).

Here d4fslope (s) is an upper bound of the d4f value estimation function based on
the quality of the current lattice basis proposed in [34]. d4fslope (s) := lnδ

√
4/3 ≈

ln (4/3)/(−s). More detail about d4fslope (s), see the Eq. (5) in [34].
Let l′′i be the logarithm of each Gram-Schmidt norm after the reduction of one

tour of PnJBKZ(β, J). Under GH, we can simulate each l′′i and the simulation
values denoted as Sim(l′′i) = ln

(
GH

(
L(B(i)

π[i:k])
))

. Here k = i− (i mod J) + β

when i ∈ [0, d− β − 1]. k = d, when i ∈ [d− β, d− 1].

The key is how to calculate the volume of L(B(i)
π[i:k]). Same as BKZ during

the process of PnJBKZ reduction the volume of L(B(i)
π[0:k]) equals L(B(0)

π[0:k]).
Suppose we already know Sim(l′′j), for ∀j ∈ {0, ..., i − 1}, then we calculate
ln

(
L(B(i)

π[i:k])
)
:= ln

(
Vol

(
L(B(0)

π[0:k])
))
− ln

(
Vol

(
L(B(i)

π[0:i−1])
))

=
∑k

j=0 lj −∑i−1
j=0 Sim(l′′j). Here k = i− (i mod J)+β when i ∈ [0, d− β − 1], and k = d for

rest cases. Under GH, for i ∈ [0, d− 1], we can iteratively calculate Sim(l′′i) :=

1

2
ln

(
k − i

2πe

)
+

1

k − i

(
k∑

j=0

lj −
i−1∑
j=0

Sim(l′′j)

)
, k =

{
i − (i mod J) + β, i ∈ [0, d − β − 1]

d, i ∈ [d − β, d − 1]

(1)

In other words, we only need to input the initial Gram-Schmidt norms li =
ln (∥b∗

i ∥), i ∈ {0, · · · , d− 1} of the lattice basis. Without performing PnJBKZ
reduction, we can simulate l′′i by Eq. (1), which describes the change of lattice
basis after each tour of PnJBKZ(β, J). Here l′′i are these actual Gram-Schmidt
vector norms of lattice base after reducing by one tour of PnJBKZ(β, J). We
give a detailed algorithm description of the PnJBKZ simulator in the Alg. 2.

17

input : rr, blocksize β ∈ {45, · · · , d}, jump J and number of tours t.
output: A prediction for the logarithms of the Gram-Schmidt norms

l′′i = ln (∥b′′∗
i ∥) after t tours PnJBKZ-β reduction with jump is J .

1 Function PnJBKZSim(rr, β, J , t):
2 for i← 0 to 44 do
3 ri ← average ln (∥b∗

i ∥) of a HKZ reduced random unit-volume
45-dimensional lattice;

4 for i← 45 to β do
5 ci ← ln

(
Vi (1)

−1/i
)
= ln

(
Γ (i/2+1)1/i

π1/2

)
;

6 for j ← 0 to t− 1 do
7 flag ← true; //flag to store whether L[k,d] has changed
8 for k ← 0 to d− β − 1 do
9 β′ ← min (β, d− k); //Dimension of local block

10 h← min (k − (k mod J) + β − 1, d− 1);
11 ln (V)←

∑h
i=0 li −

∑k−1
i=0 l′′i ; //Let

∑−1
i=0 l

′′
i = 0

12 if flag = True then
13 if ln (V) / (β′ − (k mod J)) + cβ′−(k mod J) < lk then
14 l′′k ← ln (V) / (β′ − (k mod J)) + cβ′−(k mod J);
15 flag← False;
16 else
17 l′′k ← ln (V) / (β′ − (k mod J)) + cβ′−(k mod J);

18 for k ← d− β to d− 46 do
19 β′ ← d− k; h← d− 1; ln (V)←

∑h
i=0 li −

∑k−1
i=0 l′′i ;

20 if flag = True then
21 if ln (V) /β′ + cβ′ < lk then
22 l′′k ← ln (V) /β′ + cβ′ ; flag← false;
23 else
24 l′′k ← ln (V) /β′ + cβ′ ;

25 ln (V)←
∑h

i=0 li −
∑k−1

i=0 l′′i ;
26 for k ← d− 45 to d− 1 do
27 l′′k ←

ln(V)
45

+ rk+45−d;
28 for k ← 0 to d− 1 do
29 lk ← l′′k ;

30 return l0, · · · , ld−1;
Algorithm 2: PnJBKZ Simulator

Besides, we need to remind that in simulating the length value of GS vectors,
when i ≡ 1(mod J), the index i of GH

(
L
(
B

(i)

π[i:i+β−(i modJ)]

))
in our simulator

is the same as that of GH
(
L
(
B

(i)

π[i:i+β]

))
in the BKZ-2.0 simulator, the calcu-

lation form looks same in two simulators. However, the simulated volumes of
projected sublattice are different in the two simulators. Because in BKZ 2.0
simulator [10] Vol(L′

(
B

(i)

π[i:i+β]

)
=
∏i+β−1

j=0 ∥b∗
j∥
/∏i−1

j=0∥b
∗′
j ∥ and it calculates ∥b∗′

j ∥

by ∥b∗′
j ∥:=GH

(
L′
(
B

(i)

π[j:j+β]

))
, while in PnJBKZ simulator Vol(L′′

(
B

(i)

π[i:i+β]

)
=

18

∏i+β−1
j=1 ∥b∗

j∥
/∏i−1

j=1∥b
∗′′
j ∥ and ∥b∗′′

j ∥ obtained from Eq. (1). So when i ≡ 1(mod J)

the calculation of GH
(
L
(
B

(i)

π[i:i+β]

))
is different in different simulators.

Considering the influence of optimistic d4f used in PnJBKZ in practice
The above discussion did not consider the influence of using dimension for free
(d4f) technology. The implementation of PnJBKZ used in [15] and [24] default
use d4f technology to improve the efficiency of reduction. However, compared
with the theoretical d4f estimation in [23], the default d4f function used in the
implementation of PnJBKZ (both [15] and [24]) is an optimistic heuristic setting.
See Section 2.2. Such an optimistic d4f setting in the implementation of G6K
leads to the actual reduction effort of a PnJBKZ(β, J) with the optimistic d4f
setting is more closed to a PnJBKZ(β′, J) with the theory d4f estimation value
rather than a PnJBKZ(β, J) with the theory d4f estimation value. Here β′ ≤ β.

However, the PnJBKZ(β, J) with the optimistic d4f setting is quite efficient
in practice. Meanwhile, our PnJBKZ simulator is designed for predicting the
behavior of PnJBKZ(β, J) with the theory d4f estimation value. Therefore, to
more accurately predicate the behavior of the PnJBKZ which uses the optimistic
d4f function, we give the following simulation strategy. Specifically, for each
blocksize β, we calculate βsim = β − d4fgap(β), here d4fgap(β) = 0, if β<40;
d4fgap(β) = ⌊β − 40/2 − β ln(4/3)/ ln(β/2πe)⌋, if 40 ≤ β ≤ 75; d4fgap(β) =
⌊11.5 + 0.075β − β ln(4/3)/ ln(β/2πe)⌋, if β>75. The function d4fgap(β) aims
to calculate the gap between the optimistic d4f setting in the implementation of
G6K and the theory d4f estimation in [23]. Then let βsim = β − d4fgap(β) as
the blocksize input of Alg. 2 when using PnJBKZ simulator. Such a simulation
strategy is based on the theoretical d4f estimation function proposed in [23] to
adjust the over-optimistic d4f used in the default implement of PnJBKZ [15].

Furthermore, when predicting the behavior of the PnJBKZ with a quite big
jump value which close to the upper bound of the d4f value under the quality
of current lattice basis, by using the more refined d4f value estimation proposed
in [34], we can further give more refined PnJBKZ simulator to predicate the
behavior PnJBKZ which uses the optimistic d4f function. Specifically, using
the information of the quality of the current lattice basis, like the slope value
s, [34] calculates the refined d4f value estimation by d4fslope (s) = ln (4/3)

/
(−s).

See Section 2.2 or [34] for more details about this estimation. In this case J ≤
d4fslope (s), we calculate βsim = β−d4fslope (s) , and replace each blocksize β by
βsim when calling Alg. 2. Finally, the comparison of PnJBKZ estimations under
different simulation strategies can be seen in Section 3.2 of [34]. The comparison
results indicate that using the simulation strategy we mention above, can be
more accurate in predicting the behavior of PnJBKZ which uses the optimistic
d4f function. In the rest part of this paper, we default use the above simulation
strategies to predicate the practical reduction effect of the PnJBKZ(β, J) which
uses the optimistic d4f setting in practice.

Verification experiments of Heuristic 1 and PnJBKZ Simulator In this
part, we show that Heuristic 1 is held when the jump parameter J of PnJBKZ

19

is below a specific upper bound. Therefore it is reasonable to use the properties
of the HKZ reduction basis to simulate the actual reduction effect of PnJBKZ.

In particular, we set the upper bound of jump value J to be d4fslope(s). First
of all, in the implementation of Pump, Pump inserts the short vector only in the
first d4f(β) index in each block. Here d4f(β) actually is the optimistic d4f value.
Since d4fslope(s) is the upper bound of d4f value under the quality of current
lattice basis with slope value s, any jump value J bigger than this value will lead
to that there are always J − d4fslope(s) > 0 vectors in the front of each block
reduced by a Pump no longer satisfied the property of HKZ reduced. Therefore,
only when J ≤ d4fslope(s) we can ensure Heuristic 1 is held and our PnJBKZ
simulator is accurate. Next, we give numerous experiments to verify this.

(a) β=85, Jump=1 (b) β=85, Jump=12

(c) β=100, Jump=1 (d) β=100, Jump=12

Fig. 7: Ratio l′′i /Sim(l′′i). Run PnJBKZ(β, J) reduction on a 222-dimension LWE lattice basis
(n=60,α=0.010) and record the ratio values. We test 20 times for each reduction parameter.

In this part, our experiments tested on the TU Darmstadt LWE Challenge
lattice basis with parameter (n=60, α=0.010), and before running the PnJBKZ
simulator we did small block reduction to remove the influence of q-ary vectors
in the LWE Challenge lattice basis. After our pre-processing, we obtain a 222-
dimension lattice basis which has a few q-ary vectors in the front of the lattice
basis with a slope value equal to −0.0248 (the walltime of such a pre-processing
within a few minutes). Then we calculate the ratio li

′′/Sim(li
′′) for i ∈ [0, d− 1]

in each tour of PnJBKZ’s reduction, see Fig. 7. Here li′′ is the average logarithms
of these Gram-Schmidt vector lengths obtained from 20 independent reduction
experiments that use the same reduction parameter (β, J, tours) do 20 times Pn-

20

JBKZ reduction respectively, and Sim(li
′′) is the simulated logarithm of lengths

of Gram-Schmidt vector which are calculated by Eq. (1).

(a) β = 85, jump = 12, ♯tours = 13 (b) β = 100, jump = 12, ♯tours = 13

(c) β = 85, jump = 12, ♯tours = 13 (d) β = 100, jump = 12, ♯tours = 13

Fig. 8: Overall Prediction effect of PnJBKZ simulator. Ratio l′′i /Sim(l′′i). We perform
the experiments on a reduced lattice basis of LWE Challenge (n=60,α=0.010) with slope value
s=−0.0248 when jump increasing to the minimum theoretical upper bound ⌈d4fslope(s)⌉=12. We
test also 20 times for each reduction parameter and show the average value of the experiments.

We calculate the Sim(li
′′) strictly according to the property of the HKZ

reduction basis and Heuristic 4. Therefore, in addition to being one of the criteria
for measuring the accuracy of the PnJBKZ simulator, this ratio li

′′/Sim(li
′′) can

also be used as a criterion for judging whether Heuristic 1 is held. In particular,
it can be seen from Fig. 7 that for β from 85 increasing to 100 and jump from
1 increasing to 12, which is the minimum theoretical upper bound value under
the current quality of lattice basis: d4fslope(s = −0.0248) ≈ 11.6 ≤ 12. When
jump ≤ ⌈d4fslope(s = −0.0248)⌉ = 12, even the tours increase to 12, all most

21

of the ratios li
′′/Sim(li

′′) are within range: [0.95,1.05] (the rest ratios are also
within range [0.90,1.10]), indicating that Heuristic 1 is held when J ≤ d4fslope(s).
Moreover, this also is verified by (e) and (f) in Fig. 8 when the tours increase to
13. Meanwhile, the PnJBKZ simulator using Eq. (1) as the approximate estimate
of the actual value li′′ can already reflect how the average of the norms of Gram-
Schmidt vectors change during each tour’s reduction of PnJBKZ(β, J) which
uses the optimistic d4f setting in practice.

We set SimError(♯tours) =
∑d−1

i=0

(
∥b∗

i ∥(♯tours) − Sim(∥b∗
i ∥)(♯tours)

)2, where
♯tours represents the number of current tours and Sim(∥b∗

i ∥)(♯tours) are the
lengths of Gram-Schmidt vectors predicted by PnJBKZ simulator with ♯tours.
Then we give Fig. 8 which shows that the overall prediction error of the PnJBKZ
simulator with different jumps is similar to that of jump=1. More verification
experiment results with different reduction parameters on different lattice bases
can be seen in Appendix C. In addition, Table 6 and Appendix H also show
that reduction on the LWE challenge lattice basis under completely different re-
duction parameters (different blocksize and jump size strategies), the quality of
lattice basis: slope value predicted based on our PnJBKZ simulator is very close
to that of obtained through actual reduction. Therefore, Table 6 and Appendix
H also indicate that the PnJBKZ simulator can accurately predicate the actual
average reduction effect of PnJBKZ with 1 ≤ J ≤ d4fslope(s). For selecting the
optimized reduction strategy PnJBKZ simulator is accurate enough.

4.2 Pump Cost Model and Expected Cost for Last Pump

Pump Cost Model Given sieve dimension β, we set TPump(β) as the time
cost of a Pump since the main cost of a β-dimensional Pump can be regarded
as a β-dimensional progressive sieve, i.e. TPump(β)=

∑β
j=β0

Tsieve(j) ≤ 2c·β0 ·
2c·(β+1)+o(β+1)/(1− 2c) ≈ 2c·β+c1 . β0 is the dimension of initial sieving in Pump
(β0 set as 30 in G6K, 50 in G6K-GPU), Tsieve(j) is the cost of one j-dimensional
sieve, c and c1 are the coefficients of time cost related to sieve algorithm.

The G6K (or its GPU version) implementation requires O(β) memory and
O(β) computational cost to generate the SimHash value, which is used to find
the nearest neighbor of each vector. Thus, an O(2cβ)-time and O(2c2β)-space
algorithm actually requires O(2cβ + n · 2c2β). Set c = 0.367 and c2 = 0.2075
according to Fig. 7 in [24] and construct the practical Pump time cost model as
TPump(β) = a1 ·2cβ+c1 +a2 ·2c2β+c3 , then we can obtain the practical Pump time
cost model (as Fig. 23 shown) through the curve fitting method. More detail of
our practical Pump cost model shown in the Appendix D.
Sieving Dimension Estimation and Expected Cost for Last Pump.
Except for PnJBKZ, solving uSVPγ requires determining the sieving dimension
and expected PSC in the final Pump step. We propose PumpDimEst (Alg. 3) for
estimating the sieving dimension and PSC to solve general uSVPγ with arbitrary
target vector distributions.

Specifically, F (⋆,D) as the input value of Alg. 3 is a distribution function,
which describes the probability distribution of the norm of the target vector

22

projected on the β-dimensional projected sub-lattice. Let ⋆ = β, β represents
the dimension β of projected lattice Lπ[d−β:d] and D is the distribution of the
squared length ∥πd−β(t)∥ of the projected target vector πd−β(t) ∈ Lπ[d−β:d]. The
idea, which considers the norm of the projected target vector on the sub-lattice
as a random variable rather than an expected value, was first proposed in [36].

input : rr, F (⋆,D);
output: dsvp, PSC;

1 Function PumpDimEst(rr, F (⋆,D)):
2 for dsvp ← dstart to d do
3 Psuc(dsvp) ← Pr

[
x← F (dsvp,D) : x ≤

(
GH(rr[d−dsvp:d])

)2];
4 if Psuc(dsvp) ≥ 0.999 then
5 return dsvp, PSC(dsvp);

Algorithm 3: Dimension and PSC Estimation for Pump on solving uSVPγ .
In Alg. 3, the expected Pump Solvable Cost PSC(dsvp) is the estimated ex-

pected cost of the final Pump. Considering the progressive sieve in Pump, we
account for both failure and success probabilities. The success probability of a
β-dimension progressive sieve denoted as Psuc(β). The event Eβ means finding
the target vector precisely at dimension β during sieving with success probabil-
ity Pr(Eβ)=Psuc(β) − Psuc(β − 1). The expected time cost of Eβ is TPump(β −
d4f(β)) ·Pr(Eβ). Iterating β from β0 to dsvp, then PSC(dsvp)=

∑dsvp

β=β0
[TPump(β−

d4f(β)) · (Psuc(β)− Psuc(β − 1))], where Psuc(dsvp) ≥0.999.
In the case of solving standard form LWE, the fastest solving algorithm for

it is the primal attack. The primal attack solves LWE problem by transforming
it to uSVPγ Problem and then call a uSVPγ solver to solve it. Its target vector
t = (e,±1) is a combination of ±1 and the noise vector e ∈ Zm

q from a discrete
Gaussian distribution N(0, σ2) with standard deviation σ. Then, the probability
distribution of squared norm of target vector in β-dimensional sub-lattice can
be described as F (β,N(0, σ2)) = σ2 · χ2

β .
As mentioned in Sec. 6.4 in G6K paper [15], the estimation of dsvp in the

default G6K uses the estimation originally given in [14] and experimentally jus-
tified in [32]. It computes the expected norm of the projected target vector
∥πd−dsvp

(t)∥ ≈ σ
√
dsvp. It declared that it satisfies the condition σ

√
dsvp ≈

∥πd−dsvp
(t)∥ ≤ GH(Bπ[d−dsvp]), then the projected shortest vector may be in

the projected sub-lattice. It outputs the minimum value dsvp such that the
inequality σ

√
dsvp ≤ GH(Bπ[d−dsvp]) holds and take it as the upper bound

of sieving in the Pump. Fig. 9 shows that even if σ
√

dsvp ≤ GH(Bπ[d−dsvp]),
∥πd−dsvp

(t)∥ is possibly larger than GH(Bπ[d−dsvp]), i.e. estimating the upper
bound of Pump by the expected value is over-optimistic. The red line shows that
the norm of projected vector of our estimated dimension value satisfies the con-
dition ∥πd−dsvp (t)∥ ≤ GH(Bπ[d−dsvp]) by testing 100 trials of LWE instances.
Because ∥e∥2 is a randomly positive variable following chi-squared distribution
rather than a fixed value. It is more reasonable to consider a high success proba-
bility (≥0.999) for recovering the target vector with a suitable sieving dimension
by setting F (β,D) = σ2χ2

β in Alg. 3 to solve LWE problem.

23

(a) α = 0.010 (b) α = 0.015

Fig. 9: The failure probability of the estimated dimension for last Pump using LWE
instances. For each (n, α), 100 randomly LWE instances are generated. The black line shows that
using the estimated dimension [14,32] in Sec. 6.4 in G6K paper [15] has a non-negligible probability
s.t. ∥πd−dsvp (t)∥>GH(Bπ[d−dsvp]) ≥ σ

√
dsvp, which makes it fail to find the projection of the target

vector because the projected norm of t is larger than the norm of the shortest vector in Lπ[d−dsvp], i.e.
Pr(∥πd−dsvp (t)∥>GH(Bπ[d−dsvp]) : dsvp estimated from [14])>0. The red line shows that using the
estimated dimension computed by Alg. 3 in our work, the condition ∥πd−dsvp (t)∥ ≤ GH(Bπ[d−dsvp])

can always be satisfied, i.e. Pr(∥πd−dsvp (t)∥>GH(Bπ[d−dsvp]) : dsvp estimated from Alg.3)=0.

5 Blocksize and Jump Strategy Optimization for
ProPnJBKZ

In this section, we detailly present the strategy selection algorithm EnumBS. De-
tails about BSSA are available in Appendix E. It is a novel approach for deriving
a blocksize and jump strategy with minimum simulated time cost. We provide
both formal proofs (based on the Estimator Stability Assumption proposed in
Sec. 5.1) and experimental results demonstrating its superior performance com-
pared to the ProBKZ-based algorithm in solving uSVPγ instances in less time.

5.1 Estimator Stability Assumption

In this part, we give some heuristic assumptions to support the strategy genera-
tion algorithms which will be discussed in Sec. 5. Since the theoretical time cost
of the sieving algorithm is related only to the lattice dimension, we assume that
our time cost model fits well for almost all lattices. Thus, we give Heuristic 2.

Heuristic 2 The time cost of the practical time cost model (Appendix D) is
close to the actual time cost of the Pump algorithm and PnJBKZ algorithm.

In addition to the stability of the time cost, the reduction effect of a fixed
PnJBKZ(β, J) is also stable. Same as BKZ-β, the quality of the lattice basis is

24

not always improved by using a fixed PnJBKZ(β, J) to do the reduction. Based
on the analysis of using the dynamical system, [37] already demonstrated that
using a fixed PnJBKZ(β, J) tour repeatedly for reduction can only gradually
approach a certain reduction basis. In particular, after running enough reduction
tours of a fixed PnJBKZ(β, J), the norm values of each vector in Gram Schmidt
lattice basis gradually approaches PnJBKZ(β, J) fully reduced fixed values which
related to the volume of lattice basis, more detail see Section 3.2 of [37]. Besides
Section 4 of [37] also proves that the reduction effect of a fixed PnJBKZ(β, J)
on the norm of each Gram Schmidt vector of lattice basis does converge to
some certain values which relate to the volume of lattice basis and [37] gave
an estimation of the maximum number of tours required for convergence. Then
we give the following proposition. For convenience, here we use slope as the
standard to measure the quality of a lattice basis reduced by the lattice reduction
algorithm (other standards to measure the quality of a lattice basis are also held).

Proposition 1. For a fully PnJBKZ(β, J) reduced lattice basis B with current
slope s. Then, the slope of B can not be further improved better than s if one only
uses PnJBKZ(βnew, Jnew) tour to do reduction for any β ≥ βnew, Jnew ≥ J .

5.2 Blocksize and Jump Strategy Enumeration Algorithm

The advantage of BSSA is that the algorithm runs in polynomial time. However,
there are also some disadvantages, we list two of them.

First, the reduction effect of a BSSA strategy is not estimated accurately.
Each intermediate result of lattice basis is fitted into one of the nodes, which
are some BKZ-β reduced basis, but the actual basis may have better quality
than the node. Therefore, a BSSA strategy may overestimate the time cost to
reach a BKZ-β reduced basis and we could explore ways to develop a more ef-
ficient reducing strategy. Second, BSSA also misses many potential optimized
strategies. For example, BSSA only considers improving a BKZ-β reduced basis
to a BKZ-(β+1) reduced basis by using a fixed blocksize of BKZ-β′ tour(s) re-
duction, β′>(β+1). However, the reduction with minimum expected time cost
between the two nodes might be a progressive reduction that blocksize progres-
sive increased or jump progressive decreased rather than blocksize fixed reduc-
tion, which cannot be found by BSSA. The problems can be solved by using a
blocksize and jump strategy enumeration algorithm abbreviate as EnumBS to
enumerate all possible blocksize and jump reduction strategies, so we can find
the strategy with minimum simulated time cost among them. We use the “sim-
ulated time cost” since we generate the strategy through the practical time cost
(Appendix D), which remains a slight disparity from the actual cost.

However, an enumeration algorithm is inefficient, and cannot be used in prac-
tice since it costs an exponential time overhead. Based on Heuristic 3, we improve
the algorithm by pruning unnecessary strategies in the branch and bound.

25

Heuristic 3 Given two sufficiently reduced lattice bases B,B′ with Gram-Schmidt
basis lengths rr, rr′. If PSC(rr) ≥ PSC(rr′), then PSC(PnJBKZSim(rr, β, J, 1)) ≥
PSC(PnJBKZSim (rr′, β, J, 1)) also holds for any β and J ≤ d4fslope(s).

Heuristic 3 is a variant of the Heuristic used in [12] based on for their strategy
selection method. The main difference between the Heuristic 3 used in [12] and
Heuristic 3 is that we use PSC rather than FEC for comparison.

input : rr0, F (⋆,D), Jmax(⋆)← d4fslope(⋆);
output: Tmin , Smin;

1 Function EnumBS(rr0, F (⋆,D), Jmax(⋆)← d4fslope(⋆)):
2 k ← 1; d← len(rr0); _,PSC(0) ← PumpDimEst(rr0, F (⋆,D));
3 bs(0) ← (rr0, [], 0,PSC(0)); BS ← {bs(0)};
4 while k ≤ ♯BS do
5 bs← BS [k]; (β, J)← the last element of BS[k].S;
6 (β, J) ← next (β, J) s.t. PSC(PnJBKZSim (bs.rr, β, J , 1)) < bs.PSC;
7 while (β, J) is not None do
8 bs∗.S← S ∪ [(β, J)], update bs∗ under bs∗.S;
9 BS ← BS ∪ {bs∗};

10 if ∃ bs ∈ BS s.t. bs∗.PSC ≥ bs.PSC and
bs∗.TPnJBKZs ≥ bs.TPnJBKZs then

11 BS ← BS \ {bs∗};
12 else
13 for ∀bs ∈ BS s.t. bs∗.PSC ≤ bs.PSC and

bs∗.TPnJBKZs ≤ bs.TPnJBKZs do
14 BS ← BS \ {bs };

15 (β, J) ← next (β, J) s.t. PSC(PnJBKZSim (bs.rr, β, J , 1)) < bs.PSC;
16 k ← k + 1;

17 bsmin ← min
bs.TPnJBKZs+bs.PSC

BS;

18 return Tmin ← bsmin.TPnJBKZs + bsmin.PSC, Smin ← bsmin.S ;
Algorithm 4: EnumBS

The detailed description of EnumBS with pruning is shown in Alg. 4. In
EnumBS, we use BS to store the information of each reduction strategy which
might be the final strategy with minimum time cost or will become the final
strategy after adding more (β, J) nodes. BS is a list and each element bs in
the BS is a tuple of values bs = (rr, S, TPnJBKZs,PSC). It is important to note
that each bs in BS should be in order that increases by its TPnJBKZs value and
decreases by its PSC value. In bs, S is a list storing the blocksize and jump
strategy used for calling PnJBKZ, TPnJBKZs is the time cost for calling such a
series of PnJBKZ, rr stores the current simulated gs-lengths after analogically
calling PnJBKZ following strategy S by PnJBKZ simulator (Alg. 2). PSC output
from the Pump dimension estimation method (Alg. 3), it estimates the expected
time cost for last Pump. Each element in S is a tuple (β, J), where β is the
blocksize value of PnJBKZ and J is the jump value of PnJBKZ.

For the sake of narrative simplicity, we will use bs.⋆ to denote each element
in bs, e.g. bs.S. Let ♯S and ♯BS be the size of S and BS. At the start of EnumBS,

26

there is only one tuple bs(0) in BS, where bs(0).S = [] denotes a no PnJBKZ
blocksize and jump strategy with a pure Pump sieve. The total cost of bs(0) is the
Pump cost. Then, to generate more strategies and try to find the strategy with
minimum expected time cost, we can regard bs(0) as the root node and expand
the strategy list from bs(0) using a breadth-first search.

For a node bs in the tree, each of its children bs∗ satisfies that bs∗.S =
bs.S ∪ [(β, J)], where PSC(PnJBKZSim(bs.rr, β, J, 1)) < bs.PSC, which means
that a (β, J) tour can further improve the basis quality. As the claim proposed
in Proposition 1, we can begin the enumeration search from β0+1 or J0−1 ≥ 1,
where bs.rr has equal or higher quality than a PnJBKZ(β0, J0) reduced basis.

Considering each child strategy bs∗.S of bs.S for all possible (β, J), compute
the other values in bs∗, i.e. bs∗.TPnJBKZs, bs∗.rrand bs∗.PSC. When we try to
add a bs∗ into BS, we should first determine whether it exists a bs′ ∈ BS so that
bs∗.PSC ≥ bs′.PSC and bs∗.TPnJBKZs ≥ bs′.TPnJBKZs. If so, we cannot add such
bs∗ into BS, because the child strategies generated by bs∗(including bs∗ itself)
will not have a shorter time overhead than which generated by the corresponding
bs′. If not, then we should first add bs∗ and then delete the bad strategy in BS
whose PSC value and TPnJBKZs value are both larger than bs∗. Iterate each BS[k]
and its child nodes sequentially, and we will end up with a BS containing the
blocksize and Jump strategy with minimum simulated time cost. Finally, we
search through BS and return the blocksize and Jump reduction strategy which
has the minimum simulated time cost in the end.

In addition, Theorem 1 proves that EnumBS can find the blocksize and jump
strategy with minimum simulated cost to solve uSVPγ in Two-step mode.

Theorem 1. Let S be the set of all sequences consisting of (β, J ≤ d4fslope(s)),
S is the set of all possible blocksize and jump strategies. If Heuristic 3 holds,
the algorithm EnumBS always returns the reduction strategy in S with minimum
simulated time cost to solve uSVPγ instance.

Proof. Let rr0 be the input Gram-Schmidt Lengths of a random lattice basis,
Suppose that the strategy in S with minimum simulated cost is S = [(β1, J1), ...,
(βk, Jk)]. We write the sub-strategy [(β1, J1), ..., (βi, Ji)] of S, i ≤ k as Si.

PSC(PnJBKZSim(rr0, Si−1)) ≥ PSC(PnJBKZSim(rr0, Si)) for all i ≤ k, oth-
erwise removing (βi, Ji) from S can get a strategy that can solve an uSVPγ

instance in less time by Heuristic 3. From the description of EnumBS, either S
is inside the final strategy set BS, or there is a sub-strategy Si such that Si is
removed from BS (then S won’t appear in BS anymore). Since S has a minimum
time cost among all strategies in BS, S must be the final output strategy and
meets the first case. Now we show that the second case cannot occur.

If Si is removed from BS, then there must be another strategy S′ such that
PSC(PnJBKZSim(rr0, Si)) ≥ PSC(PnJBKZSim(rr0, S

′)), and the PnJBKZ time
cost Si.TPnJBKZs ≥ S′.TPnJBKZs. If we append the sequence (βi+1, Ji+1), ..., (βk, Jk)
into S′ and get a new strategy S∗, it infers that S.TPnJBKZs ≥ S∗.TPnJBKZs.

Heuristic 3 implies PSC(PnJBKZSim(rr0, S)) ≥ PSC(PnJBKZSim(rr0, S
∗)),

contradicting the expectation that S∗ has a smaller time cost than S. ⊓⊔

27

6 Apply ProPnJBKZ to LWE

Based on Heuristic 2 and Proposition 1, we use BSSA and EnumBS to generate
optimized strategies for blocksize and jump. This section focuses on demonstrat-
ing ProPnJBKZ’s performance in solving LWE using the Two-step mode. Sec.
6.1 applies ProPnJBKZ to solve LWE and compares it with the LWE solving al-
gorithm implemented in G6K-GPU-Tensor. In Sec. 6.2, we present the optimized
reduction strategies generated by EnumBS which are used in Sec. 6.1 for solving
the TU Darmstadt LWE Challenge. Besides, we give the simulated accuracy test
in Sec. 6.3. Additionally, Sec. 6.4 showcases new records in solving TU Darm-
stadt LWE Challenges. Appendix A provides a condensed security estimation of
LWE in NIST schemes based on Two-step mode and EnumBS.

6.1 Efficiency of ProPnJBKZ for LWE and Compare with G6K

The default LWE solving algorithm in G6K is the script lwe_challenge.py in
the implementation of G6K’s GPU version [24], we have discussed it in Sec.
3.1. Besides, for more detail about the default LWE solving algorithm in G6K’s
GPU version1. Fig. 2 gives the experimental result of different LWE-solving algo-
rithms. The cream bars show the experimental time or memory cost of the default
strategy in G6K. The remaining bars give the experimental time or memory cost
of ProPnjBKZ using the strategy generated by EnumBS(Alg. 4) (BSSA(Alg. 5)).
From the result of Fig. 2, we can see that using the strategy selected by EnumBS
(BSSA) significantly decreased the wall time cost by about 7.2∼17.0 (5.2∼10.2)
times compared to that of the default LWE solving strategy in G6K when all
LWE solvers use the same float type “dd” to calculate. One can refer to the log
files of Fig. 2 in the folders lwechal-test and lwe-instance-test. It can also
be reproduced by running the test code implement_lwechal_forall.sh and
implement_lwe_instance_forall.sh in source code2.

6.2 Optimized strategy generated by ProPnJBKZ for Solving TU
Darmstadt LWE Challenge

Table 5: Blocksize and Jump strategy generated by EnumBS (threads = 10).

(n, α) Strategy (β, jump) EnumBSGen/s
(40,0.025) [(77, 8), (81, 10), (102, 11), (102, 11)] 17.544
(40,0.030) [(56, 8), (80, 10), (81, 10), (102, 11), (114, 11), (119, 11)] 72.042
(45,0.020) [(70, 8), (80, 10), (102, 11), (102, 11) (103, 11)] 32.604
(50,0.015) [(56, 8), (66, 9), (80, 10), (81, 10), (102, 11), (102, 11)] 52.558

We use EnumBS (Alg. 4) with the practical cost model mentioned in Appendix
D and tested on machine C to select the blocksize and jump strategy for some in-
stances of TU Darmstadt LWE Challenges, we list the selected strategies in Table
5. Besides, Table 5 shows that the time cost of generating the reduction strategy

28

by EnumBS is acceptable. Also, we upload the open source code for blocksize
and jump strategy generation on any LWE instances in folder “strategy_gen”
from source code2. We solved the TU Darmstadt LWE Challenge instances with
(n, α) ∈ {(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)} successfully
by the selected strategies in Appendix G.

6.3 Simulated Accuracy of ProPnJBKZ for LWE

To show the accuracy of our optimized blocksize and jump-selected strategy, we
compare the predicted quality of lattice basis and wall time with that of actual
experiments in each middle node in the reduction step. Table 6 and Appendix
H illustrate that both the quality of the actual lattice basis and the actual wall
time of each tour of PnJBKZ(β, J) are close to our prediction.5 It also implies
that Heuristic 1 and Heuristic 2 established.

(β, J)
Simulation Practical

Slope log(T) Slope log(T)
(56, 8) −0.0285 6.0 −0.0277 6.2
(80, 10) −0.0250 6.3 −0.0245 6.5
(81, 10) −0.0232 6.3 −0.0231 6.6
(102, 11) −0.0210 7.5 −0.0212 7.8
(114, 11) −0.0196 9.1 −0.0198 9.2
(119, 11) −0.0190 10.0 −0.0191 10.1

Table 6: Quality and log(T) during reduc-
tion of LWE (n, α) = (40, 0.030).

(n,α) Machine CPU
threads

T
(h)

RAM
(GB)

(80,0.005) C 32 2.78 7.3
(40,0.035) C 32 50.4 326
(50,0.025) A 128 592 184
(55,0.020) A 128 611 890
(90,0.005) B 64 370 332
(40,0.040) A 128 683 1120

Table 7: Actual running time, RAM cost
for LWE Challenge.

6.4 New LWE Records

TU Darmstadt LWE Challenge website presents Challenges for testing the effi-
ciency of solving LWE which helps to estimate the hardness of LWE in practice.

By our new algorithm, i.e. ProPnJBKZ, we have solved the LWE instances
(n, α) ∈ {(80, 0.005), (40, 0.035), (90, 0.005), (50, 0.025), (55, 0.020), (40, 0.040)} in
TU Darmstadt LWE Challenge website3. See Fig. 1 for more details. Specifically
we denoted a service with AMD EPYCTM 7002 Series 128@2.6GHz, NVIDIA
3090 * 8, 1.5T RAM as Machine A, and denoted a service with AMD EPYCTM

7002 Series 64@2.6GHz, a100 * 4, 512 GB RAM as Machine B. A workstation
with Intel Xeon 5128 16c 32@2.3GHz, 1.48T RAM and NVIDIA RTX 3090 * 2,
denoted as machine C. Then we listed the walltime and RAM cost in solving the
above LWE Challenges in Table 7. The units of T in Tables 6 and 7 are seconds
and hours, respectively.

5 The data in Table 6 is extracted from a test in Fig. 2 for comparing the quality and
wall time between our simulations and actual experiments. For more experiment
results on different LWE lattice bases please see Appendix H.

29

References

1. L. Ducas, T. L. Eike Kiltz, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé,
Dilithium(Round 3). NIST PQC project, 2020.

2. R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “Kyber(Round 3),” p. 42, 2021.

3. O. Regev, “On lattices, learning with errors, random linear codes, and cryptogra-
phy,” Journal of the ACM, vol. 56, pp. 34:1–34:40, Sept. 2009.

4. V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and Learning with
Errors over Rings,” in Advances in Cryptology – EUROCRYPT 2010 (H. Gilbert,
ed.), Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 1–23, Springer,
2010.

5. S. Bai and S. D. Galbraith, “An Improved Compression Technique for Signatures
Based on Learning with Errors,” in Topics in Cryptology – CT-RSA 2014 (J. Be-
naloh, ed.), (Cham), pp. 28–47, Springer International Publishing, 2014.

6. R. Kannan, “Improved algorithms for integer programming and related lattice
problems,” in Proceedings of the fifteenth annual ACM symposium on Theory of
computing, STOC ’83, (New York, NY, USA), pp. 193–206, Association for Com-
puting Machinery, Dec. 1983.

7. C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems,” in Fundamentals of Computation Theory
(L. Budach, ed.), Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 68–
85, Springer, 1991.

8. A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials with rational
coefficients,” Mathematische Annalen, vol. 261, pp. 515–534, Dec. 1982.

9. N. Gama, P. Q. Nguyen, and O. Regev, “Lattice Enumeration Using Extreme Prun-
ing,” in Advances in Cryptology – EUROCRYPT 2010 (D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, and H. Gilbert, eds.), vol. 6110, pp. 257–278, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010. Series Title: Lecture Notes in Computer Sci-
ence.

10. Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better Lattice Security Estimates,” in
Advances in Cryptology – ASIACRYPT 2011 (D. H. Lee and X. Wang, eds.),
Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 1–20, Springer, 2011.

11. M. R. Albrecht, S. Bai, J. Li, and J. Rowell, “Lattice Reduction with Approximate
Enumeration Oracles,” in Advances in Cryptology – CRYPTO 2021 (T. Malkin
and C. Peikert, eds.), Lecture Notes in Computer Science, (Cham), pp. 732–759,
Springer International Publishing, 2021.

12. Y. Aono, Y. Wang, T. Hayashi, and T. Takagi, “Improved Progressive BKZ Al-
gorithms and Their Precise Cost Estimation by Sharp Simulator,” in Advances
in Cryptology – EUROCRYPT 2016 (M. Fischlin and J.-S. Coron, eds.), Lecture
Notes in Computer Science, (Berlin, Heidelberg), pp. 789–819, Springer, 2016.

13. M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer, “Revisiting the Expected
Cost of Solving uSVP and Applications to LWE,” in Advances in Cryptology –
ASIACRYPT 2017 (T. Takagi and T. Peyrin, eds.), vol. 10624, pp. 297–322, Cham:
Springer International Publishing, 2017. Series Title: Lecture Notes in Computer
Science.

14. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum Key
Exchange—A New Hope,” pp. 327–343, 2016.

30

15. M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite, and
M. Stevens, “The General Sieve Kernel and New Records in Lattice Reduction,”
in Advances in Cryptology – EUROCRYPT 2019 (Y. Ishai and V. Rijmen, eds.),
vol. 11477, pp. 717–746, Cham: Springer International Publishing, 2019. Series
Title: Lecture Notes in Computer Science.

16. T. Laarhoven and A. Mariano, “Progressive Lattice Sieving,” in Post-Quantum
Cryptography (T. Lange and R. Steinwandt, eds.), vol. 10786, pp. 292–311, Cham:
Springer International Publishing, 2018. Series Title: Lecture Notes in Computer
Science.

17. D. Micciancio and P. Voulgaris, “Faster exponential time algorithms for the short-
est vector problem,” in Proceedings of the 2010 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), Proceedings, pp. 1468–1480, Society for Industrial
and Applied Mathematics, Jan. 2010.

18. R. Fitzpatrick, C. Bischof, J. Buchmann, Ö. Dagdelen, F. Göpfert, A. Mariano,
and B.-Y. Yang, “Tuning gausssieve for speed,” in Progress in Cryptology - LATIN-
CRYPT 2014 (D. F. Aranha and A. Menezes, eds.), (Cham), pp. 288–305, Springer
International Publishing, 2015.

19. P. Q. Nguyen and T. Vidick, “Sieve algorithms for the shortest vector problem are
practical,” Journal of Mathematical Cryptology, vol. 2, Jan. 2008.

20. G. Herold and E. Kirshanova, “Improved Algorithms for the Approximate k-List
Problem in Euclidean Norm,” in Public-Key Cryptography – PKC 2017 (S. Fehr,
ed.), Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 16–40, Springer,
2017.

21. G. Herold, E. Kirshanova, and T. Laarhoven, “Speed-Ups and Time–Memory
Trade-Offs for Tuple Lattice Sieving,” in Public-Key Cryptography – PKC 2018,
pp. 407–436, Springer, Cham, Mar. 2018.

22. A. Becker, N. Gama, and A. Joux, “Speeding up lattice sieving without increasing
the memory, using sub-quadratic nearest neighbor search,” 2015.

23. L. Ducas, “Shortest Vector from Lattice Sieving: A Few Dimensions for Free,” in
Advances in Cryptology – EUROCRYPT 2018 (J. B. Nielsen and V. Rijmen, eds.),
(Cham), pp. 125–145, Springer International Publishing, 2018.

24. L. Ducas, M. Stevens, and W. van Woerden, “Advanced Lattice Sieving on GPUs,
with Tensor Cores,” in Advances in Cryptology – EUROCRYPT 2021 (A. Canteaut
and F.-X. Standaert, eds.), Lecture Notes in Computer Science, (Cham), pp. 249–
279, Springer International Publishing, 2021.

25. A. Becker, L. Ducas, N. Gama, and T. Laarhoven, “New directions in nearest neigh-
bor searching with applications to lattice sieving,” in Proceedings of the twenty-
seventh annual ACM-SIAM symposium on Discrete algorithms, SODA ’16, (USA),
pp. 10–24, Society for Industrial and Applied Mathematics, Jan. 2016.

26. M. Liu and P. Q. Nguyen, “Solving BDD by Enumeration: An Update,” in Topics in
Cryptology – CT-RSA 2013 (E. Dawson, ed.), Lecture Notes in Computer Science,
(Berlin, Heidelberg), pp. 293–309, Springer, 2013.

27. W. Xia, L. Wang, G. Wang, D. Gu, and B. Wang, “A Refined Hardness Estimation
of LWE in Two-Step Mode,” in Public-Key Cryptography – PKC 2024 (Q. Tang
and V. Teague, eds.), (Cham), pp. 3–35, Springer Nature Switzerland, 2024.

28. M. Walter, “The convergence of slide-type reductions,” in Public-Key Cryptogra-
phy – PKC 2021 (J. A. Garay, ed.), (Cham), pp. 45–67, Springer International
Publishing, 2021.

29. J. Li and P. Q. Nguyen, “A complete analysis of the bkz lattice reduction algo-
rithm,” IACR Cryptol. ePrint Arch., vol. 2020, p. 1237, 2020.

31

30. G. Hanrot, X. Pujol, and D. Stehlé, “Analyzing Blockwise Lattice Algorithms
Using Dynamical Systems,” in Advances in Cryptology – CRYPTO 2011 (P. Rog-
away, ed.), Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 447–464,
Springer, 2011.

31. S. Bai, D. Stehlé, and W. Wen, “Measuring, Simulating and Exploiting the Head
Concavity Phenomenon in BKZ,” in Advances in Cryptology – ASIACRYPT 2018
(T. Peyrin and S. Galbraith, eds.), Lecture Notes in Computer Science, (Cham),
pp. 369–404, Springer International Publishing, 2018.

32. M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer, “Revisiting the Expected
Cost of Solving uSVP and Applications to LWE,” in Advances in Cryptology –
ASIACRYPT 2017 (T. Takagi and T. Peyrin, eds.), (Cham), pp. 297–322, Springer
International Publishing, 2017.

33. N. Gama and P. Q. Nguyen, “Predicting lattice reduction,” in Advances in Cryptol-
ogy – EUROCRYPT 2008 (N. Smart, ed.), (Berlin, Heidelberg), pp. 31–51, Springer
Berlin Heidelberg, 2008.

34. L. Wang, Y. Wang, and B. Wang, “A trade-off svp-solving strategy based on a
sharper pnj-bkz simulator,” in Proceedings of the 2023 ACM Asia Conference on
Computer and Communications Security, ASIA CCS ’23, (New York, NY, USA),
p. 664–677, Association for Computing Machinery, 2023.

35. Y. Chen and P. Q. Nguyen, Réduction de réseau et sécurité concrète du chiffrement
complètement homomorphe. PhD Thesis, 2013.

36. D. Dachman-Soled, L. Ducas, H. Gong, and M. Rossi, “LWE with Side Information:
Attacks and Concrete Security Estimation,” in Advances in Cryptology – CRYPTO
2020: 40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17–21, 2020, Proceedings, Part II, (Berlin, Heidelberg),
pp. 329–358, Springer-Verlag, Aug. 2020.

37. L. Wang, “Analyzing pump and jump bkz algorithm using dynamical sys-
tems,” in Post-Quantum Cryptography – PQCrypto 2024, 2024. https:
//eprint.iacr.org/2024/713, https://www.maths.ox.ac.uk/system/files/inline-
files/pqc24programme.pdf.

38. I. T. L. C. S. R. CENTER, “Post-quantum cryptography pqc selected algo-
rithms 2022.” https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

39. MATZOV, “Report on the Security of LWE: Improved Dual Lattice Attack,” Apr.
2022.

40. M. R. Albrecht, V. Gheorghiu, E. W. Postlethwaite, and J. M. Schanck, “Estimat-
ing quantum speedups for lattice sieves,” in Advances in Cryptology – ASIACRYPT
2020 (S. Moriai and H. Wang, eds.), (Cham), pp. 583–613, Springer International
Publishing, 2020.

41. L. Ducas, “leaky-LWE-Estimator.”
42. A. Leon-Garcia, Probability, statistics, and random processes for electrical engi-

neering. Upper Saddle River, NJ: Pearson/Prentice Hall, 3. ed ed., 2008.
43. P. Q. Nguyen, “Hermite’s Constant and Lattice Algorithms,” in The LLL Algorithm

(P. Q. Nguyen and B. Vallée, eds.), pp. 19–69, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009. Series Title: Information Security and Cryptography.

44. V. Lyubashevsky and D. Micciancio, “On Bounded Distance Decoding, Unique
Shortest Vectors, and the Minimum Distance Problem,” in Advances in Cryptol-
ogy - CRYPTO 2009 (S. Halevi, ed.), vol. 5677, pp. 577–594, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009. Series Title: Lecture Notes in Computer Science.

45. M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of Learning
with Errors,” Journal of Mathematical Cryptology, vol. 9, Jan. 2015.

32

https://eprint.iacr.org/2024/713
https://eprint.iacr.org/2024/713
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

46. C. Peikert, “A Decade of Lattice Cryptography,” Found. Trends Theor. Comput.
Sci., vol. 10, pp. 283–424, Mar. 2016. Place: Hanover, MA, USA Publisher: Now
Publishers Inc.

47. K. Xagawa, “Cryptography with Lattices,” p. 244, 2010.
48. T. Laarhoven, “Sieving for Shortest Vectors in Lattices Using Angular Locality-

Sensitive Hashing,” in Advances in Cryptology – CRYPTO 2015 (R. Gennaro and
M. Robshaw, eds.), Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 3–
22, Springer, 2015.

49. A. Becker and T. Laarhoven, “Efficient (Ideal) Lattice Sieving Using Cross-
Polytope LSH,” in Progress in Cryptology – AFRICACRYPT 2016 (D. Pointcheval,
A. Nitaj, and T. Rachidi, eds.), (Cham), pp. 3–23, Springer International Publish-
ing, 2016.

50. L. Babai, “On Lovász’ lattice reduction and the nearest lattice point problem,”
Combinatorica, vol. 6, pp. 1–13, Mar. 1986.

33

A Security Estimation for NIST schemes

In this part, we estimate the security bit of LWE-based NIST schemes [38] under
consideration of the influence of the two-step mode and the blocksize and jump
strategy selection. Our new concrete hardness estimation of LWE 6 answers
Question 7 in Section 5.3 of [2] and narrows the security estimation error interval.
For more details about the construction of our new concrete hardness estimator
of the Two-step mode of solving LWE, please refer to the citation [27]. Now our
evaluation code is available at open source6.

Table 8: Security Upper bound Estimation results of different estimators for
NIST schemes with different blocksize and jump solving strategies.♮

log2 G/log2(gates) log2 B/log2(bit)
∆ log2 G

Previous Two-step Previous Two-step
S0 Sop S0 Sop S0 Sop

Kyber512 146 142.6 141.4 93.97 99.1 98.1 3.4 4.6
Kyber768 208.9 205.5 204.4 138.73 144.0 143.2 3.4 4.5
Kyber1024 281.07 277.7 276.9 189.78 195.4 194.6 3.3 4.2

Dilithium-II 152.85 150.8 150.6 97.95 104.3 104.4 2.1 2.3
Dilithium-III 210.23 207.9 207.9 138.8 145.3 145.3 2.3 2.3
Dilithium-V 279.17 277.0 277.0 187.52 194.1 194.1 2.2 2.2

♮ The column “Previous” is the security estimation in the statement of Kyber and Dilithium.
Strategy “S0” uses a trial progressive BKZ+Pump in Two-step mode to estimate security.
Strategy “Sop” uses a progressive BKZ+Pump with the optimized strategy selected by EnumBS
in Two-step mode to estimate security. ∆ log2 G is the difference between “Previous” and “Two-
step” under the RAM model in strategy S0 and Sop in the logarithm of gate count with base 2.
The gate count of all estimations in this Table uses the same improved list-decoding technique
proposed by MATZOV [39].

Under the RAM model, i.e. assume that access into even exponentially large
memory is free, the estimated security bit of LWE in NIST schemes [38] can
be reduced by 2.2∼4.6 bit compared to the estimation generated by Leaky-
LWE-Estimator7 in [36] under gate-count model which adopts the improved
list-decoding technique proposed in [39]. It fixed the estimate done in [40] of
the list-decoding technique proposed in [25]. See Table 8 for details. Here G and
B in Table 8 respectively represent the total number of logic circuits and the
maximum memory needed for solving these LWE instances in NIST schemes [38]
being solved, that both are calculated under same gate-count model.

Without considering the RAM model, the Two-step mode of using larger
Pump dimension will indeed lead to an extra cost of accessing exponentially large
6 https://github.com/Summwer/lwe-estimator-with-PnJBKZ.git
7 https://github.com/lducas/leaky-LWE-Estimator

34

https://github.com/Summwer/lwe-estimator-with-PnJBKZ.git
https://github.com/lducas/leaky-LWE-Estimator

memory, which will somewhat offset the above-claimed decreasing of security
hardness. But since the time cost (Number of gates G) is far larger than the
memory cost B, the impact of memory growth can be ignored with such a signif-
icant decrease in time cost. Specifically, in Table 8 even though ∆B is negative
(Two-step mode use bigger memory), ∆ log2(G + B) same as ∆ log2 G between
2.2∼4.6 bits is still positive. It means that the increase in memory will partially
offset the decrease in the number of gates. However, in general, the time cost is
still decreasing even considering the extra increase in memory.

Last but not least, although we only compare our security estimation with
Leaky-LWE-Estimator [41] in this section, for other LWE estimators that con-
sider only the BKZ-only mode, using our two-step mode along with the time-cost
models in these estimators will also lead to better security estimation.

B Preliminaries

B.1 Notations and Basic Definitions

We write a matrix B as B = (b0, · · · ,bd−1) where bi is the (i + 1)-th col-
umn vector of B. The Euclidean norm of a vector v is denoted by ∥v∥. If
B ∈ Rd×d has full rank d, the lattice L generated by the basis B is denoted
by L(B) = {Bx|x ∈ Zd}. We denote B∗ = (b∗

0, . . . ,b
∗
d−1) as the Gram-Schmidt

orthogonalization of B, in which b∗
i = bi −

∑i−1
j=0 µi,jb

∗
j , µi,j = ⟨bi,b

∗
j ⟩
/
∥b∗

j∥2,
for i ∈ {0, · · · , d−1}. Let the orthogonal projection to the span of (b0, · · · ,bi−1)

be πi, i.e. ∀v, πi(v) = v −
∑i−1

j=0 ωjb
∗
j , where ωj = ⟨v,b∗

j ⟩
/
∥b∗

j∥2. For i, j ∈
Zd and 0 ≤ i < j ≤ d − 1, given an arbitrary d-dimensional vector v =
(v0, · · · , vd−1), define v[i:j] as (vi, · · · , vj−1) with a size j − i. For a lattice basis
B, let B[i:j] ← (bi, · · · ,bj−1). Moreover, we denote Bπ[i:j] by the local projected
block (πi(bi), · · · , πi(bj−1)), and call Lπ[i:j] the lattice generated by Bπ[i:j]. We
use Bπ[i] and Lπ[i] as shorthands for Bπ[i:d] and Lπ[i:d]. The volume of a lattice
L(B) is Vol(L(B)) =

∏d−1
i=0 ∥b∗

i ∥, an invariant of the lattice. The first minimum of
a lattice L(B) is the length of the shortest non-zero vector, denoted by λ1(L(B)).
We use the abbreviations Vol(B) = Vol(L(B)) and λ1(B) = λ1(L(B)).

Definition 1. (The Gaussian Distribution [42]) Let σ, u ∈ R be the standard de-
viation and the mean value respectively, a continuous Gaussian Distribution de-
noted as N(u, σ2). Its probabilistic density function ρN(u,σ2) = e−

(x−u)2

2σ2
/
σ
√
2π.

Definition 2. (Chi-Squared Distribution [42]) Given n random variables Xi ∼
N(0, 1), the random variables X2

0 + · · · + X2
n−1 follows a chi-squared distribu-

tion χ2
n over R∗ of mean n and variance 2n with probabilistic density function

ρχ2
n
(x) = x

n
2 −1e−

x
2 /2

n
2 Γ (n/2). Given n random variables Yi ∼ N(0, σ2), the

random variables Y 2
0 + · · ·+Y 2

n−1 follows a scaled chi-squared distribution σ2 ·χ2
n

over R∗ of mean nσ2 and variance 2nσ2.

Heuristic 4 (Gaussian Heuristic [23]) The expected first minimum of a lattice L
(denoted as λ1(L(B))) according to the Gaussian Heuristic denoted by GH(L) is

35

given by λ1(L(B)) ≈ GH(L) =
(
Γ (d2 + 1) ·Vol(L)

) 1
d
/√

π ≈
√
d/(2πe) ·Vol(L) 1

d

Where Vd (1) is the volume of the d-dimensional unit sphere. We also write
GH(B) = GH(L(B)) and GH(rr[i:j]) = GH(Bπ[i:j]).

Definition 3. (Hermite-Korkine-Zolotarev and Block-Korkine-Zolotarev reduc-
tions [43]) The basis B of a lattice L is HKZ reduced if b∗

i = λ1(L(Bπ[i:d])), for
all i < d. L is BKZ-β reduced if b∗

i = λ1(L(Bπ[i:min{i+β,d}])), for all i < d.

Definition 4. (Root Hermite Factor [35]) For a basis B of d-dimensional lattice,
the root Hermite factor is defined as δ =

(
∥b0∥/Vol(B)1/d

)1/d
, for estimating the

quality of the output vector of BKZ. For larger blocksize, it follows the asymptotic
formula δ(β)2(β−1) = β

2πe (βπ)
1/β .

Heuristic 5 (Geometric Series Assumption [15]) Let B be a lattice basis after
lattice reduction, then Geometric Series Assumption states that ∥b∗

i ∥ ≈ α·∥b∗
i−1∥,

0 < α < 1. Combine the GSA with root-Hermite factor (Definition 4) and
V ol(L(B)) =

∏d−1
i=0 ∥b∗

i ∥, it infers that α = δ−
2d

d−1 ≈ δ−2. Let s be the slope
value of the logarithm of GS norms li for ∀i ∈ {1, . . . , d}, s ≈ lnα and δ ≈ e−

s
2 .

B.2 Lattice Hard Problems

Definition 5. (unique Shortest Vector Problem(uSVPγ) [44]) Given an arbi-
trary basis B on lattice L = L(B), L satisfies the condition γλ1(B) < λ2(B)
(γ > 1, λ2(B) is norm of the second shortest vector which is linearly independent
to the shortest vector), find the shortest non-zero vector v s.t. ∥v∥ = λ1(B).

Definition 6. (LWEm,n,q,Dσ Distribution [45–47]) Given some samples m ∈ Z,
a secret vector dimension n ∈ Z, a modulo q ∈ Z , a probability distribution Dσ.
Uniformly sample a matrix A ∈ Zm×n

q and sample a secret vector s ∈ Zn
q from

a specific distribution, randomly sample a relatively small noise vector e ∈ Zm
q

from Gaussian distribution Dσ whose standard deviation is σ. The Learning
with Errors (LWE) distribution Ψ is constructed by the pair (A,b = As+ e) ∈
(Zm×n

q ,Zm
q) sampled as above.

Definition 7. (Search LWEm,n,q,Dσ problem [45–47]) Given a pair (A,b) sam-
pled from LWEm,n,q,Dσ

distribution Ψ compute the pair (s, e).

B.3 Sieving Algorithms

The first practical NV sieving algorithm uses a database of N0 ≈ 20.2075d+o(d)

vectors and runs in time N2
0 ≈ 20.415d+o(d) by repeatedly checking all pairs

v ±w [19]. To find the shortest vector, N0 is the minimal number of vectors to
ensure saturating the ball of radius GH(L)

√
4/3 by short vector. In a line of

works [22,25,48,49] the time complexity was gradually decreased to 20.292d+o(d)

by nearest neighbor searching techniques.

36

B.4 Progressive Sieve

The progressive sieve [16] can save the cost of the classical sieve. It is realized by
a right-to-left operation which first calls a sieve on a small dimension projected
lattice, then uses Babai’s nearest plane algorithm [50] to recover the vector to
a higher dimension projected lattice. Repeat such a step until the short vectors
onto a full dimensional lattice.

B.5 G6K and G6K-GPU-Tensor

G6K [15] is an abstract machine for running sieve and reduction algorithms,
which is built on generalizing and extending the previous sieve algorithms. G6K-
GPU-Tensor [24] as a state-of-art SVP solver improves the efficiency of G6K by
GPU implementations and holds many records in TU Darmstadt SVP Chal-
lenges which is at least 400 times faster than the previous records.

C More experimental details about PnJBKZ simulator

In this part, we give more verification experiments of our PnJBKZ simulator
on different LWE challenge lattice bases with different reduction parameters.
Specifically, blocksize β increased from 55 to 100 and jump value increased from 1
to 12 and tours increased from 1 to 13. Meanwhile, for each reduction parameter,
We did 20 times independent experiments to calculate the practical average
value of the length of Gram-Schmidt vectors after the reduction of the PnJBKZ
algorithm.

First of all, to remove the influence of q-ary vectors in LWE challenge initial
lattice basis, we do pre-processing for all LWE challenge lattice basis by using
small blocksize reduction which can be done within a few minutes wall time. For
example (n = 70, α = 0.005) and (n = 75, α = 0.005), after pre-processing we
can get LWE challenge lattice basis (n = 70, α = 0.005) with a slope equal to
−0.04921/2 and LWE challenge lattice basis (n = 75, α = 0.005) with a slope
equals to −0.04339/2. Then corresponding d4fslope(s) between 11.7 to 13.7. As
we need the maximum jump value J ≤ d4fslope(s) to ensure the accuracy of the
PnJBKZ simulator (see section 4.1 for details), we set the maximum jump value
J ≤ 12 in our test experiments.

Then we give the results of verification experiments on four different lattice
bases with β ∈ [50, 70] and jump within J ∈ [1, 12]: (n = 70, α = 0.005),
(n = 75, α = 0.005), (n = 60, α = 0.010) and (n = 50, α = 0.015). See Figure
12 ∼ 20 respectively. Verification experiments results indicate that our PnJBKZ
simulator performs well in predicting the behavior of PnJBKZ which blocksize
within β ∈ [75, 100] and jump within J ∈ [1, 12] ≤ d4fslope(s) on LWE challenge
lattice basis on 4 different LWE challenge lattice bases.

Figures 10 ∼ 20 show that on different lattice basis with different reduction
parameters, as long as the jump ≤ d4fslope(s), even the tours increase to 13,
overall, the simulation values are closed to the actual values and most of ratios

37

l
′′
i

Sim(l
′′
i)

are within [0.95, 1.05]. Meanwhile, the reduction strategy shown in Sec-
tion 5 will not run the same reduction parameter (β, J) for more than 6 tours,
while our simulator is still accurate even if the tours increase to 13. The above
results indicate that when J ≤ d4fslope(s) we can ensure Heuristic 1 is held and
the PnJBKZ simulator calculates the estimation value of the actual value ∥b′′∗

i ∥
by Eq. (1) can already reflect how the average of the norms of Gram-Schmidt
vectors change during each tour’s reduction of PnJBKZ(β, J). Therefore our Pn-
JBKZ simulator fits well with the actual PnJBKZ reduction result. In addition,
Table 6 and Appendix H show that the practical slope of lattice Gram-Schmidt
basis after each tour of the reduction of PnJBKZ with different blocksizes and
different jump values is very close to that of our simulation, which also verified
the accuracy of our PnJBKZ simulator. For selecting the optimized reduction
strategy, our PnJBKZ simulator is accurate enough.

C.1 LWE challenge lattice basis (n = 75, α = 0.005).

Figure 10 ∼ Figure 11.

38

(a) β=75, Jump=1 (b) β=80, Jump=3

(c) β=80, Jump=6 (d) β=85, Jump=3

(e) β=100, Jump=6 (f) β=85, Jump=9

(g) β=95, Jump=12 (h) β=95, Jump=9

Fig. 10: Ratio l′′i /Sim(l′′i). Run 12 tours of PnJBKZ(β, J) reduction on a 252-dimension
LWE lattice basis (n = 75, α = 0.005), and record the ratio values. We test 20 times
for each reduction parameters.

39

(a) β = 75, jump = 1, ♯tours = 13 (b) β = 95, jump = 9, ♯tours = 12

(c) β = 85, jump = 3, ♯tours = 13 (d) β = 100, jump = 6, ♯tours = 13

(e) β = 85, jump = 3, ♯tours = 13 (f) β = 100, jump = 6, ♯tours = 13

Fig. 11: Overall Prediction effect of PnJBKZ simulator. Ratio l′′i /Sim(l′′i). We perform
the experiments by reducing the lattice basis of LWE Challenge (n = 75, α = 0.005).
We test also 20 times for each reduction parameters.

40

C.2 LWE challenge lattice basis (n = 70, α = 0.005).

Figure 12 ∼ Figure 14.

(a) β = 70, jump = 3 (b) β = 60, jump = 6

(c) β = 65, jump = 6 (d) β = 70, jump = 6

(e) β = 60, jump = 9 (f) β = 65, jump = 9

(g) β = 70, jump = 9 (h) β = 90, jump = 12

Fig. 12: Ratio l′′i /Sim(l′′i). Run 12 tours of PnJBKZ(β, J) reduction on a 235-dimension
LWE lattice basis (n = 70, α = 0.005), and record the ratio values. We test 20 times
for each reduction parameter.

41

(a) β = 65, jump = 6, ♯tours = 12 (b) β = 70, jump = 6, ♯tours = 12

(c) β = 65, jump = 6 (d) β = 70, jump = 6

Fig. 13: Ratio l′′i /Sim(l′′i). Run 13 tours of PnJBKZ(β, J) reduction on a 235-dimension
LWE lattice basis (n = 70, α = 0.005), different β with J = 6, and record the ratio
values. We test 20 times for each reduction parameter.

42

(a) β = 60, jump = 9, ♯tours = 12 (b) β = 65, jump = 9, ♯tours = 12

(c) β = 65, jump = 9 (d) β = 70, jump = 9

Fig. 14: ratio l′′i /Sim(l′′i). Run 13 tours of PnJBKZ(β, J) reduction on a 235-dimension
LWE lattice basis (n = 70, α = 0.005), different β with J = 9, and record the ratio
values. We test 20 times for each reduction parameter.

43

C.3 LWE challenge lattice basis (n = 60, α = 0.010).

Figure 15 ∼ Figure 17.

(a) β = 55, jump = 1 (b) β = 55, jump = 3

(c) β = 55, jump = 6 (d) β = 60, jump = 6

(e) β = 60, jump = 9 (f) β = 65, jump = 9

(g) β = 75, jump = 9 (h) β = 85, jump = 12

Fig. 15: Ratio l′′i /Sim(l′′i). Run 12 tours of PnJBKZ(β, J) reduction on a 222-dimension
LWE lattice basis (n = 60, α = 0.010), and record the ratio values. We test 20 times
for each reduction parameter.

44

(a) β = 55, jump = 6, ♯tours = 12 (b) β = 60, jump = 6, ♯tours = 12

(c) β = 55, jump = 6 (d) β = 60, jump = 6

Fig. 16: Ratio l′′i /Sim(l′′i). Run 13 tours of PnJBKZ(β, J) reduction on a 222-dimension
LWE lattice basis (n = 60, α = 0.010), different β with J = 6, and record the ratio
values. We test 20 times for each reduction parameter.

45

(a) β = 60, jump = 9, ♯tours = 12 (b) β = 65, jump = 9, ♯tours = 12

(c) β = 60, jump = 9 (d) β = 65, jump = 9

Fig. 17: Ratio l′′i /Sim(l′′i). Run 13 tours of PnJBKZ(β, J) reduction on a 222-dimension
LWE lattice basis (n = 60, α = 0.010), different β with J = 9, and record the ratio
values. We test 20 times for each reduction parameter.

46

C.4 LWE challenge lattice basis (n = 50, α = 0.015).

Figure 18 ∼ Figure 20.

(a) β = 50, jump = 1 (b) β = 60, jump = 1

(c) β = 60, jump = 3 (d) β = 60, jump = 6

(e) β = 65, jump = 6 (f) β = 75, jump = 6

(g) β = 75, jump = 9 (h) β = 80, jump = 9

Fig. 18: Ratio l′′i /Sim(l′′i). Run 12 tours of PnJBKZ(β, J) reduction on a 194-dimension
LWE lattice basis (n = 50, α = 0.015), and record the ratio values. We test 20 times
for each reduction parameter.

47

(a) β = 60, jump = 6, ♯tours = 12 (b) β = 65, jump = 6, ♯tours = 12

(c) β = 60, jump = 6 (d) β = 65, jump = 6

Fig. 19: Ratio l′′i /Sim(l′′i). Run 13 tours of PnJBKZ(β, J) reduction on a 194-dimension
LWE lattice basis (n = 50, α = 0.015), different β with J = 6, and record the ratio
values. We test 20 times for each reduction parameter.

48

(a) β = 60, jump = 3, ♯tours = 12 (b) β = 75, jump = 6, ♯tours = 12

(c) β = 60, jump = 3 (d) β = 75, jump = 6

Fig. 20: Ratio l′′i /Sim(l′′i). Run 13 tours of PnJBKZ(β, J) reduction on a 194-dimension
LWE lattice basis (n = 50, α = 0.015), different β and J , and record the ratio values.
We test 20 times for each reduction parameter.

D Practical time cost model of Pump and PnJBKZ

To find the progressive blocksize and jump size selection strategy with minimal
expected time cost for solving TU Darmstadt LWE challenges, it is necessary to
construct PnJBKZ and Pump time cost models. However, the asymptotic com-
plexity of the sieving does not match the actual cost well in the low-dimensional
case5 (dimension ≤ 128). The multi-threading technology used in Pump will
5 While dimension exceeds 128, the time cost for Pump and PnJBKZ fits the theoretical

value well, we can directly use the time cost model of triple_gpu sieve declared
in [24].

49

balance part of the time cost increases when the dimension of sieving increases.
Therefore, we construct a practical time cost model by using the experimental
method to test the running time of the Pump in Appendix D.1 on a different lattice
basis for finding the optimized reduction parameters of solving TU Darmstadt
LWE challenges in shorter time cost.

Although the time-cost model based on the results of experiments can well
fit the actual cost of running PnJBKZ, using testing machines with different
configurations will inevitably lead to changes in the time-cost model in low-
dimensional cases. Therefore, we only use this experimentally constructed time-
cost model when looking for the optimized progressive blocksize and jump size
selection strategy for solving LWE challenges in shorter time cost.

(a) PnJBKZ(85,1) (b) PnJBKZ(85,5)

(c) PnJBKZ(95,1) (d) PnJBKZ(95,5)

Fig. 21: Cost for each Pump under different index in a PnJBKZ tour by testing
SVP Challenge with different dimension d using Machine C with threads = 32
and GPUs = 2.

50

Besides, when we construct the actual time cost model by testing the time
cost of PnJBKZ on the specific machine, we find that each Pump in PnJBKZ
takes a different time cost as Fig. 21 shown. Especially, the time cost of the first
Pump is higher than subsequent Pumps and it increases under the incremental
index from 2nd to (d− β + f + 1)th and decreases after d− β + f + 1 indices. It
infers that for a fixed blocksize β, the average Pump cost in PnJBKZ will increase
with the growth of dimension d. It means that the simplified model of treating
each SVP oracle inside BKZ as having the same time cost no longer applies in
the context of PnJBKZ. Therefore, in Appendix D.2, we propose a new time
cost model for PnJBKZ to more accurately reflect its time cost performance in
practical applications.

D.1 Practical Cost Model of Pump

We can regard TPump as a computational cost model of the dsvp-dimensional
progressive sieve. TPump in [15] is considered as

TPump(dsvp) =

dsvp∑
j=β0

Tsieve(j) =

dsvp∑
j=β0

2c·j+o(j) = 2cβ0

(
1 + 2c + · · ·+ 2c(dsvp−β0)

)

≤ 2cβ0 · 2
c(dsvp+1)+o(dsvp+1)

1− 2c
= O

(
2cdsvp

)
≈ 2cdsvp+c1 ,

(2)

where β0 is the dimension of initial sieving in Pump (In G6K β0 is set to 30, and
in G6K-GPU, it is set to 50), c and c1 are the coefficients of the full sieve cost
related to sieve dimension, Tsieve(j) is the sieve cost with dimension j.

However, we find that the asymptotic complexity of the sieving does not
match the actual cost well in the low-dimensional case. While the dimension
is low, the number of threads used in the Pump increases with the dimension,
which balances out part of the time cost increase. So in low dimension, c might
be much lower than the theoretical result.

To accurately predict the unknown coefficients c and c1 in the computational
cost model, we use the experimental method to test the running time of Pump
on different lattice bases corresponding to different TU Darmstadt LWE chal-
lenges and with different blocksizes βs. The experimental results show that our
computational cost model above can fit well with the actual cost of Pump.

Take β as the independent variable, log2(TPump) can be obtained from the
experimental test as the dependent variable, and we use the least squares fitting
to find c and c1. We use R2 to denote the coefficient of determination (R squared)
value above the linear regression model. The coefficient of determination (R2 or
R squared) is a statistical measure in a regression model that determines the
proportion of variance in the dependent variable that can be explained by the
independent variable. Generally, the range of R2 is [0, 1] and when R2 closer is
to 1, the better the model fits the data.

From Figure 22, we can see that R2 is close to 1. It means that the fitting
effect is good. Figure 22 also shows that the logarithm of the computational
cost of Pump is linearly correlated to dsvp under both float type “dd” and “qd”.

51

Since the “qd” float type is more precise than “dd”, it is slower than “dd”. So
we suggest setting “dd” float type.

Fig. 22: Pump Cost Figure while d = 180, Sieve used in Pump is gpu_sieve, and it’s
running on Machine C with 2 GPUs and 32 threads: Relation between log2(TPump)
and sieve dimension n.

Consider Cost of SimHash Generation. Moreover, given sieve dimension
β, the G6K (or its GPU version) implementation requires O(β) memory and
O(β) computational cost to generate the SimHash value, which is used to find
the nearest neighbor of each vector. Thus, an O(2cβ)-time and O(2c2β)-space
algorithm actually requires O(2cβ + β ∗ 2c2β). Set c = 0.367 and c2 = 0.2075
according to Fig. 7 in [24] and construct the practical Pump model as

TPump(β) = a1 · 2cβ+c1 + a2 · 2c2β+c3 ,

then we can obtain the practical Pump cost model (as Fig. 23 shown) through
the curve fitting method.

D.2 Practical Cost Model of PnJBKZ

PnJBKZ consists of a series of Pumps. If we regard PnJBKZ as a combination
of Pumps with equal cost, the computational cost of PnJBKZ can be calculated
by the sum cost of d+2f−β

J progressive sieves on the (β−f)-dimension projected
sublattice with jump J . However, as Fig. 21 shows, each Pump in PnJBKZ has a
different cost. Especially, the Pump cost increases from the 2nd to the (d−β+f+
1)th index and decreases afterward. Here, in Figure 21, we can observe that the
growth rate in the range of [0, f+fextra] differs from that of [f+fextra, d−β+f+1],
where fextra represents the extra dimension-for-free value set in G6K to enhance
the efficiency of PnJBKZ and it is 12 in the default setting. So we depart the
PnJBKZ cost into 4 parts: first index of Pump, preceding indices in range of

52

Fig. 23: Pump cost model considers the cost to generate the hash value: The vertical
axis represents TPump and the horizontal axis represents the sieve dimension n.

[0, f + fextra), middle indices in range of [f + fextra, d − β + f + 1) and later
indices in range of [d − β + f + 1, d). Let the cost of each range be Tfirst, Tpre,
Tmid and Tformer. Let Tf+fextra and Td−β+f+1 be the Pump cost at the index
f + fextra and Td−β+f+1. We have tested Tfirst, Tpre, Tlater and the coefficients
A and B in Tmid(d, β, J, f, fextra) =

Tf+fextra+Td−β+f+1

2 · (d − β − fextra + 1) =
(A·(f+fextra)+B)+(A·(d−β+f)+B)

2 · (d− β − fextra + 1) in dimension d = 180, jump
J = 1 and “dd” float type, then we obtain the simulated cost model as Fig. 24.
Then, we can get that

TPnJBKZ(d, β, J, f, fextra) = Tfirst + Tpre ·
⌈ f+fextra

J ⌉ − 1

f + fextra − 1

+ Tmid(d, β, J, f, fextra) ·
⌈ f+fextra

J)⌉
f + fextra

+ Tlater ·
⌈d−β−fextra

J ⌉+ 1

d− β − fextra + 1
,

(3)

where f is the dimension for free value of β.

We’ve also used the Eq. 3 to simulate the PnJBKZ cost of other dimensions
(such as d = 150, 160, 170) with blocksize from 51 to 119 and jump J ≥ 1, and
find it fits well in simulation as Figure 25.

53

(a) Tfirst (b) Tpre

(c) A of Tmid (d) B of Tmid

(e) Tlater

Fig. 24: Simulate Tfirst, Tpre, coefficients A and B, and Tlater using the lattice basis
generated from SVP Challenge with dimension d = 180. We test PnJBKZ with different
β and setting J = 1, using f and fextra setting in the G6K GPU version. We test the
cost data on machine C with GPUs = 2 and threads = 32. The x-axis represents the
index i of each Pump in a PnJBKZ tour, while the y-axis represents the time cost (in
seconds) of PnJBKZ.

54

(a) (d, J) = (160, 1) (b) (d, J) = (160, 9)

(c) (d, J) = (170, 1) (d) (d, J) = (170, 9)

Fig. 25: Simulate each PnJBKZ Cost using Eq. (24 in (d, J) ∈
{(160, 1), (160, 9), (170, 1), (170, 9)}. The actual PnJBKZ cost is tested in ma-
chine C with GPUs = 2 and threads = 32. The test lattice basis is generated from
the SVP Challenge with different dimensions d. We test PnJBKZ with different β
and J , using f and fextra settings in the G6K GPU version. The x-axis represents
the blocksize β for PnJBKZ, while the y-axis represents the time cost (in seconds) of
PnJBKZ.

E Blocksize and Jump Strategy Selection based on
ProBKZ

The blocksize and jump strategy selection algorithm based on ProBKZ (BSSA,
Fig. 26) applies the Shortest Path Algorithm to strategy selection.

BSSA initiates with a fully BKZ-βstart reduced lattice basis. It try to find
the shortest path from BKZ-βstart to BKZ-βgoal reduced lattice basis by setting
several middle nodes (such as βsstart = βi, for βstart < βi < βgoal) from βstart to
βgoal as a measure of basis quality. For edges between nodes βi and βj , BSSA de-
termines the tuple (βalg, Jalg, t) that minimizes the simulated time cost TPnJBKZ

to reduce a BKZ-βi basis to a BKZ-βj basis, where βi < βalg ≤ d.
For each node, we define a blocksize and jump strategy dictionary BS[βgoal],

in which the key is each middle node βi and the value is a tuple of bs = (rr, S,
TPnJBKZs,PSC), where rr is the length of Gram-Schmidt vector which is fully
BKZ-βgoal reduced, S means the blocksize and jump selection strategy which
will improve the quality of lattice basis from fully BKZ-βstart reduced to fully

55

Fig. 26: BSSA Process.

BKZ-βgoal reduced, which is the combination of (βalg, Jalg, t, TPnJBKZ) stored on
each edge in the shortest path from node βstart to βgoal with respect to the sum
of simulated BKZ cost TPnJBKZs =

∑
βalg,Jalg,t TPnJBKZ(β

alg, Jalg, t), while the
shortest path can be found using Dijkstra algorithm. PSC is one of the output
from the Pump dimension estimation method (Alg. 3), which means the estimated
time cost for uSVPγ to be solved by processing Pump on the BKZ-βgoal reduced
basis.

By setting different final βgoal, we can get different reduction strategy BS
that improves the quality of lattice basis from βstart to βgoal and different sieving
dimension of the last Pump corresponding to the different quality of the lattice
that is fully βgoal reduced. Then we set multiple different final βgoal to choose
the Two-step solving strategy whose total time cost is minimum. Here, the total
time cost includes the time cost of improving the quality of lattice by a series of
PnJBKZ(β, J) ∈ S and the time cost of final Pump. See Alg. 5 for more details
about BSSA.

F Choosing the number of LWE Samples

BKZ-only mode is the mainstream method for estimating the security of an
LWE-based cryptosystem at the current. It uses Kannan’s Embedding technique
to reduce the LWE problem to the uSVPγ problem and uses the GSA assumption
to simulate the change after a BKZ-β reduction. Its evaluation method was firstly
proposed by Erdem Alkim et al.. in [14] and has been proved the correctness
in [32], which has both given a lower bound of LWE samples and a blocksize
β. We renamed it “2016 Estimation from GSA for LWE” (referred to as 2016
Estimate).

To solve the LWE problem, the first thing we need to do is to determine the
number of LWE instances to construct the lattice basis described in the primal
attack. The strategy to select the number of LWE instances in the 2016 Estimate
is to find the number of LWE instances m so that the following inequality holds
and the value of β is minimal. Let d = m + 1, n be the dimension of LWE

56

instance, then

min
β∈N

{
TBKZ(β) : σ

√
β ≤ δ (β)

2β−d−1 · q
d−n−1

d

}
. (4)

The strategy in the 2016 Estimate is to find m so that the LWE problem can be
solved with the least time cost when using a fixed blocksize of BKZ-β algorithm
to solve it.

input : rr0, F (⋆,D), βstart ← 50, Jmax(⋆)← d4f(⋆)/2;
output: Tmin, Smin;

1 Function BSSA(rr0, F (⋆,D), βstart ← 50, Jmax(⋆)← d4f(⋆)/2):
2 d← len(rr0); PSC(0) ← ProSieveDimEst(rr0, F (⋆,D));

BS[βstart] = (rr0, [], 0,PSC(0));
3 for β ← βstart to d do
4 T

(min)
PnJBKZs ← +∞;

5 for βsstart ← βstart to β − 1 do
6 bssstart ← BS [βsstart]; bs← (∅, ∅,+∞,+∞);
7 Update bs∗ under strategy

bssstart.S ∪ [(β, 1, ♯tours(bssstart.rr,BKZ-β)];
8 for βalg ← β + 1 to d do
9 for j ← Jmax(β

alg) to 1 do
10 T ′ ← +∞;
11 for t ← 1 to ♯tours(bssstart.rr,PnJBKZ-(βalg, j)) do
12 Update bs′ under strategy bssstart.S ∪ [(βalg, j, t)];
13 if bs′.PSC < bs∗.PSC then
14 T ′ ← bs′.TPnJBKZs;
15 break;

16 if bs.TPnJBKZs > T ′ then
17 bs← bs′;

18 if T
(min)
PnJBKZs > bs.TPnJBKZs then

19 T
(min)
PnJBKZs ← bs.TPnJBKZs; BS [β] ← bs;

20 bsmin ← min
bs.TPnJBKZs+bs.PSC

BS;

21 return Tmin ← bs.TPnJBKZs + bs.PSC, Smin ← bsmin.S;
Algorithm 5: BSSA

In G6K, its estimation method simulates a two-stage strategy. Their main
difference from ours is that its two-stage strategy contains two tours of PnJBKZ
with a fixed blocksize β simulated from GSA assumption and a progressive sieve
algorithm in dimension dsvp. It simulates the above scenario and tries to find
the minimal cost of (β, dsvp) from

min
β,dsvp∈N

{
2 · TBKZ(β) + PSC(dsvp) : ∥πd−dsvp(v)∥ ≤ GH(Lπ[d−dsvp])

}
, (5)

where c = 0.349 in G6K CPU version and c = 0.292 in G6K GPU version.
However, we have explained in Sec. 4.2 that the 2016 Estimate still has a

probability of failing to find the target vector through its estimation. Thus, our

57

strategy for solving the LWE problem considers simulating a two-stage strategy
using our PnjBKZ simulator and new Pump sieve dimension and PSC estima-
tion scheme (as described in Alg. 3) In the first stage, it will call the PnJBKZ
simulator to simulate the basis after a series of PnJBKZ. In the second stage,
it tries to find the approximate shortest vector by Pump. Based on the esti-
mation scheme in the default G6K described above, we modify the time cost
of two PnJBKZs and a progressive sieve to the time cost of serial PnJBKZs
following the blocksize strategy and a progressive sieve. Besides, we use the
new Pump estimation scheme to simulate the norm of the target vector. Let

P (dsvp) = Pr

[
y ← σ2χ2

dsvp

∣∣∣∣y ≤ (
GH

(
Lπ[d−dsvp:d]

))2]. Thus, the formula be-
comes

min
β,dsvp∈N

{TPnJBKZs (B) + PSC (dsvp) : P (dsvp) ≥ Psuccess} , (6)

where δ is the basis quality after PnJBKZs. TPnJBKZs (B) will respectively call
BSSA or EnumBS to calculate the corresponding computational cost. To min-
imize the number of attempts, we narrow the range of m to [m0 − τ,m0 + τ],
where m0 is the number of samples chosen in the estimation of default G6K
and set a maximum search field range τ ∈ Z∗. We use dichotomization to find
an m with minimum β and dsvp satisfying the inequality (6). Furthermore, the
concrete process is as the Algorithm 6.

input: n, q, α, mall, βbound, d(svp)bound, τ , Amall×n , bmall×1;
output: Smin, Tmin, m;

1 σ, Tmin,mRange← αq,+∞,{};
2 m0 ← LWE samples estimation in G6K as formula (5);
3 mmin ← min {m satisfies equation (6)}; Smin, Tmin ← None, None;
4 while τ > 0 do
5 Construct B by

(
Am0×n,bm0×1, q

)
;

6 m1 ← m0;
7 for m ∈ {max{mmin,m0 − τ},m0,min{mall,m0 + τ}} do
8 d← m+ 1, M ← σ2m+ 1;
9 Construct B by

(
Am×n,bm×1, q

)
;

10 Ttotal, S ← EnumBS(rr(B), σ2χ2
⋆);

11 if Tmin is None or Tmin < Ttotal then
12 Smin, Tmin, m1 ← S, Ttotal, m;

13 if m1 = m0 then
14 τ ← ⌊ τ

2
⌋;

15 m0 ← m1;
16 return Smin, Tmin, m0;

Algorithm 6: Our LWE Samples Number Selection Algorithm

58

Using the optimization strategy for LWE instance number selection, we can
solve challenges faster than the G6K default strategy, although its efficiency
improvement is not significant (at most 2.2% in the test). See the Table 9.

Table 9: LWE samples improvement simulated result generated by EnumBS with
no RAM limit and τ = 10.

(n,α) G6K’s m Our m Estimated Tnew (sec) Estimated Told (sec) Tnew/Told

(50,0.025) 219 221 4336037.42 4320454.232 99.6%
(55,0.020) 230 234 3937458.799 3870765.534 98.3%
(45,0.035) 210 220 74367286.54 73838336.19 99.3%
(45,0.030) 201 205 1420793.45 1404095.127 98.8%
(90,0.005) 306 316 1772710.1 1733158.312 97.8%

G The Optimized Strategy for the LWE Challenge

In Table 10, we give the optimized blocksize and jump strategy generated by
EnumBS for solving TU Darmstadt LWE Challenge with

(n, α) ∈ {(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)}

successfully by running “implement_unsolved_lwechal.sh” in source code 2.

H Comparison between simulated slope (cost) and real
slope (cost) during reduction

In this part, we give the slope and cost comparison of two LWE Challenges under
qd float type in Table 11, Table 12 and Table 13, which show the simulated slope
and cost are close to the real slope and cost. They also indicate that our PnJBKZ
simulator can already reflect how the average of the norms of Gram-Schmidt
vectors change during the reduction of PnJBKZ(β, J) on different LWE lattice
basis.

From Table 7, Table 11, Table 12 and Table 13 all show that although, at the
first round of reduction, the gap between the slope value of simulated GS norms
and the slope of real reduced GS norms is slightly bigger due to the influence of
the q-ary vector in the initial LWE lattice basis, as the reduction proceeds, in
the rounds of reduction before finally entering the Pump, the gap between the
slope value calculated by simulation and the slope obtained by real reduction has
been sufficiently small. For selecting the optimized blocksize and jump strategy,
our PnJBKZ simulator is accurate enough.

59

Table 10: Blocksize and Jump strategy generated by EnumBS(threads = 10)
using the practical cost model generated on Machine C with threads = 32 and
GPUs = 2.

(n, α) RAM limit Strategy (β, jump) EnumBSGen/s

(40,0.035) 1.5TB [(72,9),(81,10),(102,11),(106,11),
(117,12),(125,13),(133,12),(136,1)] 269.15

(40,0.040) 1.5TB
[(81, 10),(81, 10), (105, 11), (110, 12),
(118, 11), (133, 12), (141, 10), (141, 1),
(148, 1)]

289.17

(50,0.025) 1.5TB
[(77, 9), (81, 10), (102, 11), (102, 11),
(105, 11),(115, 12), (119, 12), (127, 12),
(132, 13), (140, 1), (148, 1)]

686.47

(55,0.020) 1.5TB
[(68, 9), (81, 10), (102, 11),(102, 11),
(102, 11), (114, 12), (119, 12), (119, 9),
(131, 13), (137, 12),(140, 1), (147, 1)]

831.98

(90,0.005) 512GB

[(68, 9), (81, 10), (81, 10), (81, 10), (102, 11),
(102, 11), (102, 11), (102, 11), (104, 11),
(114, 12), (119, 12),(119, 12), (119, 9),
(127, 13), (129, 12), (133, 12), (133, 12),
(141, 1),(141, 1)]

2592.26

(β, J)
Simulation Practical

Slope log(T) Slope log(T)
(70,8) -0.0288 6.4 -0.0278 6.6
(80,10) -0.0256 6.4 -0.0249 6.6
(102,11) -0.0221 7.7 -0.0218 8.0
(102,11) -0.0207 7.7 -0.0208 8.0
(103,11) -0.0202 7.8 -0.0205 8.1

Table 11: Quality and wall time (T in sec-
onds) during reduction of LWE Challenge
(n, α) = (45, 0.020).

(β, J)
Simulation Practical

Slope log(T) Slope log(T)
(56,8) -0.0307 6.2 -0.0297 6.4
(66,9) -0.0279 6.2 -0.0273 6.4
(80,10) -0.0254 6.5 -0.0250 6.8
(81,10) -0.0238 6.6 -0.0237 6.9
(102,11) -0.0215 7.8 -0.0216 8.1

(102,11,2) -0.0205 7.8 -0.0208 8.1

Table 12: Quality and log(walltime)
(log(T) in seconds) during reduction of
LWE Challenge (n, α) = (50, 0.015).

Table 13: Quality and log(walltime) (log(T) in seconds) during reduction of LWE
Challenge (n, α) = (40, 0.025).

(β, J)
Simulation Practical

Slope log(T) Slope log(T)
(77,8) -0.0281 6.5 -0.0265 6.6
(81,10) -0.0249 6.2 -0.0241 6.6
(102,11) -0.0217 7.5 -0.0215 7.8
(102,11) -0.0205 7.5 -0.0207 7.8

60

	Improved Progressive BKZ with Lattice Sieving

