
Finding the Impossible: Automated Search for
Full Impossible-Differential, Zero-Correlation,

and Integral Attacks

Hosein Hadipour1(�) , Sadegh Sadeghi2 , and Maria Eichlseder1

1 Graz University of Technology, Graz, Austria
hsn.hadipour@gmail.com, maria.eichlseder@iaik.tugraz.at

2 Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

Abstract. Impossible differential (ID), zero-correlation (ZC), and in-
tegral attacks are a family of important attacks on block ciphers. For
example, the impossible differential attack was the first cryptanalytic
attack on 7 rounds of AES. Evaluating the security of block ciphers
against these attacks is very important but also challenging: Finding
these attacks usually implies a combinatorial optimization problem in-
volving many parameters and constraints that is very hard to solve using
manual approaches. Automated solvers, such as Constraint Program-
ming (CP) solvers, can help the cryptanalyst to find suitable attacks.
However, previous CP-based methods focus on finding only the ID, ZC,
and integral distinguishers, often only in a limited search space. Notably,
none can be extended to a unified optimization problem for finding full
attacks, including efficient key-recovery steps.

In this paper, we present a new CP-based method to search for ID, ZC,
and integral distinguishers and extend it to a unified constraint optimiza-
tion problem for finding full ID, ZC, and integral attacks. To show the
effectiveness and usefulness of our method, we applied it to several block
ciphers, including SKINNY, CRAFT, SKINNYe-v2, and SKINNYee. For the
ISO standard block cipher SKINNY, we significantly improve all existing
ID, ZC, and integral attacks. In particular, we improve the integral at-
tacks on SKINNY-n-3n and SKINNY-n-2n by 3 and 2 rounds, respectively,
obtaining the best cryptanalytic results on these variants in the single-
key setting. We improve the ZC attack on SKINNY-n-n (SKINNY-n-2n)
by 2 (resp. 1) rounds. We also improve the ID attacks on all variants
of SKINNY. Particularly, we improve the time complexity of the best
previous single-tweakey (related-tweakey) ID attack on SKINNY-128-256
(resp. SKINNY-128-384) by a factor of 222.57 (resp. 215.39). On CRAFT,
we propose a 21-round (20-round) ID (resp. ZC) attack, which improves
the best previous single-tweakey attack by 2 (resp. 1) rounds. Using our
new model, we also provide several practical integral distinguishers for
reduced-round SKINNY, CRAFT, and Deoxys-BC. Our method is generic
and applicable to other strongly aligned block ciphers.

Keywords: Impossible differential attacks · Zero-correlation attacks ·
Integral attacks · SKINNY · SKINNYe · CRAFT · SKINNYee · Deoxys-BC

https://orcid.org/0000-0002-3820-3765
https://orcid.org/0000-0002-1125-6867
https://orcid.org/0000-0002-8750-7423

1 Introduction

The impossible differential (ID) attack, independently introduced by Biham et
al. [5] and Knudsen [24], is one of the most important attacks on block ciphers.
For example, the ID attack is the first attack breaking 7 rounds of AES-128 [28].
The ID attack exploits an impossible differential in a block cipher, which usually
originates from slow diffusion, to retrieve the master key. The zero-correlation
(ZC) attack, first introduced by Bogdanov and Rijmen [8], is the dual method of
the ID attack in the context of linear analysis, which exploits an unbiased linear
approximation to retrieve the master key.

The integral attack is another important attack on block ciphers which was
first introduced as a theoretical generalization of differential analysis by Lai
[25] and as a practical attack by Daemen et al. [13]. The core idea of integral
attacks is finding a set of inputs such that the sum of the resulting outputs
is key-independent in some positions. At ASIACRYPT 2012, Bogdanov et al.
established a link between the (multidimensional) ZC approximation and integral
distinguishers [7]. Sun et al. at CRYPTO 2015 [41] developed further the links
among the ID, ZC, and integral attacks. Thanks to this link, we can use search
techniques for ZC distinguishers to find integral distinguishers. Ankele et al.
studied the influence of the tweakey schedule in ZC analysis of tweakable block
ciphers at ToSC 2019 [1] and showed that taking the tweakey schedule into
account can result in a longer ZC distinguisher.

The search for ID, ZC, and integral attacks on a block cipher contains two
main phases: finding a distinguisher and mounting a key recovery based on the
discovered distinguisher. One of the main techniques to find ID and ZC dis-
tinguishers is the miss-in-the-middle technique [5, 7]. The idea is to find two
differences (linear masks) that propagate halfway through the cipher forward
and backward with certainty but contradict each other in the middle. However,
applying this technique requires tracing the propagation of differences (resp. lin-
ear masks) at the word- or bit-level of block ciphers, which is a time-consuming
and potentially error-prone process using a manual approach. When it comes to
the key recovery, we should extend the distinguisher at both sides and trace the
propagation of more cryptographic properties taking many critical parameters
into account. In general, finding an optimum complete ID, ZC, or integral attack
usually implies a combinatorial optimization problem which is very hard to solve
using a manual approach, especially when the block size is large and there are
many possible solutions. Therefore, developing automatic tools is important to
evaluate the security of block ciphers against these attacks, mainly, in designing
and analyzing lightweight cryptographic primitives, where a higher precision in
security analysis lets us minimize security margins.

One approach to solving the optimization problems stemming from cryptana-
lytic attacks is developing dedicated algorithms. For instance, in CRYPTO 2016,
Derbez and Fouque proposed a dedicated algorithm [14] to find DS-MITM and
ID attacks. However, developing and implementing efficient algorithms is diffi-
cult and implies a hard programming task. In addition, other researchers may

2

want to adapt these algorithms to other problems with some common features
and some differences. This may, again, be very difficult and time-consuming.

Another approach is converting the cryptanalytic problem into a constraint
satisfaction problem (CSP) or a constraint optimization problem (COP) and
then solving it with off-the-shelf constraint programming (CP) solvers. Recently,
many CP-based approaches have been introduced to solve challenging symmet-
ric cryptanalysis problems, which outperform the previous manual or dedicated
methods in terms of accuracy and efficiency [20, 30, 37, 39, 46]. For example, at
EUROCRYPT 2017, Sasaki and Todo proposed a new automatic tool based on
mixed integer linear programming (MILP) solvers to find ID distinguishers [37].
Cui et al. proposed a similar approach to find ID and ZC distinguishers [12].
Sun et al. recently proposed a new CP-based method to search for ID and ZC
distinguishers at ToSC 2020 [42].

Although the automatic methods to search for ID, ZC, and integral attacks
had significant advances over the past years, they still have some basic limita-
tions:

– The CP models for finding ID/ZC distinguishers proposed in [12,37,43] rely
on the unsatisfiability of the models where the input/output difference/mask
is fixed. This is also the case in all existing CP models to search for integral
distinguishers based on division property [15, 44] or monomial prediction
[19, 22]. However, finding an optimal key recovery attack is an optimization
problem, which is based on satisfiability. Hence, the previous CP models for
finding the ID, ZC, and integral distinguishers can not be extended to a
unified optimization model for finding a complete attack. The previous CP
models for finding ID, ZC, and integral distinguishers also require checking
each input/output property individually. As a result, it is computationally
hard to find all possible distinguishers when the block size is large enough.

– The CP model proposed in [42] employs the miss-in-the-middle technique
to find ID/ZC distinguishers. This approach does not fix the input/output
differences/masks. However, the compatibility between the two parts of the
distinguisher is checked outside of the CP model by iterating over a loop
where the activeness pattern of a state cell at the meeting point should be
fixed in each iteration.

– All previous CP models regarding ID, ZC, and integral attacks only focus
on finding the longest distinguishers. However, many other important fac-
tors affect the final complexity of these attacks, which we can not take into
account by only modeling the distinguisher part. For example, the position
and the number of active cells in the input/output of the distinguisher, the
number of filters in verifying the desired properties at the input/output of
distinguishers, and the number of involved key bits in the key recovery are
only a few critical parameters that affect the final complexity of the attack
but can be considered only by modeling the key recovery part. We show
that the best attack does not necessarily require the longest distinguisher.
Hence, it is important to unify the key recovery and distinguishing phases
for finding better ID, ZC, and integral attacks.

3

– The tool introduced by Derbez and Fouque [14] is the only tool to find full ID
attacks. However, this tool is based on a dedicated algorithm implemented in
C/C++ and is not as generic as the CP-based methods. In addition, this tool
can not take all critical parameters of ID attacks into account to minimize
the final complexity. As other limitations, this tool can not find related-
(twea)key ID attacks and is not applicable for ZC and integral attacks.

– None of the previous automatic tools takes the relationship between ZC and
integral attacks into account to find ZC distinguishers suitable for integral
key recovery. Particularly, there is no automatic tool to take the meet-in-
the-middle technique into account for ZC-based integral attacks.

Our contributions. We propose a new generic, CP-based, and easy-to-use au-
tomatic method to find full ID, ZC, and integral attacks, addressing the above
limitations. Unlike all previous CP models for these distinguishers, which are
based on unsatisfiability, our CP model relies on satisfiability for finding dis-
tinguishers. This way, each solution of our CP models corresponds to an ID,
ZC, or integral distinguisher. This key feature enables us to extend our distin-
guisher models to a unified model for finding an optimal key-recovery attack.
Furthermore, our unified CP model takes advantage of key-bridging and meet-
in-the-middle techniques. To show the usefulness of our method, we apply it to
SKINNY [3], CRAFT [4], SKINNYe-v2 [31], and SKINNYee [32] and significantly
improve the ZC, ID, and integral attacks on these ciphers. Table 1 summarizes
our results.

– We improve the integral attacks on SKINNY-n-2n and SKINNY-n-3n by 2
and 3 rounds, respectively. To the best of our knowledge, our integral attacks
are the best single-key attacks on these variants of SKINNY.

– We improve the ZC attacks on SKINNY-n-n (SKINNY-n-2n) by 2 (resp. 1)
rounds. We also propose the first 21-round ZC attack on SKINNY-n-3n. Our
ZC attacks are the best attacks on SKINNY in a known-plaintext setting.

– On CRAFT, we provide a 21-round (20-round) single-tweakey ID (resp. ZC)
attack that is 2 (resp. 1) rounds longer than the best previous single-tweakey
attack proposed on this cipher at ASIACRYPT 2022 [40].

– We improve all previous single-tweakey ID attacks on all variants of SKINNY.
We reduce the time complexity of the ID attack on SKINNY-128-256 by
a factor of 222.57. Our ID attacks are the best single-tweakey attacks on
SKINNY-128-128, and all variants of SKINNY-64. We also improved the
related-tweakey ID attack on SKINNY-n-3n.

– We provide the first third-party analysis of SKINNYee by proposing 26-round
integral and 27-round ID attacks.

– We propose several practical integral distinguishers for reduced round of
Deoxys-BC, SKINNY, CRAFT, and SKINNYe-v2/ee (see Table 3).

– Our tool identified several flaws in previous cryptanalytic results on SKINNY
(see Table 2). Our tool is efficient and can find all reported results in a
few seconds when running on a regular laptop. Its source code is publicly
available at the following link: https://github.com/hadipourh/zero

4

https://github.com/hadipourh/zero

Table 1: Summary of our cryptanalytic results. ID/ZC/Int = impossible dif-
ferential, zero-correlation, integral. STK/RTK = single/related-tweakey. SK =
single-key with given keysize, CP/KP = chosen/known plaintext, CT = chosen
tweak. †: attack has minor issues.

Cipher #R Time Data Mem. Attack Setting / Model Ref.

SKINNY-64-192

21 2185.83 262.63 249 ZC STK / KP G.3
21 2180.50 262 2170 ID STK / CP [47]
21 2174.42 262.43 2168 ID STK / CP F.3

23† 2155.60 273.20 2138 Int † 180,SK / CP,CT [1]
26 2172 261 2172 Int 180,SK / CP,CT H.2

27 2189 263.53 2184 ID RTK / CP [27]
27 2183.26 263.64 2172 ID RTK / CP F.4

SKINNY-128-384

21 2372.82 2122.81 298 ZC STK / KP G.3
21 2353.60 2123 2341 ID STK / CP [47]
21 2347.35 2122.89 2336 ID STK / CP F.3
26 2344 2121 2340 Int 360,SK / CP,CT H.2

27 2378 2126.03 2368 ID RTK / CP [27]
27 2362.61 2124.99 2344 ID RTK / CP F.4

SKINNY-64-128

18 2126 262.68 264 ZC STK / KP [36]
19 2119.12 262.89 249 ZC STK / KP G.2
19 2119.80 262 2110 ID STK / CP [47]
19 2110.34 260.86 2104 ID STK / CP F.2

20† 297.50 268.40 282 Int † 120,SK / CP,CT [1]
22 2110 257.58 2108 Int 120,SK / CP,CT H.1

SKINNY-128-256

19 2240.07 2122.90 298 ZC STK / KP G.2
19 2241.80 2123 2221 ID STK / CP [47]
19 2219.23 2117.86 2208 ID STK / CP F.2
22 2216 2113.58 2216 Int 240,SK / CP,CT H.1

SKINNY-64-64

14 262 262.58 264 ZC STK / KP [36]
16 262.71 261.35 237.80 ZC STK / KP G.1
17 261.80 259.50 249.60 ID STK / CP [47]
17 259 258.79 240 ID STK / CP F.1

SKINNY-128-128
16 2122.79 2122.30 274.80 ZC STK / KP G.1
17 2120.80 2118.50 297.50 ID STK / CP [47]
17 2116.51 2116.37 280 ID STK / CP F.1

CRAFT
20 2120.43 262.89 249 ZC STK / KP K.2
21 2106.53 260.99 2100 ID STK / CP K.3

SKINNYee
26 2113 266 2108 Int SK / CP,CT I.3

27 2123.04 262.79 2108 ID RTK / CP I.2

SKINNYe-v2 30 2232 265 2228 Int 240,SK / CP,CT H.3

5

Outline. We recall the background on ID and ZC attacks and review the link
between ZC and integral attacks in Section 2. In Section 3, we show how to
convert the problem of searching for ID and ZC distinguishers to a CSP problem.
In Section 4, we show how to extend our distinguisher models to create a unified
model for finding optimum ID attacks. We discuss the extension of our models
for ZC and integral attacks in Section 5, and finally conclude in Section 6.

Table 2: Attacks with a serious flaw (invalid attacks).

Cipher Attack #R Setting / Model Ref. Flaw

SKINNY-n-n ID 18 STK / CP [45] Section 4.2

SKINNY-n-2n
ID 20 STK / CP [45] Section 4.2

ZC/Int † 22 SK / CP, CT [48] Section 3

SKINNY-n-3n
ID 22 STK / CP [45] Section 4.2

ZC/Int † 26 SK / CP, CT [48] Section 3

† [48] was published after publishing the first version of our paper.

2 Background

Here, we recall the basics of ID and ZC attacks and briefly review the link
between the ZC and integral attacks. We also introduce the notations we use in
the rest of this paper. We refer to the appendix for the specification of SKINNY
and SKINNYe (Section C), CRAFT (Section K.1), and SKINNYee (Section I.1).

2.1 Impossible Differential Attack

The impossible differential attack was independently introduced by Biham et
al. [5] and Knudsen [24]. The core idea of an impossible differential attack is ex-
ploiting an impossible differential in a cipher to retrieve the key by discarding all
key candidates leading to such an impossible differential. The first requirement
of the ID attack is an ID distinguisher, i.e., an input difference that can never
propagate to a particular output difference. Then, we extend the ID distinguisher
by some rounds backward and forward. A candidate for the key that partially
encrypts/decrypts a given pair to the impossible differential is certainly not
valid. The goal is to discard as many wrong keys as possible. Lastly, we uniquely
retrieve the key by exhaustively searching the remaining candidates.

We recall the complexity analysis of the ID attack based on [10, 11]. Let E
be a block cipher with n-bit block size and k-bit key. As illustrated in Figure 1,
assume that there is an impossible differential ∆u ↛ ∆l for rd rounds of E
denoted by Ed. Suppose that ∆u (∆l) propagates backward (resp. forward)
with probability 1 through E−1

b (resp. Ef) to ∆b (∆f), and |∆b| (|∆f|) denotes
the dimension of vector space ∆b (resp. ∆f). Let cb (cf) be the number of

6

bit-conditions that should be satisfied for ∆b → ∆u (resp. ∆l ← ∆f), i.e.,
Pr (∆b → ∆u) = 2−cb (resp. Pr (∆l ← ∆f) = 2−cf). Moreover, assume that kb
(kf) denotes the key information, typically subkey bits, involved in Eb (resp.
Ef). With these assumptions we can divide the ID attacks into three steps:

– Step 1: Pair Generation. Given access to the encryption oracle (and possibly
the decryption oracle), we generateN pairs (x, y) ∈ {0, 1}2n such that x⊕y ∈
∆b and E(x)⊕E(y) ∈ ∆f and store them. This is a limited birthday problem,
and according to [11] the complexity of this step is:

T0 = max

{
min

∆∈{∆b,∆f}

{√
N2n+1−|∆|

}
, N2n+1−|∆b|−|∆f|

}
(1)

– Step 2: Guess-and-Filter. The goal of this step is to discard all subkeys in
kb ∪ kf which are invalidated by at least one of the generated pairs. Rather
than guessing all subkeys kb ∪ kf at once and testing them with all pairs,
we can optimize this step by using the early abort technique [29]: We divide
kb ∪ kf into smaller subsets, typically the round keys, and guess them step
by step. At each step, we reduce the remaining pairs by checking if they
satisfy the conditions of the truncated differential trail through Eb and Ef.
The minimum number of partial encryptions/decryptions in this step is [10]:

T1 + T2 = N + 2|kb∪kf| N

2cb+cf
(2)

– Step 3: Exhaustive Search. The probability that a wrong key survives through

the guess-and-filter step is P =
(
1− 2−(cb+cf)

)N
. Therefore, the number of

candidates after performing the guess-and-filter is P ·2|kb∪kf| on average. On
the other hand, the guess-and-filter step does not involve k − |kb ∪ kf| bits
of key information. As a result, to uniquely determine the key, we should
exhaustively search a space of size T3 = 2k−|kb∪kf| · P · 2|kb∪kf| = 2k · P .

∆b

∆u

∆l

∆f

rb rounds

rd rounds

rf rounds

kb, cb

kf, cf

impossible differential distinguisher ∆u ̸→ ∆l

truncated differential from ∆u to set ∆b

truncated differential from ∆l to set ∆f

Fig. 1: Main parameters of the ID attack using an rd-round impossible differential
distinguisher ∆u ̸→ ∆l. The distinguisher is extended with truncated differential
propagation to sets ∆u → ∆b over rb rounds backwards and ∆l → ∆f over rf
rounds forward. The inverse differentials ∆b → ∆u and ∆f → ∆l involve kb, kf
key bits and have weight cb, cf, respectively.

7

Then, the total time complexity of the ID attack is:

Ttot = (T0 + (T1 + T2)CE′ + T3)CE , (3)

where CE denotes the cost of one full encryption, and CE′ represents the ratio
of the cost for one partial encryption to the full encryption.

To keep the data complexity less than the full codebook, we require T0 < 2n.
In addition, to retrieve at least one bit of key information in the guess-and-filter
step, P < 1

2 should hold. Note that Equation 2 is the average time complexity
of the guess-and-filter step; for each ID attack, we must evaluate its complexity
accurately to ensure we meet this bound in practice. To see the complexity
analysis of the ID attack in the related-(twea)key setting, refer to Appendix A.

2.2 Multidimensional Zero-Correlation Attack

Zero-correlation attacks, firstly introduced by Bogdanov and Rijmen [8], are
the dual of the ID attack in the context of linear analysis and exploit a linear
approximation with zero correlation. The major limitation of the basic ZC at-
tack is its enormous data complexity, equal to the full codebook. To reduce the
data complexity of the ZC attack, Bogdanov and Wang proposed the multiple
ZC attack at FSE 2012 [9], which utilizes multiple ZC linear approximations.
However, the multiple ZC attack relies on the assumption that all involved ZC
approximations are independent, which limits its applications. To overcome this
assumption, Bogdanov et al. introduced the multidimensional ZC attack at ASI-
ACRYPT 2012 [7]. We briefly recall the basics of a multidimensional ZC attack.

Let Ed represents the reduced-round block cipher E with a block size of
n bits. Assume that the correlation of m independent linear approximations
⟨ui, x⟩ + ⟨wi, Ed(x)⟩ and all their nonzero linear combinations are zero, where
ui, wi, x ∈ Fn

2 , for i = 0, . . . ,m − 1. We denote by l = 2m the number of ZC
linear approximations. In addition, assume we are given N input/output pairs
(x, y = Ed(x)). Then, we can construct a function from Fn

2 to Fm
2 which maps x

to z(x) = (z0, . . . , zm−1), where zi := ⟨ui, x⟩+⟨wi, Ed(x)⟩ for all i. The idea of the
multidimensional ZC distinguisher is that the output of this function follows the
multivariate hypergeometric distribution, whereas the m-tuples of bits drawn at
random from a uniform distribution on Fm

2 follow a multinomial distribution [7].
For sufficiently largeN , we distinguish Ed from a random permutation as follows.

We initialize 2m counters V [z] to zero, z ∈ Fm
2 . Then, for each of the N pairs

(x, y), we compute zi = ⟨ui, x⟩+ ⟨wi, y⟩ for all i = 0, . . . , 2m − 1, and increment
V [z] where z = (z0, . . . , zm−1). Finally, we compute the following statistic:

T =
N · 2m
1− 2−m

2m−1∑
z=0

(
V [z]

N
− 1

2m

)2

. (4)

For the pairs (x, y) derived from Ed, i.e., y = Ed(x), the statistic T follows a
χ2-distribution with mean µ0 = (l−1) 2

n−N
2n−1 and variance σ2

0 = 2(l−1)(2
n−N
2n−1)

2.

However, it follows a χ2-distribution with mean µ1 = (l − 1) and variance σ2
1 =

8

2(l − 1) for a random permutation [7]. By defining a decision threshold τ =
µ0 + σ0Z1−α = µ1 − σ1Z1−β , the output of test is ‘cipher’, i.e., the pairs are
derived from Ed, if T ≤ τ . Otherwise, the output of the test is ‘random’.

This test may wrongfully classify Ed as a random permutation (type-I error)
or may wrongfully accept a random permutation as Ed (type-II error). Let the
probability of the type-I and type-II errors be α and β. Then, the number of
required pairs N to successfully distinguish Ed from a random permutation is [7]:

N =
2n(Z1−α + Z1−β)√

l/2− Z1−β

, (5)

where Z1−α, and Z1−β are respective quantiles of the standard normal distribu-
tion. Thus, the data complexity of the multidimensional ZC attack depends on
the number of ZC approximations, l = 2m, and the error probabilities α and β.

To mount a key recovery based on a multidimensional ZC distinguisher for
Ed, we extend Ed by a few rounds at both ends, E = Ef ◦ Ed ◦ Eb. Given N
plaintext/ciphertext pairs (p, c = E(p)), we can recover the key in two steps:

– Step 1: Guess-and-filter. We guess the value of involved key bits in Eb (Ef)
and partially encrypt (decrypt) the plaintexts (ciphertexts) to derive N pairs
(x, y) for the input x = Eb(p) and output y = E−1

f (c) of Ed. Assuming that
wrong keys yield pairs (x, y) randomly chosen from F2n

2 , we use the statistic
T to discard all keys for which T ≤ τ .

– Step 2: Exhaustive Search. Finally, we exhaustively search the remaining key
candidates to find the correct key.

The time complexity of the guess-and-filter step depends on the number of
pairs N and the size of involved key bits in Eb and Ef. Given that typically a
subset of internal variables is involved in the partial encryptions/decryptions,
we can take advantage of the partial sum technique [16] to reduce the time
complexity of the guess-and-filter step. Moreover, by adjusting the value of α
and β, we can make a trade-off between the time and data complexities as α and
β affect the data, and β influences the time complexity of the exhaustive search.

2.3 Relation Between the Zero-Correlation and Integral Attacks

Bogdanov et al. [7] showed that an integral distinguisher3 always implies a ZC
distinguisher, but its converse is true only if the input and output linear masks
of the ZC distinguisher are independent. Later, Sun et al. [41] proposed the
following theorem that the conditions for deriving an integral distinguisher from
a ZC linear hull in [7] can be removed.

Theorem 1 (Sun et al. [41]). Let F : Fn
2 → Fn

2 be a vectorial Boolean func-
tion. Assume A is a subspace of Fn

2 and β ∈ Fn
2 \ {0} such that (α, β) is a ZC

approximation for any α ∈ A. Then, for any λ ∈ Fn
2 , ⟨β, F (x+ λ)⟩ is balanced

over the set
A⊥ = {x ∈ Fn

2 | ∀ α ∈ A : ⟨α, x⟩ = 0}.
3 Under the definition that integral property is a balanced vectorial Boolean function

9

P

TK1

TK2

...

TKz

C

C0

f

h α1

h α2

h αz

Γ0

C1

f

h α1

h α2

h αz

Γ1

C2

f

h α1

h α2

h αz

Γ2

CR−1

f

h α1

h α2

h αz

ΓR−1

CR

ΓR

Γ0[i] Γ1[h
−1(i)] Γ2[h

−2(i)] ΓR−1[h
−R+1(i)] ΓR[h−R(i)]

Fig. 2: The STK construction of the tweakey framework.

According to Theorem 1, the data complexity of the resulting integral distin-
guisher is 2n−m, where n is the block size and m is the dimension of the linear
space spanned by the input linear masks in the corresponding ZC linear hull.

At ToSC 2019, Ankele et al. [1] considered the effect of the tweakey on ZC
distinguishers of tweakable block ciphers (TBCs). They showed that taking the
tweakey schedule into account can lead to a longer ZC distinguisher and thus
a longer integral distinguisher. They proposed Theorem 2, which provides an
algorithm to find ZC linear hulls for TBCs following the super-position tweakey
(STK) construction of the tweakey framework [23] (see Figure 2).

Theorem 2 (Ankele et al. [1]). Let EK(T, P) : Ft×n
2 → Fn

2 be a TBC follow-
ing the STK construction. Assume that the tweakey schedule of EK has z parallel
paths and applies a permutation h on the tweakey cells in each path. Let (Γ0, Γr)
be a pair of linear masks for r rounds of EK , and Γ1, . . . , Γr−1 represents a pos-
sible sequence for the intermediate linear masks. If there is a cell position i such
that any possible sequence Γ0[i], Γ1[h

−1(i)], Γ2[h
−2(i)], . . . Γr[h

−r(i)] has at most
z linearly active cells, then (Γ0, Γr) yields a ZC linear hull for r rounds of E.

Ankele et al. used Theorem 2 to manually find ZC linear hulls for several
twekable block ciphers including SKINNY, QARMA [2], and MANTIS [3]. Later,
Hadipour et al. [21] proposed a bitwise automatic method based on SAT to search
for ZC linear hulls of tweakable block ciphers. This automatic method was then
reused by Niu et al. [34] to revisit the ZC linear hulls of SKINNY-64-{128,192}.

2.4 Constraint Satisfaction and Constraint Optimization Problems

A constraint satisfaction problem (CSP) is a mathematical problem including a
set of constraints over a set of variables that should be satisfied. More formally,
a CSP is a triple (X ,D, C), where X = {X0, X1, . . . , Xn−1} is a set of variables;
D = {D0,D1, . . . ,Dn−1} is the set of domains such that Xi ∈ Di, 0 ≤ i ≤ n− 1;
and C = {C0, C1, . . . , Cn−1} is a set of constraints. Each constraint Cj ∈ C is a
tuple (Sj ,Rj), where Sj = {Xi0 , . . . , Xik−1

} ⊆ X and Rj is a relation on the
corresponding domains, i.e., Rj ⊆ Di0 × · · · × Dik−1

.
Any value assignment of the variables satisfying all constraints of a CSP

problem is a feasible solution. The constraint optimization problem extends the

10

CSP problem by including an objective function to be minimized (or maximized).
Searching for the solution of a CSP or COP problem is referred to as constraint
programming (CP), and the solvers performing the search are called CP solvers.

In this paper, we use MiniZinc [33] to model and solve the CSP and COP
problems over integer and real numbers. MiniZinc allows modeling the CSP and
COP problems in a high-level and solver-independent way. It compiles the model
into FlatZinc, a standard language supported by a wide range of CP solvers.
For CSP/COP problems over integer numbers, we use Or-Tools [35], and for
CSP/COP problems over real numbers, we employ Gurobi [17] as the solver.

2.5 Encoding Deterministic Truncated Trails

Here, we recall the method proposed in [42] to encode deterministic truncated
differential trails. Thanks to the duality relation between differential and linear
analysis, one can adjust this method for deterministic truncated linear trails;
thus, we omit the details for the linear trails. We define two types of variables
to encode the deterministic truncated differential trails. Assume that ∆X =
(∆X[0], . . . ,∆X[m − 1]) represents the difference of the internal state X in an
n-bit block cipher E, where n = m · c, and ∆X[i] ∈ Fc

2 for all i = 0, . . . ,m− 1.
We use an integer variable AX[i] to encode the activeness pattern of ∆X[i] and
another integer variable DX[i] to encode the actual c-bit difference value of ∆X[i]:

AX[i] =

0 ∆X[i] = 0

1 ∆X[i] is nonzero and fixed

2 ∆X[i] can be any nonzero value

3 ∆X[i] can take any value

DX[i] ∈

{0} AX[i] = 0

{1, . . . , 2c−1} AX[i] = 1

{−1} AX[i] = 2

{−2} AX[i] = 3

Then, we link AX[i] and DX[i] for all i = 0, . . . ,m− 1 as follows:

Link(AX[i], DX[i]) :=

if AX[i] = 0 then DX[i] = 0

elseif AX[i] = 1 then DX[i] > 0

elseif AX[i] = 2 then DX[i] = −1
else DX[i] = −2 endif

MiniZinc supports conditional expression ‘if-then-else-endif ’, so we do
not need to convert to integer inequalities. Next, we briefly explain the propa-
gation rules of deterministic truncated differential trails.

Proposition 1 (Branching). For F : Fc
2 → F2c

2 , F (X) = (Y, Z) where Z =
Y = X, the valid transitions for deterministic truncated differential trails satisfy

Branch(AX, DX, AY, DY, AZ, DZ) := (AZ = AX ∧ DZ = DX ∧ AY = AX ∧ DY = DX)

11

Proposition 2 (XOR). For F : F2c
2 → Fc

2, F (X,Y) = Z where Z = X ⊕ Y ,
the valid transitions for deterministic truncated differential trails satisfy

XOR(AX, DX, AY, DY, AZ, DZ) :=

if AX+ AY > 2 then AZ = 3 ∧ DZ = −2
elseif AX+ AY = 1 then AZ = 1 ∧ DZ = DX+ DY

elseif AX = AY = 0 then AZ = 0 ∧ DZ = 0

elseif DX+ DY < 0 then AZ = 2 ∧ DZ = −1
elseif DX = DY then AZ = 0 ∧ DZ = 0

else AZ = 1 ∧ DZ = DX⊕ DY endif

Proposition 3 (S-box). Assume that S : Fc
2 → Fc

2 is a c-bit S-box and Y =
S(X). The valid transitions for deterministic truncated differential trails satisfy

S-box(AX, AY) :=(AY ̸= 1 ∧ AX+ AY ∈ {0, 3, 4, 6} ∧ AY ≥ AX ∧ AY− AX ≤ 1)

For encoding the MDS matrices, see Appendix B. To encode non-MDS ma-
trices, such as the matrix employed in SKINNY, as described in Appendix D, we
can use the rules of XOR and branching to encode the propagation.

3 Modeling the Distinguishers

Although the key recovery of ZC and ID attacks are different, the construction
of ZC and ID distinguishers relies on the same approach, which is the miss-in-
the-middle technique [5,6]. The idea is to find two differences (linear masks) that
propagate halfway through the cipher forward and backward with certainty but
contradict each other in the middle. The incompatibility between these propa-
gations results in an impossible differential (resp. unbiased linear hull).

Suppose we are looking for an ID or ZC distinguisher for Ed, which represents
rd rounds of a block cipher E. Moreover, we assume that the block size of E is n
bits, where n = m · c with c being the cell size and m being the number of cells.
We convert the miss-in-the-middle technique to a CSP problem to automatically
find ID and ZC distinguishers. We first divide Ed into two parts, as illustrated in
Figure 3: An upper part Eu covering ru rounds and a lower part El of rl rounds.
Hereafter, we refer to the trails discovered for Eu (El) as the upper (lower) trail.
We denote the internal state of Eu (El) after r rounds by XUr (XLr). The state
XUru (or XL0) at the intersection of Eu and El is called the meeting point.

Let AXUr and AXLr denote the activeness pattern of the state variables XUr

and XLr, as shown in Figure 3. Let DXUr and DXLr denote the actual difference
values in round r of Eu and El. We encode the deterministic truncated differen-
tial trail propagation through Eu and El in opposite directions as two indepen-
dent CSP problems using the rules described in Section 2.5. We exclude trivial
solutions by adding the constraints

∑m−1
i=0 AXU0[i] ̸= 0 and

∑m−1
i=0 AXLrl ̸= 0. Let

CSPu(AXU0, DXU0, . . . , AXUru , DXUru) be the model for propagation of deterministic
truncated trails over Eu and CSPl(AXL0, DXL0, . . . , AXLrl , DXLrl) for E

−1
l .

The last internal state in Eu and the first internal state of El overlap at the
meeting point as they correspond to the same internals state. We define some

12

Fig. 3: Modeling the miss-in-the-middle technique as a CSP problem

additional constraints to ensure the incompatibility between the deterministic
differential trails of Eu and El at the position of the meeting point:

CSPM (AXUrl , DXUrl , AXL0, DXL0) :=

m−1∨
i=0

(
(AXUru [i] + AXL0[i] < 3) ∧
AXUru [i] ̸= AXL0[i]

)
∨

m−1∨
i=0

(
AXUru [i] = 1 ∧ AXL0[i] = 1 ∧
DXUru [i] ̸= DXL0[i]

)
= True

(6)

The constraints included in CSPM guarantee the incompatibility between the
upper and lower deterministic trails in at least one cell at the meeting point.
Lastly, we define CSPd := CSPu ∧ CSPl ∧ CSPM , which is the union of all three
CSPs. As a result, any feasible solution of CSPd corresponds to an impossible
differential. We can follow the same approach to find ZC distinguishers.

Although we encode the deterministic truncated trails in the same way as [42],
our method to search for distinguishers has some important differences. Sun et al.
[42] solves CSPu and CSPl separately through a loop where the activeness pattern
of a cell at the meeting point is fixed in each iteration. The main advantage of our
model is that any solutions of CSPd corresponds to an ID (or ZC) distinguisher.
In addition, we do not constrain the value of our model at the input/output or
at meeting point. These key feature enables us to extend our model for the key
recovery and build a unified COP for finding the nearly optimum ID and ZC
attacks in the next sections.

We showed how to encode and detect the contradiction in the meeting point.
However, the contradiction may occur in other positions, such as in the tweakey
schedule (see Theorem 2), leading to longer distinguishers. Next, we show how
to generalize this approach to detect the contradiction in the tweakey schedule
while searching for ZC-integral distinguishers according to Theorem 2.

Consider a block cipher E that follows the STK construction with z parallel
independent paths in the tweakey schedule. Assume that E applies the permu-
tation h to shuffle the position of cells in each path of tweakey schedule. Let
STKr[i] be the ith cell of subtweakey after r rounds. For all i = 0, . . . ,m − 1,
we define the integer variable ASTKr[i] ∈ {0, 1, 2, 3}, to indicate the activeness
pattern of STKr[i]. Then we define the following constraints to ensure that there

13

is a contradiction in the tweakey schedule and the condition of Theorem 2 holds:

CSPTK(ASTK0, . . . , ASTKrd−1) :=

m−1∨
i=0

rd−1∑
r=0

bool2int
(
ASTKr[h

−r(i)] ̸= 0
)
≤ z

∧
rd−1∨
r=0

(
ASTKr[h

−r(i)] = 1
)

 ∨
(

rd−1∧
r=0

ASTKr[h
−r(i)] = 0

)
(7)

Equation 7 guarantees that at least one path of the tweakey schedule has at most
z active cells, or it is totally inactive. Finally, we create the CSP problem CSPd :=
CSPu ∧ CSPl ∧ CSPTK to find ZC distinguishers of tweakable block ciphers taking
the tweakey schedule into account. According to Equation 7, if the sequence
of linear masks in the involved tweakey lane has z non-zero values, i.e., {1, 2},
then at least one of the taken non-zero values should be 1. We also practically
verified on reduced-round examples that this condition is indeed necessary to
obtain valid ZC-integral distinguishers. This essential condition is ignored in [48];
unfortunately, their claimed distinguishers (and hence their attacks) are invalid.
We contacted the authors of [48], and they confirmed our claim.

In our model for distinguisher, we assume that the round keys are indepen-
dent. Thus, our method regards even those differential or linear propagations over
multiple rounds that cannot occur due to the global dependency between the
round keys as possible propagations. We also consider the S-box as a black box
and do not exploit its internal structure. As a result, regardless of the (twea)key
schedule and the choice of S-box, the ID/ZC/Integral distinguishers discovered
by our method are always valid.

Before extending our models for key recovery, we first show some of the
interesting features of our new model for distinguishers. We can optimize the
desired property by adding an objective function to our CSP models for find-
ing distinguishers. According to Theorem 1, maximizing the number of active
cells at the input of the ZC linear hull is equivalent to minimizing the data
complexity of the corresponding integral distinguisher. Therefore, we maximize
the integer addition of the activeness pattern at the input of the ZC-Integral
distinguisher. Thanks to this feature, we discovered many practical integral dis-
tinguishers for reduced-round Deoxys-BC, SKINNY, SKINNYe-v2, SKINNYee, and
CRAFT. Table 3 briefly describes the specification of our integral distinguishers
for five ciphers. We note that finding integral distinguishers with minimum data
complexity is a challenging task using division property [15, 44] or monomial
prediction [19,22], especially when the block cipher employs large S-boxes. How-
ever, our tool can find integral distinguishers with low data complexity by only
one iteration that takes a few seconds on a regular laptop. For a more detailed
comparison between our method and monomial prediction or division property,
see Section M.

14

Table 3: Summary of integral distinguishers for some ciphers, cell size c ∈ {4, 8}.
Cipher #Rounds Data complexity Ref.

SKINNY-n-n 10 / 11 / 12 25·c / 28·c / 213·c J
SKINNY-n-2n 12 / 13 / 14 26·c / 29·c / 214·c J
SKINNY-n-3n 14 / 15 / 16 27·c / 210·c / 215·c J

SKINNYe-v2 / SKINNYee 16 / 17 / 18 232 / 244 / 264 J

CRAFT 12 / 13 / 14 / 15 228 / 244 / 256 / 264 K.4

Deoxys-BC-256 5 / 6 224 / 256 L
Deoxys-BC-384 6 / 7 232 / 264 L

4 Modeling the Key Recovery for Impossible Differentials

In this section, we present a generic framework which receives four integer num-
bers (rb, ru, rl, rf) specifying the lengths of each part in Figure 1, and outputs
an optimized full ID attack for r = rb+ ru+ rl+ rf rounds of the targeted block
cipher. To this end, we extend the CSP model for ID distinguishers in Section 3
to make a unified COP model for finding an optimized full ID attack taking all
critical parameters affecting the final complexity into account.

Before discussing our framework, we first reformulate the complexity analysis
of the ID attack to make it compatible with our COP model. Suppose that
the block size is n bits and the key size is k bits. Let N be the number of
pairs generated in the pair generation phase, and P represents the probability
that a wrong key survives the guess-and-filter step. According to Section 2.1,
P = (1 − 2−(cb+cf))N . Let g be the number of key bits we can retrieve through
the guess-and-filter step, i.e., P = 2−g. Since P < 1

2 , we have 1 < g ≤ |kb ∪ kf|.
Assuming that (1−2−(cb+cf))N ≈ e−N ·2−(cb+cf)

, we have N = 2cb+cf+log2(g)−0.53.
Moreover, suppose that LG(g) = log2(g) − 0.53. Therefore, we can reformulate
the complexity analysis of the ID attack as follows:

T0 = max

 min
∆∈{∆b,∆f}

{2 cb+cf+n+1−|∆|+LG(g)
2 },

2cb+cf+n+1−|∆b|−|∆f|+LG(g)

 , T0 < 2n,

T1 = 2cb+cf+LG(g), T2 = 2|kb∪kf|+LG(g), T3 = 2k−g,

Ttot = (T0 + (T1 + T2)CE′ + T3)CE , Ttot < 2k,

Mtot = min
{
2cb+cf+LG(g), 2|kb∪kf|}, Mtot < 2k.

(8)

When searching for an optimal full ID attack, we aim to minimize the to-
tal time complexity while keeping the memory and data complexities under the
threshold values. As can be seen in Equation 8, cb, cf, |∆b|, |∆f|, and |kb ∪ kf|,
are the critical parameters which directly affect the final complexity of the ID
attack. To determine (cb, |∆b|), we need to model the propagation of truncated

15

differential trails through Eb, taking the probability of all differential cancel-
lations into account. To determine kb, we need to detect the state cells whose
difference or data values are needed through the partial encryption over Eb. The
same applies for partial decryption over E−1

f to determine cf, |∆f|, kf. Moreover,
to determine the actual size of kb ∪ kf, we should take the (twea)key schedule
and key-bridging technique into account.

4.1 Overview of the COP Model

Our model includes several components:

– Model the distinguisher as in Section 3. Unlike the previous methods,
our model imposes no constraints on the input/output of the distinguisher.

– Model the difference propagation in outer parts for truncated trails

∆b
E−1

b←−−− ∆u and ∆l
Ef−→ ∆f with probability one. Unlike our model for the

distinguisher part, where we use integer variables with domain {0, . . . , 3},
here, we only use binary variables to encode active/inactive cells. We also
model the number of filters cb and cf using new binary variables and con-

straints to encode the probability of ∆b
Eb−−→ ∆u and ∆l

E−1
f←−−− ∆f.

– Model the guess-and-determine in outer parts. In this component, we
model the determination relationships over Eb and Ef to detect the state cells
whose difference or data values must be known for verifying the differences
∆u, and ∆l. Moreover, we model the relation between round (twea)keys
and the internal state to detect the (twea)key cells whose values should be
guessed during the determination of data values over Eb, and Ef.

– Model the key bridging. In this component, we model the (twea)key
schedule to determine the number of involved sub-(twea)keys in the key
recovery. For this, we can use the general CP-based model for key-bridging
proposed by Hadipour and Eichlseder in [18], or cipher-dedicated models.

– Model the complexity formulas. In this component, we model the com-
plexity formulas in Equation 8 with the following constraints:

D[0] :=min∆∈{∆b,∆f}{ 12 (cb + cf + n+ 1− |∆|+ LG(g))},
D[1] :=cb + cf + n+ 1− |∆b| − |∆f|+ LG(g),

T[0] :=max {D[0], D[1]} , T[0] < n,

T[1] :=cb + cf + LG(g), T[2] := |kb ∪ kf|+ LG(g), T[3] :=k − g,

T :=max{T[0], T[1], T[2], T[3]}, T < k.

(9)

Lastly, we set the objective function to Minimize T.

All variables in our model are binary or integer variables with a limited
domain except for D and T[i] for i ∈ {0, 1, 2, 3} in Equation 9, which are real
numbers. MiniZinc and many MILP solvers such as Gurobi support max, and
min operators. We also precompute the values of LG(g) with 3 floating point
precision for all g ∈ {2, . . . , k}, and use the table feature of MiniZinc to model
LG(g). As a result, our COP model considers all the critical parameters of the

16

ID attacks. We recall that the only inputs of our tool are four integer numbers
to specify the lengths of Eb, Eu, El, and Ef. So, one can try different lengths for
these four parts to find a nearly optimal attack. We can also modify the objective
function of our model to minimize the data or memory complexities where time
or any other parameter is constrained. One can extend this single-tweakey model
for the related-tweakey setting, as we will show next.

4.2 Detailed model for SKINNY

Next, we show in more detail how to perform each step. To this end, we build
the COP model for finding full related-tweakey ID attacks on SKINNY as an
example. We choose the largest variant of SKINNY, i.e., SKINNY-n-3n with cell
size c ∈ {4, 8} to explain our model (see Appendix C for the cipher specification).
In what follows, given four integer numbers rb, ru, rl, rf, we model the full ID
attack on r = rb + ru + rl + rf rounds of SKINNY, where rd = ru + rl is the
length of the distinguisher and rb, and rf are the lengths of extended parts in
backward and forward directions, respectively.

Model the distinguisher We first model the difference propagation through
the tweakey schedule of SKINNY. For the tweakey schedule of SKINNY, we
can either use the word-wise model proposed in [3] or a bit-wise model (see
algorithm 1). Here, we explain the bit-wise model. The tweakey path of TK1
only shuffles the position of tweakey cells in each round. Thus, for tweakey path
TK1, we only define the integer variable DTK1[i] to encode the c-bit difference
in the ith cell of TK1. For tweakey path TKm, where m ∈ {2, 3}, we define
the integer variables DTKmr[i] to encode the c-bit difference value in the ith cell
of TKmr, where 0 ≤ i ≤ 15. We also define the integer variables ASTKr[i] and
DSTKr[i] to encode the activeness pattern as well as the c-bit difference value in
the ith cell of STKr. Our CSP model for the tweakey schedule of SKINNY is a
bit-wise model. We use the table feature of MiniZinc to encode the LFSRs. To
this end, we first precompute the LFSR as a lookup table and then constrain the
variables at the input/output of LFSR to satisfy the precomputed lookup table.
This approach is applicable for encoding any function that can be represented
as an integer lookup table, such as DDT/LAT of S-boxes. We tested word-wise
and bit-wise models and found the word-wise model more efficient.

In the data path of SKINNY, SubCells, AddRoundTweakey, and MixColumns
can change the activeness pattern of the state while propagating the determinis-
tic differences. Thus, for the internal state before and after these basic operations,
we define two types of variables to encode the activeness pattern and difference
value in each state cell. Next, as described in algorithm 2 and algorithm 6, we
build CSPu and CSPl. We also build the CSPM according to Equation 6. The
combined CSP model is CSPd := CSPu ∧ CSPl ∧ CSPM ∧ CSPDTK . Hence, any
feasible solution of CSPd corresponds to a related-tweakey ID distinguisher for
SKINNY-n-3n. By setting DTK30 in algorithm 1 to zero, we can find related-
tweakey ID distinguishers for SKINNY-n-2n. We can also set DTK1, DTK20, DTK30
in algorithm 1 to zero to find single-tweakey ID distinguishers of SKINNY.

17

Algorithm 1: CSP model for the tweakey schedule of SKINNY

Input: Four integer numbers (rb, ru, rl, rf)
Output: CSPDTK

1 R← rb + ru + rl + rf − 1;
2 Declare an empty CSP modelM;
3 M.var← {DTK1[i] ∈ {0, . . . , 2c − 1} : 0 ≤ i ≤ 15};
4 M.var← {DTK2r[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 15};
5 M.var← {DTK3r[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 15};
6 M.var← {ASTKr[i] ∈ {0, 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 7};
7 M.var← {DSTKr[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 7};
8 for r = 0, . . . , R; i = 0, . . . , 7 do
9 M.con← Link(ASTKr[i], DSTKr[i]);

10 for r = 1, . . . , R; i = 0, . . . 15 do
11 if i ≤ 7 then
12 M.con← table([DTK2r−1[h(i)], DTK2r[i]], lfsr2);
13 M.con← table([DTK3r−1[h(i)], DTK3r[i]], lfsr3);

14 else
15 M.con← DTK2r[i] = DTK2r−1[h(i)];
16 M.con← DTK3r[i] = DTK3r−1[h(i)];

17 for r = 0, . . . , R; i = 0, . . . 7 do
18 M.con← DSTKr[i] = DTK1[hr(i)]⊕ DTK2r[i]⊕ DTK3r[i];

19 returnM;

The first operation in the round function of SKINNY is SubCells. However, we
can consider the first SubCells layer as a part of Eb and start the distinguisher
after it. This way, our model takes advantage of the differential cancellation over
the AddRoundTweakey and MixColumns layers to derive longer distinguishers. It
happens if the input differences in the internal state (or tweakey paths) are fixed
and can cancel out each other through AddRoundTweakey or MixColumns. In this
case, we skip the constraints in line 14 of algorithm 2 for the first round, r = 0.

Model the difference propagation in outer parts To model the determin-

istic difference propagations ∆b
E−1

b←−−− ∆u, and ∆l
Ef−→ ∆f, we define a binary

variable for each state cell to indicate whether its difference value is zero. Since
the SubCells layer does not change the status of state cells in terms of having
zero/nonzero differences, we ignore it in this model.

To model the probability of difference propagations ∆b
Eb−−→∆u, and ∆l

E−1
f←−−−

∆f, note that there are two types of probabilistic transitions. The first type
is differential cancellation through an XOR operation. The second type is any

differential transition (truncated
S−→ fixed) for S-boxes; this is only considered

at the distinguisher’s boundary, at the first S-box layer of Ef or the last of Eb.
Let Z = X ⊕ Y , where X,Y, Z ∈ Fc

2. Let AX, AY, AZ ∈ {0, 1} indicate whether
the difference of X,Y, Z are zero. We define the new constraint XOR1 to model

18

Algorithm 2: CSPu for upper trail in distinguisher of SKINNY

Input: CSPDTK .var and the integer numbers rb, ru
Output: CSPu

1 roff ← rb;
2 Declare an empty CSP modelM;
3 M.var← CSPDTK .var;
4 M.var← {AXUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
5 M.var← {DXUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
6 M.var← {AYUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru − 1, 0 ≤ i ≤ 15};
7 M.var← {DYUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru − 1, 0 ≤ i ≤ 15};
8 M.var← {AZUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru − 1, 0 ≤ i ≤ 15};
9 M.var← {DZUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru − 1, 0 ≤ i ≤ 15};

10 M.con←
∑15

i=0 AXU0[i] +
∑15

i=0 DTK1[i] +
∑15

i=0 DTK20 +
∑15

i=0 DTK30[i] ≥ 1;
11 for r = 0, . . . , ru − 1, i = 0, . . . , 15 do
12 M.con←Link(AXUr[i],DXUr[i])∧Link(AYUr[i],DYUr[i])∧Link(AZUr[i],DZUr[i]);
13 for r = 0, . . . , ru − 1, i = 0, . . . , 15 do
14 M.con← S-box(AXUr[i], AYUr[i]);

15 for r = 0, . . . , ru − 1, i = 0, . . . , 7 do
16 M.con← XOR(AYUr[i], DYUr[i], ASTKroff+r[i], DSTKroff+r[i], AZUr[i], DZUr[i]);
17 M.con← (AZUr[i+ 8] = AYUr[i+ 8]) ∧ (DZUr[i+ 8] = DYUr[i+ 8]);

18 for r = 0, . . . , ru − 1, i = 0, . . . , 3 do
19 I1 ← [AZUr[P [i]], AZUr[P [i+ 4]], AZUr[P [i+ 8]], AZUr[P [i+ 12]]];
20 I2 ← [DZUr[P [i]], DZUr[P [i+ 4]], DZUr[P [i+ 8]], DZUr[P [i+ 12]]];
21 O1 ← [AXUr+1[i], AXUr+1[i+ 4], AXUr+1[i+ 8], AXUr+1[i+ 12]];
22 O2 ← [DXUr+1[i], DXUr+1[i+ 4], DXUr+1[i+ 8], DXUr+1[i+ 12]];
23 M.con← Mdiff (I1, I2, O1, O2);

24 returnM;

the difference propagation with probability one through XOR:

XOR1(AX, AY, AZ) := (AZ ≥ AX) ∧ (AZ ≥ AY) ∧ (AZ ≤ AX+ AY) (10)

We define a binary variable CBr[i] (CFr[i]) for each XOR operation in the rth
round of Eb (resp. Ef) to indicate whether there is a difference cancellation
over the corresponding XOR, where 0 ≤ i ≤ 19. We also define the following
constraint to encode the differential cancellation for each XOR operation:

XORp(AX, AY, AZ, CB) := if (AX+ AY = 2 ∧ AZ = 0) then CB = 1 else CB = 0 (11)

Algorithm 3 and algorithm 7 describe our model for difference propagation over
Eb and Ef. We combine CSPdpb and CSP

dp
f into CSPDP := CSP

dp
b ∧ CSPdpf to model

the difference propagation through the outer parts.

Model the guess-and-determine in outer parts We now detect the state
cells whose difference or value is needed for the filters in ∆b → ∆u and ∆l ← ∆f.

19

Algorithm 3: CSPdpb difference propagation through Eb for SKINNY

Input: CSPDTK .var, CSPu.var and the integer number rb
Output: CSPdpb

1 Declare an empty CSP modelM;
2 M.var← CSPDTK .var;
3 M.var← {AXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
4 M.var← {AZBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
5 M.var← {CBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 19};
6 for i = 0, . . . , 15 do
7 M.con← if AXU0[i] ≥ 1 then AXBrb [i] = 1 else AXBrb [i] = 0;

8 for r = 0, . . . , rb − 1, i = 0, . . . , 3 do

9 M.con← Minvdiff1

AXBr+1[i]
AXBr+1[i+ 4]
AXBr+1[i+ 8]
AXBr+1[i+ 12]

 ,

AZBr[P [i]]

AZBr[P [i+ 4]]
AZBr[P [i+ 8]]
AZBr[P [i+ 12]]

;

10 M.con← XORp(AZBr[P [i+ 4]], AZBr[P [i+ 8]], AXBr+1[i+ 8], CBr[i]);
11 M.con← XORp(AZBr[P [i]], AZBr[P [i+ 8]], AXBr+1[i+ 12], CBr[i+ 4]);
12 M.con← XORp(AXBr+1[i+ 12], AZBr[P [i+ 12]], AXBr+1[i], CBr[i+ 8]);

13 for r = 0, . . . , rb − 1, i = 0, . . . , 7 do
14 M.con← XOR1(AZBr[i], ASTKr[i], AXBr[i]);
15 M.con← XORp(AXBr[i], ASTKr[i], AZBr[i], CBr[i+ 12]);
16 M.con← (AXBr[i+ 8] = AZBr[i+ 8]);

17 returnM;

We first discuss detecting the state cells whose difference values are needed.
The difference value in a state cell is needed if the corresponding state cell con-
tributes to a filter, i.e., a differential cancellation. We know that AddRoundTweakey
and MixColumns are the only places where a differential cancellation may occur.
We thus define the binary variables KDXBr[i] and KDZBr[i] to indicate whether the
difference value of Xr[i] and Zr[i] over Eb should be known. We recall that the
difference cancellation through each XOR over Eb is already encoded by CBr[i]. If
CBr[i] = 1, then the difference value in the state cells contributing to this differ-
ential cancellation is needed. For instance, if CBr[i] = 1, then KDZBr[P [i+4]] = 1
and KDZBr[P [i+ 4]] = 1, where 0 ≤ i ≤ 3 and 0 ≤ r ≤ ru − 1. Besides detecting
the new state cells whose difference values are needed in each round, we encode
the propagation of this property from the previous rounds, as in lines 14–17 of
algorithm 4. We also define new constraint (line 11) to link the beginning of
Eu to the end of Eb. For Ef, we also define new binary variables KDXFr[i] and
KDZFr[i] to indicate whether the difference values of Xr[i] and Zr[i] are needed.
Then, we follow a similar approach to model the determination of difference
values.

When modeling the determination of data values, SubCells comes into effect.
We explain modeling the determination of data values over S-boxes in Eb; a
similar model can be used for Ef. Suppose that Yr[i] = S(Xr[i]), and the value

20

Algorithm 4: CSPgdb guess-and-determine through Eb for SKINNY

Input: CSPu.var, CSP
dp
b and the integer number rb

Output: CSPgdb
1 Declare an empty CSP modelM;

2 M.var← CSPu.var ∪ CSP
dp
b .var;

3 M.var← {KDXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
4 M.con← {KDXBr[i] ≤ AXBr[i] : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
5 M.var← {KDZBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
6 M.con← {KDZBr[i] ≤ AZBr[i] : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
7 M.var← {KXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
8 M.var← {KYBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
9 M.var← {IKBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};

10 for i = 0, . . . , 15 do
11 M.con← if AXU0[i] = 1 then KDXBrb [i] = 1 else KDXBrb [i] = 0;
12 M.con← if AYU0[i] = 1 then KXBrb [i] = 1 else KXBrb [i] = 0;

13 for r = 0, . . . , rb − 1, i = 0, . . . , 3 do

14 M.con← if KDXBr+1[i] = 1 then

KDZBr[P [i]] = AZBr[P [i]]∧
KDZBr[P [i+ 8]] = AZBr[P [i+ 8]]∧
KDZBr[P [i+ 12]] = AZBr[P [i+ 12]]

;

15 M.con← if KDXBr+1[i+ 4] = 1 then KDZBr[P [i]] = AZBr[P [i]];

16 M.con← if KDXBr+1[i+8] = 1 then

(
KDZBr[P [i+ 4]] = AZBr[P [i+ 4]]∧
KDZBr[P [i+ 8]] = AZBr[P [i+ 8]]

)
;

17 M.con← if KDXBr+1[i+ 12] = 1 then

(
KDZBr[P [i]] = AZBr[P [i]] ∧
KDZBr[P [i+ 8]] = AZBr[P [i+ 8]]

)
;

18 M.con← if CBr[i] = 1 then (KDZBr[P [i+ 4]] = 1 ∧ KDZBr[P [i+ 8]] = 1);
19 M.con← if CBr[i+ 4] = 1 then (KDZBr[P [i]] = 1 ∧ KDZBr[P [i+ 8]] = 1);

20 M.con← if CBr[i+ 8] = 1 then

KDZBr[P [i]] = AZBr[P [i]] ∧
KDZBr[P [i+ 8]] = AZBr[P [i+ 8]] ∧
KDZBr[P [i+ 12]] = 1

;

21 M.con← Minvdata

KXBr+1[i]
KXBr+1[i+ 4]
KXBr+1[i+ 8]
KXBr+1[i+ 12]

 ,

KYBr[P [i]]

KYBr[P [i+ 4]]
KYBr[P [i+ 8]]
KYBr[P [i+ 12]]

;

22 for r = 0, . . . , rb − 1, i = 0, . . . , 7 do
23 M.con← KDXBr[i] ≥ KDZBr[i];
24 M.con← KDXBr[i+ 8] = KDZBr[i+ 8];
25 M.con← if CBr[i+ 12] = 1 then KDXBr[i] = 1;
26 M.con← (IKBr[i] = KYBr[i] ∧ IKBr[i+ 8] = 0);

27 for r = 0, . . . , rb − 1, i = 0, . . . , 15 do
28 M.con← S-boxgd(KYBr[i], KXBr[i], KDXBr[i]);

29 returnM;

21

of ∆Xr is known. If we want to determine the value of ∆Yr[i], e.g., to check a
filter, we need to know the value of Xr[i]. Accordingly, we need the value of Xr[i]
if either we want to determine Yr[i], or we want to determine ∆Yr[i]. On the
other hand, if neither data nor difference values after the S-box is needed, we do
not need to know the data value before the S-box. Therefore, we define binary
variables KXBr[i] and KYBr[i] to indicate whether the values of Xr[i] and Yr[i] are
needed. Then, we model the determination flow over the S-boxes as follows:

S-boxgd(KXBr[i], KYBr[i], KDXBr[i]) :=

{
(KYBr[i] ≥ KXBr[i]) ∧ (KYBr[i] ≥ KDXBr[i])∧
(KYBr[i] ≤ KXBr[i] + KDXBr[i])

We also model MixColumns according to Equation 16 when encoding the deter-
mination of data values over Eb and Ef.

We now explain how to detect the subtweakey cells that are involved in the
determination of data values. Let IKBr[i] be a binary variable that indicates
whether the ith cell of subtweakey in the rth round of Eb is involved, where
0 ≤ r ≤ rb − 1 and 0 ≤ i ≤ 15. One can see that IKBr[i] = 1 if and only if
i ≤ 7 and KYBr[i] = 1. Otherwise IKBr[i] = 0. We define binary variables IKFr[i]
to encode the involved subtweakey in Ef similarly. Algorithm 4 and algorithm 8
describe our CSP models for the guess-and-determine through Eb and Ef. We
refer to CSPGD := CSP

gd
b ∧ CSPgdf as our CSP model for the guess-and-determine

through the outer parts.

Model the key bridging Although the subtweakeys involved in Eb and Ef

are separated by rd rounds, they may have some relations due to the tweakey
schedule. Guessing the values of some involved key cells may determine the
value of others. Key-bridging uses the relations between subwteakeys to reduce
the number of actual guessed key variables. We can integrate the generic CSP
model for key-bridging over arbitrary tweakey schedules introduced in [18] into
our model. However, the tweakey schedule of SKINNY is linear, and we provide a
more straightforward method to model the key-bridging of SKINNY. We explain
our model for SKINNY-n-3n; it can easily be adapted for the smaller variants.

For the ith cell of subtweakey after r rounds, we have STKr[i] = TK1[hr(i)]⊕
LFSRr

2(TK1[hr(i)])⊕LFSRr
3(TK3[hr(i)]). Accordingly, knowing STKr[h

−r(i)]
in 3 rounds yields 3 independent equations in variables TK1[i],TK2[i],TK3[i],
which uniquely determine the master tweakey cells TK1[i],TK2[i], and TK3[i].
Hence, we do not need to guess STKr[h

−r(i)] for more than 3 different rs. To take
this fact into account, we first define new integer variables IK ∈ {0, . . . , rb+ rf−
1}, KE ∈ {0, 1, 2, 3}, and KS ∈ {0, . . . , 48}. Then, assuming that roff = rb+ru+rl
and z = 3, we use the following constraints to model the key-bridging:

CSPKB :=

IK[i] =

rb−1∑
r=0

IKBr[h
−r(i)] +

rf−1∑
r=0

IKFr[h
−(roff+r)(i)] for 0 ≤ i ≤ 15,

if IK[i] ≥ z then KE[i] = z else KE[i] = IK[i] for 0 ≤ i ≤ 15,

KS =

15∑
i=0

KE[i]

(12)

22

Model the complexity formulas We now show how to combine all CSP
models and model the complexity formulas. The variable KS in Equation 12
determines the number of involved key cells, corresponding to |kb ∪ kf| = c · KS
involved key bits for cell size c. We can model the other critical parameters of
the ID attack as shown in algorithm 5. We combine all CSP problems into a
unified model and define an objective function to minimize the time complexity
of the ID attack.

Results We applied our method to find full ID attacks on all variants of SKINNY
in both single and related-tweakey settings. Our model includes integer and real
variables, so we used Gurobi to solve the resulting COP problems. Table 1 shows
our results. Our ID attacks’ time, date, and memory complexity are much smaller
than the best previous ID attacks. Notably, the time complexity of our 19-round
single-tweakey ID attack on SKINNY-128-256 (Figure 8, details in Section F.2) is

Algorithm 5: COP model for the full ID attack on SKINNY

Input: Four integer numbers rb, ru, rl, rf
Output: COP

1 Declare an empty COP modelM;
2 M← CSPd ∧ CSPDP ∧ CSPGD ∧ CSPKB;
3 M.var← g ∈ {1, . . . , z · 16 · c} ; /* Corresponding to parameter g */

4 M.var← Cb ∈ {0, . . . , 20 · rb + 16} ; /* Corresponding to cb */

5 M.var← Cf ∈ {0, . . . , 20 · rf + 16} ; /* Corresponding to cf */

6 M.var← Wb ∈ {0, . . . , 16} ; /* Corresponding to |∆b| */
7 M.var← Wf ∈ {0, . . . , 16} ; /* Corresponding to |∆f| */
8 M.var← {D[i] ∈ [0, z · 16 · c] : i ∈ {0, 1, 2, 3}} ; /* For data complexity */

9 M.var← {T[i] ∈ [0, z · 16 · c] : i ∈ {0, 1, 2, 3}} ; /* For time complexity */

10 M.var← Tmax ∈ [0, z · 16 · c];
11 M.var← Cb =

∑rb−1
r=1

∑19
i=0 CBr[i] +

∑15
i=0 KXBrb [i];

12 M.var← Cf =
∑rf−2

r=0

∑19
i=0 CFr[i] +

∑7
i=0 CFrf−1[i] +

∑15
i=0 KXF0[i];

13 M.var← Wb =
∑15

i=0 AXB1[i];

14 M.var← Wf =
∑15

i=0 AXFrf−1[i];
15 M.con← D[0] = 0.5 · (c(Cb + Cf) + n− c · Wb + LG(g) + 2);
16 M.con← D[1] = 0.5 · (c(Cb + Cf) + n− c · Wf + LG(g) + 2);
17 M.con← D[2] = min(D[0], D[1]);
18 M.con← D[3] = c · (Cb + Cf) + n+ 1− c · (Wb + Wf) + LG(g);
19 M.con← T[0] = max(D[2], D[3]);
20 M.con← T[1] = c · (Cb + Cf) + LG(g);
21 M.con← T[2] = c · KS+ LG(g) ; /* Corresponding to |kb ∪ kf| */
22 M.con← T[3] = k− g;
23 M.con← g ≤ c · KS ∧ g > 1;
24 M.con← Tmax = max(T [0], T [1], T [2], T [3]);
25 M.con← (T[0] < n+ 1 ∧ Tmax < k);
26 M.obj← Minimize Tmax;
27 returnM;

23

smaller by a factor of 222.57 compared to the best previous one [47]. As another
example, we improved the time complexity of the related-tweakey ID attack on
SKINNY-128-384 by a factor of 215.39 (Figure 10), with smaller data and memory
complexity than the best previous one [27]. Our tool can discover the longest
ID distinguishers for SKINNY so far in both single and related-tweakey settings.
However, we noticed that the best ID attacks do not necessarily rely on the
longest distinguishers. For instance, our single-tweakey ID attacks on SKINNY
use 11-round distinguishers, whereas our tool also finds 12-round distinguishers.

We also applied our tool to CRAFT and SKINNYee. On CRAFT, we found
a 21-round ID attack which is 2 rounds longer than the best previous single-
tweakey attack presented at ASIACRYPT 2022 [40]. For SKINNYee, we found
a 27-round related-tweakey ID attack. Our tool can produce all the reported
results on a laptop in a few seconds. Besides improving the security evaluation
against ID attacks, our tool can significantly reduce human effort and error.

We also used our tool to check the validity of the previous results. To do so, we
fix the activeness pattern in our model to that at the input/output of the claimed
distinguisher. Moreover, we constrain the time, memory, and data complexities
to the claimed bounds. An infeasible model indicates potential issues with the
claimed attack. We manually check the attack to find the possible issue in this
case. If the model is feasible, we match the claimed critical parameters with the
output of our tool. In case of any mismatch, we manually check the corresponding
parameter in the claimed attack to ensure it is calculated correctly.

We followed this approach to check the validity of the ID attacks on SKINNY
proposed in [45]. For example, our tool returns ‘unsatisfiable’ when we limit it to
find a 22-round ID attack on SKINNY-n-3n with the claimed parameters in [45].
To figure out the issue, we relax the time/memory/data complexity bounds
and only fix the activeness pattern according to the claimed distinguisher. This
way, our tool returns different attack parameters compared to the claimed ones.
According to [45, Sec. 6], cb+cf is supposed to be 18c for 22-round ID attack on
SKINNY-n-3n with cell size c. However, our tool returns cb = 6c and cf = 15c,
and thus cb+cf = 21c. Accordingly, the actual probability that a wrong tweakey
is discarded with one pair is about 2−21c. So, the 22-round ID attack on SKINNY-
n-3n in [45] requires more data and thus time by a factor of 23c. The time
complexity of the 22-round ID attack on SKINNY-64-192 (SKINNY-128-384) in
[45] is 2183.97 (resp. 2373.48). As a result, the corrected attack requires more time
than the exhaustive search. We also checked the 20-round ID attacks on SKINNY-
n-2n in [45]. We noticed that a similar issue makes the corrected attack require
more data than the full codebook or more time than the exhaustive search. We
contacted the authors of [45], and they confirmed our claim.

5 Modeling the Key Recovery of ZC and Integral Attacks

Similar to our approach for ID attacks, we can extend our models for the ZC
and integral distinguishers to make a unified model for finding full ZC and ZC-
based integral attacks. One of the critical parameters in the key recovery of

24

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

�
X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

nonzero any involved in key-recovery diff. value is needed value is needed

Fig. 4: ID attack on 19 rounds of SKINNY-n-2n, |kb ∪ kf| = 26 · c, cb = 6 · c,
cf = 15 · c, ∆b = 7 · c, ∆f = 16 · c

25

ZC and integral attacks is the number of involved key cells in the outer parts.
Another effective parameter is the number of involved state cells through the
outer parts. Thus, we should consider these parameters when modeling the key
recovery of the ZC and integral attacks. Moreover, the meet-in-the-middle and
partial-sum techniques are essential to reduce the time complexity of integral
attacks. Therefore, taking these techniques into account, we provide a generic
CP model for key recovery of ZC and ZC-based integral attacks as follows:

– Model the distinguisher as described in Section 3.
– Model the guess-and-determine part by modeling the value paths in

the outer part and detecting the state/key cells whose values are needed in
key recovery.

– Model the key bridging for the key recovery.
– Model the meet-in-the-middle technique for the key recovery of inte-

gral attacks.
– Set the objective function to minimize the final time complexity, keeping

the data and memory complexities under the thresholds.

We only describe modeling the meet-in-the-middle technique. Other modules
can be constructed similarly to our models for ID attacks. Given that there is
no restriction for the output of ZC-integral distinguishers in our model, some
ZC-integral distinguishers might have more than one balanced output cell. With
more than one balanced cell, we might be able to use the meet-in-the-middle
(MitM) technique [38] to reduce the time complexity. For example, we can use
MitM if the ZC-integral distinguisher of SKINNY has two active output cells
in one column, indicating that the sum of these cells is balanced. Then, we can
recover the integral sums of these two cells for any keyguess separately and merge
compatible key guesses that yield the same sum, i.e., that sum to zero overall.

To consider the MitM technique, we model the path values for each output
cell of the distinguisher separately in an independent CP submodel. We also
define a new integer variable to capture the number of involved key cells in each
path. For example, our CP model for integral attacks on SKINNY splits into
16 submodels for the appended rounds after the distinguisher. Each submodel
aims at encoding the involved cells in retrieving a certain output cell of the
distinguisher. We note that these submodels, together with our CP model for
distinguisher, are all combined into one large unified CP model. This way, we
can encode and then minimize the complexity of the most critical path, which
requires the maximum number of guessed keys in the guess-and-filter step. Sim-
ilarly to our CP model for ID attacks, our model for ZC and integral attack
receives only four integer numbers as input and returns the full ZC or ZC-based
integral attack.

We solve our CP models for integral attacks in two steps with two different
objective functions:

– We first solve a CP model to minimize the number of involved key cells.
– Next, we limit the number of involved key cells to the output of the previous

step and solve the CP model with the objective of maximizing the number
of active cells at the input of ZC-integral distinguisher.

26

As a result, besides reducing the time complexity, we can reduce the data com-
plexity of the resulting integral attacks. To compute the exact final complexity,
we introduce an additional helper tool, AutoPSy, which automates the partial-
sum technique [16], and apply it as a post-processing step to the CP output.
AutoPSy optimizes the column order in each round of partial-sum key recovery.

We applied our unified framework for finding full ZC and integral attacks
to CRAFT, SKINNYe-v2, SKINNYee, and all variants of SKINNY and obtained
a series of substantially improved results. Table 1 briefly describes our results.
More details on our ZC and integral attacks can be found in Appendices G,
H, and I.3. As can be seen in Figure 14, Figure 15, Figure 19, the inputs of
the corresponding ZC distinguishers have 4 active cells, and the outputs have
2 active cells. The previous tools which fix the input/output linear masks to
vectors with at most one active cell can not find such a distinguisher.

Our CP models for ZC and integral attacks include only integer variables.
Thus, we can take advantage of all integer programming (IP) solvers. We used
Or-Tools in this application, and running on a regular laptop, our tool can find
all the reported results in a few seconds.

When reproducing the best previous results on SKINNY with our automatic
tool, we again noticed some issues in previous works. The previous ZC-integral
attacks on SKINNY proposed by Ankele et al. at ToSC 2019 [1] have some minor
issues where the propagation in the key recovery part is incorrect. For example,
in the 20-round TK2 attack in [1, Figure 20] between X18, Y18, the last row is not
shifted; in the 23-round TK3 attack in [1, Figure 22], the mixing between Y20, Z20

is not correct. In both cases, this impacts the correctness of all following rounds.
However, the attacks can be fixed to obtain similar complexities as claimed.

The comparison with those attacks highlights three advantages of our auto-
mated approach: (1) Our approach is much less prone to such small hard-to-spot
errors; (2) Our approach can find distinguishers with many active input cells
(rather than just one as classical approaches), which is particularly helpful in
ZC-integral attacks where a higher input weight implies a lower data complex-
ity; (3) Our approach optimizes the key recovery together with the distinguisher,
which together with (2) allows us to attach more key-recovery rounds (7 vs. 5
for TK2 in [1], 9 vs. 7 for TK3 in [1]).

6 Conclusion and Future Works

In this paper, we presented a unified CP model to find full ID, ZC, and ZC-
based integral attacks for the first time. Our frameworks are generic and can be
applied to word-oriented block ciphers. To show the effectiveness and usefulness
of our approach, we applied it to CRAFT, SKINNYe-v2, SKINNYee, and all mem-
bers of the SKINNY family of block ciphers. In all cases, we obtained a series
of substantially improved results compared to the best previous ID, ZC, and
integral attacks on these ciphers. Our tool can help the cryptanalysts and the
designers of block ciphers to evaluate the security of block ciphers against three
important attacks, i.e., ID, ZC, and ZC-based integral attacks, more accurately

27

and efficiently. While we focused on the application to SPN block ciphers, it is
also applicable to Feistel ciphers. Applying our approach to other block ciphers
such as AES or Feistel ciphers is an interesting direction for future work.

Our improved results show the advantage of our method. However, it also has
some limitations. Our CP model for the distinguisher part detects the contradic-
tions in the level of words and does not exploit the internal structure of S-boxes
(i.e., DDT/LAT) to consider bit-level contradictions. Thus, one interesting fu-
ture work is to provide a unified model considering bit-level contradictions. We
note that our CP framework for ID, ZC, and integral attacks is modular. The
key-recovery part of our CP model can be combined with other CP-based meth-
ods for finding distinguishers. For example, regardless of the distinguisher part,
one can feed our CP model for the key-recovery part by a set of input/output ac-
tiveness patterns for the distinguisher part to find the activeness pattern yielding
the best key-recovery attack. Next, one can use a more fine-grained CP model
that detects bit-level contradictions to check if the selected activeness pattern
yields an ID or ZC distinguisher. We recall that in CP models, we can specify
a set of input/output activeness patterns by a set of constraints, and we do not
have to enumerate all possible input/output activeness patterns. Currently, our
tool automatically applies the partial-sum technique as a post-processing step in
integral attacks for a refined complexity analysis. Thus, another interesting fu-
ture work is integrating the partial-sum technique into our CP model for integral
attacks. This way, one may be able to improve the integral attacks further.

Acknowledgments. This work has been supported in part by the Austrian
Science Fund (FWF SFB project SPyCoDe). The authors would like to thank
the anonymous reviewers for their valuable comments and suggestions.

References

1. Ankele, R., Dobraunig, C., Guo, J., Lambooij, E., Leander, G., Todo, Y.: Zero-
correlation attacks on tweakable block ciphers with linear tweakey expansion. IACR
Transactions on Symmetric Cryptology 2019(1), 192–235 (Mar 2019). https://
doi.org/10.13154/tosc.v2019.i1.192-235

2. Avanzi, R.: The QARMA block cipher family. almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Sym-
metric Cryptol. 2017(1), 4–44 (2017). https://doi.org/10.13154/tosc.v2017.
i1.4-44

3. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: CRYPTO 2016. pp. 123–153. Springer (2016). https://doi.
org/10.1007/978-3-662-53008-5_5

4. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. IACR Trans. Sym-
metric Cryptol. 2019(1), 5–45 (2019). https://doi.org/10.13154/tosc.v2019.
i1.5-45

28

https://doi.org/10.13154/tosc.v2019.i1.192-235
https://doi.org/10.13154/tosc.v2019.i1.192-235
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.13154/tosc.v2019.i1.5-45
https://doi.org/10.13154/tosc.v2019.i1.5-45

5. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: EUROCRYPT 1999. LNCS, vol. 1592,
pp. 12–23. Springer (1999). https://doi.org/10.1007/3-540-48910-X_2

6. Biham, E., Biryukov, A., Shamir, A.: Miss in the middle attacks on IDEA and
khufu. In: FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer (1999)

7. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional
linear distinguishers with correlation zero. In: ASIACRYPT 2012. LNCS, vol. 7658,
pp. 244–261. Springer (2012). https://doi.org/10.1007/978-3-642-34961-4_16

8. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear crypt-
analysis of block ciphers. Des. Codes Cryptogr. 70(3), 369–383 (2014). https:
//doi.org/10.1007/s10623-012-9697-z

9. Bogdanov, A., Wang, M.: Zero correlation linear cryptanalysis with reduced data
complexity. In: FSE 2012. LNCS, vol. 7549, pp. 29–48. Springer (2012). https:
//doi.org/10.1007/978-3-642-34047-5_3

10. Boura, C., Lallemand, V., Naya-Plasencia, M., Suder, V.: Making the impossi-
ble possible. Journal of Cryptology 31(1), 101–133 (2018). https://doi.org/10.
1007/s00145-016-9251-7

11. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossi-
ble differential attacks: applications to clefia, camellia, lblock and simon. In: In-
ternational Conference on the Theory and Application of Cryptology and In-
formation Security. pp. 179–199. Springer (2014). https://doi.org/10.1007/

978-3-662-45611-8_10

12. Cui, T., Chen, S., Jia, K., Fu, K., Wang, M.: New automatic search tool for im-
possible differentials and zero-correlation linear approximations. IACR Cryptology
ePrint Archive, Report 2016/689 (2016), https://eprint.iacr.org/2016/689

13. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: FSE
1997. LNCS, vol. 1267, pp. 149–165. Springer (1997). https://doi.org/10.1007/
BFb0052343

14. Derbez, P., Fouque, P.A.: Automatic search of meet-in-the-middle and impossible
differential attacks. In: CRYPTO 2016. LNCS, vol. 9815, pp. 157–184. Springer
(2016)

15. Eskandari, Z., Kidmose, A.B., Kölbl, S., Tiessen, T.: Finding integral distinguishers
with ease. In: SAC. LNCS, vol. 11349, pp. 115–138. Springer (2018). https://doi.
org/10.1007/978-3-030-10970-7_6

16. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D.A., Whiting,
D.: Improved cryptanalysis of Rijndael. In: FSE 2000. LNCS, vol. 1978, pp. 213–
230. Springer (2000). https://doi.org/10.1007/3-540-44706-7_15

17. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022), https:
//www.gurobi.com

18. Hadipour, H., Eichlseder, M.: Autoguess: A tool for finding guess-and-determine
attacks and key bridges. In: ACNS 2022. LNCS, vol. 13269, pp. 230–250. Springer
(2022). https://doi.org/10.1007/978-3-031-09234-3_12

19. Hadipour, H., Eichlseder, M.: Integral cryptanalysis of WARP based on monomial
prediction. IACR Trans. Symmetric Cryptol. 2022(2), 92–112 (2022). https://
doi.org/10.46586/tosc.v2022.i2.92-112

20. Hadipour, H., Nageler, M., Eichlseder, M.: Throwing boomerangs into feistel struc-
tures: Application to CLEFIA, WARP, LBlock, LBlock-s and TWINE. IACR
Trans. Symmetric Cryptol. 2022(3), 271–302 (2022). https://doi.org/10.46586/
tosc.v2022.i3.271-302

29

https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/978-3-642-34961-4_16
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/978-3-642-34047-5_3
https://doi.org/10.1007/978-3-642-34047-5_3
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/978-3-662-45611-8_10
https://doi.org/10.1007/978-3-662-45611-8_10
https://eprint.iacr.org/2016/689
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-030-10970-7_6
https://doi.org/10.1007/978-3-030-10970-7_6
https://doi.org/10.1007/3-540-44706-7_15
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-031-09234-3_12
https://doi.org/10.46586/tosc.v2022.i2.92-112
https://doi.org/10.46586/tosc.v2022.i2.92-112
https://doi.org/10.46586/tosc.v2022.i3.271-302
https://doi.org/10.46586/tosc.v2022.i3.271-302

21. Hadipour, H., Sadeghi, S., Niknam, M.M., Song, L., Bagheri, N.: Comprehensive
security analysis of CRAFT. IACR Trans. Symmetric Cryptol. 2019(4), 290–317
(2019). https://doi.org/10.13154/tosc.v2019.i4.290-317

22. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division
property: Revisiting degree evaluations, cube attacks, and key-independent sums.
In: ASIACRYPT 2020. LNCS, vol. 12491, pp. 446–476. Springer (2020). https:
//doi.org/10.1007/978-3-030-64837-4_15

23. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer (2014).
https://doi.org/10.1007/978-3-662-45608-8_15

24. Knudsen, L.: Deal-a 128-bit block cipher. complexity 258(2), 216 (1998)
25. Lai, X.: Higher order derivatives and differential cryptanalysis pp. 227–233 (1994).

https://doi.org/10.1007/978-1-4615-2694-0_23

26. Lambin, B., Derbez, P., Fouque, P.: Linearly equivalent s-boxes and the division
property. Des. Codes Cryptogr. 88(10), 2207–2231 (2020). https://doi.org/10.
1007/s10623-020-00773-4

27. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey
settings. IACR Trans. Symmetric Cryptol. 2017(3), 37–72 (2017). https://doi.
org/10.13154/tosc.v2017.i3.37-72

28. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks on
AES. In: INDOCRYPT 2008. LNCS, vol. 5365, pp. 279–293. Springer (2008)

29. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the efficiency of impossi-
ble differential cryptanalysis of reduced camellia and MISTY1. In: CT-RSA 2008.
LNCS, vol. 4964, pp. 370–386. Springer (2008)

30. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Inscrypt. LNCS, vol. 7537, pp. 57–76.
Springer (2011). https://doi.org/10.1007/978-3-642-34704-7_5

31. Naito, Y., Sasaki, Y., Sugawara, T.: Lightweight authenticated encryption mode
suitable for threshold implementation. In: EUROCRYPT 2020. LNCS, vol. 12106,
pp. 705–735. Springer (2020). https://doi.org/10.1007/978-3-030-45724-2_24

32. Naito, Y., Sasaki, Y., Sugawara, T.: Secret can be public: Low-memory AEAD
mode for high-order masking. In: CRYPTO 2022. LNCS, vol. 13509, pp. 315–345.
Springer (2022). https://doi.org/10.1007/978-3-031-15982-4_11

33. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc:
Towards a standard CP modelling language. In: CP 2007. LNCS, vol. 4741, pp.
529–543. Springer (2007)

34. Niu, C., Li, M., Sun, S., Wang, M.: Zero-correlation linear cryptanalysis with equal
treatment for plaintexts and tweakeys. In: CT-RSA 2021. LNCS, vol. 12704, pp.
126–147. Springer (2021). https://doi.org/10.1007/978-3-030-75539-3_6

35. Perron, L., Furnon, V.: OR-Tools, https://developers.google.com/

optimization/

36. Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round SKINNY
block cipher. IACR Trans. Symmetric Cryptol. 2018(3), 124–162 (2018). https:
//doi.org/10.13154/tosc.v2018.i3.124-162

37. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects. In: EUROCRYPT 2017. pp. 185–215. Springer International Pub-
lishing, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_7

38. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against
Feistel ciphers. In: SAC 2012. LNCS, vol. 7707, pp. 234–251. Springer (2012).
https://doi.org/10.1007/978-3-642-35999-6_16

30

https://doi.org/10.13154/tosc.v2019.i4.290-317
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/s10623-020-00773-4
https://doi.org/10.1007/s10623-020-00773-4
https://doi.org/10.13154/tosc.v2017.i3.37-72
https://doi.org/10.13154/tosc.v2017.i3.37-72
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-030-45724-2_24
https://doi.org/10.1007/978-3-031-15982-4_11
https://doi.org/10.1007/978-3-030-75539-3_6
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.13154/tosc.v2018.i3.124-162
https://doi.org/10.13154/tosc.v2018.i3.124-162
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-642-35999-6_16

39. Shi, D., Sun, S., Derbez, P., Todo, Y., Sun, B., Hu, L.: Programming the
demirci-selçuk meet-in-the-middle attack with constraints. In: ASIACRYPT
2018. LNCS, vol. 11273, pp. 3–34. Springer (2018). https://doi.org/10.1007/
978-3-030-03329-3_1

40. Song, L., Zhang, N., Yang, Q., Shi, D., Zhao, J., Hu, L., Weng, J.: Optimizing rect-
angle attacks: A unified and generic framework for key recovery. In: ASIACRYPT
2022. LNCS, vol. 13791, pp. 410–440. Springer (2022). https://doi.org/10.1007/
978-3-031-22963-3_14

41. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., AlKhzaimi, H.,
Li, C.: Links among impossible differential, integral and zero correlation linear
cryptanalysis. In: CRYPTO 2015. LNCS, vol. 9215, pp. 95–115. Springer (2015).
https://doi.org/10.1007/978-3-662-47989-6_5

42. Sun, L., Gerault, D., Wang, W., Wang, M.: On the usage of deterministic (related-
key) truncated differentials and multidimensional linear approximations for spn ci-
phers. IACR Transactions on Symmetric Cryptology 2020(3), 262–287 (Sep 2020).
https://doi.org/10.13154/tosc.v2020.i3.262-287

43. Sun, S., Gerault, D., Lafourcade, P., Yang, Q., Todo, Y., Qiao, K., Hu, L.: Analysis
of AES, SKINNY, and others with constraint programming. IACR Transactions
on Symmetric Cryptology 2017(1), 281–306 (Mar 2017). https://doi.org/10.
13154/tosc.v2017.i1.281-306

44. Todo, Y.: Structural evaluation by generalized integral property. In: EUROCRYPT
2015. LNCS, vol. 9056, pp. 287–314. Springer (2015). https://doi.org/10.1007/
978-3-662-46800-5_12

45. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis of
reduced-round SKINNY. In: AFRICACRYPT 2017. LNCS, vol. 10239, pp. 117–134
(2017). https://doi.org/10.1007/978-3-319-57339-7_7

46. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to search-
ing integral distinguishers based on division property for 6 lightweight block ci-
phers. In: ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678 (2016). https:

//doi.org/10.1007/978-3-662-53887-6_24

47. Yang, D., Qi, W., Chen, H.: Impossible differential attacks on the SKINNY family
of block ciphers. IET Inf. Secur. 11(6), 377–385 (2017). https://doi.org/10.

1049/iet-ifs.2016.0488

48. Zhang, Y., Cui, T., Wang, C.: Zero-correlation linear attack on reduced-round
SKINNY. Frontiers of Computer Science 17(174808 (2023)), 377–385 (2022).
https://doi.org/10.1007/s11704-022-2206-2

31

https://doi.org/10.1007/978-3-030-03329-3_1
https://doi.org/10.1007/978-3-030-03329-3_1
https://doi.org/10.1007/978-3-031-22963-3_14
https://doi.org/10.1007/978-3-031-22963-3_14
https://doi.org/10.1007/978-3-662-47989-6_5
https://doi.org/10.13154/tosc.v2020.i3.262-287
https://doi.org/10.13154/tosc.v2017.i1.281-306
https://doi.org/10.13154/tosc.v2017.i1.281-306
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-319-57339-7_7
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1049/iet-ifs.2016.0488
https://doi.org/10.1049/iet-ifs.2016.0488
https://doi.org/10.1007/s11704-022-2206-2

— Supplementary Material —

A Complexity Analysis of the ID Attack in the Related
(Twea)key Setting

In the related (twea)key ID attack, we have access to two encryption (or decryp-
tion) oracles employing the keys K and K ⊕∆K, with a known difference ∆K.
The goal is to retrieve the secret key K. Assume that the differential transition
(∆K,∆u)→ ∆l is impossible. We can mount a key recovery attack similar to the
single (twea)key setting. However, in the related (twea)key setting, any structure
is encrypted with two different (twea)keys. On the other hand, any plaintext P
in each structure yields two different pairs ((K,P), (K ⊕∆K,P ⊕∆P)), and
((K ⊕∆K,P), (K,P ⊕∆P)). Hence, all formulas in Equation 1 remains un-
changed except for T0 which should be modifed as follows:

T0 = max

{
min

∆∈{∆b,∆f}

{
2
√
N2n−|∆|

}
, N2n+1−|∆b|−|∆f|

}
. (13)

By the way, the data complexity is equal to T0. We can reformulate the com-
plexity analysis to a CSP-friendly form as follows:

T0 = max

 min
∆∈{∆b,∆f}

{2 cb+cf+n−|∆|+LG(g)
2 +1},

2cb+cf+n+1−|∆b|−|∆f|+LG(g)

 , T0 < min
{
2k, 2n+1

}
,

T1 = 2cb+cf+LG(g), T2 = 2|kb∪kf|+LG(g), T3 = 2k−g,

Ttot = (T0 + (T1 + T2)CE′ + T3)CE , Ttot < 2k,

Mtot = min
{
2cb+cf+LG(g), 2|kb∪kf|

}
, Mtot < 2k,

(14)

where LG(g) = log2(g)− 0.53.

B Encoding the MDS Matrices

Proposition 4. For M : Fq·c
2 → Fq·c

2 , where M is an MDS matrix and Y =
M(X), the following constraints encode all valid transitions for deterministic
truncated differential trails through M :

MDS(AX, DX, AY, DY) :=

if

q−1∑
i=0

AX[i] = 0 then AY[0] = AY[1] = · · · = AY[q − 1] = 0

elseif

q−1∑
i=0

AX[i] = 1 then AY[0] = AY[1] = · · · = AY[q − 1] = 1

elseif

q−1∑
i=0

AX[i] = 2 ∧
q−1∑
i=0

DX[i] < 0 then AY[0] = AY[1] = · · · = AY[q − 1] = 2

else AY[0] = AY[1] = · · · = AY[q − 1] = 3 endif

32

Application to SKINNY

C Specification of the SKINNY family of tweakable block
ciphers

The SKINNY family of tweakable block ciphers was introduced by Beierle et al. in
CRYPTO 2016 [3]. Let n and t denote the block and tweakey sizes, respectively.
The SKINNY family has six main members. We use SKINNY-n-t to represent a
member of SKINNY family block ciphers with n-bit block size and t-bit tweakey
size. There are two proposed block sizes, n ∈ {64, 128}, and for each block size
there are three tweakey sizes available, t ∈ {n, 2n, 3n}. The internal state of
SKINNY can be viewed as a 4× 4 array of cells. Depending on the tweakey size,
the tweakey state can be viewed as a z 4×4 array of cells, where z = t

n ∈ {1, 2, 3}.
We use TK1, TK2, and TK3 to denote the tweakey arrays. The cell size is 4 (or
8) bits when n = 64 (resp. n = 128).

0 1 2 3

4 5 6 7

8 9 a b

c d e f

Xr

SC
AC

Yr STKr Zr

≫1

≫2

≫3

Wr Xr+1

Fig. 5: Round function of SKINNY

As illustrated in Figure 5, each round of SKINNY applies five basic opera-
tions to the internal state: SubCells (SC), AddConstants (AC), AddRoundTweakey
(ART), ShiftRows (SR), and MixColumns (MC). The SC operation applies a 4-bit
(or an 8-bit) S-box on each cell. AC combines the round constant with the in-
ternal state using the bitwise exclusive-or (XOR). In ART layer, the cells in the
first and the second rows of subtweakey are XORed to the corresponding cells
in the internals state. SR applies a permutation P on the position of the state
cells, where P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12]. MC multiplies each
column of the internal state by a non-MDS matrix M . M and its inverse are as
follows:

M =

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 , M−1 =

0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

 .

Figure 5 represents the variables we use to denote the internal states of
SKINNY after r rounds. We also use ∆Xr (ΓXr) to represent the difference
(resp. linear mask) of state Xr. To denote the ith cell of state Xr we use Xr[i],
where 0 ≤ i ≤ 15. STKr indicates the subtweakey after r rounds, and ETKr =

33

MC ◦ SR(STKr) which is called the equivalent subtweakey in round r. Figure 6
shows the relation between STKr, ETKr.

The tweakey schedule of SKINNY divides the master tweakey into z tweakey
arrays (TK1, . . . ,TKz) of lengths n bits each, where z ∈ {1, 2, 3}. Then, each
tweakey array follows an independent schedule. The subtweakey of the ith round
is generated as follows:

STKr = TK1r if t = n

STKr = TK1r ⊕ TK2r if t = 2n

STKr = TK1r ⊕ TK2r ⊕ TK3r if t = 3n,

(15)

where TK1r, TK2r, TK3r, denote the tweakey arrays in round r and are gen-
erated as follows. First, a permutation h is applied to each tweakey array, such
that TKmr[n]← TKmr−1[h(n)] for all 0 ≤ n ≤ 15, and m ∈ {1, 2, 3}. Next, an
LFSR is applied to each cell of the first and the second rows of TK2r and TK3r.
For more details on the specification of SKINNY we refer the reader to [3].

0 1 2 3

4 5 6 7

0 1 2 3

0 1 2 3

7 4 5 6

0 1 2 3

SR
MC

STKr ETKr

Fig. 6: Relation between the subtweakey and the equivalent subtweakey

D Encoding the Matrix of SKINNY

Suppose that Y = M(X), where X,Y ∈ F4s
2 , and M is the matrix of SKINNY.

Morever, we compactly represent the constraint encoding the XOR operation
Y [k] = X[i]⊕X[j], by XOR(AX[i], DX[i], AX[j], DX[j], AY[k], DY[k]). The following CP
constraints encode the valid transitions for deterministic truncated differential
trails through M :

Mdiff(AX, DX, AY, DY) :=

AY[1] = AX[0] ∧ DY[1] = DX[0] ∧
XOR(AX[1], DX[1], AX[2], DX[2], AY[2], DY[2]) ∧
XOR(AX[0], DX[0], AX[2], DX[2], AY[3], DY[3]) ∧
XOR(AY[3], DY[3], AX[3], DX[3], AY[0], DY[0])

Assuming that Y = M−1(X), we use the following constraints to encode the
propagation of deterministic truncated differential trails through M−1:

Minvdiff(AX, DX, AY, DY) :=

AY[0] = AX[1] ∧ DY[0] = DX[1] ∧
XOR(AX[1], DX[1], AX[3], DX[3], AY[2], DY[2]) ∧
XOR(AX[0], DX[0], AX[3], DX[3], AY[3], DY[3]) ∧
XOR(AY[2], DY[2], AX[2], DX[2], AY[1], DY[1])

34

We also use the following constraints to model the propagation of 0-1 differences
with probability one through M , and M−1:

Mdiff1(AX, AY) :=

{
AY[1] = AX[0] ∧ XOR1(AX[1], AX[2], AY[2]) ∧
XOR1(AX[0], AX[2], AY[3]) ∧ XOR1(AY[3], AX[3], AY[0])

Minvdiff1(AX, AY) :=

{
AY[0] = AX[1] ∧ XOR1(AX[1], AX[3], AY[2]) ∧
XOR1(AX[0], AX[3], AY[3]) ∧ XOR1(AY[2], AX[2], AY[1])

Let LX[i] be the actual c-bit value for the linear mask of state variable
X[i] ∈ Fc

2 and, as before, AX[i] denotes the activeness pattern of X[i]. We
also define dummy variables D, and LD, such that D ∈ {0, 1, 2, 3}, and LD ∈
{−2,−1, 0, . . . , 2c − 1}. Then, we use the following constraints to encode the
propagation of deterministic truncated linear trails through M , and M−1:

Mlin(AX, LX, AY, LY) :=

AY[0] = AX[3] ∧ LY[0] = LX[3] ∧
AY[2] = AX[1] ∧ LY[2] = LX[1] ∧
XOR(AX[1], LX[1], AX[2], LX[2], D, LD) ∧
XOR(D, LD, AX[0], LX[0], AY[1], LY[1]) ∧
XOR(D, LD, AX[3], LX[3], AY[3], LY[3])

Minvlin(AX, LX, AY, LY) :=

AY[1] = AX[2] ∧ LY[1] = LX[2] ∧
AY[3] = AX[0] ∧ LY[3] = LX[0] ∧
XOR(AX[0], LX[0], AX[3], LX[3], D, LD) ∧
XOR(D, LD, AX[1], LX[1], AY[0], LY[0]) ∧
XOR(D, LD, AX[2], LX[2], AY[2], LY[2])

Let KX[i], and KY[i] be binary variables to indicate whether the value of X[i], and
Y [i] are needed, respectively. Furthemore, assume that D is a binary variable.
We use the following constraints to model the matrix of SKINNY in the guess-
and-determine module:

Mdata(KX, KY) :=

{
KY[0] = KX[3] ∧ KY[2] = KX[1] ∧ XOR1(KX[1], KX[2], D)∧
XOR1(D, KX[0], KY[1]) ∧ XOR1(D, KX[3], KY[3])

Minvdata(KX, KY):=

{
KY[1]=KX[2] ∧ KY[3]=KX[0] ∧ XOR1(KX[0],KX[3],D)∧
XOR1(D, KX[1], KY[0]) ∧ XOR1(D, KX[2], KY[2])

(16)

35

E The COP Sub-Modules for the ID Attack on SKINNY

Algorithm 6: CSPl for lower trail in distinguisher of SKINNY

Input: CSPDTK .var and the integer numbers rb, ru, rl
Output: CSPu

1 roff ← rb + ru;
2 Declare an empty CSP modelM;
3 M.var← CSPDTK .var;
4 M.var← {AXLr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ rl, 0 ≤ i ≤ 15};
5 M.var← {DXLr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ rl, 0 ≤ i ≤ 15};
6 M.var← {AYLr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ rl − 1, 0 ≤ i ≤ 15};
7 M.var← {DYLr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ rl − 1, 0 ≤ i ≤ 15};
8 M.var← {AZLr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ rl − 1, 0 ≤ i ≤ 15};
9 M.var← {DZLr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ rl − 1, 0 ≤ i ≤ 15};

10 M.con←
∑15

i AXLrl [i] +
∑15

i=0 DTK1[i] +
∑15

i=0 DTK20 +
∑15

i=0 DTK30[i] ≥ 1;
11 for r = 0, . . . , rl − 1, i = 0, . . . , 15 do
12 M.con←Link(AXLr[i],DXLr[i])∧Link(AYLr[i],DYLr[i])∧Link(AZLr[i],DZLr[i]);
13 for r = 0, . . . , rl − 1, i = 0, . . . , 3 do
14 I1 ← [AXLr+1[i], AXLr+1[i+ 4], AXLr+1[i+ 8], AXLr+1[i+ 12]];
15 I2 ← [DXLr+1[i], DXLr+1[i+ 4], DXLr+1[i+ 8], DXLr+1[i+ 12]];
16 O1 ← [AZLr[P [i]], AZLr[P [i+ 4]], AZLr[P [i+ 8]], AZLr[P [i+ 12]]];
17 O2 ← [DZLr[P [i]], DZLr[P [i+ 4]], DZLr[P [i+ 8]], DZLr[P [i+ 12]]];
18 M.con← Minvdiff (I1, I2, O1, O2);

19 for r = 0, . . . , rl − 1, i = 0, . . . , 7 do
20 M.con← XOR(AZLr[i], DZLr[i], ASTKroff+r[i], DSTKroff+r[i], AYLr[i], DYLr[i]);
21 M.con← (AYLr[i+ 8] = AZLr[i+ 8]) ∧ (DYLr[i+ 8] = DZLr[i+ 8]);

22 for r = 0, . . . , rl − 1, i = 0, . . . , 15 do
23 M.con← S-box(AYLr[i], AXLr[i]);

24 returnM;

36

Algorithm 7: CSPdpf difference propagation through Ef for SKINNY

Input: CSPDTK .var, CSPl.var and the integer numbers rb, ru, rb, rf
Output: CSPdpf

1 roff ← rb + ru + rl;
2 Declare an empty CSP modelM;
3 M.var← CSPDTK .var;
4 M.var← {AXFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf, 0 ≤ i ≤ 15};
5 M.var← {AZFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf − 1, 0 ≤ i ≤ 15};
6 M.var← {CFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf − 1, 0 ≤ i ≤ 19};
7 for i = 0, . . . , 15 do
8 M.con← if AXLrl [i] ≥ 1 then AXF0[i] = 1 else AXF0[i] = 0;

9 for r = 0, . . . , rf − 1, i = 0, . . . , 7 do
10 M.con← XOR1(AXFr[i], ASTKroff+r[i], AZFr[i]);
11 M.con← XORp(AZFr[i], ASTKroff+r[i], AXFr[i], CFr[i]);
12 M.con← (AZFr[i+ 8] = AXFr[i+ 8]);

13 for r = 0, . . . , rf − 1, i = 0, . . . , 3 do

14 M.con← Mdiff1

AZFr[P [i]]
AZFr[P [i+ 4]]
AZFr[P [i+ 8]]
AZFr[P [i+ 12]]

 ,

AXFr+1[i]

AXFr+1[i+ 4]
AXFr+1[i+ 8]
AXFr+1[i+ 12]

;

15 M.con← XORp(AZFr[P [i+ 8]], AXFr+1[i+ 8], AZFr[P [i+ 4]], CFr[i+ 8]);
16 M.con← XORp(AXFr+1[i+ 4], AXFr+1[i+ 12], AZFr[P [i+ 8]], CFr[i+ 12]);
17 M.con← XORp(AXFr+1[i], AXFr+1[i+ 12], AZFr[P [i+ 12]], CFr[i+ 16]);

18 returnM;

37

Algorithm 8: CSPgdf guess-and-determine through Ef for SKINNY

Input: CSPl.var, CSP
dp
f and the integer numbers rb, ru, rl, rf

Output: CSPgdf
1 roff ← rb + ru + rl;
2 Declare an empty CSP modelM;

3 M.var← CSPl.var ∪ CSP
dp
f .var;

4 M.var← {KDXFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf, 0 ≤ i ≤ 15};
5 M.con← {KDXFr[i] ≤ AXFr[i] : 0 ≤ r ≤ rf, 0 ≤ i ≤ 15};
6 M.var← {KDZFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf − 1, 0 ≤ i ≤ 15};
7 M.con← {KDZFr[i] ≤ AZFr[i] : 0 ≤ r ≤ rf − 1, 0 ≤ i ≤ 15};
8 M.var← {KXFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf, 0 ≤ i ≤ 15};
9 M.var← {KYFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf − 1, 0 ≤ i ≤ 15};

10 M.var← {IKFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf − 1, 0 ≤ i ≤ 15};
11 for i = 0, . . . , 15 do
12 M.con← if AXLrl [i] = 1 then KDXF0[i] = 1 else KDXF0[i] = 0;
13 M.con← if AXLrl [i] = 1 then KXF0[i] = 1 else KXF0[i] = 0;

14 for r = 0, . . . , rf − 1, i = 0, . . . , 15 do
15 M.con← S-boxgd(KXFr[i], KYFr[i], KDXFr[i]);

16 for r = 0, . . . , rf − 1, i = 0, . . . , 7 do
17 M.con← KDZFr[i] ≥ KDXFr[i];
18 M.con← KDZFr[i+ 8] = KDXFr[i+ 8];
19 M.con← if CFr[i] = 1 then KDZFr[i] = 1;
20 M.con← (IKFr[i] = KYFr[i] ∧ IKFr[i+ 8] = 0);

21 for r = 0, . . . , rf − 1, i = 0, . . . , 3 do
22 M.con← if KDZFr[P [i]] = 1 then KDXFr+1[i+ 4] = AXFr+1[i+ 4];

23 M.con← if KDZFr[P [i+ 4]] = 1 then

KDXFr+1[i+ 4] = AXFr+1[i+ 4]∧
KDXFr+1[i+ 8] = AXFr+1[i+ 8]∧
KDXFr+1[i+ 12] = AXFr+1[i+ 12]

;

24 M.con← if KDZFr[P [i+8]] = 1 then

(
KDXFr+1[i+ 4] = AXFr+1[i+ 4]∧
KDXFr+1[i+ 12] = AXFr+1[i+ 12]

)
;

25 M.con← if KDZFr[P [i+12]] = 1 then

(
KDXFr+1[i] = AXFr+1[i] ∧
KDXFr+1[i+ 12] = AXFr+1[i+ 12]

)
;

26 M.con← if CFr[i+ 8] = 1 then

KDXFr+1[i+ 4] = AXFr+1[i+ 4] ∧
KDXFr+1[i+ 12] = AXFr+1[i+ 12] ∧
KDXFr+1[i+ 8] = 1

;

27 M.con← if CFr[i+12] = 1 then (KDXFr+1[i+ 4] = 1∧KDXFr+1[i+ 12] = 1);
28 M.con← if CFr[i+ 16] = 1 then (KDXFr+1[i] = 1 ∧ KDXFr+1[i+ 12] = 1);

29 M.con← Mdata

KYFr[P [i]]
KYFr[P [i+ 4]]
KYFr[P [i+ 8]]
KYFr[P [i+ 12]]

 ,

KXFr+1[i]

KXFr+1[i+ 4]
KXFr+1[i+ 8]
KXFr+1[i+ 12]

;

30 returnM;

38

F Impossible Differential Attack on SKINNY

As stated in Section 2.1, Equation 2 only gives an approximation for the time
complexity of Guess-and-Filter step in the ID attack. Thus, after finding the
nearly optimum attack using our automated tool, we provide a more detailed
complexity analysis by computing the complexity of each step in Guess-and-
Filter phase more precisely. We also use Lemma 1 in the complexity analysis of
our ID attacks.

Lemma 1. For a given S-box S, and any input/output difference δi, δo ̸= 0, the
equation S(x⊕ δi)⊕ S(x) = δo has one solution on average that can be derived
efficiently. In addition, the inverse of S has a similar property.

F.1 17-round Impossible Differential Attack on SKINNY-n-n

This section details a 17-round attack on SKINNY-n-n that takes the 11-round
impossible differential trail shown in Figure 7 and extends it by 3 rounds in
both directions. Since there is no tweakey used before W ′

0, the plaintext P can
be recovered by applying MC−1,SR−1,AC−1, and SC−1 layers on W ′

0.

Pair Generation. The attacker should build 2x structures at W ′
0 and evaluate

all possible values in seven cells W ′
0[2, 4, 5, 7, 8, 10, 13] for each structure, while

the other cells assume a fixed value. By using 2x+|∆b| plaintexts, we can have
2x+2|∆b|−1 pairs of plaintexts (P, P). The expected number of the remaining
pairs of ciphertexts (C,C) is approximatelyN = 2x+2|∆b|−1−(n−|∆f|) pairs. Thus,
N = 2x+5c−1. This step needs a total of 2x+|∆b| = 2x+7c encryption calls.

Guess-and-Filter. For each of the N pairs we perform the following steps:

a) Satisfying round 17. Calculate ∆X16[11, 15] using the values of the cipher-
text pairs. There is no requirement for any tweaked information to compute
these cells here. We get ∆X16[3] = ∆X16[11] = ∆X16[15] because of the
MC operation on the active cells in the fourth column of W15. Checking
if ∆X17[11] = ∆X17[15] will lead to a c-bit filter. From the knowledge of
∆Y16[3] and ∆X16[3], we can determine Y16[3] by applying Lemma 1. Thus,
we can determine STK16[3] (due to STK16[3] = Z16[3]⊕Y16[3]). Now, we can
calculate ∆X16[13] from ciphertext values. Based on the MC operation on
the active cells in the second column of W15, we have ∆X16[13] = ∆X16[5] =
∆X16[1]. Similarly, the knowledge of this information and Lemma 1 helps us
to derive the tweakey cells STK16[1, 5]. The time complexity of this step is
N , and the number of tests left for the next step is N2−c.

b) Satisfying round 1. From the knowledge of STK16[1, 3, 5] (from the previous
step), we can uniquely determine ETK[7, 10, 13]. Therefore, we determine
∆Y1[7, 10, 13]. Due to the MC−1 operation on the active cells in the first
column of X2, we have ∆Y1[7] = ∆Y1[10] = ∆Y1[13] that will lead to two
c−bit filters. The time complexity of this step is N2−c, and the number of
tests left for the next step is N2−3c.

39

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

�
X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

nonzero any involved in key-recovery diff. value is needed value is needed

Fig. 7: ID attack on 17 rounds of SKINNY-n-n. |kb ∪ kf| = 10 · c, cb = 6 · c,
cf = 6 · c, ∆b = 7 · c, ∆f = 7 · c.

c) Satisfying round 17. We guess STK16[0, 7]. Hence, we can compute Z15, and
∆Z15 as shown in Figure 7. The time complexity of this step is N2−c, and
the number of tests left for the next step is N2−c.

d) Satisfying rounds 16 and 15. We can calculate ∆X15[9, 13] using the value
of Z15[9, 13], and ∆Z15[9, 13]. We have ∆X15[1] = ∆X15[9] = ∆X15[13]
because of the MC operation on the active cells in the second column of W14.
Checking if ∆X15[9] = ∆X15[13] will lead to a c-bit filter. Given ∆X15[1],
we can determine Y15[1] and so STK15[1] by applying Lemma 1. Hence, we
can compute ∆X14 as shown in Figure 7. The time complexity of this step
is N2−c, and the number of tests left for the next step is N2−2c.

40

e) Satisfying round 1. From the knowledge of STK16[1, 7] (from the previ-
ous steps), we can uniquely determine ETK[5, 8]. Therefore, we determine
∆Y1[5, 8]. Due to the MC−1 operation on the active cells in the third column
of X2, we have ∆Y1[2] = ∆Y1[5] = ∆Y1[8]. The equality ∆Y1[5] = ∆Y1[8]
will lead to a c-bit filter. From the knowledge of ∆Y1[2] and ∆X1[2], we can
determine X1[2] by applying Lemma 1. Thus, we can derive ETK[2] (duo
to ETK[2] = W ′

0[2] ⊕X1[2]). We guess ETK[11], and compute Y1 and ∆Y1

as shown in Figure 7. The time complexity of this step is N2−c, and the
number of tests left for the next step is N2−2c.

f) Satisfying round 2. Since we know the value of STK15[1], we can uniquely de-
termine STK1[0]. We guess STK1[4]. Therefore, we can determine ∆Y2[9, 12].
Due to the MC−1 operation on the active cells in the fourth column of X3,
we have ∆Y2[6] = ∆Y2[9] = ∆Y2[12]. The equality ∆Y2[9] = ∆Y2[12] will
lead to a c-bit filter. From the knowledge of ∆Y2[6] and ∆X2[6], we can de-
termine X2[6] by applying Lemma 1. Therefore, we can determine the value
of STK1[2] as X2[6] ⊕ Y1[6]. Hence, we can compute ∆Y2 and thus, ∆X3

as shown in Figure 7. The time complexity of this step is N2−c, and the
number of tests to verify the impossible distinguisher is N2−2c.

Complexity. Analyzing N pairs has a time complexity of about N 1
17 17-round

encryptions (it is dominated by step 1). The attack needs a data complexity of
D = N2n+1−|∆b|−|∆f| = 214c+1g ln 2 (N = 2cb+cfg ln 2). The total time complex-
ity is T = D+N 1

17 +216c−g (216c−g is related to exhaustive search step). Hence,
to optimize the time complexity of the attack, we select g = 5 for c = 4, and
g = 15 for c = 8. Thus, the data, time, and memory complexities of the attack
on SKINNY-64-64 are 258.79, 259.90, and 240, respectively. The data, time, and
memory complexities of the attack on SKINNY-128-128 are 2116.37, 2116.51, and
280, respectively.

F.2 19-round Impossible Differential Attack on SKINNY-n-2n

This part presents the details of our 19-round attack on SKINNY-n-2n. We ex-
tend the 11-round impossible differential trail illustrated in Figure 8 by 3 and 5
rounds in backward and forward directions, respectively.

Pair Generation. We should build 2x structures at W ′
0 and evaluate all possible

values in seven cells W ′
0[2, 4, 5, 7, 8, 10, 13] for each structure, while the other cells

assume a fixed value. By using 2x+7c plaintexts, we can have 2x+14c−1 pairs of
plaintexts (P, P). The expected number of the remaining pairs of ciphertexts
(C,C) is approximately N = 2x+2|∆b|−1−(n−|∆f|) pairs. In our 19-round attack
n = |∆f|, and so N = 2x+2|∆b|−1 = 2x+14c−1. This step needs 2x+7c encryption
calls.

Guess-and-Filter. For each of the N pairs we do the following steps:

41

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

�
X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

nonzero any involved in key-recovery diff. value is needed value is needed

Fig. 8: ID attack on 19 rounds of SKINNY-n-2n, |kb ∪ kf| = 26 · c, cb = 6 · c,
cf = 15 · c, ∆b = 7 · c, ∆f = 16 · c

a) Satisfying round 19. We can calculate ∆X18[11, 15] using the values of the
ciphertext pairs. We get ∆X18[7] = ∆X18[11]⊕∆X18[15] because of the MC
operation on the active cells in the fourth column of W17. Given ∆X18[7], we
can determine Y18[7] by applying Lemma 1 and the knowledge of ∆Y18[7].
Now, we can determine STK18[7] (due to STK18[7] = Z18[7]⊕Y18[7])). Simi-
larly, due to the MC operation on the active cells in the third and the second
column of W17, we can also derive tweakey cells STK18[6] and STK18[1, 5],
respectively. We guess STK18[0, 2, 3, 4]. Hence, we can calculate Z17 and

42

∆Z17 as shown in Figure 8. The time complexity of this step is N24c, and
the number of tests left for the next step is N24c.

b) Satisfying round 18. We can calculate ∆X17[15] using the value of Z17[15],
and ∆Z17[15]. We have ∆X17[15] = ∆X17[3] = ∆X17[7] because of the MC
operation on the active cells in the fourth column of W16. Given ∆X17[3, 7],
we can determine Y17[3, 7] by applying Lemma 1 and the knowledge of the
∆Y17[3, 7]. Now, we can determine STK17[3, 7] (due to Y17[3] = Z17[3] ⊕
STK17[3], and Y17[7] = Z17[7] ⊕ STK17[7]). Similarly, due to the MC oper-
ation on the active cells in the second and the first column of W16, we can
also derive tweakey cells STK17[1, 5], and STK17[4]. We guess STK17[2, 6].
The time complexity of this step is N26c, and the number of tests left for
the next step is N26c.

c) Satisfying round 17. Based on the previous steps, we can compute the cells
Z16[11, 15], and∆Z16[11, 15], and thus,∆X16[11, 15] (there is no requirement
for any tweaked information of STK16 to compute these cells here). On the
other hand, We have ∆X16[11] = ∆X16[15] due to the MC operation on the
active cells in the fourth column of W15. Checking if ∆X16[11] = ∆X16[15]
will lead to a c-bit filter. The time complexity of this step is N26c, and the
number of tests left for the next step is N25c.

d) Satisfying round 18. We guess STK17[0]. Hence, we can calculate Z16 and
∆Z16 as shown in Figure 8. The time complexity of this step is N26c, and
the number of tests left for the next step is N26c.

e) Satisfying round 17. We calculate ∆X16[15] using the values of Z16[15], and
∆Z16[15]. We have ∆X16[15] = ∆X16[3] because of the MC operation on the
active cells in the fourth column of W15. Given ∆X16[3], we can determine
Y16[3] by applying Lemma 1 and the knowledge of the ∆Y16[3]. Now, we
can determine STK16[3] (due to Y16[3] = Z16[3]⊕ STK16[3]). Similarly, due
to the MC operation on the active cells in the second column of W15, we
can also derive tweakey cells STK16[1, 5]. The time complexity of this step
is N26c, and the number of tests left for the next step is N26c.

f) Satisfying round 1. Since the values of STK18[0, 3, 7], and STK16[1, 3, 5] are
known from the previous steps, we can uniquely determine ETK[7, 10, 13].
Therefore, we can determine ∆Y1[7, 10, 13]. Due to the MC−1 operation on
the active cells in the first column of X2, we have ∆Y1[7] = ∆Y1[10] =
∆Y1[13] and this will lead to two c−bit filters. The time complexity of this
step is N26c, and the number of tests left for the next step is N24c.

g) Satisfying round 17. We guess STK16[0, 7]. Hence, we can compute Z15, and
∆Z15 as shown in Figure 8. The time complexity of this step is N26c, and
the number of tests left for the next step is N26c.

h) Satisfying rounds 16 and 15. We calculate ∆X15[9, 13] using the values
of Z15[9, 13], and ∆Z15[9, 13]. We have ∆X15[1] = ∆X15[9] = ∆X15[13]
because of the MC operation on the active cells in the second column of W14.
Checking if ∆X15[9] = ∆X15[13] will lead to a c-bit filter. Given ∆X15[1], we
can determine Y15[1] by applying Lemma 1 and the knowledge of the∆Y15[1].
Now, we can determine STK15[1] (due to Y15[1] = Z15[1]⊕STK15[1]). Hence,

43

we can compute ∆X14 as shown in Figure 8. The time complexity of this
step is N26c, and the number of tests left for the next step is N25c.

i) Satisfying round 1. From the knowledge of STK18[0, 1], and STK16[1, 7], we
can uniquely determine ETK[5, 8]. Therefore, we determine ∆Y1[5, 8]. Due
to the MC−1 operation on the active cells in the third column of X2, we have
∆Y1[2] = ∆Y1[5] = ∆Y1[8]. The equality ∆Y1[5] = ∆Y1[8] will lead to a c-
bit filter. Since we know the values of ∆Y1[2] and ∆X1[2], we can determine
X1[2] by applying Lemma 1. Hence, we derive the value of ETK[2]. The time
complexity of this step is N25c, and the number of tests left for the next step
is N24c.

j) Satisfying round 1. We know the values of ETK[0, 2, 4, 5, 7, 8, 10, 13] from
the previous steps. We guess ETK[11], and computes Y1 and ∆Y1 as shown
in Figure 8. The time complexity of this step is N25c, and the number of
tests left for the next step is N25c.

k) Satisfying rounds 2 and 3. We know the values of STK17[0], and STK15[1]
from the previous steps, so we can uniquely determine STK1[0]. We guess
STK1[4]. Therefore, we can determine∆Y2[9, 12]. Due to theMC−1 operation
on the active cells in the fourth column of X3, we have ∆Y2[6] = ∆Y2[9] =
∆Y2[12]. The equality ∆Y2[9] = ∆Y2[12] will lead to a c-bit filter. Since we
know the values of ∆Y2[6] and ∆X2[6], we can determine X2[6] and so Z1[2]
by applying Lemma 1. Therefore, we can determine the value of STK1[2]
as Y1[2] ⊕ Z1[2]. Hence, we can compute ∆X3 as shown in Figure 8. The
time complexity of this step is N26c, and the number of tests to verify the
impossible distinguisher is N25c.

Complexity. Analyzing N pairs has a time complexity of about N26c 6
19 19-round

encryptions. The attack needs a data complexity of D = N2n+1−|∆b|−|∆f| =
215c+1g ln 2 (N = 2cb+cfg ln 2). The total time complexity is T = D +N26c 6

19 +
232c−g. Hence, to optimize the time complexity of the attack, we select g = 21
for c = 4 and g = 42 for c = 8. Thus, the data, time, and memory complexities of
the attack on SKINNY-64-128 are 260.86, 2110.34, and 2104, respectively. The data,
time, and memory complexities of the attack on SKINNY-128-256 are 2117.86,
2219.23, and 2208, respectively.

F.3 21-round Impossible Differential Attack on SKINNY-n-3n

An 11-round distinguisher is placed between Round 6 to Round 16 to attack 21
rounds of SKINNY-n-3n (see Figure 9). In this attack |kb ∪ kf| = 42c, |∆b| =
|∆f| = 16c, cb = cf = 15c.

Pair Generation. We define a structure as the set of inputs that can take values
in W ′

0. By using 2m plaintexts, we can have 22m−1 pairs of plaintexts (P, P). The
expected number of the remaining pairs of ciphertexts (C,C) is approximately
N = 22m−1. This step needs 2m encryption calls.

44

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

�
X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

SC
AC

Y19 STK19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 STK20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21

nonzero any involved in key-recovery diff. value is needed value is needed

Fig. 9: ID attack on 21 rounds of SKINNY-n-3n. |kb ∪ kf| = 42 · c, cb = 15 · c,
cf = 15 · c, ∆b = 16 · c, ∆f = 16 · c.

Guess-and-Filter. For each of the N pairs we do the following steps:

a) Satisfying round 21. We guess STK20[0− 7] and compute W19 as shown in
Figure 9. Here, we have four c-bit filters based on the W19 state. The time
complexity of this step is N28c, and the number of tests left for the next
step is N24c.

45

b) Satisfying round 1. We guess ETK[0− 3, 8− 11] and compute Y1, and ∆Y1

as shown in Figure 9. Due to MC−1 operation on the active cells in the first,
the second, and the third columns of X2, we should have ∆Y1[0] = ∆Y1[7] =
∆Y1[10], ∆Y1[1] = ∆Y1[11], and ∆Y1[2] ⊕ ∆Y1[8] = ∆Y1[15], respectively,
that will lead to four c-bit filters. The time complexity of this step is N212c,
and the number of tests left for the next step is N28c.

c) Satisfying round 2. We guess STK1[0, 1, 2, 6] and compute Y2[1, 4, 11, 14],
and so ∆Y2[1, 4, 11, 14]. Due to MC−1 operation on the active cells in the
second column of X3, we have ∆Y2[4] = ∆Y2[11], and ∆Y2[1] = ∆Y2[11] ⊕
∆Y2[14] that will lead to two c-bit filters. The time complexity of this step
is N212c, and the number of tests left for the next step is N210c.

d) Satisfying round 2. We guess STK1[3, 4, 5] and compute Y2[0, 3, 6, 9, 10], and
so ∆Y2[0, 3, 6, 9, 10]. Due to MC−1 operation on the active cells in the first
and the fourth columns of X3, we have ∆Y2[0] = ∆Y2[10], and ∆Y2[3] =
∆Y2[6] = ∆Y2[9] that will lead to three c-bit filters. The time complexity of
this step is N213c, and the number of tests left for the next step is N210c.

e) Satisfying round 2. We guess STK1[7]. We can compute Y2, and ∆Y2 as
shown in Figure 9. The time complexity of this step is N211c, and the number
of tests left for the next step is N211c.

f) Satisfying round 20. We calculate ∆X19[15] using the value of Z19[15], and
∆Z19[15]. We have ∆X19[3] = ∆X19[7] = ∆X19[15] because of the MC oper-
ation on the active cells in the last column of W18. Given ∆X19[3, 7], we can
determine Y19[3, 7] by applying Lemma 1 and the knowledge of the∆Y19[3, 7].
Now, we can determine STK19[3, 7] (due to Y19[3] = Z19[3]⊕ STK19[3], and
Y19[7] = Z19[7]⊕STK19[7]). Similarly, due to the MC operation on the active
cells in the second and the first columns of W18, we can also derive tweakey
cells STK19[1, 5] and STK19[4], respectively. We guess STK19[2]. Now, we
can compute ∆X18[11, 15] that will lead to a c-bit filter (due to MC opera-
tion of the fourth column of W17). The time complexity of this step is N212c,
and the number of tests left for the next step is N211c.

g) Satisfying round 20. We guess STK19[0, 6]. Thus, we can compute Z18 and
∆Z18 as shown in Figure 9. The time complexity of this step is N213c, and
the number of tests left for the next step is N213c.

h) Satisfying round 20. We calculate ∆X18[15] using the value of Z18[15]. We
have ∆X18[3] = ∆X18[15] because of the MC operation on the active cells
in the fourth column of W17. Given ∆X18[3], we can determine Y18[3] by
applying Lemma 1 and the knowledge of the ∆Y18[3]. Now, we can determine
STK18[3] (due to Y18[3] = Z18[3] ⊕ STK18[3]). Similarly, due to the MC
operation on the active cells in the second column of W17, we can also derive
tweakey cells STK18[1, 5]. The time complexity of this step is N213c, and the
number of tests left for the next step is N213c.

i) Satisfying round 3. We know the values of STK20[0, 3, 7], STK18[1, 3, 5], and
STK0[5, 6, 7] from the previous steps. Therefore, we will have STK2[1, 3, 5].
These values allow us to compute W2[1, 3, 6, 9, 10] and thus, Y3[7, 10, 13], and
∆Y3[7, 10, 13]. Due to MC−1 operation on the active cells in the first column
of X4, we have ∆Y3[7] = ∆Y3[10] = ∆Y3[13] that will lead to two c-bit filters.

46

The time complexity of this step is N213c, and the number of tests left for
the next step is N211c.

j) Satisfying round 19. We guess STK18[0, 7]. We compute Z17 and ∆Z17 as
shown in Figure 9. The time complexity of this step is N213c, and the number
of tests left for the next step is N213c.

k) Satisfying rounds 18 and 17. We calculate ∆X17[9, 13] using the values
of Z17[9, 13]. We have ∆X17[9] = ∆X17[13] = ∆X17[1] because of the MC
operation on the active cells in the second column of W16. The equality
∆X17[9] = ∆X17[13] will lead to a c-bit filter. Also, since we know ∆X17[1],
thus, we can determine Y17[1] by applying Lemma 1 and the knowledge of
the ∆Y17[1]. Thus, we can determine STK17[1] (due to Y17[1] = Z17[1] ⊕
STK17[1]). Compute ∆X16 as shown in Figure 9. The time complexity of
this step is N213c, and the number of tests left for the next step is N212c.

k) Satisfying round 3. We know the values of STK20[0, 1], STK18[1, 7], and
STK0[3, 7] from the previous steps. Therefore, we will have STK2[1, 7]. We
guess STK2[2]. These values enables us to compute W2[1, 2, 4, 8, 10, 14] and
thus, Y3[7, 10, 13], and ∆Y3[2, 5, 8]. Due to MC−1 operation on the active
cells in the third column of X4, we have ∆Y3[2] = ∆Y3[5] = ∆Y3[8] that will
lead to two c-bit filters. The time complexity of this step is N213c, and the
number of tests left for the next step is N211c.

l) Satisfying round 3. We can determine the values of STK2[0, 1, 3, 5, 7], from
the knowledge of STK20[0−3, 6, 7], STK18[0, 1, 3, 5, 7], and STK0[1−3, 5−7].
We also know the value of STK2[2] from the previous step. We just guess
STK2[6] and compute Y3, and∆Y3 as shown in Figure 9. The time complexity
of this step is N212c, and the number of tests left for the next step is N212c.

m) Satisfying round 4. We guess STK3[4] to determine X4[9], ∆X4[9] and thus,
∆Y4[9]. Due toMC−1 operation on the active cells in the fourth column ofX5,
we have ∆Y4[6] = ∆Y4[9]. From the knowledge of ∆Y4[6], we can determine
X4[6] by applying Lemma 1 and the knowledge of the ∆X4[6]. Thus, we
can determine the value of STK3[2] due to X4[6] = Y3[2] ⊕ STK3[2]. We
also can determine the value of STK3[0], from the knowledge of STK19[0],
STK17[1], and STK1[1]. We compute Y4, and ∆Y4 as shown in Figure 9. Due
to MC−1 operation on the active cells in the fourth column of X5, we have
∆X4[9] = ∆X4[15] that will lead to a c-bit filter. We can compute X5, and
∆X5 as shown in Figure 9. The time complexity of this step is N213c, and
the number of tests to verify the impossible distinguisher is N212c.

Complexity. Analyzing N pairs has a time complexity of about N213c. 7
21 21-

round encryptions. The attack needs a data complexity of D =
√
2cb+cf+1.g ln 2.

The total time complexity is T = D + M.213c. 7
21 + 248c−g. Hence, to optimize

the time complexity of the attack, we select g = 21 for c = 4 and g = 40
for c = 8. Thus, the data, time, and memory complexities of the attack on
SKINNY-64-192 are 262.43, 2174.42, and 2168, respectively. The data, time, and
memory complexities of the attack on SKINNY-128-384 are 2122.89, 2347.35, and
2336, respectively.

47

F.4 27-round Related-Tweakey ID Attack on SKINNY-n-3n

This section provides a 27-round ID attack on SKINNY-n-3n in the related-
tweakey setting. Figure 10 illustrates the attack discovered by our tool. In our
27-round attack, we use a related-tweakey impossible differential as:

(∆Y3, ∆STK3) = (000a0 · · · 0, 000a0 · · · 0)→ (∆X20) = (0000000b000b0000),

where a, and b are fixed non-zero differences. There are 2c− 1 non-zero different
values for a; we denote them with ai, (i = 1, · · · , 2c−1). For each ai, we have only
a fixed non-zero difference bi for b, a fixed non-zero difference ui for ∆STK1[5],
and also a fixed non-zero difference vi for ∆STK21[7].

4 Therefore, there are 2c−1
independent distinguishers with fixed non-zero input/output differences for our
27-round attack. If we consider only one of the ID distinguishers in the attack,
then we will need more data to attack. Hence, we can consider all 2c − 1 ID
distinguishers according to all possible fixed non-zero values of a in our attack to
improve data complexity. Inspired by [36], we use 2c−1 lists Li, (i = 1, · · · , 2c−1)
for storing pairs. In fact, during the attack procedure, the data related to fixed
non-zero differences (ui, ai, bi, vi) is saved in list Li, (i = 1, · · · , 2c − 1) and we
continue the attack based on each list. Using this strategy, we can discard more
incorrect keys than using just one distinguisher with the same initial data.

Pair Generation We should build 2x structures at W ′
0 and evaluate all possible

values in four cells W ′
0[5, 7, 10, 13] for each structure, while the other cells assume

a fixed value. By using 2x+4c plaintexts, we can have 2x+8c−1 pairs of plaintexts
(P, P). The expected number of the remaining pairs of ciphertexts (C,C) is
approximately N = 2x+2|∆b|−(n−|∆f|) pairs. In our 27-round attack n = |∆f|,
and thus, N = 2x+2|∆b| = 2x+8c. This step needs a total of 2x+4c+1 encryption
calls.

Guess-and-Filter For each of the N pairs we do the following steps:

a) Satisfying round 1. We guess ETK0[5] and compute Y1[5]. Then, we deter-
mine i index such Y1[5] = ui and store the pair in the list Li and repeat this
for the other pairs. Clearly, each pair will be saved in a list, so no filtering
is required in this step. The time complexity of this step is N2c, and the
number of tests left for the next step is N2c.

b) Satisfying rounds 27, 26, and 25. We guess STK26[0 − 7], STK25[0 − 7],
and STK24[0− 7] and compute Z23, and ∆Z23 as shown in Figure 10. Since
∆Z23[11] = 0, we have a c-bit filter on all lists. The time complexity of this
step is N225c, and the number of tests left for the next step is N224c.

c) Satisfying round 24. We calculate ∆X23[15] using the value of Z23[15], and
∆Z23[15]. We have ∆X23[3] = ∆X23[7] = ∆X23[15] because of the MC oper-
ation on the active cells in the last column of W22. Given ∆X23[3, 7], we can

4 We consider the values of ∆STK1[5], and ∆STK21[7], since only these differences
affect our 27-round attack (see Figure 10).

48

determine Y23[3, 7] by applying Lemma 1 and the knowledge of the∆Y23[3, 7].
Now, we can determine STK23[3, 7] (due to Y23[3] = Z23[3]⊕ STK23[3], and
Y23[7] = Z23[7]⊕STK23[7]). Similarly, due to the MC operation on the active
cells in the second and the first columns of W22, we can also derive tweakey
cells STK23[5] and STK23[4], respectively. We guess STK23[1, 2]. Now, we
can compute ∆X22[10, 11, 14, 15] that will lead to two c-bit filters (due to
MC operation of the third and the fourth column of W21). The time com-
plexity of this step is N226c, and the number of tests left for the next step
is N224c.

d) Satisfying round 24. We guess STK23[0, 6]. Thus, we can compute Z22 and
∆Z22 as shown in Figure 10. From the Knowledge of Z22[8], and ∆Z22[8],
we compute ∆X22[8] and so ∆Z21[7] for each pair on list Li. On the other
hand, we have ∆STK21[7] = ∆Z21[7]. Therefore, for each pair on list Li,
checking if ∆STK21[7] = vi, will lead to a c-bit filter. The time complexity
of this step is N226c, and the number of tests left for the next step is N225c.

e) Satisfying round 23. We calculate∆X22[13] using Z22[13]. We have∆X22[1] =
∆X22[5] = ∆X22[13] because of the MC operation on the active cells in
the second column of W21. Given ∆X22[1, 5], we can determine Y22[1, 5]
by applying Lemma 1 and the knowledge of the ∆Y22[1, 5]. Now, we can
determine STK22[1, 5] (due to Y22[1] = Z22[1] ⊕ STK22[1], and Y22[5] =
Z22[5] ⊕ STK22[5]). Similarly, due to the MC operation on the active cells
in the third and the fourth column of W21, we can also derive tweakey cells
STK22[2, 3]. The time complexity of this step is N225c, and the number of
tests left for the next step is N225c.

f) Satisfying round 1. We know the values of STK26[2, 5], STK24[0, 6], and
STK22[1],ETK0[5] from the previous steps. Therefore, we do not need to
guess ETK0[10, 13]. The values ETK0[10, 13] allows us to compute∆Y1[10, 13].
Due to MC−1 operation on the active cells in the first column of X2, we have
∆Y1[7] = ∆Y1[10] = ∆Y1[13]. The equality ∆Y1[10] = ∆Y1[13] will lead to
a c-bit filter. From the knowledge of ∆Y1[13], Lemma 1 helps us to derive
ETK0[7]. The time complexity of this step is N224c, and the number of tests
left for the next step is N224c.

g) Satisfying rounds 23 and 22. We guess STK22[6, 7]. We compute Z21 and
∆Z21 as shown in Figure 10. Due to MC−1 operation on the active cells in
the second column of W20, we have ∆X21[1] = ∆X21[9] = ∆X21[13]. The
equality ∆X21[9] = ∆X21[13] will lead to a c-bit filter (we can compute these
cells from knowledge of Z21[9, 13] and ∆Z21[9, 13]). From the knowledge of
∆X21[1], Lemma 1 helps us to derive STK21[1]. The time complexity of this
step is N226c, and the number of tests left for the next step is N225c.

h) Satisfying rounds 22 and 21. We guess STK21[5] to compute ∆X20[11]. For
each pair on list Li, checking if ∆X20[11] = bi, will lead to a c-bit filter. The
time complexity of this step is N226c, and the number of tests left for the
next step is N225c.

i) Satisfying rounds 22 and 21. We guess STK21[4] to compute ∆X20[7]. For
each pair on list Li, checking if ∆X20[7] = bi, will lead to a c-bit filter. The

49

time complexity of this step is N226c, and the number of tests left for the
next step is N225c.

j) Satisfying rounds 1, 2 and 3. We know the values of ETK0[0, 3, 4, 5, 7, 9 ∼
13], STK1[0, 3, 4], and STK2[3] from the previous steps. Therefore, we can
compute Y3 and ∆Y3 as shown in Figure 10. For each pair on list Li, checking
if ∆Y3[3] = ai, will lead to a c-bit filter. The time complexity of this step is
N225c, and the number of tests left to verify the impossible distinguisher is
N224c.

Complexity. Analyzing N pairs has a time complexity of about N226c 7
27 27-

round encryptions. The attack needs a data complexity of D = 215cg ln 2. The
total time complexity is T = D+N226c 7

27 +248c−g. Hence, to optimize the time
complexity of the attack, we select g = 9 for c = 4 and g = 23 for c = 8. Thus,
the data, time, and memory complexities of the attack on SKINNY-64-192 are
262.64, 2183.26, and 2172, respectively. The data, time, and memory complexities
of the attack on SKINNY-128-384 are 2123.99, 2362.61, and 2344, respectively.

50

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

�
X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

SC
AC

Y19 STK19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 STK20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21

SC
AC

Y21 STK21

b d f c
9 a 8 e

Z21

≫1

≫2

≫3

W21 X22

X22

SC
AC

Y22 STK22

3 5 7 4
1 2 0 6

Z22

≫1

≫2

≫3

W22 X23

SC
AC

Y23 STK23

d e b a
f 8 9 c

Z23

≫1

≫2

≫3

W23 X24

X24

SC
AC

Y24 STK24

5 6 3 2
7 0 1 4

Z24

≫1

≫2

≫3

W24 X25

SC
AC

Y25 STK25

e c d 8
b 9 f a

Z25

≫1

≫2

≫3

W25 X26

X26

SC
AC

Y26 STK26

6 4 5 0
3 1 7 2

Z26

≫1

≫2

≫3

W26 X27

fixed nonzero any involved in key-recovery diff. value is needed value is needed

Fig. 10: ID attack on 27 rounds of SKINNY-n-3n in the related-tweakey setting.
|kb ∪ kf| = 43 · c, cb = 4 · c, cf = 16 · c, ∆b = 4 · c, ∆f = 16 · c.

51

G Multidimensional ZC Attacks on SKINNY

This section explains our multidimensional zero-correlation linear attacks on
reduced-round of SKINNY.

G.1 ZC Attack on SKINNY-n-n

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

�
X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

nonzero any involved in key-recovery

Fig. 11: ZC attack on 16 rounds of SKINNY-n-n. #Involved key cells: 8

If the ZC linear approximation over 9-round SKINNY in Figure 11 cover
rounds 4 to 12, we can attack 16-round SKINNY-n-n by adding 3 rounds before
and four rounds after the distinguisher, as shown in Figure 11. We can divide
the attack procedure into the following steps:

1. Collect N pairs of plaintexts and the corresponding ciphertexts.

52

2. Allocate a 7c-bit counter N0[W
′
0, Z15] for all 29c possible value of [W ′

0, Z15]
and initialize it to zero. Then, calculate the number of pairs of plaintext-
ciphertext with given values W ′

0 and Z15 and increment the corresponding
counter N0[W

′
0, Z15]. In this step, about 216c pairs divide into 29c distinct

values of [W ′
0, Z15], so the 7c-bit counter is sufficient.

3. Guess 3 cells ETK[3, 5, 8]. Next, allocate a counter N1[X1, Z15] for all 29c

possible values of [X1, Z15] and initialize it to zero. For all 23c possible
values of W ′

0, encrypt W ′
0 one round to obtain X1 and update the value

N1[X1, Z15] = N1[X1, Z15] +N0[W
′
0, Z15] for all 2

6c values of Z15. The time
complexity of this step is equal to 23c × 23c × 26c = 212c memory access,
because we should guess 3 cells for ETK1, and for 23c values encrypt Y1 one
round and update N1 for 26c times.

4. Guess 2 cells STK1[3, 5]. Next, allocate a counter N2[X2, Z15] for all 28c

possible values of [X2, Z15] and initialize it to zero. For all 23c possible
values of X1, encrypt X1 one round to obtain X2 and update the value
N2[X2, Z15] = N2[X2, Z15] +N1[X1, Z15] for all 2

6c values of Z15. The time
complexity of this step is equal to 23c+2c × 23c × 26c = 214c memory access.

5. From the knowledge of ETK[3], we can determine the value of STK2[7].
Next, allocate a counter N3[X3, Z15] for all 2

7c possible value of [X3, Z15] and
initialize it to zero. For all 22c possible values of X2, encrypt X2 one round
to obtain X3 and update the value N3[X3, Z15] = N3[X3, Z15] +N2[X2, Z15]
for all 26c values of Z15. The time complexity of this step is equal to 25c ×
22c × 26c = 213c memory access.

6. From the knowledge of STK1[3], we can determine the value of STK15[5].
Guess 2 cells STK15[2, 7]. Next, allocate a counter N4[X3, Z14] for all 24c

possible value of [X3, Z14] and initialize it to zero. For all 26c possible val-
ues of Z15, decrypt Z15 to obtain Z14 and update the value N4[X3, Z14] =
N4[X3, Z14] + N3[X3, Z15] for all 2c values of X3. The time complexity of
this step is equal to 25c+2c × 26c × 2c = 214c memory access.

7. From the knowledge of ETK[7], we can determine the value of STK14[3].
Guess 1 cell STK14[4]. Next, allocate a counterN5[X3, Z13] for all 2

3c possible
value of [X3, Z13] and initialize it to zero. For all 23c possible values of Z14,
decrypt Z14 to obtain Z13 and update the value N5[X3, Z13] = N5[X3, Z13]+
N4[X3, Z15] for all 2

c values of X3. The time complexity of this step is equal
to 27c+c × 23c × 2c = 212c memory access.

8. From the knowledge of STK15[2], we can determine the value of STK13[0].
Next, allocate a counterN6[X3, X12] for all 2

2c possible value of [X3, X12] and
initialize it to zero. For all 22c possible values of Z13, decrypt Z13 to obtain
X12 and update the value N6[X3, X12] = N6[X3, X12]+N5[X3, Z13] for all 2

c

values of X3. The time complexity of this step is equal to 28c×22c×2c = 211c

memory access.
9. To recover the secret key, we allocate a counter V [z] for 2c-bit z. For 22c

values of [X3, X12], evaluate all 2c basis ZC masks on [X3, X12] and get
z. Update the counter V [z] by V [z] = V [z] + N6[X3, X12]. Calculate the
statistical value T (Equation 4), if T < τ , the guessed key values are possible
right key candidates.

53

The time complexity of this step is equal to 28c × 7c× 22c times of reading
the 7c-bit memory, because for all of guessed 28c keys in previous steps, we
should read 22c values of N6[X3, X12].

10. Do an exhaustive search for all the right candidates. Due to β (the probability
of accepting a wrong key) and the total number of recovered bits being 8c, the
number of remaining key candidates is β× 28c. Then we exhaustively search
other 16c−8c = 8c key bits, the time complexity will be β×28c×28c = β×216c
times of 16-round encryptions.

Complexity. In this attack, for c = 4, we set the type-I error probability α =
2−2.7 and the type-II error probability β = 2−2, then Z1−α = 1.01, and Z1−β =
0.67. Thus, based on the Equation 5; N = 261.35. The decision threshold is
τ = µ0 + σ0Z1−α. If we consider one memory access as one round encryption
call, then the time complexity of our attack on 16-round SKINNY-64-64 is about
261.35 + (248 + 256 + · · ·+ 244.80)× 1

16 + 262 = 262.71 16-round encryptions. The
required memory complexity is dominated by step 2, which needs about 237.8

bytes.
For c = 8, our key recovery attack on 16-round SKINNY-128-128 needs 2122.3

known plaintexts, 2122.79 encryptions, and 274.8 bytes memory, if we set α = 2−2.7

and β = 2−7. Furthermore, the success probability of the attack is 1−α = 0.84.

G.2 ZC Attack on SKINNY-n-2n

If the ZC linear approximations over 9-round SKINNY in Figure 12 cover rounds
5 to 13, we can attack 19-round SKINNY-n-2n by adding four rounds before and
six rounds after the linear approximations, as shown in Figure 12. We divide the
attack procedure into the following steps:

1. Collect N pairs of plaintexts and the corresponding ciphertexts. Guess 13
cells STK18[0 − 7], and STK17[0, 1, 4, 6, 7] , do the partial decryption and
calculate Z16 for each pair. Allocate a 4c-bit counter N0[W

′
0, Z16] for all 2

12c

possible value of [W ′
0, Z16] and initialize it to zero. Next, compute the number

of pairs of plaintext-ciphertext with given values W ′
0, and Z16 and store it

in N0[W
′
0, Z16]. In this step, around 216c pairs are divided into 212c distinct

values of [W ′
0, Z16], so 4c-bit counter is sufficient. The time complexity of

this step is equal to N +N × 213c.
2. Guess 3 cells STK16[2, 5, 7]. Next, allocate a counter N1[W

′
0, Z15] for all 2

9c

possible value of [W ′
0, Z15] and initialize it to zero. For all 26c possible val-

ues of Z16, do the partial decryption to obtain Z15 and update the value
N1[W

′
0, Z15] = N1[W

′
0, Z15] +N0[W

′
0, Z16] for all 2

6c values of W ′
0. The time

complexity of this step is equal to 2(13c+3c)×26c×26c = 228c memory access.
3. Guess 2 cells STK15[3, 4]. Next, allocate a counter N2[W

′
0, Z14] for all 28c

possible value of [W ′
0, Z14] and initialize it to zero. For all 23c possible val-

ues of Z15, do the partial decryption to obtain Z14 and update the value
N2[W

′
0, Z14] = N2[W

′
0, Z14] +N1[W

′
0, Z15] for all 2

6c values of Y0. The time
complexity of this step is equal to 2(16c+2c)×23c×26c = 227c memory access.

54

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

�
X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

nonzero any involved in key-recovery

Fig. 12: ZC attack on 19 rounds of SKINNY-n-2n. #Involved key cells: 24.

4. We know STK18[4] and STK16[2], thus, we can determine the value of STK14[0].
Next, allocate a counter N3[W

′
0, Y13] for all 27c possible value of [W ′

0, Y13]
and initialize it to zero. For all 22c possible values of Z14, do the partial
decryption to obtain Y13 and update the value N3[W

′
0, Y13] = N3[W

′
0, Y13] +

N2[W
′
0, Z14] for all 2

6c values of Y0. The time complexity of this step is equal
to 218c × 27c × 26c = 231c memory access.

5. From the knowledge of STK18[4] and STK16[2], we can determine the value
of ETK[2, 6]. Also, from STK18[1] and STK16[7], we determine the value of
ETK[8]. Thus, we just guess 3 cells ETK[0, 9, 15]. Next, allocate a counter
N4[Y1, Y13] for all 2

4c possible value of [Y1, Y13] and initialize it to zero. For
all 26c possible values of W ′

0, do the partial decryption to obtain Y1 and
update the value N4[Y1, Y13] = N4[Y1, Y13] +N3[W

′
0, Y13] for all 2

c values of

55

Y13. The time complexity of this step is equal to 2(18c+3c) × 26c × 2c = 228c

memory access.
6. From the knowledge of STK17[6] and STK15[4], we determine the value of

STK1[6]. Therefore, we just guess 2 cells STK1[0, 2]. Next, allocate a counter
N5[Y2, Y13] for all 2

3c possible value of [Y2, Y13] and initialize it to zero. For all
26c possible values of Y1, do the partial decryption to obtain Y2 and update
the value N5[Y2, Y13] = N5[Y2, Y13] +N4[Y1, Y13] for all 2

c values of Y13. The
time complexity of this step is equal to 2(21c+2c) × 26c × 2c = 230c memory
access.

7. From the knowledge of STK18[2] and ETK[0], we determine the value of
STK2[2]. Also, we determine the value of STK2[4] from STK18[4] and STK16[2].
Next, allocate a counter N5[Y3, Y13] for all 2

3c possible value of [Y3, Y13] and
initialize it to zero. For all 23c possible values of Y2, do the partial decryption
to obtain Y3 and update the value N5[Y3, Y13] = N5[Y3, Y13]+N4[Y2, Y13] for
all 2c values of Y13. The time complexity of this step is equal to 223c× 23c×
2c = 227c memory access.

8. Guess 1 cell STK3[6]. Then, allocate a counter N6[X4, Y13] for all 2
2c possible

value of [X4, Y13] and initialize it to zero. For all 22c possible values of Y3,
do the partial decryption to obtain X4 and update the value N6[X4, Y13] =
N6[X4, Y13]+N5[Y3, Y13] for all 2

c values of Y13. The time complexity of this
step is equal to 2(23c+c) × 22c × 2c = 227c memory access.

9. To recover the secret key, allocate a counter V [z] for 2c-bit z. For 22c values
of [X4, Y13], evaluate all 2c basis ZC masks on [X4, Y13] and get z. Update
the counter V [z] by V [z] = V [z] + N6[X4, Y13]. Calculate the statistical
value T (Equation 4), if T < τ , the guessed key values are possible right key
candidates. The time complexity of this step is equal to 224c×4c×22c times
of reading the 4c-bit memory.

10. Do an exhaustive search for all the right candidates. The time complexity of
this step is β × 232c.

Complexity. For c = 4, we set α = 2−2.7 and β = 2−9, then Z1−α = 1.01, and
Z1−β = 2.88. Thus, based on the Equation 5; N = 262.89. The decision threshold
is τ = µ0 + σ0Z1−α. If we consider one memory access as one round encryption
call, then the time complexity of our attack on 19-round SKINNY-64-128 is about
262.89 + 2114.89 × 1

19 + (2112 + 2108 + · · · + 2108) × 2
19 + 2119 = 2119.15 19-round

encryptions. The required memory complexity is dominated by step 1, which
needs about 249 bytes.

For c = 8, by selecting α = 2−2.7 and β = 2−16, our key recovery attack on
19-round SKINNY-128-256 requires 2122.9 known plaintexts, 2240.07 encryptions,
and 298 bytes memory. The success probability of the attacks is 1− α = 0.84.

G.3 ZC Attack on SKINNY-n-3n

If the ZC linear approximation over 9-round SKINNY-n-3n in Figure 13 cover
rounds 5 to 13, we can attack 21-round SKINNY-n-3n by adding 4 rounds before

56

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

�
X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

SC
AC

Y19 STK19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 STK20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21

nonzero any involved in key-recovery

Fig. 13: ZC attack on 21 rounds of SKINNY-n-3n. #Involved key cells: 40

and 8 rounds after the linear approximations, as shown in Figure 13. We can
divide the attack procedure into the following steps:

1. Collect N pairs of plaintexts and the corresponding ciphertexts. Guess 29
cells STK20[0−7],STK19[0−7],STK18[0−7], and STK17[0, 1, 4, 6, 7] , do the
partial decryption and calculate Z16 for each pair. Allocate a 4c-bit counter
N0[W

′
0, Z16] for all 212c possible value of [W ′

0, Z16] and initialize it to zero.
Next, compute the number of pairs of plaintext-ciphertext with given values
W ′

0, and Z16 and store it in N0[W
′
0, Z16]. In this step, around 216c pairs are

57

divided into 212c distinct values of [W ′
0, Z16], so 4c-bit counter is sufficient.

The time complexity of this step is N +N × 229c.

2. Guess 5 cells ETK[0, 2, 6, 8, 9, 15] (ETK[6] = ETK[2]). Next, allocate a counter
N1[Y1, Z16] for all 2

12c possible value of [Y1, Z16] and initialize it to zero. For
all 26c possible values of Y0, do the partial encryption to obtain Y1 and up-
date the value N1[Y1, Z16] = N1[Y1, Z16] + N0[W

′
0, Z16] for all 26c values of

Z16. The time complexity of this step is equal to 2(29c+5c)×26c×26c = 246c.

3. From the knowledge of STK20[0, 6], STK18[1, 4], and ETK[2, 8], we can deter-
mine the values of STK16[2, 7]. Thus, we guess just 1 cell TK16[5]. Allocate
a counter N2[Y1, Z15] for all 2

9c possible value of [Y1, Z15] and initialize it to
zero. For all 26c possible values of Z16, do the partial decryption to obtain Z15

and update the valueN2[Y1, Z15] = N2[Y1, Z15]+N1[Y1, Z16] for all 2
6c values

of Y1. The time complexity of this step is equal to 2(34c+c)×26c×26c = 247c.

4. Guess 3 cells STK1[0, 2, 6]. Allocate a counter N3[Y2, Z15] for all 2
6c possible

value of [Y2, Z15] and initialize it to zero. For all 26c possible values of Y1,
do the partial encryption to obtain Y2 and update the value N3[Y2, Z15] =
N3[Y2, Z15] + N2[Y1, Z15] for all 23c values of Z15. The time complexity of
this step is equal to 2(35c+3c) × 26c × 23c = 247c.

5. We can determine the values of STK15[4] from the knowledge of STK19[5],
STK17[6],and STK1[6]. Therefore, guess just 1 cell STK15[3]. Allocate a
counter N4[Y2, Z14] for all 25c possible value of [Y2, Z14] and initialize it to
zero. For all 23c possible values of Z15, do the partial decryption to obtain Z14

and update the valueN4[Y2, Z14] = N4[Y2, Z14]+N3[Y2, Z15] for all 2
3c values

of Y2. The time complexity of this step is equal to 2(38c+c)×23c×23c = 245c.

6. We determine the values of TK14[0] from the knowledge of STK20[6], STK18[4],
and STK16[2]. Then, allocate a counter N5[Y2, Y13] for all 24c possible val-
ues of [Y2, Y13] and initialize it to zero. For all 22c possible values of Z14,
do the partial decryption to obtain Y13 and update the value N5[Y2, Y13] =
N5[Y2, Y13]+N4[Y2, Z15] for all 2

3c values of Y2. The time complexity of this
step is equal to 239c × 22c × 23c = 244c.

7. From the knowledge of STK20[4, 6], STK18[2, 4],and ETK[0, 2], we deter-
mine STK2[2, 4]. Then, allocate a counter N6[Y3, Y13] for all 23c possible
values of [Y3, Y13] and initialize it to zero. For all 23c possible values of Y2,
do the partial encryption to obtain Y3 and update the value N6[Y3, Y13] =
N6[Y3, Y13] +N5[Y2, Y13] for all 2

c values of Y13. The time complexity of this
step is equal to 239c × 23c × 2c = 243c.

8. Guess 1 cell STK3[6], and then, allocate a counter N7[X4, Y13] for all 22c

possible values of [X4, Y13] and initialize it to zero. For all 22c possible val-
ues of Y3, do the partial encryption to obtain X4 and update the value
N7[X4, Y13] = N7[X4, Y13] + N6[Y3, Y13] for all 2c values of Y13. The time
complexity of this step is equal to 2(39c+c) × 22c × 2c = 243c.

9. To recover the secret key, allocate a counter V [z] for 2c-bit z. For 22c values
of [X4, Y13], evaluate all 2c basis ZC masks on [X4, Y13] and get z. Update
the counter V [z] by V [z] = V [z]+N7[X4, Y13]. Calculate the statistical value
T . If T < τ , the guessed key values are possible right key candidates. The

58

time complexity of this step is equal to 240c × 4c× 22c times of reading the
4c-bit memory.

1. Do an exhaustive search for all the right candidates. The time complexity of
this step is equal to β × 248c.

Complexity. For c = 4, we set α = 2−2.7 and β = 2−7, then Z1−α = 1.01, and
Z1−β = 2.41. Thus, based on the Equation 5; N = 262.63. The decision threshold
is τ = µ0 + σ0Z1−α. If we consider one memory access as one round encryption
call, then the time complexity of our attack on 21-round SKINNY-64-192 is about
262.63 + 2178.63 × 4

21 + (2184 + 2188 + · · ·+ 2172 + 2172)× 1
21 + 2185 = 2185.83 21-

round encryptions. The required memory complexity is dominated by step 1,
which needs about 249 bytes.

For c = 8, by selecting α = 2−2.7 and β = 2−14, our key recovery attack on
19-round SKINNY-128-384 requires 2122.81 known plaintexts, 2372.82 encryptions,
and 298 bytes memory. The success probability of the attack is 1− α = 0.84.

59

H Integral Attacks on SKINNY

In this section, we transform ZC linear hulls into integral distinguishers to obtain
integral attacks for SKINNY in the single-key/chosen-tweak setting.

H.1 ZC-Integral Key-Recovery Attack on 22-Round SKINNY-n-2n

Our tool finds a ZC distinguisher for 14 rounds (labelled as rounds 1 to 14
in Figure 14), combined with one free initial round (round 0) and a final key
recovery phase over 7 rounds (15 to 21). In this distinguisher, the tweakey cell
8 is only active in at most z = 2 cells (‘any’ in STK7, ‘active’ in STK9). At
the input to the distinguisher, 4 cells are active. Thus, we can convert it to
an integral distinguisher [1] with data complexity 24·(16−4+2) = 256, where the
values in the active input cells and the 2 tweakey cells with index 8 iterate over
all values. The inactive input cells are constant, the other tweakey cells form the
4 · 2 · 15 = 120-bit key. Then, the distinguisher’s outputs in W14[14] sum to zero.
We can trivially prepend 1 round because the addition of the equivalent tweakey
does not change the input structure (key cell 8 is not involved), and all other
operations in the first round are unkeyed.

Key recovery. For the key recovery, we separately recover the sums in X15[2]
and X15[14] using the partial-sum technique [16] and merge the results following
the meet-in-the-middle approach [38]. The procedures for both sums are sum-
marized in Table 4. For each sum, we start with Step 0 by storing the obtained
ciphertexts (after unwrapping the last linear layer, i.e., Z21) together with their
corresponding chosen tweakey values. For the tweakey, we either store the re-
quired subtweakey values (i.e., STK21[6]) or, if the index is involved more than
z = 2 times, the input tweakey values from which all subtweakeys can be re-
constructed. In each of the following steps in round r, we guess one column of
involved subtweakey STKr and replace the stored values of this column in Zr by
those (potentially fewer) in Wr−1. If a subtweakey index is involved more than
z = 2 times, we only guess the first z times and derive the remaining values
afterwards. In each round, we reorder the column order if necessary to minimize
the complexity of this round; that is, we first handle columns with fewer key
guesses and a stronger reduction in the MixColumns step.

Complexity. The complexity of each step is determined by the number of guessed
key cells so far and the number of new stored cells (for memory) or previously
stored cells (for time). We use the number of S-box lookups as unit for the time
complexity, as customary in previous attacks (although in reality, the memory
accesses would likely be more expensive). Overall, we obtain a mapping from
values of the sum in X15[2] to corresponding 292 key candidates with complexity
2106.7, and for the sum in X15[14] for 296 candidates with complexity 2102.8.
These can be merged to obtain 2120−4 = 2116 key candidates that produce zero-
sums. This remaining keyspace can either be brute-forced (complexity 2116), or
the attack can be repeated 3 times (complexity 3 · 2106.7 = 2108.3 plus merging

60

plus 2120−3·4 = 2108). As merging can be done efficiently, the total complexity is
less than 2110 encryptions equivalents for 22-round SKINNY-64-128 with 120-bit
keys. The same approach yields a complexity of 3 · 2216−5.3 +2240−3·8 = 2216 for
22-round SKINNY-128-256 with 240-bit keys.

H.2 ZC-Integral Key-Recovery Attack on 26-Round SKINNY-n-3n

We follow the same approach as above with 4 active input cells, where tweakey
cell index e is only active z = 3 times (‘any’ in STK7,STK9, ‘active’ in STK11)
in the 16 distinguisher rounds labelled 1 to 16 plus the free initial round 0. We
append 9 rounds for key recovery for a total of 26 rounds. The distinguisher
and key recovery are illustrated in Figure 15, with key-recovery details given in
Table 5.

Complexity. The combined complexity of recovering X17[1] and X17[13] from
24·(16−4+3) = 260 data is 2172−4.8 + 2172−4.9 = 2168.2. We repeat the attack 2
times and then brute-force the remaining keyspace of 2180−2·4 = 2172 candidates,
which dominates the complexity for 26-round SKINNY-64-192 with 180-bit key.
For 26-round SKINNY-128-384 with 360-bit key, the complexity is 22·172−4.8 +
22·172−4.9 = 2340.2 per repetition; with 2 repetitions, the brute-force complexity
of 2360−2·8 = 2344 encryptions dominates.

H.3 ZC-Integral Key-Recovery Attack on 30-Round SKINNYe-v2

SKINNYe-v2 is essentially SKINNY-n-4n with cell size c = 4, so we follow the
same approach. The distinguisher (with target tweakey cell f) and key recovery
are illustrated in Figure 16, with key-recovery details given in Table 6. The com-
bined complexity of recovering X19[2] and X19[14] from 24·(16−4+4) = 264 data
is 2232−5.7 + 2228−5.6 = 2226.3 (plus memory accesses). We repeat the attack 2
times and then brute-force the remaining keyspace of 2240−2·4 = 2232 candidates,
which dominates the complexity for 30-round SKINNYe-v2 with 240-bit key.

61

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19X19

SC
AC

Y19 STK19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 STK20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21X21

SC
AC

Y21 STK21

b d f c
9 a 8 e

Z21

≫1

≫2

≫3

W21 X22

initial round any nonzero integral key branch 1 key branch 2 active tweak

Fig. 14: ZC-based integral attack on 22 rounds of SKINNY-n-2n.

62

Table 4: Complexity of partial-sum key-recovery for 22 rounds of SKINNY-n-2n.

(a) Recovery of X15[2] (in Figure 14) with total complexity 2112−5.3 = 2106.7.

Step Guessed Keys×Data=Mem Time Stored Texts

0 – 20 × 256 = 256 256 Z21[0–15]; STK21[6]

1–4 STK21[0–5, 7] 228 × 256 = 284 284−6.5 W20[0–7, 9, 12–15]

5 STK20[0, 4] 236 × 256 = 292 292−6.9 Z20[1–3, 5–7, 10, 11, 13–15]; W19[0, 8, 12]

6 STK20[1, 5] 244 × 252 = 296 2100−6.9 Z20[2, 3, 6, 7, 10, 11, 14, 15]; W19[0, 8, 12, 1, 13]

7 STK20[2, 6] 252 × 244 = 296 2104−6.5 Z20[3, 7, 11, 15]; W19[0, 8, 12, 1, 13, 6, 14]

8 STK20[3, 7] 260 × 244 =2104 2104−6.5 W19[0, 8, 12, 1, 13, 6, 14, 3, 7, 11, 15]

9 STK19[0] 264 × 240 =2104 2108−7.5 Z19[1, 3, 5, 6, 9, 10, 13, 14, 15]; W18[12]

10 STK19[1, 5] 272 × 232 =2104 2112−6.5 Z19[3, 6, 10, 14, 15]; W18[12, 5, 13]

11 STK19[6] 276 × 232 =2108 2108−6.9 Z19[3, 15]; W18[12, 5, 13, 2, 6, 10]

12 STK19[3] 280 × 228 =2108 2112−7.5 W18[12, 5, 13, 2, 6, 10, 15]

13 STK18[4] 284 × 220 =2104 2112−6.9 Z18[2, 5, 13, 14]; W17[4]

14 STK18[5] 288 × 216 =2104 2108−7.5 Z18[2, 14]; W17[4, 9]

15 STK18[2] 292 × 212 =2104 2108−7.5 W17[4, 9, 14]

16 – 292 × 24 = 296 2104−6.9 W16[7]

17 – 292 × 24 = 296 296−8.5 W15[2]

18 – 292 × 24 = 296 296−8.5 X15[2]

(b) Recovery of X15[14] (in Figure 14) with total complexity 2108−5.2 = 2−102.8.

Step Guessed Keys×Data=Mem Time Stored Texts

0 – 20 × 256 = 256 256 Z21[0–15]; STK19[4],STK21[6]

1–4 STK21[0–5, 7] 228 × 256 = 284 284−6.5 STK19[4]; W20[0–8, 10–15]

5 STK20[0, 4] 236 × 256 = 292 292−6.5 Z20[1–3, 5–7, 9, 10, 13–15]; STK19[4]; W19[4, 12]

6 STK20[2, 6] 244 × 252 = 296 2100−6.5 Z20[1, 3, 5, 7, 9, 13, 15]; STK19[4]; W19[4, 12, 2, 6, 14]

7 STK20[3, 7] 252 × 248 =2100 2104−6.9 Z20[1, 5, 9, 13]; STK19[4]; W19[4, 12, 2, 6, 14, 11, 15]

8 STK20[1, 5] 260 × 248 =2108 2108−6.5 STK19[4]; W19[4, 12, 2, 6, 14, 11, 15, 1, 5, 9, 13]

9 – 260 × 240 =2100 2108−7.5 Z19[1, 2, 5, 7, 9, 11, 13, 14, 15]; W18[8]

10 STK19[1, 5] 268 × 232 =2100 2108−6.5 Z19[2, 7, 11, 14, 15]; W18[8, 5, 13]

11 STK19[2] 272 × 228 =2100 2104−7.5 Z19[7, 11, 15]; W18[8, 5, 13, 14]

12 STK19[7] 276 × 224 =2100 2104−6.9 W18[8, 5, 13, 14, 3, 7]

13 STK18[6] 280 × 216 = 296 2104−6.9 Z18[3, 4, 15]; W17[6]

14 STK18[4] 284 × 216 =2100 2100−8.5 Z18[3, 15]; W17[6, 0]

15 STK18[3] 288 × 212 =2100 2104−7.5 W17[6, 0, 15]

16 – 288 × 28 = 296 2100−7.5 Z17[5]; W16[12]

17 STK17[5] 292 × 28 =2100 2100−8.5 W16[12, 1]

18 STK16[1] 296 × 24 =2100 2104−7.5 W15[13]

19 – 296 × 24 =2100 2100−8.5 X15[14]

63

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19X19

SC
AC

Y19 STK19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 STK20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21X21

SC
AC

Y21 STK21

b d f c
9 a 8 e

Z21

≫1

≫2

≫3

W21 X22

X22

SC
AC

Y22 STK22

3 5 7 4
1 2 0 6

Z22

≫1

≫2

≫3

W22 X23X23

SC
AC

Y23 STK23

d e b a
f 8 9 c

Z23

≫1

≫2

≫3

W23 X24

X24

SC
AC

Y24 STK24

5 6 3 2
7 0 1 4

Z24

≫1

≫2

≫3

W24 X25X25

SC
AC

Y25 STK25

e c d 8
b 9 f a

Z25

≫1

≫2

≫3

W25 X26

initial round any nonzero integral key branch 1 key branch 2 active tweak

Fig. 15: ZC-based integral attack on 26 rounds of SKINNY-n-3n.

64

Table 5: Complexity of partial-sum key-recovery for 26 rounds of SKINNY-n-3n.

(a) Recovery of X17[1] (in Figure 15) with total complexity 2167.2.

Step Guessed Keys×Data=Mem Time Stored Texts

0 – 20 × 260 = 260 260 Z25[0–15]; STK23[1],STK25[0]

1–4 STK25[1–7] 228 × 260 = 288 288−6.7 STK23[1]; W24[0–15]

5–8 STK24[0–7] 260 × 260 =2120 2120−6.7 STK23[1]; W23[0–15]

9 STK23[0, 4] 268 × 260 =2128 2128−6.7 Z23[1–3, 5–7, 9–11, 13–15]; STK23[1]; W22[0, 4, 8, 12]

10 STK23[5] 272 × 260 =2132 2132−6.7 Z23[2, 3, 6, 7, 10, 11, 14, 15]; W22[0, 4, 8, 12, 1, 5, 13]

11 STK23[2, 6] 280 × 256 =2136 2140−6.7 Z23[3, 7, 11, 15]; W22[0, 4, 8, 12, 1, 5, 13, 2, 6, 14]

12 STK23[3, 7] 288 × 256 =2144 2144−6.7 W22[0, 4, 8, 12, 1, 5, 13, 2, 6, 14, 3, 7, 11, 15]

13 STK22[0, 4] 296 × 252 =2148 2152−7.1 Z22[1, 2, 3, 5, 6, 7, 9, 10, 13, 14, 15]; W21[0, 12]

14 STK22[1, 5] 2104 × 244 =2148 2156−6.7 Z22[2, 3, 6, 7, 10, 14, 15]; W21[0, 12, 5, 13]

15 STK22[2, 6] 2112 × 244 =2156 2156−6.7 Z22[3, 7, 15]; W21[0, 12, 5, 13, 2, 6, 10, 14]

16 STK22[3, 7] 2120 × 244 =2164 2164−7.1 W21[0, 12, 5, 13, 2, 6, 10, 14, 3, 11, 15]

17 STK21[0, 4] 2128 × 236 =2164 2172−6.7 Z21[2, 3, 5, 9, 13, 14, 15]; W20[4, 12]

18 STK21[5] 2132 × 236 =2168 2168−7.1 Z21[2, 3, 14, 15]; W20[4, 12, 1, 5, 9]

19 STK21[2] 2136 × 232 =2168 2172−7.7 Z21[3, 15]; W20[4, 12, 1, 5, 9, 14]

20 STK21[3] 2140 × 228 =2168 2172−7.7 W20[4, 12, 1, 5, 9, 14, 15]

21 STK20[4] 2144 × 224 =2168 2172−7.7 Z20[1, 7, 11, 13, 15]; W19[8]

22 STK20[1] 2148 × 220 =2168 2172−7.7 Z20[7, 11, 15]; W19[8, 13]

23 STK20[7] 2152 × 212 =2164 2172−7.1 W19[8, 13, 7]

24 – 2152 × 24 =2156 2164−7.1 W18[6]

25 STK18[5] 2156 × 24 =2160 2160−8.7 W17[1]

26 – 2156 × 24 =2160 2160−8.7 X17[1]

(b) Recovery of X17[13] (in Figure 15) with total complexity 2167.1.

Step Guessed Keys×Data=Mem Time Stored Texts

0 – 20 × 260 = 260 260 Z25[0–15]; STK19[3],STK21[7],STK23[1]

1–4 STK25[1–7] 228 × 260 = 288 288−6.7 STK19[3],STK21[7],STK23[1]; W24[0–15]

5–8 STK24[0–7] 260 × 260 =2120 2120−6.7 STK19[3],STK21[7],STK23[1]; W23[0–15]

9–12 STK23[0, 2–7] 288 × 260 =2148 2148−6.7 STK19[3],STK21[7]; W22[0–7, 9–15]

13 STK22[1, 5] 296 × 260 =2156 2156−6.7 Z22[0, 2–4, 6–8, 11, 12, 14, 15]; STK19[3],STK21[7]; W21[1, 5, 13]

14 STK22[2, 6] 2104 × 260 =2164 2164−7.1 Z22[0, 3, 4, 7, 8, 11, 12, 15]; STK19[3],STK21[7]; W21[1, 5, 13, 10, 14]

15 STK22[3, 7] 2112 × 252 =2164 2172−6.7 Z22[0, 4, 8, 12]; STK19[3],STK21[7]; W21[1, 5, 13, 10, 14, 7, 15]

16 STK22[0, 4] 2120 × 252 =2172 2172−6.7 STK19[3],STK21[7]; W21[1, 5, 13, 10, 14, 7, 15, 0, 4, 8, 12]

17 – 2120 × 244 =2164 2172−7.7 Z21[0, 1, 4, 6, 8, 10, 12, 13, 14]; STK19[3]; W20[11]

18 STK21[0, 4] 2128 × 236 =2164 2172−6.7 Z21[1, 6, 10, 13, 14]; STK19[3]; W20[11, 4, 12]

19 STK21[1] 2132 × 232 =2164 2168−7.7 Z21[6, 10, 14]; STK19[3]; W20[11, 4, 12, 13]

20 STK21[6] 2136 × 228 =2164 2168−7.1 STK19[3]; W20[11, 4, 12, 13, 2, 6]

21 STK20[5] 2140 × 220 =2160 2168−7.1 Z20[2, 7, 14]; STK19[3]; W19[5]

22 STK20[2] 2144 × 216 =2160 2164−7.7 Z20[7]; STK19[3]; W19[5, 14]

23 STK20[7] 2148 × 216 =2164 2164−8.7 STK19[3]; W19[5, 14, 3]

24 – 2148 × 216 =2164 2164−8.7 Z19[3, 15]; STK19[3]; W18[0]

25 – 2148 × 28 =2156 2164−7.7 W18[0, 15]

26 – 2148 × 24 =2152 2156−7.7 W17[12]

27 – 2148 × 24 =2152 2152−8.7 X17[13]

65

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

SC
AC

Y19 STK19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 STK20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21X21

SC
AC

Y21 STK21

b d f c
9 a 8 e

Z21

≫1

≫2

≫3

W21 X22

X22

SC
AC

Y22 STK22

3 5 7 4
1 2 0 6

Z22

≫1

≫2

≫3

W22 X23X23

SC
AC

Y23 STK23

d e b a
f 8 9 c

Z23

≫1

≫2

≫3

W23 X24

X24

SC
AC

Y24 STK24

5 6 3 2
7 0 1 4

Z24

≫1

≫2

≫3

W24 X25X25

SC
AC

Y25 STK25

e c d 8
b 9 f a

Z25

≫1

≫2

≫3

W25 X26

X26

SC
AC

Y26 STK26

6 4 5 0
3 1 7 2

Z26

≫1

≫2

≫3

W26 X27X27

SC
AC

Y27 STK27

c a e 9
d f b 8

Z27

≫1

≫2

≫3

W27 X28

X28

SC
AC

Y28 STK28

4 2 6 1
5 7 3 0

Z28

≫1

≫2

≫3

W28 X29X29

SC
AC

Y29 STK29

a 8 c f
e b d 9

Z29

≫1

≫2

≫3

W29 X30

initial round any nonzero integral key branch 1 key branch 2 active tweak

Fig. 16: ZC-based integral attack on 30 rounds of SKINNYe-v2.

66

Table 6: Complexity of partial-sum key-recovery for 30 rounds of SKINNYe-v2.

(a) Recovery of X19[2] (in Figure 16) with total complexity 2232−5.7 = 2226.3.

Step Guessed Keys×Data=Memo Time Stored Texts

0 – 20 × 264 = 264 264 Z29[0–15]; STK25[6],STK27[5],STK29[3]

1–4 STK29[0–2, 4–7] 228 × 264 = 292 292−6.9 STK25[6],STK27[5]; W28[0–15]

5–8 STK28[0–7] 260 × 264 = 2124 2124−6.9 STK25[6],STK27[5]; W27[0–15]

9–12 STK27[0–4, 6–7] 288 × 264 = 2152 2152−6.9 STK25[6]; W26[0–15]

13–16 STK26[0–7] 2120 × 264 = 2184 2184−6.9 STK25[6]; W25[0–15]

17 STK25[0, 4] 2128 × 264 = 2192 2192−6.9 Z25[1–3, 5–7, 9–11, 13–15]; STK25[6]; W24[0, 4, 8, 12]

18 STK25[2] 2132 × 260 = 2192 2196−6.9 Z25[1, 3, 5, 7, 9, 11, 13, 15]; W24[0, 4, 8, 12, 2, 6, 14]

19 STK25[3, 7] 2140 × 256 = 2196 2200−6.9 Z25[1, 5, 9, 13]; W24[0, 4, 8, 12, 2, 6, 14, 3, 7, 15]

20 STK25[1, 5] 2148 × 256 = 2204 2204−6.9 W24[0, 4, 8, 12, 2, 6, 14, 3, 7, 15, 1, 5, 9, 13]

21 STK24[0, 4] 2156 × 256 = 2212 2212−7.3 Z24[1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15]; W23[0, 8, 12]

22 STK24[1, 5] 2164 × 252 = 2216 2220−7.3 Z24[2, 3, 6, 7, 10, 11, 14, 15]; W23[0, 8, 12, 1, 13]

23 STK24[2, 6] 2172 × 244 = 2216 2224−6.9 Z24[3, 7, 11, 15]; W23[0, 8, 12, 1, 13, 6, 14]

24 STK24[3, 7] 2180 × 244 = 2224 2224−6.9 W23[0, 8, 12, 1, 13, 6, 14, 3, 7, 11, 15]

25 STK23[0] 2184 × 240 = 2224 2228−7.9 Z23[1, 3, 5, 6, 9, 10, 13, 14, 15]; W22[12]

26 STK23[1, 5] 2192 × 232 = 2224 2232−6.9 Z23[3, 6, 10, 14, 15]; W22[12, 5, 13]

27 STK23[6] 2196 × 232 = 2228 2228−7.3 Z23[3, 15]; W22[12, 5, 13, 2, 6, 10]

28 STK23[3] 2200 × 228 = 2228 2232−7.9 W22[12, 5, 13, 2, 6, 10, 15]

29 STK22[4] 2204 × 220 = 2224 2232−7.3 Z22[2, 5, 13, 14]; W21[4]

30 STK22[5] 2208 × 216 = 2224 2228−7.9 Z22[2, 14]; W21[4, 9]

31 STK22[2] 2212 × 212 = 2224 2228−7.9 W21[4, 9, 14]

32 – 2212 × 24 = 2216 2224−7.3 W20[7]

33 – 2212 × 24 = 2216 2216−8.9 W19[2]

34 – 2212 × 24 = 2216 2216−8.9 X19[2]

(b) Recovery of X19[14] (in Figure 16) with total complexity 2228−5.6 = 2222.4.

Step Guessed Keys×Data=Memo Time Stored Texts

0 – 20 × 264 = 264 264 Z29[0–15]; STK23[4],STK25[6],STK27[5],STK29[3]

1–4 STK29[0–2, 4–7] 228 × 264 = 292 292−6.9 STK23[4],STK25[6],STK27[5]; W28[0–15]

5–8 STK28[0–7] 260 × 264 = 2124 2124−6.9 STK23[4],STK25[6],STK27[5]; W27[0–15]

9–12 STK27[0–4, 6–7] 288 × 264 = 2152 2152−6.9 STK23[4],STK25[6]; W26[0–15]

13–16 STK26[0–7] 2120 × 264 = 2184 2184−6.9 STK23[4],STK25[6]; W25[0–15]

17–20 STK25[0–5, 7] 2148 × 264 = 2212 2212−6.9 STK23[4]; W24[0–8, 10–15]

21 STK24[0, 4] 2156 × 256 = 2212 2220−6.9 Z24[1–3, 5–7, 9, 10, 13–15]; STK23[4]; W23[4, 12]

22 STK24[2, 6] 2164 × 252 = 2216 2220−6.9 Z24[1, 3, 5, 7, 9, 13, 15]; STK23[4]; W23[4, 12, 2, 6, 14]

23 STK24[3, 7] 2172 × 248 = 2220 2224−7.3 Z24[1, 5, 9, 13]; STK23[4]; W23[4, 12, 2, 6, 14, 11, 15]

24 STK24[1, 5] 2180 × 248 = 2228 2228−6.9 STK23[4]; W23[4, 12, 2, 6, 14, 11, 15, 1, 5, 9, 13]

25 – 2180 × 240 = 2220 2228−7.9 Z23[1, 2, 5, 7, 9, 11, 13, 14, 15]; W22[8]

26 STK23[1, 5] 2188 × 232 = 2220 2228−6.9 Z23[2, 7, 11, 14, 15]; W22[8, 5, 13]

27 STK23[2] 2192 × 228 = 2220 2224−7.9 Z23[7, 11, 15]; W22[8, 5, 13, 14]

28 STK23[7] 2196 × 224 = 2220 2224−7.3 W22[8, 5, 13, 14, 3, 7]

29 STK22[6] 2200 × 216 = 2216 2224−7.3 Z22[3, 4, 15]; W21[6]

30 STK22[4] 2204 × 216 = 2220 2220−8.9 Z22[3, 15]; W21[6, 0]

31 STK22[3] 2208 × 212 = 2220 2224−7.9 W21[6, 0, 15]

32 – 2208 × 28 = 2216 2220−7.9 Z21[5]; W20[12]

33 STK21[5] 2212 × 28 = 2220 2220−8.9 W20[12, 1]

34 STK20[1] 2216 × 24 = 2220 2224−7.9 W19[13]

35 – 2216 × 24 = 2220 2220−8.9 X19[14]

67

I Application to SKINNYee

I.1 Specification

SKINNYee, proposed by Naito et al. [32], is a 64-bit tweakable block cipher with
128-bit key K = K0 ∥ K1 ∥ K2 ∥ K3 and 259-bit tweak. The design is closely
related to SKINNY in a TK4 setting, where the tweak is split into a 256-bit tweak
that serves as a SKINNY tweakey to generate 32-bit round subtweaks ST r added
to the top half of the state in round r, and a 3-bit domain separation tweak that
influences the round constants. The domain separation tweak plays no role in
our analysis and we assume it to be constant. The key generates 32-bit round
keys Kr%4 which are added to the bottom half of the state (see Figure 17).

0 1 2 3

4 5 6 7

8 9 a b

c d e f

Xr

SC
AC

Yr STr∥Kr%4 Zr

≫1

≫2

≫3

Wr Xr+1

Fig. 17: Round function of SKINNYee

I.2 27-round Related-Tweak ID Attack on SKINNYee

This section explains our 27-round ID attack in the related-tweak setting on
SKINNYee. Figure 18 illustrates the attack discovered by our tool. In this attack,
we can obtain the equivalent key EK0 by applying EK0 = MC(SR(K0%4)) in the
first round.

Pair Generation. We should build 2x structures at W ′
0 and evaluate all possible

values in 12 cells W ′
0[0, 1, 3–7, 9–11, 14, 15] for each structure, while the other

cells assume a fixed value. By using 2x+48 plaintexts, we can have 2x+96−1 pairs
of plaintexts (P, P). The expected number of the remaining pairs of ciphertexts
(C,C) is approximately N = 2x+2|∆b|−(n−|∆f|) = 2x+84 pairs. This step needs
2x+48+1 encryption calls.

Guess-and-Filter. For each of the N pairs we do the following steps:

a) Satisfying round 27. We guess K26%4[3, 7] and compute the last column
of ∆X26. Checking if ∆X26[3] = ∆X26[7] = ∆X26[15] will lead to two 4-
bit filters (due to MC operation on W25).We guess K26%4[1, 5] and com-
pute the second column of ∆X26. Checking if ∆X26[1] = ∆X26[13], and
also ∆X26[5] ⊕ ∆X26[9] = ∆X26[1] will lead to two 4-bit filters.We guess
K26%4[0, 4] and compute the first column of ∆X26. Checking if ∆X26[4] =
∆X26[12] will lead to a 4-bit filter.We guess K26%4[2, 6] and compute the

68

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

∑ ∑ ∑ ∑

x x x x
2 3 0 1
2 3 0 1

X1

SC
AC

Y1 ST1‖K1%4

9 f 8 d
a e c b
0 1 2 3
4 5 6 7

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 ST2‖K2%4

1 7 0 5
2 6 4 3
0 1 2 3
4 5 6 7

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 ST3‖K3%4

f b 9 e
8 c a d
0 1 2 3
4 5 6 7

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 ST4‖K4%4

7 3 1 6
0 4 2 5
0 1 2 3
4 5 6 7

Z4

≫1

≫2

≫3

W4 X5X5

SC
AC

Y5 ST5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 ST6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 ST7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 ST8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 ST9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 ST10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 ST11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 ST12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 ST13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 ST14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 ST15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 ST16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

�
X17

SC
AC

Y17 ST17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 ST18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

SC
AC

Y19 ST19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 ST20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21

SC
AC

Y21 ST21

b d f c
9 a 8 e

Z21

≫1

≫2

≫3

W21 X22

X22

SC
AC

Y22 ST22

3 5 7 4
1 2 0 6

Z22

≫1

≫2

≫3

W22 X23

SC
AC

Y23 ST23‖K23%4

d e b a
f 8 9 c
0 1 2 3
4 5 6 7

Z23

≫1

≫2

≫3

W23 X24

X24

SC
AC

Y24 ST24‖K24%4

5 6 3 2
7 0 1 4
0 1 2 3
4 5 6 7

Z24

≫1

≫2

≫3

W24 X25

SC
AC

Y25 ST25‖K25%4

e c d 8
b 9 f a
0 1 2 3
4 5 6 7

Z25

≫1

≫2

≫3

W25 X26

X26

SC
AC

Y26 ST26‖K26%4

6 4 5 0
3 1 7 2
0 1 2 3
4 5 6 7

Z26

≫1

≫2

≫3

W26 X27

fixed nonzero any involved in key-recovery diff. value is needed value is needed

Fig. 18: ID attack on 27 rounds of SKINNYee in the related-tweak setting. |kb ∪
kf| = 28 · c, cb = 12 · c, cf = 12 · c, ∆b = 12 · c, ∆f = 13 · c.

69

third column of ∆X26. Now, we can determine ∆Z25 and Z25 as shown in
Figure 18. Furthermore, checking if ∆Z25[6] = ∆ST25%4[6] will lead to a
4-bit filter. The time complexity of this step is about N212, and the number
of tests left for the next step is N28.

b) Satisfying round 26. We guess K25%4[5] and compute the second column of
∆X25. Checking if ∆X25[1] = ∆X25[5] = ∆X25[13] will lead to two 4-bit
filters (due to MC operation on W24). We guess K25%4[3, 7] and compute the
last column of ∆X25. Checking if ∆X25[3] = ∆X25[11] = ∆X25[15] will lead
to two 4-bit filters. We guess K25%4[4]. Now, we can determine ∆Z24 and
Z24 as shown in Figure 18. The time complexity of this step is N212, and
the number of tests left for the next step is N28.

c) Satisfying round 25. We guess K24%4[5] and compute ∆X24[1]. Checking if
∆X24[1] = ∆X24[13] will lead to a 4-bit filter (due to MC operation on the
active cells in the second column of W23). We guess K24%4[1] and determine
∆Z23 and Z23 as shown in Figure 18. Furthermore, checking if ∆Z23[4] =
∆ST23%4[4] will lead to a 4-bit filter. The time complexity of this step is
N212, and the number of tests left for the next step is N28.

d) Satisfying round 1. In this attack, we use the equivalent key EK0 by ap-
plying EK0 = MC(SR(K0%4)) in the first round. Therefore, EK0[0, 1, 2, 3] =
[K0%4[2]⊕K0%4[5],K0%4[3]⊕K0%4[6],K0%4[0]⊕K0%4[7],K0%4[1]⊕K0%4[4]],
EK0[8, 9, 10, 11] = K0%4[2, 3, 0, 1], and EK0[12, 13, 14, 15] = K0%4[2, 3, 0, 1].
We know the value of K24%4[1](= K0%4[1]) from the previous steps. There-
fore, we will have EK0[11, 15]. The knowledge of EK0[11] enables to deter-
mine ∆Y1[11] and thus ∆W1[9]. Also, without guessing any key, we can
determine ∆Y1[4] and so ∆W1[5]. Checking if ∆W1[5] = ∆W1[9] will lead
to a 4-bit filter (due to MC−1 operation on the active cells in the second
column of X2). Without guessing any key, we can determine ∆W1[7]. Next,
we guess EK0[3, 9] and determine ∆W1[3, 11]. Here,by guessing EK0[9], we
will have EK0[13] (EK0[9] = EK0[13]). Due to MC−1 operation on the active
cells in the last column of X2, we have ∆W1[3] = ∆W1[7] = ∆W1[11]. This
will lead to two 4-bit filters. We guess EK0[0, 10] and determine ∆W1[0, 8].
Checking ∆W1[0] = W1[8] lead to a 4-bit filter. The knowledge of EK0[0]
and K24%4[5](= K0%4[5]) allows us to determine K0%4[2] (since EK0[0] =
K0%4[5] ⊕ K0%4[2]) and so EK0[8, 12]. We guess EK0[1]. The knowledge
of EK0[14] (due to EK0[14] = EK0[10]) and EK0[1] lets us to determine
∆W1[1, 13]. Also, without guessing any key, we can determine ∆W1[5]. Now,
due to MC−1 operation on the active cells in the second column of X2, we
have ∆W1[5] = ∆W1[1]⊕∆W1[13]. This will lead to a 4-bit filter. Next, we
guess EK0[2] and determine Y1 and ∆Y1 as shown in Figure 18. The time
complexity of this step is N212, and the number of tests left for the next
step is N212.

e) Satisfying rounds 2 and 3. We guess K1%4[0–2] and determine Y2, and ∆Y2

as shown in Figure 18. We know K2%4[0–5, 7] from the previous steps. There-
fore, we can determine ∆W2, leading to three 4-bit filters (due to MC−1 on
X3). Therefore, we can determine ∆Y3 and the equality ∆Y3[0] = ∆ST3%4[0]
will lead to a 4-bit filter. Due to MC−1 operation on X4, we have ∆Y3[6] =

70

∆Y3[9] = ∆Y3[12] and so this will lead to two 4-bit filter. The time com-
plexity of this step is N224, and the number of tests left for the next step is
N .

f) Satisfying round 4. We guess K3%4[0–2, 7] to obtain ∆Y5[2] and here we will
have a 4-bit filter. The time complexity of this step is N216, and the number
of tests left to verify the impossible distinguisher is N212.

Complexity. Analyzing N pairs has a time complexity of about N224. 2
27 27-

round encryptions. The attack needs a data complexity of D = N2n−|∆b|−|∆f| =
260g ln 2 (N = 2cb+cfg ln 2). The total time complexity is T = D + N224 2

27 +
2128−g. Hence, to optimize the time complexity of the attack, we select g = 5.
Thus, the data, time, and memory complexities of the attack on SKINNYee are
261.79, 2123.04, and 2108, respectively.

I.3 26-Round ZC-Integral Attack on SKINNYee

We apply a similar approach as in Section H to derive a ZC distinguisher for 18
rounds (labelled as rounds 1 to 18 in Figure 19) with an initial free round and a
final key recovery phase over 7 rounds (19 to 25). The target tweakey cell is f,
only active in z = 4 cells. Thus, we can convert it to an integral distinguisher [1]
with data complexity 24·(16−4+4) = 264, where the values in the active input cells
and the 4 tweak cells with index f iterate over all values. The rest of the tweak
is constant, as is the secret 128-bit key.

Key recovery and complexity Key recovery works as in Section H, except that the
key is now added to the lower half of the state, while the upper half is updated
with the constant tweak, which only needs to be stored once and thus does not
impact the memory complexity. The procedures for both sums of X19[2] and
X19[14] are summarized in Table 7. One repetition of the attack has an overall
time complexity of about 2·2108.9 = 2108.9 encryptions and reduces the key space
to 2128−4 = 2124 candidates; with 4 repetitions, only 2112 candidates remain to
brute-force. The intersection of these sets can be done relatively efficiently, so
the overall complexity is about 4 ·2109.9+2112 = 2113 encryption equivalents and
4 · 264 = 266 data.

71

X0

SC
AC

Y0

≫1

≫2

≫3

W0 W ′
0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 ST1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 ST2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 ST3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 ST4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 ST5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 ST6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 ST7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 ST8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 ST9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 ST10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 ST11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 ST12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 ST13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 ST14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 ST15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 ST16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 ST17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 ST18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

SC
AC

Y19 ST19‖K19%4

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 ST20‖K20%4

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21X21

SC
AC

Y21 ST21‖K21%4

b d f c
9 a 8 e

Z21

≫1

≫2

≫3

W21 X22

X22

SC
AC

Y22 ST22‖K22%4

3 5 7 4
1 2 0 6

Z22

≫1

≫2

≫3

W22 X23X23

SC
AC

Y23 ST23‖K23%4

d e b a
f 8 9 c

Z23

≫1

≫2

≫3

W23 X24

X24

SC
AC

Y24 ST24‖K24%4

5 6 3 2
7 0 1 4

Z24

≫1

≫2

≫3

W24 X25X25

SC
AC

Y25 ST25‖K25%4

e c d 8
b 9 f a

Z25

≫1

≫2

≫3

W25 X26

initial round any nonzero integral key branch 1 key branch 2 active tweak

Fig. 19: ZC-based integral attack on 26 rounds of SKINNYee.

72

Table 7: Complexity of partial-sum key-recovery for 26 rounds of SKINNYee.

(a) Recovery of X19[2] (in Figure 19) with total complexity 2116−7.1 = 2108.9.

Step Guessed Keys×Data=Memo Time Stored Texts

0 – 20 × 264 = 264 264 Z25[0–15]; ST25[6]

1 K25[0, 4] 28 × 264 = 272 272−6.7 Z25[1–3, 5–7, 9–11, 13–15]; ST25[6]; W24[0, 4, 8, 12]

2 K25[2, 6] 216 × 260 = 276 280−6.7 Z25[1, 3, 5, 7, 9, 11, 13, 15]; W24[0, 4, 8, 12, 2, 6, 14]

3 K25[3, 7] 224 × 256 = 280 284−6.7 Z25[1, 5, 9, 13]; W24[0, 4, 8, 12, 2, 6, 14, 3, 7, 15]

4 K25[1, 5] 232 × 256 = 288 288−6.7 W24[0, 4, 8, 12, 2, 6, 14, 3, 7, 15, 1, 5, 9, 13]

5 K24[4] 236 × 256 = 292 292−7.1 Z24[1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15]; W23[0, 8, 12]

6 K24[5] 240 × 252 = 292 296−7.1 Z24[2, 3, 6, 7, 10, 11, 14, 15]; W23[0, 8, 12, 1, 13]

7 K24[2, 6] 248 × 244 = 292 2100−6.7 Z24[3, 7, 11, 15]; W23[0, 8, 12, 1, 13, 6, 14]

8 K24[3, 7] 256 × 244 = 2100 2100−6.7 W23[0, 8, 12, 1, 13, 6, 14, 3, 7, 11, 15]

9 K23[4] 260 × 240 = 2100 2104−7.7 Z23[1, 3, 5, 6, 9, 10, 13, 14, 15]; W22[12]

10 K23[1, 5] 268 × 232 = 2100 2108−6.7 Z23[3, 6, 10, 14, 15]; W22[12, 5, 13]

11 K23[7] 272 × 228 = 2100 2104−7.7 Z23[6, 10, 14]; W22[12, 5, 13, 15]

12 K23[2, 6] 280 × 228 = 2108 2108−7.1 W22[12, 5, 13, 15, 2, 6, 10]

13 K22[0, 4] 288 × 220 = 2108 2116−7.1 Z22[2, 5, 13, 14]; W21[4]

14 K22[5] 292 × 216 = 2108 2112−7.7 Z22[2, 14]; W21[4, 9]

15 K22[6] 296 × 212 = 2108 2112−7.7 W21[4, 9, 14]

16 – 296 × 24 = 2100 2108−7.1 W20[7]

17 – 296 × 24 = 2100 2100−8.7 W19[2]

18 – 296 × 24 = 2100 2100−8.7 X19[2]

(b) Recovery of X19[14] (in Figure 19) with total complexity 2116−7.1 = 2108.9.

Step Guessed Keys×Data=Memo Time Stored Texts

0 – 20 × 264 = 264 264 Z25[0–15]; ST23[4],ST25[6]

1–4 K25[0–7] 232 × 264 = 296 296−6.7 ST23[4]; W24[0–8, 10–15]

5 K24[0, 4] 240 × 256 = 296 2104−6.7 Z24[1–3, 5–7, 9, 10, 13–15]; ST23[4]; W23[4, 12]

6 K24[2, 6] 248 × 252 = 2100 2104−6.7 Z24[1, 3, 5, 7, 9, 13, 15]; ST23[4]; W23[4, 12, 2, 6, 14]

7 K24[7] 252 × 248 = 2100 2104−7.1 Z24[1, 5, 9, 13]; ST23[4]; W23[4, 12, 2, 6, 14, 11, 15]

8 K24[1, 5] 260 × 248 = 2108 2108−6.7 ST23[4]; W23[4, 12, 2, 6, 14, 11, 15, 1, 5, 9, 13]

9 K23[4] 264 × 240 = 2104 2112−7.7 Z23[1, 2, 5, 7, 9, 11, 13, 14, 15]; W22[8]

10 K23[1, 5] 272 × 232 = 2104 2112−6.7 Z23[2, 7, 11, 14, 15]; W22[8, 5, 13]

11 K23[6] 276 × 228 = 2104 2108−7.7 Z23[7, 11, 15]; W22[8, 5, 13, 14]

12 K23[3, 7] 284 × 224 = 2108 2112−7.1 W22[8, 5, 13, 14, 3, 7]

13 – 284 × 224 = 2108 2108−8.7 Z22[3, 6, 10, 14, 15]; W21[0]

14 K22[2, 6] 292 × 216 = 2108 2116−7.1 Z22[3, 15]; W21[0, 6]

15 K22[7] 296 × 212 = 2108 2112−7.7 W21[0, 6, 15]

16 – 296 × 28 = 2104 2108−7.7 Z21[5]; W20[12]

17 – 296 × 28 = 2104 2104−8.7 W20[12, 1]

18 – 296 × 24 = 2100 2104−7.7 W19[13]

19 – 296 × 24 = 2100 2100−8.7 X19[14]

73

J Integral Distinguishers for SKINNY, SKINNYe-v2, and
SKINNYee

Here, we propose new integral distinguishers for SKINNY, SKINNYe-v2 and SKIN-
NYee. We use our new automatic tool to discover these distinguishers. Our model
maximizes the number of active cells at the input of the ZC distinguisher to
minimize the data complexity of the corresponding integral distinguisher. The
Figures 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, and 31 illustrate our discovered
ZC-Integral distinguishers. We convert the ZC to an integral distinguisher by
inverting the activeness pattern at the ZC distinguisher’s input. More precisely,
plaintext words with active linear masks take a fixed value, and plaintext words
with zero linear masks take all possible values. Moreover, the tweakey cells in-
volved in the attack take all possible values, and the remaining tweakey cells
take a fixed value. Consequently, the linear combination of the active output
words forms a balanced Boolean function over the input set.

X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

fixed nonzero any

Fig. 20: ZC-Integral distinguisher for 10 rounds of SKINNY-n-n. STK[5] is active at
most one time. X10[5]⊕X10[13] is balanced. Data complexity: 25·c, c ∈ {4, 8}.

74

X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

fixed nonzero any

Fig. 21: ZC-Integral distinguisher for 11 rounds of SKINNY-n-n. STK[9] is active at
most one time. X11[6]⊕X11[14] is balanced. Data complexity: 28·c, c ∈ {4, 8}.

X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

fixed nonzero any

Fig. 22: ZC-Integral distinguisher for 12 rounds of SKINNY-n-n. STK[5] is active at
most one time. X12[6]⊕X12[10]⊕X12[14] is balanced. Data complexity: 213·c, c ∈ {4, 8}.

75

X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

fixed nonzero any

Fig. 23: ZC-Integral distinguisher for 12 rounds of SKINNY-n-2n. STK[0] is active at
most two times. X12[5]⊕X12[13] is balanced. Data complexity: 26·c, c ∈ {4, 8}.

X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

fixed nonzero any

Fig. 24: ZC-Integral distinguisher for 13 rounds of SKINNY-n-2n. STK[9] is active at
most two times. X13[5]⊕X13[13] is balanced. Data complexity: 29·c, c ∈ {4, 8}.

76

X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

fixed nonzero any

Fig. 25: ZC-Integral distinguisher for 14 rounds of SKINNY-n-2n. STK[1] is active at
most two times. X14[7]⊕X14[15] is balanced. Data complexity: 214·c, c ∈ {4, 8}.

X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

fixed nonzero any

Fig. 26: ZC-Integral distinguisher for 14 rounds of SKINNY-n-3n. STK[0] is active at
most three times. X14[6]⊕X14[10]⊕X14[14] is balanced. Data complexity: 27·c.

77

X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

fixed nonzero any

Fig. 27: ZC-Integral distinguisher for 15 rounds of SKINNY-n-3n. STK[9] is active at
most three times. X15[6]⊕X15[10]⊕X15[14] is balanced. Data complexity: 210·c.

X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

fixed nonzero any

Fig. 28: ZC-Integral distinguisher for 16 rounds of SKINNY-n-3n. STK[1] is active at
most three times. X16[7]⊕X16[15] is balanced. Data complexity: 215·c, c ∈ {4, 8}.

78

X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

fixed nonzero any

Fig. 29: ZC-Integral distinguisher for 16 rounds of SKINNYee/SKINNYe-v2. STK[1] is
active at most four times. X16[7]⊕X16[15] is balanced. Data complexity: 232.

X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

fixed nonzero any

Fig. 30: ZC-Integral distinguisher for 17 rounds of SKINNYee/SKINNYe-v2. STK[9] is
active at most four times. X17[7]⊕X17[15] is balanced. Data complexity: 244.

79

X0

SC
AC

Y0 STK0

0 1 2 3
4 5 6 7

Z0

≫1

≫2

≫3

W0 X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

fixed nonzero any

Fig. 31: ZC-Integral distinguisher for 18 rounds of SKINNYee/SKINNYe-v2. STK[4] is
active at most four times. X18[4]⊕X18[12] is balanced. Data complexity: 264.

80

K Application to CRAFT

K.1 Specification of CRAFT

CRAFT is a lightweight tweakable block cipher proposed in ToSC 2019 by Beirle
et al. [4]. It receives a 64-bit plaintext, 128-bit key, plus a 64-bit tweak and ap-
plies 32 rounds to produce a 64-bit ciphertext. The internal state of CRAFT is
arranged row-wise in a 4 × 4 array of nibbles. Figure 32 illustrates the round
function of CRAFT which applies five basic operations to the internal state: Mix-
Columns (MC), AddRoundConstant (ARC), AddTweakey (ATK), PermuteNibbles
(PN), and S-box (SB).

Xr
0 1 2 3
4 5 6 7
8 9 a b
c d e f

Yr RTr%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Zr
≫1

π

π

≪1

f c d e
a 9 8 b
6 5 4 7
1 2 3 0

Wr

SB
AC

Xr+1

Fig. 32: Round function of CRAFT

The tweakey schedule of CRAFT receives a 128-bit key K and a 64-bit tweak
T . It divides K into two halves K0||K1, and generates four round tweakeys
TK0 = K0 ⊕ T , TK1 = K1 ⊕ T , TK2 = K0 ⊕ Q(T), and TK3 = K1 ⊕ Q(T),
whereQ is a nibble-wise permutation. Then, the ith round of CRAFT uses TKi%4

as the round tweakey. We refer the reader to [4] for more details.

K.2 Multidimensional ZC Attack on CRAFT

This section explains our multidimensional ZC attack on CRAFT. Our tool finds
a ZC distinguisher for 13 rounds (labeled as rounds 3 (after MC) to 15 in Fig-
ure 33), combined with 3 initial rounds (0 to 2) and a final key recovery phase
over 4 rounds (16 to 19). What follows explains the key recovery phase in detail.

Collect N pairs of plaintext and the corresponding ciphertexts. Guess 11
cells RT0%4[0 − 2, 7, 9, 10, 14], and RT1%4[3 − 5, 13], do the partial encryption
and calculate Y3[5] for each pair. Allocate a 16-bit counter N0[Y3, Z19] for all 2

48

possible value of [Y3, Z19] and initialize it to zero. Next, compute the number
of pairs of plaintext-ciphertext with given values Y3, and Z19 and store it in
N0[Y3, Z19]. The time complexity of this step is equal to N + (N × 244) × 3

20
20-round encryptions.

Table 8 displays the details of each partial decryption step. In Table 8, the
second column lists the guessed subkey cells in each step. The third column
indicates the time complexity of the corresponding step. We calculate the values
of the intermediate states and display them in the ”Computed States” column.
The counter N [xi] records the number of pairs that could produce the given

81

X0 Y0 RT0%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z0
≫1

π

π

≪1

W0

SB
AC

X1 Y1 RT1%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z1
≫1

π

π

≪1

W1

SB
AC

X2

X2 Y2 RT2%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z2
≫1

π

π

≪1

W2

SB
AC

X3 Y3 RT3%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z3
≫1

π

π

≪1

W3

SB
AC

X4

X4 Y4 RT4%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z4
≫1

π

π

≪1

W4

SB
AC

X5 Y5 RT5%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z5
≫1

π

π

≪1

W5

SB
AC

X6

X6 Y6 RT6%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z6
≫1

π

π

≪1

W6

SB
AC

X7 Y7 RT7%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z7
≫1

π

π

≪1

W7

SB
AC

X8

X8 Y8 RT8%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z8
≫1

π

π

≪1

W8

SB
AC

X9 Y9 RT9%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z9
≫1

π

π

≪1

W9

SB
AC

X10

�
X10 Y10 RT10%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z10
≫1

π

π

≪1

W10

SB
AC

X11 Y11 RT11%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z11
≫1

π

π

≪1

W11

SB
AC

X12

X12 Y12 RT12%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z12
≫1

π

π

≪1

W12

SB
AC

X13 Y13 RT13%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z13
≫1

π

π

≪1

W13

SB
AC

X14

X14 Y14 RT14%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z14
≫1

π

π

≪1

W14

SB
AC

X15 Y15 RT15%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z15
≫1

π

π

≪1

W15

SB
AC

X16

X16 Y16 RT16%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z16
≫1

π

π

≪1

W16

SB
AC

X17 Y17 RT17%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z17
≫1

π

π

≪1

W17

SB
AC

X18

X18 Y18 RT18%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z18
≫1

π

π

≪1

W18

SB
AC

X19 Y19 RT19%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z19
≫1

π

π

≪1

W19

SB
AC

X20

nonzero unknown involved cells in key-recovery

Fig. 33: ZC attack on 20 rounds of CRAFT. #Involved key cells: 22.

Table 8: Decryption procedure of the ZC attack on 20-round CRAFT.

Step Guessed Time Computed States Counter Size

0
RT0%4[0–2, 7, 9, 10, 14], N × 244 x1=Y3[5]|Z19[0, 2, 3, 5, 8, 10–15] N0[x1] 248
RT1%4[3–5, 13]

1 RT19%4[0, 2, 8, 10–12, 14, 15] 244+32 × 248 x2=Y3[5]|Z18[1, 6, 7, 9, 13–15] N1[x2] 232

2 RT18%4[6, 13, 15] 276+12 × 232 x3=Y3[5]|Z17[0, 8, 11, 12] N2[x3] 220

3 - 288 × 220 x4=Y3[5]|Z16[7, 15] N3[x4] 212

4 - 288 × 212 x5=Y3[5]|X16[7] N4[x5] 28

82

intermediate state for each possible value of xi. In the last two columns, we
show the counter and its size.

To recover the secret key, allocate a counter V [z] for 8-bit z. For 28 values
of [Y3, X16], evaluate all 8 basis ZC masks on [Y3, X16] and get z. Update the
counter V [z] by V [z] = V [z] + N4[Y3, X16]. Calculate the statistical value T .
If T < τ , the guessed key values are possible right key candidates. The time
complexity of this step is equal to 288 × 16 × 28 times of reading the 16-bit
memory. Finally, do an exhaustive search for all the right candidates. The time
complexity of this step is β × 2128.

Complexity. In this attack, we set the type-I error probability α = 2−2.7 and the
type-II error probability β = 2−9, then Z1−α = 1.01, and Z1−β = 2.88. Thus,
based on the Equation 5; N = 262.89. The decision threshold is τ = µ0+σ0Z1−α.
If we consider one memory accesses as a one round, then the time complexity of
our attack on 16-round CRAFT is about 262.89 + (2106.89 × 3

20) + (2124 + 2120 +
· · · + 2100) × 1

20 + 2119 = 2120.43 20-round encryptions. The required memory
complexity is about 249 bytes for counters.

K.3 21-round Impossible Differential Attack on CRAFT

Our tool finds an impossible differential distinguisher for 13 rounds (labeled as
rounds 4 to 16 in Figure 34), combined with a key recovery phase over four initial
rounds (rounds 0 to 3) and four final rounds (17 to 20).

Pair Generation. We should build 2x structures at Y0 and evaluate all possible
values in eleven cells Y0[1–3, 7–10, 12–15] for each structure, while the other cells
assume a fixed value. By using 2x+44 plaintexts, we can have 2x+88−1 pairs of
plaintexts (P, P). The expected number of the remaining pairs of ciphertexts
(C,C) is approximately N = 2x+2|∆b|−1−(n−|∆f|) = 2x+67 pairs. This step needs
2x+44 encryption calls.

Guess-and-Filter. For each of the N pairs we do the following steps:

a) Satisfying round 20. we can determine ∆X20 as shown in Figure 34 with-
out guessing any key. Therefore, we will have a 16-bit filter. Then, we
guess RT20%4[2, 6, 9, 10, 12, 14, 15] and determine ∆Y19[0, 1, 5, 8, 13], and so
∆X19[8, 13] that will lead to a 12-bit filters. Now, we guess RT20%4[0, 1, 7, 8, 13]
and determine Z19 and ∆Z19 as shown in Figure 34. The time complexity
of this step is N220, and the number of tests left for the next step is N220.

b) Satisfying round 1. We know the values of RT20%4[0–2, 6–10, 12–15] from the
previous step. Therefore, we do not need to guess RT0%4[0–2, 6–10, 12–15].
Thus, we can determine∆X1[0–6, 11–13] as shown in Figure 34. Due toMC−1

operation on the active cells in the last three columns of Y1, the equalities
∆X1[1] = ∆X1[13], ∆X1[2] = ∆X1[6], and ∆X1[3] = ∆X1[11] will lead to
a 12-bit filter. We guess RT0%4[3] to determine ∆X1[14] and filter a 4-bit
(due to equality ∆X1[14] = ∆X1[2]). We guess RT0%4[4] and determine Y1

83

X0 Y0 RT0%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z0
≫1

π

π

≪1

W0

SB
AC

X1 Y1 RT1%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z1
≫1

π

π

≪1

W1

SB
AC

X2

X2 Y2 RT2%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z2
≫1

π

π

≪1

W2

SB
AC

X3 Y3 RT3%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z3
≫1

π

π

≪1

W3

SB
AC

X4

X4 Y4 RT4%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z4
≫1

π

π

≪1

W4

SB
AC

X5 Y5 RT5%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z5
≫1

π

π

≪1

W5

SB
AC

X6

X6 Y6 RT6%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z6
≫1

π

π

≪1

W6

SB
AC

X7 Y7 RT7%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z7
≫1

π

π

≪1

W7

SB
AC

X8

X8 Y8 RT8%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z8
≫1

π

π

≪1

W8

SB
AC

X9 Y9 RT9%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z9
≫1

π

π

≪1

W9

SB
AC

X10

�
X10 Y10 RT10%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z10
≫1

π

π

≪1

W10

SB
AC

X11 Y11 RT11%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z11
≫1

π

π

≪1

W11

SB
AC

X12

X12 Y12 RT12%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z12
≫1

π

π

≪1

W12

SB
AC

X13 Y13 RT13%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z13
≫1

π

π

≪1

W13

SB
AC

X14

X14 Y14 RT14%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z14
≫1

π

π

≪1

W14

SB
AC

X15 Y15 RT15%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z15
≫1

π

π

≪1

W15

SB
AC

X16

X16 Y16 RT16%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z16
≫1

π

π

≪1

W16

SB
AC

X17 Y17 RT17%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z17
≫1

π

π

≪1

W17

SB
AC

X18

X18 Y18 RT18%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z18
≫1

π

π

≪1

W18

SB
AC

X19 Y19 RT19%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z19
≫1

π

π

≪1

W19

SB
AC

X20

X20 Y20 RT20%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z20
≫1

π

π

≪1

W20

SB
AC

X21

fixed nonzero any involved in key-recovery diff. value is needed value is needed

Fig. 34: ID attack on 21 rounds of CRAFT, |kb∪kf| = 25 ·c, cb = 10 ·c, cf = 10 ·c,
∆b = 11 · c, ∆f = 11 · c

and ∆Y1 as shown in Figure 34. The time complexity of this step is N212,
and the number of tests left for the next step is N212.

c) Satisfying round 2. We guess RT1%4[0, 14] to determine ∆X2[3, 15]. Due
to MC−1 operation on the active cells in the last column of Y2, the equal-
ity ∆X2[3] = ∆X2[15] will lead to a 4-bit filter. We guess RT1%4[11] to
determine ∆X2[7]. Due to MC−1 operation on the active cells in the last
column of Y2, the equality ∆X2[7] = ∆X2[3] will lead to a 4-bit filter. We
guess RT1%4[4] to determine ∆X2[10]. Due to MC−1 operation on the ac-

84

tive cells in the third column of Y2, we have ∆X2[10] = ∆X2[2]. From
the knowledge of ∆X2[2] and also ∆W1[2], we can determine W1[2] and so
Z1[13] by applying Lemma 1. Thus, we can determine RT1%4[13] (due to
RT1%4[13] = Z1[13]⊕Y1[13]). The time complexity of this step is N220, and
the number of tests left for the next step is N220.

d) Satisfying round 3. In this step, we can compute the cells ∆X3[0, 4] (since
we know RT1%4[0, 4], and also RT2%4[10, 15] based on the previous steps).
On the other hand, We have ∆X3[0] = ∆X3[4] due to the MC−1 operation
on the active cells in the first column of Y3. Checking if ∆X3[0] = ∆X3[4]
will lead to a 4-bit filter. The time complexity of this step is N220, and the
number of tests left for the next step is N216.

e) Satisfying round 20. We guess RT19%4[8]. We also know the value of RT19%4[13]
from the previous steps. Hence, we can calculate ∆Y18[2, 6]. Due to MC op-
eration on the active cells in the third column of X18, the equality ∆Y18[2] =
∆Y18[6] will lead to a 4-bit filter. The time complexity of this step is N220,
and the number of tests left for the next step is N216.

f) Satisfying round 20. We guess RT19%4[15]. Due to MC operation on the ac-
tive cells in the third column of X18, we have ∆Y18[2] = ∆Y18[14]. Thus, we
have∆W18[3] = ∆W18[13] and so we can determine∆W18[3] from the knowl-
edge of ∆W18[13]. On the other hand, we can determine ∆X19[3] from the
knowledge of ∆Y19[3] and ∆Y19[11]. Therefore, ∆W18[3] and also ∆X19[3],
can help us to determine X19[3] by applying Lemma 1. Now, we can calcu-
late RT19%4[3] as RT19%4[3] = Z19[3]⊕ (Y19[11]⊕Y19[15]⊕X19[3]). The time
complexity of this step is N220, and the number of tests left for the next
step is N220.

g) Satisfying rounds 20, 19, and 18. We know the values of RT19%4[0, 3, 8, 11, 13, 15]
and also RT18%4[7, 14, 15] from the previous steps. We guess RT19%4[12] to
determine ∆Y17[3, 11]. Due to MC operation on the active cells in the last
column of X17, the equality ∆Y17[3] = ∆Y17[11] will lead to a 4-bit filter.
The time complexity of this step is N224, and the number of tests left for
the next step is N220.

h) Satisfying rounds 2 and 3. In this step, we can compute the cells ∆X3[12]
(since we know RT2%4[1], and also RT1%4[12] based on the previous steps).
On the other hand, we have ∆X3[0] = ∆X3[12] due to the MC−1 operation
on the active cells in the first column of Y3. Checking if ∆X3[0] = ∆X3[12]
will lead to a 4-bit filter (we also know ∆X3[0] from the previous steps).
We guess RT1%4[2, 5]. Now, we know the values of RT1%4[0, 2–5, 11–14],
RT2%4[1, 2, 9, 10, 15], and also RT3%4[5, 12] from the previous steps. There-
fore, we can obtain ∆X4[1, 9]. Due to MC−1 operation on the active cells in
the second column of Y4, the equality ∆X4[1] = ∆X4[9] will lead to a 4-bit
filter. The time complexity of this step is N224, and the number of tests to
verify the impossible distinguisher is N220.

Complexity. Analyzing N pairs has a time complexity of about N224. 5
21 21-

round encryptions. The attack needs a data complexity of D = 257g ln 2. The
total time complexity is T = D+N224 5

21 +2128−g. Hence, to optimize the time

85

complexity of the attack, we select g = 23. Thus, the data, time, and memory
complexities of the attack on CRAFT are 260.99, 2106.53, and 2100, respectively.

K.4 Integral Distinguishers for CRAFT

The Figures 35, 36, 37, and 38 represent our ZC-Integral distinguishers for 12
to 15 rounds of CRAFT. We use the same rule as in Section J to convert a ZC
to an integral distinguisher. The behavior of the ZC distinguishers of CRAFT
depends on the starting round. We denote the starting round by Offset, where
Offset ∈ {0, 1, 2, 3}. For example, when Offset = n, the round tweakey TKn

is used in the first round of distinguisher.

X0 Y0 RT0%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z0
≫1

π

π

≪1

W0

SB
AC

X1 Y1 RT1%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z1
≫1

π

π

≪1

W1

SB
AC

X2

X2 Y2 RT2%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z2
≫1

π

π

≪1

W2

SB
AC

X3 Y3 RT3%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z3
≫1

π

π

≪1

W3

SB
AC

X4

X4 Y4 RT4%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z4
≫1

π

π

≪1

W4

SB
AC

X5 Y5 RT5%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z5
≫1

π

π

≪1

W5

SB
AC

X6

X6 Y6 RT6%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z6
≫1

π

π

≪1

W6

SB
AC

X7 Y7 RT7%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z7
≫1

π

π

≪1

W7

SB
AC

X8

X8 Y8 RT8%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z8
≫1

π

π

≪1

W8

SB
AC

X9 Y9 RT9%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z9
≫1

π

π

≪1

W9

SB
AC

X10

X10 Y10 RT10%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z10
≫1

π

π

≪1

W10

SB
AC

X11 Y11 RT11%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z11
≫1

π

π

≪1

W11

SB
AC

X12

fixed nonzero any

Fig. 35: ZC-Integral distinguisher for 12 rounds of CRAFT. Offset = 2. RTK[b] is
active at most one time. W11[1]⊕W11[10] is balanced. Data complexity: 228.

86

X0 Y0 RT0%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z0
≫1

π

π

≪1

W0

SB
AC

X1 Y1 RT1%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z1
≫1

π

π

≪1

W1

SB
AC

X2

X2 Y2 RT2%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z2
≫1

π

π

≪1

W2

SB
AC

X3 Y3 RT3%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z3
≫1

π

π

≪1

W3

SB
AC

X4

X4 Y4 RT4%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z4
≫1

π

π

≪1

W4

SB
AC

X5 Y5 RT5%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z5
≫1

π

π

≪1

W5

SB
AC

X6

X6 Y6 RT6%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z6
≫1

π

π

≪1

W6

SB
AC

X7 Y7 RT7%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z7
≫1

π

π

≪1

W7

SB
AC

X8

X8 Y8 RT8%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z8
≫1

π

π

≪1

W8

SB
AC

X9 Y9 RT9%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z9
≫1

π

π

≪1

W9

SB
AC

X10

X10 Y10 RT10%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z10
≫1

π

π

≪1

W10

SB
AC

X11 Y11 RT11%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z11
≫1

π

π

≪1

W11

SB
AC

X12

X12 Y12 RT12%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z12
≫1

π

π

≪1

W12

SB
AC

X13

fixed nonzero any

Fig. 36: ZC-Integral distinguisher for 13 rounds of CRAFT. Offset = 1. RTK[b] is
active at most one time. W12[1]⊕W12[10] is balanced. Data complexity: 244.

X0 Y0 RT0%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z0
≫1

π

π

≪1

W0

SB
AC

X1 Y1 RT1%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z1
≫1

π

π

≪1

W1

SB
AC

X2

X2 Y2 RT2%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z2
≫1

π

π

≪1

W2

SB
AC

X3 Y3 RT3%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z3
≫1

π

π

≪1

W3

SB
AC

X4

X4 Y4 RT4%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z4
≫1

π

π

≪1

W4

SB
AC

X5 Y5 RT5%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z5
≫1

π

π

≪1

W5

SB
AC

X6

X6 Y6 RT6%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z6
≫1

π

π

≪1

W6

SB
AC

X7 Y7 RT7%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z7
≫1

π

π

≪1

W7

SB
AC

X8

X8 Y8 RT8%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z8
≫1

π

π

≪1

W8

SB
AC

X9 Y9 RT9%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z9
≫1

π

π

≪1

W9

SB
AC

X10

X10 Y10 RT10%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z10
≫1

π

π

≪1

W10

SB
AC

X11 Y11 RT11%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z11
≫1

π

π

≪1

W11

SB
AC

X12

X12 Y12 RT12%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z12
≫1

π

π

≪1

W12

SB
AC

X13 Y13 RT13%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z13
≫1

π

π

≪1

W13

SB
AC

X14

fixed nonzero any

Fig. 37: ZC-Integral distinguisher for 14 rounds of CRAFT. Offset = 0. RTK[b] is
active at most one time. W13[1]⊕W13[10] is balanced. Data complexity: 256.

87

X0 Y0 RT0%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z0
≫1

π

π

≪1

W0

SB
AC

X1 Y1 RT1%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z1
≫1

π

π

≪1

W1

SB
AC

X2

X2 Y2 RT2%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z2
≫1

π

π

≪1

W2

SB
AC

X3 Y3 RT3%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z3
≫1

π

π

≪1

W3

SB
AC

X4

X4 Y4 RT4%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z4
≫1

π

π

≪1

W4

SB
AC

X5 Y5 RT5%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z5
≫1

π

π

≪1

W5

SB
AC

X6

X6 Y6 RT6%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z6
≫1

π

π

≪1

W6

SB
AC

X7 Y7 RT7%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z7
≫1

π

π

≪1

W7

SB
AC

X8

X8 Y8 RT8%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z8
≫1

π

π

≪1

W8

SB
AC

X9 Y9 RT9%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z9
≫1

π

π

≪1

W9

SB
AC

X10

X10 Y10 RT10%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z10
≫1

π

π

≪1

W10

SB
AC

X11 Y11 RT11%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z11
≫1

π

π

≪1

W11

SB
AC

X12

X12 Y12 RT12%4

c a f 5
e 8 9 2
b 3 7 4
6 0 1 d

Z12
≫1

π

π

≪1

W12

SB
AC

X13 Y13 RT13%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z13
≫1

π

π

≪1

W13

SB
AC

X14

X14 Y14 RT14%4

0 1 2 3
4 5 6 7
8 9 a b
c d e f

Z14
≫1

π

π

≪1

W14

SB
AC

X15

fixed nonzero any

Fig. 38: ZC-Integral distinguisher for 15 rounds of CRAFT. Offset = 3. RTK[b] is
active at most one time. W14[1]⊕W14[10] is balanced. Data complexity: 264.

88

L Application to Deoxys

Deoxys-BC is a tweakable block cipher based on the tweakey framework, which
employs the round function of AES in the data path. Unlike the other ciphers in
this paper, the internal state of Deoxys-BC is arranged columnwise in a 4× 4
array of bytes. Deoxys-BC has two main versions: Deoxys-BC-256, and Deoxys-
BC-384 that use 256-bit and 384-bit tweakey, respectively. We applied our tool
to find the integral distinguisher to this block cipher. The Figures 39, 40, 41,
and 42 illustrate the discovered ZC-based integral distinguishers for this cipher.

X0 K0

0 4 8 c
1 5 9 d
2 6 a e
3 7 b f

Y0 Z0

SB

W0

SR MC

X1 K1

1 5 9 d
6 a e 2
b f 3 7
c 0 4 8

Y1 Z1

SB

W1

SR MC

X2

X2 K2

6 a e 2
f 3 7 b
4 8 c 0
d 1 5 9

Y2 Z2

SB

W2

SR MC

X3 K3

f 3 7 b
8 c 0 4
5 9 d 1
2 6 a e

Y3 Z3

SB

W3

SR MC

X4

X4 K4

8 c 0 4
9 d 1 5
a e 2 6
b f 3 7

Y4 Z4

SB

W4

SR MC

X5

nonzero any

Fig. 39: ZC-Integral distinguisher for 5 rounds of Deoxys-BC-256. RTK[4] is active at
most two times. W4[11] is balanced. Data complexity: 224.

X0 K0

0 4 8 c
1 5 9 d
2 6 a e
3 7 b f

Y0 Z0

SB

W0

SR MC

X1 K1

1 5 9 d
6 a e 2
b f 3 7
c 0 4 8

Y1 Z1

SB

W1

SR MC

X2

X2 K2

6 a e 2
f 3 7 b
4 8 c 0
d 1 5 9

Y2 Z2

SB

W2

SR MC

X3 K3

f 3 7 b
8 c 0 4
5 9 d 1
2 6 a e

Y3 Z3

SB

W3

SR MC

X4

X4 K4

8 c 0 4
9 d 1 5
a e 2 6
b f 3 7

Y4 Z4

SB

W4

SR MC

X5 K5

9 d 1 5
e 2 6 a
3 7 b f
4 8 c 0

Y5 Z5

SB

W5

SR MC

X6

nonzero any

Fig. 40: ZC-Integral distinguisher for 6 rounds of Deoxys-BC-256. RTK[6] is active at
most two times. W5[9] is balanced. Data complexity: 256.

89

X0 K0

0 4 8 c
1 5 9 d
2 6 a e
3 7 b f

Y0 Z0

SB

W0

SR MC

X1 K1

1 5 9 d
6 a e 2
b f 3 7
c 0 4 8

Y1 Z1

SB

W1

SR MC

X2

X2 K2

6 a e 2
f 3 7 b
4 8 c 0
d 1 5 9

Y2 Z2

SB

W2

SR MC

X3 K3

f 3 7 b
8 c 0 4
5 9 d 1
2 6 a e

Y3 Z3

SB

W3

SR MC

X4

X4 K4

8 c 0 4
9 d 1 5
a e 2 6
b f 3 7

Y4 Z4

SB

W4

SR MC

X5 K5

9 d 1 5
e 2 6 a
3 7 b f
4 8 c 0

Y5 Z5

SB

W5

SR MC

X6

nonzero any

Fig. 41: ZC-Integral distinguisher for 6 rounds of Deoxys-BC-384. RTK[6] is active at
most three times. W5[12] is balanced. Data complexity: 232.

X0 K0

0 4 8 c
1 5 9 d
2 6 a e
3 7 b f

Y0 Z0

SB

W0

SR MC

X1 K1

1 5 9 d
6 a e 2
b f 3 7
c 0 4 8

Y1 Z1

SB

W1

SR MC

X2

X2 K2

6 a e 2
f 3 7 b
4 8 c 0
d 1 5 9

Y2 Z2

SB

W2

SR MC

X3 K3

f 3 7 b
8 c 0 4
5 9 d 1
2 6 a e

Y3 Z3

SB

W3

SR MC

X4

X4 K4

8 c 0 4
9 d 1 5
a e 2 6
b f 3 7

Y4 Z4

SB

W4

SR MC

X5 K5

9 d 1 5
e 2 6 a
3 7 b f
4 8 c 0

Y5 Z5

SB

W5

SR MC

X6

X6 K6

e 2 6 a
7 b f 3
c 0 4 8
5 9 d 1

Y6 Z6

SB

W6

SR MC

X7

nonzero any

Fig. 42: ZC-Integral distinguisher for 7 rounds of Deoxys-BC-384. RTK[2] is active at
most three times. W6[3] is balanced. Data complexity: 264.

90

M Comparison of Our Method and Division Property

This section compares our method to search for integral distinguishers with
division property (DP) or its enhanced version, i.e., monomial prediction (MP).
We consider three aspects of automatic tools for finding integral distinguishers:
The perfectness of the distinguisher model from the theoretical point of view (can
it find all possible integral properties?), the efficiency of the model in practice,
and the possibility of extending the distinguisher model to a unified model for
finding the integral attack.

– As clarified in Section 2.3, the link between ZC and integral distinguisher
is based on the definition of a balanced vectorial Boolean function. But
DP/MP takes advantage of the algebraic degree/structure of the Boolean
function to find integral distinguishers. Thus, we can not claim that our new
automatic tool can find all the integral distinguishers theoretically discover-
able by DP/MP. However, in what follows, we explain that its converse is
also true in practice. Thus, both techniques are independently useful. Our
tool can be even more useful for strongly aligned block ciphers.

– According to [22], MP is a theoretically perfect method to detect integral
properties. But, it can be computationally hard to find a possible integral
property with the DP/MP when it comes to practice. For example, while all
output bits could be unbalanced, a linear combination of some bits/words can
be balanced [26]. Still, checking all linear combinations for the input/output
bits is computationally challenging. Thus, theoretically perfect methods such
as DP/MP can miss the integral property due to limited search space.

– One of the significant advantages of our model is that it does not fix the
input/output masks, and hence automatically considers all combinations of
input/output words. We can also set an objective function to optimize a de-
sired property for the input/output masks. In addition, taking the internal
structure of S-boxes are not necessary for strongly aligned ciphers. There-
fore, our word-oriented model seems sufficient to find a nearly optimum inte-
gral distinguisher/attack on strongly aligned block ciphers. As evidence, our
16-round (resp. 14-round) integral distinguisher for SKINNY-64-192 (resp.
SKINNY-64-128) is better than the best previous one in [34] by a factor of
212 in data complexity. In the previous models, such as [34] and DP, one has
to (exhaustively) serach the space of input/output masks. For instance, if we
want to find our integral distinguisher with DP or bit-wise ZC models in [34],
the number of possible input masks with 60 active bits (48 bits in plaintext
and 12 bits in tweak) is more than

(
64
48

)
≈ 248.79. Although some heuris-

tic approaches have been proposed to search for minimum data complexity
integral distinguishers based on DP, such as [15], the complexity of these
methods still increases very quickly with the number of constant bits. Thus,
we might have to try many configurations before finding the first one yield-
ing the integral distinguisher. However, our method returns this low data
complexity distinguisher in one run, taking less than a second on a regular
laptop, without the need to check many different possible configurations.

91

– All of the SMT/SAT/MILP models for DP/MP rely on the unsatisfiability
of the models. Conversely, the key recovery model is an optimization prob-
lem based on the underlying model’s satisfiability. Consequently, building a
unified SMT/SAT/MILP/CP model to find integral attacks using DP/MP
is still impossible. However, our new model is based on the satisfiability of
the model, i.e., any solution of our distinguisher model yields an integral
distinguisher. This is our method’s main advantage, letting us extend our
model for integral distinguisher to a unified model to find an integral at-
tack (optimized for key recovery) in Section 5. This key feature is still not
achievable by DP/MP techniques.

– Note that the conventional division property can not consider the (twea)key
schedule since XORing with constant does not change the division prop-
erty. In contrast, our ZC-integral tool can consider the key schedule to find
integral distinguishers. Thanks to this feature, we found many new low data-
complexity integral distinguishers in the single-key and chosen tweak setting
for SKINNY (see Table 3). Only the new variants of DP, e.g., MP, can con-
sider the key schedule. However, DP/MP may not be efficient enough for
ciphers with large S-boxes or dense linear layers, e.g., AES, Deoxys, and
SKINNY-128, particularly if we want to check different linear combinations
of input/output individually. For example, according to [26], 232−1 inequal-
ities are needed to model the MDS of AES in DP. Furthermore, taking the
internal structure of S-boxes is unnecessary for strongly aligned block ci-
phers such as SKINNY, AES, Deoxys, MANTIS, and CRAFT. Therefore,
compared to DP/MP, our technique can be even more useful in the integral
analysis of strongly aligned block ciphers.

92

	Finding the Impossible: Automated Search for Full Impossible-Differential, Zero-Correlation, and Integral Attacks

