
Pesca: A Privacy-Enhancing Smart-Contract Architecture
Wei Dai

w.dai@baincapital.com
Bain Capital Crypto

ABSTRACT
Public blockchains are state machines replicated via distributed con-
sensus protocols. Information on blockchains is public by default—
marking privacy as one of the key challenges.

We identify two shortcomings of existing approaches to building
blockchains for general privacy-preserving applications, namely (1)
the reliance on external trust assumptions and (2) the dependency
on execution environments (on-chain, off-chain, zero-knowledge,
etc.) with heterogeneous programming frameworks.

Towards solving these problems, we propose Pesca—a privacy-
enhancing smart contract architecture. Pesca utilizes generic build-
ing blocks such as threshold fully-homomorphic encryption (FHE),
distributed key generation (DKG), dynamic proactive secrete shar-
ing (DPSS), Byzantine-fault-tolerant (BFT) consensus, and universal
succinct non-interactive zero-knowledge proofs (zk-SNARKs).

First, we formalize the problem of replicating state machines
augmented with threshold decryption protocols and discuss how
existing BFT consensus protocols can be adapted to this setting. We
describe how to instantiate a blockchain with a fixed FHE public key
and have FHE-encrypted chain states programmatically decrypted
via consensus.

Next, we describe a smart-contract framework for engineering
privacy-preserving applications, where programs are expressed—in
a unified manner—between four types of computation: transparent
on-chain, confidential (FHE) on-chain, user off-chain, and zero-
knowledge off-chain.

Lastly, to showcase the generality and expressiveness of Pesca,
we provide two simple application designs for constant function
market makers (CFMMs) and first-price sealed-bid auctions (FPS-
BAs), both with maximal privacy guarantees.

1 INTRODUCTION
Public blockchains, aka distributed ledgers, are publicly-accessible
state machines replicated via distributed consensus protocols. Pub-
lic blockchains allow anyone to run a consensus node and any user
to submit transactions to be processed by the state machine. As a
result, most blockchain applications do not offer any privacy guar-
antee, leaving the financial information of users to public scrutiny.

There has been threemain approaches to building general privacy-
preserving applications in the public blockchain setting. The first
is employing trusted execution environments (TEEs), such as Intel
SGX. This is pioneered in the work of Ekiden [20] and implemented
in projects such as Oasis and Secret Network. Such an approach
effectively replaces the trust on the decentralized node operators
to the, very much centralized, hardware providers.

The second approach is delegation of computation to off-chain
trusted or multi-party-computation-based (MPC) services, follow-
ing the pioneering work of Hawk [44]. There have been efforts
on reducing the trust required on managers using zero-knowledge
and MPC techniques [6, 45]. Still, solutions in this space remain

reliant on trust assumptions that are external to the consensus
nodes of the blockchain in question. Unlike blockchain protocols,
traditional MPC protocols require a static participation set. While
secret-sharing-based MPC can be made dynamic, the resharing
protocol incurs a communication overhead that is quadratic in the
number of nodes and linear in the state size of the computation,
both of which can be large.

Finally, an approach that has seen a huge surge in interest is use
of non-interactive zero-knowledge proofs (NIZKs, or more collo-
quially ZKPs), following the pioneering work of Zerocash [8] and
recent advances in succinct proofs systems (zk-SNARKs) such as
Groth16 [40], Marlin [21], and Plonk [35]. There are many known
techniques to obtain private direct payments on public blockchains
using ZKPs [8, 16, 30, 34]. There have also been efforts on extending
the approach of ZKPs to general programs. The most notable effort
is the work of Zexe [13], which allows any general program to
be executed off-chain and verified on-chain against state commit-
ments in zero-knowledge. However, general zero-knowledge state
updates cannot be made concurrent [26]. As a result, shared-state
applications on Zexe-like platforms require the usage and trust of
off-chain sequencers, from whom users’ privacy is not guaranteed.

Summarizing the state of affairs, there are no known designs of
blockchains that natively support programming of general privacy-
preserving applications without external trust assumptions.

Problem1: Canwe build blockchains supporting general privacy-
preserving applications without external trust assumptions?

Smart contracts and privacy-preserving applications. Smart con-
tract architectures are the “operating systems” for blockchains,
enabling user-programmable applications that time-share the exe-
cution capabilities of blockchains. However, for privacy preserving
applications, there are three distinct execution environments that
each application has to program for: on-chain, off-chain (done by
user), and zero-knowledge computation. For example, the Ethereum
blockchain uses the Ethereum virtual machine (EVM) execution
environment, where code is often written in a contract program-
ming language called Solidity. Client-side, in-browser, compute re-
quire frameworks such as web3.js [4] and is written in Javascript.
Zero-knowledge circuits are programmed with libraries such as
Circom [3] and Zokrates [5] in custom domain-specific languages.
The heterogeneous nature of these tools makes it harder to design
and engineer privacy-preserving applications.

Problem2: Canwe build smart contract platformswhere privacy-
preserving applications can be designed and engineered in a unified
framework?

Pesca: Privacy-Enhancing Smart-Contract Architecture. Towards
solving the above two key problems, we propose Pesca—a blueprint
of a blockchain and a unified smart contract architecture to build
privacy-preserving applications relying solely on the honest super

majority—or so-called Byzantine—assumption of consensus nodes.
We provide a technical overview in the rest of the section.

Threshold FHE and key management (Section 2). The high-level
idea is simple, we utilize fully homomorphic encryption (FHE) to
compute over encrypted program states and inputs. To not have any
single authority over these encrypted values, we utilize threshold
cryptography to entrust these encrypted values to the chain, i.e. the
consensus set. Specifically, we utilize a threshold FHE scheme [12]
supporting Shamir-type keys [52], as well as are well-studied mech-
anisms to generate and maintain Shamir secret shares among a
dynamic consensus sets, via the use of distributed key genera-
tion (DKG) [27, 41] and dynamic proactive secret sharing (DPSS)
[38, 41, 47] schemes.

Blockchain protocols supporting threshold decryption (Section 3).
There has been a vast amount of research on Byzantine fault tol-
erance (BFT) distributed consensus and state machine replication.
The canonical setting requires a state machine with an efficiently
computable update function as it is computed by all consensus
nodes. In contrast, state machines of interest in our work are not
efficiently computable by any single party, due to our usage of FHE
threshold decryption. Instead, augmenting the efficient state update
is a threshold protocol between consensus nodes. We first formalize
and study the replication of state machines with such threshold
release protocols.

A (𝑡, 𝑛)-threshold release protocol is a one-round broadcast pro-
tocol between 𝑛 parties that achieves desired security properties
assuming 𝑡 nodes are honest. Roughly, security asks that the re-
lease resultRelease(st) to be uncomputable by any adversary unless
some honest node releases its share PartRelease(sk𝑖 , st), even with
𝑡 − 1 adversarially controlled nodes.

Next, we study the replication of state machines with thresh-
old release protocols where the threshold 𝑡 is set to the BFT-type
guarantee of 2𝑓 + 1, where 𝑓 is the number of faulty or adversarial
nodes. We make a simple observation that any BFT-type proto-
col (e.g [15, 19, 53]) satisfying safety and liveness can be modified
to replicate threshold release state-machines satisfying new no-
tions called release safety and release liveness (assuming partially
synchrony).

At this point, we are ready to list the main ingredients of our
blockchain. We will fix:
• A (𝑡, 𝑛)-threshold FHE scheme FHE with Shamir secrets,
where 𝑡 is between 𝑓 + 1 and 2𝑓 + 1. We assume that there is
a distributed key generation phase where a chain FHE key
pk is computed (and fixed for the lifetime of the chain) and
each consensus node obtains its FHE secret key sk𝑖 .
• A state machine𝑀 (whose exact functionality is fixed later)
where an explicitly marked component of each state contains
FHE ciphertexts to be decrypted and fed back to the machine
as part of subsequent inputs. Note that𝑀 is a state machine
with a threshold release protocol.
• A BFT-type consensus protocol satisfying liveness and cor-
rectness to replicate𝑀 .
• A universal (or transparent) zk-SNARK system Π.

We are interested in programming the above state machine 𝑀 in
an expressive manner utilizing the zk-SNARK.

The Smart Contract Architecture (Section 4). We design a smart-
contract architecture enabling expressive programming of privacy-
preserving applications. We do so by homogenizing different forms
of computation. In particular, we consider four types of compu-
tation supported by Pesca and required by privacy-preserving
applications:
• Transparent on-chain computation is the bread and butter of
smart contracts. They are replicated among all consensus
nodes in the plain.
• Confidential on-chain computation is computation done in-
side circuits of the threshold FHE scheme with a fixed public
key pk. We let smart contract programmers specify arbitrary
logic inside FHE circuits. Howerver, we note that in our ex-
ample applicaitons, the FHE state and circuits are engineered
to be extremely succinct.
• User off-chain computation captures computation done by
users to construct transactions. They have access to user
secrets and (possibly stale) contract states.
• Zero-knowledge computation, done via zk-SNARK system Π,
pertains to both the off-chain prover component run by users
and the on-chain verification component run by contracts.

We write pseudocode to describe all four forms of computation (for
an example, see Figure 3), with the understanding that one pro-
gramming framework can be designed to unify these four different
execution environments.

Attacks and mitigations. We remark that a naive design is vulner-
able to attacks where an attacker copies the confidential FHE state
of a target contract to an attacking contract (with arbitrary logic)
for decryption. We design a mechanism that achieves proper con-
tract scope separation and prevents such attacks, utilizing simulation
knowledge soundness of the zk-SNARK.

Maximally privacy-preserving applications (Section 5). Finally, to
show case the expressiveness of our framework, we describe designs
for constant functionmarketmakers (CFMMs) and first-price sealed-
bid auctions (FPSBAs) with maximal privacy guarantees.

Bymaximal privacy guarantees wemean that, additional to infor-
mation that is required to be released for liveness of the application:
• External observers do not learn anything about confidential
user inputs or confidential applications state.
• Users only learn binary information on whether their inputs
were validly executed or not.

Additionally, for both applications, the confidential FHE computa-
tion contain only a couple of arithmetic operations on (e.g. 64-bit)
integers, making it practical under the performance characteristics
of existing FHE schemes on GPUs.

To keep the confidential FHE state small, we utilize existing
techniques to do privacy-preserving token accounting. In particular,
underlying both applications is a multi-asset shielded pool inspired
by the Orchard design [42] of Zcash [8]. To have it interoperate
with the on-chain FHE service, we modify the action circuit to
declare net value change and asset type encrypted under the fixed
chain FHE key pk.

Privacy-preserving CFMMs. Constant functionmarketmakers [1],
a special case of automated market makers have seen tremendous

2

adoption following the launch of Uniswap. We provide a simple
design where users construct exact trades that are executed in se-
quence. Our construction has no additional information leakage on
trades or asset reserves beyond the programmatically-determined
release of spot price. Furthermore, since users construct exact trades,
they only learn a binary outcome. Effectively, our construction gives
a “dark pool” without an operating intermediary.

Privacy-preserving FPSBAs. Recently, there has been a surge in
auctions conducted on blockchains due to rising interest in non-
fungible tokens (NFTs). We ask if auctions can be conducted so
that non-winning bids are never revealed to anyone even after the
settlement of the auction. Such property allows asset reserves of
users to remain hidden and are extremely desirable for recurring
auctions. We provide a simple application design for first-price
sealed-bid auctions with such privacy guarantee.

2 PRELIMINARIES
In this section, we review the various building blocks including
distributed consensus via Byzantine fault tolerance (BFT), universal
and transparent zero-knowledge succinct non-interactive argument
of knowledge (zk-SNARKs), threshold cryptography, as well as fully
homomorphic encryption (FHE).

Global setup. Throughout, we fix 𝑛 parties out of which 𝑓 are ad-
versarial. We assume that there is a global setup phase Setup where
a public parameter pp and private keys for each party sk1, . . . , sk𝑛
are generated. All statements involving pp, sk1, . . ., sk𝑛 are quanti-
fied over the randomness of such a setup process. We write [[sk𝑖]]𝑆
where 𝑆 ⊆ {1, . . . , 𝑛} to denote private inputs or outputs for proto-
cols, i.e. each party 𝑖 ∈ 𝑆 takes private input or obtains private out-
put sk𝑖 . Looking ahead, Setup shall include any setup required for
sub-protocols (e.g. distributed key generation) and cryptographic
primitives (e.g. zk-SNARKs). We use 𝜆 to denote the security pa-
rameter and 1𝜆 its unary representation. We use poly(· · ·) and
negl(·) to denote the classes of polynomial and negligible functions
respectively.

2.1 Consensus and State Machine Replication
A state machine 𝑀 consists of an efficient state update function
𝑀.Update, with function signature𝑀.Update(st, in) → st′, where
st ∈ {0, 1}∗, in ∈ 𝑀.IN, and st′ ∈ {0, 1}∗∪⊥. For any state st, we say
that st→ st′ is a valid transition upon input in if𝑀.Update(st, in) =
st′ ≠ ⊥. A chain 𝐶 of length 𝑛 for 𝑀 is a sequence 𝐶 = (st0 =

𝜖, in1, st1, . . . , in𝑛, st𝑛), such that st𝑖−1 → st𝑖 is a valid transition
under input in𝑖 for all 𝑖 = 1, . . . , 𝑛. We say that 𝐶 ⪯ 𝐶′ if both 𝐶

and 𝐶′ are valid chains and that 𝐶 is a prefix of 𝐶′.
Blockchains are state machines replicated via distributed consen-

sus mechanisms. We focus on Byzantine consensus mechanisms for
“streamlined blockchains” with a fixed set of participants per round,
examples of such include Tendermint [15], Casper [17], HotStuff
[53], Internet Computer Consensus [18], and Streamlet [19].

Streamlined BFT consensus protocols operate in a synchronous
or partially synchronous setting and proceeds in rounds. Nodes send
and receive messages to each other in each round via authenticated
channels. Preceding each round 𝑟 , the consensus algorithm at node 𝑖
takes input a state machine input in𝑖𝑟 . At the end of each round 𝑟 ,

the consensus algorithm at node 𝑖 outputs a finalized chain 𝐶𝑖
𝑟 for

machine𝑀 .
Safety asks that any finalized chains from two honest nodes must

agree, meaning that either 𝐶𝑖
𝑟 ⪯ 𝐶

𝑗

𝑟 ′ or 𝐶
𝑗

𝑟 ′ ⪯ 𝐶𝑖
𝑟 for any 𝑟 and 𝑟 ′

and honest nodes 𝑖 and 𝑗 . Liveness asks that if one honest node
finalizes a chain 𝐶𝑟

𝑖
at round 𝑟 , then any other honest node must

finalize a chain extending 𝐶𝑟
𝑖
by some finite round 𝑟 ′ ≥ 𝑟 .

2.2 Non-interactive Zero-knowledge
We require a universal or transparent zk-SNARK, examples of which
include Sonic [46], Marlin [21], and various variants of Plonk [35].

We follow the definition framework of [21] for preprocessing
SNARKs and adopt a game-based definition for NIZKs following [7].
An indexed relation 𝑅 consists of tuples of the form (𝐶, 𝑥,𝑤), where
𝐶 is called the index, 𝑥 is the instance, and𝑤 the witness. Through-
out, we fix an indexed relation 𝑅𝑝,𝑁 where each index 𝐶 is the
encoding of an arithmetic circuit over prime field F𝑝 of size at
most 𝑁 . Relation 𝑅𝑝,𝑁 is defined as (𝐶, 𝑥,𝑤) ∈ 𝑅𝑝,𝑁 iff𝐶 (𝑥,𝑤) ≠ 0
and |𝐶 | ≤ 𝑁 .

A universal non-interactive proof system Π for 𝑅𝑝,𝑁 consists
of algorithms Π.Setup, Π.Compile, Π.P, and Π.V. We require the
circuit compiler Compile (also known as the indexer) to be deter-
ministic. We say that Π is succinctness if for any pp←$ Setup(𝜆),
the running time of V(pp, ·, 𝑥, ·) is poly(𝜆, |𝑥 |). When succinctness
is not emphasized, and particularly inside security definitions and
proofs, we opt to omit writing ofCompile and write P(pp, (𝐶, 𝑥),𝑤)
and V(pp, (𝐶, 𝑥), 𝜋) to denote P(pp, pk𝐶 , 𝑥,𝑤) and V(pp, vk𝐶 , 𝑥, 𝜋)
respectively, where (pk𝐶 , vk𝐶) = Compile(pp,𝐶). We consider the
usual definition of completeness, zero-knowledge, and simulation
knowledge soundness for the induced (non-universal and non-
succinct) proof system on relation 𝑅′

𝑝,𝑁
consisting of tuples of

the form ((𝐶, 𝑥),𝑤).

Completeness. Perfect completeness says that for any adver-
sary A, the following game Gcmpl

Π,A outputs true with probability 1.

Game Gcmpl
Π,A (𝜆)

1 pp←$ Π.Setup(1𝜆) ; (𝑥, 𝑤) ←$ A(1𝜆) ; 𝜋 ←$ Π.P(pp, 𝑥, 𝑤)
2 Return Π.V(pp, 𝑥, 𝜋)

Zero-knowledge and simulation knowledge soundness. To define
zero-knowledge and simulation knowledge soundness, we require
a zero-knowledge simulator Π.S, its associated setup algorithm
Π.SSetup, as well as an extractorΠ.Ext. Consider the zero-knowledge
game Gzk

Π,A given below.

Game Gzk
Π,A (𝜆)

1 𝑏←$ {0, 1}
2 (pp0, td) ←$ Π.SSetup
3 pp1←$ Π.Setup
4 𝑏←$ APf (pp𝑏)
5 Return (𝑏 = 𝑏′)

Pf(𝑥, 𝑤) :
6 Require (R(pp, 𝑥, 𝑤))
7 𝜋0←$ Π.S(pp0, td, 𝑥)
8 𝜋1←$ Π.P(pp1, 𝑥, 𝑤)
9 𝑄←∪ (𝑥, 𝜋𝑏)

10 Return 𝜋𝑏

We define the zero-knowledge advantage of an adversary A to be
AdvzkΠ,A (𝜆) = 2 · Pr[Gzk

Π,A (𝜆)] − 1.
We move on to define simulation extractability [28, 39, 51].

Which is a strong notion requiring that the extractor to extract
valid witnesses from forged proofs for an adversary even if the ad-
versary has seen simulated proofs on possibly incorrect instances.
Formally, consider the game Gxt

Π,A (𝜆) given below.
3

Game Gxt
Π,A (𝜆)

1 (pp, td) ←$ Π.SSetup
2 APf,Ex (pp)
3 Return win

Pf(𝑥) :
4 𝜋 ← Π.S(pp, td, 𝑥)
5 𝑄←∪ (𝑥, 𝜋)
6 Return 𝜋

Ex(𝑥, 𝜋) :
7 Require ((𝑥, 𝜋) ∉ 𝑄)
8 Require (Π.V(pp, 𝑥, 𝜋))
9 𝑤←$ Π.Ext(pp, td, 𝑥, 𝜋)

10 win← ¬R(pp, 𝑥, 𝑤)
11 Return win

We define the simulation extractable (XT) advantage of A against
Π to be AdvxtΠ,A (𝜆) := Pr[Gxt

Π (A)]. As usual, we say that Π is zero-
knowledge and simulation knowledge sound if the corresponding
advantages are negligible in 𝜆 for polynomial-time adversaries. We
remark that Plonk and Sonic are known to simulation extractable
(aka knowledge sound) [43] in the random oracle model.

2.3 Threshold FHE
Threshold decryption for a public-key encryption scheme allows
splitting of the master decryption key into 𝑛 key shares so that
decryption can be done given any 𝑡 shares without reconstructing
the master key. Moreover, the reconstruction of the master key is
not possible given less than 𝑡 shares. This makes 𝑡-out-of-𝑛 thresh-
old cryptography a natural candidate for distributed systems with
similar adversarial assumptions, such as proof-of-stake (PoS) and
Byzantine fault-tolerant (BFT) consensus systems.

It is well-known that public-key additively homomorphic en-
cryption schemes such as ElGamal [32] and Paillier [49] can support
threshold decryption [29]with Shamir [52] secret-shared keys. Fully
homomorphic encryption (FHE) schemes can also be constructed
to support threshold decryption [11, 12].

We fix a set of complete boolean gates G1 where each 𝑔 ∈ G is a
function of the form {0, 1}ℓ → {0, 1}.

Threshold FHE [11]. A threshold FHE scheme, supporting G,
consists of algorithms five probabilistic polynomial-time algorithms
Kg, Enc, Eval, PartDec, FinDec.
• Key generation. Kg(1𝜆, 𝑡, 𝑛) $→ (pk, sk1, . . . , sk𝑛), upon in-
put the unary security parameter, threshold 𝑡 , and size 𝑛, key
generation returns the public key pk and 𝑛 secret keys.
• Encryption. Enc(pk,𝑚) $→ 𝑐 for any message 𝑚 ∈ {0, 1}.
Encryption of a bit 𝑚 takes additional input only on the
public key pk.
• Homomorphic evaluation. For any gate 𝑔 ∈ G. Suppose
𝑐1, . . . , 𝑐ℓ are ciphertexts each encrypting one bit, then 𝑐 ←
Evalpk (𝑓 , (𝑐1, . . . , 𝑐ℓ)) is a ciphertext.
• Decryption of a ciphertext 𝑐 , denoted Dec([[sk𝑖]] {1,...,𝑛} , 𝑐),
is distributed protocol with two algorithms PartDec and
FinDec. First, each 𝑖-th party computes partial decryption
as 𝑑𝑖 ←$ PartDec(sk𝑖 , 𝑐). Combining at least 𝑡 honest partial
decryptions, any party can obtain the final decryption via
𝑚 ← FinDec(pk, {(𝑖, 𝑑𝑖)}𝑖∈𝑆).

We refer to [12, Section 5] for a formal treatment of compact-
ness, correctness and security. Roughly, compactness says that
decryption should be efficient regardless of the depth of the com-
putation done on the ciphertexts. Correctness says that any ho-
momorphic evaluations on honestly generated ciphertexts should
yield the correct decryption. Standard (IND-CPA) security asks that
an encryption of 0 to be indistinguishable from an encryption of 1.

1For simplicity this could be the singleton set containing the xnor gate. For efficiency,
we may have many fan-in 2 and 3 gates such as and, or, and mux.

Simulation-based threshold security asks that as long as less than
threshold 𝑡 number of parties are corrupt, decryption shares are
simulatable without access to real secret keys.

Verifiable partial decryption. We require a strengthening of thresh-
old decryption where each partial decryption share can be pub-
licly verified. We note that similar properties of threshold FHE
has been assumed before in constructing single secret leader elec-
tion protocols [10]. Specifically, we require an algorithm PartVerify,
which decides the validity of a partial decryption 𝑑 as a decision
bit PartVerify(pk, 𝑖, 𝑑𝑖 , 𝑐). We say that PartVerify satisfies correct-
ness if for 𝑑𝑖 ←$ PartDec(sk𝑖 , 𝑐), we have PartVerify(pk, 𝑖, 𝑑𝑖 , 𝑐) = 1.
Intuitively, security requires that without knowledge of sk𝑖 , an ad-
versary cannot construct correct new decryption shares, even after
observing partial decryption shares for adversarially chosen cipher-
texts. We remark that, efficiency aside, verifiable partial decryption
can be obtained generically via simulation extractable zk-SNARKs,
where we additionally include a commitment of each secret key sk𝑖
inside the public key pk. Specifically, we can consider PartDec′ and
PartVerify, which utilizes a zk-SNARK for a circuit 𝐶 computing a
commitment and PartDec, as follows.

Circuit𝐶 (cm, 𝑐, 𝑑 ; 𝑟cm, 𝑟PartDec) :
1 Assert (cm = Com(sk, 𝑟cm) and 𝑑 = PartDec(sk, 𝑐 ; 𝑟PartDec))
Algorithm PartDec′ (pk, (sk𝑖 , 𝑟cm), 𝑐 ; 𝑟PartDec) :
2 𝑑←$ PartDec(pk, sk𝑖 , 𝑐 ; 𝑟PartDec)
3 𝜋 ←$ Π.P(pp,𝐶, pk.cm𝑖 , 𝑐, 𝑑

′ ; 𝑟cm, 𝑟PartDec)
4 Return (𝑑, 𝜋)
Algorithm PartVerify(pk, 𝑖, (𝑑, 𝜋), 𝑐) :
5 Assert Π.V(pp,𝐶, (pk.cm𝑖 , 𝑐, 𝑑), 𝜋)

Shamir secret sharing. For any prime field F𝑝 , the 𝑡-out-of-𝑛
Shamir secret sharing scheme [52] over F𝑝 shares a secret 𝑠 ∈ F𝑝
into𝑛 shares 𝑝 (1), . . . , 𝑝 (𝑛), where 𝑝 is a uniform randomly sampled
degree 𝑡 + 1 polynomial such that 𝑝 (0) = 𝑠 .

Based on the learning-with-errors (LWE) problem, a special class
of FHE schemes [11, Definition 3.9], covering BGV [14] GSW [37]
and FHEW [31] families, can be made compatible with Shamir
secret keys. We summarize the modifications required on these
schemes in Appendix A.

Note that naively as shown here, we require a trusted third party
to run the key generation algorithm Kg and distribute key shares to
relevant parties. This is undesirable for blockchain systems due to
centralization. We assume the existence of a trusted third party in
this work for simplicity but point out generic solutions to generate
and manage Shamir secret shares. We do not formally specify or
prove secure the composed systems here.

2.4 Threshold Key Management
Blockchain protocols deal with heterogeneous parties that may
join and leave the protocol at arbitrary times. We are particularly
interested in the 𝑡-out-of-𝑛 Shamir secret-sharing scheme [52], for
which there are known distributed key generation (DKG) [27, 41]
and dynamic proactive secret sharing (DPSS) [38, 41, 47] schemes.
Furthermore, for large consensus sets where running DPSS over all
nodes is not feasible, secrets can be kept and passed between small
committees [9, 33, 36].

Distributed key generation. To generate Shamir secret shares
without relying on a trusted party, a distributed key generation

4

(DKG) protocol [27, 41] can be used. Concretely, the execution of a
DKG protocol DKG(𝜆, 𝑛, 𝑡) $→ [[sk𝑖]] {1,...,𝑛} returns private outputs
sk𝑖 to each party 𝑖 , which form a 𝑡-out-of-𝑛 Shamir secret sharing
of some master secret that is never reconstructed.

Dynamic proactive secret sharing. To support a dynamic consen-
sus sets where nodes are joining and leaving, dynamic proactive
secret sharing (DPSS) [38, 41, 47] can be utilized. Concretely, the
execution of a DPSS protocol DPSS([[sk𝑖]]𝑆) $→ [[sk′𝑖]] {1,...,𝑛} re-
quires at least 𝑡 honest participants with their respective Shamir
secret shares sk𝑖 and returns refreshed Shamir secret shares sk′𝑖 for
each participant 𝑖 , while keeping the same master secret.

For the rest of the paper, we fix a threshold FHE scheme FHE
with Shamir secrets where Kg is replaced by a compatible Shamir
DKG protocol.

3 REPLICATION OF STATE MACHINES WITH
THRESHOLD RELEASE

Blockchains are state machines replicated via distributed consen-
sus protocols. While the state machine model is general, it only
captures efficiently computable transitions, as the state machine is
executed independently by each consensus node. In particular, the
model does not capture transitions that require interaction between
consensus to evaluate. One example of such blockchain design is
threshold decryption. For example, both Ferveo [48] and Penum-
bra [50] modify the underlying consensus algorithm to support
threshold decryption. In these protocols, the set of nodes will run
a threshold decryption protocol to decrypt a pre-specified part of
the state. The state machine then proceeds by taking input of the
result of threshold decryption.

In this section, we provide a general definition of state machines
with threshold release protocols and discuss how existing consensus
protocols can be modified to replicate these state machines.

3.1 State Machines and Release Functions
State release function. Let𝑀 be a state machine. A release func-

tion for 𝑀 is a function Release : {0, 1}∗ → {0, 1}∗ which takes
input a state st and outputs the state release information Release(st).
Looking ahead, the release function is not assumed to be efficiently
computable as a function but can be evaluated efficiently via an
external protocol.

Tomodel useful applications, it is often paramount for the release
information to be fed back into the state machine as input. To model
this, we consider the input space IN as {0, 1}∗×(N×{0, 1}∗)∗, where
the second component encodes an arbitrary sequence of release
information from previous states.

For a particular sequence of inputs in1, . . . and correctly com-
puted valid states st0, . . ., we say that st𝑖 is released with delay
𝑑 if in𝑖+𝑑 contains (𝑖,Release(st𝑖)). We let 𝑀.Update encode the
validity conditions on the necessary delay. For example, 𝑀.Update
could reject inputs in𝑖+1 unless it contains a release of the previous
state Releasest𝑖 is provided.

3.2 Replicating Threshold-release Machines
Threshold release protocol. We focus on a release function with

threshold release protocols. A (𝑡, 𝑛)-threshold protocol ThRelease

to compute Release consists of four efficient algorithms Setup,
PartRelease,Combine, andPartVerify. Consider the following (strong)
correctness game against any polynomial-time adversary A.

Game Gthcor
ThRelease,A (𝜆)

1 (pp, sk1, . . . , sk𝑛) ←$ Setup(1𝜆)
2 (𝑥, 𝐷) ←$ A(pp, sk1, . . . , sk𝑛)
3 Assert (|𝐷 | ≥ 𝑡 and ∀(𝑖, 𝑑) ∈ 𝐷 : PartVerify(pp, 𝑖, 𝑑, 𝑥) = 1)
4 Return (Combine(pp, 𝐷) = Release(𝑥))

We say that ThRelease is correct if the probability of the above
game is negligibly close to 1 for any polynomial-time adversary
A, i.e. 1 − Pr[Gthcor

ThRelease,A (𝜆) ⇒ true] is negligible in 𝜆. We call a
set 𝐷 satisfying the check at line 3 a release witness for 𝑥 . We say
that (𝑦, 𝐷) is a valid release of 𝑥 if Combinepp (𝐷) = 𝑦 and that 𝐷
is a valid release witness for 𝑥 .

Security of threshold release protocols. We consider a natural
unpredictability-style security notion for threshold release pro-
tocols. Intuitively, we want an adversary to not be able to compute
Release(st) for any state st unless it obtains the right shares, even
with access to corrupted shares. Formally, consider the below game.

Game Gthsec
A (𝜆)

1 (pp, sk1, . . . , sk𝑛) ←$ Setup(1𝜆)
2 𝑆←$ A(pp) ; Assert |𝑆 | < 𝑡

3 (𝑥, 𝑦) ←$ AEval ({𝑠𝑘𝑖 }𝑖∈𝑆)
4 𝑦′ ← Combine(pp, {PartRelease(sk𝑖 , 𝑥) }{1,...,𝑡 })
5 Return (𝑥 ∉ 𝑄 and (𝑦 = 𝑦′))
Eval(𝑖, 𝑥) :
6 𝑄←∪ 𝑥 ; Return PartRelease(sk𝑖 , 𝑥)

We say that ThRelease is secure if Pr[Gthsec
ThRelease,A (𝜆) ⇒ true]

is negligible in 𝜆.
Let𝑀 be a state machine with a (𝑡, 𝑛)-threshold release protocol

for Release. We describe how existing consensus protocol on 𝑛

nodes can be modified to replicate𝑀 with the following property:

• Release livensss. If state st𝑖 is finalized, then a valid release
(Release(st𝑖), 𝐷) appears in the input in𝑗 of some finalized
state st𝑗 for 𝑗 > 𝑖 .
• Release safety. If a valid release (Release(st𝑖), 𝐷) appears in
the input in𝑗 of any state st𝑗 (not necessarily finalized), then
it must be that st𝑖 is finalized (for some honest node).

We remark that the above two properties can be achieved by
modifying any BFT blockchain protocols as long as 𝑓 +1 ≤ 𝑡 ≤ 2𝑓 +1
as follows:

(1) In any round, if a state st becomes finalized for node 𝑖 , then it
will release and broadcast its release sharePartReleasesk𝑖 (st).

(2) If a node receives some set 𝐷 of at 𝑡 release shares that
forms a valid release witness for some st, then it computes
Release(st) = Combinepp (𝐷).

(3) In any round, if the leader knows a finalized state st and
its release information Release(st) with release witness 𝐷
but has not observed Release(st) in any proposed blocks,
it will include (Release(st), 𝐷) in the newly proposed state
machine input in.

We claim that with the above modifications, any BFT blockchain
protocol satisfying safety and liveness additionally satisfies release
safety and release liveness.

5

Proposition 3.1. If a BFT protocol satisfies liveness, then the
modified BFT protocol satisfy release liveness assuming partially syn-
chronous network.

Proof. Suppose a state st becomes finalized for an honest node 𝑖 .
By liveness, we know that all honest nodes will eventually consider
st finalized, which by modification (1) means that all honest nodes
broadcast their release shares. Hence, in some later round, some
honest leader node must have obtained 2𝑓 + 1 valid shares and be
able to compute Release(st) since 𝑡 ≤ 2𝑓 + 1. □

Proposition 3.2. If a BFT protocol satisfies safety and ThRelease
is a secure threshold release protocol, then the modified BFT protocol
satisfy release safety.

Proof. Suppose a valid release (Release(st), 𝐷 = {(𝑖, 𝑑𝑖)}) ap-
pears in some input in𝑗 . We know that with overwhelming probabil-
ity, due to the security of ThRelease, that all 𝑑𝑖 values are computed
via PartRelease(sk𝑖 , st). This means that at least one (𝑡 − 𝑓 ≥ 1)
honest nodes have considered st𝑖 finalized. □

4 PRIVACY-ENHANCING SMART CONTRACT
In this section, we describe an architecture for expressively pro-
gramming of state machines with threshold release.

Overview of a smart contract platform. We base our architecture
off of standard smart contract platforms such as Ethereum, Solana,
andDfinity. Smart contracts are stateful deterministic programs that
run on a blockchain. We assume that smart contracts can invoke
“public” functions of other contracts and that such calls are blocking.
We assume that each execution of a smart contract is initiated by an
end-user via a transaction. Errors encountered during the execution
of smart contracts revert the entire transaction. Each contract has a
distinct owner and a contract identifier which is programmatically
accessible via the variable this.

Compared to smart contract platforms such as Ethereum, our
architecture adds the ability to programmatically invoke threshold
decryption of an FHE scheme. As a result, we have four types of
computation of interest.

Transparent on-chain computation. This is the bread and butter
of smart contract platforms. Transparent on-chain computation is
replicated among the set of all consensus nodes and hence public
and transparent. In pseudocode, they are denoted as either public
or private contract functions depending on standard programming
access control idioms. Public refers to the fact that it can be invoked
by external contracts. Private refers to the fact that it can only be
invoked within the contract itself.

User off-chain computation. Often, users need to provide struc-
tured inputs to on-chain smart contracts. This is especially true for
users that need to provide zero-knowledge proofs. We denote user
computation as User functions. User functions are allowed access to
contract storage as well as user-specific secret information such as
keys. Note that user off-chain computation are never deployed to
chain.

Zero-knowledge off-chain computation. With the help of a univer-
sal or transparent zk-SNARK Π, we can express any validity check

as a circuit. In pseudocode, they are denoted as ZK circuits. Zero-
knowledge circuits only return a boolean value and do not have
access to contract storage. We assume that the for each ZK circuit
𝐶 , the contract owner computes (pk𝐶 , vk𝐶) ← Π.Compile(𝐶) be-
fore deploying the contract. In the same contract, 𝐶.verify(𝑥 ;𝜋)
is a shorthand for Π.V(vk𝐶 , (this, 𝑥), 𝜋). For any user function,
𝐶.prove(𝑥 ;𝑤) is a shorthand for Π.P(pk𝐶 , (this, 𝑥),𝑤). Here, we
draw attention to the use of the contract identifier this as part of
the instance. The reason is to properly scope separate proofs for
one contract from another.

Confidential (fully homomorphic) on-chain computation. With the
help of a threshold FHE scheme, we can express any computation
on confidential states as FHE circuits. FHE circuits do not have
access to contract storage. Inside any contract function and for any
FHE circuit 𝐶 of the contract, we write 𝐶.Eval(ein) as a shorthand
for FHE.Evalpk (𝐶, ein).

Threshold decryption. Additionally, at any point during a trans-
parent on-chain computation, a call to threshold decryption can be
made. The call is made with three parameters, some FHE cipher-
texts est to be decrypted, a variable 𝑥 to store the decrypted value,
and an asynchronous code block that is executed after the thresh-
old decryption result is made available. We write this as “Async
𝑥 ← ThDec(est)” followed by the code block. We allow state read
and access in the asynchronous code block, with the understand-
ing that the content of the contract state can change arbitrarily
between the threshold decryption call and the execution of the
asynchronous code block.

4.1 Safety of FHE application states
Since anyone can deploy a contract that invokes threshold decryp-
tion, an adversary can decrypt any previously observed FHE state
and call threshold decryption on it. To prevent this attack, we em-
ploy the zk-SNARK to enforce “knowledge of secret” of any new
FHE ciphertexts. Consider the following zero-knowledge circuit
and contract function.

Contract FHEBase
Priv Func VerifyFHEInput(eb) :
1 Assert KnowledgeCheck.verify(eb; eb.𝜋)
ZK Circuit KnowledgeCheck(eb;𝑏, 𝑟) :
2 Assert (eb = FHE.Encpk (𝑏; 𝑟))

Figure 1: Base contract for utilizing FHE state and threshold
decryption.

We remark that each contract that utilizes the on-chain FHE
functionality must use the FHEBase contract as a library. However,
proofs constructed for KnowledgeCheck are not compatible across
different contracts, as we assume the contract identifier this is in-
serted into the public instance, i.e. KnowledgeCheck.verify(𝑒𝑏;𝜋) =
Π.V(vkKnowledgeCheck, (this, eb), 𝜋). By simulation extractability
of Π, proofs for different contract identifiers are properly separated.

We require the state machine to ensure that:
• An input FHE ciphertext eb is marked valid only if it contains
a valid knowledge proofs, i.e. VerifyFHEInput(eb) = true.

6

• Inputs to FHE.Evalpk (·, ·) and ThDecmust only contain valid
FHE ciphertexts.
• Outputs of FHE.Evalpk are marked as valid.

The above can be done by exposing FHE.Evalpk and ThDec as special
“system calls.”

We claim that if the state machine enforces the above validity
rules, then trivial attacks on privacy cannot occur.

5 APPLICATIONS
In this section, we outline two applications programmed via Pesca
framework–constant function market makers (CFMMs) and first-
price sealed-bid auctions (FPSBAs), both providing maximal privacy
guarantees.

We chose these two applications to showcase the expressive-
ness of the framework due to their simplicity and limited shared
state–both applications only maintain a small constant shared state
regardless of how many users are interacting with the application.
To achieve this property, we utilize techniques from Zerocash to
do token accounting and usage. We utilize an on-chain threshold
FHE service to compute over shared states of CFMMs and FPSBAs,
which are of size independent of the number of users interacting
with these applications. Connecting between them, we require that
spends to declare inputs encrypted to the FHE service, which is
done inside the zero-knowledge circuits for spending tokens (called
Action circuits).

5.1 Shielded Assets
At the foundation of our privacy-preserving trading applications
is a design of a multi-asset shielded pool supporting token usage
that declares inputs to the on-chain FHE service. For this shielded
pool, we take a design approach closely following the Orchard
design of the Zcash protocol [42], which is the third iteration of the
implementation effort of the pioneering work of Zerocash [8]. The
pseudocode of the contract is given in Figure 2. We explain each
component in detail below.

Contract state. The state of our smart contract consists of a
Merkle tree of notes MT and a set of spent note nullifiers NS. We
assume a Merkle tree implementation supporting insertion and
lookups via MT.add and MT[path]. We also assume that the Merkle
tree implementation exposes a list of periodically snapshotted his-
torical Merkle tree roots via MT.RTS.

Notes. A note is a fundamental data unit encoding four values,
the public key pk of the owner, the asset identifier typ, a nonce
𝜌 , a value val ∈ 𝑉 , where 𝑉 is a set of allowable values, e.g. 𝑉 =

{0, . . . , 264 − 1}. We write note = (pk, typ, val, 𝜌). Associated with
each note are two algorithms NoteCommit and DeriveNullifier.
Algorithm NoteCommit takes input a note and returns a note com-
mitment ncm. Algorithm DeriveNullifier takes input a secret key
sk and a note note to return a nullifier nf.

The Action circuit. The action circuit declares a transaction that
spends a note (via revealing a nullifier nf) and creates a note (via
revealing a note commitment ncm). It also declares the two fields
tx.ev and tx.et, encrypting the net value change and asset type (of
both notes) under the FHE public key pk. We let the action circuit

declare these values so that they can be passed to FHE circuits as
inputs.

Transaction creation. The user function CreateTx contains code
that creates a transaction. It takes input a secret key sk, some
actionInfo containing path to a note oldNote owned by the user,
a newNote to be created, and encryption randomness 𝑟val and 𝑟typ.
It prepares a transaction tx containing fields rt, ncm, nf, ev, et, and
𝜋 . The Merkle root rt of the transaction is set to the most recently
available Merkle root MT.rt. The note commitment ncm is set to the
commitment of the created newNote. The nullifier nf is set to the
derived nullifier of note to be spent oldNote using the user secret
key sk. The encrypted value ev is set to the net difference (a signed
integer) between oldNote.val and newNote.val. The encrypted
type et is set to the encryption of the type that both notes must
share. Finally, the validity proof 𝜋 is computed by invoking the
zk-SNARK prover for the Action circuit.

Transaction processing. Unlike Zerocash, we do not balance of
values when transactions are processed. Private (in terms of ac-
cessibility) contract function Process first verifies that the spend
encoded in a transaction tx is valid before processing it. Validity
checking amounts to checking that if tx.nf ≠ ⊥ then tx.rt must
have been a historical Merkle root and that the Action circuit proof
is valid. Processing of a tx simply adds the new note commitment
ncm to the Merkle tree MT and the spent note nullifier nf to NS.

The Balance circuit. “Balance” refers to that two transactions tx
and tx′ declare the exact opposite value changes of the same asset
type. In Zcash Orchard, balance is checked by utilizing the additive
homomorphism of the commitment scheme. We use a ZK circuit to
ensure balance here. We note that we could simplify the balance cir-
cuit by utilizing additionally another binding commitment scheme
instead of FHE.Enc since full homomorphism is not required. But
we opt to present the concept in an expressive manner without
considering constant factor efficiency differences.

Public type declaration. We have chosen to hide the asset types
by default for transactions to enable multi-asset confidential trans-
fers. However, it shall be convenient for our later applications for
transactions to (optionally) publicly declare the asset type. This is
done via fields tx.typ and tx.𝑟typ. We require the type declaration
to be correct, meaning that tx.et = FHE.Encpk (tx.typ; tx.𝑟typ)—a
check that is checked implicitly for all incoming transactions.

Relations with Decentralized Anonymous Payments (DAPs). A
closely related primitive, first formalized in thework of Zerocash [8]
is called Decentralized Anonymous Payments (DAPs). A DAP al-
lows anonymous and confidential transactions modifying account
balances in a verifiable manner. A ledger maintains a state that
encodes the balances of users. To transact, users submit a transac-
tion declaring certain properties, which is then processed by the
ledger. For us, a transaction tx can declare any amounts of tokens
minted (created) or burnt (destroyed), which the corresponding
value declared via tx.ev. With the Balance circuit, our construc-
tion do realize the properties of DAPs but we do not formalize this
here since it is not the focus of our work and due to syntactical
differences.

7

Contract Token
State variables:
1 public MT // Merkle tree of note commitments
2 public NS // Set of spent note nullifiers

Priv Func Process(tx) :
3 Assert (tx.nf = ⊥ or tx.nf ∉ NS)
4 Assert (tx.rt ∈ MT.RTS and Action.verify(tx.rt, tx; tx.𝜋))
5 MT.add(tx.ncm) ; NS.add(tx.nf)
ZK Circuit Action(tx; sk, actionInfo) :
6 (path, oldNote, newNote, 𝑟val, 𝑟typ) ← actionInfo
7 If tx.nf ≠ ⊥ then // Action spends an old note
8 ncm← NoteCommit(oldNote)
9 Assert (tx.rt[path] = ncm)
10 Assert (oldNote.pk = Kg(sk))
11 Assert (tx.nf = DeriveNullifiersk (oldNote) = newNote.𝜌)
12 Assert (newNote.typ = oldNote.typ))
13 val← oldNote.val − newNote.val
14 Else tx.nf = ⊥ then // Action only creates a new note
15 val = newNote.val
16 Assert (tx.ncm = NoteCommit(newNote))
17 Assert (tx.ev = FHE.Encpk (val; 𝑟val))
18 Assert (tx.et = FHE.Encpk (newNote.typ; 𝑟typ))

User Func CreateTx(sk, actionInfo) :
19 (path, oldNote, newNote, 𝑟val, 𝑟typ) ← actionInfo
20 tx.rt← MT.rt ; tx.ncm← NoteCommit(newNote)
21 tx.nf← DeriveNullifiersk (oldNote)
22 tx.ev← FHE.Enc(pk, oldNote.val − newNote.val; 𝑟val)
23 tx.et← FHE.Enc(pk, newNote.typ; 𝑟typ)
24 tx.𝜋 ←$ Action.prove(tx; sk, path, oldNote, newNote, 𝑟val, 𝑟typ)
25 Return tx

ZK Circuit Balance(tx, tx′ ; actionInfo, actionInfo′) :
26 (·, oldNote, newNote, 𝑟val, 𝑟typ) ← actionInfo
27 (. . . , 𝑟 ′val, 𝑟

′
typ) ← actionInfo′

28 typ← oldNote.typ ; val← oldNote.val − newNote.val
29 Assert (tx.ev = FHE.Enc(val; 𝑟val))
30 Assert (tx′ .ev = FHE.Enc(−val; 𝑟 ′val))
31 Assert (tx.et = FHE.Enc(typ; 𝑟typ))
32 Assert (tx′ .et = FHE.Enc(typ; 𝑟 ′typ))

User func CreateBalanceTx(sk, actionInfo, actionInfo′) :
33 tx← CreateTx(sk, actionInfo)
34 tx′ ← CreateTx(sk, actionInfo′)
35 𝜋 ← Balance.prove(tx, tx′ ; actionInfo, actionInfo′)
36 Return tx, tx′, 𝜋

Figure 2: Contract design for multi-asset shielded pool.

5.2 Trading: constant function market makers
Constant function market makers (CFMMs) have seen wide adop-
tion on computing and storage constrained smart contract platforms
such as Ethereum. Applications such as Curve and Uniswap, which
are special cases of CFMMs, manage billions worth of assets and
daily trades. CFMMs allow traders to trade against assets of liquid-
ity providers (LPs) according to a fixed, simple rule. Mathematically,
the application state consists of three numbers (𝑥,𝑦, 𝑧) ∈ (R+)3,
with 𝑥 , 𝑦 representing the overall asset reserves and 𝑧 represent-
ing the representing pool tokens. In absence of fees, a trade of
(𝛿𝑥 , 𝛿𝑦) ∈ R2 is valid if and only if

𝜙 (𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦) ≥ 𝜙 (𝑥,𝑦) , (1)

where 𝜙 is a function called the trading function. For simplicity, we
focus on the widely studied and adopted constant-product function
in this work, i.e. 𝜙 (𝑥,𝑦) = 𝑥𝑦. In applications, reserve and trading
amounts are typically represented as unsigned or signed 64-bit
integers interpreted as fixed-point rational numbers.

Trade privacy in CFMMs. Two main privacy metrics of CFMMs
are anonymity and trade privacy [26]. Roughly, A CFMM has
anonymity if observers cannot infer the identity of the traders and
it has trade privacy if trade amounts are not revealed. On one hand,
it is known how to protect the anonymity of the traders [24, 25]
using zero-knowledge proofs. On the other hand, it is known that
trade privacy cannot be achieved if exact spot prices are released for
each trade [2]. There are solutions of using ElGamal to net trades
in a batch before executing [50]. Here, we describe how trades can
be executed sequentially with programmable price release, as an
application in the Pesca framework. Together with random per-
mutation of batched trades, we can provably achieve differential
privacy of individual execution prices [23].

FHE trade circuit. We first describe the key ingredient in our
construction—the FHE trade circuit. We utilize the threshold FHE
functionality to decide the validity of an incoming trade, which

Contract CFMM extends Token, FHEBase
State variables:
1 public ex, ey, ez // Encrypted balances of assets and pool tokens
2 public typ𝑥 , typ𝑦 // asset types of the pool

FHE Circuit Trade((𝑥, 𝑦), (𝑑𝑥,𝑑𝑦)) :
3 𝑥 ′ ← 𝑥 + 𝑑𝑥 ; 𝑦′ ← 𝑦 + 𝑑𝑦
4 If (𝑥 ′𝑦′ ≥ 𝑥𝑦) then Return ((𝑥 ′, 𝑦′), 1)
5 Return ((𝑥, 𝑦), 0)
Pub Func Trade(txfund, txrefund, 𝜋, txpayout) :
6 Assert ({txfund .typ, txpayout .typ} = {this.typ𝑥 , this.typ𝑦 })
7 Assert Balance.verify(txfund, txrefund;𝜋)
8 Assert (txrefund .nf = txpayout .nf = ⊥) ; this.Process(txfund)
9 ((ex, ey), eb) ← Trade.Eval((ex, ey), (txfund .ev, txpayout .ev))
10 Async 𝑏 ← ThDec(eb) :
11 If 𝑏 = 1 then this.Process(txpayout)
12 Else this.Process(txrefund)
User Func CreateTrade(sk, fundInfo, refundInfo, payoutInfo) :
13 txfund, txrefund, 𝜋 ← CreateBalanceTx(sk, fundInfo, refundInfo)
14 txrefund ← CreateTx(sk, payoutInfo)
15 Return txfund, txrefund, 𝜋, txpayout

Figure 3: Contract design for privacy-preserving CFMM.

is encoded in a bit 𝑏 (with 1 being valid and 0 otherwise) that is
decrypted asynchronously via threshold decryption.

Contract function Trade. To interface with the FHE Trade cir-
cuit, three action transactions are required: txfund, txrefund and
txpayout. Transactions txfund and txrefund should balance, mean-
ing that they spend and refunds the exact same amount. Transac-
tions txfund and txpayout, if processed together, reflect that the
trade is valid. Transactions txfund and txrefund, if processed to-
gether, reflect that the trade is invalid. Exactly which two transac-
tions get processed is determined from the output bit of the FHE
Trade circuit.

Price release and liquidity provision. To enable trades, the spot
price of the market must be periodically released. We encapsulate

8

this in a contract function and FHE circuit ReleasePrice given in
Figure 4. When invoked, the function simply releases the amount
of normalized balance per pool token of either asset. We assume
that there are external mechanisms, e.g. timers, that periodically
invoke the price release mechanism so that users and arbitrageurs
can trade against the CFMM.

Contract CFMM extends Token, FHEBase
FHE Circuit ReleasePrice(𝑥, 𝑦, 𝑧) :
1 Return (𝑥/𝑧, 𝑦/𝑧)
Priv Func ReleasePrice() :
2 eout← ReleasePrice.Eval(ex, ey, ez)
3 Async (𝑥, 𝑦) ← ThDec(eout) :
4 Return 𝑥, 𝑦

Priv Func Setup(ex, ey, ez) :
5 this.InitFHEState(ex, ey, ez)
FHE Circuit Enter((𝑥, 𝑦, 𝑧), (𝑑𝑥,𝑑𝑦,𝑑𝑧)) :
6 If (𝑥 · 𝑑𝑦) = (𝑦 · 𝑑𝑥) and (−𝑧 · 𝑑𝑥) = (𝑥 · 𝑑𝑧) then
7 Return ((𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑧 + 𝑑𝑧), 1)
8 Return ((𝑥, 𝑦, 𝑧), 0)
Pub Func Enter(txfund, txrefund, 𝜋, tx′fund, tx

′
refund, 𝜋

′, txpayout) :
9 Assert (txfund .typ = this.typ𝑥 and tx′fund .typ = this.typ𝑦)

10 Assert (txpayout .typ = this)
11 Assert Balance.verify(txfund, txrefund;𝜋)
12 Assert Balance.verify(tx′fund, tx

′
refund;𝜋

′)
13 Assert (txrefund .nf = tx′refund .nf = txpayout .nf = ⊥)
14 this.Process(txfund) ; this.Process(tx′fund)
15 (est, eb) ← Enter.Eval(est, (txfund .ev, tx′fund .ev, txpayout .ev))
16 Async 𝑏 ← ThDec(eb) :
17 If 𝑏 = 1 then this.Process(txpayout)
18 Else this.Process(txrefund) ; this.Process(tx′refund)

User Func CreateEnter(sk, assetAInfo, assetBInfo, payoutInfo) :
19 txfund, txrefund, 𝜋 ← CreateBalanceTx(sk, assetAInfo)
20 tx′fund, tx

′
refund, 𝜋

′ ← CreateBalanceTx(sk, assetBInfo)
21 txpayout ← CreateTx(sk, payoutInfo)
22 Return txfund, txrefund, 𝜋, tx

′
fund, tx

′
refund, 𝜋

′, txpayout

Figure 4: Contract design for a privacy-preserving CFMM,
continued.

Providing liquidity. Besides trading, a CFMM requires the ability
for users to deposit liquidity. The design here follows the same out-
line as the case for trade. The FHE circuit Enter takes an additional
input 𝑧, which encodes the number of pool tokens minted or burnt.
We omit further details here as the pseudocode given in Figure 4 is
self-explanatory. We remark that for users to be able to construct
valid deposits. The user must know the exact spot trading price,
which is only possible after a price release. To make this possible,
the CFMM contract can block trades at a predetermined time for a
set amount of time and release the up-to-date spot price for liquidity
provision.

5.3 Sealed-bid auctions
Overview of contract. The on-chain application act as the auc-

tioneer, accepting encrypted (to chain FHE public key pk) bids from
users. The contract is capable of keeping track of arbitrary num-
ber of concurrently running auctions, each with some index 𝑖 . For
each auction 𝑖 , the application state est[𝑖] consists of a tuple of
(unsigned) integers (𝑝, 𝑗), each initialized to 0. Integer 𝑝 encodes

Contract FPA extends Token, FHEBase
State variables:
1 public est // List of running auction states
2 public item // List of auction items
3 public refund // List of bid refunds for each auction item
4 public payout // List of payout transactions for each auction item

Pub Func SetupAuction(txfund, txrefund, 𝜋, est) :
5 Balance.verify(txfund, txrefund;𝜋) ; this.Process(txfund)
6 𝑖 ← |this.est | ; this.item[𝑖] ← txfund
7 this.payout[𝑖] ← [txrefund]
8 this.est[𝑖] ← est ; Return 𝑖

FHE Circuit Accum[𝑗] (𝑝, 𝑘) :
9 If (𝑞 > 𝑝) then return (𝑞, 𝑗) Else return (𝑝, 𝑘)
Pub Func ProcessBid(𝑖, txfund, txrefund, 𝜋bid, txpayout, 𝜋payout) :
10 Assert (txfund .typ = typ0) // Some fixed currency type
11 Assert Balance(txfund, txrefund;𝜋fund)
12 Assert Balance(this.item[𝑖], txpayout;𝜋payout)
13 Assert (txrefund .nf = txpayout .nf = ⊥) ; this.Process(txfund)
14 this.refund[𝑖] .push(txrefund) ; this.payout[𝑖] .push(txpayout)
15 est[𝑖] ← Accum[|this.refund[𝑖] |] .Eval(this.est[𝑖], txfund .ev)
User Func CreateBid(𝑖, bidInfo, payoutInfo) :
16 txfund, txrefund, 𝜋fund ← CreateBalanceTx(sk, bidInfo)
17 txpayout, ·, 𝜋payout ← CreateBalanceTx(sk, payoutInfo)
18 Return txfund, txrefund, 𝜋fund, txpayout, 𝜋payout

Pub Func FinalizeAuction(𝑖) :
19 (·, ej) ← this.est[𝑖]
20 Async 𝑗 ← ThDec(ej) :
21 this.Process(this.payout[𝑖] [𝑗])
22 For 0 < 𝑘 ≠ 𝑗 do this.Process(this.refund[𝑖] [𝑘])

Figure 5: Contract design for privacy-preserving sealed-bid
first-price auction.

the current max bid and 𝑗 denotes the index of the max bidder. Here,
for simplicity, we assume that all bids are given in some fixed token
type typ0.

In a sealed-bid auction, each bidder commits to a price 𝑝𝑖 which
is not revealed to any other user. The winner is defined as the
party 𝑗 with the largest bid 𝑝 𝑗 , and the realized price is typically
some function 𝑓 of the first and second price.

We are interested in sealed-bid auctions with no user-to-user
interaction and minimal information leakage. In particular, we want
the bids of users to stay sealed even after the conclusion of the auction.
This is potentially important for multi-round auctions, as asset
reserves of bidders are not revealed.

Setting up an auction. To set up an auction, the item hold simply
constructs a funding transaction txfund spending the auction item, a
refund transaction txrefund which refunds the auction item (default
outcome of auction), a balance proof 𝜋 , an initial auction state est,
encoding the minimum bid price, and a state initialization proof 𝜋 ′.
We assume that the information about the auction item, namely
its type, is released in some channel so that interested users can
construct valid bidding transactions.

Accumulate FHE circuit. We design a minimal FHE circuit to sup-
port bid processing. Note that the Accum circuit is parameterized
by an integer 𝑖 denoting the incoming bid index. The circuit simply
compares the current winning price to an incoming bid and updates
the winner index accordingly.

9

Bid processing. Abid consists of a funding transaction txfund con-
taining the bid, txrefund to refund the bid amount and associated
balance proof 𝜋 , a payout transaction txpayout claiming the auction
item and associated balance proof 𝜋 ′. Balance proof 𝜋 ensures that
txrefund refunds exactly the amount in the bid transaction txfund.
Balance proof 𝜋 ′ ensures that txpayout claims exactly the item be-
ing auctioned. The contract processes the funding transaction and
simply pushes txrefund and txpayout to a list. It then accumulates
the incoming bid using the Accum FHE circuit with the parameter
set to the current bid index (which is equal to the length of the
refund transaction array |this.refund[𝑖] |), which will update the
current max price and winner index if the incoming bid price is
higher than previous max price.

Bid generation. To create a bid, a user simply generates a funding
transaction txfund, associated refund transaction txrefund, and
balance proof 𝜋 .

Finalizing an auction. To finalize an auction with index 𝑖 , the
contract first threshold decrypts the part of the state containing
the winner index 𝑗 . It will process refund transactions of all losing
bids and the payout transaction of the winning bidder. Note that
since we have previously ensured balance, no additional balance
checks are required in this step.

Information leakage analysis. Note that only the FinalizeAuction
function release information about the confidential state est, and
only the winner index is revealed. This means that each bidder can
only learn whether their bid was a winning bid or not.

Efficiency consideration. Our FHE circuits require only a cou-
ple arithmetic operations on fixed-point numbers. Unfortunately,
the most efficient bootstrapped FHE schemes, such as FHEW [31]
and TFHE [22], work over binary values. We note that to imple-
ment 𝑛-bit arithmetic operations using binary gates we need to
account for blowup factors of 𝑂 (𝑛) for addition and mux, 𝑂 (𝑛2)
for multiplication and division.

6 CONCLUSION
In this work, we propose Pesca, a smart contract architecture where
privacy-preserving applications can be built with its security prop-
erties solely reliant on the Byzantine assumptions of consensus
nodes.

We formalize the notion of state machine augmented with thresh-
old release protocols and study how existing BFT protocols can be
adopted to replicate them. We instantiate a blockchain supporting
programmable threshold decryption using threshold FHE amongst
other widely-studied building blocks. We propose a smart contract
architecture on top of such a blockchain where applications can be
engineered expressively. We provide two example applications real-
izing CFMMs and FPSBAs, both with maximal privacy guarantees.

We identify the performance of threshold FHE schemes support
Shamir secret keys as a key performance bottleneck. We think
that with more research efforts on such types of FHE schemes, as
well as more engineering efforts on programming and compiler
frameworks for FHE and universal zk-SNARKs, the Pesca blueprint
can become truly viable to support real-world applications.

REFERENCES
[1] Guillermo Angeris and Tarun Chitra. 2020. Improved price oracles: Constant

function market makers. In Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies. IEEE, 80–91.

[2] Guillermo Angeris, Alex Evans, and Tarun Chitra. 2021. A note on privacy in
constant function market makers. arXiv preprint arXiv:2103.01193 (2021).

[3] Circom authors. 2022. Circom Circuit Compiler. https://docs.circom.io/. Accessed
May. 2022.

[4] Web3.js authors. 2022. web3.js – Ethereum JavaScript API. https://web3js.
readthedocs.io/en/v1.7.3/. Accessed May. 2022.

[5] Zokrates authors. 2022. Zokrates. https://zokrates.github.io/. Accessed May.
2022.

[6] Aritra Banerjee, Michael Clear, and Hitesh Tewari. 2021. zkhawk: Practical private
smart contracts from mpc-based hawk. In 2021 3rd Conference on Blockchain
Research & Applications for Innovative Networks and Services (BRAINS). IEEE,
245–248.

[7] Mihir Bellare. 2020. Lectures on NIZKs. (2020). https://cseweb.ucsd.edu/~mihir/
cse208-Wi20/main.pdf.

[8] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous
Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 459–474. https://doi.org/10.1109/SP.2014.36

[9] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. 2020. Can a Pub-
lic Blockchain Keep a Secret?. In TCC 2020, Part I (LNCS, Vol. 12550), Rafael
Pass and Krzysztof Pietrzak (Eds.). Springer, Heidelberg, 260–290. https:
//doi.org/10.1007/978-3-030-64375-1_10

[10] Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. 2020. Single
secret leader election. In Proceedings of the 2nd ACM Conference on Advances in
Financial Technologies. 12–24.

[11] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, SamKim, PeterM. R.
Rasmussen, and Amit Sahai. 2017. Threshold Cryptosystems From Threshold
Fully Homomorphic Encryption. Cryptology ePrint Archive, Report 2017/956.
https://eprint.iacr.org/2017/956.

[12] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, SamKim, PeterM. R.
Rasmussen, and Amit Sahai. 2018. Threshold Cryptosystems from Threshold
Fully Homomorphic Encryption. In CRYPTO 2018, Part I (LNCS, Vol. 10991),
Hovav Shacham and Alexandra Boldyreva (Eds.). Springer, Heidelberg, 565–596.
https://doi.org/10.1007/978-3-319-96884-1_19

[13] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. 2020. ZEXE: Enabling Decentralized Private Computation. In 2020
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 947–964.
https://doi.org/10.1109/SP40000.2020.00050

[14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully
homomorphic encryption without bootstrapping. In ITCS 2012, Shafi Goldwasser
(Ed.). ACM, 309–325. https://doi.org/10.1145/2090236.2090262

[15] Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2018. The latest gossip on BFT
consensus. arXiv preprint arXiv:1807.04938 (2018).

[16] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2020. Zether:
Towards Privacy in a Smart Contract World. In FC 2020 (LNCS, Vol. 12059), Joseph
Bonneau and Nadia Heninger (Eds.). Springer, Heidelberg, 423–443. https:
//doi.org/10.1007/978-3-030-51280-4_23

[17] Vitalik Buterin and Virgil Griffith. 2017. Casper the friendly finality gadget. arXiv
preprint arXiv:1710.09437 (2017).

[18] Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor
Shoup, and Dominic Williams. 2021. Internet Computer Consensus. Cryptology
ePrint Archive, Report 2021/632. https://eprint.iacr.org/2021/632.

[19] Benjamin Y Chan and Elaine Shi. 2020. Streamlet: Textbook Streamlined
Blockchains. Cryptology ePrint Archive, Report 2020/088. https://eprint.iacr.
org/2020/088.

[20] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart contracts. In 2019
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 185–200.

[21] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,
and Nicholas P. Ward. 2020. Marlin: Preprocessing zkSNARKs with Universal and
Updatable SRS. In EUROCRYPT 2020, Part I (LNCS, Vol. 12105), Anne Canteaut and
Yuval Ishai (Eds.). Springer, Heidelberg, 738–768. https://doi.org/10.1007/978-3-
030-45721-1_26

[22] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of Cryptology
33, 1 (Jan. 2020), 34–91. https://doi.org/10.1007/s00145-019-09319-x

[23] Tarun Chitra, Guillermo Angeris, and Alex Evans. 2021. Differential Privacy in
Constant Function Market Makers. Cryptology ePrint Archive, Report 2021/1101.
https://eprint.iacr.org/2021/1101.

[24] Shumo Chu, Yu Xia, and Zhenfei Zhang. 2021. Manta: a Plug and Play Private
DeFi Stack. Cryptology ePrint Archive, Report 2021/743. https://eprint.iacr.org/

10

https://docs.circom.io/
https://web3js.readthedocs.io/en/v1.7.3/
https://web3js.readthedocs.io/en/v1.7.3/
https://zokrates.github.io/
https://cseweb.ucsd.edu/~mihir/cse208-Wi20/main.pdf
https://cseweb.ucsd.edu/~mihir/cse208-Wi20/main.pdf
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-030-64375-1_10
https://eprint.iacr.org/2017/956
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1007/978-3-030-51280-4_23
https://eprint.iacr.org/2021/632
https://eprint.iacr.org/2020/088
https://eprint.iacr.org/2020/088
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/s00145-019-09319-x
https://eprint.iacr.org/2021/1101
https://eprint.iacr.org/2021/743

2021/743.
[25] Wei Dai. 2021. Flexible Anonymous Transactions (FLAX): Towards Privacy-

Preserving and Composable Decentralized Finance. Cryptology ePrint Archive,
Report 2021/1249. https://eprint.iacr.org/2021/1249.

[26] Wei Dai. 2022. Navigating Privacy on Public Blockchains. https://wdai.us/posts/
navigating-privacy/. Accessed March. 2022.

[27] Sourav Das, Tom Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias,
and Ling Ren. 2021. Practical Asynchronous Distributed Key Generation. Cryp-
tology ePrint Archive, Report 2021/1591. https://eprint.iacr.org/2021/1591.

[28] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. 2001. Robust Non-interactive Zero Knowledge. In CRYPTO 2001
(LNCS, Vol. 2139), Joe Kilian (Ed.). Springer, Heidelberg, 566–598. https://doi.org/
10.1007/3-540-44647-8_33

[29] Yvo Desmedt and Yair Frankel. 1989. Threshold cryptosystems. In Conference on
the Theory and Application of Cryptology. Springer, 307–315.

[30] Benjamin E. Diamond. 2021. Many-out-of-Many Proofs and Applications to
Anonymous Zether. In 2021 IEEE Symposium on Security and Privacy. IEEE Com-
puter Society Press, 1800–1817. https://doi.org/10.1109/SP40001.2021.00026

[31] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second. In EUROCRYPT 2015, Part I (LNCS, Vol. 9056),
Elisabeth Oswald and Marc Fischlin (Eds.). Springer, Heidelberg, 617–640. https:
//doi.org/10.1007/978-3-662-46800-5_24

[32] Taher ElGamal. 1985. A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. IEEE Transactions on Information Theory 31 (1985),
469–472.

[33] Andreas Erwig, Sebastian Faust, and Siavash Riahi. 2021. Large-Scale Non-
Interactive Threshold Cryptosystems Through Anonymity. Cryptology ePrint
Archive, Report 2021/1290. https://eprint.iacr.org/2021/1290.

[34] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. 2019.
Quisquis: A New Design for Anonymous Cryptocurrencies. In ASIACRYPT 2019,
Part I (LNCS, Vol. 11921), Steven D. Galbraith and Shiho Moriai (Eds.). Springer,
Heidelberg, 649–678. https://doi.org/10.1007/978-3-030-34578-5_23

[35] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. 2019. PLONK: Per-
mutations over Lagrange-bases for Oecumenical Noninteractive arguments of
Knowledge. Cryptology ePrint Archive, Report 2019/953. https://eprint.iacr.org/
2019/953.

[36] Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and Sophia
Yakoubov. 2020. Random-index PIR with Applications to Large-Scale Secure MPC.
Cryptology ePrint Archive, Report 2020/1248. https://eprint.iacr.org/2020/1248.

[37] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryp-
tion from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based. In CRYPTO 2013, Part I (LNCS, Vol. 8042), Ran Canetti and Juan A.
Garay (Eds.). Springer, Heidelberg, 75–92. https://doi.org/10.1007/978-3-642-
40041-4_5

[38] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yifan
Song. 2020. Storing and Retrieving Secrets on a Blockchain. Cryptology ePrint
Archive, Report 2020/504. https://eprint.iacr.org/2020/504.

[39] Jens Groth. 2006. Simulation-Sound NIZK Proofs for a Practical Language and
Constant Size Group Signatures. In ASIACRYPT 2006 (LNCS, Vol. 4284), Xuejia Lai
and Kefei Chen (Eds.). Springer, Heidelberg, 444–459. https://doi.org/10.1007/
11935230_29

[40] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In
EUROCRYPT 2016, Part II (LNCS, Vol. 9666), Marc Fischlin and Jean-Sébastien
Coron (Eds.). Springer, Heidelberg, 305–326. https://doi.org/10.1007/978-3-662-
49896-5_11

[41] Jens Groth. 2021. Non-interactive distributed key generation and key resharing.
Cryptology ePrint Archive, Report 2021/339. https://eprint.iacr.org/2021/339.

[42] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2022. Zcash
Protocol Specification. https://zips.z.cash/protocol/protocol.pdf. Accessed April.
2022.

[43] Markulf Kohlweiss and Michał Zając. 2021. On Simulation-Extractability of
Universal zkSNARKs. Cryptology ePrint Archive, Report 2021/511. https:
//eprint.iacr.org/2021/511.

[44] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Pa-
pamanthou. 2016. Hawk: The Blockchain Model of Cryptography and Privacy-
Preserving Smart Contracts. In 2016 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 839–858. https://doi.org/10.1109/SP.2016.55

[45] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate,
and Andrew K. Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical
Asynchronous MPC and its Application to Anonymous Communication. In ACM
CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz (Eds.). ACM Press, 887–903. https://doi.org/10.1145/3319535.3354238

[46] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019.
Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and Updatable
Structured Reference Strings. In ACM CCS 2019, Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, 2111–2128.
https://doi.org/10.1145/3319535.3339817

[47] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang,
Ari Juels, and Dawn Song. 2019. CHURP: Dynamic-Committee Proactive Secret
Sharing. In ACM CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz (Eds.). ACM Press, 2369–2386. https://doi.org/10.1145/3319535.
3363203

[48] Anoma Network. 2022. Ferveo: A synchronous Distributed Key Generation
protocol for front-running protection on public blockchains. https://github.com/
anoma/ferveo. Accessed April. 2022.

[49] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In EUROCRYPT’99 (LNCS, Vol. 1592), Jacques Stern (Ed.).
Springer, Heidelberg, 223–238. https://doi.org/10.1007/3-540-48910-X_16

[50] Penumbra. 2022. Penumbra Spec: Sealed-Bid Batch Auctions. https://protocol.
penumbra.zone/main/zswap/auction.html. Accessed March. 2022.

[51] Amit Sahai. 1999. Non-Malleable Non-Interactive Zero Knowledge and Adaptive
Chosen-Ciphertext Security. In 40th FOCS. IEEE Computer Society Press, 543–553.
https://doi.org/10.1109/SFFCS.1999.814628

[52] Adi Shamir. 1979. How to Share a Secret. Communications of the Association for
Computing Machinery 22, 11 (Nov. 1979), 612–613.

[53] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai
Abraham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness.
In 38th ACM PODC, Peter Robinson and Faith Ellen (Eds.). ACM, 347–356.
https://doi.org/10.1145/3293611.3331591

A SIZE OF MODULUS FOR THRESHOLD FHE
Fix a finite field F𝑞 , Shamir 𝑡-out-of-𝑛 secret sharing takes in-
put a master secret sk ∈ F𝑞 and outputs 𝑛 secret shares sk1 =

𝑃 (1), . . . , sk𝑛 = 𝑃 (𝑛) where 𝑃 ∈ F𝑞 [𝑋] is a random polynomial of
degree 𝑡 with the restriction that 𝑃 (0) = sk. Given any subset 𝑆 of
key shares with |𝑆 | = 𝑡 , a reconstruction of any other share 𝑃 (𝑗),
including the master secret with 𝑃 (0), can be obtained as a linear
combination of shares from 𝑆 :

𝑃 (𝑗) =
∑︁
𝑖∈𝑆

𝜆𝑆𝑖,𝑗 · 𝑃 (𝑖) , (2)

where 𝜆𝑆
𝑖,𝑗

are the Lagrange coefficients. Threshold decryption is
obtained by observing that reconstruction and decryption are both
linear and “commute”, i.e. reconstruction can be done over partial
decryptions.

Unlike ElGamal or Paillier, encryption schemes based on the
learning-with-error (LWE) problem do not directly support thresh-
old decryption naively as described above, as applying the Lagrange
coefficients directly to LWE ciphertexts completely removes the
information encoded on the message encrypted. The workaround
proposed by [11, 12] involves computing 𝜆𝑆

𝑖,𝑗
as a rational num-

ber instead of as a field element. During reconstruction, a large
multiplier (𝑛!)2 is applied to both sides of (2) to clear out the denom-
inators. As a consequence, the modulus 𝑞 needs to be “blown up” by
a factor of (𝑛!)3 compared to that of non-threshold schemes. This
method applies to a special class of FHE schemes [11, Definition
3.9] covering BGV [14] GSW [37] and FHEW [31] families.

11

https://eprint.iacr.org/2021/743
https://eprint.iacr.org/2021/1249
https://wdai.us/posts/navigating-privacy/
https://wdai.us/posts/navigating-privacy/
https://eprint.iacr.org/2021/1591
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1109/SP40001.2021.00026
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2021/1290
https://doi.org/10.1007/978-3-030-34578-5_23
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2020/1248
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://eprint.iacr.org/2020/504
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2021/339
https://zips.z.cash/protocol/protocol.pdf
https://eprint.iacr.org/2021/511
https://eprint.iacr.org/2021/511
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1145/3319535.3354238
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3363203
https://doi.org/10.1145/3319535.3363203
https://github.com/anoma/ferveo
https://github.com/anoma/ferveo
https://doi.org/10.1007/3-540-48910-X_16
https://protocol.penumbra.zone/main/zswap/auction.html
https://protocol.penumbra.zone/main/zswap/auction.html
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1145/3293611.3331591

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Consensus and State Machine Replication
	2.2 Non-interactive Zero-knowledge
	2.3 Threshold FHE
	2.4 Threshold Key Management

	3 Replication of State Machines with Threshold Release
	3.1 State Machines and Release Functions
	3.2 Replicating Threshold-release Machines

	4 Privacy-Enhancing Smart Contract
	4.1 Safety of FHE application states

	5 Applications
	5.1 Shielded Assets
	5.2 Trading: constant function market makers
	5.3 Sealed-bid auctions

	6 Conclusion
	References
	A Size of modulus for threshold FHE

