
PentaGOD: Stepping beyond Traditional GOD with Five Parties
Nishat Koti, Varsha Bhat Kukkala, Arpita Patra,

Bhavish Raj Gopal

kotis,varshak,arpita@iisc.ac.in

gbhavish@gmail.com

Indian Institute of Science

Bangalore, India

ABSTRACT
Secure multiparty computation (MPC) is increasingly being used

to address privacy issues in various applications. The recent work

of Alon et al. (CRYPTO’20) identified the shortcomings of tradi-

tional MPC and defined a Friends-and-Foes (FaF) security notion

to address the same. We showcase the need for FaF security in real-

world applications such as dark pools. This subsequently necessi-

tates designing concretely efficient FaF-secure protocols. Towards

this, keeping efficiency at the center stage, we design ring-based

FaF-secure MPC protocols in the small-party honest-majority set-

ting. Specifically, we provide (1,1)-FaF secure 5 party computation

protocols (5PC) that consider one malicious and one semi-honest

corruption and constitutes the optimal setting for attaining honest-

majority. At the heart of it lies the multiplication protocol that

requires a single round of communication with 8 ring elements

(amortized). To facilitate having FaF-secure variants for several

applications, we design a variety of building blocks optimized for

our FaF setting. The practicality of the designed (1,1)-FaF secure

5PC framework is showcased by benchmarking dark pools. In the

process, we also improve the efficiency and security of the dark pool

protocols over the existing traditionally secure ones. This improve-

ment is witnessed as a gain of up to 62× in throughput compared

to the existing ones. Finally, to demonstrate the versatility of our

framework, we also benchmark popular deep neural networks.

KEYWORDS
multi-party computation; friends-and-foes security (FaF); honest

majority; dark pools; PPML

1 INTRODUCTION
With the steady incline in the awareness of data privacy, we are

witnessing a paradigm shift in healthcare, finance, and various

other sectors involved in processing a large amount of sensitive

client data. Various privacy-preserving practices are being adopted

to reassure clients and provide them with the highest level of se-

curity guarantees. Given the ease of accommodating multiple data

owners and its computational efficiency, many real-world appli-

cations prefer the use of secure multiparty computation (MPC)

to perform privacy-preserving computations [7–9, 55]. Informally,

MPC enables 𝑛 mutually distrusting parties to compute a function

over their private inputs, while ensuring the privacy of the same

against an adversary controlling up to 𝑡 parties. Various applica-

tion scenarios where MPC based solutions have been proposed

include– secure auctions [9], privacy-preserving machine learn-

ing [13, 18, 19, 24, 36, 37, 43, 45, 56, 63], secure recommendation

This is the full version of the paper to appear at ACM CCS 2022.

systems [35, 59] and real-world deployments such as the Estonian

study on correlation between tax data and educational records [8]

and the study of salary inequities across various employees in the

city of Boston [7]. Although MPC has been the apt solution for ad-

dressing privacy issues in various real-world problems, we expose

the inadequacy of traditional security offered by MPC for applica-

tions with highly sensitive data. We use the example of financial

trading forums such as dark pools to demonstrate the same.

The need for privacy naturally extends to processing financial

transaction data. This has been one of the primary reasons for the

emergence of dark pools that allow investors to trade (buy and/or

sell) financial instruments such as securities (stocks, bonds etc.)

outside of the prying eyes of the public and ensure the trade remains

unexposed until it is completed. This allows investors to trade large
blocks of securities privately and ensure the market is not impacted

by the knowledge of such potential large-scale trade. For example,

public knowledge of an institution trying to sell a large portion of

its shares would cause a sudden depreciation of its share value even

before the transaction is completed. On the other hand, the market

impact is known to be much smaller when the trade is reported

after it is executed. This is the working principle underlying dark

pools, which makes them a popular choice for trading. Dark pools

are traditionally operated by trusted brokers who are made aware

of the trade interests of the clients. They are then expected to find

matching counter-parties within their network of private clients.

The clients, in the process, place complete trust on the broker to

not misuse the trade interests disclosed on clear. However, several

instances have showcased misuse of insider information where

dark pool operators have been fined for the same [47–53].

To guarantee complete privacy, the interest to trade must never

be disclosed in the open, not even to the broker operating the dark

pool. Ideally, matches between sellers and buyers must be found

without disclosing this sensitive information. Thus, the problem

can be modeled as an instance of MPC, where the private input is

the data related to the trade, and the clients are interested in se-

curely matching the possible trades. In this setting, rather than the

dark pool being operated by a central trusted broker, it is emulated

by an MPC protocol run among a set of parties. Clients secret share
their trade data to these parties in such a way that no subset, of

at most 𝑡 of these parties, learns any information. These parties

are responsible for running the MPC protocol designed to identify

matching trades securely. The applicability of MPC for securely

operating dark pools has been shown previously [5, 16, 17, 23].

Although MPC is befitting to the addressed problem, the current so-

lutions are far from complete. All the proposed protocols only offer

malicious security with abort. That is, the protocols are designed to

abort if the malicious adversary misbehaves and it is possible that

1



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

the adversary alone obtains the output. This could cause denial of

service attacks and result in the protocol terminating even before

the matched trades are disclosed. Further, such a setting allows an

adversary to cause repeated failures. Since time is of essence in

applications such as dark pools, this not only results in wastage of

valuable compute resources, but may also hamper the functionality

of the system. Hence, any security notion that empowers the ad-

versary to abort does not fit the bill. Instead, a security notion that

guarantees delivery of output regardless of the adversary’s misbe-

haviour is desirable. This is achieved by guaranteed output delivery
(GOD) or robustness, which is the strongest security notion that an

MPC protocol offers. Hence it is imperative to realize robust, secure

dark pools. The presence of GOD uplifts the trust and encourages

client participation in the system.

It is well known that an honest majority among the parties is

necessary to achieve GOD [21]. Moreover, honest majority enables

designing efficient protocols in comparison to dishonest majority.

Further, honest-majority MPC for a small set of parties has wit-

nessed huge interest lately [2, 3, 10, 11, 13, 15, 18, 19, 29, 44, 46, 56].

This is due to the various customizations it allows resulting in huge

efficiency gains. Hence, to realize applications such as secure dark

pools, we focus on designing honest-majority MPC protocols with

small number of parties that provide the strongest security of GOD.

Traditional GOD does not suffice. Most GOD protocols in the liter-

ature [11, 12, 15, 36] rely on an honest party identified as the trusted
third party (TTP) to carry out the computation if misbehavior is

detected. Elaborately, the parties entrust the TTP with their inputs,

which carries out the computation and delivers the output to all.

According to the standard security definition, this leakage of inputs

towards a TTP is not considered a privacy breach. This is because

the TTP is deemed to be honest and the goal is to protect against

information leakage towards an adversary. However, entrusting a

TTP with all the inputs may not be acceptable in real-world appli-

cations. Specifically, in the case of a dark pool, this is equivalent

to having a central broker who learns all the inputs and is trusted

to perform the matching. This defeats the purpose of employing

an MPC protocol, as one of the goals of a secure dark pool system

is to hide the trade from every single party since it contains highly

sensitive information of the client.

Another drawback of traditional MPC protocols is the view leak-

age attack. While executing an MPC protocol, nothing prevents an

adversary from sending its view, which consists of the view of 𝑡

corrupt parties, to an honest party. This is not treated as an attack in

the traditional security definition, since an honest party is expected

to discard non-protocol messages, unlike a semi-honest one
1
. How-

ever, if this honest party turns rogue in the future, the party can

obtain all the information about the submitted trade requests in

the system. This holds because it would now possess information

with respect to 𝑡 + 1 parties (𝑡 views received from the adversary

and its own view), which suffices to obtain the underlying secret

information. This, too, goes against the goal of providing trade

secrecy expected in the system.

To address these drawbacks of the traditional MPC security defi-

nition, Alon et. al. [1] proposes a new definition, called MPC with

1
A semi-honest adversary follows the protocol specification but always tries to learn

more information that it is not entitled to.

Friends and Foes (FaF). This definition requires honest parties’ in-

puts to be protected against not only the adversary (foes), but also

from quorums of other honest parties (friends). This is modeled

by a decentralized adversary which comprises two different non-
colluding adversaries– (i) a malicious adversary that corrupts any

subset of at most 𝑡 out of 𝑛 parties, (ii) a semi-honest adversary

that corrupts any subset of at most ℎ★ out of the remaining 𝑛 − 𝑡
parties. A protocol secure against such an adversary is said to be

(𝑡, ℎ★)-FaF secure. Further, the FaF model requires security to hold

even when an adversary sends its view to other parties, thereby

closely modeling our need. Hence, departing from the traditional

MPC model, we identify the need to design FaF-secure MPC pro-

tocols for applications such as dark pools that deal with highly

sensitive financial information that needs protection from all forms

of misuse. As described earlier, existing lawsuits against dark pool

operators showcase the temptation to misuse profitable informa-

tion, thereby reasserting the need for stepping beyond traditional

security. Further, our protocols also secure in the mixed adversarial

model
2
, as described in §E.3.

Small-party honest-majority FaF model. Alon et. al. [1] show

that GOD can be achieved in the (𝑡, ℎ★)-FaF model iff 2𝑡 + ℎ★ <

𝑛. Thus, obtaining GOD requires 𝑛 ≥ 4 for non-zero values of 𝑡

and ℎ★. Since our focus is on MPC with small number of parties,

observe that instantiating 𝑛 = 4 and 𝑡 = ℎ★ = 1 provides the

optimal threshold for 4 party computation (4PC) to achieve GOD.

However, two corruptions result in a dishonest majority setting,

which renders less efficient protocols than their honest majority

counterparts. Hence, to design efficient protocols, we augment this

setting with one additional honest party, and design 5PC protocols

which are (1, 1)-FaF secure. We remark that while (𝑡, ℎ★) can be

instantiated with a varied range of values to attain GOD such that

2𝑡 + ℎ★ < 5, we set 𝑡 = ℎ★ = 1 because of the following reasons:

(a) this results in an honest majority setting; (b) we believe that

ℎ★ = 1 suffices for most practical applications since honest parties

(friends) are unlikely to collude with each other (note that when

ℎ★ = 1, the only possible value of 𝑡 is 1). We note that in the current

setting of 𝑛 = 5 and 𝑡 = ℎ★ = 1, one could alternatively avoid

the aforementioned weaknesses by deploying a traditional (5,2)

malicious secure protocol since the latter protects against view

leakage and also avoids reliance on a TTP when deployed in the

presence of a single malicious party. However, since the traditional

protocol is designed to cater to two malicious parties as opposed to

one in our setting, it may lose out on performance. Hence, keeping

efficiency for real-world applications at center stage, the objective is

to leverage the presence of a semi-honest party to design customised

efficient (1, 1)-FaF secure protocols. We note that a traditional (𝑛, 𝑡)
malicious protocol is capable of protecting against view leakage

attack and avoids the reliance on a TTP as long as at most 𝑡 − 1

parties are malicious.

1.1 Our contributions
(1, 1)-FaF secure 5PC. We observe that traditionally secure MPC

providing GOD is a misfit for several sensitive real-world applica-

tions. This necessitates designing GOD protocols in the FaF-secure

2
Mixed adversarial model is one where a single (centralized) adversary is allowed to

corrupt 𝑡 parties maliciously and a disjoint subset of ℎ★ parties semi-honestly.

2



PentaGOD: Stepping beyond Traditional GOD with Five Parties

model. Towards this, with efficiency in mind, we work over the

ring Z
2
ℓ , both arithmetic and Boolean (ℓ = 1), and design (1,1)-FaF

secure 5PC protocols. The protocols are cast in the preprocessing

model since it offloads heavy input-independent computations to

a preprocessing phase, resulting in a fast input-dependent online

phase. The highlight here is the multiplication which requires–(i)

just three parties to be online for most of the computation and (ii)

requires one round (amortized) and eight ring elements of communi-

cation in the online phase. The efficiency and resource management

(involvement of only 3 parties for most of the computation) of the

multiplication results in a concretely efficient 5PC framework. We

concretely showcase the benefit of having reduced number of on-

line parties over a naive solution (all parties online) as well as the

traditional (5, 2) maliciously secure protocol.

Building blocks and generality. We resort to a modular approach

to design various building blocks, as shown in Fig. 1, where pro-

tocols in each layer build on those in the previous layers. Layer 0

forms the core MPC, with layers above it providing the building

blocks. This constitutes our generic and comprehensive framework

since it provides support for a wide range of building blocks that

suffice for various applications. While these building blocks have

been well studied in the literature, our contribution lies in designing

and optimizing these for the 5PC (1,1)-FaF setting.

Figure 1: Designed (1, 1) FaF-secure 5PC framework

Applications and Benchmarks. The designed (1,1)-FaF secure 5PC
is ideal for real-world applications that deal with highly sensitive in-

formation such as systems with financial transaction data [58], bio-

metric data [62], allegations reported by victims or whistle-blowers

[4, 39], personal health record data [27], etc. We consider two such

applications to showcase the practicality of our framework.

(i) Dark pools: Although secure dark pools have been considered

in the traditional MPC setting, we design improved protocols for

the same in the 5PC (1,1)-FaF setting. Specifically, we optimize

the continuous double auction (CDA) and volume-based matching

algorithms. We identify several aspects of the matching algorithms

that can be performed in parallel, which improves the efficiency of

the designed protocols. We benchmark the performance of these

securematching algorithms and observe a throughput improvement

of up to 62× in comparison to [16].

(ii) PPML: The designed building blocks have been extensively

used in realizing privacy-preserving machine learning (PPML) [13,

18, 19, 36, 43, 45, 56], albeit in the traditional security model. Since

PPML in itself is suitable for a wide range of application scenarios,

we also demonstrate the practicality of the designed (1,1)-FaF secure

5PC for PPML. For this, we benchmark the performance of the

designed protocols for secure inference using popular deep neural

networks such as LeNet [40] and VGG16 [60].

1.2 Related Work
The work of [1] focuses on extending the standard security notion

of MPC to the FaF-setting. In this regard, they provide both a full-

security as well as fairness variants in this new setting. They further

provide a detailed investigation of various feasibility results and

limitations in the FaF-setting. The (1,1)-FaF secure 5PC protocol

designed in the current work forms the first concrete instantiation

of a FaF-secure protocol, particularly as the optimal case for an

honest-majority setting for a small number of parties. We therefore

next discuss relevant secret sharing based MPC works that provide

GOD in small-party setting under the traditional security model. A

concretely efficient protocol for achieving GOD was provided in

[36], both for 3PC and 4PC setting, which improved over the 4PC of

[13] and the 3PC of [11]. Note that [13] in turn improved upon the

GOD protocols in [32]. The work in [24] proposed 4PC protocols

on par with [36], albeit with security of private robustness. How-
ever, the security guarantees of both SWIFT and [24] are known

to be theoretically equivalent. The recent work of [37] provides

an improved multiplication protocol over [36] in the 4PC setting.

The improvement is seen in the preprocessing phase, where [37]

requires only 2 ring elements as opposed to 3. While there are no

protocols explicitly designed for 5PC that attain GOD, [12] provides

protocols for the 𝑛-party setting, from which a 5PC protocol can

be derived. The work of [14] attains GOD in the 5PC setting, albeit

relying on garbled circuits.

Organization. We describe the preliminaries and threat model

in §2. The core (1, 1) FaF-secure 5PC is explained in §3. The build-

ing blocks follow in §4. Finally, the practicality of our framework

is demonstrated through benchmarks for dark pools and PPML,

together with improved dark pool algorithms, in §5.

2 PRELIMINARIES
Threat model. We design protocols that comprise five parties

P = {𝑃1, 𝑃2, . . . , 𝑃5} that are connected via pairwise private and

authentic channels in a synchronous network. Our protocols are

FaF-secure with a static, malicious probabilistic polynomial time

(PPT) adversary that can corrupt up to one party, and a different
semi-honest adversary that can corrupt at most one other party. We

prove the security of our protocols in the standard real-world/ideal-

world paradigm. The security definition as per this paradigm in FaF

model is recalled in Appendix §A.

All our primitives assume a one-time shared key setup to facili-

tate each subset of parties to generate common randomness among

themselves. We model this as an ideal functionality Fsetup (Fig. 8),

which can be instantiated with any FaF protocol in our setting (say

using that of [1]). Several works [2, 3, 11, 13, 18, 19, 36, 43, 56]

rely on such a setup. Therefore, the high-level protocols, either

application protocols or general 5PC, start with such a setup phase

which is done once and for all. The set of computing parties P may

be equivalently represented as P = {𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 , 𝑃𝑙 , 𝑃𝑚} for ease of
presentation. Our protocol works over the ring Z

2
ℓ (and Z2 ). We use

fixed-point arithmetic (FPA) notation to represent decimal values,

in signed 2’s complement notation. Here, the most significant bit

denotes the sign, the last 𝑑 bits represent the fractional part, and

the remaining ℓ − 𝑑 − 1 bits denote the integer part. We let ℓ = 64

and 𝑑 = 13.

3



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

3 ROBUST (1, 1)-FAF SECURE 5PC
Our protocols are cast in the preprocessing model, where during an

input-independent preprocessing phase, computationally heavy op-

erations are carried out which pave way for a fast input-dependent

online phase. Our online phase requires active participation mostly

from only three parties, 𝑃1, 𝑃2, 𝑃3, while 𝑃4, 𝑃5 come online only for

a short while, towards the end the computation, for verification.

All the building blocks, except reconstruction which is robust,

follow a common paradigm: either the protocol is successful or

the protocol finds a conflicting pair of parties, CP, that includes
the malicious party; in the latter case, the input shares amongst 5

parties are reshared amongst the 3 parties outside the conflict set,

without affecting the secrets, and the computation is rerun amongst

the 3 parties. Since the malicious party is already excluded, the 3-

party protocol needs to be only semi-honest secure tolerating one

corruption. To enable this paradigm, we employ a share-conversion

primitive (see §3.5), which reshares the state of the 5 parties to the 3

parties, to continue computation with the latter. In any application

protocol such as the secure matching, as soon as a CP is detected

as a part of the computation, the rest of the execution switches

to the 3-party computation (3PC). Note that any semi-honest 3PC

framework that respects the secret-sharing semantics (replicated

secret sharing) can be deployed (such as the 3PC of [3, 18]), and

hence we treat the 3PC as a black-box.

The above paradigm of identifying a CP and completing the

computation in a smaller subset of parties is mostly facilitated by

a message-passing primitive invoked in the sharing and multipli-

cation protocols (which in turn form the basis of all the building

blocks). We introduce this primitive below, followed by our secret-

sharing semantics. We then describe the protocols for input sharing,

multiplication – which forms the core of all our constructions, fol-

lowed by output reconstruction.

Joint message passing (jmp). This primitive enables two parties

to send a common message to a third party such that the recipient

either receives the correct message or in case of an inconsistency in

the received messages, a trusted third party (TTP) is identified [36].

The protocol involves one sender sending the value, while other

sending the hash to the receiver, who then compares the received

values; in case of an inconsistency, the parties proceed to identify

a TTP, who then completes the computation of MPC on the clear

after receiving inputs from the parties. As opposed to the protocol

of SWIFT [36], we cannot use TTP in the same way in the (1, 1)-FaF
setting as the TTP learns all the inputs. Thus, we modify the jmp
protocol in [36] to adapt it to the (1, 1)-FaF setting as follows– in

case of an inconsistency, we modify jmp to output a pair of parties

in conflict, one of which is guaranteed to be maliciously corrupt,

instead of identifying a TTP. Note that the jmp protocol consists

of two phases (send, verify). The send phase consists of one of the
two senders, denoted as the speaker party sending the message

to the receiver, while the other sender party referred as the silent
party keeps quite. This distinction between the speaker and a silent
party is made only for the send phase. Verify phase comprises all the

other steps of the jmp protocol, and either confirms that message

delivery to the recipient was a success or identifies a conflict pair,

CP. Looking ahead, our protocols rely on several invocations of

jmp. Hence, to leverage amortization, in most cases, the send phase

is executed on the flow, and verify phase is deferred to a later stage.

This deferring of verify brings significant challenges in our protocols
such as multiplication. A part of our novelty comes from handling

these challenges. Fig. 9 details the modified (Πjmp) protocol.

We say 𝑃𝑖 , 𝑃 𝑗 jmp-sendmsg to 𝑃𝑘 when they invoke only the send
phase of Πjmp (𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 ,msg). Without loss of generality, we let 𝑃𝑖
be the speaker and 𝑃 𝑗 be the silent party. Since verification can be

deferred, we say that 𝑃𝑖 , 𝑃 𝑗 jmp-vrfy towards 𝑃𝑘 when they invoke

only the deferred verify phase corresponding toΠjmp (𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 ,msg).
Finally, we say 𝑃𝑖 , 𝑃 𝑗 jmp-sv msg to 𝑃𝑘 when they invoke the com-

plete Πjmp (𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 ,msg) protocol and execute both the send and
verify phases together. Note that, the verify phase (both deferred

and in-place) was described with respect to a single message. How-

ever, the details of improving the amortization (in both cases) by

bundling together the verify across several messages for a fixed

ordered pair of senders and a given receiver is described in §B.1.

3.1 Secret sharing semantics
In the 5PC (1, 1)-FaF setting, a (semi-honest) adversary may be

entitled to the view of at most two parties (itself and the malicious

party). Thus, to ensure that the view of two parties does not leak

any additional information, we rely on a (5, 2) replicated secret

sharing (RSS) scheme and its variants. A value v ∈ Z
2
ℓ is said to

be RSS-shared among 5 parties with threshold 2 if for every subset

of two parties, say {𝑃𝑖 , 𝑃 𝑗 }, the residual three parties hold share

v𝑖 𝑗 ∈ Z2
ℓ such that v =

∑
1≤𝑖< 𝑗≤5

v𝑖 𝑗 . Observe that since any set of

two parties inP always miss one share of v, they cannot reconstruct
the value, whereas any three parties can. The total number of shares

of a value is thus

(
5

2

)
= 10 and the RSS-share possessed by 𝑃𝑠 ∈ P

is a tuple of

(
4

2

)
= 6 shares v𝑖 𝑗 where 𝑠 ≠ 𝑖, 𝑠 ≠ 𝑗 and 1 ≤ 𝑖 < 𝑗 ≤ 5.

With this background, we define our sharing semantics below.

[v] denotes a value v ∈ Z
2
ℓ is [·]-shared among parties in P

if it is (5, 2) RSS-shared among them. We let [v]𝑠 denote 𝑃𝑠 ’s [·]-
shares of v. Note that [v]𝑠 is a tuple of 6 elements and [v] is a tuple
of 10 elements. ⟨v⟩ denotes a value v ∈ Z

2
ℓ is ⟨·⟩-shared among

parties in P if there exists v1, v2, v3, v4, v5 ∈ Z2
ℓ such that v =

v1+v2+v3+v4+v5 and 𝑃𝑠 ∈ P possess v𝑠 . Let ⟨v⟩ = (v1, v2, v3, v4, v5).
JvK denotes value v ∈ Z

2
ℓ is J·K-shared among P, if–(i) there exists

𝛼v ∈ Z2
ℓ that is [·]-shared among parties in P, and (ii) there exists

𝛽v ∈ Z2
ℓ such that 𝛽v = v + 𝛼v is held by all parties in P.

For a set of 𝑛 values {v1, . . . v𝑛}, we let 𝛽v1 ...vn = Π𝑛
𝑖=1

𝛽vi and

𝛼v1 ...vn = Π𝑛
𝑖=1

𝛼vi . We use the superscript B to denote the Boolean

sharing over Z2 , while the absence of it implies arithmetic sharing

over Z
2
ℓ . All the above sharing schemes are linear, i.e., given shares

of v1, v2, and public constants 𝑐1, 𝑐2, parties can locally compute

the shares of 𝑐1v1 + 𝑐2v2.

Conversion between J·K and [·] shares during preprocessing. Given
[v], protocol Π[ · ]→J·K generates JvK from it by setting 𝛽v = 0 and

[𝛼v] = − [v]. Conversely, ΠJ·K→[·] generates [v] from JvK. For this,
parties set v12 = 𝛽v − 𝛼v12

while v𝑖 𝑗 = −𝛼v𝑖 𝑗 for 1 ≤ 𝑖 < 𝑗 ≤
5, (𝑖, 𝑗) ≠ (1, 2).

3.2 Input sharing
Protocol Πsh enables 𝑃𝑖 ∈ P holding a value v ∈ Z

2
ℓ to generate

JvK. For this, parties generate [·]-shares of a random value 𝛼v ∈ Z2
ℓ

in the preprocessing phase, non-interactively, using their shared

4



PentaGOD: Stepping beyond Traditional GOD with Five Parties

key setup such that the dealer 𝑃𝑖 learns all the [·]-shares of 𝛼v. This
enables 𝑃𝑖 to compute 𝛽v = v + 𝛼v in the online phase and jmp-sv
it to all the parties. The protocol appears in Fig. 10. The protocol

for generating [·]-shares of v ∈ Z
2
ℓ is similar as above and formal

details appear in Fig. 11. Protocol ΠJSh2 is a variant of input sharing

Πsh, which enables two parties 𝑃𝑖 , 𝑃 𝑗 to jointly generate J·K-shares
of a value v ∈ Z

2
ℓ known to both. Looking ahead, this protocol

is heavily used in designing the building blocks, and is similar to

Πsh. Here, during the preprocessing phase parties generate [𝛼v] for
𝛼v ∈ Z2

ℓ such that 𝑃𝑖 , 𝑃 𝑗 learn all its shares. Following this, 𝑃𝑖 , 𝑃 𝑗
generate and jmp-send 𝛽v = v + 𝛼v towards all the other parties
with its jmp-vrfy deferred. The protocol appears in Fig. 12 and other
optimizations are deferred to §B.3.

3.3 Multiplication
The multiplication protocol Πmult allows parties to compute JzK =
Ja ·bK, where a, b ∈ Z

2
ℓ are J·K-shared. The highlight of our protocol

is that it requires a single online round for evaluating a multiplica-

tion gate and requires active participation from only three parties

for most of the computation. The protocol proceeds as follows. In

the preprocessing phase, parties first generate [𝛼z] ∈ Z2
ℓ , non-

interactively, using their shared key setup. To generate JzK, parties
need to compute 𝛽z which can be written as follows: 𝛽z = z + 𝛼z =
ab+𝛼z = (𝛽a−𝛼a) (𝛽b−𝛼b)+𝛼z = 𝛽ab−𝛽a𝛼b−𝛽b𝛼a+𝛼ab+𝛼z, where
𝛽ab = 𝛽a𝛽b and 𝛼ab = 𝛼a𝛼b . Observe that parties already possess

𝛽a, 𝛽b and [·]-shares of 𝛼a, 𝛼b, 𝛼z. Assuming that [𝛼ab] is also made

available, parties can compute [𝛽z], leveraging the linearity of [·]-
sharing. We discuss how to generate [𝛼ab] in the preprocessing

phase later and focus on the remaining steps assuming that [𝛼ab] is
given. Now, 𝛽z can be reconstructed towards all the parties, thereby

generating JzK. This reconstruction towards 𝑃𝑖 ∈ P can be per-

formed using just two invocations of Πjmp as follows. The four

shares missing at 𝑃𝑖 , which include {𝛽zij , 𝛽zik , 𝛽zil , 𝛽zim } are sent to
it as– 𝑃 𝑗 , 𝑃𝑘 jmp-sv {𝛽zil + 𝛽zim } while 𝑃𝑙 , 𝑃𝑚 jmp-sv {𝛽zij + 𝛽zik }.

Towards an efficient online phase. The above approach requires

all parties to be online. However, observe that 𝑃1, 𝑃2, 𝑃3 possess

the required shares to compute the entire function. Hence, to re-

duce the number of active parties in the online phase, whenever

multiplication is invoked, we restrict the reconstruction of 𝛽z only

towards the online parties, 𝑃1, 𝑃2, 𝑃3 (but without the correctness

guarantee), and defer reconstruction towards 𝑃4, 𝑃5 to a later point.

Thus, only the jmp-send with respect to following 6 jmps are

invoked– Πjmp (𝑃2, 𝑃4, 𝑃1, 𝛽z13
+ 𝛽z15

), Πjmp (𝑃3, 𝑃5, 𝑃1, 𝛽z12
+ 𝛽z14

),
Πjmp (𝑃1, 𝑃4, 𝑃2, 𝛽z23

+ 𝛽z25
), Πjmp (𝑃3, 𝑃5, 𝑃2, 𝛽z12

+ 𝛽z24
),

Πjmp (𝑃1, 𝑃4, 𝑃3, 𝛽z23
+ 𝛽z35

), Πjmp (𝑃2, 𝑃5, 𝑃3, 𝛽z13
+ 𝛽z34

). Recall
that since only the send of jmp is performed, the silent parties,
𝑃4, 𝑃5, can remain offline. To complete the generation of JzK, and
enable 𝑃4, 𝑃5 to obtain 𝛽z, we let 𝑃1, 𝑃2 jmp-sv 𝛽z to 𝑃4, 𝑃5. We can

defer this step until output reconstruction stage, where 𝛽s cor-

responding to all the invocations of multiplication until output

reconstruction are sent in a single round. Deferring the send of

𝛽z to after output reconstruction, may result in incorrectly recon-

structing z. With this approach, evaluating multiplications requires

participation from only the online parties (𝑃1, 𝑃2, 𝑃3) for most of

the computation and offline parties (𝑃4, 𝑃5) become active only be-

fore output reconstruction. Further, only a single round (owing to

the send phase of jmp where only speaker party communicates) is

needed for reconstructing each 𝛽 among the online parties. Observe

that the following two issues may arise while executing the above

approach– (a) correctness: 𝛽z reconstructed among online parties

𝑃1, 𝑃2, 𝑃3 may be incorrect; (b) agreement: online parties may not

be in agreement with respect to the 𝛽z they hold, let alone hold

the correct 𝛽z. Both the issues arise since only the send phase of

jmp is executed among the online parties while reconstructing 𝛽z,

which may lead to incorrect reconstruction among them. We next

describe how both these issues can be addressed in the verification

phase. Looking ahead, resolution for both issues either results in

successfully completing the protocol, or identification of CP. In the

latter case, parties switch to 3PC (after share conversion) for rest

of the computation.

(a) Ensuring correctness. Correctness of the 𝛽z reconstructed to-

wards the online parties can be enforced by executing the jmp-vrfy
towards them, and requires 𝑃4, 𝑃5. For this, 𝑃4, 𝑃5 should possess

the correct inputs used for generating 𝛽z, which may themselves

be outputs, 𝛽a, 𝛽b, of multiplications. As mentioned earlier, 𝑃4, 𝑃5

receive all these 𝛽s in a single invocation of jmp-sv from 𝑃1, 𝑃2 just

before output reconstruction. However, 𝑃1, 𝑃2 may not be in agree-
ment with respect to these 𝛽s due to incorrect reconstruction of the

same. Performing jmp when the senders are not in agreement with

respect to the value being sent may result in incorrectly identifying

a pair of honest parties as a CP (conflict pair). This necessitates a

consistency check to ensure that 𝑃1, 𝑃2 are in agreement, and is

discussed later. Hence, assuming 𝑃1, 𝑃2 are in agreement after this

consistency check, they proceed to jmp-sv 𝛽s for all these multi-

plications to 𝑃4, 𝑃5. If this jmp-sv towards 𝑃4, 𝑃5 succeeds (i.e., no

CP identified), verification of 𝛽s, reconstructed among the online

parties, is performed. This is done by invoking deferred jmp-vrfy
corresponding to all the jmp-send performed among the online par-

ties. The success of all the verify phases guarantees the correctness

of 𝛽s. In case if any verify fails, a CP is identified.

(b) Ensuring agreement. We now describe the consistency check

mentioned above. In order to ensure agreement among online par-

ties 𝑃1, 𝑃2, 𝑃3, they exchange the hash of 𝛽s for all the multiplica-

tions among themselves. If these are consistent, then they proceed

with the correctness check as described above. If the consistency

check fails, the goal is to identify a CP. Observe that the check

may fail due to one of the following reasons: (i) an incorrect 𝛽

was reconstructed towards some honest online party which led

to sending an incorrect hash during the check, or (ii) an incorrect

hash was deliberately sent. Note that case (i) arises if a malicious

online party misbehaved during a jmp-send performed at some

level (layer in the circuit comprising addition and multiplication

gates.) during circuit evaluation. Hence, performing the jmp-vrfy
of this particular jmp-send can identify a CP and address case (i).

A keen observer would note the circularity involved in addressing

the agreement issue by relying on verify of jmp (to identify a CP).
The circularity arises due to the following reason. jmp-vrfy towards
𝑃1, 𝑃2, 𝑃3 requires 𝑃4, 𝑃5 to hold consistent 𝛽 . Since 𝑃4, 𝑃5 receive

the 𝛽 via jmp-sv from 𝑃1, 𝑃2, it requires the latter to already be in

agreement, and hence the circularity. To break the circularity, on-

line parties rely on a binary search of levels within the circuit. The

search identifies consecutive levels 𝐿𝑝 , 𝐿𝑝+1 such that all 𝛽s up to

level 𝐿𝑝 are consistently held among 𝑃1, 𝑃2, 𝑃3 while 𝐿𝑝+1 onwards

5



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

they are inconsistent. The consistency of 𝛽s up to 𝐿𝑝 thus enables

usage of jmp. For the binary search, parties exchange the hash

with respect to 𝛽s in the first (top) half of the circuit, say max/2
levels (where max denotes the maximum levels in the circuit). If

the hash is inconsistent, they recursively proceed with the first

half (𝐿1 to 𝐿max/2), else if consistent, they proceed with the second

half (𝐿max/2+1 to 𝐿max). In this way, they recursively operate on

the appropriate half that has inconsistent hash to identify 𝐿𝑝 , 𝐿𝑝+1.
Note that one is guaranteed to identify such a 𝐿𝑝 , 𝐿𝑝+1 since the

above recursion would terminate and at least at the first level in

the circuit is guaranteed to be consistent and correct, owing to the

correctness of the input sharing.

On identifying levels 𝐿𝑝 and 𝐿𝑝+1, 𝑃1, 𝑃2 jmp-sv all the 𝛽s up to

level 𝐿𝑝 to 𝑃4, 𝑃5. This is followed by the deferred jmp-vrfy towards
𝑃1, 𝑃2, 𝑃3 for all 𝛽s up to level 𝐿𝑝+1. If no CP is identified during

any of the verify phases, it implies case (ii), and hence, honest on-

line parties will be guaranteed to be in agreement with respect to

the correct 𝛽s up to level 𝐿𝑝+1. Thus, the correct hash that should

have been sent at level 𝐿𝑝+1 in the binary search can be computed

locally (using the 𝛽) and matched against the hash received from

others. This determines the corrupt party that deliberately sent an

incorrect hash. This corrupt party, together with another honest

party, is identified as a CP. Note that the binary search can termi-

nate with the last level being identified as 𝐿𝑝 . This happens when

circuit evaluation is correct, but malicious party deliberately sends

an incorrect hash in consistency check and behaves honestly in

binary search. 𝐿𝑝 being the last level implies that honest parties are

guaranteed to be in agreement with respect to all 𝛽s. Hence, corrupt
party can be identified as the party who sent incorrect hash in the

consistency check. Similar to above, the CP can thus be formed.

Generating [𝛼ab]. Since [𝛼a] , [𝛼b] are available in the prepro-

cessing phase, [𝛼ab] can be computed there. For obtaining [𝛼ab],
we rely on a robust (1, 1)-FaF secure multiplication protocol for 5PC

which works on [·]-shares (RSS shares), and is abstracted out as a

functionality, FMulPre, in Fig. 34. To leverage amortization, we pre-

process several multiplication triples in single shot. Hence, FMulPre
is defined with respect to several triples. We instantiate FMulPre
using a variant of the protocol of [12] for the 5-party setting. Similar

to the original protocol, the modified protocol involves performing

a 5PC semi-honest multiplication followed by a verification phase to

check the correctness of the semi-honest execution. The difference

lies in the steps performed when verification fails, and it outputs a

pair of conflicting parties. In such a case, we eliminate the pair of

parties, and the computation proceeds via semi-honest 3PC (since

there is at most one malicious party in our case), unlike the mali-

cious 3PC used in the original protocol. The verification phase relies

on distributed zero-knowledge proof system [10], and is designed

such that its communication cost gets amortized over multiple in-

stances of multiplication. Thus, the amortized communication cost

of this 5PC protocol is the same as that of the semi-honest proto-

col. The original protocol [12] is secure according to the standard

definition of security. We prove that the modified variant, for 5PC,

is secure in the (1, 1)-FaF model. We refer readers to §F for details.

Our multiplication protocol appears in Fig. 2.

To showcase all the cases handled and improve the readability

of our algorithm we also provide a flowchart of the verification

phase in Fig. 3. The green arrows denote the steps that lead to

successful circuit evaluation and also showcase the correctness of

our protocol. The flowwhere one of the offline parties is malicious is

trivial and follows from the verify of jmp towards parties 𝑃1, 𝑃2, 𝑃3

in the verification phase.

Preprocessing: Non-interactively generate [ · ]-shares of a random𝛼z ∈
Z

2
ℓ , using the shared-key setup. Invoke FMulPre on [𝛼a ] , [𝛼b ] (Fig. 34)

to generate [𝛼ab ].
Online:

– Compute [𝛽 ′ ] = −𝛽a [𝛼b ] − 𝛽b [𝛼a ] + [𝛼ab ] + [𝛼z ].
– Send missing [𝛽 ′ ]-shares to 𝑃1, 𝑃2, 𝑃3: (a) 𝑃2, 𝑃5 jmp-send 𝛽 ′

13
+ 𝛽 ′

14

to 𝑃1, while 𝑃3, 𝑃4 jmp-send 𝛽 ′
12
+ 𝛽 ′

15
to 𝑃1, (b) 𝑃1, 𝑃5 jmp-send 𝛽 ′

23
+

𝛽 ′
24

to 𝑃2, while 𝑃3, 𝑃4 jmp-send 𝛽 ′
12
+ 𝛽 ′

25
to 𝑃2, (c) 𝑃1, 𝑃4 jmp-send

𝛽 ′
23
+ 𝛽 ′

35
to 𝑃3, while 𝑃2, 𝑃5 jmp-send 𝛽 ′

13
+ 𝛽 ′

34
to 𝑃3.

– 𝑃1, 𝑃2, 𝑃3 reconstruct 𝛽
′
and compute 𝛽z = 𝛽 ′ + 𝛽ab.

One-time Verification (for entire circuit): LetM be the set of all 𝛽zs

where each z is the output of a multiplication in the circuit. Parties do

the following.

– 𝑃𝑖 ∈ {𝑃1, 𝑃2, 𝑃3} computes the hash, H𝑖 = H
(
𝛽z1 , . . . , 𝛽z|M|

)
where

𝛽zj ∈ M and mutually exchange it among themselves.

– 𝑃𝑖 ∈ {𝑃1, 𝑃2, 𝑃3} broadcasts an inconsistency bit b to indicate whether
all the obtained hashes are consistent (b = 0) or not (b = 1).

– If all parties in {𝑃1, 𝑃2, 𝑃3} broadcast b = 0, then–(a) 𝑃1, 𝑃2 jmp-sv all
𝛽z ∈ M to 𝑃4, 𝑃5. (b) If this jmp-sv succeed, (i.e., noCP is identified), then

parties perform the deferred jmp-vrfy with with respect to all 𝛽z ∈ M.

– Else, if some 𝑃𝑖 ∈ {𝑃1, 𝑃2, 𝑃3} broadcasts b = 1, then

◦ Each 𝑃𝑖 ∈ {𝑃1, 𝑃2, 𝑃3} broadcasts H𝑖 .

◦ If for any 𝑃𝑖 ∈ {𝑃1, 𝑃2, 𝑃3}, the hash sent via broadcast does not

match the hash received on point-to-point communication by some

party, 𝑃 𝑗 , then 𝑃𝑖 broadcasts its complaint against 𝑃 𝑗 . Parties setCP =

(𝑃𝑖 , 𝑃 𝑗 ) where 𝑃𝑖 is the party with the least index that complained,

and terminate.

◦ If a CP was not identified via a complaint, then

- Let H𝐿𝑠
𝑖

denote the hash computed by 𝑃𝑖 ∈ {𝑃1, 𝑃2, 𝑃3} on all 𝛽z
up to level 𝐿𝑠 in the circuit.

- 𝑃1, 𝑃2, 𝑃3 perform a binary search to identify a pair of consecutive

levels 𝐿𝑝 , 𝐿𝑝+1 in the circuit such that H
𝐿𝑝

𝑖
is consistent, but H

𝐿𝑝+1
𝑖

is inconsistent.

- 𝑃1, 𝑃2 jmp-sv 𝛽z up to level 𝐿𝑝 to 𝑃4, 𝑃5.

If the jmp-sv is a success, then parties perform deferred jmp-vrfy
with respect to all 𝛽z up to level 𝐿𝑝+1. If the jmp-vrfy is a success, 𝑃𝑖

matches its hash H
𝐿𝑝+1
𝑖

against the hashes received to identify the

party that sent an incorrectH𝐿𝑝+1
. 𝑃𝑖 broadcasts the identity of this

corrupted party 𝑃★
to all parties in P. All parties setCP = (𝑃𝑖 , 𝑃★)

where 𝑃𝑖 is the party with the least index.

- If 𝐿𝑝 is the same as the last level in the segment, then 𝑃𝑖 ∈
{𝑃1, 𝑃2, 𝑃3} matches its hash H𝑖 against the hashes received to

identify the party that sent an incorrect H in the first consistency

check. 𝑃𝑖 broadcasts the identity of this corrupted party 𝑃★
to all

parties in P. All parties set CP = (𝑃𝑖 , 𝑃★) where 𝑃𝑖 is the party
with the least index.

Protocol Πmult (P, JaK, JbK)

Figure 2: Multiplication protocol

6



PentaGOD: Stepping beyond Traditional GOD with Five Parties

Consistency check  
To ensure P1 P2 are in

agreement

Updating P4 P5 
P1 P2 jmp-sv all   

Check Success

jmp-vrfy Fail

CP identified 
via jmp-vrfy  

Deferred jmp-vrfy 
verify all  used by

P1 P2 P3 

jmp-vrfy Success

CP identified 
via jmp-vrfy  

jmp-vrfy Fail

Circuit evaluation
successful 

jmp-vrfy Success

Broadcast hash  
To check if hash sent on

P2P is a match

Check Fail

Mismatch

CP identified 
via complaint

Binary search 
To find Lp and Lp+1 

No Mismatch

Updating P4 P5 
P1 P2 jmp-sv all  up to Lp

Found

CP identified 
via broadcast

corrupt P★ 

Lp is last level

jmp-vrfy Fail

CP identified 
via jmp-vrfy   

Deferred jmp-vrfy 
verify all  used by P1 P2

P3 up to level Lp+1

jmp-vrfy Success

CP identified 
via jmp-vrfy  

jmp-vrfy Fail

CP identified 
via broadcast

corrupt P★ 

jmp-vrfy Success

Figure 3: Flow of verification phase when online party is malicious

3.4 Reconstruction
Protocol Πrec enables robust reconstruction of a J·K-shared value v
towards 𝑃𝑖 . For this, observe that each party misses 4 shares, and

each such share is held by three other parties. Thus, to reconstruct v
towards 𝑃𝑖 , parties can send the missing shares to 𝑃𝑖 . For each share,

𝑃𝑖 uses the value which appears in the majority to reconstruct v. As
on optimization, we let two parties send the value while the third

send its hash to 𝑃𝑖 . The protocol appears in Fig. 13.

3.5 The complete 5PC
We give an overview of the execution of 5PC for computing any

function. The complete protocol can be divided into three stages: in-

put sharing, evaluation, output reconstruction. Each stage is further

cast in the preprocessing model, which comprises a preprocessing

phase and an online phase. The protocol execution is preceded by a

one-time shared key setup and begins by executing the preprocess-

ing phase for each of the three stages. Note that protocols in each

of these stages rely on several invocations of jmp. Thus, they either
complete successfully or in case of a misbehaviour, a conflict pair

CP is identified. To leverage amortization, only the send of all jmps
are run on the flow while all verify steps are deferred until output

reconstruction. Recall that identification of CP calls for rerunning

of the protocol via 3PC. Thus, deferring verification until output

reconstruction would result in the worst-case cost of executing

5PC and 3PC. To avoid this, a possible optimization is to divide

the computation of the circuit into segments
3
, with a checkpoint

placed at the end of each segment. Computation carried out in a

segment can be verified at each checkpoint. In this way, if a CP
is identified in any segment, computation of this segment restarts

with a 3PC execution. For this, a share conversion is performed

to convert shares from 5PC to 3PC. The details of the same are

provided next. All the subsequent segments can now be evaluated

via the 3PC. The complete protocol appears in Fig. 4 and proofs in

§E.

3
A circuit is sliced depth-wise into segments comprising multiple levels/layers.

One-time shared key setup is performed to generate common PRF keys

which can be used to generate correlated randomness.

Preprocessing Phase:

– For each input gate u, parties execute preprocessing phase of Πsh to

obtain [𝛼u ].
– For each addition gate with input wires u, v and output wire w, parties
locally compute [𝛼w ] = [𝛼u ] + [𝛼v ].
– For each multiplication gate with input wires u, v and output wire w,
parties execute preprocessing phase of Πmult to obtain [𝛼w ] , [𝛼uv ].
Online Phase:

– For each input v held by a party, parties invoke the online phase of

Πsh to generate JvK.
– For each addition gate with input wires u, v and output wire w, parties
locally compute JwK = JuK + JvK.
– For each multiplication gate with input wires u, v and output wire w,
parties execute the online phase of Πmult to generate JwK.
– For each output gate, parties execute Πrec to reconstruct output w
towards the designated party.

Semi-honest 3PC: If a CP is identified at any step, perform share con-

version and continue computation with semi-honest 3PC.

Protocol 5PC − FaF

Figure 4: 5PC FaF Protocol

Share conversion. We describe the (3, 1) replicated secret sharing

(RSS) semantics for a 3PC protocol followed by the steps for share

conversion, where the latter is similar to that described in [12]

optimized for our setting. Let P′ = {𝑃 ′
0
, 𝑃 ′

1
, 𝑃 ′

2
} denote the three

parties. Let v = v0 + v1 + v2 where (v𝑖 , v(𝑖+1)%3
) are the shares held

by 𝑃 ′
𝑖
that define a (3, 1) RSS scheme. Observe here that a value is

split into three shares, each of which is held by two parties. Our

goal is to convert from the 5PC J·K-sharing (which is an augmented

(5, 2)-RSS sharing with an additional 𝛽 held by all parties) to a (3,

1)-RSS sharing. The conversion proceeds as follows. Let 𝑃𝑖 , 𝑃 𝑗 be

parties to be eliminated. The residual three parties are arbitrarily

assigned roles of 𝑃 ′
0
, 𝑃 ′

1
, 𝑃 ′

2
. To generate the (3, 1)-RSS shares among

parties in P′ = P \ {𝑃𝑖 , 𝑃 𝑗 }, consider the following types of shares.

1. Shares that are known to either 𝑃𝑖 or 𝑃 𝑗 : Such shares are already

held by two other parties in P \ {𝑃𝑖 , 𝑃 𝑗 }, which is what is needed

for the (3, 1)-RSS sharing.

2. Shares that are not known to both 𝑃𝑖 , 𝑃 𝑗 : Such shares are known

to all the three residual parties. Since exactly two parties should

hold each share, we let the party with the lowest index remove this

share from its possession.

3. Shares that are known to both 𝑃𝑖 and 𝑃 𝑗 : Such shares are known

to exactly one other party, say 𝑃𝑘 , in P \ {𝑃𝑖 , 𝑃 𝑗 }. To enable one

other party to hold this share to complete the (3, 1)-RSS sharing,

we let 𝑃𝑘 send this share to the remainder party, say 𝑃𝑙 .

4. Shares that are held by all (𝛽 ): We let parties enacting the role

of 𝑃 ′
1
, 𝑃 ′

2
incorporate this share in its set of common shares, and let

𝑃 ′
0
remove this share from its possession.

We explain the share conversion steps with a concrete example.

Let 𝑃1, 𝑃2 be the parties to be eliminated, and let 𝑃 ′
0
= 𝑃3, 𝑃

′
1
=

𝑃4, 𝑃
′
2
= 𝑃5. Consider conversion of JvK to a (3,1)-RSS share. For type

1 shares, shares that are held by 𝑃1 or 𝑃2 include 𝛼v13 , 𝛼v23 , 𝛼v14 , 𝛼v24 ,

𝛼v15 , 𝛼v25 , where every consecutive pair of shares is held by {𝑃4, 𝑃5},
7



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

{𝑃3, 𝑃5}, {𝑃3, 𝑃4}, respectively. With respect to type 2 shares, shares

that are not known to both 𝑃1, 𝑃2 include 𝛼v12 . These are included

by {𝑃4, 𝑃5} in their set of shares. For type 3 shares, shares that

are known to both 𝑃1, 𝑃2 include 𝛼v34 , 𝛼v35 , 𝛼v45 , which are held by

𝑃5, 𝑃4, 𝑃3, respectively. Let 𝑃3 send 𝛼v45 to 𝑃4, let 𝑃4 send 𝛼v35 to

𝑃5, and let 𝑃5 send 𝛼v34 to 𝑃3. Finally, for the last type of share,

we let 𝑃4, 𝑃5 include 𝛽v in its set of shares. The (3, 1)-RSS shares

of v are now defined as v0 = −𝛼v25 − 𝛼v15 − 𝛼v45 which is held

by 𝑃3, 𝑃4, v2 = −𝛼v24 − 𝛼v14 − 𝛼v34 which is held by 𝑃3, 𝑃5, and

v1 = 𝛽v − 𝛼v23 − 𝛼v13 − 𝛼v35 − 𝛼v12 which is held by 𝑃4, 𝑃5. This

generates the (3, 1)-RSS shares of v from JvK.

4 BUILDING BLOCKS
In this section, we discuss 5PC (1, 1)-FaF realizations of building
blocks (Table 1) required for the applications considered. Most of

these are well studied in the literature [36, 37, 43, 55]. Hence, here

we only highlight those which were challenging to achieve in the

5PC (1, 1)-FaF setting.

Multi-input multiplication. To reduce the online communication

cost as well as the round complexity, we design protocols to en-

able multiplication of 3 and 4 inputs in a single shot [37, 54, 55].

Compared to the naive approach of performing sequential multi-

plications to multiply 3 and 4 inputs, the multi-input multiplica-

tion protocol enjoys the benefit of having the same online phase

complexity as that of the 2-input multiplication protocol. This

brings in a 2× improvement in the online round complexity, while

also improving the online communication cost. We extend the

ideas of [37] to achieve this in our setting. For instance, the goal

of 3-input multiplication is to generate JzK given J·K-shares of

a, b, c ∈ Z
2
ℓ where z = abc. Observe that, 𝛽z = abc + 𝛼z =

𝛽abc−𝛽ac𝛼b−𝛽bc𝛼a−𝛽ab𝛼c+𝛽a𝛼bc+𝛽b𝛼ac+𝛽c𝛼ab−𝛼abc+𝛼z. Thus,
parties generate [𝛼ab] , [𝛼ac] , [𝛼bc] , [𝛼abc] during preprocessing

by invoking FMulPre (Fig. 34), and proceed with a similar online

phase as in 2-input multiplication. Similarly, for 4-input multipli-

cation [·]-shares of 𝛼ab, 𝛼ac, 𝛼ad, 𝛼bc, 𝛼bd, 𝛼cd, 𝛼abc, 𝛼abd, 𝛼acd, 𝛼bcd,
𝛼abcd are needed.

Dot product. Given J·K-shares of vectors ®x, ®y where each element

of the vector is J·K-shared, protocol Πdotp, enables generation of

J·K-shares of z = ®x ⊙ ®y, where ⊙ denotes the dot product operation.

For this, observe that 𝛽z can be written as

𝛽z = z + 𝛼z = ®x ⊙ ®y + 𝛼z =

𝑛∑︁
𝑖=1

x𝑖y𝑖 + 𝛼z =

n∑︁
𝑖=1

(𝛽xiyi − 𝛽xi𝛼yi − 𝛽yi𝛼xi + 𝛼xiyi ) + 𝛼z

(1)

Thus, the goal of preprocessing phase is to generate [·]-shares of
𝜎 =

∑𝑛
𝑖=1

𝛼xiyi , which is a dot product of {𝛼xi }𝑛𝑖=1
, {𝛼yi }𝑛𝑖=1

. Given

[𝜎], parties proceed with a similar online phase as that in multipli-

cation to compute 𝛽z (Eq. (1)), where the terms are locally added

before being sent, making the online communication independent

of n [36, 56]. Similar to [36], to make the preprocessing commu-

nication for generating [𝜎] independent of n, parties execute a

semi-honest dot-product protocol [25] whose communication cost

is independent of n. This is followed by a verification phase, similar

to the one in [12], where parties invoke ΠVerify
4
(see Fig. 33, §F) on

4
Note that computations in ΠVerify remain unchanged except that its input parameters

now correspond to dot product triples.

the dot product triple,

[
{𝛼xi }n𝑖=1

]
,
[
{𝛼yi }n𝑖=1

]
, [𝜎], to verify correct-

ness of [𝜎]. As opposed to verification of𝑚 multiplication triples

which requires a communication cost of O(log(𝑚)) elements, the

cost for verifying the correctness of𝑚 dot products with vectors

of size n now becomes O(log(𝑚n)) elements. Thus, for large 𝑚,

the verification cost can be amortized, making the preprocessing

communication cost independent of n. Due to its similarity to mul-

tiplication, we omit formal protocol for dot product.

Matrix multiplication and convolution. Matrix multiplication can

easily be reduced to dot product where each element in the re-

sultant matrix can be computed via a dot product. Convolutions

can also be reduced to matrix multiplication following standard

techniques [61].

Truncation. Repeated multiplications in fixed point arithmetic

(FPA) cause an overflow. This necessitates the need for truncation,

which truncates the last 𝑑 bits from the result of multiplication, to

retain FPA semantics. We follow a similar approach as in [43, 45]

for probabilistic truncation. Here, to truncate a value v, we rely

on a (r, r𝑑 )-pair, where r ∈ Z
2
ℓ and r𝑑 is the truncated value of

r (i.e. r𝑑 = r/2𝑑 ). The truncated value v𝑑 of v, is computed as

v𝑑 = (v − r)𝑑 + r𝑑 .
Given JrK, Jr𝑑K can be generated in the preprocessing phase, our

multiplication protocol can be modified to incorporate truncation

without incurring any overhead in the online phase as follows. Use r
instead of 𝛼z while computing 𝛽z. Parties truncate 𝛽z locally to gen-

erate 𝛽z
𝑑 = (z + r)𝑑 and generate J(z + r)𝑑K non-interactively (see

§B.3), followed by computing Jz𝑑K = J(z + r)𝑑K − Jr𝑑K. To generate

J·K-shares of the truncation pair (r, r𝑑 ), we extend ideas in [43] to

our setting, and the resultant protocol is called ΠTrPair. For this, par-

ties non-interactively generate JrKB using their shared-key setup,

and truncate the last 𝑑 bits of each of its share to generate Jr𝑑KB. To
obtain JrK from JrKB, parties proceed as follows. Analogous steps

enable generation of Jr𝑑K from Jr𝑑KB. Set 𝛽r = 0 in JrK. Let the
other shares of JrK be denoted as r𝑖 𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 5. Without

loss of generality, parties non-interactively sample all r𝑖 𝑗 but r12, as

per the J·K-sharing. Enabling 𝑃3, 𝑃4, 𝑃5 obtain r12 = r −∑𝑖 𝑗≠12
r𝑖 𝑗

will complete generation of JrK. For this, observe that we can write

r = v1 + v2 + v3 + v4 where v1 = r34 + r35 + r45 is held by 𝑃1, 𝑃2,

v2 = r45 + r25 is held by 𝑃1, 𝑃3, v3 = r14 + r15 is held by 𝑃2, 𝑃3 and

v4 = r12+r13+r23 is held by 𝑃4, 𝑃5. Thus, revealing v4 = r−v1−v2−v3

to 𝑃4, 𝑃5 enables them to compute r12 = v4 − r13 − r23 which

they can send to 𝑃3 by invoking Πjmp, thereby generating JrK.
For this, given JrKB, parties compute Jv4KB = JrKB + ∑3

𝑖=1
J−v𝑖KB

by evaluating Boolean addition circuit. Elaborately, 𝑃1, 𝑃2 gener-

ate J−v1KB, 𝑃1, 𝑃3 generate J−v2KB, and 𝑃2, 𝑃3 generate J−v3KB by

invoking the joint sharing protocol, ΠJSh2 (§B.3). Note that this

joint sharing generates J−v𝑖 [𝑘]KB for each bit −v𝑖 [𝑘] of −v𝑖 for
𝑖 ∈ {1, 2, 3}, 𝑘 ∈ {0, . . . , ℓ − 1}. Parties proceed to compute the

sum Jv4 [𝑘]KB = Jr[𝑘]KB + ∑
3

𝑖=1
J−v𝑖 [𝑘]KB for each bit using a

full adder (FA) circuit, as described in [43]. It follows from [43]

that 𝑥 = 𝑥1 + 𝑥2 + 𝑥3 can be expressed as 𝑥 = 2𝑐 + 𝑠 where

FA(𝑥1 [𝑘], 𝑥2 [𝑘], 𝑥3 [𝑘]) → (𝑐 [𝑘], 𝑠 [𝑘]) for 𝑘 ∈ {0, . . . , ℓ − 1}. Here,
𝑠 and 𝑐 denote the sum and carry bits respectively. Thus, parties

compute Jv4 [𝑘]KB for 𝑘 ∈ {0, . . . , ℓ − 1}, simultaneously, by execut-

ing the FA’s as given below.

8



PentaGOD: Stepping beyond Traditional GOD with Five Parties

– FA(r[𝑘],−v1 [𝑘],−v2 [𝑘]) → (𝑐1 [𝑘], 𝑠1 [𝑘])
– FA(−v3 [𝑘], 𝑐1 [𝑘 − 1], 𝑠1 [𝑘]) → (𝑐2 [𝑘], 𝑠2 [𝑘])
– PPA(2𝑐2, 𝑠2) → v4

After the FA is executed, Jv4KB is computed using the 2-input

Parallel Prefix Adder (PPA) circuit [43] on inputs 2J𝑐2KB, J𝑠2KB.
The computations above are carried out on the J·KB-shares, and
2𝑐1 [𝑘] = 𝑐1 [𝑘 − 1] and 𝑐 [−1] = 0. Having obtained Jv4KB, parties
reconstruct v4 towards 𝑃4, 𝑃5, who compute r12 = v4 − r13 − r23,

and invoke Πjmp to send it to 𝑃3. This completes generation of JrK.

Bit to arithmetic. Protocol Πbit2A allows computation of arith-

metic shares, JbRK of a bit b ∈ Z2 from its Boolean shares, JbKB,
where bR denotes arithmetic equivalent of b over Z

2
ℓ . Observe that,

following [37],

bR = (𝛽b ⊕ 𝛼b )R = 𝛽b
R + 𝛼b

R − 2𝛽b
R𝛼b

R . (2)

Given

[
𝛼b

R]
and [r] for r ∈ Z

2
ℓ can be generated in the prepro-

cessing phase, parties can compute

[
bR + r

]
in the online phase

and reconstruct it towards all. Possession of bR + r by all enables

non-interactive generation of its J·K-shares (§B.3), from which

JbRK = JbR + rK − JrK can be computed. To generate

[
𝛼b

R]
, par-

ties first generate J𝛼bRK, and convert it to [·]-shares via ΠJ·K→[·]
((§3.1). To generate J𝛼bRK, observe that the [·]B-shares of 𝛼b can
be written as 𝛼b = 𝜈1 ⊕ 𝜈2 ⊕ 𝜈3 ⊕ 𝜈4 where 𝜈1 = 𝛼b34 ⊕ 𝛼b35 ⊕ 𝛼b45 ,
𝜈2 = 𝛼b24 ⊕ 𝛼b25 , 𝜈3 = 𝛼b14 ⊕ 𝛼b15 and 𝜈4 = 𝛼b12 ⊕ 𝛼b13 ⊕ 𝛼b23 .

As seen in truncation pair generation, 𝑃1, 𝑃2 hold 𝜈1, 𝑃1, 𝑃3 hold

𝜈2, 𝑃2, 𝑃3 hold 𝜈3 and 𝑃4, 𝑃5 hold 𝜈4. Given J·KB-shares of each of

𝜈1, 𝜈2, 𝜈3, 𝜈4 can be generated via ΠJSh2, parties generate J·K-shares
of p = 𝜈1 ⊕ 𝜈2 and q = 𝜈3 ⊕ 𝜈4 using Eq. (2), and use these values to

generate J𝛼bRK = J(p ⊕ q)RK. The protocol appears in Fig. 14.

Bit extraction. Bit extraction (Πbitext) enables generation of J·KB-
shares of the most significant bit (msb) of a value v ∈ Z

2
ℓ given

JvK. Support for multi-input multiplication enables usage of the

optimized bit extraction circuit proposed in [55], which takes two

values as inputs and outputs the msb of the sum of these values.

Given JvK, we generate the Boolean shares of the two inputs to

the bit extraction circuit as follows. Observe that v can be written

v = 𝛽v + (−𝛼v). Thus, 𝛽v and −𝛼v serve as the two inputs. J𝛽vKB can

be generated non-interactively in the online phase since all parties

hold 𝛽v (see §B.3). To generate J−𝛼vKB from [𝛼v], parties proceed
as follows in the preprocessing phase. Parties first generate −𝛼v
by locally negating all their shares of 𝛼v. For ease of presentation,

let 𝛼 = −𝛼v and [𝛼 ] = [−𝛼v] = (𝛼𝑖 𝑗 )1≤𝑖< 𝑗≤5. Recall that 𝛼 =

𝜈1 + 𝜈2 + 𝜈3 + 𝜈4 where 𝜈1 = 𝛼
34
+ 𝛼

35
+ 𝛼

45
, 𝜈2 = 𝛼

24
+ 𝛼

25
,

𝜈3 = 𝛼
14
+ 𝛼

15
and 𝜈4 = 𝛼

12
+ 𝛼

13
+ 𝛼

23
, and each term is held by a

pair of parties. Similar to ΠTrPair, after the different pairs of parties

generate J𝜈1KB, J𝜈2KB, J𝜈3KB, J𝜈4KB, evaluating two sequential full
adders followed by a PPA circuit generates J𝛼KB. Having obtained

J𝛼KB and J𝛽vKB, parties execute the optimized bit extraction circuit

to extract the msb(v).

Arithmetic to Boolean. Protocol ΠA2B generates J·KB-shares for
each bit of v ∈ Z

2
ℓ , denoted as JvKB, from JvK. For this, observe that

v = 𝛽v + (−𝛼v). Thus, evaluating the optimized PPA circuit [55]

on J𝛽vKB, J−𝛼vKB generates JvKB. For this, J𝛽vKB can be generated

non-interactively since all parties hold 𝛽v (see §B.3). To generate

J−𝛼vKB from [𝛼v], parties follow the steps as described in Πbitext.

Bit injection. Given JbKB, JvK where b ∈ Z2 , v ∈ Z2
ℓ , bit injection

(ΠBitInj) generates JbR · vK. For this, parties run Πbit2A to generate

JbRK, followed by Πmult to generate JbR · vK.

Oblivious select. Protocol Πsel takes as input Jx1K, Jx2K, JbKB,
where x1, x2 ∈ Z2

ℓ and b ∈ Z2 , and outputs re-randomized J·K-
shares of z = xb. Since z = xb = b(x1 − x0) + x0, computing JzK
requires one invocation of ΠBitInj and addition operations.

Equality check. On input JxK, JyK, equality check protocol (Πeq)

outputs JbKB where b = 1, if x = y, and b = 0, otherwise. Similar

to [55], the approach is to compute v = x−y and check if all bits of v
are 0. Concretely, parties first obtain JvKB by invoking ΠA2B on JvK,
compute Jv̄KB (v̄ denotes bit complement of v) non-interactively, fol-
lowed by invoking the 4-input (Boolean) multiplication, recursively,

to generate JbKB.

Comparison. On input JxK, JyK, Πcomp outputs JbKB where b = 1,

if x < y, and b = 0, otherwise. This reduces to checking msb of

v = x − y, and hence, Πbitext can be used.

Maxpool/minpool. Maxpool allows computing the maximum el-

ement from a set of𝑚 elements. We follow a similar approach as

in [37], where the elements are recursively compared in a pair-

wise manner to obtain the maximum element. Minpool can also be

computed analogously.

ReLU. The relu function computes the maximum between 0 and

a value v, and can be computed as ReLU(v) = ¯b · v, where b = 1

if v < 0 and b = 0, otherwise. Here,
¯b denotes the complement of

bit b. Given JvK, b can be computed via Πbitext, followed by non-

interactively computing
¯b, followed by ΠBitInj to compute J¯bR · vK.

Complexity of building blocks. Table 1 lists the complexities of

the designed building blocks.

Building block Online Preprocessing

Rounds Comm. (in bits) Comm. (in bits)

Multiplication 1 8ℓ 6ℓ

3-input Multiplication 1 8ℓ 24ℓ

4-input Multiplication 1 8ℓ 66ℓ

Dot product 1 8ℓ 6ℓ

Matrix Multiplication 1 8pqℓ 6pqℓ

Multiplication with Truncation 1 8ℓ 27ℓ + 6ℓ log
2
ℓ

Bit to arithmetic 1 8ℓ 22ℓ

Bit extraction log
4
ℓ u′

2
16ℓ + 6ℓ log

2
ℓ + u′

1

Arithmetic to Boolean log
4
ℓ u2 16ℓ + 6ℓ log

2
ℓ + u1

Bit Injection 2 16ℓ 28ℓ

Oblivious Select 2 16ℓ 28ℓ

Equality log
4
ℓ u2 + 168 16ℓ + 6ℓ log

2
ℓ + u1 + 1386

Comparison log
4
ℓ u′

2
16ℓ + 6ℓ log

2
ℓ + u′

1

Maxpool/minpool log
2
𝑚 (log

4
ℓ + 2) (𝑚 − 1) (u′

2
+ 16ℓ ) (𝑚 − 1) (44ℓ + 6ℓ log

2
ℓ + u′

1
)

ReLU log
4
ℓ + 2 u′

2
+ 16ℓ 44ℓ + 6ℓ log

2
ℓ + u′

1

- ℓ : size of ring in bits, instantiated with ℓ = 64

- p × q denotes the dimension of resultant matrix after matrix multiplication

- u′
1
= 6n2 + 24n3 + 66n4 , u′

2
= 8 (n2 + n3 + n4 ) where n2 = 41, n3 = 27, n4 = 47

denote the number of AND gates in the optimized bit extraction circuit of [55]

with 2, 3, 4 inputs, respectively.

- u1 = 6n2 + 24n3 + 66n4 , u2 = 8 (n2 + n3 + n4 ) where n2 = 216, n3 = 184,

n4 = 179 denote the number of AND gates in the optimized PPA circuit of [55]

with 2, 3, 4 inputs, respectively.

-𝑚 denotes number of elements to be compared via maxpool.

Table 1: Building blocks with their complexity

9



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

5 APPLICATIONS AND BENCHMARKS
As described in §3.3, rather than having a multiplication protocol

with all parties online, considerable effort was spent in reducing the

number of online parties to only 3. We now showcase the concrete

improvements brought in by this approach. The results corroborate

that the reduction in online parties is indeed beneficial. In addition

to the above, we empirically show the practicality of our protocols

for securely performing matching in dark pools, and for evaluating

privacy-preserving machine learning (PPML) algorithms. For this,

we consider the secure outsourced setting (see §A for details), and

benchmark via the optimized variant of the multiplication protocol.

Our (1,1)-FaF 5PC is the first instantiation of a FaF secure pro-

tocol. In comparison to (traditional) protocols in the literature, we

note the following. The setting of (5,1) is not popular and there

is no concretely secure protocol. On the other hand, the setting

of (4,1) achieving GOD is well-studied [24, 36, 37]. However, it is

unsurprising, given the asymptotic complexity of (4,1) MPC proto-

col, it would naturally fare better. Hence, despite the mismatch in

the number of parties, we can estimate the overhead incurred in

moving from traditional 4PC [37] to FaF secure 5PC. We observe an

overhead of 1.62× in the online and 3× in the preprocessing commu-

nication cost. We believe that the overhead, which is the price paid

for obtaining FaF security, is reasonable enough. Further, in §5.1, we

establish a concrete efficiency gain of up to 1.6× of our (1, 1)-FaF
secure protocol over the traditional (5, 2) protocol with respect to

online efficiency. In §5.2 we benchmark the performance of the

applications by instantiating them with our FaF-secure protocols.

Benchmark environment and parameters. We report results in

LAN (1 Gbps bandwidth) with 2.3 GHz Quad-Core Intel Core i7

machines having 16GB RAM. The average round trip time (rtt) for

communicating 1KB data between a pair of machines is 0.29 mil-

liseconds (ms). The protocols build on the ENCRYPTO library [22]

in C++17 over a 64 bit ring. We use multi-threading, wherever pos-

sible, to facilitate efficient computation and communication among

the parties. We only estimate these results since the correctness

of the dark pool algorithms and accuracy of NN algorithms fol-

low from prior works [16, 45, 63]. Since there is no defined way

to capture an adversary’s misbehaviour, following standard prac-

tice [13, 36, 43, 56], we benchmark honest executions of the proto-

cols, including the verification required to attain GOD. Hence the

reported run time does not account for the 3PC execution. Note,

however, that 5PC execution itself accounts for the worst-case

computation because it has a higher number of parties, including

one malicious corruption as opposed to 3PC. Further, considering

perennially running protocols such as CDA, the cost of switching

to 3PC and continuing a semi-honest execution would be much

lesser compared to executing the protocol using 5PC perennially.

We use the time taken for the protocol to complete and commu-

nication between parties as the two parameters for benchmarks.

We report these values separately for the online and preprocessing

phases. Further, we also report online throughput (TP), which is

the number of buy/sell orders that can be processed in a second

for the dark pool algorithms, whereas it is the number of inference

queries that can be processed in a second for PPML algorithms.

5.1 Benefit of having fewer parties online
We compare our optimized multiplication protocol, which requires

only 3 out of the 5 parties for most of the online phase, with the non-

optimized variant, that requires all parties to remain online. We also

compare our protocol with the traditional (5, 2) protocol obtained
from [12], which also requires all parties to be online. To showcase

the improvement achieved in the optimized variant, we benchmark

synthetic circuits of varying depths (10, 100, 1000, 10000) with 100

multiplication gates at each layer. For all the variants, we report

the time, throughput (number of circuit evaluations that can be

performed in a second) and monetary cost of the system in Table 2.

While throughput simultaneously captures the improvements in

communication and round complexity, we additionally report mon-

etary costs to showcase the effect of the number of parties on the

operational cost of the system. We report these values only for the

online phase. We estimate the monetary cost following standard

Google Cloud pricing
5
.

The round complexity of the non-optimized variant is roughly

3× that of the optimized variant, assuming that the time taken for

jmp-vrfy gets amortized. This is evident from the reported online

time, for circuit depth 100 and beyond. This is however not the

case for circuit of depth 10. This is because the time taken for

the jmp-vrfy in the optimized variant (2 rounds) is comparable

to that of circuit evaluation (10 rounds for jmp-send) and hence

does not get amortized. The improved online time is reflected as

improvements in throughput as well, where the gain is up to 3×.
Finally, the reduction in the number of online parties is clearly

evident in monetary cost, since it captures the price paid to host

the required number of parties (inclusive of its computation and

communication). The optimized variant witnesses up to 69% savings

in monetary cost compared to the non-optimized variant.

With respect to [12], our optimized variant has an improvement

of up to 1.6× in run time and throughput. While the monetary cost

reported in Table 2 is for online phase, to draw a fair comparison

between our (optimized) protocol and [12], we also account for the

monetary cost of preprocessing phase. In doing so, we observe that

even for a circuit of depth 10000, the overall monetary cost of our

protocol is 2.57× 10
−3

USD, which is only slightly higher than that

of [12].

Circuit depth Protocol type Online time (s) TP (×10
2
) Monetary cost (×10

−3
USD)

10

Optimized 0.005 121.189 0.002

Non-optimized 0.011 59.435 0.006

[12] 0.008 78.259 0.002

100

Optimized 0.034 19.037 0.018

Non-optimized 0.107 6.006 0.057

[12] 0.0543 11.783 0.031

1000

Optimized 0.329 1.948 0.178

Non-optimized 1.059 0.604 0.571

[12] 0.530 1.206 0.253

10000

Optimized 3.152 0.203 1.758

Non-optimized 10.638 0.060 5.711

[12] 5.154 0.124 2.452

Table 2: Comparison for synthetic circuits

5
See https://cloud.google.com/vpc/network-pricing for network cost and

https://cloud.google.com/compute/vm-instance-pricing for computation cost.

10



PentaGOD: Stepping beyond Traditional GOD with Five Parties

5.2 Dark pools
We consider two popular matching algorithms used in dark pools–

continuous double auction (CDA) algorithm and volume-based

matching algorithm. While the former processes orders in a contin-

uous manner, the latter does so in scheduled intervals, and both the

algorithms rely on different parameters for matching orders. Both

these matching algorithms have been considered in prior works,

albeit in the traditional MPC setting [16, 23]. Although the func-

tionality of these algorithms remains the same as described in [16],

we take advantage of possible parallelization and tweak the algo-

rithms to improve their round complexity. This, in turn, improves

the run time of the protocols and the number of orders that can be

processed in unit time (throughput). We next detail each of these

algorithms and their overall performance.

5.2.1 Continuous Double Auction. The CDA algorithm maintains

a sorted list of buy orders (B) and sell orders (S) that are yet to be

matched. A buy order comprises the client’s identity, 𝑛𝑎𝑚𝑒𝑏 , the

units to be bought, 𝑏, and the buying price also known as bid, 𝑞.
Analogously, a sell order comprises the client’s identity 𝑛𝑎𝑚𝑒𝑠 , the

units to be sold 𝑠 , and the selling price also known as offer 𝑝 . All the
unmatched buy orders in the list B (where |B| = 𝑀) are sorted in

descending order of their bid. Similarly, sell orders in list S (where

|S| = 𝑁 ) are sorted in ascending order of offer. The CDA algorithm

maintains this as an invariant.

The CDA algorithm for processing a new order has two phases–

(i) matching, and (ii) insertion. In the matching phase, the incoming

order is matched with orders of the opposite type. Elaborately, a

buy order is said to match a sell order if the following criteria are

met– (i) Price criteria: the bid of the buy order must be greater than

or equal to the offer of the sell order and, (ii) Volume criteria: the
units of one order must be able to satisfy the units of the other.

Thus, when a new buy order arrives, it is matched with the first

order in S based on the matching criteria. The buy order may

continue to be matched with other sell orders in S, until either of
the criteria for matching fails. Hence matches need not be one-to-

one. An incoming sell order can also be processed analogously. The

matching phase concludes with the incoming order being in one of

the following two states. The order may be satisfied if all of its units
are exhausted by getting matched to opposite orders, or, it may

be partially satisfied if some of its units are still unmatched. If the

incoming order is partially satisfied, the algorithm enters insertion

phase that involves inserting this order into the corresponding list

B or S while respecting the sorted order maintained within it. We

refer to the algorithm in [16] for further details.

A secure variant of the CDA algorithm was given in [16], where

all orders remain hidden until they are satisfied. However, the order

type (buy or sell) and hence the size of S and B is not regarded

as sensitive information. We now describe an improved secure

protocol for the CDA algorithm to process an incoming buy order.

An incoming sell order can be processed analogously.

In [16], the protocol identifies matching sell orders in S sequen-

tially, and terminates when the incoming order can no longer be

matched. Instead, we perform additional bookkeeping to identify

all the matching sell orders in a single shot. This was not possible

in [16] because the number of unmatched units remaining were

tracked sequentially. However, we compute the cumulative sum

𝑤𝑖 of the units of the first 𝑖 sell orders in S which facilitates single

shot identification of matching sell orders. While the satisfaction

of the price criteria for all sell orders in S can be determined in

parallel,𝑤 allows determining satisfaction of the volume criteria

also, for all sell orders in parallel. Thus, one does not require to wait

for the 𝑖th order to be matched before processing the 𝑖 + 1
th
order.

Hence, all those sell orders where both the conditions are met can

be executed and revealed in public. Note that the last sell order

to be matched could either be fully satisfied or partially satisfied,

and hence needs extra care. The protocol for the above matching

phase is given in Fig. 5, where the changes made over the existing

protocol are highlighted. The insertion phase follows this, where

the incoming buy order is obliviously inserted into B in the correct

slot that respects the ordering maintained as an invariant. Since

the steps of protocol for the insertion phase as well as the overall

CDA algorithm remain the same as in [16], we do not elaborate on

them. However, we continue to execute independent instructions

in parallel within these protocols, too, and render the overall exe-

cution as efficient as possible. The protocols for the insertion phase

and overall CDA are given in Fig. 15 and Fig. 16 respectively in §D.

– Set J𝑤0K = J0K

– For each 𝑖 = 1 to 𝑁 do in parallel: J𝑤𝑖K =
∑𝑖

𝑗=1
J𝑠 𝑗 K

– For each 𝑖 = 1 to 𝑁 do in parallel:

◦ J𝑧𝑖KB = Πcomp (P, J𝑤𝑖−1K, J𝑏0K) , J𝑧′𝑖KB = Πcomp (P, J𝑝𝑖K, J𝑞0K + 1)

– For 𝑖 = 1 to 𝑁 do in parallel: J𝑓𝑖KB = Πmult (P, J𝑧𝑖KB, J𝑧′𝑖KB )
– Reconstruct 𝑓𝑖 ’s and set 𝑘 = 𝑖 such that 𝑓𝑖 = 1 and 𝑓𝑖+1 = 0 for 𝑖 ∈
{1, . . . , 𝑁 }. Else set 𝑘 = 0.

– for each 𝑖 = 1 to 𝑘 − 1 do in parallel:

◦ Reconstruct (J𝑛𝑎𝑚𝑒𝑠
𝑖
K, J𝑠𝑖K, J𝑝𝑖K)

– J𝑠′
𝑘
K = Πsel (J𝑏0K − J𝑤𝑘−1

K, J𝑠𝑘K, J𝑧𝑘+1KB )
– Reconstruct (J𝑛𝑎𝑚𝑒𝑠

𝑘
K, J𝑠′

𝑘
K, J𝑝𝑘K) , set J𝑠𝑘K = J𝑠𝑘K − J𝑠′

𝑘
K

– Delete first 𝑘 − 1 elements from S.

Protocol ΠPSL

(
P, (J𝑛𝑎𝑚𝑒𝑏

0
K, J𝑏0K, J𝑞0K), S

)

Figure 5: CDA matching phase: processing sell list

5.2.2 Volume Matching. Unlike the CDA algorithm, where orders

are processed in a continuous manner, the volume-based matching

processes all the requests at fixed intervals. The algorithm matches

orders based only on the volume. Hence, the 𝑖𝑡ℎ client only submits

the number of units it wishes to buy 𝑏𝑖 or sell 𝑠𝑖 , and the matching

is done on a first-come-first-serve basis. Similar to CDA the buy

orders and sell orders are maintained in a separate list (queue),

ordered by their arrival. Since the algorithm only accounts for

volume, one is guaranteed that either all the sell orders or all buy

orders are satisfied. That is, the type of orders whose total volume

is lesser will be satisfied completely. After processing the orders,

the algorithm outputs the sequence of updated buy/sell orders such

that the value now at 𝑏′
𝑖
or 𝑠′

𝑖
denotes the number of units traded

out of the original 𝑏𝑖 or 𝑠𝑖 request. Although the algorithm is the

same as in [16], we provide a parallel variant of the same in Fig. 6

and highlight the changes made over the existing protocol. Unlike

in [16], the algorithm can be improved to process each sell/buy

order in parallel by some additional bookkeeping, as done in §5.2.1.

11



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

1. Compute J𝑆K =
∑𝑁

𝑖=1
J𝑠𝑖K and J𝐵K =

∑𝑀
𝑗=1

J𝑏 𝑗 K

2. Compute J𝑓 KB = Πcomp (P, J𝐵K, J𝑆K)
3. Set J𝑇 K = Πsel (J𝑆K, J𝐵K, J𝑓 KB ) , J𝑠0K = 0 and J𝑏0K = 0

4. For 𝑖 from 1 to 𝑁 do in parallel: J𝐿𝑠
𝑖
K = J𝑇 K − ∑𝑖−1

𝑗=0
J𝑠 𝑗 K

5. For 𝑖 from 1 to𝑀 do in parallel: J𝐿𝑏
𝑖
K = J𝑇 K − ∑𝑖−1

𝑗=0
J𝑏 𝑗 K

6. For 𝑖 from 1 to 𝑁 do in parallel:

◦ J𝑧1KB = Πcomp (P, J𝐿𝑠𝑖 K, J1K) ) and J𝑧2KB = Πcomp (P, (J𝐿𝑠𝑖 K, J𝑠𝑖K)
◦ J𝑧1K = Πbit2A (P, J𝑧1KB ) and J𝑧2K = Πbit2A (P, J𝑧2KB )
◦ J𝑠𝑖K = ( (J𝐿𝑠𝑖 K − J𝑠𝑖K) · J𝑧2K + J𝑠𝑖K) · (1 − J𝑧1K)

7. For 𝑗 from 1 to𝑀 do in parallel:

◦ J𝑧1KB = Πcomp (P, J𝐿𝑏𝑗 K, J1K) ) and J𝑧2KB = Πcomp (P, (J𝐿𝑏𝑗 K, J𝑏 𝑗 K)
◦ J𝑧1K = Πbit2A (P, J𝑧1KB ) and J𝑧2K = Πbit2A (P, J𝑧2KB )
◦ J𝑏𝑖K = ( (J𝐿𝑏𝑗 K − J𝑏𝑖K) · J𝑧2K + J𝑏 𝑗 K) · (1 − J𝑧1K)

8. Reconstruct J𝑠𝑖K and J𝑏 𝑗 K for all 𝑖 and 𝑗

Protocol ΠVM

(
P, {J𝑠𝑖K}𝑁𝑖=1

, {J𝑏 𝑗 K}𝑀𝑗=1

)

Figure 6: Volume matching

5.2.3 Experimental results. Since the complexity of dark pool algo-

rithms depend on the size of buy list (𝑁 ) and sell list (𝑀), follow-
ing [16], we analyze these algorithms by varying 𝑁 and𝑀 between

10 and 500. Moreover, since the complexity of the CDA algorithm

additionally depends on the number of executed sell orders (𝑠), we
set this to be 10% of the maximum of 𝑁 and 𝑀6

. For CDA, these

results are reported in Table 6 (§D) . As expected and evident from

Fig. 7a, the run time of the algorithms increases with increasing 𝑁

and𝑀 . However, this increase is more pronounced in the algorithm

of [16] due to its sequential nature and heavy dependence on 𝑠 . To

capture this effect more clearly, we perform experiments with fixed

𝑁 = 𝑀 = 100 and vary 𝑠 between 1 to 50, and report these results

in Table 3.

As explained earlier and as is evident from Table 3, observe

that the run time of CDA linearly depends on 𝑠 for the algorithm

of [16]. On the contrary, the parallelizations in our algorithm help in

making the run time independent of 𝑠 , and thereby bring up to 20×
saving in run time. The poor run time of [16] in comparison to ours

can also be attributed to the large number of reconstructions in the

former’s CDA algorithm that necessitate performing verification

each time a value is reconstructed (in our (1, 1)-FaF setting). The
improvement of our algorithm is also reflected in throughput (TP)

where our algorithm’s TP remains almost constant, whereas the

algorithm of [16] sees a steady fall. Here, TP is computed as 1/𝑡𝑜
where 𝑡𝑜 is the online run time of the protocol.

The results for volume matching appear in Table 4. As expected,

the throughput (TP) of volumematching is better thanCDA. Further,

due to the parallelizations introduced by our work, our algorithm’s

runtime increases very slowly compared to that of [16] with increas-

ing 𝑁,𝑀 . This is visually represented in Fig. 7a, which compares

the online runtime of volume matching and CDA algorithm. Since

TP for volume matching is computed as 𝑁 +𝑀/𝑡𝑜 , where 𝑡𝑜 denotes

6
Dark pools are not obligated to report the detailed information regarding volumes and

types of transactions. Hence, we can only speculate the parameters such as 𝑠, 𝑁 ,𝑀 .

Further, accounting for the recent trend of smaller traders entering into dark pools, we

consider the possibility of a large volume order matched against several small volume

orders and set 𝑠 to be 10%. This is in contrast to the unrealistic case of 𝑠 ∈ {0, 1, 2, 3}
as in [16]

s Ref

Preprocessing Online

Time (ms) Com (KB) Time (ms) Com (KB) TP (orders/s)

1

Ours 3.41 333.19 17.13 190.09 58.37

[16] 2.42 158.41 16.58 79.24 60.30

2

Ours 3.25 333.19 15.98 192.90 62.57

[16] 2.56 161.32 24.50 84.68 40.81

4

Ours 3.28 333.19 15.38 198.53 65.00

[16] 2.55 167.13 37.22 96.11 26.87

5

Ours 3.37 333.19 15.40 201.34 64.95

[16] 2.48 170.04 42.73 102.08 23.40

10

Ours 3.26 333.19 15.46 215.40 64.67

[16] 2.59 184.57 75.20 134.58 13.30

40

Ours 3.33 333.19 17.16 299.78 58.26

[16] 3.06 271.77 281.21 421.39 3.56

50

Ours 3.18 333.19 15.77 327.90 63.40

[16] 3.13 301.12 350.70 551.95 2.85

Table 3: Comparison for CDA for varying s and N=M=100.

the online run time of the protocol, the slow increase in our run

time helps in obtaining higher TP as 𝑁,𝑀 increase. This is not the

case for [16] whose TP remains almost constant. The gain in TP for

us thus turns out to be up to 62× over the work of [16]. A visual

comparison of TP for CDA and volume matching appears in Fig. 7b

and Fig. 7c.

N M Ref

Preprocessing Online

Time (ms) Com (KB) Time (ms) Com (KB) TP (×10
3
orders/s)

10 10

Ours 1.72 47.82 7.13 32.70 2.81

[16] 1.70 45.94 18.93 9.31 1.06

20 10

Ours 1.81 71.06 7.83 48.45 3.83

[16] 1.89 90.54 37.61 17.96 0.80

20 20

Ours 1.92 94.30 7.86 64.20 5.09

[16] 1.89 90.54 34.83 17.96 1.15

40 20

Ours 2.11 140.78 7.79 95.69 7.70

[16] 2.28 179.74 66.50 35.26 0.90

50 50

Ours 2.65 233.78 9.10 158.68 10.99

[16] 2.56 224.37 83.28 43.91 1.20

100 50

Ours 3.11 350.27 9.29 237.42 16.14

[16] 3.50 447.69 163.73 87.17 0.92

100 100

Ours 4.03 466.55 10.77 316.15 18.57

[16] 3.74 447.73 167.17 87.17 1.20

200 100

Ours 5.04 699.44 10.02 473.62 29.95

[16] 6.64 875.48 326.77 173.67 0.92

200 200

Ours 7.89 932.34 10.18 631.09 39.31

[16] 7.19 894.37 323.33 173.67 1.24

400 200

Ours 10.73 1397.75 12.20 946.03 49.18

[16] 12.30 1787.73 640.70 346.66 0.94

500 500

Ours 26.98 2329.07 12.99 1575.92 76.98

[16] 23.34 2234.94 803.91 433.17 1.24

Table 4: Comparison for volume matching for varying N, M.

5.3 Privacy-preserving ML (PPML)
To showcase that our FaF-secure protocols have wide applicability,

we also benchmark the performance of popular neural networks

12



PentaGOD: Stepping beyond Traditional GOD with Five Parties

10 50 100 200 500

4

6

8

10

N=M (𝑠 = 1/10N)

O
n
l
i
n
e
T
i
m
e
(
o
n

l
o

g
2
s
c
a
l
e
)

CDA Ours

CDA [16]

VM ours

VM [16]

(a) CDA and Volume matching

10 50 100 200 500

0

20

40

60

N=M (𝑠 = 1/10N)

T
P

Ours

[16]

(b) CDA algorithm

10 50 100 200 500

10

12

14

16

N=M (𝑠 = 1/10N)

T
P
(
o
n

l
o

g
2
s
c
a
l
e
)

Ours

[16]

(c) Volume matching algorithm

Figure 7: Online time (a) and TP (orders/sec) comparison (b, c) of
our algorithm with [16]

in our setting. We consider a variety of network architectures,

the accuracy of which follow from [43, 45, 63]. We begin with a

fully connected 3 layer network (NN-1) that considers around 118K

model parameters. We also consider a convolutional neural network

(NN-2) comprising 2 hidden layers, with 100 and 10 nodes, respec-

tively. Lastly, we consider the two popular deep neural networks

of LeNet [40] and VGG16 [60]. LeNet comprises 2 convolutional

and fully connected layers, followed by maxpool for convolutional

layers, with approximately 431K parameters. On the other hand,

VGG16 has 16 layers and contains fully-connected, convolutional,

ReLU activation and max pool layers with around 138 million pa-

rameters. We rely on the standard MNIST [41] dataset to perform

secure inference using NN-1 and LeNet, while the CIFAR-10 [38]

dataset for NN-2 and VGG16 networks. The benchmarks for the

different NNs appear in Table 5. As expected, the run time and

communication of our protocols increase as the depth of the NNs

increases from NN-1 to VGG16.

NN type

Preprocessing Online

Time (s) Com (MB) Time (s) Com (MB) TP (queries/s)

NN-1 0.011 0.417 0.008 0.071 1010.86

NN-2 0.037 1.708 0.010 0.290 814.99

LeNet 0.560 35.898 0.053 6.298 152.21

VGG16 9.676 549.664 0.473 94.951 16.89

Table 5: NN inference.

6 CONCLUSION
We designed the first concretely efficient FaF-secure MPC protocol

in the (1,1) 5 party setting. Further, we designed several building

blocks and optimized them for the setting under consideration.

Thus, we provide a comprehensive framework that allows designing

secure variants of various applications where traditional security

fails. We consider the specific case of dark pools and showcase that

traditional MPC is a misfit for it. In the process of designing FaF-

secure protocols for dark pools, we also improve the underlying

algorithms and showcase it in the benchmarks. Given the popularity

of PPML, we also benchmark deep neural networks.

ACKNOWLEDGEMENTS
Arpita Patra, Varsha Bhat Kukkala and Bhavish Raj Gopal would like

to acknowledge financial support from National Security Council,

India. Nishat Koti would like to acknowledge support from Centre

for Networked Intelligence (a Cisco CSR initiative) at the Indian

Institute of Science, Bengaluru. The authors would also like to

acknowledge the support from Google Cloud for benchmarking.

REFERENCES
[1] Bar Alon, Eran Omri, and Anat Paskin-Cherniavsky. 2020. MPC with Friends

and Foes. In CRYPTO.
[2] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel

Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. 2017. Optimized Honest-

Majority MPC for Malicious Adversaries - Breaking the 1 Billion-Gate Per Second

Barrier. In IEEE S&P.
[3] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-Throughput Semi-Honest Secure Three-Party Computation with an

Honest Majority. In ACM CCS.
[4] Venkat Arun, Aniket Kate, Deepak Garg, Peter Druschel, and Bobby Bhattachar-

jee. 2020. Finding Safety in Numbers with Secure Allegation Escrows. In NDSS.
[5] Gilad Asharov, Tucker Hybinette Balch, Antigoni Polychroniadou, and Manuela

Veloso. 2020. Privacy-Preserving Dark Pools. In AAMAS.
[6] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. 2020.

Secure MPC: Laziness Leads to GOD. In ASIACRYPT.
[7] Azer Bestavros, Andrei Lapets, and Mayank Varia. 2017. User-centric distributed

solutions for privacy-preserving analytics. Communications of ACM (2017).

[8] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. 2015. How the

Estonian Tax and Customs Board Evaluated a Tax Fraud Detection System Based

on Secure Multi-party Computation. In FC.
[9] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas

Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt

Nielsen, Jakob Pagter, et al. 2009. Secure multiparty computation goes live.

In FC.
[10] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

2019. Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs. In

CRYPTO.
[11] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. 2019. Practical Fully Secure

Three-Party Computation via Sublinear Distributed Zero-Knowledge Proofs. In

ACM CCS.
[12] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. 2020. Efficient Fully Secure

Computation via Distributed Zero-Knowledge Proofs. In ASIACRYPT.
[13] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. 2020. FLASH:

Fast and Robust Framework for Privacy-preserving Machine Learning. PETS
(2020).

[14] Megha Byali, Carmit Hazay, Arpita Patra, and Swati Singla. 2019. Fast actively

secure five-party computation with security beyond abort. In ACM CCS.
[15] Megha Byali, Arun Joseph, Arpita Patra, and Divya Ravi. 2018. Fast Secure

Computation for Small Population over the Internet. In ACM CCS.
[16] John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. 2019. MPC joins the

dark side. In ACM ASIACCS.
[17] John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. 2021. Multi-party compu-

tation mechanism for anonymous equity block trading: A secure implementation

of turquoise plato uncross. Intell. Syst. Account. Finance Manag. (2021).
[18] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019.

ASTRA: High Throughput 3PC over Rings with Application to Secure Prediction.

In ACM CCSW@CCS.
[19] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. 2020. Trident: Efficient 4PC

Framework for Privacy Preserving Machine Learning. NDSS (2020).
[20] David Chaum. 1989. The Spymasters Double-Agent Problem: Multiparty Com-

putations Secure Unconditionally from Minorities and Cryptographically from

Majorities. In CRYPTO.
[21] Richard Cleve. 1986. Limits on the Security of Coin Flips whenHalf the Processors

Are Faulty (Extended Abstract). In ACM STOC.
[22] Cryptography and Privacy Engineering Group at TU Darmstadt. [n. d.]. EN-

CRYPTO Utils. https://github.com/encryptogroup/ENCRYPTO_utils.

13

https://github.com/encryptogroup/ENCRYPTO_utils


Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

[23] Mariana Botelho da Gama, John Cartlidge, Antigoni Polychroniadou, Nigel P

Smart, and Younes Talibi Alaoui. 2021. Kicking-the-Bucket: Fast Privacy-

Preserving Trading Using Buckets. IACR Cryptol. ePrint Arch. (2021).
[24] Anders Dalskov, Daniel Escudero, andMarcel Keller. 2020. Fantastic Four: Honest-

Majority Four-Party Secure Computation With Malicious Security. USENIX

security.

[25] Ivan Damgård and Jesper Buus Nielsen. 2007. Scalable and unconditionally

secure multiparty computation. In CRYPTO.
[26] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. 1993. Perfectly

Secure Message Transmission. J. ACM (1993).

[27] Xiao Dong, David A Randolph, Chenkai Weng, Abel N Kho, Jennie M Rogers, and

XiaoWang. 2021. DevelopingHigh Performance SecureMulti-Party Computation

Protocols in Healthcare: A Case Study of Patient Risk Stratification. In AMIA.
[28] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. 1998. Trading Correctness

for Privacy in Unconditional Multi-Party Computation (Extended Abstract). In

CRYPTO.
[29] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. 2017. High-

Throughput Secure Three-Party Computation for Malicious Adversaries and an

Honest Majority. In EUROCRYPT.
[30] Hossein Ghodosi and Josef Pieprzyk. 2009. Multi-Party Computation with Om-

nipresent Adversary. In PKC.
[31] Oded Goldreich. 2007. Foundations of cryptography: volume 1, basic tools. Cam-

bridge university press.

[32] S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. 2018. Secure Computation

with Low Communication from Cross-Checking. In ASIACRYPT.
[33] Martin Hirt, Ueli M.Maurer, and Vassilis Zikas. 2008. MPC vs. SFE : Unconditional

and Computational Security. In ASIACRYPT.
[34] Martin Hirt and Marta Mularczyk. 2020. Efficient MPC with a Mixed Adversary.

In ITC.
[35] T Ryan Hoens, Marina Blanton, and Nitesh V Chawla. 2010. A private and

reliable recommendation system for social networks. In IEEE. IEEE.
[36] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. SWIFT: Super-

fast and Robust Privacy-Preserving Machine Learning. IACR Cryptol. ePrint Arch.
(2021).

[37] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. 2022. Tetrad: Actively

Secure 4PC for Secure Training and Inference. IACR Cryptol. ePrint Arch..

[38] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The CIFAR-10 dataset.

(2014). https://www.cs.toronto.edu/~kriz/cifar.html.

[39] Benjamin Kuykendall, Hugo Krawczyk, and Tal Rabin. 2019. Cryptography for#

metoo. PETS (2019).
[40] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE (1998).

[41] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database. (2010).

http://yann.lecun.com/exdb/mnist/.

[42] Yehuda Lindell. 2017. How to simulate it–a tutorial on the simulation proof

technique. In Tutorials on the Foundations of Cryptography.
[43] Payman Mohassel and Peter Rindal. 2018. ABY

3
: A Mixed Protocol Framework

for Machine Learning. In ACM CCS.
[44] Payman Mohassel, Mike Rosulek, and Ye Zhang. 2015. Fast and Secure Three-

party Computation: The Garbled Circuit Approach. In ACM CCS.
[45] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In IEEE S&P.
[46] Peter Sebastian Nordholt and Meilof Veeningen. 2018. Minimising Communi-

cation in Honest-Majority MPC by Batchwise Multiplication Verification. In

ACNS.
[47] United States of America before the Securities and Exchange Commission. 2005.

SEC institutes enforcement action against 20 former New York Stock Exchange

specialists alleging pervasive course of fraudulent trading. Press Release. https:

//www.sec.gov/news/press/2005-54.htm.

[48] United States of America before the Securities and Exchange Commission. 2011.

In the Matter of Pipeline Trading Systems LLC, et al., Securities Exchange Act of

1934 Release No. 65609. https://www.sec.gov/litigation/admin/2011/33-9271.pdf.

[49] United States of America before the Securities and Exchange Commission. 2012.

In the Matter of eBX, LLC Securities Exchange Act of 1934 Release No. 67979.

https://www.sec.gov/litigation/admin/2012/34-67969.pdf.

[50] United States of America before the Securities and Exchange Commission. 2014.

In the Matter of LavaFlow, Inc. Securities Exchange Act of 1934 Release No.

72673. https://www.sec.gov/litigation/admin/2014/34-72673.pdf.

[51] United States of America before the Securities and Exchange Commission. 2014.

In the Matter of Liquidnet, Inc., Securities Exchange Act of 1934 Release No.

72339. https://www.sec.gov/litigation/admin/2014/33-9596.pdf.

[52] United States of America before the Securities and Exchange Commission. 2016.

In the Matter of Credit Suisse Securities (USA) LLC, Securities Exchange Act of

1934 Release No. 77002. https://www.sec.gov/litigation/admin/2016/33-10013.

pdf.

[53] United States of America before the Securities and Exchange Commission. 2018.

In the Matter of ITG Inc. and Alternet Securities, Inc., Securities Exchange

Act of 1934 Release No. 84548. https://www.sec.gov/litigation/admin/2018/33-

10572.pdf.

[54] Satsuya Ohata and Koji Nuida. 2020. Communication-Efficient (Client-Aided)

Secure Two-Party Protocols and Its Application.

[55] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.0:

Improved Mixed-Protocol Secure Two-Party Computation. In USENIX, Michael

Bailey and Rachel Greenstadt (Eds.).

[56] Arpita Patra and Ajith Suresh. 2020. BLAZE: Blazing Fast Privacy-Preserving

Machine Learning. NDSS (2020).
[57] Phillip Rogaway and Thomas Shrimpton. 2004. Cryptographic hash-function

basics: Definitions, implications, and separations for preimage resistance, second-

preimage resistance, and collision resistance. In FSE. Springer.
[58] Alex Sangers, Maran van Heesch, Thomas Attema, Thijs Veugen, Mark Wigger-

man, Jan Veldsink, Oscar Bloemen, and Daniël Worm. 2019. Secure multiparty

PageRank algorithm for collaborative fraud detection. In FC. Springer.
[59] Erez Shmueli and Tamir Tassa. 2017. Secure multi-party protocols for item-based

collaborative filtering. In ACM RecSys.
[60] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional net-

works for large-scale image recognition. ICLR (2015).

[61] Stanford. [n. d.]. CS231n: Convolutional Neural Networks for Visual Recognition.

https://cs231n.github.io/convolutional-networks/

[62] Christina-Angeliki Toli, Abdelrahaman Aly, and Bart Preneel. 2016. A privacy-

preserving model for biometric fusion. In CANS.
[63] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek

Mittal, and Tal Rabin. 2021. FALCON: Honest-Majority Maliciously Secure

Framework for Private Deep Learning. PoPETs (2021).

A PRELIMINARIES
Security model. We prove the security of our protocols following

the standard ideal-world/real-world simulation paradigm [31, 42].

In this security notion, an ideal functionality F is considered, to

which the corrupted and uncorrupted parties send their inputs

over a perfectly secure channel. F executes the computation and

sends the output to all. Informally, a protocol is said to be secure if

whatever the adversary can do in the real world can also be done

in the ideal world. In the traditional definition, this is captured by

designing an ideal-world adversary (simulator) which can simulate

the view of the real-world adversary corrupting a subset of the

parties in P. However, in the FaF-security model [1], the additional

requirement of simulating the view of any subset of uncorrupted (or

semi-honest) parties necessitates the use of two simulators. Thus,

to prove the security, two simulators are constructed in the ideal-

world, one for the malicious adversary and one for the semi-honest

adversary. Further, the malicious adversary is allowed to send its

entire view to the semi-honest adversary in the ideal world (to

capture the behaviour where the malicious adversary may send

non-protocol messages to uncorrupted parties in the real world).

LetA denote the probabilistic polynomial time (PPT) real-world

malicious adversary corrupting 𝑡 parties in I ⊂ P, and SA denote

the corresponding ideal-world simulator. Similarly, let AH denote

the PPT real-world semi-honest adversary corrupting ℎ★ parties

in H ⊂ P \ I, and SA,H , be the ideal-world simulator. Let F
be the ideal-world functionality. Let view

real

A,Π
be A’s view and

out
real

A,Π
denote the output of the uncorrupted parties (in P \ I)

during a random execution of a protocol Π. Correspondingly, let
view

real

A,AH ,Π be AH ’s view during an execution of protocol Π

running alongside A. Note that view
real

A,AH ,Π consists of the non-

protocol messages sent by the A to AH . Similarly, let view
ideal

A,F
be the malicious adversary’s simulated view and out

ideal

A,F denote

the output of the uncorrupted parties during a random execution

of ideal-world functionality F . Further, let viewideal

A,AH ,F
be the

14

https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://www.sec.gov/news/press/2005-54.htm
https://www.sec.gov/news/press/2005-54.htm
https://www.sec.gov/litigation/admin/2011/33-9271.pdf
https://www.sec.gov/litigation/admin/2012/34-67969.pdf
https://www.sec.gov/litigation/admin/2014/34-72673. pdf
https://www.sec.gov/litigation/admin/2014/33-9596.pdf
https://www.sec.gov/litigation/admin/2016/33-10013.pdf
https://www.sec.gov/litigation/admin/2016/33-10013.pdf
 https://www.sec.gov/litigation/admin/2018/33-10572.pdf 
 https://www.sec.gov/litigation/admin/2018/33-10572.pdf 
https://cs231n.github.io/convolutional-networks/


PentaGOD: Stepping beyond Traditional GOD with Five Parties

semi-honest adversary’s simulated view during an execution of F
running alongside A.

A protocol Π is said to compute F with computational (𝑡, ℎ★)-
FaF security if

(viewideal

A,F , outidealA,F ) ≡ (view
real

A,Π , out
real

A,Π )
(viewideal

A,AH ,F , out
ideal

A,F ) ≡ (view
real

A,AH ,Π, out
real

A,Π )

Shared key setup. Following several recent works [2, 3, 13, 19,

36, 43, 56], to enable non-interactive communication between the

parties, a one-time setup is performed that establishes common

random keys for a pseudo-random function (PRF) 𝐹 . Here 𝐹 :

{0, 1}𝜅 × {0, 1}𝜅 → 𝑋 is a secure PRF, with co-domain 𝑋 being Z
2
ℓ .

The key setup is modeled via a functionality Fsetup (Fig. 8) that

can be realized using any FaF-secure MPC protocol. The goal is to

establish a common key between every set of 2, 3, 4, and all parties.

To sample a random value r ∈ Z
2
ℓ among a set of 3 parties

𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 non-interactively, each of these parties invoke 𝐹𝑘𝑖 𝑗𝑘 (𝑖𝑑𝑖 𝑗𝑘 )
and obtain r. Here, 𝑖𝑑𝑖 𝑗𝑘 denotes a countermaintained by these three

parties, and is updated after every PRF invocation. The appropriate

keys used to sample the common randomness is implicit from the

context and from the identities of the parties that sample.

Fsetup interacts with the parties in P and the adversaries SA , SA,H .
Fsetup picks the following keys.
• A common random key 𝑘P for all the parties.

• A common key 𝑘𝑖 𝑗 between every pair of parties 𝑃𝑖 , 𝑃 𝑗 where 1 ≤
𝑖 < 𝑗 ≤ 5.

• A common key 𝑘𝑖 𝑗𝑘 between every set of 3 parties 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 where

1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 5.

• A common key 𝑘𝑖 𝑗𝑘𝑙 between every set of 4 parties 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 , 𝑃𝑙
where 1 ≤ 𝑖 < 𝑗 < 𝑘 < 𝑙 ≤ 5.

Output: Keys {𝑘P , 𝑘𝑠𝑖 , 𝑘 𝑗𝑠 , 𝑘𝑠 𝑗𝑘 , 𝑘𝑖𝑠𝑘 , 𝑘𝑖 𝑗𝑠 , 𝑘𝑠 𝑗𝑘𝑙 , 𝑘𝑖𝑠𝑘𝑙 , 𝑘𝑖 𝑗𝑠𝑙 , 𝑘𝑖 𝑗𝑘𝑠 },
generated as above, are output to every 𝑃𝑠 ∈ P.

Functionality Fsetup

Figure 8: Ideal functionality for shared-key setup

Collision-resistant hash. A family of hash functions [57] {H :

K × M → Y} is called collision resistant if for all probabilistic

polynomial time adversaries A, given the hash function H𝑘 for

𝑘 ∈𝑅 K , the following holds: Pr[(𝑥, 𝑥 ′) ← A(𝑘) : (𝑥 ≠ 𝑥 ′) ∧
H𝑘 (𝑥) = H𝑘 (𝑥 ′)] = negl(𝜅), where 𝑥, 𝑥 ′ ∈ {0, 1}𝑚 ,𝑚 = poly(𝜅),
and 𝜅 is security parameter.

Outsourced setting. In this setting, the required computation (e.g.,

matching for dark pools) is outsourced to external servers. Since

these servers are external to the system, it is required that all the

information regarding the system (dark pools) must be hidden from

the servers. Hence, it is also essential to consider how the data

owner or client would share his private data among the external

servers. Thus, we elaborate on the agreement protocol executed

among the computing parties (servers) to agree on the value sent by

the client U. At a high-level, the protocol proceeds as follows. Let
𝛽vi denote the value received by 𝑃𝑖 from U. To agree on 𝛽v received

from U, the parties first arrive on an agreement regarding each

𝛽vi received by 𝑃𝑖 . This is followed by selecting the majority value

among 𝛽v1 , 𝛽v2 , 𝛽v3 , 𝛽v4 , 𝛽v5 . For parties to agree on 𝛽vi , 𝑃𝑖 first sends

𝛽vi to all other parties. This is followed by 𝑃 𝑗 ∈ P \ 𝑃𝑖 exchanging
𝛽vi among themselves. Thus, each 𝑃 𝑗 ∈ P\𝑃𝑖 receives four versions
of 𝛽vi and sets the majority value among the four values received

as 𝛽vi . Since there can be at most one malicious corruption among

the parties, the majority rule ensures that all honest parties are on

the same page. Once each of the values are agreed on, every party

takes the majority among 𝛽v1 , 𝛽v2 , 𝛽v3 , 𝛽v4 , 𝛽v5 as the value sent by

U. If no value appears in majority, the malicious intent of the client

is captured and hence the input is discarded.

B 5PC (1, 1)-FAF SECURE PROTOCOLS
B.1 Joint message passing (jmp)
The modified protocol for jmp appears in Fig. 9. The protocol is

described with respect to a single message v for a fixed ordered pair
of senders and a given receiver. However, we note that verify phase
across several messages for the same ordered pair of senders and

receiver can be bundled together. This would involve party 𝑃 𝑗 (silent

party) sending a single hash corresponding to all the messages

under consideration and performing the verification accordingly.

Each party 𝑃𝑠 for 𝑠 ∈ {𝑖, 𝑗, 𝑘 } initializes bit b𝑠 = 0. Let CP denote the

conflict pair which is the pair of parties in conflict, one of which is

guaranteed to be corrupt. Let 𝑃𝑖 , 𝑃 𝑗 denote the senders who wish to

send v to receiver 𝑃𝑘 . Let H denote a collision-resistant hash function.

Send Phase: 𝑃𝑖 sends v to 𝑃𝑘 .
Verify Phase: 𝑃 𝑗 sends H(v) to 𝑃𝑘 .
– 𝑃𝑘 broadcasts "(accuse,𝑃𝑖)", if𝑃𝑖 is silent, and all takeCP = (𝑃𝑖 , 𝑃𝑘 )
as the conflict pair. Analogously for 𝑃 𝑗 . If 𝑃𝑘 accuses both 𝑃𝑖 , 𝑃 𝑗 , then

CP = (𝑃𝑖 , 𝑃𝑘 ) . Otherwise, 𝑃𝑘 receives some ṽ and either sets b𝑘 = 0

when the value and the hash are consistent or sets b𝑘 = 1. 𝑃𝑘 then sends

b𝑘 to 𝑃𝑖 , 𝑃 𝑗 and terminates if b𝑘 = 0.

– If 𝑃𝑖 does not receive a bit from 𝑃𝑘 , it broadcasts "(accuse,𝑃𝑘)"
and CP = (𝑃𝑖 , 𝑃𝑘 ) . Analogously for 𝑃 𝑗 . If both 𝑃𝑖 , 𝑃 𝑗 accuse 𝑃𝑘 , then

CP = (𝑃𝑖 , 𝑃𝑘 ) . Otherwise, 𝑃𝑠 for 𝑠 ∈ {𝑖, 𝑗 } sets b𝑠 = b𝑘 .

– 𝑃𝑖 , 𝑃 𝑗 exchange their bits with each other. If 𝑃𝑖 does not receive b𝑗
from 𝑃 𝑗 , it broadcasts "(accuse,𝑃 𝑗)" and CP = (𝑃𝑖 , 𝑃 𝑗 ) . Analogously
for 𝑃 𝑗 . Otherwise, 𝑃𝑖 resets its bit to b𝑖 ∨ b𝑗 and likewise 𝑃 𝑗 resets its

bit to b𝑗 ∨ b𝑖 .
– 𝑃𝑠 for 𝑠 ∈ {𝑖, 𝑗, 𝑘 } broadcasts H𝑠 = H(v∗ ) if b𝑠 = 1, where v∗ = v for
𝑠 ∈ {𝑖, 𝑗 } and v∗ = ṽ otherwise. If 𝑃𝑘 does not broadcast, terminate. If

either 𝑃𝑖 or 𝑃 𝑗 does not broadcast, then CP = (𝑃𝑖 , 𝑃 𝑗 ) . Otherwise,
• If H𝑖 ≠ H𝑗 : CP = (𝑃𝑖 , 𝑃 𝑗 ) .
• Else if H𝑖 ≠ H𝑘 : CP = (𝑃𝑖 , 𝑃𝑘 ) .
• Else if H𝑖 = H𝑗 = H𝑘 : CP = (𝑃 𝑗 , 𝑃𝑘 ) .

Protocol Πjmp (𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 , v)

Figure 9: Joint Message Passing Protocol

B.2 Input sharing
The protocol for Πsh appears in Fig. 10.

15



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

Preprocessing:

– Parties non-interactively generate [ · ]-shares of a random 𝛼v ∈ Z2
ℓ

such that 𝑃𝑖 learns all shares of 𝛼v, using the shared-keys.

Online:

– 𝑃𝑖 computes and sends 𝛽v = v + 𝛼v to one other party, say 𝑃 𝑗 .

– 𝑃𝑖 , 𝑃 𝑗 then jmp-sv 𝛽v to all other parties.

Protocol Πsh (𝑃𝑖 , v)

Figure 10: Generating JvK by party 𝑃𝑖

Protocol for generating [·]-shares appears in Fig. 11.

Let v𝑙𝑚 be a share of v held by 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 ∈ P.
– Parties in P \ {𝑃𝑝 , 𝑃𝑞 } for 1 ≤ 𝑝 < 𝑞 ≤ 5 and 𝑝 ≠ 𝑙, 𝑞 ≠ 𝑚, non-

interactively generate v𝑝𝑞 ∈ Z2
ℓ together with 𝑃𝑖 , using the shared-key

setup.

– 𝑃𝑖 computes and sends v𝑙𝑚 = v − ∑
1≤𝑝<𝑞≤5,𝑝≠𝑙,𝑞≠𝑚 v𝑝𝑞 to 𝑃 𝑗 , fol-

lowing which 𝑃𝑖 , 𝑃 𝑗 jmp-sv v𝑙𝑚 to 𝑃𝑘 .

Protocol ΠRSS−Sh (𝑃𝑖 , v)

Figure 11: Generating [v] by party 𝑃𝑖

B.3 Joint sharing
Here we discuss the various optimizations possible in the joint

sharing protocol. When the value to be shared is available with

𝑃𝑖 , 𝑃 𝑗 in the preprocessing phase, the protocol can be optimized as

follows. All parties set 𝛽v = 0. 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 non-interactively sample

a random r𝑙𝑚 ∈ Z2
ℓ and set the common [·]-share of 𝛼v they

possess as 𝛼vlm = r𝑙𝑚 . Similarly, 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑙 non-interactively sample

a random r𝑘𝑚 ∈ Z2
ℓ and set the common [·]-share of 𝛼v they

possess as 𝛼vkm = r𝑘𝑚 . 𝑃𝑖 , 𝑃 𝑗 set the common share of 𝛼v held

together with 𝑃𝑚 as 𝛼vkl = −(v + r𝑙𝑚 + r𝑘𝑚) and jmp-sv 𝛼vkl to 𝑃𝑚 .

The other [·]-shares of 𝛼v are set as 0.

When the value to be shared is held by three parties, say 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 ,

the protocol proceeds similarly toΠJSh2, with the following difference–

in the preprocessing phase, 𝛼v will be also be learned by 𝑃𝑘 , and in

the online phase, only two jmp-sv are required. We call the resul-

tant protocol ΠJSh3, and omit the formal protocol due to its close

resemblance to ΠJSh2. Moreover, when the value is available with

these three parties in the preprocessing phase, the protocol can be

made completely non-interactive. For this, similar to the previous

case, 𝛽v is set as 0, and the common [·]-share of 𝛼v held by 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘
is set as −v and all other shares are set as 0.

Finally, when all parties hold a value v ∈ Z
2
ℓ , they can generate

JvK by setting 𝛽v = v and all [·]-shares of 𝛼v as 0.

Preprocessing:

– Parties non-interactively generate [ · ]-shares of a random 𝛼v ∈ Z2
ℓ

such that 𝑃𝑖 , 𝑃 𝑗 learn all shares of 𝛼v, using the shared keys.

Online:

– 𝑃𝑖 , 𝑃 𝑗 compute and jmp-sv 𝛽v = v + 𝛼v to all other parties.

Protocol ΠJSh2 (𝑃𝑖 , 𝑃 𝑗 , v)

Figure 12: Joint sharing of v by 𝑃𝑖 , 𝑃 𝑗

B.4 Reconstruction
The protocol for reconstruction appears in Fig. 13.

Let the missing shares at 𝑃𝑖 be v𝑖 𝑗 , v𝑖𝑘 , v𝑖𝑙 , v𝑖𝑚 .

– Let 𝑃𝑘 , 𝑃𝑙 , 𝑃𝑚 possess v𝑖 𝑗 . 𝑃𝑘 , 𝑃𝑙 send v𝑖 𝑗 to 𝑃𝑖 while 𝑃𝑚 sends its

hash to 𝑃𝑖 . Analogous steps are carried out for the other three shares.

– 𝑃𝑖 uses the value which appears in majority for the received miss-

ing shares, together with its own shares, for reconstructing v as v =∑
1≤𝑝<𝑞≤5

v𝑝𝑞 .

Protocol Πrec (𝑃𝑖 , v)

Figure 13: Reconstruction of v towards 𝑃𝑖

C BUILDING BLOCKS
Bit to arithmetic. The protocol appears in Fig. 14.

Preprocessing:

– 𝑃1, 𝑃2 jointly share 𝜈1 =
(
𝛼b34 ⊕ 𝛼b35 ⊕ 𝛼b45

)
, 𝑃1, 𝑃3 jointly share 𝜈2 =(

𝛼b24 ⊕ 𝛼b25
)
, 𝑃2, 𝑃3 jointly share 𝜈3 =

(
𝛼b14 ⊕ 𝛼b15

)
and 𝑃4, 𝑃5 jointly

share 𝜈4 =
(
𝛼b12 ⊕ 𝛼b13 ⊕ 𝛼b23

)
to generate J𝜈R

1
K, J𝜈R

2
K, J𝜈R

3
K, J𝜈R

4
K, re-

spectively.

– Parties execute Πmult on (J𝜈R1 K, J𝜈R
2
K) and (J𝜈R

3
K, J𝜈R

4
K) to generate

J𝜈R
1
· 𝜈R

2
K and J𝜈R

3
· 𝜈R

4
K, respectively.

– Parties non-interactively compute JpRK = J(𝜈1⊕𝜈2 )RK = J𝜈R
1
K+J𝜈R

2
K−

2 · J𝜈R
1
· 𝜈R

2
K and JqRK = J(𝜈3 ⊕ 𝜈4 )RK = J𝜈R

3
K + J𝜈R

4
K − 2 · J𝜈R

3
· 𝜈R

4
K.

– Parties execute Πmult on JpRK, JqRK to generate JpR ·qRK, and compute

J𝛼b
RK = J(p ⊕ q)RK = JpRK + JqRK − 2 · JpR · qRK.

– Parties non-interactively generate JrK for r ∈ Z
2
ℓ , and invokeΠJ·K→[·]

(§3.1) to generate

[
𝛼b

R]
, [r].

Online:

– Compute

[
bR + r

]
= 𝛽b

R +
[
𝛼b

R] − 2𝛽b
R [

𝛼b
R] + [r], and reconstruct

bR + r towards all, similar to multiplication.

– Non-interactively generate JbR + rK (§B.3).
– Non-interactively compute JbRK = JbR + rK − JrK.

Protocol Πbit2A (P, JbKB )

Figure 14: Bit to arithmetic conversion

Note that the preprocessing phase can be optimized further. In-

stead of invoking the entire Πmult in the preprocessing phase which

requires communicating 14ℓ elements, we can generate the required

multiplicative terms by invoking FMulPre (whose current realiza-

tion via the modified variant of [12] as described in §F, requires

6ℓ elements). For this, J·K-shares of 𝜈1, 𝜈2, 𝜈3, 𝜈4 are converted to

[·]-shares by invoking ΠJ·K→[·] , followed by invoking FMulPre on

the respective terms. The result of multiplication, generated as

[·]-shares, can be converted to J·K-shares by invoking Π[ · ]→J·K.

D SECURE PROTOCOLS FOR CDA
In protocol, ΠInsert (Fig. 15), for insertion phase of CDA, we note

that each of the 𝑓𝑖 ’s for 𝑖 ∈ {1, 2, . . . } can be computed in parallel.

Subsequently, so can 𝑓 ′
𝑖
’s followed by 𝑓 ′′

𝑖
’s.

16



PentaGOD: Stepping beyond Traditional GOD with Five Parties

– Insert (J0K, J0K, J0K) to the end of B
– Compute J𝑓0KB = Πcomp (P, J𝑞0K, J𝑞1K) )
– J𝑓0K = Πbit2A (J𝑓0KB )
– For 𝑖 = 1 to𝑀 + 1 do

◦ J𝑓𝑖KB = Πcomp (P, J𝑞0K, J𝑞𝑖K + 1) )
◦ J𝑓𝑖K = Πbit2A (J𝑓𝑖KB )
◦ J𝑓 ′

𝑖
K = (1 − J𝑓𝑖K) · J𝑓𝑖−1K)

◦ J𝑓 ′′
𝑖

K = (1 − J𝑓𝑖K) · (1 − J𝑓 ′
𝑖
K)

– For 𝑖 = 1 to𝑀 + 1 do in parallel

◦ J𝑛𝑎𝑚𝑒′𝑏
𝑖

K = J𝑓𝑖K · J𝑛𝑎𝑚𝑒𝑏
𝑖
K + J𝑓 ′

𝑖
K · J𝑛𝑎𝑚𝑒𝑏

0
K + J𝑓 ′′

𝑖
K · J𝑛𝑎𝑚𝑒𝑏

𝑖−1
K

◦ J𝑏′
𝑖
K = J𝑓𝑖K · J𝑏𝑖K + J𝑓 ′

𝑖
K · J𝑏0K + J𝑓 ′′

𝑖
K · J𝑏𝑖−1K

◦ J𝑞′
𝑖
K = J𝑓𝑖K · J𝑞𝑖K + J𝑓 ′

𝑖
K · J𝑞0K + J𝑓 ′′

𝑖
K · J𝑞𝑖−1K

Protocol ΠInsert

(
P, (J𝑛𝑎𝑚𝑒𝑏

0
K, J𝑏0K, J𝑞0K), B

)

Figure 15: Obliviously inserting into buy list

The instructions in ΠCDA are all sequential.

– Invoke ΠPSL on (J𝑛𝑎𝑚𝑒𝑏
0
K, J𝑏0K, J𝑞0K)

– Compute J𝑒KB = Πeq (P, J𝑏0K, 0)
– Compute J𝑞0K = Πsel (J𝑞0K, J0K, J𝑒KB )
– Invoke ΠInsert to insert (J𝑛𝑎𝑚𝑒𝑏

0
K, J𝑏0K, J𝑞0K) into buy list

Protocol ΠCDA

(
P, (J𝑛𝑎𝑚𝑒𝑏

0
K, J𝑏0K, J𝑞0K), B, S

)

Figure 16: Overall CDA
The time and communication of the secure protocol for CDA

algorithm, ours as well as that given in [16], is reported in Table 6.

N M Ref

Preprocessing Online

Time (ms) Com (KB) Time (ms) Com (KB) TP (orders/s)

10 10

Ours 1.67 37.36 13.76 26.61 72.65

[16] 1.62 24.15 15.70 15.41 63.71

20 10

Ours 1.73 52.28 14.41 36.52 69.38

[16] 1.70 41.97 23.88 27.95 41.87

20 20

Ours 1.82 70.19 14.63 47.58 68.37

[16] 1.70 41.97 22.69 27.95 44.06

40 20

Ours 1.94 100.02 14.60 67.39 68.52

[16] 1.87 77.61 37.19 53.56 26.89

50 50

Ours 2.28 168.68 14.34 110.47 69.74

[16] 1.98 95.44 42.64 66.62 23.45

100 50

Ours 2.73 243.27 15.10 159.99 66.23

[16] 2.43 184.56 75.54 134.58 13.24

100 100

Ours 3.25 333.19 15.80 215.40 63.28

[16] 2.66 184.57 75.61 134.58 13.23

200 100

Ours 4.09 482.37 16.73 314.45 59.78

[16] 3.53 363.10 143.25 283.62 6.98

200 200

Ours 5.74 662.14 16.89 425.26 59.22

[16] 4.26 363.14 141.81 283.62 7.05

400 200

Ours 7.73 960.83 17.58 623.36 56.90

[16] 7.04 720.10 281.36 634.16 3.55

500 500

Ours 18.95 1648.69 17.67 1054.63 56.59

[16] 10.87 898.78 354.43 835.64 2.82

Table 6: Comparison for CDA for varying N, M, and s = 1/10(max(N, M)).

E SECURITY OF OUR PROTOCOLS
The simulation based security proofs for our protocols are pre-

sented in this section. The simulations for 5PC are provided in the

(Fsetup, Fjmp)-hybrid model. The ideal functionality, Fjmp appears

in Fig. 17. The two simulators considered are SA and SA,H which

denote the ideal-world malicious adversary and the ideal-world

semi-honest adversary, respectively. We let S𝑃𝑖A denote the mali-

cious simulator when party 𝑃𝑖 is maliciously corrupt and S𝑃 𝑗

A,H
denote the simulator for the semi-honest corruption of party 𝑃 𝑗 .

We omit the superscript when it is understood from the context.

We use the following strategy for simulating the computation of

a function 𝑓 . The simulation begins with the simulator emulating

the shared-key setup Fsetup functionality and giving the respective

keys to the adversary. This is followed by the input sharing phase

in which SA obtains the input of A, using the known keys, and

sets the inputs of the honest parties to be 0. Note the SA,H already

knows the inputs of AH . Since SA knows all the inputs, it can

honestly carry out the computation and obtain all the intermediate

values as required for simulating the view of A. Further, on in-

voking the ideal functionality F5PC−FaF withA’s input (andAH ’s
input), SA can obtain the output of the function. SA proceeds

to simulate the various sub-protocols in topological order using

the aforementioned values (inputs ofA (AH ), intermediate values

and circuit output). A similar approach is taken by SA,H while

ensuring that the messages sent to AH are consistent with that in

the view received from SA .
The simulation steps are provided separately for the sub-protocols

to ensure modularity. Carrying out these simulation steps in the

respective order results in simulating the computation of the de-

sired function 𝑓 . While emulating Fjmp, if a CP is identified, the

simulator stops the simulation at that step, and continues with

simulation of 3PC using the respective semi-honest 3PC simulator.

Fjmp interacts with parties in P and adversary SA and SA,H .

– Fjmp receives (Input, v𝑠 ) from 𝑃𝑠 for 𝑠 ∈ {𝑖, 𝑗 }, while it receives

(Select,CP) from SA . Here, CP denotes the pair of parties that SA
wishes to choose as the conflict pair. Let 𝑃★ ∈ P denote the party

corrupted by SA .
– If v𝑖 = v𝑗 and CP = ⊥, then set msg𝑖 = msg𝑗 = ⊥,msg𝑘 = v𝑖 .

– Else, if 𝑃★ ∈ CP, then set msg𝑖 = msg𝑗 = msg𝑘 = CP.

– Else, setCP = {𝑃★, 𝑃 } where𝑃 ∈ CP. Setmsg𝑖 = msg𝑗 = msg𝑘 = CP

– Send (Output,msg𝑠 ) to 𝑃𝑠 ∈ P.
SA sends its view to SA,H .

Functionality Fjmp

Figure 17: Ideal functionality for jmp

E.1 Simulations for 5PC protocols
In this section, we describe the simulation steps for input sharing,

multiplication and reconstruction, followed by the complete 5PC.

E.1.1 Sharing. The ideal functionality for Πsh (Fig. 10) appears in

Fig. 18.

17



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

Fsh interacts with parties in P and the adversaries SA , SA,H .

– Receive (Input, v) from dealer 𝑃𝑑 ∈ P. Let 𝑃★
be the party corrupted

by SA .
– Receive continue or abort with (Select,C) from SA . Here, C denotes

pair of parties that SA wants to choose as conflict pair.

– If received continue, randomly pick 𝛼vij ∈ Z2
ℓ , for 1 ≤ 𝑖 < 𝑗 ≤ 5

and compute 𝛽v = v +∑
1≤𝑖< 𝑗≤5

𝛼vij . Setmsg𝑠 = (𝛽v, {𝛼vij }𝑖≠𝑠,𝑗≠𝑠 ) , for
each 𝑃𝑠 ∈ P.
– Else if received abort, then:

– If 𝑃★ ∈ C, then set CP = C and msg𝑠 = CP for each 𝑃𝑠 ∈ P.
– Else setCP to include 𝑃★

and one other party from P, andmsg𝑠 = CP
for each 𝑃𝑠 ∈ P.
Output: Send (Output,msg𝑠 ) to 𝑃𝑠 ∈ P.

– SA sends it’s view to SA,H .

Functionality Fsh

Figure 18: Ideal functionality for Πsh

The simulator for the sharing protocol appears in Fig. 19.

Malicious Simulation:
Preprocessing:

– SA emulates Fsetup and gives the respective keys to A. The shares

of 𝛼v that are held by A are sampled non-interactively using the shared

keys. Other values (𝛼vij for 1 ≤ 𝑖 < 𝑗 ≤ 5 and 𝛼vji for 1 ≤ 𝑗 < 𝑖 ≤ 5),

not known to 𝑃𝑖 , are sampled randomly.

Online:
– If 𝑃𝑖 is the dealer, SA receives 𝛽v from A. Given the knowledge of

all shares of 𝛼v, SA obtains A’s input as v = 𝛽v − 𝛼v. Following this,

SA emulates Fjmp with A as one of the senders, to deliver 𝛽v to all

parties. Depending on A’s behaviour, SA sets CP and invokes Fsh with

(Input, v) , and continue/abort and (Select,CP) .
– Else, SA honestly generates 𝛽v by setting the input, v, of honest dealer
as v = 0. SA either sends 𝛽v to A and/or emulates Fjmp to deliver 𝛽v to

all, with A either as the sender or receiver, depending on the identity

of 𝑃𝑖 . Depending on A’s behaviour, SA sets CP and invokes Fsh with

continue or abort, and (Select,CP) .
Semi-Honest Simulation:

Preprocessing:
– SA,H receives the shared keys generated during Fsetup from SA , and
the corresponding shares of 𝛼v. The shares of 𝛼v that are held by AH ,
other than the ones held by A, are sampled non-interactively using the

shared keys. Shares not known to 𝑃 𝑗 are sampled randomly.

Online:
– If 𝑃𝑖 is the dealer, SA,H sends the 𝛽v received from SA to AH and/or

emulates Fjmp. Else, it performs these steps with a 𝛽v generated by

setting v = 0.

Simulator S𝑃𝑖A , S𝑃 𝑗

A,H

Figure 19: Simulator for Πsh for sharing v

Lemma E.1 (Security). Protocol Πsh (Fig. 10) realizes Fsh (Fig.
18) with computational security in the (Fsetup, Fjmp)-hybrid model
against FaF adversaries SA ,SA,H controlling 𝑃𝑖 , 𝑃 𝑗 respectively.

Proof. Claim 1: the view generated by S𝑃𝑖A is indistinguishable

from A’s real-world view.

This is argued as follows. When 𝑃𝑖 is the dealer, A’s view con-

sists of the random shares of 𝛼v generated using the random keys

provided by S𝑃𝑖A while emulating Fsetup. This is indistinguishable
fromA’s view in the real-world. When 𝑃𝑖 is a non-dealer,A’s view

consists of a subset of the random shares of 𝛼v generated using the

random keys provided by S𝑃𝑖A while emulating Fsetup. Additionally,
it also sees 𝛽v = 0 + 𝛼v. Since, the missing shares of 𝛼v at A are

chosen randomly by S𝑃𝑖A , 𝛽v remains random, and hence the views

are indistinguishable.

Claim 2: the view generated by S𝑃 𝑗

A,H is indistinguishable from

AH ’s real-world view, where SA,H knows the input and output

of AH , and view sent by S𝑃𝑖A .
This is argued as follows. If 𝑃 𝑗 is the dealer, the argument follows

similar to before, and S𝑃 𝑗

A,H ’s view is indistinguishable fromAH ’s
view. If 𝑃 𝑗 is a non-dealer, then AH ’s view consists of 𝛽v, the six

random shares of 𝛼v, and among the four missing shares of 𝛼v, it

also sees three shares which are received as part of the view sent by

A toAH . SinceAH still misses the share 𝛼vij , the 𝛽v sent byS
𝑃 𝑗

A,H
remains random, and hence the views are indistinguishable. □

E.1.2 Joint sharing. The simulator for the joint sharing protocol

where two parties jointly share a value v in the preprocessing phase

appears in Fig. 20. The simulations for joint sharing when the value

to be shared is available in the online phase is similar.

Malicious Simulation:

– If 𝑃𝑖 is one among the two dealers, SA emulates Fjmp with A as one

of the senders to send one share of 𝛼v to one other party.

– Else if 𝑃𝑖 is the recipient of the share of 𝛼v, then SA emulates Fjmp
with A as the receiver.

– Else, there is nothing to simulate.

Semi-Honest Simulation:

– If 𝑃 𝑗 is one of the dealers, SA,H emulates Fjmp with AH as one of

the senders to send the share of 𝛼v to one other honest party.

– Else, if 𝑃 𝑗 is the recipient of the share of 𝛼v, then SA,H emulates Fjmp
with AH as the receiver.

– Else if 𝑃 𝑗 is neither the dealer nor the receiver, there is nothing to

simulate.

Simulator S𝑃𝑖A , S𝑃 𝑗

A,H

Figure 20: Simulator for Πjsh for sharing v

Observe that view generated by S𝑃𝑖A is indistinguishable from

A’s real-world view. This is because values received by A are

random which is as per the real-world protocol. Similarly, view of

AH generated by S𝑃 𝑗

A,H is indistinguishable from real-world view.

E.1.3 Reconstruction. The ideal functionality for Πrec (Fig. 13) ap-

pears in Fig. 21.

Frec interacts with parties in P and the adversaries SA , SA,H .

– Receive (Input, JvK𝑠 , 𝑃𝑖 ) from each 𝑃𝑠 ∈ P.
– Set msg𝑖 = 𝛽v −

∑
1≤𝑖< 𝑗≤5

𝛼vij and msg𝑠 = ⊥ for 𝑃𝑠 ∈ P \ {𝑃𝑖 }.
Output: Send (Output,msg𝑠 ) to 𝑃𝑠 ∈ P.

– SA sends it’s view to SA,H .

Functionality Frec

Figure 21: Ideal functionality for Πrec

18



PentaGOD: Stepping beyond Traditional GOD with Five Parties

The simulator for the reconstruction protocol appears in Fig. 22.

Malicious Simulation:

– To simulate reconstruction towards A:

- Invoke Frec with (Input, JvK𝑖 ) .
- SA sets a missing share of 𝛼vij of v, not held by 𝑃𝑖 (and 𝑃 𝑗 ) as

𝛼vij = 𝛽v − v − ∑
1≤𝑝<𝑞≤5,𝑝≠𝑖,𝑞≠𝑗 𝛼vpq , where 𝛼vpq were sampled

using the shared keys, and v is the output obtained by SA from the

ideal functionality.

- SA sends 𝛼vij and its hash to A on behalf of the honest parties that

hold𝛼vij . SA sends the other shares of𝛼v which include𝛼vik, 𝛼vil, 𝛼vim

(and were sampled randomly), together with its hash to A on behalf

of honest parties that hold these shares.

Semi-Honest Simulation:

– SA,H receives the view from SA . To simulate reconstruction towards

AH , SA,H sends the missing shares and their hashes to AH on behalf

of the honest parties by using these values as present in the view received

from SA .

Simulator S𝑃𝑖A , S𝑃 𝑗

A,H

Figure 22: Simulator for Πrec of output JvK

Lemma E.2 (Security). Protocol Πrec (Fig. 13) realizes Frec (Fig.
21) with computational security in the Fsetup-hybrid model against
FaF adversaries SA ,SA,H controlling 𝑃𝑖 , 𝑃 𝑗 respectively.

Proof. The view generated by S𝑃𝑖A is indistinguishable from

A’s real-world view. This is argued as follows. A’s view consists

of random 𝛼vpq for 1 ≤ 𝑝 < 𝑞 ≤ 5, 𝑝 ≠ 𝑖, 𝑞 ≠ 𝑖 such that one

share, say, 𝛼vij (unknown to A) is adjusted as 𝛼vij = 𝛽v − v −∑
1≤𝑝<𝑞≤5,𝑝≠𝑖,𝑞≠𝑗 𝛼vpq to ensure reconstruction of correct output.

Since, these missing shares are chosen randomly by S𝑃𝑖A , the 𝛽v
remains random and, the views are indistinguishable. Similarly,

the view generated by S𝑃 𝑗

A,H is indistinguishable from AH ’s real-
world view, since AH still misses one random share 𝛼vij , which

keeps 𝛽v random. □

E.1.4 Multiplication. The ideal functionality for Πmult (Fig. 2) ap-

pears in Fig. 23.

Fmult interacts with parties in P and the adversaries SA , SA,H .

– Receive (Input, JaK𝑠 , JbK𝑠 , [𝛼z ]𝑠 ) from 𝑃𝑠 ∈ P. Let 𝑃★
be the mali-

cious party controlled by SA .
– Receive continue or abort with (Select,C) from SA . Here, C denotes

pair of parties that SA wants to choose as conflict pair.

– If received continue, compute JzK where z = ab +𝛼z. Setmsg𝑠 = JzK𝑠 ,
for each 𝑃𝑠 ∈ P.
– Else if received abort, then:

– If 𝑃★ ∈ C, then set CP = C and msg𝑠 = CP for each 𝑃𝑠 ∈ P.
– Else setCP to include 𝑃★

and one other party from P, andmsg𝑠 = CP
for each 𝑃𝑠 ∈ P.
Output: Send (Output,msg𝑠 ) to 𝑃𝑠 ∈ P.

– SA sends it’s view to SA,H .

Functionality Fmult

Figure 23: Ideal functionality for Πmult

Due to the asymmetry in ourmultiplication protocol, we consider

the following two cases for simulation– (i) when the maliciously

corrupt 𝑃𝑖 is one among 𝑃1, 𝑃2, 𝑃3, and (ii) when the maliciously

corrupt 𝑃𝑖 is one among 𝑃4, 𝑃5. The simulator for case(i) appears in

Fig. 24.

Malicious Simulation:
Preprocessing: SA emulates FMulPre.

Online:
– SA honestly generates shares of 𝛽z on behalf of honest parties.

– SA simulates send of jmp with A as one of the senders to send

the missing share of 𝛽z to the other two online parties (𝑃1, 𝑃2, 𝑃3). SA
simulates send of jmp with A as the receiver to send the missing shares

of 𝛽z to A on behalf of the honest parties.

Verification:
– SA honestly generates hash on all 𝛽zs involved in verification on

behalf of the honest online parties, and sends the hash to A.

– If A sends an inconsistency bit b = 0, SA simulates send and verify
of jmp with A as one of the senders to send 𝛽z to the offline parties

(𝑃4, 𝑃5), if 𝑃𝑖 ∈ {𝑃1, 𝑃2}. This is followed by simulation of verify of jmp
towards A.

– Else, if A sends an inconsistency bit b = 1, SA simulates the binary

search where hashes are sent until A broadcasts an inconsistency bit

with b = 0 and levels 𝐿𝑝 , 𝐿𝑝+1 are identified. SA simulates send and

verify of jmp with A as one of the senders if 𝑃𝑖 ∈ {𝑃1, 𝑃2} to send 𝛽z
up to level 𝐿𝑝 . This is followed by simulation of verify of jmp towards

A for 𝛽zs up to level 𝐿𝑝+1. If the simulation of verify of latter jmp did

not output a CP, SA sends the identity of 𝑃 𝑗 to A.

– Depending on A’s behaviour, SA sets CP and invokes Fmult with

(Input, JaK𝑖 , JbK𝑖 , [𝛼z ]𝑖 ) , and continue/abort and (Select,CP) .
Semi-Honest Simulation:

Preprocessing: SA,H emulates FMulPre.

Online: If 𝑃 𝑗 is one of the online parties, then SA,H simulates send
of jmp with AH as one of the senders to send the missing share of 𝛽z
to the remainder honest online party. SA,H simulates send of jmp with

AH as the receiver to send the missing share of 𝛽z to AH on behalf of

the honest party.

Verification: If 𝑃 𝑗 is one of the online parties, then

– SA,H honestly generates hash on all 𝛽zs involved in verification on

behalf of the honest online parties, and sends the hash to AH .
– Depending on the bit obtained in the view from SA , SA,H either

proceeds with simulating jmp with AH as one of the senders if 𝑃 𝑗 ∈
{𝑃1, 𝑃2} for sending 𝛽z towards offline parties, or it simulates the hash

based consistency check. For the latter, SA,H recursively performs the

hash exchange until levels 𝐿𝑝 , 𝐿𝑝+1 as present in the view of SA are

identified. Following this, SA,H simulates send and verify of jmp with

AH as one of the senders if 𝑃 𝑗 is one among 𝑃1 or 𝑃2 for sending 𝛽z up

to level 𝐿𝑝 to offline parties. Then, simulation of verify of jmp towards

AH for 𝛽zs up to level 𝐿𝑝+1 is performed.

If 𝑃 𝑗 is one of the offline parties, then SA,H simulates the similar

steps as above which are carried out after the hash based consistency

check.

Simulator S𝑃𝑖A , S𝑃 𝑗

A,H

Figure 24: Simulator for Πmult when 𝑃𝑖 ∈ {𝑃1, 𝑃2, 𝑃3}

The simulator for case(ii) appears in Fig. 25.

19



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

Malicious Simulation:
Preprocessing: SA emulates FMulPre.

Online: There is nothing to simulate.

Verification:
– SA honestly generates 𝛽z on behalf of honest parties.

– SA emulates Fjmp with A as the receiver to send 𝛽z to A on behalf

of the honest parties.

– Depending on A’s behaviour, SA sets CP and invokes Fmult with

(Input, JaK𝑖 , JbK𝑖 , [𝛼z ]𝑖 ) , and continue/abort and (Select,CP) .
Semi-Honest Simulation:

Preprocessing: SA,H emulates FMulPre.

Online:
– If 𝑃 𝑗 is one of the online parties:

- SA,H emulates Fjmp with AH as one of the senders to send the

missing share of 𝛽z (generated honestly) to the other two online

parties. SA,H emulates Fjmp with AH as the receiver to send the

missing shares of 𝛽z to AH on behalf of the honest parties.

– If 𝑃 𝑗 is one of the offline parties, there is nothing to simulate.

Verification:
– If 𝑃 𝑗 is one of the online parties, SA,H sends the hash of all 𝛽z in this

segment to AH and emulates Fjmp with AH as one of the senders to

send 𝛽z to the honest offline party.

– If 𝑃 𝑗 is one of the offline parties, then SA,H emulates Fjmp with AH
as receiver to send 𝛽z (reused from the view received from SA ) to AH
on behalf of honest parties.

Simulator S𝑃𝑖A , S𝑃 𝑗

A,H

Figure 25: Simulator for Πmult when 𝑃𝑖 ∈ {𝑃4, 𝑃5}

Lemma E.3 (Security). Protocol Πmult (Fig. 2) realizes Fmult (Fig.
23) with computational security in the (Fsetup, Fjmp)-hybrid model
against FaF adversaries SA ,SA,H controlling 𝑃𝑖 , 𝑃 𝑗 respectively.

Proof. We argue indistinguishability in the following two cases.

Case 1: When the maliciously corrupt 𝑃𝑖 is one among 𝑃1, 𝑃2, 𝑃3.

Observe that the view generated in this case byS𝑃𝑖A is indistinguish-

able from A’s real-world view. This is because A receives random

shares of 𝛽z which are generated honestly by the simulator. Since

A still misses one share of the mask 𝛼z, the 𝛽z received via Fjmp
remains random. Hence, the views are indistinguishable. A similar

argument applies to AH ’s view being indistinguishable.

Case 2: When the maliciously corrupt 𝑃𝑖 is one among 𝑃4, 𝑃5.

Similar to case 1, the real-world view of A is indistinguishable

from the view generated by SA sinceA misses one share of the 𝛼z
which keeps 𝛽z random. A similar argument, as before, holds for

indistinguishability of the view of AH . □

E.1.5 The complete 5PC. The ideal functionality for computing a

function 𝑓 via (1, 1)-FaF secure 5PC appears in Fig. 26.

Overview of the simulation steps. Observe that the complete 5PC

protocol begins with the input sharing phase, followed by an eval-

uation phase where addition and multiplication gates are evalu-

ated and concludes with a reconstruction phase. For each of these

phases, we use the simulation steps described above depending

on the identity of the maliciously corrupt 𝑃𝑖 and a semi-honest

𝑃 𝑗 . The simulation proceeds as follows. The simulator is able to

extract malicious A’s input while performing the simulation steps

for input sharing, and knows AH ’s input. Thus, it can invoke the

ideal functionality, F5PC−FaF (Fig. 26) to obtain the output of the

function being simulated. Simulation is not required for addition

gates as it is a local operation. For multiplication gates, the simula-

tion steps as described for multiplication are invoked. Observe that

in all steps, the view ofA, as generated by S𝑃𝑖A , is indistinguishable
from its real-world view. Similar is the case for AH . If at any step,

Fjmp outputs a CP, 5PC simulation stops and the rest of the steps

are simulated using the semi-honest 3PC simulator. Steps for share

conversion have to be simulated towardsAH , where the simulator

carries out steps as per the honest protocol execution, reusing the

shares held by A, wherever necessary. Finally, for reconstructing

the output, the simulator uses the output received from F5PC−FaF
to adjust the value of the missing share that has to be sent to A
and AH . Indistinguishability of the views follows from the indis-

tinguishability of the views for each of the phases. Thus, the view

generated by S𝑃𝑖A is indistinguishable from A’s real-world view,

and the view generated by S𝑃 𝑗

A,H is indistinguishable from AH ’s
real-world view.

F5PC−FaF interacts with the parties in P and the adversaries SA and

SA,H . Let 𝑥𝑠 , 𝑦𝑠 be the input and output corresponding to a party 𝑃𝑠

respectively, i.e. (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5 ) = 𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ) .
– F5PC−FaF receives (Input, 𝑥𝑠 ) from 𝑃𝑠 ∈ P and computes (𝑦1, 𝑦2, 𝑦3,

𝑦4, 𝑦5 ) = 𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ) .
Output: Send (Output, 𝑦𝑠 ) to 𝑃𝑠 ∈ P.
SA sends its view to SA,H .

Functionality F5PC−FaF

Figure 26: Ideal functionality for evaluating 𝑓 in 5PC (1, 1)-FaF
Model

Malicious Simulation:

– SA emulates Fsetup to generate common PRF keys.

– SA invokes the simulator for input sharing and extracts A’s input.

SA invokes F5PC−FaF on A’s input to obtain the function output v.

– For addition operations, there is nothing to simulate. For multiplica-

tions, SA invokes the simulator for multiplication.

– SA invokes the reconstruction simulator to reconstruct output v.

– SA sends its view to SA,H .

Semi-Honest Simulation:

– SA,H invokes the simulator for input sharing.

– For addition operations, there is nothing to simulate. For multiplica-

tions, SA,H invokes the simulator for multiplication.

– SA,H invokes the reconstruction simulator to reconstruct output v.

Simulator S𝑃𝑖A , SA,H

Figure 27: Simulator S𝑃𝑖A for 5PC − FaF

Theorem E.4. Assuming collision resistant hash functions exist,
protocol 5PC − FaF (Fig. 4) realizes F5PC−FaF (Fig. 26) with compu-
tational security in the Fsetup-hybrid model with (1, 1)-FaF security.

Proof. The view of the adversaries generated by the simulators

is indistinguishable from their real-world views. The indistinguisha-

bility of the views from input sharing and multiplication follows

20



PentaGOD: Stepping beyond Traditional GOD with Five Parties

from Lemma E.1 and Lemma E.3, respectively. With respect to

reconstruction, on obtaining the output from F5PC−FaF, the simu-

lators either simulate the reconstruction steps (see Lemma E.2 for

indistinguishability argument), or execute the simulator for semi-

honest 3PC. In both cases, the simulated view is indistinguishable

from the real-world view. □

E.2 Simulations for Building Blocks
In this section, we describe the simulation steps for the building

blocks described in §4. We begin with the simulation steps for multi-

input multiplication, dot product, bit to arithmetic, bit injection, bit

extraction and arithmetic to Boolean.

Since the multi-input multiplication and dot product protocol are

very similar to the multiplication protocol, we omit simulation steps

for the same. Further, observe that the protocol for bit to arithmetic

essentially invokes the joint sharing and multiplication protocols.

Hence, simulation steps for bit to arithmetic involves executing the

simulation steps for joint sharing and multiplication in the order in

which they appear in the protocol. Indistinguishability follows from

the indistinguishability of the simulation steps in the underlying

protocols. Similar to bit to arithmetic, bit injection involves an

invocation of bit to arithmetic followed by a multiplication. Hence,

the simulation steps follow from the simulation of the underlying

protocols. Finally, bit extraction, truncation as well as arithmetic to

Boolean rely on invocation of joint sharing following by evaluating

the bit extraction or the PPA circuit. Both the circuit evaluations

rely on invoking the multiplication protocol. Hence, similar to the

previous protocols, simulation steps for bit extraction, truncation

and arithmetic to Boolean can be obtained by following the steps for

simulating joint sharing and multiplication, in the order in which

they appear in the resultant protocol.

Similarly, it is easy to observe that the protocols for oblivious

select, equality check, comparison, maxpool and ReLU build on top

of the prior building blocks. Hence, their simulation follows from

simulation of the underlying protocols.

E.3 Security against a (1, 1)-mixed adversary
A closely related notion to FaF is that of mixed adversarial model

[6, 20, 26, 28, 30, 33, 34], where a single (centralized) adversary is

allowed to corrupt 𝑡 parties maliciously and a disjoint subset of ℎ★

parties semi-honestly. A protocol secure against such an adversary

is said to be (𝑡, ℎ★)-mixed secure. It may seem that the mixed notion

subsumes the FaF notion, but [1] shows otherwise. However, we

show that our designed protocols are also secure in the (1, 1) mixed

adversarial model. The intuition for our protocols being secure in

the mixed adversarial model as well is as follows. Observe that since

the mixed model comprises a centralized adversary, as opposed

to the decentralized one in the FaF model, the view of the semi-

honest parties is available to the adversary while deciding the attack

strategy for the malicious parties. The design of our protocols is

such that it inherently is capable of withstanding such attacks due

to the threshold of our secret-sharing scheme being set as 𝑡 + ℎ★,
thus lending our protocols secure against the centralized (1, 1)-
mixed adversary as well. We next provide the simulation proof

for the same. Since the proofs follow easily from the simulation

proofs for FaF security, in our case, we restrict to discussing the

mixed-secure simulation for the sharing protocol.

The ideal functionality for the the sharing protocol secure against

a mixed adversary appears in Fig. 28.

Fmixed
Sh interacts with parties in P and the adversary Smixed.

– Receive (Input, v) from dealer 𝑃𝑑 ∈ P. Let 𝑃★
be the malicious party

corrupted by Smixed.

– Receive continue or abort with (Select,C) from Smixed. Here, C de-

notes pair of parties that Smixed wants to choose as conflict pair.

– If received continue, randomly pick 𝛼vij ∈ Z2
ℓ , for 1 ≤ 𝑖 < 𝑗 ≤ 5

and compute 𝛽v = v +∑
1≤𝑖< 𝑗≤5

𝛼vij . Setmsg𝑠 = (𝛽v, {𝛼vij }𝑖≠𝑠,𝑗≠𝑠 ) , for
each 𝑃𝑠 ∈ P.
– Else if received abort, then:

– If 𝑃★ ∈ C, then set CP = C and msg𝑠 = CP for each 𝑃𝑠 ∈ P.
– Else setCP to include 𝑃★

and one other party from P, andmsg𝑠 = CP
for each 𝑃𝑠 ∈ P.
Output: Send (Output,msg𝑠 ) to 𝑃𝑠 ∈ P.

Functionality Fmixed
Sh

Figure 28: Mixed-secure ideal functionality for input sharing

The simulator for the sharing protocol secure against a mixed

adversary appears in Fig. 29.

Let 𝑃𝑙 be the malicious party and 𝑃𝑚 be the semi-honest party controlled

by adversary A.

Preprocessing

– Smixed emulates Fsetup and gives the respective keys to A. The shares

of 𝛼v that are held by A are sampled non-interactively using the shared

keys. Other values (𝛼vij for 1 ≤ 𝑖 < 𝑗 ≤ 5 and 𝛼vji for 1 ≤ 𝑗 < 𝑖 ≤ 5),

not known to A, are sampled randomly.

Online

– If 𝑃𝑙 or 𝑃𝑚 is the dealer, Smixed receives 𝛽v from A. Given the knowl-

edge of all shares of 𝛼v, Smixed obtains A’s input as v = 𝛽v − 𝛼v. Follow-

ing this, Smixed emulates Fjmp with A as one of the senders, to deliver 𝛽v
to all parties. Depending on A’s behaviour, Smixed sets CP and invokes

Fmixed
Sh with (Input, v) , and continue/abort and (Select,CP) .

– Else, Smixed honestly generates 𝛽v by setting the input, v, of honest
dealer as v = 0. Smixed either sends 𝛽v to A and/or emulates Fjmp to

deliver 𝛽v to all, with A either as the sender or receiver, depending on

the identity of 𝑃𝑖 . Depending on A’s behaviour, Smixed sets CP and

invokes Fmixed
Sh with continue or abort, and (Select,CP) .

Simulator Smixed

Figure 29: Simulator corresponding to Fmixed
Sh

Observe that the view generated by the simulator is indistinguish-

able from the real-world view, and the argument follows similar to

as given in Lemma E.1.

F PREPROCESSING PHASE OF
MULTIPLICATION

Here we discuss the protocol carried out in the preprocessing phase

to perform multiplication. The protocol is similar to the one pro-

posed in [12], where first a semi-honest protocol is executed, fol-

lowed by verifying the correctness of the semi-honest execution.

21



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

The difference lies in the steps performed when the verification

fails and a pair of conflicting parties is output. In such a case, ow-

ing to the presence of at most one malicious party in our setting,

we eliminate the pair of parties in conflict, and the computation

proceeds via semi-honest 3PC unlike the malicious 3PC used in the

original protocol. Further, we do not require use of tags (or message

authentication codes) to ensure a consistent share conversion, due

to the presence of only a single malicious party. The verification

protocol has a communication cost which is sublinear in the num-

ber of multiplication triples to be verified, and thus, its cost can

be amortized away for multiple multiplications. Thus, the cost of

the preprocessing phase boils down to the cost of the semi-honest

5PC protocol which is 6 ring elements. While the protocol of [12]

is proven to be secure according to the standard security definition,

we prove that the variant described above is (1, 1)-FaF secure in the

5PC setting. We provide the details of the protocol (mostly follows

from [12]) as well for ease of understanding of the proof.

The verification of the semi-honest execution can be reduced to

the problem of verifying the correctness of multiplications (several

degree-2 equations). We begin with discussing the protocol for ver-

ifying the correctness of a degree-2 equations(realized by the ideal

functionality FCheatIdentify). This protocol serves as the basis for
the verification protocol (realized by the ideal functionality FVerify)
which is discussed subsequently. The verification protocol relies on

5 invocations (one for each party in P) of FCheatIdentify to verify

the correctness of the multiplication triples. Due to the top-down

approach of explaining the functionalities, the use of FCheatIdentify
may not be evident until the details of FVerify are described. Hence,

we request a reader to read §F.0.1 as an independent section. Finally,

we discuss the main protocol ΠmulPre, which involves executing

a semi-honest 5PC protocol followed by an invocation of FVerify.
On the way, we also prove that these protocols are (1, 1)-FaF se-

cure in the 5PC setting as well as discuss their communication

complexities.

F.0.1 Checking correctness of degree-2 relations. We first discuss a

protocol that allows parties to prove the correctness of a degree-2

computation carried out on their shares. The protocol follows along

the lines of the protocol in [12] and we demonstrate that it is secure

in the (1, 1)-FaF model for 5PC. We begin with the protocol for

fields and discuss how it can be extended to work over rings as

shown in [12].

Specifically, party 𝑃𝑖 wants to prove the correctness of the fol-

lowing equation:

𝑐 −
𝐿∑︁

𝑘=1

(
®a𝑘 ⋄ ®b𝑘

)
= 0 (3)

where 𝑐, {®a𝑘 }𝐿𝑘=1
, {®b𝑘 }𝐿𝑘=1

are known to 𝑃𝑖 and [·]-shared among

parties in P. Further, we assume that 𝑃𝑖 knows all [·]-shares of
𝑐 . Looking ahead, {®a𝑘 }𝐿𝑘=1

, {®b𝑘 }𝐿𝑘=1
represent 𝑃𝑖 ’s [·]-shares of

{𝑎𝑘 }𝐿𝑘=1
, {𝑏𝑘 }𝐿𝑘=1

, while 𝑐 represents 𝑃𝑖 ’s additive share (⟨·⟩-share)
of

∑𝐿
𝑘=1

a𝑘 ·b𝑘 obtained by operating on its shares {®a𝑘 }𝐿𝑘=1
, {®b𝑘 }𝐿𝑘=1

,

which is denoted by the operation ⋄7. Note here that we abuse

the vector notation to mean [·]-sharing. By virtue of [·]-sharing,
7 [𝑎] consists of 10 shares {𝑎1,2, 𝑎1,3, . . . , 𝑎4,5 }. Similar is the case with [𝑏 ]. The
product 𝑐 = 𝑎 · 𝑏 can thus be written as the sum of products of the form 𝑎𝑖,𝑗𝑏𝑘,𝑙
∀1 ≤ 𝑖 ≤ 𝑗 ≤ 5 and 1 ≤ 𝑘 ≤ 𝑙 ≤ 5 . Thus, the additive shares of 𝑐 can be obtained

by splitting each term 𝑎𝑖,𝑗𝑏𝑘,𝑙 contributed by some party who has both the shares.

given [·]-sharing of {a𝑘 , b𝑘 }𝐿𝑘=1
(which will be the case in the fi-

nal protocol), parties can locally generate [·]-sharing of the [·]-
shares ({®a𝑘 }𝐿𝑘=1

, {®b𝑘 }𝐿𝑘=1
) held by 𝑃𝑖 . This holds because for ev-

ery share held by 𝑃𝑖 , 2 other parties also possess it. Hence, it is

possible to define a sharing where the share of one subset of 3

parties is 𝑃𝑖 ’s share itself, while the other shares are 0. For in-

stance, if v is [·]-shared and ®v = (v23, v24, v25, v34, v35, v45) denote
the tuple of shares held by 𝑃1 (where the subscript denotes the

pair of parties which does not possess this share), then [®v] =

( [v23] , [v24] , [v25] , [v34] , [v35] , [v45]), where
[
v𝑗𝑘

]
is generated

by setting all but one of its shares as 0, and the non-zero share being

v𝑗𝑘 (which is held by all 3 parties in P \ {𝑃 𝑗 , 𝑃𝑘 }).
Relying on the distributed zero-knowledge proof system from [10]

allows to prove the correctness of Eq. (3) with sublinear commu-

nication complexity. Note that in the scenario that the proof is

rejected due to one of the parties’ misbehaviour, the prover will be

able to identify the cheating party. In this case, the prover together

with this party are regarded as a pair of conflicting parties, one of

which is guaranteed to be corrupt. This is captured by the ideal

functionality FCheatIdentify which checks for correctness of Eq. (3)

and either outputs an accept, or a pair of parties that are in conflict

with each other (one among which is guaranteed to be corrupt).

The functionality is defined in Fig. 30.

Let SA be an ideal world malicious adversary and SA,H be the ideal

world semi-honest adversary. Let honest parties hold consistent [ · ]-
sharings [𝑐 ] , { [®a𝑘 ] }𝐿𝑘=1

,

{[
®b𝑘

]}𝐿
𝑘=1

. The functionality is invoked by an

index 𝑖 sent by honest parties and works as follows.

(1) FCheatIdentify receives from honest parties their shares of 𝑐, {®a𝑘 }𝐿𝑘=1
,{

®b𝑘
}𝐿
𝑘=1

.

(2) FCheatIdentify computes 𝑐, {®a𝑘 }𝐿𝑘=1
,

{
®b𝑘

}𝐿
𝑘=1

. It computes the cor-

rupted party’s shares of these values and sends them to SA . If 𝑃𝑖 is
corrupted, then it also sends [ · ]-shares of 𝑐 , and {®a𝑘 }𝐿𝑘=1

,

{
®b𝑘

}𝐿
𝑘=1

to SA . FCheatIdentify sends 𝑃H ’s shares of 𝑐, {®a𝑘 }𝐿𝑘=1
,

{
®b𝑘

}𝐿
𝑘=1

to

SA,H , where 𝑃H is controlled by SA,H .
(3) FCheatIdentify checks that Eq 3 holds.

– If it holds then FCheatIdentify sends accept to SA , and receives

out ∈ {accept, reject} from it. FCheatIdentify forwards out to hon-

est parties.

– If it does not hold then FCheatIdentify sends reject to honest parties.
(4) If honest parties received reject:

– If𝑃𝑖 is corrupt, SA sends an index 𝑗 ∈ {1, 2, . . . , 5} to FCheatIdentify.
– If𝑃𝑖 is honest, SA sends an index 𝑗 ∈ {1, 2, . . . , 5} to FCheatIdentify,
where 𝑃 𝑗 is corrupt.

– FCheatIdentify sends the pair (𝑖, 𝑗 ) to honest parties.

(5) SA sends its view to SA,H .

Functionality FCheatIdentify

Figure 30: Ideal functionality for proving correctness of degree-2
equation by prover 𝑃𝑖

This operation of obtaining additive shares of 𝑐 using local shares of 𝑎,𝑏 is captured

by the ⋄ operator.
22



PentaGOD: Stepping beyond Traditional GOD with Five Parties

The concrete protocol for FCheatIdentify We begin with a high level

idea of the protocol. Given a 𝑔-gate which is defined as follows:

𝑔 ( ®v1, . . . , ®vL ) =
𝐿/2∑︁
𝑙=1

®v2l−1 ⋄ ®v2l

where ⋄ denotes the operation of obtaining the additive shares of

v𝑖 · v𝑗 given their [·]-sharing, i.e. ®vi, ®vj.

(1) Parties set �̄� = 𝐿.

(2) For 𝑙 = 1 to log �̄� − 1 :

– Parties define linear polynomials
®f1, ®f2, . . . , ®f𝐿 such that for each

𝑒 ∈ {1, 2, . . . , 𝐿}, polynomial
®f𝑒 is defined by the following two

points:

®f𝑒 (1) =
{
®a⌈𝑒/2⌉ if 𝑒 mod 2 = 1

®b𝑒/2 if 𝑒 mod 2 = 0

®f𝑒 (2) =
{
®a𝐿/2+⌈𝑒/2⌉ if 𝑒 mod 2 = 1

®b𝐿/2+𝑒/2 if 𝑒 mod 2 = 0

– Let 𝑞 (𝑥 ) = 𝑔 (®f1 (𝑥 ), ®f2 (𝑥 ), . . . , ®f𝐿 (𝑥 ) ) be a degree-2 polynomial

where

𝑔 (®f1 (𝑥 ), ®f2 (𝑥 ), . . . , ®f𝐿 (𝑥 ) ) =
𝐿/2∑︁
𝑗=1

®f2𝑗−1 (𝑥 ) ⋄ ®f2𝑗 (𝑥 )

𝑃𝑖 computes 𝑞 (1), 𝑞 (2), 𝑞 (3) and shares them among parties in

P (via the field equivalent of ΠRSS−Sh protocol in Fig. 11).

– Parties locally compute [𝑏𝑙 ] = [𝑐 ] − [𝑞 (1) ] − [𝑞 (2) ] and store

the result.

– Parties generate a random r ∈ F non-interactively using their

shared key setup.

– Parties locally compute [𝑞 (r) ] and
[
®f1 (r)

]
,

[
®f2 (r)

]
, . . . ,

[
®f𝐿 (r)

]
via Lagrange interpolation.

– Parties set 𝑐 ← 𝑞 (r) , and ∀𝑘 ∈ {1, 2, . . . , 𝐿/2} : ®a𝑘 ← ®f2𝑘−1
(r),

®b𝑘 ← ®f2𝑘 (r) and 𝐿 ← 𝐿/2.
(3) Parties exit the loop with 𝐿 = 2 and inputs 𝑐, ®a1, ®a2, ®b1, ®b2 that are

known to 𝑃𝑖 and secret shared among other parties. Next,

– Parties non-interactively generate [ ®w1 ] , [ ®w2 ] where ®w1, ®w2 ∈
Fg are known to 𝑃𝑖 . Here, g denotes the number of shares as part

of [ · ]-sharing held by each party. Parties define polynomials
®f1, ®f2

of degree 2 such that
®f1 (0) = ®w1, ®f1 (1) = ®a1, ®f1 (2) = ®a2 and

®f2 (0) = ®w2, ®f2 (1) = ®b1, ®f2 (2) = ®b2.

– 𝑃𝑖 defines the degree-4 polynomial𝑞 (𝑥 ) = 𝑔 (®f1 (𝑥 ), ®f2 (𝑥 ) ) where
𝑔 (®f1 (𝑥 ), ®f2 (𝑥 ) ) = ®f1 (𝑥 )⋄®f2 (𝑥 ) , and computes𝑞 (0), 𝑞 (1), . . . , 𝑞 (4) .

- 𝑃𝑖 shares 𝑞 (0), 𝑞 (1), . . . , 𝑞 (4) among parties in P (via the field

equivalent of ΠRSS−Sh protocol in Fig. 11).

– Parties locally compute

[
𝑏

log𝐿

]
= [𝑐 ] − [𝑞 (1) ] − [𝑞 (2) ].

– Parties non-interactively generate r, 𝛾1, . . . , 𝛾log𝐿 ∈ F, and com-

pute [𝑏 ] = ∑log𝐿

𝑙=1
𝛾𝑙 · [𝑏𝑙 ].

– Parties locally compute

[
®f1 (r)

]
,

[
®f2 (r)

]
and [𝑞 (r) ] via Lagrange

interpolation.

– Parties reconstruct 𝑏,𝑞 (r), ®f1 (r), ®f2 (r) towards each party where

each missing share is broadcast. If reconstruction has an inconsis-

tency, or if 𝑞 (r) ≠ 𝑔 (®f1 (r), ®f2 (r) ) of if 𝑏 ≠ 0, then parties output

reject. Else, parties output accept.
– If parties output reject, 𝑃𝑖 identifies a party 𝑃 𝑗 who sent incorrect

messages in the previous step, and broadcasts 𝑗 to all the parties.

Parties output the conflict pair (𝑖, 𝑗 ) .

Protocol ΠCheatIdentify

(
P, 𝑃𝑖 , [𝑐 ] , { [®a]𝑘 }𝐿𝑘=1

,

{[
®b
]
𝑘

}𝐿
𝑘=1

)

Figure 31: Realizing FCheatIdentify

Eq. (3) can be written as

𝑐 − 𝑔( ®a1, ®b1, . . . , ®aL/2, ®bL/2) − 𝑔( ®aL/2+1, ®bL/2+1, . . . , ®aL, ®bL) = 0

The prover, knowing all the inputs, can compute the output of

the two 𝑔-gates and [·]-share them among the parties in P. Let
𝑔1 = 𝑔( ®a1, ®b1, . . . , ®aL/2, ®bL/2) and 𝑔2 = 𝑔( ®aL/2+1, ®bL/2+1, . . . , ®aL, ®bL).
Thus, parties can compute [𝑏] = [𝑐] − [𝑔1] − [𝑔2] and check if 𝑏 = 0

by reconstructing 𝑏. To ensure that a corrupt 𝑃𝑖 did not cheat while

generating [·]-shares of 𝑔1, 𝑔2, parties perform an additional test.

For this, parties define polynomials
®f1, . . . , ®fL as follows: for each

𝑒 ∈ {1, 2, . . . , 𝐿}, ®f𝑒 (1) is the 𝑒th input vector to the 1st 𝑔-gate and

®f𝑒 (2) is the 𝑒th input vector to the 2nd 𝑔-gate. ®f𝑒 is thus a linear

function. Next, define polynomial 𝑞(𝑥) = 𝑔(®f1 (𝑥), . . . , ®f𝐿 (𝑥)). Thus,
𝑞(1), 𝑞(2) are the outputs of the first and second𝑔-gate, respectively,
and 𝑞 is of degree 2 (since the multiplicative depth of 𝑔-gate is 1 and

degree of
®f𝑒 is 1). To ensure that 𝑃𝑖 shared the correct 𝑔(1), 𝑔(2),

it suffices for the parties to check if 𝑞(r) = 𝑔(®f1 (r), . . . , ®f𝐿 (r)) for a
random r in the ring/field. For this, parties compute [·]-shares of
𝑞(r), ®f1 (r), . . . , ®f𝐿 (r) via Lagrange interpolation on their local shares
and check for the equality on clear. This also requires 𝑃𝑖 to share

𝑞(3) so that parties have sufficient points on 𝑞. To reduce the cost

from 𝐿 shares which is linear in 𝐿, to logarithmic in 𝐿, 𝑃𝑖 is made

to prove that

𝑞(r) − 𝑔(®f1 (r), . . . , ®f𝐿 (r)) = 0 (4)

by repeating the same process (since Eq. (4) has the same form as

that of Eq. (3)). Parties repeat the process log𝐿 times until a constant

number of inputs are left, which are verified on clear. Since
®f𝑒 (r) is

a linear combination of the inputs, to avoid leaking any information

about the inputs, in the final step, the
®f polynomials are randomized

by adding one additional random point one each polynomial. This

increases the degree of
®f to 2 and that of 𝑞 to 4, and requires 𝑃𝑖

to generate and share additional points on 𝑞. In case parties reject

the proof, the prover is asked to identify the cheating party. The

pair of parties including the prover and the party identified by the

prover, are then regarded as the corrupted pair of parties. For this,

observe that every message sent by a party other than the prover

is a function of (i) the messages received from the prover, (ii) the

inputs to the protocol, and (iii) the randomness used. Since the

prover knows all of these, it can compute the message that should

have been sent by the other parties and identify inconsistencies, if

any. The protocol appears in Fig. 31.

Cheating probability over finite fields. There are two cases which

lead to the parties outputting accept even when Eq. (3) does not

hold– (i) the linear combination of the 𝑏 values yields a 0, and (ii)

when 𝑃𝑖 cheats during sharing points on𝑞 and thus𝑞 ≠ 𝑔(®f1, . . . , ®f𝐿)
and ℎ(𝑥) = 𝑞(𝑥) − 𝑔(®f1 (𝑥), . . . , ®f𝐿 (𝑥)) is a non-zero polynomial.

While (i) happens with probability
1

F , for (ii), the probability that

ℎ(r) = 0 for a random r ∈ F \ {1, 2, 3} is bounded by
2

F−2
(since

degree of polynomial ℎ is 2) in the first log𝐿 − 1 rounds and
4

F−5

in the last round (since degree of ℎ is now 4). Thus, the overall

cheating probability is bounded by

2(log𝐿 − 1)
F − 3

+ 4

F − 5

<
2 log𝐿 + 4

F − 5

23



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

Extension to rings. While the protocol describedworks over fields,

using the extension techniques from [10–12], the protocol can be

extended to work over rings. The challenge lies in performing

interpolation where not all elements have an inverse over the ring

Z
2
ℓ . To overcome this, the solution is to work over the extended

ring Z
2
ℓ [𝑥]/𝑓 (𝑥), i.e. the ring of all polynomials with coefficients

in Z
2
ℓ working modulo a polynomial 𝑓 that is of the right degree

and irreducible over Z2 . When working over this extension rings,

the number of roots of a polynomial is greater than its degree, and

thus changes the error probability. For a protocol which verifies

𝐿 values, the error is roughly
2 log𝐿+4

2
𝑑 , where 𝑑 is the extension

degree. We refer readers to [10, 11] for more details.

Communication cost. In the first log𝐿 − 1 iterations, the prover

shares 3 elements each. In the last round, it shares 5 elements,

followed by public reconstruction of 4 elements via broadcast. Gen-

eration of randomness can be done non-interactively and does not

incur any cost. Thus, the total communication cost is

6(log𝐿 − 1) + 10 + 7 elements.

Thus, the per party cost is approximately log𝐿 + 3 elements.

Theorem F.1. Protocol ΠCheatIdentify (Fig. 31) securely computes

FCheatIdentify over fieldF in the (1, 1)-FaFmodel with error ≤ 2 log𝐿+4
F−5

in the 5PC setting .

Proof. Let SA be the ideal world malicious simulator, SA,H
be the ideal world semi-honest simulator,A be the real world mali-

cious adversary and AH be the semi-honest real-world adversary.

Consider the following cases.

Case 1: 𝑃𝑖 is corrupt. In this case SA receives 𝑃𝑖 ’s inputs and

honest parties [·]-shares of 𝑐 . This implies that SA can perfectly

simulate the opening of [𝑏] and 𝑞(r) since it has the honest parties’
[·]-shares of 𝑐 , and receives honest parties’ [·]-shares of points on
𝑞(·) from A during the simulation. We next show how to simulate

the opening of
®f1 (r), ®f2 (r). For this, since SA knows the inputs

of 𝑃𝑖 , it knows the actual values of ®f1 (r), ®f2 (r). Thus, SA is only

required to choose random values for shares of the honest parties

while ensuring that together with 𝑃𝑖 ’s shares, it opens to the correct

values.

To see that the view of A is same here as in the real execution,

observe that for each 𝑒 ∈ {1, 2},

®f𝑒 (r) = ®𝜆0 (r) ⋄ ®f𝑒 (0) + ®𝜆1 (r) ⋄ ®f𝑒 (1) + ®𝜆2 (r) ⋄ ®f𝑒 (2) (5)

where
®𝜆0 (r), ®𝜆1 (r), ®𝜆2 (r) are the Lagrange coefficients. Since shares

of
®f𝑒 (0) held by honest parties are random under the constraint

that together with 𝑃𝑖 ’s shares they open to
®f𝑒 (0), so are the shares

of
®f𝑒 (r). Thus, the distribution is same in both the executions. If

some honest party outputs reject, then A broadcasts an index 𝑗 ,

which SA forwards to FCheatIdentify. If out = reject, but honest
parties output accept, then SA outputs fail and halts. Observe

that when SA does not output fail, the simulation is perfect. The

main difference is when SA outputs fail. This event occurs when
Eq 3 does not hold, yet honest parties output accept. This occurs
with probability ≤ 2 log𝐿+4

F−5
, which is the error probability of the

simulation. Finally, SA sends its view to SA,H .

Subcase: 𝑃 𝑗 is semi-honest. 𝑃 𝑗 ’s view consists of (i) shares of

𝑞(1), 𝑞(2), 𝑞(3) received in each of the log𝐿−1 iterations, (ii) shares

of 𝑞(0), 𝑞(1), . . . , 𝑞(4) received in the last iteration, and, (iii) the

shares received for reconstructing 𝑏, 𝑞(r), ®f1 (r), ®f2 (r). While (i), (ii)

are received as part of view of SA , the (iii) can be simulated by

sending random shares under the constraint that the reconstructed

values are consistent with the ones in the view received from SA .
Thus the simulation is perfect.

Case 2: 𝑃𝑖 is honest and 𝑃 𝑗 is corrupt. In this case,SA receives

accept from FCheatIdentify. This implies that although SA does not

know the input, it knows that 𝑏 should be 0 in each iteration and

𝑞(r) should equal 𝑔(®f1 (r), ®f2 (r)) in the last iteration, unless 𝑃 𝑗 mis-

behaves. Since SA knows 𝑃 𝑗 ’s shares of the inputs, it can simulate

the openings correctly. Elaborately, for each sharing of 𝑞(1), 𝑞(2)
and 𝑞(3) (and ®f1 (0), ®f2 (0), 𝑞(0), . . . , 𝑞(4) in the last step) in the sim-

ulation, SA sends random shares on behalf of 𝑃𝑖 to A. Since SA
knows 𝑃 𝑗 ’s shares of 𝑐, 𝑞(1), 𝑞(2), it can computes its shares of

𝑏𝑙 = 𝑐 −𝑞(1) −𝑞(2). It then chooses the honest parties shares under

the constraint that 𝑏 =
∑log𝐿

𝑙=1
𝛾𝑙𝑏𝑙 will reconstruct to 0. Follow-

ing this, SA uses 𝑃 𝑗 ’s shares of ®f1 (𝑒), . . . , ®f𝐿 (𝑒) for 𝑒 ∈ {1, 2}, and
𝑞(1), 𝑞(2), 𝑞(3) to compute 𝑃 𝑗 ’s shares of ®f1 (r), . . . , ®f𝐿 (r) and 𝑞(r).
Then, it can simulate the next iteration as before. Finally, SA uses

𝑃 𝑗 ’s shares of ®f1 (0), ®f1 (1), ®f1 (2), ®f2 (0), ®f2 (1), ®f2 (2) and𝑞(0), . . . , 𝑞(4)
to compute 𝑃 𝑗 ’s shares of ®f1 (r), ®f2 (r), 𝑞(r). SA simulates the open-

ing of 𝑏, ®f1 (r), ®f2 (r), 𝑞(r) as follows.
– To simulate opening of 𝑏, SA chooses random shares for the

honest parties under the constraint that all the shares together will

reconstruct to 0.

– To simulate the opening of
®f1 (r), ®f2 (r),SA chooses random shares

for the honest parties.

– To simulate the opening of 𝑞(r), SA chooses random shares for

the honest parties under the constraint that the reconstructed 𝑞(r)
will satisfy the equation: 𝑞(r) = 𝑔(®f1 (r), ®f2 (r)).
IfA sends consistent shares,SA sends out = accept toFCheatIdentify.
Else, since SA knows 𝑃𝑖 ’s shares, it can compute the message that

should have been sent byA, and identifies the cheater on behalf of

𝑃𝑖 . SA sends reject with index 𝑗 to FCheatIdentify in this case.

We claim that A’s view in the real and ideal execution is iden-

tically distributed. A’s view consists of (i) shares sent by 𝑃𝑖 for

points on 𝑞, (ii) shares for points ®f1 (0), ®f2 (0), (iii) the opened 𝑏, and
(iv) the opened

®f1 (r), ®f2 (r), 𝑞(r). Shares in (i) and (ii) are uniformly

distributed, with respect to (iii), A sees random shares which open

to 0 in both worlds. Finally, the claim in (iv) follows from Eq 5,

similar to that in case 1, where
®f𝑒 (r) for 𝑒 ∈ {1, 2} is randomly

distributed in the ideal as well as the real world. Given that
®f𝑒 (r)

for 𝑒 ∈ {1, 2} is random, we obtain 𝑞(r) being random as long as

𝑞(r) = 𝑔(®f1 (r), ®f2 (r)) holds.
Subcase: 𝑃𝑖 is semi-honest. SA,H has all inputs of 𝑃𝑖 . Thus, the

simulation can be carried out honestly, taking into consideration

the view received from SA . Thus, the simulation is perfect.

Subcase: 𝑃𝑘 is semi-honest. This is similar to case 2. Since 𝑃𝑖
is honest, 𝑏 should be 0 in each iteration and 𝑞(r) should equal

𝑔(®f1 (r), ®f2 (r)) in the last iteration. Since SA,H knows 𝑃𝑘 ’s shares

24



PentaGOD: Stepping beyond Traditional GOD with Five Parties

of the inputs, it can simulate the openings correctly. Thus, the

simulation is perfect.

□

Let SA be an ideal world malicious adversary and SA,H be the ideal

world semi-honest adversary. The functionality is invoked by honest par-

ties sending their [ · ]-shares of𝑚 multiplication triples

{
(x𝑘 , y𝑘 , z𝑘 )𝑚𝑘=1

}
to FVerify.
(1) FVerify computes all secrets and corrupted party’s shares, and sends

these shares to SA . FVerify sends 𝑃H ’s shares to SA,H , where 𝑃H is

controlled by SA,H .
(2) FVerify verifies if z𝑘 = x𝑘 · y𝑘 for all 𝑘 ∈ {1, 2, . . . ,𝑚}.

– If it holds, it sends accept to SA .
– Else, it sends reject to SA and d𝑘 = z𝑘 − x𝑘 · y𝑘 for each 𝑘 ∈
{1, 2, . . . ,𝑚} such that d𝑘 ≠ 0.

(3) If FVerify sent accept, it receives out ∈ {accept, reject} from SA ,
which is forwarded to the honest parties and SA,H .

– If out = reject, SA send a pair of indices (𝑖, 𝑗 ) to FVerify, where
at least one among 𝑃𝑖 , 𝑃 𝑗 is corrupt.

– FVerify forwards (𝑖, 𝑗 ) to honest parties and SA,H .

(4) If FVerify sent reject, then SA does one of the following.

(1) SA sends a pair of indices (𝑖, 𝑗 ) to FVerify, where at least one
among 𝑃𝑖 , 𝑃 𝑗 is corrupt. FVerify forwards (𝑖, 𝑗 ) to honest parties
and SA,H .

(2) SA asks FVerify to find a pair of conflicting parties in
¯𝑘 th multi-

plication, 1 ≤ ¯𝑘 ≤ 𝑚. Next, FVerify asks the honest parties to send
their inputs, randomness and views in the execution to compute

the
¯𝑘 th triple. Based on the received information, FVerify computes

the messages that should have been sent by the corrupted party,

and finds a pair of parties 𝑃𝑖 , 𝑃 𝑗 , where 𝑃 𝑗 received an incorrect

message. FVerify sends (𝑖, 𝑗 ) to honest parties, SA and SA,H .

(5) SA sends its view to SA,H .

Functionality FVerify

Figure 32: Ideal functionality for verifying semi-honest protocol

F.0.2 The verification protocol. Using FCheatIdentify, we next pro-
vide the protocol for verification of𝑚 multiplication triples with

sublinear communication complexity in the number of multiplica-

tion triples. A multiplication triple is a shared triple [x] , [y] , [z]
such that z = x · y. The ideal functionality for the same appears in

Fig. 32. When verification fails, the functionality either obtains a

pair of conflicting parties, one of which is guaranteed to be corrupt,

from the adversary; or it identifies this pair by itself. In the latter

case, the functionality obtains the inputs, randomness and views

of honest parties when computing some incorrect multiplication

triple, and uses this information to identify a pair of conflicting

parties.

The protocol for FVerify. To compute the functionality, the parties

take a random linear combination

𝛽 =

𝑚∑︁
𝑘=1

𝜃𝑘 · (z𝑘 − x𝑘 · y𝑘 )

where 𝜃𝑘 is randomly chosen by all the parties and want to check if

𝛽 = 0. Since 𝛽 is a degree-2 function of {(x𝑘 , y𝑘 , z𝑘 )𝑚𝑘=1
} which are

[·]-shared, parties can compute an additive sharing (⟨·⟩-sharing)
of 𝛽 . Using the ⟨·⟩-shares, parties can reconstruct 𝛽 and check for

equality with 0. However, since ⟨·⟩-sharing does not allow for robust

reconstruction, the parties first [·]-share their additive shares of
𝜓 =

∑𝑚
𝑘=1

𝜃𝑘 · x𝑘 · y𝑘 . Let𝜓 𝑖
denote the additive share of𝜓 held by

𝑃𝑖 . The consistency check in the [·]-sharing protocol ensures that

all receive consistent [·]-shares of𝜓 𝑖
. In case of a failure, the dealer

broadcasts the share for which pairwise inconsistency exits. Given[
𝜓 𝑖

]
for 𝑖 ∈ {1, . . . , 5}, parties can compute

[𝛽] =
𝑚∑︁
𝑘=1

𝜃𝑘 · [z𝑘 ] −
5∑︁

𝑖=1

[
𝜓 𝑖

]
and reconstruct 𝛽 . It is, however, required to ensure that every

party 𝑃𝑖 shares the correct value 𝜓 𝑖
. Towards realizing this, the

property of [·]-sharing, which allows parties to locally convert

from [x𝑘 ] , [y𝑘 ] to
[
®x𝑖
𝑘

]
,

[
®y𝑖
𝑘

]
, where ®x𝑖

𝑘
, ®y𝑖

𝑘
are the vector of [·]-

shares of x𝑘 , y𝑘 , held by 𝑃𝑖 , respectively, is used. Parties now want

to verify if

∀𝑖 ∈ {1, . . . , 5} :

𝑚∑︁
𝑘=1

𝜃𝑘 ·
( [
®x𝑖
𝑘

]
⋄
[
®y𝑖
𝑘

] )
−
[
𝜓 𝑖

]
= 0

Letting

[
𝑐𝑖
]
=
[
𝜓 𝑖

]
,

[
®a𝑖
𝑘

]
= 𝜃𝑘 ·

[
®x𝑖
𝑘

]
and

[
®b𝑖
𝑘

]
=

[
®y𝑖
𝑘

]
, one needs

to verify that

[
𝑐𝑖
]
−∑𝑚

𝑘=1

[
®a𝑖
𝑘

]
⋄
[
®b𝑖
𝑘

]
= 0 for 𝑖 ∈ {1, . . . , 5}. This

can be verified using FCheatIdentify. In case of a reject, FCheatIdentify
outputs a pair of conflicting parties. Otherwise, parties proceed

with reconstructing 𝛽 . If reconstruction fails due to inconsistency,

pairwise consistency check of [·]-sharing is used to identify a pair

of conflicting parties, where the consistency check is carried out

over a broadcast channel. Finally, if 𝛽 ≠ 0, then it implies that no

one cheated in the verification protocol (with high probability),

and one of the multiplication triples is incorrect. Parties localize

the fault by running a binary search on the multiplication triples

to identify a triple where z𝑘 ≠ x𝑘 · y𝑘 . In each search step, the

verification protocol is carried out on half the number of triples

until one incorrect triple is identified. Finally, parties check the

execution of the multiplication protocol for this triple to find a

pair of disputing parties. This is done by invoking a functionality

FminiMPC which takes the inputs, randomness and view of parties in

the multiplication protocol as input and outputs the pair of parties

for which the incoming and outgoing messages do not match. The

protocol appears in Fig. 33.

Cheating probability over finite fields. Assume that there is an

incorrect triple. If the adversary does not cheat in the verification

protocol, then there will at most log𝑚 executions. In each execution,

the probability that the test will pass is
1

F which happens when

the random linear combination outputs a value 0. Thus, the overall

cheating probability is bounded by log𝑚 · 1

F .

Communication cost. Protocol ΠVerify is recursive. In the 𝑗 th step,

parties secret share one element each, reconstruct one element, and

call FCheatIdentify for every party over a set of triples of size𝑚/2𝑗 .
Thus, the total communication cost in the 𝑗th step is

5 · 2 + 7 + 5 ·
(
6(log(𝑚/2𝑗 ) − 1) + 17

)
= 97 + 30 · log(𝑚/2𝑗 ) elements.

25



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

(1) Parties generate random values 𝜃1, . . . , 𝜃𝑚 ∈ F.
(2) Parties locally compute

⟨𝜓 ⟩ =
〈
𝑚∑︁
𝑘=1

𝜃𝑘 · x𝑘 · y𝑘

〉
=

𝑚∑︁
𝑘=1

𝜃𝑘 · ( [x𝑘 ] ⋄ [y𝑘 ] )

(3) Let the ⟨·⟩-share of 𝜓 held by 𝑃𝑖 be 𝜓
𝑖
. Each party 𝑃𝑖 shares 𝜓

𝑖

among other parties.

(4) For each 𝑖 ∈ {1, 2, . . . , 5}:
– Parties locally convert [x𝑘 ] , [y𝑘 ] to

[ ®xik] , [ ®yik] for each 𝑘 ∈
{1, 2, . . . ,𝑚}.

– Parties define

[
𝑐𝑖
]
=
[
𝜓 𝑖

]
,

[ ®aik] = 𝜃𝑘 ·
[ ®xik] and [ ®bik] = 𝜃𝑘 ·

[ ®yik] .
– Parties send

[
𝑐𝑖
]
and

( [ ®aik] , [ ®bik] )𝑚𝑘=1

to FCheatIdentify.
– If parties receive reject, (𝑖, 𝑗 ) from FCheatIdentify, then they output
it and halt.

(5) If parties received accept from FCheatIdentify in all five invocations,

they proceed to the next step.

(6) Parties locally compute [𝛽 ] = ∑𝑚
𝑘=1

𝜃𝑘 · [z𝑘 ] −
∑

5

𝑖=1

[
𝜓 𝑖

]
.

(7) Parties robustly reconstruct 𝛽 by sending their shares via broad-

cast.

– If parties see inconsistent shares, they output reject, (𝑖, 𝑗 ) , where
𝑃𝑖 , 𝑃 𝑗 is the first pair of parties for which pair-wise inconsistency

exists.

– If 𝛽 = 0, parties output accept.
– If 𝛽 ≠ 0, parties perform a fault localization procedure to identify

the first incorrect triple by running a binary search on the input

triples. For this search, parties run the above protocol on two

half-sized sets of input triples, and proceed as follows.

- If parties output accept in both executions, they output accept
and halt.

- If any execution ends with parties holding a pair of conflicting

parties (𝑖, 𝑗 ) , parties output reject, (𝑖, 𝑗 ) and halt.

- If 𝛽 ≠ 0 in both the executions, they continue the search on

one of the sets.

- If 𝛽 ≠ 0 in one of the executions, they continue the search on

the set for which 𝛽 ≠ 0.

If parties didn’t receive any output, then they reach a triple 𝑘 for

which z𝑘 ≠ x𝑘 · y𝑘 . Then, parties send their inputs, randomness

and view when computing z𝑘 to FminiMPC, which returns a pair

of conflicting parties (𝑖, 𝑗 ) with conflicting views. Parties output

reject, (𝑖, 𝑗 ) .

Protocol ΠVerify
(
P, { ( [x𝑘 ] , [y𝑘 ] , [z𝑘 ] ) }𝑚𝑘=1

)

Figure 33: Realizing FVerify

In the worst case, there are log𝑚 steps, and the total cost is

97 · log𝑚 + 30 ·
log𝑚∑︁
𝑗=1

log(𝑚/2𝑗 )

Since

∑log𝑚

𝑗=1
log(𝑚/2𝑗 ) ≤ log𝑚 · log

√
𝑚, the total communication

cost is

97 · log𝑚 + 30 · log𝑚 · log

√
𝑚 elements. (6)

Note that while working over extended rings, the cost gets multi-

plied by a factor 𝑑 , which is the degree of the extension.

Theorem F.2. Protocol ΠVerify (Fig. 33) securely computes FVerify
over fieldF in the (1, 1)-FaFmodel with error log𝑚· 1F in the (FminiMPC,

FCheatIdentify)-hybrid model in the 5PC setting.

Proof. Let SA be the ideal world malicious simulator, SA,H
be the ideal world semi-honest simulator and let A be the real

world malicious adversary and AH be the real world semi-honest

adversary. SA is invoked by FVerify which sends it the corrupted

party’s shares of (x𝑘 , y𝑘 , z𝑘 )𝑚𝑘=1
and out ∈ {accept, reject} and

d𝑘 = z𝑘 − x𝑘 · y𝑘 for 𝑘 ∈ {1, 2, . . . ,𝑚}. Further, FVerify sends SA,H
the shares for 𝑃H , which is the semi-honest party.

Random 𝜃1, . . . , 𝜃𝑚 ∈ F are generated. SA plays the role of

FCheatIdentify and FminiMPC. Similar to the proof of Theorem F.1,

SA chooses random shares for corrupted party for each𝜓 𝑗
, where

𝑃 𝑗 is honest and hands these to A. Then, SA receives the honest

parties’ shares for𝜓 𝑖
, where 𝑃𝑖 is the maliciously corrupt party. If

the shares dealt by A are inconsistent, then the consistency check

takes care of this. The presence of honest majority enables SA
to use the honest parties’ shares to compute𝜓 𝑖

for the corrupt 𝑃𝑖
and its shares. Thus, for each 𝑖 ∈ {1, 2, . . . , 5}, SA can simulate

FCheatIdentify, handing accept or reject to A, accordingly. If the

output is reject for any 𝑖 ∈ {1, 2, . . . , 5}, then A sends index of a

party 𝑃 𝑗 to SA , which together with 𝑃𝑖 forms a disputed pair of

parties. Then, SA sends reject, (𝑖, 𝑗) to FVerify, outputs whatever
A outputs and halts.

If the simulation has not ended with a reject, then it means

that all 𝜓 𝑖
’s are correct. Thus, SA can compute 𝛽 =

∑𝑚
𝑘=1

𝜃𝑘 ·
(z𝑘 − x𝑘 · y𝑘 ) =

∑𝑚
𝑘=1

𝜃𝑘 · d𝑘 and choose random shares for the

honest parties, given the value of 𝛽 and the corrupted party’s shares

(known to SA ). Using these shares, SA simulates the reconstruc-

tion procedure. Consider the following cases.

– If A sent incorrect shares, causing the opening of 𝛽 to fail, then
SA takes the first pair of parties 𝑃𝑖 , 𝑃 𝑗 for which pair-wise inconsis-

tency occurred, and sends reject, (𝑖, 𝑗) to FVerify, outputs whatever
A outputs and halts.

– If 𝛽 = 0: if out = reject (honest parties output accept in this case),

SA outputs fail and halts; if out = accept, SA sends accept to
FVerify, outputs whatever A outputs and halts.

– If 𝛽 ≠ 0, simulation proceeds to the binary search, where SA
simulates each steps as described so far. If a pair of disputed parties

is located, then it is sent to FVerify. If honest parties output accept,
then SA outputs fail (here it must hold that out = reject, since
otherwise the simulation would not have reached the binary search

phase). If parties found an incorrect triple x¯𝑘 , y¯𝑘 , z¯𝑘 such that z¯𝑘 ≠

x¯𝑘 · y¯𝑘 without identifying a disputed pair, then SA asks FVerify to
find such a pair by sending it

¯𝑘 . Upon receiving (𝑖, 𝑗) from FVerify,
SA simulates FminiMPC, handing (𝑖, 𝑗) to A. Finally, SA outputs

whatever A outputs. Note that an event where the
¯𝑘th triple is

correct is not possible, because in this case 𝛽 must be equal to 0.

A’s view consists of (i) random shares of 𝛽 𝑗 for each honest party

𝑃 𝑗 , (ii) message sent by FCheatIdentify, (iii) the revealed 𝛽 , and (iv)

message from FminiMPC. The argument for identical distribution

of A’s view in (i), (ii), (iii) follows from the proof of Theorem F.1.

For (iv), since SA receives a pair of parties with conflicting views

in the computation of the
¯𝑘th triple from FVerify, it can simulate

26



PentaGOD: Stepping beyond Traditional GOD with Five Parties

the role of FminiMPC perfectly. Thus, the only difference between

the simulation and real-execution is the event where SA outputs

fail. This happens when ∃𝑘 ∈ {1, 2, . . . ,𝑚} : d𝑘 ≠ 0 (which is why

out = reject) but the parties eventually output accept. This occurs
when 𝛽 = 0 in one of binary search steps. Since there are log𝑚

steps and Pr[𝛽 = 0] = 1

F in each step, we have that Pr[fail] ≤ log𝑚

F ,

which is the error in the simulation.

Following this, SA sends its view to SA,H to simulate the view

for AH . SA,H chooses random shares for corrupted party for

each𝜓 𝑗
, where 𝑃 𝑗 is honest and hands these to AH . Then, SA,H

receives the honest parties’ shares for𝜓H , where 𝑃H is the semi-

honest party. The presence of honest majority enables SA,H to use

the honest parties’ shares to compute 𝜓H for 𝑃H and its shares.

Thus, for each 𝑖 ∈ {1, 2, . . . , 5},SA simulatesFCheatIdentify, handing
accept or reject to AH according to SA ’s view. If the output is
reject for any 𝑖 ∈ {1, 2, . . . , 5}, then SA,H sends reject, (𝑖, 𝑗) to
AH , as present in SA ’s view. SA,H simulates the reconstruction

procedure for 𝛽 using shares received from AH . Now, depending
on the view received from SA , SA,H sends (𝑖, 𝑗) or accept toAH .
The argument for indisntinguishability of the views of AH in real

and ideal world follows similar to the argument for A. □

Similar to ΠCheatIdentify, the protocol ΠVerify can also be ex-

tended to work over the ring Z
2
ℓ (see F.0.1).

F.0.3 The main protocol. We now provide details of the main pro-

tocol for computing the multiplication triples in the preprocessing

phase. The ideal functionality for the same appears in Fig. 34. We

remark that operating in the preprocessing model, we can generate

a large number of multiplication triples at the same time which also

helps in amortizing the cost due to verification. The main protocol

begins with executing a semi-honest 5PC protocol, followed by a

verification phase to check the correctness of the multiplication

triples generated during the semi-honest execution. Verification

completes with it either being a success or outputting a pair of

conflicting parties (in which case a semi-honest 3PC is executed as

described earlier). The protocol appears in Fig. 35.

Let SA be an ideal world malicious adversary and SA,H be the ideal

world semi-honest adversary.

(1) FMulPre interacts with the parties in P and the adversaries SA , SA,H .
FMulPre receives [ · ]-shares of

{
(x𝑘 , y𝑘 )𝑚𝑘=1

}
from honest parties.

(2) FMulPre receives

(
[x𝑘 · y𝑘 ]𝑖

)𝑚
𝑘=1

from SA where 𝑃𝑖 is controlled

by SA . It also receives continue or (abort, 𝑗 ) from SA . If received
abort, FMulPre sends (𝑖, 𝑗 ) to all. Else, it does the following.

• FMulPre reconstructs x𝑘 , y𝑘 using the honest parties’ shares and

computes x𝑘 · y𝑘 for 𝑘 ∈ {1, . . . ,𝑚}.
• FMulPre generates [x𝑘 · y𝑘 ], for 𝑘 ∈ {1, 2, . . . ,𝑚}, using x𝑘 · y𝑘
and [x𝑘 · y𝑘 ]𝑖 received from SA .
• FMulPre sends (Output, [x𝑘 · y𝑘 ]𝑠 ) to 𝑃𝑠 ∈ P.

(3) SA sends its view to SA,H .

Functionality FMulPre

Figure 34: Ideal functionality for computing multiplication triples
in the preprocessing

(1) Parties generate [ · ]-shares of random values r1, r2, . . . , r𝑚 , non-

interactively using their shared key setup. They locally convert [ · ]-
shares to ⟨·⟩-shares.

(2) Parties locally compute ⟨x𝑘 · y𝑘 − r𝑘 ⟩ = [x𝑘 ] ⋄ [y𝑘 ] − ⟨r𝑘 ⟩ for each
𝑘 ∈ {1, 2, . . . ,𝑚} and send it to 𝑃1.

(3) 𝑃1 reconstructs x𝑘 · y𝑘 − r𝑘 for each 𝑘 ∈ {1, 2, . . . ,𝑚} and generates
[x𝑘 · y𝑘 − r𝑘 ] using ΠRSS−Sh (Fig. 11).

(4) Parties compute [x𝑘 · y𝑘 ] = [x𝑘 · y𝑘 − r𝑘 ]+[r𝑘 ] for𝑘 ∈ {1, 2, . . . ,𝑚}.
(5) Parties invoke ΠVerify

(
P, { ( [x𝑘 ] , [y𝑘 ] , [x𝑘 · y𝑘 ] ) }𝑚𝑘=1

)
to verify

the correctness of the multiplication triples.

(6) If parties receive accept from ΠVerify, they proceed with the online

phase. Else, parties obtain a pair of parties (𝑃𝑖 , 𝑃 𝑗 ) to eliminate from

ΠVerify.

Protocol ΠmulPre

(
P, { [x𝑘 ] , [y𝑘 ] }𝑚𝑘=1

)

Figure 35: (1, 1)-FaF secure protocol for 5PC preprocessing phase
of multiplication

Communication cost. The communication cost follows from the

cost of the semi-honest protocol and the cost of the verification

protocol. The semi-honest protocol requires communicating 6 ring

elements. The cost due to the verification phase can be amortized by

preprocessing a large number of multiplication triples. Concretely,

for verifying 2
25

multiplication triples, the cost for verification

is only 0.003 ring elements for an extension degree 𝑑 = 46 (see

Table 4 of full (eprint) version of [12]). Table 7 summarizes the

communication cost for various number of multiplication triples to

be verified.

𝑚 Cost (per party per multiplication)

2
10

22.1914

2
20

0.0696

2
25

0.0032

2
30

0.0001

Table 7: Cost of verification in terms of the number of ring elements
communicated per party per multiplication, and 40 bits of statistical
security. Here,𝑚 - #multiplication triples to be verified and degree
of extension 𝑑 = 46 to achieve statistical security of 2

−40.

Theorem F.3. Protocol ΠPre (Fig. 35) securely computes FPre over
the field F or ring Z

2
ℓ in the (1, 1)-FaF model in the FVerify-hybrid

model in the 5PC setting.

Proof. Consider the case of a corrupt 𝑃1. SA generates [·]-
shares for {x𝑘 , y𝑘 , r𝑘 }𝑚𝑘=1

, and learns these values on clear. Step 3

of the protocol is simulated by sending random values to A. SA
also computes the secret x𝑘 · y𝑘 for 𝑘 ∈ {1, 2, . . . ,𝑚}. If inconsistent
shares are received in step 4 fromA, then SA detects the inconsis-

tency, and the simulation outputs a pair of conflicting parties. Else,

if the shares are consistent but the correct output is not received,

SA computes the difference between these values and simulates

FVerify. If cheating took place, then it sens reject and d𝑘 ≠ 0 to A.

Then, it waits to receive from A either a pair of conflicting parties

or a request to FVerify to find such a pair. In the latter case, SA finds

such a pair of conflicting parties by computing the messages that

should have been sent by the corrupted party and compares it with

27



Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal

what was received fromA. Then, SA sends the obtained pair toA.

If no cheating took place, then SA sends accept to A. Following

this, A can decide to reject, in which case a pair of conflicting

parties is sent as output. Observe that since A’s view consists of

random shares in both the worlds, the views are identical. Then,

SA sends its view to SA,H . Simulation by SA,H for a semi-honest

party follows trivially as there are no messages to simulate other

than those from 𝑃1 which are already received as part of A’s view.

Cases where other parties are corrupt can be simulated trivially.

Simulation for semi-honest 𝑃1 also follows. □

28


	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related Work

	2 Preliminaries
	3 Robust (1,1)-FaF secure 5PC
	3.1 Secret sharing semantics
	3.2 Input sharing
	3.3 Multiplication
	3.4 Reconstruction
	3.5 The complete 5PC

	4 Building blocks
	5 Applications and Benchmarks
	5.1 Benefit of having fewer parties online
	5.2 Dark pools
	5.3 Privacy-preserving ML (PPML)

	6 Conclusion
	References
	A Preliminaries
	B 5PC (1, 1)-FaF secure protocols
	B.1 Joint message passing (jmp)
	B.2 Input sharing
	B.3 Joint sharing
	B.4 Reconstruction

	C Building Blocks
	D Secure protocols for CDA
	E Security of our protocols
	E.1 Simulations for 5PC protocols
	E.2 Simulations for Building Blocks
	E.3 Security against a (1, 1)-mixed adversary

	F Preprocessing phase of multiplication

