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Abstract. Spatial Encryption (SE), which involves encryption and de-
cryption with affine/vector objects, was introduced by Boneh and Ham-
burg at Asiacrypt 2008. Since its introduction, SE has been shown as a
versatile and elegant tool for implementing many other important primi-
tives such as (Hierarchical) Identity-based Encryption ((H)IBE), Broad-
cast (H)IBE, Attribute-based Encryption, and Forward-secure cryptosys-
tems.

This paper revisits SE toward a more compact construction in the lattice
setting. In doing that, we introduce a novel primitive called Delegatable
Multiple Inner Product Encryption (DMIPE). It is a delegatable gen-
eralization of Inner Product Encryption (IPE) but different from the
Hierarchical IPE (HIPE) (Okamoto and Takashima at Asiacrypt 2009).
We point out that DMIPE and SE are equivalent in the sense that there
are security-preserving conversions between them. As a proof of concept,
we then successfully instantiate a concrete DMIPE construction relying
on the hardness of the decisional learning with errors problem. In turn,
the DMIPE design implies a more compact lattice-based SE in terms of
sizes compared with SEs converted from HIPE (e.g., Xagawa’s HIPE at
PKC 2013) using the framework by Chen et al. (Designs, Codes, and
Cryptography, 2014). Furthermore, we demonstrate that one can also
use SE to implement the Allow-/Deny-list encryption, which subsumes,
e.g., puncturable encryption (Green and Miers at IEEE S&P 2015).

Key words: spatial encryption, learning with errors, inner product encryp-
tion, delegatable multiple inner product encryption, hierarchical inner product
encryption, allow-/deny-list encryption, lattice evaluation, lattice trapdoors
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1 Introduction
Predicate encryption (PrE) introduced by Katz, Sahai and Waters [25] general-
izes identity-based encryption (IBE) [30], attribute-based encryption (ABE) [21]
and hidden vector encryption (HVE) [8]. Roughly speaking, in PrE, decryption
keys and ciphertexts are associated with predicates and attributes, respectively.
One can consider a predicate as a function and an attribute as a variable. As-
sume that one wants to decrypt a ciphertext ctx respective to an attribute x,
using a decryption key skf respective to a predicate f . Then, the decryption is
successful only if f(x) = 1 holds. Besides IBE, ABE and HVE, PrE also covers
some other classes of encryption such as spatial encryption (SE) [7], for instance.

Spatial Encryption (SE) was introduced by Boneh and Hamburg in their pa-
per [7] at Asiacrypt 2008, and then it was systematically investigated in Ham-
burg’s thesis [23]. Particularly, an SE predicate is an affine space/vector space,
say f := V, and an SE attribute is an affine point/vector, say x := v. The
condition f(x) = 1 is equivalent to v ∈ V. Furthermore, in SE one can use
a decryption key for a predicate, say V1, to delegate a decryption key for any
predicate, say V2, which is a subspace of V1. In the case of SE involving affine
objects, we call it affine SE and in the case of SE involving vector objects–call it
linear SE. However, as we will show later, an affine SE can be transformed into
a linear SE, then it is sufficient to talk about linear SEs throughout this work.

There also exists a variant of SE called doubly spatial encryption (DSE),
which is expected to be more expressive than SE. In DSE, attribute spaces (i.e.,
vector spaces or affine spaces) are needed for encryption rather than vectors.
Decryption is successful if the intersection of the attribute and policy spaces is
not empty. Because of essential applications of SE (and DSE) to constructing
other cryptographic primitives (that will be discussed further in this work; now
the readers can have a look at Figure 1 for the relation of SE with some of them),
SE and DSE have been the main topic of many research works [7], [23], [35], [11],
[12], [13].

1.1 Our Motivations
Our work is inspired by a wide range of possible applications of SE and DSE, as
argued in [7] and [23]. However, the main driver behind our work is an attempt
to remove the shortcomings of a generic SE construction via [12]. Furthermore,
as lattice-based cryptosystems are resistant to quantum adversaries, we propose
a post-quantum lattice-based SE construction, which is more efficient than other
lattice-based ones, such as those from [1], [34].
Applications of SE. SE can be used to build many other cryptographic prim-
itives such as (H)IBE, broadcast (H)IBE, and encryption schemes with forward
security (see [7], [23]). This is done by converting e.g., identities and time pe-
riods into vectors/spaces compatible with SE. For more details, the reader is
referred to [7], [23]. Our further discussion is driven by the question: “Can we
use SE to implement other important cryptographic primitives?” We have discov-
ered some new applications of SE. It turns out that we can use SE to construct
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Fig. 1: The relation of SE and other primitives. Here, the implying relation A→
B means that from A one can construct B.

puncturable encryption (PE) [22], [32], DFPE [16] and their generalization, the
allow/deny-list encryption (ADE). Remark that ADE has also been mentioned
by Derler et al. in their work [16] and can also subsume other “predecessors” such
as IBE [30], HIBE [20], Fully Puncturable Encryption (FuPE) [15], Puncturable
IBE (PIBE) [17]. We refer to [16, Table 1] for a summary and comparison of
ADE and its predecessors. Note that, however, so far, there is neither a formal
definition nor security notions for ADE.

Lattice-based SE. There are many instantiations of SE in the literature (see
Table 1). Almost are based on intractability assumptions such as bilinear deci-
sion Diffie-Hellman exponent (BDDHE) [7,23], decisional bilinear Diffie-Hellman
(DBDH) [11, 13, 35], and decisional linear (DLIN) [11]. Some of them are prov-
ably secure in the generic group model (GGM) [7], [23], while others – in the
standard model (SDM) [35], [11], [13] .

Recall that lattice-based cryptosystems are believed to enjoy post-quantum
(PQ) security. In contrast, cryptosystems, whose security is based on the in-
tractability of factorization or discrete logarithm, are breakable by quantum
adversaries [31]. With the rapid development of large-scale quantum computers
4, it is imperative to design cryptosystems which are secure against quantum
adversaries. This leads us to the following question: “Is it possible to design SE
in the lattice setting?”. We found out that an answer to the question has already
existed in the literature. One can get a lattice-based SE using a generic con-
struction from the hierarchical inner product encryption (HIPE) given by Chen
et al. in [12]. The generic construction deploys two lattice-based SE schemes
from [1] and [34]. We base the security of both schemes on the intractability of

4 For instance, see at https://www.nature.com/articles/d41586-019-03213-z
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the learning with errors (LWE) problem. Unfortunately, such (lattice-based) SE
construction is not free from a few weaknesses shown below.

Table 1: (D)SE constructions
Literature From Assumption Security

model
Selective (S)

/Adaptive (A)
PQ

security
Boneh, Hamburg [7] BDDHE GGM S & A 7

Hamburg [23] BDDHE GGM S 7
Chen, Wee [13] DBDH SDM S 7
Chen et al. [11] DLIN, DBDH SDM A 7
Zhou, Cao [35] DBDH SDM S 7

Abdalla et al. [1] HIPE via Chen [12] LWE SDM S ✓
Xagawa [34] HIPE via Chen [12] LWE SDM S ✓
Our work DMIPE LWE SDM S ✓

Shortcomings of Constructing SE from HIPE. The notion of inner prod-
uct encryption (IPE) was introduced by Katz, Sahai, and Waters [25]. Hier-
archical inner product encryption (HIPE) is an extension of IPE introduced
by Okamoto and Takashima [28]. A HIPE is identified by a field F, a tuple
∆(δ) := (δ; ℓ1, · · · , ℓδ) called hierarchical format of depth δ. Specifically, for any
V⃗ = (v1, · · · ,vk) ∈ Γ|k := Γ1×· · ·×Γk, where Γi := Fℓi , a hierarchical predicate
fV⃗ (·) is defined as follows: fV⃗ (X⃗) = 1 for any X⃗ = (x1, · · · ,xt) ∈ Γ|t if and only
if k ≤ t and ⟨vi,xi⟩ = 0, for all i ∈ [k]. Informally, for each pair X⃗ and V⃗ , the
criteria for successful decryption is that fV⃗ (X⃗) is equal to 1.

Chen et al. [12] have investigated the relation between SE and HIPE. They
show that we can construct a d-dimensional linear SE from ∆(d) := (d; d, · · · , d)-
HIPE (i.e., ℓ1 = · · · = ℓd = d) and vice versa (but the dimension of SE and the
hierarchical format of HIPE might change). To construct SE from HIPE, the
authors change the “belong to” relation into the “orthogonal to” relation, i.e.
x ∈ V ⇔ ⟨x,v⟩ = 0 ∀v ∈ V ⊥, where V ⊥ denotes the orthogonal complement of
V . If we denote a basis of V ⊥ by B⊥(V ), then this is equivalent to ⟨x,v⟩ = 0

for all vi ∈ B⊥(V ). In order to deploy HIPE for SE, we set X⃗ := (x, · · · ,x)
and V⃗ := {vi : vi ∈ B⊥(V )} for each x and V , respectively. Thanks to Linear
Algebra (see Lemma 6 in Section 4) and the delegation capability of HIPE, one
can perform delegation for SE.

The following shortcomings of the above construction can be identified:

– There is a single vector that is involved in SE encryption. Decryption keys
may involve a list of vectors. In contrast, HIPE encryption takes many vec-
tors. That is why in the construction of SE from HIPE, one has to duplicate
the attribute vector of SE many times to fit the hierarchical format of HIPE.

– It is difficult, in general, to instantiate HIPE for practical use because of its
complex structure. It is worth noting that there are only some other lattice-
based HIPE constructions (for instance, these from Abdalla et al. [1] and
Xagawa [34]). Unfortunately, they are not efficient enough.
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The above considerations lead us to the following question: “Can we construct
SE from an IPE-related primitive that is simpler than HIPE?” We give an
affirmative answer to this question by introducing the new notion of delegatable
multiple inner product encryption (DMIPE).

1.2 Contributions

Below we list the main results of our work.

– We introduce a novel primitive called delegatable multiple inner product
encryption (DMIPE). It is a natural extension of IPE. We give a novel design
of DMIPE using LWE. We prove that our design is selective payload-hiding
secure in the standard model.

– We show an equivalence between DMIPE and SE, which provides a generic
framework for constructing SE from DMIPE. As a result, we obtain a lattice-
based SE, which is more efficient (in terms of sizes) than SEs constructed
from HIPE. Conversely, we can also build DMIPE from SE. Moreover, the
conversions between DMIPE and SE are security-preserving.

– We formally define the allow/deny-list encryption (ADE), which subsumes
some other important primitives, e.g., PE [22], FuPE [15], DFPE [16]. We
point out that one can build two versions of ADE from SE under appropriate
embeddings.

1.3 Overview of Our Results.

DMIPE. The notion of DMIPE originates from IPE and is equipped with a
delegation mechanism for producing decryption keys. In particular, a DMIPE
ciphertext is connected to its attribute vector. A DMIPE decryption key can be
generated from either the master secret key or from other secret keys by adding
more vectors to the list of predicate vectors. There is an important requirement
for predicate vectors, say V⃗ . They have to be linearly independent, i.e. no vector
is a linear combination of two or more other vectors from V⃗ . The requirement
is necessary to ensure that there is no redundant vector in V⃗ when checking
decryption conditions. Besides, delegation of a decryption key for V⃗ ∪v is possible
if v is linearly independent from the existing predicate vectors in V⃗ . Further
details can be found in Section 3.

We show that DMIPE can be used to implement other primitives, e.g., SE,
which can be exploited to build other primitives, as previously mentioned. We
argue that DMIPE is a generalization of IPE, and it is more natural than HIPE.
Compared to HIPE, the decryption hierarchy in DMIPE is more flexible for
delegation. (See Table 2 for a quantitative comparison of IPE, HIPE and DMIPE
and Figure 1 for an intuitive illustration of their relation). From the comparison
in Table 2, it is easy to see that DMIPE and HIPE are not equivalent in the
sense of transforming one into another. Details will be presented in Section 4.
Lattice-based DMIPE. At a high-level description, our lattice-based DMIPE
design exploits the lattice trapdoor mechanism and the lattice evaluation for
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Table 2: Comparison of IPE, HIPE and DMIPE.
IPE HIPE DMIPE

# Attribute vectors 1 d 1
# Predicate vectors 1 ≤ d ≥ 1

Delegation? No Yes Yes
Dimension of vectors same not necessarily same same

inner product functions (see Lemma 4 and Lemma 5 for formal statements). The
DMIPE design’s security is based on the intractability of the decision Learning
with Errors problem. The lattice-based DMIPE will be given in Section 5.
Equivalence of DMIPE and SE. We prove in Section 6 that DMIPE and
SE are equivalent in the sense that we can establish security-preserving conver-
sions between them. In particular, we can use DMIPE to construct SE, where
SE inherits security from DMIPE and vice versa. It also means we can get a
lattice-based SE from a lattice-based DMIPE. This way, our (d-dimensional) SE
construction is more efficient in terms of sizes, than SE obtained from ∆(d)-
HIPEs [1, 34], according to the generic framework of Chen et al. [12]. Table 3
compares different lattice-based SEs.

Table 3: Comparison of lattice-based d-dimensional SEs
d-dim.

SE from
pk-size

(ℓ := ⌈logr q⌉)
msk-size

(ℓ := ⌈logr q⌉)
sk-size

( k predicates)
ct-size

(h attributes, m-bit message)
Abdalla et al. [1]

(∆(d)-HIPE)
(d2(ℓ + 1) · Zn×m

q

+2 · Zn×m
q

1 ·Dm×m
Z 1 ·Dkm×m

Z
(hd(ℓ + 1)) · Zm

q

+2 · Zm
q

Xagawa [34]
(∆(d)-HIPE)

(d2 + d) · Zn×nℓ
q

+2 · Zn×ml
q

1 ·D(m−nℓ)×nℓ
Z

1 ·D(m+(2k−1)nℓ)×m
Z

+1 ·D(m+(2k−1)nℓ)×nk
Z

(h− 1 + hd) · Znℓ
q

+2 · Zm
q

Ours
(DMIPE) (d + 2) · Zn×m

q 1 ·Dm×m
Z 1 ·Dkm×m

Z (d + 2) · Zm
q

ADE and the Construction from SE. ADE is, in fact, also a subclass of
PrE, in which both predicates and attributes are tags. These tags are catego-
rized into two lists: allow list contains positive tags and deny list–negative tags.
Both ciphertexts and decryption keys are associated with these two kinds of tags.
Further, ADE also supports the delegation mechanism, which is called punctur-
ing. Roughly saying, negatively puncturing is the delegation on negative tags,
and this puncturing can revoke the decryption ability. In contrast, positively
puncturing is delegation done on positive tags and allows decryption. We will
present a formal definition and security model for ADE. Moreover, we consider
three versions of ADE: (i) standard ADE (sADE); (ii) inclusive ADE (iADE)
and (iii) k-threshold ADE (k-tADE). We show that one can construct sADE
and iADE from SE by applying some appropriate encodings. This result will
be detailed in Section 7. However, how to translate k-tADE to SE is an open
problem.
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The security notions for SE, DMIPE and even ADE inherit from those for
PrE, which were introduced in [25]. They include selective payload-hiding, se-
lective attribute-hiding, adaptive payload-hiding, and adaptive attribute-hiding.
We stress that, in this work, we concentrate on the selective payload-hiding
security.

2 Preliminaries

Given a positive integer n, [n] stands for the set {1, · · · , n}. We write W ⊑ V
for the fact that W is an (affine or vector) subspace of V . The notation A⊗B is
a tensor product of two matrices A and B. Throughout this work, we represent
a vector with a small bold-face letter, e.g., x and in the column form unless
stated otherwise. We write a matrix in capital bold-face, e.g., B. We write b⊤
(resp., A⊤) to denote the transpose of a vector b (resp., a matrix A). The
notation S̃ := [̃s1| · · · |̃sk] stands for the Gram-Schmidt (GS) orthogonalisation
of S := [s1| · · · |sk]. The notation U(X) means the uniform distribution over
the set X. All logarithms are for base 2. All norms are the max-absolute-value
norm ∥ · ∥max

5 unless otherwise stated. The norm returns the maximum abso-
lute value of the entries of an input vector/matrix. For example, for a vector
a = (a1, · · · , an) and a matrix A = (ai,j)

j∈[m]
i∈[n] , ∥a∥max := maxi∈[n] |ai| and

∥A∥max := maxi∈[n],j∈[m] |ai,j |. The following lemma is the well-known result
regarding the max-absolute-value norm.

Lemma 1. Let e1, e2, e3 be vectors of dimensions m1,m2,m3 ∈ N, respec-
tively. Let A1,A2 be matrices of appropriate dimensions. Then, ∥e⊤1 A1∥max ≤
m1∥e⊤1 ∥max · ∥A1∥max, and ∥(e⊤2 |e⊤3 )A2∥max ≤ (m2∥e⊤2 ∥max + m3∥e⊤3 ∥max) ·
∥A2∥max.

2.1 Framework of Spatial Encryption

Syntax. Formally, SE [7,23] consists of five main algorithms SE.Setup, SE.Derive,
SE.Del, SE.Enc, SE.Dec described as follows:

(pp,msk)← SE.Setup(1λ, sp): The algorithm takes as input a security param-
eter λ and setup parameters sp. It returns public parameters pp which im-
plicitly defined a top space T and a master secret key msk. The master key
msk can be seen as the secret key skT (i.e., msk = skT) for the top space T.

skV ← SE.Derive(pp,msk, V ): The algorithm takes as input the master secret
key msk and a subspace V . It outputs the secret key skV for V .

skV2
← SE.Del(pp, skV1

, V2): The algorithm takes as input the secret key skV1

for the space V1. It outputs the secret key skV2
for V2, where V2 ⊑ V1.

ctx ← SE.Enc(pp,x, µ): The encryption algorithm encrypts a message µ under
a point/vector x. It outputs a ciphertext ctx.

5 Some papers (e.g., [9], [33], [24]) denote this max-absolute-value norm by ∥ · ∥∞.
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µ/ ⊥← SE.Dec(pp, ctx, skV ): The decryption algorithm takes as input a secret
key skV and a ciphertext ctx. Decryption succeeds if x ∈ V and it outputs
the plaintext µ. Otherwise, it fails and returns ⊥.

GAME SEsel,ATK
payload,A(λ, sp) :

(where ATK ∈ {CPA,CCA1,CCA2})
1. x∗ ← A(1λ, sp); 2. (pp,msk)← SE.Setup(1λ, sp);
3. (µ∗

0, µ
∗
1)← AKQ(·), DQ1(·,·)(pp); 4. b $←− {0, 1}, ct∗x∗ ← SE.Enc(pp,x∗, µ∗

b);
5. b′ ← AKQ(·), DQ2(·,·)(pp, ct∗x∗). //NOTE: DQ2(V, ct∗x∗) is not allowed

with x∗ ∈ V .
6. If b′ = b, return 1. Otherwise, return 0.
Queried Oracles:
• Key Oracle KQ(V) (allowed only if x∗ /∈ V ): Return skV ← SE.Der(pp,msk, V ).
• Decryption Oracle DQ1(V, ctx) (allowed only if ATK ∈ {CCA1,CCA2}): Run

skV ← SE.Der(pp,msk, V ), then return the output of SE.Dec(pp, ctx, skV ).
• Decryption Oracle DQ2(V, ctx) (allowed only if ATK = CCA2): Run skV

← SE.Der(pp,msk, V ), then return the output of SE.Dec(pp, ctx, skV ).

Fig. 2: Selective payload-hiding security game for SE

Correctness. It requires that for all λ, sp, (pp,msk)← SE.Setup(1λ, sp)), ctx ←
SE.Enc(pp,x, µ), skV ← SE.Del(pp, skV ′ , V ) (for some V ′ such that V ⊑ V ′)
or skV ← SE.Derive(pp,msk), if x ∈ V then Pr[SE.Dec(pp, skV , ctx) = µ] ≥
1− negl(λ); otherwise, Pr[SE.Dec(pp, skV , ctx) = µ] < negl(λ).

We also require that the distribution of secret keys skV for any subspace V
must be the same. It should depend neither on how a key is produced (i.e. by
either SE.Derive or SE.Del) nor on what a path is (e.g., the direct path from the
top space or the path of a delegation from another subspace).
Security Notions for SE. SE security notions include selective/adaptive pay-
load/ attribute-hiding. However, we only formally define the selective payload-
hiding security for SE – see Definition 1 and the game SEsel, ATK

payload,A in Figure 2.
Note that ATK ∈ {CPA,CCA}, where CPA and CCA stand for chosen plaintext
and chosen ciphertext attacks, respectively.
Definition 1 (Selective Payload-hiding Security for SE). SE is selective
payload-hiding secure if the advantage of the adversary playing in the SEsel,ATK

payload,A

game is negligible, i.e., Advpayload,ATKSE,A,sel := |Pr[b′ = b]− 1/2| = negl(λ).

2.2 Lattices, Gaussians, Trapdoors, Lattice Evaluations for Inner
Product Functions

We focus on the following lattices: Λ⊥q (A) := {e ∈ Zm | Ae = 0 (mod q)} ,
Λu
q (A) := {e ∈ Zm|Ae = u (mod q)}, ΛU

q (A) :=
{
R ∈ Zm×k|AR = U (mod q)

}
.

Note that Zm for any m ∈ N is also a lattice.
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We also involve with a discrete Gaussian distribution over L centred at v
with (Gaussian) parameter σ which is defined by DL,σ,v(x) =

ρσ,v(x)
ρσ,v(L) for all

x ∈ L, where ρσ,v(x) = exp(−π∥x− v∥2/σ2) and ρσ,v(L) :=
∑

x∈L ρσ,v(x). In
case v = 0, we just write DL,σ. We also consider the (B, ϵ)-bounded distributions
χ supported over Z. The following lemma says how short a vector sampled via
a discrete Gaussian distribution (over Z) is.

Lemma 2 ( [26, Lemma 4.4]). Pr[|x| > kσ : x← DZ,σ] ≤ 2 exp(−k2

2 ).

Note that, in Lemma 2, if we set k = 12, then Pr[|x| ≤ 12σ : x ← DZ,σ] ≥ 1−
2 exp(−72) ≈ 1− 2−100. Then, χ = DZ,σ is a (12σ, 2−100)-bounded distribution.

The following leftover hash lemma enables us to replace a random matrix by
a pseudo-random one in hybrid games for our security proofs.

Lemma 3 (Leftover Hash Lemma, [2, Lemma 4]). Given m,n, q are pos-
itive integers such that m > (n + 1) log q + ω(log n), k = poly(n), q > 2 is
a prime, and that A

$←− Zn×m
q and B

$←− Zn×k
q . Then, the joint distributions

(A,AR, e⊤R) and (A,B, e⊤R) are statistically close to each other for any
matrix R

$←− {−1, 0, 1}m×k and for all vectors e ∈ Zm
q .

The Decisional Learning with Errors (DLWE) [29] is used as our intractability
assumption to prove the security of our DMIPE design. The hardness of DLWE
can be found, e.g., in [9, Corollary 3].

We follow the works [9], [33], [24] for lattice trapdoors. In particular, it is
shown in [27] that the gadget matrix G has a publicly known constant trapdoor
denoted in this work as G−1O(1).

Lemma 4 ( [4], [18], [2], [10], [27]). The following facts hold for lattice
trapdoors:

1. Let n,m, q be positive integers where m = O(n log q). There is an efficient
algorithm TrapGen that takes (n,m, q) as input to generate a matrix A ∈
Zn×m
q together with its trapdoor A−1σ0

satisfying that A
negl∼ U(Zn×m

q ) with
σ0 = ω(n log q log n).

2. Given a trapdoor A−1σ1
, one can compute A−1σ2

for any σ2 ≥ σ1.
3. Given a trapdoor A−1σ , one can compute [A|B]−1σ , [B|A]−1σ for any matrix

B having the same number of rows as A.
4. Given the gadget matrix G ∈ Zn×m′

q with m′ ≥ n⌈log q⌉, using its trapdoor
G−1O(1) one can compute the trapdoor [A|AR+G]−1σ for all A ∈ Zn×m

q and
R ∈ Zm×m′ and σ = m · ∥R∥max · ω(

√
logm).

5. For a trapdoor A−1σ1
and for any U ∈ Zn×m′

q , by Lemma 2, Pr[∥A−1σ1
(U)∥max ≤

12σ : x← DZ,σ] ≥ 1− 2−100.
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For every x ∈ Zd
q , an inner product function fv : Zd

q → Zq is indexed by a
vector v ∈ Zd

q and is defined as fv(x) := ⟨v,x⟩ (mod q). Thus, [33, Theorem 2],
for example, is not suitable for our work. The following lemma is sufficient for
our purpose.

Lemma 5 (Evaluation for Inner Product Functions). There exist an ef-
ficient deterministic algorithm EvalFIP such that for all n, q, d ∈ N and m =
n⌈log q⌉, for any inner product function fv : Zd

q → Zq indicated by v ∈ Zd
q ,

and for any matrix B ∈ Zn×md
q , it outputs a matrix H ∈ {0, 1}md×m ←

EvalFIP(fv,B), satisfying that ∥H∥max ≤ 1 and that for every x ∈ Zd
q ,

[B± x⊗G]H = BH± ⟨v,x⟩ ·G (mod q).

Proof. See Appendix A. ⊓⊔

3 Delegatable Multiple Inner Product Encryption

In this section, we present the syntax and security notions for DMIPE. For
DMIPE, a ciphertext is produced together with a d-dimensional vector. We call
it ciphertext vector, or attribute vector. A secret key contains a list of one or
multiple vectors of dimension d. We call them key vectors or predicate vectors.
All vectors are supposed to belong to the same domain (space) D. The domain
supports typical or symbolic inner product operations. The operation is defined
as ⟨x,v⟩ = x1v1 + · · ·xdvd ∈ D for x := (x1, · · · , xd), v := (v1, · · · , vd) ∈ Dd.
Note that D can be Z or even Zq.
Syntax of DMIPE. A DMIPE consists of the five algorithms DMIPE.Setup,
DMIPE.Derive, DMIPE.Del, DMIPE.Enc and DMIPE.Dec. They are formally de-
fined below.

– (pp,msk) ← DMIPE.Setup(1λ, sp): The algorithm takes as input a security
parameter λ and setup parameters sp. It returns public parameters pp and
a master secret key msk.

– skV⃗ ← DMIPE.Derive(pp,msk, V⃗ ): The algorithm takes a master secret key
msk and a list of vector V⃗ = {v1, · · · ,vk}. It returns a secret key skV⃗ for V⃗ .

– ⊥ /skV⃗2
← DMIPE.Del(pp, skV⃗1

,vk+1): The algorithm takes the secret key
skV⃗1

for V⃗1 = {v1, · · · ,vk} and returns a secret key skV⃗2
for V⃗2 := V⃗1 ∪

{vk+1}. If vk+1 is not linearly independent of V⃗ , then it returns ⊥.
– ctx ← DMIPE.Enc(pp, µ,x): The algorithm encrypts a message µ under a

vector x and produces a ciphertext ctx.
– ⊥/µ ← DMIPE.Dec(pp, skV⃗ , ctx): The algorithm decrypts a ciphertext ctx

using a secret key skV⃗ . It is successful if V⃗ · x = 0 (i.e., ⟨vi,x⟩ = 0 for all
vi ∈ V⃗ ). If the condition does not hold, it fails and returns ⊥.

Correctness of DMIPE. For all λ, sp, (pp,msk) ← DMIPE.Setup(1λ, sp),
ctx ← DMIPE.Enc(pp, µ,x), skV⃗ ← DMIPE.Del(pp, skV⃗ ′ ,v) (where V⃗ = V⃗ ′∪{v})
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or skV⃗ ← DMIPE.Derive(pp, msk, V⃗ ), if V⃗ ·x = 0 then Pr[DMIPE.Dec(pp, skV⃗ , ctx)
= µ] ≥ 1− negl(λ); otherwise, Pr[DMIPE.Dec(pp, skV⃗ , ctx) = µ] < negl(λ).

Security Notions of DMIPE. Same as SE, we only consider selective payload-
hiding security for DMIPE. Definiton 2 and Figure 3 together describe our se-
curity notion.

Definition 2. DMIPE is selective payload-hiding secure if the advantage of the
adversary playing in the DMIPEsel,ATK

payload,A game (in Figure 3) is negligible, i.e.,
Advpayload,ATKDMIPE,A,sel : = |Pr[b′ = b]− 1/2| = negl(λ).

GAME DMIPEsel,ATK
payload,A(λ, sp):

(where ATK ∈ {CPA, CCA1, CCA2})
1. x∗ ← A(1λ, sp); 2. (pp, msk)← DMIPE.Setup(1λ, sp);
3. (µ∗

0 , µ
∗
1)← A

KQ(·), DQ1(·,·)(pp); 4. b
$←− {0, 1}, ct∗x∗ ← DMIPE.Enc(pp, x∗, µ∗

b );
5. b′ ← Act∗x∗ , KQ(·), DQ2(·,·)

(pp). // NOTE: DQ2(V⃗ , ct∗x∗ ) with x∗ ⊥ V⃗ is not allowed .
6. If b′ = b, return 1. Otherwise, return 0.
Queried Oracles:
• KQ(V⃗ ) (allowed only if x∗ ̸⊥ V⃗ ): Run skV⃗ ← DMIPE.Derive(pp, msk, V⃗ ).
• DQ1(V⃗ , ctx) (allowed only if ATK ∈ {CCA1, CCA2}): Run skV⃗ ← DMIPE.Derive(pp, msk, V⃗ ),

then return the output of DMIPE.Dec(pp, ctx, skV⃗ ).
• DQ2(V⃗ , ctx) (allowed only if ATK = CCA2): Run skV⃗ ← DMIPE.Derive(pp, msk, V⃗ ),

then return the output of DMIPE.Dec(pp, ctx, skV⃗ ).

Fig. 3: Selective payload-hiding security game for DMIPE. Here if x ⊥ v,∀v ∈ V⃗
then we write x ⊥ V⃗ ; otherwise we write x ̸⊥ V⃗ .

4 Generic SE Construction from DMIPE

We only focus on a linear SE, where components are vectors and vector subspaces
over some field F, e.g., F = Zq for q prime. Note that we can always embed a
d-dimensional affine SE into a (d + 1)-dimensional linear SE, as shown below.
First, we recap some notions in affine/linear algebra.

Let F be a field. A d-dimensional vector subspace V ⊑ Fd can be represented
as V := span(M) = {Mx : x ∈ Fm} for some x ∈ Fm, where M ∈ Fd×m is a
basis for V . Note that all rows of M are linearly independent. A d-dimensional
affine subspace W of Fd can be represented as W = y + span(M) = {y +
Mx : x ∈ Fm} for some y ∈ Fd,M ∈ Fd×m. We can transform W to a vector

subspace defined as W = span(M′) :=

{
M′x′ : x′ =

(
1
x

)
,x ∈ Fm+1

}
, where

M′ has the form
[
1 0
y M

]
∈ F(d+1)×(m+1). Obviously, all rows of M′ are still

linearly independent assuming the linear independence for M’s rows. Then W
now is a vector subspace of dimension d+1. For linear SE, recall that we encrypt
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a plaintext together with a vector x and a decryption key is produced using a
vector space V . Successful decryption using the decryption key requires that
x ∈ V . We need a tool that helps us transform the “belong to” relation for the
SE syntax to the “orthogonal to” relation compatible with the DMIPE syntax.
The following well-known lemma from Linear Algebra helps us to compute the
basis for the orthogonal complement of a vector space.

Lemma 6 ( [14, Algorithm 2.3.7] and [12]). There exists an efficient algo-
rithm, named OCB, such that on input a vector space V , outputs a basis, called
B⊥(V ), for the orthogonal complement V ⊥ of V . Furthermore, the algorithm
guarantees that if V2 ⊑ V1 then B⊥(V1) ⊆ B⊥(V2).

Now we are ready to present our generic SE construction from DMIPE. Given a
DMIPE scheme ΠDMIPE := (DMIPE.Setup,DMIPE.Derive,DMIPE.Del, DMIPE.Enc,
DMIPE.Dec). Then we can construct an SE scheme ΠSE := (SE.Setup, SE.Derive,
SE.Del, SE.Enc, SE.Dec) as follows:

– SE.Setup(1λ, sp): For input a security parameter λ, a system parameters sp,
run (dmipe.pp, dmipe.msk) ← DMIPE.Setup(1λ, sp) and set pp := dmipe.pp,
and msk := dmipe.msk.

– SE.Derive(pp,msk, V ): For input public parameters pp, the master secret key
msk and a subspace V , perform: Run B⊥(V ) ← OCB(V ), and set V⃗ :=

{v : v ∈ B⊥(V )}. Run dmipe.skV⃗ ← DMIPE.Derive(pp,msk, V⃗ ), and set
skV := dmipe.skV⃗ .

– SE.Del(pp, skV1 , V2): For input public parameters pp, secret key for subspace
skV1 = dmipe.skV⃗ for V1 and a subspace V2 ⊑ V1, perform: Run B⊥(V1) ←
OCB(V1), B⊥(V2) ← OCB(V2), and set V⃗1 := {v : v ∈ B⊥(V1)}, V⃗2 :=

{v : v ∈ B⊥(V2)}. Note that, since V2 ⊑ V1 , V⃗1 ⊆ V⃗2. Suppose that
V⃗2 \ V⃗1 = {v1, · · · ,vk} for some k ≥ 1. Set V⃗ ← V⃗1. For i ∈ [k], run
dmipe.skV⃗ ∪{vi} ← DMIPE.Del(pp, dmipe.skV⃗ ,vi), then set V⃗ ← V⃗ ∪{vi}. At
this point, we reach V⃗ = V⃗2. Finally, output skV2

:= dmipe.skV⃗2
. Doing this

makes it clear that the distribution of the private keys is independent of the
path taken. Namely, the distribution for the key skV3

computed from skV2
is

the same as that of skV3 computed from skV1 with V3 ⊑ V2 ⊑ V1.
– SE.Enc(pp,x, µ): For input the public parameters pp, an attribute vector

x and a plaintext µ, run dmipe.ctx ← DMIPE.Enc(pp,x, µ) and output a
ciphertext ctx := dmipe.ctx.

– SE.Dec(pp, ctx, skV ): On input the public parameters pp, a ciphertext ctx and
a secret key skV for a space V , return the output of DMIPE.Dec(pp, ctx, skV ).

We establish the correctness of SE in Theorem 1.

Theorem 1. The SE ΠSE is correct assuming correctness of the underlying
DMIPE ΠDMIPE.

Proof. The correctness of ΠSE follows from the equivalence of the statements
that “x ∈ V ” and that “x ⊥ v, for all v ∈ B⊥(V )”. ⊓⊔
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Theorem 2. Given an adversary S that plays against some security game (se-
lective/adaptive payload-/attribute-hiding) for ΠSE, one can build an adversary A
playing against the same security game for ΠDMIPE such that AdvDMIPE

A ≥ AdvSES .

Proof. See Appendix A. ⊓⊔

5 Lattice-based DMIPE construction

For a vector v ∈ Zd
q , we define an inner product function fv : Zd

q → Zq as
fv(x) := ⟨v,x⟩ (mod q), for any x ∈ Zd

q . Recall that we can represent this
function as an addition gate; see [6, Section 4]. Our lattice-based DMIPE con-
struction exploits the lattice trapdoor mechanism [18] [2] [27] and the lattice
evaluation algorithms developed in a long series of works [27], [19], [6], [33].

The Construction. The lattice-based DMIPE is presented right below.

– DMIPE.Setup(1λ, 1d): On input a security parameter λ, a dimension d, do
the following: Choose n,m, q according to λ, d. Also, choose a (B, ϵ)-bounded
distribution χ for the underlying LWE problem. We can take χ = DZ,σ∗

(for some σ∗ > 0) which is a (12σ∗, 2−100)-bounded distribution. Choose
a Gaussian parameter σ0, and sample (A,A−1σ0

) ← TrapGen(n,m, q), U $←−
Zn×m
q , B $←− Zn×md

q . Output public parameters pp := (A,B,U) and master
secret key msk := A−1σ0

.

– DMIPE.Derive(pp,msk, V⃗ ): Taking as input public parameters pp, a master
secret key msk and a list of d-dimensional vectors V⃗ = {v1, · · · ,vk}, perform:
For each vector vi, evaluate Hvi

← EvalF(fvi
,B) and compute Bvi

:=
BHvi

. Set BV⃗ := [Bv1
| · · · |Bvk

] and AV⃗ := [A|BV⃗ ]. Compute trapdoor
A−1

V⃗ ,σ0
for AV⃗ (via Item 3 of Lemma 4) and output skV⃗ := A−1

V⃗ ,σ0
.

– DMIPE.Del(pp, skV⃗1
,vk+1): On input public parameters pp, a secret key skV⃗1

=

A−1
V⃗1,σ0

for a list V⃗1 = {v1, · · · ,vk}, and a vector vk+1 /∈ V⃗1), do the fol-
lowing: For all i ∈ [k + 1], evaluate Hvi

← EvalFIP(fvi
,B) and compute

Bvi
:= BHvi

. Set AV⃗2
:= [A|Bv1

| · · · |Bvk
|Bvk+1

] with V⃗2 := V⃗1 ∪ {vk+1}.
Note that, AV⃗1

:= [A|Bv1 | · · · |Bvk
]. Compute trapdoor A−1

V⃗2,σ0
using the

trapdoor A−1
V⃗1,σ0

(via Item 3 of Lemma 4) and output skV⃗2
:= A−1

V⃗2,σ0
.

– DMIPE.Enc(pp, µ,x): On input public parameters pp, a message vectors µ :=
(µ1, · · · , µm) ∈ {0, 1}m and an attribute vector x ∈ Zd

q , do the following:
Sample s $←− Zn

q , R $←− {−1, 0, 1}m×md and ein, eout ← χm. Compute cin :=

s⊤A+ e⊤in ∈ Zm
q , cmid := s⊤(B−x⊗G)+ e⊤inR ∈ Zmd

q , cout := s⊤U+ e⊤out +
µ · ⌈q/2⌉ ∈ Zm

q . Output ciphertext ctx := (cin, cmid, cout).
– DMIPE.Dec(pp, skV⃗ , ctx): On input public parameters pp, secret key skV⃗ :=

A−1
V⃗

associated with V⃗ = (v1, · · · ,vk) and a ciphertext ctx := (cin, cmid, cout)

associated with x ∈ Zd
q , do the following: For each vector vi, evaluate Hvi

←
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EvalFIP(fvi
,B) and compute Bvi

:= BHvi
. Set AV⃗ := [A|Bv1

| · · · |Bvk
]

and compute W ← A−1
V⃗ ,σ0

(U), i.e., AV⃗ ,σ0
W = U (mod q). For i ∈ [k],

compute cvi
:= cmidHvi

, i.e, cvi
= s⊤(Bvi

+⟨vi,x⟩·G)+e⊤inRHvi
. Compute

µ′ := (µ′1, · · · , µ′m) ← cout − [cin|cv1
| · · · |cvk

]W. For i ∈ [m], output µi = 0
if |µ′i| < q/4; output µi = 1 otherwise.

5.1 Correctness, Parameters and Security Proofs

Theorem 3 (Correctness). The given DMIPE is correct assuming the chosen
parameters satisfy B + 12(mB + km3B) · σ0 < q/4.

Proof. See Appendix A. ⊓⊔

We choose the parameters as follows: (i) First, choose λ to be a security
parameter. (ii) For the hardness of (n, 2m, q, χ)-DLWE (in Lemma 10): by [9,
Lemma 3.2], we choose n = n(λ), ϵ, q = q(n) ≤ 2n, m = Θ(n log q) = poly(n),
χ = χ(n) such that χ is a (B, ϵ)-bounded for some B = B(n) such that, q/B ≥
2n

ϵ . Note that the “core-SVP hardness” methodology has been usually used in
the literature for choosing practical parameters; see [5, Section 5.2.1]. (iii) m >
(n+1) log q+ω(log n) (For Lemma 8; due to Lemma 3). (iv) σ0 = ω(n log q log n)
(for TrapGen; due to Item 1 of Lemma 4).σ ≥ m2d · ω(

√
logm) (for Hybrid 3 to

work; due to Lemma 9). (v) B + 12(mB + km3B) · σ0 < q/4. (for Correctness;
due to Theorem 3).

Now, we come up with the selective payload-hiding security of the proposed
DMIPE.

Theorem 4 (Selective Payload-hiding Security). Under the hardness of
the (n, 2m, q, χ)-DLWE assumption, the lattice-based DMIPE is selectively payload-
hiding secure (under chosen plaintext attacks). Specifically, suppose that there
is an adversary A that wins the DMIPEsel,CPA

payload,A, then one can use A to build a
solver B that can solve the (n, 2m, q, χ)-DLWE problem at least with the same
advantage.

Proof. We prove the theorem via a sequence of hybrids. Let Wi be the event
b′ = b in Hybrid i. We want to prove that |Pr[W0]| ≤ negl(λ)

Hybrid 0. This is the original game DMIPEsel,CPA
payload,A stated in Figure 3. Suppose

that the target attribute vector is x∗ and the short matrix used in Step 1 of
DMIPE.Enc for producing the challenge ciphertext (in the Challenge phase) is
R∗ ∈ {−1, 0, 1}m×md.

Hybrid 1. This hybrid is similar to Hybrid 0 except that R∗ $←− {−1, 0, 1}m×md

is generated in the Setup phase instead in the Challenge phase.
Hybrid 2. This hybrid is similar to Hybrid 1 except the way the challenger

sets public parameters pp. Namely, pp := (A,B,U), where B is generated as
B := AR∗ + x∗ ⊗ G ∈ Zn×md

q , while A,U are unchanged (i.e., (A,A−1σ0
) ←
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TrapGen(n,m, q), U $←− Zn×m
q ). Note that, in this game the component c∗mid in

the challenge ciphertext ct∗x∗ = (c∗in, c∗mid, c∗out) can be rewritten as

c∗mid := s⊤(B− x∗ ⊗G) + e⊤inR∗ = s⊤(AR∗) + e⊤inR∗ = c∗inR∗.

Hybrid 3. This hybrid is similar to Hybrid 2 except the way the challenger
generates A in the public parameters pp. Namely, A is sampled uniformly at
random from Zn×m

q (and the challenger does not have A−1σ0
). Instead, the chal-

lenger uses the trapdoor G−1O(1) for G as the master secret key. By this way, for
any key query KQ(V⃗ ), any key delegation query KD(V⃗ ,v), the challenger utilizes
G−1O(1) to compute skV⃗ with the help of Item 4 of Lemma 4. Specifically,

1. For each vector vi, evaluate Hvi ← EvalFIP(fvi ,AR∗).
2. Compute Bvi

:= BHvi
= AR∗Hvi

+ ⟨vi,x∗⟩ ·G.
3. Set AV⃗ := [A|Bv1 | · · · |Bvk

], where k = |V⃗ |.
4. Note that, if ⟨vi,x∗⟩ = 0 (mod q) for all vi ∈ V⃗ , then the challenger aborts

the game. Otherwise, we will have at least one ⟨vi0 ,x∗⟩ ̸= 0 (mod q), then
the challenger can successfully
(a) compute [A|AR∗Hvi0

+ ⟨vi0 ,x∗⟩ ·G]−1σ from G−1O(1) (Item 4 of Lemma
4),

(b) compute [AV⃗ ]
−1
σ from [A|AR∗Hvi0

+ ⟨vi0 ,x∗⟩ ·G]−1σ (Item 3 of Lemma
4), and finally assign skV⃗ ← [AV⃗ ]

−1
σ .

Hybrid 4. This hybrid is similar to Hybrid 3 except that for the challenge
ciphertext cin and cout are both sampled uniformly at random from Zm

q , while
cmid is unchanged. Obviously, |Pr[W4]− 1/2| = 0.

We prove that |Pr[W0]−1/2| ≤ negl(λ) through the following lemmas, which
show the indistinguishability of the two consecutive hybrids above.

Lemma 7. In the view of the adversary A, Hybrid 1 and Hybrid 0 are perfectly
the same; i.e., Pr[W1] = Pr[W0].

Lemma 8. In the view of the adversary A, Hybrid 2 and Hybrid 1 are indistin-
guishable, i.e., |Pr[W1]− Pr[W2]| = negl(λ).

Lemma 9. In the view of the adversary A, Hybrid 3 and Hybrid 2 are indistin-
guishable, i.e., |Pr[W2]− Pr[W3]| = negl(λ).

Lemma 10. In the view of the adversary A, Hybrid 4 and Hybrid 3 are indis-
tinguishable, i.e., |Pr[W3] − Pr[W4]| = negl(λ), assuming the hardness of the
(n, 2m, q, χ)-DLWE problem.

Proofs for Lemma 7-10 are included in Appendix A. Now, |Pr[W0]− 1/2| ≤
|Pr[W0]−Pr[W1]|+ |Pr[W1]−Pr[W2]|+ |Pr[W2]−Pr[W3]|+ |Pr[W3]−Pr[W4]|+
|Pr[W4]− 1/2| = negl(λ). ⊓⊔
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6 Constructing DMIPE from SE

One can construct DMIPE from SE. The key idea is that for predicate vectors V⃗ ,
we utilize a transformation named OVS, that maps V⃗ to the (unique) orthogonal
complement of the subspace generated by all vectors in V⃗ . That is, OVS(V⃗ ) :=

(span(v1, · · · ,vk))
⊥. Remind that all vectors in V⃗ are linearly independent. By

doing that, the condition ⟨vi,x⟩ = 0 (mod q) ∀vi ∈ V⃗ is equivalent to x ∈
OVS(V⃗ ). Furthermore, the transformation also guarantees that if V⃗1 ⊆ V⃗2 then
OVS(V⃗2) ⊑ OVS(V⃗1).

The construction for DMIPE from SE is quite similar to the way for SE
from DMIPE. We include it here for completeness. The correctness of DMIPE
is straightforward from that of SE. The security of DMIPE follows from that of
SE and can be done similarly as in the proof of Theorem 2. Then we omit it.

– DMIPE.Setup(1λ, sp): Run (se.pp, se.msk) ← SE.Setup(1λ, sp) and then out-
put pp := se.pp, msk := se.msk.

– DMIPE.Derive(pp,T,msk, V⃗ ): Run V ← OVS(V⃗ ), se.skV ← SE.Derive(pp,msk,
V ) and then output skV⃗ := se.skV .

– DMIPE.Enc(pp,x, µ): Run se.ctx ← SE.Enc(pp,x, µ) and output ctx := se.ctx.
– DMIPE.Del(pp, V⃗1, skV⃗1

,v): Compute V1 ← OVS(V⃗1), V2 ← OVS(V⃗1 ∪ {v}),
and then se.skV2

← SE.Del(pp, se.skV1
, V2). (Note that, se.skV1

= skV⃗1
.) Fi-

nally, output skV⃗2
:= se.skV2

.
– DMIPE.Dec(pp, ctx, skV ): Return the output of SE.Dec(pp, ctx, skV ).

7 Allow-/Deny-list Encryption from Spatial Encryption

7.1 Framework of ADE

Let λ be a security parameter, d = d(λ) be the maximum number of negative
tags per ciphertext, and a = a(λ) be the the maximum number of positive tags
in the ADE system. Further, we denote the space of plaintexts, the negative
tag space and the positive tag space by M = M(λ), T (−) = T (−)(λ) and by
T (+) = T (+)(λ), respectively.
Syntax. ADE is a tuple of the following algorithms ADE=(ADE.Gen, ADE.Enc,
ADE.Npun, ADE.Ppun, ADE.Dec):

– (pp, sk∅∅) ← ADE.Gen(1λ, 1a, 1d): On input (a security parameter λ and a
maximum number a of positive tags per ciphertext and a maximum num-
ber d of negative tags per ciphertext), the PPT algorithm outputs public
parameters pp and a (not punctured) initial secret key sk∅∅.

– skAL′
1∪AL′

2

DL′ ← ADE.Ppun(pp, skAL′
1

DL′ , AL′2, k): On input a tuple of (public pa-
rameters pp; a previously punctured key skAL′

1

DL′ w.r.t a set of positive tags
∅ ⊆ AL′1 ⊆ T (+) and a set of negative tags ∅ ⊆ DL′ ⊆ T (−); a set of positive
tags AL′2 ∈ T (+) \ AL′1), the PPT algorithm returns a new punctured key
skA

′L∪{pt}
DN ′ . Here, note that k is only used in the k-tADE variant.
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– skAL′

DL′
1∪DL′

2
← ADE.Npun(pp, skAL′

DL′
1
, DL′2): On input a tuple of (public pa-

rameters pp; a previously punctured key skAL′

DL′ w.r.t a set of positive tags
∅ ⊆ AL′ ⊆ T (+) and a set of negative tags ∅ ⊆ DL′1 ⊆ T (−); a set of negative
tags DL′2 ∈ T (−) \DL′1), the PPT algorithm returns a new punctured key
skAL′

DL′
1∪DL′

2
.

– ctAL
DL ← ADE.Enc(pp, µ, AL,DL): On input a tuple of (public parameters pp;

a plaintext µ; a set of positive tags AL; a set of negative tags DL), the PPT
algorithm returns a ciphertext ctAL

DL.
– µ/⊥ ← ADE.Dec(pp, skAL′

DL′ , ctAL
DL): : On input a tuple of (public parameters

pp; a secret key skAL′

DL′ associated with AL′ ⊆ T (+) and DL′ ⊆ T (−); a
ciphertext ctAL

DL associated with AL ⊆ T (+) and DL ⊆ T (−)), the DPT
algorithm outputs either a plaintext µ if decryption succeeds or ⊥ otherwise.

Correctness and ADE Variants. Consider all λ, a, d ∈ N, µ ∈ M, ∅ ⊂
AL,AL′ ⊆ T (+), ∅ ⊂ DL,DL′ ⊆ T (−), (pp, sk∅∅)← ADE.Gen(1λ, 1a, 1d), ctAL

DL ←
ADE.Enc (pp, µ, AL,DL), and any punctured key skAL′

DL′ generated using any
combination of ADE.Npun, and ADE.Ppun on AL′, DL′. We define the correctness
and classify ADE variants at the same time. All variants require that the initial
key is always able to successfully decrypt a ciphertext i.e., Pr[ADE.Dec(pp, sk∅∅,
ctAL

DL) = µ] ≥ 1− negl(λ). However, when punctured, the additional correctness
requirement varies for each variant. Specifically,

1. Standard ADE (sADE). If (AL = AL′)∧(DL∩DL′ = ∅) then Pr[ADE.Dec
(pp, skAL′

DL′ , ctAL
DL) = µ] ≥ 1 − negl(λ). Otherwise, Pr[ADE.Dec(pp, skAL′

DL′ ,
ctAL

DL) = µ] ≤ negl(λ).
2. Inclusive ADE (iADE). If ((AL′ ⊆ AL)∧(DL∩DL′ = ∅)) then Pr[ADE.Dec

(pp, skAL′

DL′ , ctAL
DL) = µ] ≥ 1−negl(λ). Otherwise, Pr[ADE.Dec(pp, skAL′

DL′ , ctAL
DL)

= µ] ≤ negl(λ).
3. k-threshold ADE (k-tADE). If ((|AL ∩AL′| ≥ k) ∧ (DL ∩DL′ = ∅)), then

Pr[ADE.Dec(pp, skAL′

DL′ , ctAL
DL) = µ] ≥ 1−negl(λ). Otherwise, Pr[ADE.Dec (pp,

skAL′

DL′ , ctAL
DL) = µ] ≤ negl(λ).

Note that, in iADE if the equality in AL′ ⊆ AL happens then we get sADE.
Security Notions of ADE Variants. Same as SE and DMIPE, one can define
security following the PrE framework. However, we only focus on the notion of
selective payload-hiding security for all ADE variants.
Definition 3. ADE is selective payload-hiding secure if the advantage of the ad-
versary playing in the ADEsel,ATK

payload,A game (in Figure 4) is negligible or Advpayload,ATKADE,A,sel

:= |Pr[b′ = b]− 1/2| = negl(λ).

7.2 Transforming sADE and iADE to SE

Let T (−), T (+) ⊂ Zq for q prime. Suppose that we have at most a positive tags
and d negative tags. i.e., |T (+)| = a and |T (−)| = d involved in the (s/i)ADE. For
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GAME ADEsel,ATK
payload,A(λ, a, d):

(where ATK ∈ {CPA, CCA1, CCA2})
1. (AL∗, DL∗)← A(1λ, 1a, 1d); 2. (pp, sk∅

∅)← ADE.Gen(1λ, 1a, 1d), AL′ ← ∅, DL′ ← ∅;
3. (µ∗

0 , µ
∗
1)← A

Punc(·,·),DQ(·,·)(pp); 4. b
$←− {0, 1}, ctAL∗

DL∗ ← ADE.Enc(pp, µ∗
b , AL∗, DL∗);

5. b′ ← APun(·,·),DQ(·)(pp, ctAL∗
DL∗ ). // NOTE: Not allowed DQ(AL′, DL′, ctAL∗

DL∗ )
with (AL′, DL′) ∈ SUCC(AL∗, DL∗);

6. If b′ = b, return 1. Otherwise, return 0.
Queried Oracles:
• Puncturing Oracle Pun((AL′, DL′)) (It is only allowed if (AL′, DL′) /∈

SUCC(AL∗, DL∗)): Run ADE.Ppun and ADE.Npun in any order using
sk∅

∅ to output skAL′
DL′ .

• Decryption Oracle DQ(AL′, DL′, ctAL
DL) (allowed only if ATK=CCA): Run

ADE.Ppun and ADE.Npun in any order using sk∅
∅ to get skAL′

DL′ . Finally,
return the output of ADE.Dec(pp, skAL′

DL′ , ctAL
DL, )..

Define SUCC(AL∗, DL∗) for ADE Variants:
• sADE: SUCC(AL∗, DL∗) := {(AL′, DL′) : ((AL′ = AL∗) ∧ (DL′ ∩DL∗ = ∅))} .
• k-tADE: SUCC(AL∗, DL∗) := {(AL′, DL′) : ((|AL′ ∩ AL∗| ≥ k) ∧ (DL′ ∩DL∗ = ∅))} .
• iADE: SUCC(AL∗, DL∗) := {(A′L,DL′) : ((AL′ ⊆ AL∗) ∧ (DL′ ∩DL∗ = ∅))} .

Fig. 4: Selective security for the ADE variants

(AL′1, DL′1), (AL
′
2, DL′2) ∈ T (+)×T (−), we say (AL′1, DL′1) ⊆ (AL′2, DL′2) if and

only if (AL′1 ⊆ AL′2)∧(DL′1 ⊆ DL′2). Now, for any pair (AL′, DL′) ⊆ T (+)×T (−)

punctured on decryption keys, we will try to encode it as a (possibly affine)
subspace V compatible with the SE syntax. On the other hand, for any pair
(AL,DL) of positive/negative ciphertext tags, we will try to encode it as a
vector v such that v ∈ V iff (AL′ ⊆ AL) ∧ (DL′ ∩ DL = ∅). We need the
following encodings EncodeInKey and EncodeInCipher to do that:

– Wkey ← EncodeInKey(AL′, DL′). Do the following: Associate the allow list
AL′ = {p1, · · · , pk} with a space beginning with (p1, · · · , pk)⊤, namely
WAL′ := {(p1, · · · , pk, xk+1, · · · , xa)

⊤ : xi ∈ Zq} ⊆ Za
q . Obviously, it is

easy to see that if AL′1 ⊆ AL′2 then WAL′
2
⊑ WAL′

1
. For the deny list

DL′, compute its complement DL′′ := T (−) \DL′ then associate DL′ with
WDL′ := span{vx : x ∈ DL′′}, where vx := (1, x, x2, · · · , x2d−1) is a Vander-
monde vector. Since adding more tags into DL′ is equivalent to removing
tags from DL′′, then given DL′1 ⊆ DL′2 we have WDL′′

2
⊑ WDL′′

1
. Out-

put the subspace Wkey which is the direct product of WAL′ and WDL′ :
Wkey := WAL′ ×WDL′ .

– xct ← EncodeInCipher(AL,DL). Do the following steps: For AL = {p1, · · · , pk},
associate AL with vector xAL := (p1, · · · , pk, 0, · · · , 0) ∈ Za

q . Clearly, if
AL′ ⊆ AL then xAL ∈WAL′ . For a list DL, encode it as xDL :=

∑
x∈DL vx ∈

Z2d
q , where vx := (1, x, x2, · · · , x2d−1). We claim that xDL /∈ WDL′ for any

DL∩DL′ ̸= ∅ (i.e., DL ⊈ DL′′ ). Output vector xct := (xAL,xDL) ∈ Za+2d
q .

We can see that xct ∈ Wkey iff (xAL,xDL) ∈ WAL′ ×WDL′ , which is equivalent
to (AL′ ⊆ AL) ∧ (DL′ ∩ DL = ∅). Therefore, the correctness of (s/i)ADE can
be straightforwardly obtained from the correctness of SE.
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One can easily see that puncturings of (s/i)ADE can be done through dele-
gation of SE.

8 Conclusions and Future Works

We revisit SE towards an efficient lattice-based SE. Along the way, we introduce
the new concept of DMIPE. We show that DMIPE is sufficient for building
an efficient lattice-based SE. The lattice-based SE is more efficient than some
previous lattice-based ones, which follow the generic SE construction from the
HIPE. Moreover, DMIPE and SE are equivalent in the sense that there are
“security notions-preserving” conversions between them.

Although our lattice-based DMIPE is proven to be selectively payload-hiding
secure in the standard model, the construction can enjoy selectively weak attribute-
hiding security. A possible technical idea might be from Agrawal et al. [3]. How-
ever, we leave this for future work. Furthermore, an adaptively secure DMIPE
construction in the lattice setting is a worthwhile pursuit in the future. Recall
that such construction for IPE has been done by [24]. Additionally, an attribute-
hiding secure DMIPE construction over lattices should also be interesting for
further research. Also, as mentioned before, we leave open the encodings for
transforming k-tADE to SE. We think that the idea of threshold gates in Ham-
burg’s thesis [23, Page 51] can help. However, the Doubly Spatial Encryption
(DSE) or another SE variant rather than the original SE (as defined in this
paper) might be needed.
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A Proofs
Proof of Theorem 2. The adversary A will take the role of the SE challenger
playing with S. Furthermore, the winning strategy of A is to simulate the envi-
ronment of the same security game for ΠSE for the SE adversary S to join. The
reduction is as follows.

Setup. After getting the public parameters pp from the DMIPE challenger
C, A hands pp to S.

Query 1. For any query receiving from S, A first uses the algorithm OCB
to convert the queries into the forms compatible with DMIPE. A then forwards
those to C. A responds S with what C sent back to A .

Challenge. The adversary S now submits its challenge (plaintexts and/or
attribute vectors). The adversary A then forwards these to C. Finally, A forwards
to S what C has returned.

Query 2. Same as Query 1 with the restriction mentioned in both DMIPE
and SE games.

Output. Finally, A will output b′ which S has guessed.
Analysis. Obviously, the SE game environment that A simulated for S is

perfect in the view of S. Therefore, the winning advantage of A is at least as
same as that of S. ⊓⊔

Proof of Lemma 5. We give such a construction of H, which in turn proves
the existence of the algorithm EvalFIP. Assume that v = (v1, · · · , vd) ∈ Zd

q .
For i ∈ [d], let Hi := G−1(viG) ∈ {0, 1}m×m. Note that, GHi = viG. Now

just let H :=

H1

...
Hd

 ∈ {0, 1}md×m then (x ⊗G)H =
∑d

i=1 xiG(G−1(viG)) =

∑d
i=1 xiviG = ⟨v,x⟩ ·G. Therefore, [B± x⊗G]H = BH± ⟨v,x⟩ ·G (mod q).

Furthermore, ∥H∥max ≤ 1 as H ∈ {0, 1}md×m. ⊓⊔
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Proof of Theorem 3. We have cvi
= s⊤(Bvi

−⟨vi,x⟩ ·G)+ e⊤inRHvi
= s⊤Bvi

+

e⊤inRHvi if and only if ⟨vi,x⟩ = 0. Therefore, if ⟨vi,x⟩ = 0 for all vi ∈ V⃗ , then

µ′ : = cout − [cin|cv1 | · · · |cvk
]W

= µ · ⌈q/2⌉+ eout + [e⊤in |e⊤inRHv1 | · · · |e⊤inRHvk
]W.

Therefore,

∥eout + [e⊤in |e⊤inRtHv1 | · · · |e⊤inRHvk
]W∥max

≤ ∥eout∥max + [e⊤in |e⊤inRHv1 | · · · |e⊤inRHvk
]W∥max

≤ ∥eout∥max + (m∥e⊤in∥max + kmmax
i∈[k]
∥e⊤inRHvi |∥max) · ∥W∥max

≤ ∥eout∥max + (m∥e⊤in∥max + km3∥e⊤in∥max · ∥R∥max ·max
i∈[k]
∥Hvi∥max) · ∥W∥max

≤ B + 12(mB + km3B) · σ0.

Here, the second and the third inequality are due to Lemma 1. The last inequality
is due to ∥e⊤in∥max ≤ B (as χ is B-bounded), ∥R∥max ≤ 1, ∥Hvi∥max ≤ 1 (Lemma
5) and ∥W∥max ≤ 12σ0 (by Item 5 of Lemma 4). By choosing parameters such
that B + 12(mB + km3B) · σ0 ≤ q/4, the theorem follows. ⊓⊔

Proof of Lemma 7. The lemma follows from the fact that sampling R∗ is indepen-
dent of the view of A. Hence, the challenger can sample R∗ at any time before
returning the challenge ciphertext without making the adversary notice. ⊓⊔

Proof of Lemma 8. This is simply due to the leftover hash lemma (Lemma 3). ⊓⊔

Proof of Lemma 9. This is simply due to (i) the pseudo-randomness of TrapGen
(see Item 1 of Lemma 4 ) and (ii) the distribution of secret keys generated using
the trapdoor G−1O(1) of G are the same as that generated using the trapdoor A−1σ0

.
However, we have to care about choosing the Gaussian parameter σ in Step 4 of
Hybrid 3. Namely, we should choose

σ = m · ∥R∗Hvi0
∥max · ω(

√
logm) ≤ m2d · ∥R∗∥max · ∥Hvi0

∥max · ω(
√
logm)

≤ m2d · ω(
√
logm). ⊓⊔

Proof of Lemma 10. Suppose that A can distinguish Hybrid 4 from Hybrid 3 with
a non-negligible advantage. From A, we construct a DLWE solver B as follows:

DLWE Instance. The DLWE solver B is required to solve an (n, 2m, q, χ)-
DLWE instance (F, c), with F $←− Zn×2m

q , and a vector c ∈ Z2m
q is either (i)

random or (ii) LWE samples, i.e., c⊤ = s⊤F + e⊤, for some random vector
s ∈ Zn

q and e← χ2m.
Initialize. Now B calls A to get the target attribute vector x∗ ∈ Zd

q upon
which A wants to challenge.

Setup. B now simulates the environment for A by parsing (cin, cout) ← c,
with cin, cout ∈ Zm

q , (ein, eout)← e, where ein, eout ← χm, and (A,U)← F, with
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A,U ∈ Zn×m
q . B generates the public parameters pp = (A,B,U) and master

secret key as in Hybrid 3 by sampling R∗ $←− {−1, 0, 1}m×md and then setting
B := AR∗ + x∗ ⊗G. After that, B sends pp to A.

Query. For all sorts of queries that A makes, B replies similarly to Hybrid 3.
Challenge. At this point, A challenges by submitting two messages µ∗0 and

µ∗1. In turn, B chooses a bit b
$←− {0, 1}, then computes the challenge ciphertext

ctx∗ = (c∗in, c∗mid, c∗out) by setting c∗in = cin, c∗⊤mid ← c∗⊤in R∗ and c∗out ← cout+µ∗b⌈
q
2⌉.

– If c is LWE samples, then c⊤in = s⊤A + e⊤in , c⊤out = s⊤U + e⊤out. Hence,
c∗⊤mid = c∗⊤in R∗ = s⊤AR∗ + e⊤inR∗ = s⊤(B − x∗ ⊗ G) + e⊤inR∗, which is
exactly the ones computed in Hybrid 3.

– If c is random then so are c∗in, c∗out. Hence, ct∗x∗ is exactly computed as in
Hybrid 4.

Output. B takes the A’s output as its decision for the DLWE problem. ⊓⊔


