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ABSTRACT
We introduce Zef, the first Byzantine-Fault Tolerant (BFT) protocol

to support payments in anonymous digital coins at arbitrary scale.

Zef follows the communication and security model of FastPay [5]:

both protocols are asynchronous, low-latency, linearly-scalable,

and powered by partially-trusted sharded authorities. Zef further

introduces opaque coins represented as off-chain certificates that

are bound to user accounts. In order to hide the face values of coins

when a payment operation consumes or creates them, Zef uses

random commitments and NIZK proofs. Created coins are made

unlinkable using the blind and randomizable threshold anonymous

credentials of Coconut [33]. To control storage costs associated

with coin replay prevention, Zef accounts are designed so that

data can be safely removed once an account is deactivated. Besides

the specifications and a detailed analysis of the protocol, we are

making available an open-source implementation of Zef in Rust. Our

extensive benchmarks on AWS confirm textbook linear scalability

and demonstrate a confirmation time under one second at nominal

capacity. Compared to existing anonymous payment systems based

on a blockchain [24, 40], this represents a latency speedup of three

orders of magnitude, with no theoretical limit on throughput.

1 INTRODUCTION
Anonymous payment systems have been an exciting research area

in cryptography since Chaum’s seminal work [13] on e-cash. Early

e-cash schemes [12, 13, 31] however required a centralized issuer

to operate, usually in the form of a trusted commercial bank, which

hampered their adoption. In recent years, the advent of networks

like Bitcoin has sparked renewed interest in privacy-preserving

decentralized payment systems. A number of protocols [7, 23, 24]

focusing on anonymous payments are now deployed as permission-

less blockchains.

Compared to traditional global payment infrastructures (aka.

RTGS systems [6]), however, decentralized anonymous payment

systems have not yet reached performance levels able to sustain

large-scale adoption. For instance, due to high computational costs,

only 2% of Zcash [40] transactions commonly take advantage of

the privacy features offered by the platform [1].

At the other end of the performance spectrum, the FastPay pro-

tocol [5] does not support anonymous payments but offers low-

latency transfers in the range of 100-200 ms and arbitrary (linear)

scalability. FastPay operates in the Byzantine-Fault-Tolerant (BFT)

model with an asynchronous network. This makes FastPay suitable

for a deployment as a high-performance sidechain of an existing
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blockchain. Remarkably, in order to scale linearly, FastPay is built

solely on consistent broadcast between validators—as opposed to

using a BFT consensus (see e.g., [10]).

In this work, we revisit the FastPay design with privacy, storage

costs, and extensibility in mind. In effect, we propose Zef, the first

linearly-scalable BFT protocol for anonymous payments with sub-

second confirmation time.

The Zef Protocol. Zef extends FastPay with digital coins that are

both opaque and unlinkable (in short anonymous). To this aim, Zef

combines several privacy-preserving techniques: (i) randomized

commitments and Non-Interactive Zero-Knowledge (NIZK) proofs

(e.g., [23]) provide opacity, that is, hide payment values; (ii) blind and

randomizable signatures (e.g., [33]) ensure unlinkability, meaning

that the relation between senders and receivers is hidden.

Technical Challenges. As FastPay, Zef achieves linear scalabil-
ity by relying only on consistent broadcast [10]. Implementing

anonymous coins in this setting poses three important challenges.

• Double spending: In the absence of a consensus protocol be-

tween validators, one cannot track the coins that have been

spent in a single replicated data-structure. When coins are con-

sumed to create new ones, wemust also ensure that intermediate

messages cannot be replayed to mint a different set of coins. We

address this challenge by tracking input coins in one spent list
per account and by introducing hash commitments to bind input

coins with their outputs.

• Storage costs: Maintaining a spent list for each account while

sustaining high throughput raises the question of storage costs.

Spent lists must be readily accessible thus cannot be stored in

cold storage. To make things worse, user accounts in FastPay

can never be deleted due to the risk of replay attacks. To address

this challenge, we design Zef accounts so that account data are

safely removable once an account is deactivated by its owner.

Concretely, this requires changing how user accounts are ad-

dressed in the system: instead of public keys chosen by users,

Zef must generate a unique (i.e. non-replayable) address when

a new account is created. However, in the absence of consensus,

address generation cannot rely on a replicated state.

• Implementation of privacy primitives:While creatingNIZK

proofs on a predicate involving blind signatures, value conser-

vation, and range constraints is theoretically possible, we wish

to avoid the corresponding engineering and computational com-

plexity in our implementation. To do so, we combine the Co-

conut scheme [33] and Bulletproofs [9] to implement digital

coins directly.



Contributions. (1) To support digital coins while controlling stor-
age costs, we revisit the design of FastPay accounts: we propose a

unified protocol for scalable accounts operations where accounts

are addressed by unique, non-replayable identifiers (UIDs) and sup-

port a variety of operations such as account creation, deactivation,

transparent payments, and ownership transfer. Importantly, all

account operations in Zef, including generation of system-wide

unique identifiers, are linearly scalable, consensus-free, and only re-

quire elementary cryptography (hashing and signing). (2) Building

on these new foundations, we describe and analyze the first asyn-

chronous BFT protocol for opaque, unlinkable payments with linear

(aka “horizontal") scalability and sub-second latency. (3) Finally, we

are making available an open-source prototype implementation of

Zef in Rust and provide extensive benchmarks to evaluate both the

scalability and the latency of anonymous payments.

2 BACKGROUND AND RELATEDWORK
FastPay. FastPay [5] was recently proposed as a sidechain protocol
for low-latency, high-throughput payments in the Byzantine-Fault

Tolerant model with asynchronous communication.

• Sidechain protocol: FastPay is primarily meant as a scalability

solution on top of an existing blockchain with smart contracts

(e.g. Ethereum [37]).

• Byzantine-Fault Tolerance: 𝑁 = 3𝑓 +1 replicas called author-
ities are designated to operate the system and process the clients’

requests. A fixed set of at most 𝑓 authorities may be malicious
(i.e. deviate from the protocol).

• Low latency: Authorities do not interact with each other (e.g.

running a mempool or a consensus protocol). Client operations

succeed predictably after a limited number of client/authorities

round trips. Notably, in FastPay, a single round-trip with author-

ities suffices to both initiate a payment and obtain a certificate

proving that the transfer is final.

• Scalability: Each authority operates an arbitrary number of

logical shards, across many physical hosts. By design, each client

request is processed by a single shard within each authority.

Within an authority, communication between shards is minimal

and never blocks a client request.

• Asynchronous communication: Malicious nodes may col-

lude with the network to prioritize or delay certain messages.

Progress is guaranteed when messages eventually arrive.

In a nutshell, the state of the Fastpay accounts is replicated on

a set of authorities. Each account contains a public key that can

authorize payments out, a sequence number and a balance. Account

owners authorize payments by signing them with their account

key and including the recipient amount and payment value. An

authorized payment is sent to all authorities, who countersign it if

it contains the next sequence number; there are enough funds; and,

it is the first for this account and sequence number. A large enough

number (to achieve quorum intersection) of signatures constitutes

a certificate for the payment. Obtaining a certificate ensures the

payment can eventually be executed (finality). Anyone may submit

the certificate to the authorities that check it and update the sender

account and recipient balance.

FastPay does not rely on State-Machine Replication (SMR) in

the sense that it does not require authorities to agree on a single

global state—as one could expect from a traditional sidechain. Doing

so, FastPay avoids the end-to-end latency cost of gathering, dis-

seminating, and executing large blocks of transactions, a de-facto

requirement for high throughput with SMR solutions [14, 19, 34, 38].

Despite the benefits listed above, until now, the FastPay protocol

has been limited to transparent payments, that is, without any pri-

vacy guarantees. In fact, to ensure fund availability in worst-case

scenarios, FastPay requires all past money transfers to be publicly

available in clear text. This contrasts negatively with traditional

retail payments (e.g. credit cards) where individual transactions

remain within a private banking network. Another technical limi-

tation of FastPay is that unused accounts cannot be deleted. In a

privacy-sensitive setting where users would never re-use the same

account twice, this means that storage cost of authorities would

grow linearly with the number of past transactions.

Existing private payment schemes. Compared to payment chan-

nels (e.g. [29]), safety in FastPay and Zef does not require any upper

bound on network delays and clients to stay connected (aka. a syn-
chrony assumption [17]). Furthermore, the reliability of the Lighting

Network [29] depends on the existence of pairwise channels, with

the success of a payment between two random nodes being at most

70%[16]. In contrast, coins delegated to a FastPay instance are al-

ways immediately transferable to any recipient that possesses a

public key (resp. an account identifier in Zef).

Several privacy-preserving payment systems have been proposed

in the past, each based on a blockchain consensus and therefore

not linearly scalable: Zcash, based on Zerocash [7], uses a zero-

knowledge proof of set inclusion which is expensive to compute

instead of an efficient threshold issuance credential scheme. As a

result most transactions are unshielded, leading to a degradation

in privacy [20]. Monero [24] uses ring signatures to ensure transac-

tions benefit from a small anonymity set. However, intersections

attacks and other transaction tracing heuristics are applicable. This

results in an uneven degree of privacy [25].

3 OVERVIEW
We present Zef, an evolution of FastPay [5] designed to support

high-volume, low-latency payments, both anonymous and trans-

parent, on top of a primary blockchain. To do so, Zef introduces a

new notion of accounts, indexed by a unique identifier (UID) so

that deactivated accounts can have their data safely removed.

Authorities and quorums. We assume a primary blockchain

which supports smart contracts (e.g., Ethereum [37]). In a typi-

cal deployment, we expect Zef to be “pegged” to the primary chain

through a smart contract, thereby allowing transfers of assets in

either direction [3]. The Zef smart contract holds the reserve of as-

sets (e.g., coins) and delegates their management to a set of external

nodes called authorities. For brevity, in the rest of this paper, we fo-

cus on the Zef system and omit the description of transfers between

the primary blockchain and Zef. The mechanics of such transfers

is similar to "funding" and "redeeming" operations in FastPay [5].

Zef is meant to be Byzantine-Fault Tolerant (BFT), that is, tolerate
a subset of authorities that deviate arbitrarily from the protocol. We

assume an asynchronous network that may collude with malicious

authorities to deliver messages in arbitrary order. The protocol

makes progress when message are eventually delivered.
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We assume that authorities have shared knowledge of each

other’s signing public keys. Each authority is also assigned a voting
power, which indicates how much control the authority has within

the system. 𝑁 denotes the total voting power, while 𝑓 denotes the

power held by adversarial authorities. In the simplest setting where

each authority has a voting power of 1 unit, 𝑁 denotes the total

number of authorities and 𝑓 denotes the number of adversarial au-

thorities tolerated by the system. In general, unequal voting powers

may be used to reflect different stakes locked by the authorities

on the main blockchain. Similar to standard protocols, we require

0 ≤ 𝑓 < 𝑁
3
. The system parameters 𝑁 and 𝑓 , as well as the public

key and voting power of each authority are included in the Zef

smart contract during setup.

We use the word quorum to refer to a set of signatures by author-

ities with a combined voting power of at least 𝑁 − 𝑓 . An important

property of quorums, called quorum intersection, is that for any two
quorums, there exists an honest authority 𝛼 that is present in both.

Cryptographic primitives. We assume a collision-resistant hash

function, noted hash(·), as well as a secure public-key signature

scheme. Informally, a random commitment 𝑐𝑚 = com𝑟 (𝑣) is an
expression that provides a commitment over the value 𝑣 (in par-

ticular, is collision-resistant) without revealing any information

on 𝑣 , as long as the random seed 𝑟 is kept secret. A signing scheme

supports blinding and unblinding operations iff (i) a signature of

a blinded message 𝐵 = blind(𝑀,𝑢) with blinding factor 𝑢 can be

turned into a valid signature of 𝑀 by computing the expression

unblind(𝐵,𝑢), and (ii) provided that 𝑢 is a secret random value, an

attacker observing 𝐵 learns no information on𝑀 .

Blind signatures will be used for anonymous coins in Section 5 to-

gether with an abstract notion of Non-Interactive Zero-Knowledge

(NIZK) proof of knowledge. We will also further assume that a pub-

lic key 𝑝𝑘all is set up between authorities in such a way that any

quorum of signatures on𝑀 may be aggregated into a single, secure

threshold signature of𝑀 , verifiable with 𝑝𝑘all. (See Appendix B for

a concrete instantiation.)

Clients, requests, certificates, and coins. Clients to the Zef pro-
tocol are assumed to know the public configuration of the system

(see above) including networking addresses of authorities. Network

interactions are always initiated by a client request. We distin-

guish account-based requests, i.e., those targeting a specific account,

noted 𝑅, from free requests 𝑅∗. In what follows, all requests are

account-based unless mentioned otherwise. Free requests will be

used for coin creation in Section 5.

As illustrated in Figure 1, clients may initiate a particular op-
eration 𝑂 on an account that they own as follows: (i) broadcast

a request 𝑅 containing the operation 𝑂 and authenticated by the

client’s signature to the appropriate logical shard of each author-

ity𝛼 ( 1 ); and (ii) wait for a quorum of responses, that is, sufficiently

many answers so that the combined voting power of responding

authorities reaches 𝑁 − 𝑓 .

An authority responds to a valid request 𝑅 by sending back a sig-

nature on 𝑅, called a vote, as acknowledgment ( 3 ). After receiving

votes from a quorum of authorities, a client forms a certificate 𝐶 ,
that is, a request 𝑅 together with a quorum of signatures on 𝑅. In

the rest of this paper, we identify certificates on a same message𝑀

Account
Owner

Recipients
(if any)

Zef Committee

1 Request 𝑅

3 Vote on 𝑅

4 Confirm cert[𝑅]

4 Confirm cert[𝑅]

2 Validate 𝑅

5 Execute 𝑅

4 Show cert[𝑅]

Figure 1: Request and execution of an account operation

and simply write 𝐶 = cert[𝑀] when 𝐶 is a certificate on 𝑀 . De-

pending on the nature of 𝑀 (e.g., anonymous coins in Section 5)

and implementation choices, the quorum of signatures in𝐶 may be

aggregated into a single threshold signature 𝜎 .

In addition to an operation 𝑂 , every request 𝑅 contains a se-
quence number to distinguish successive requests on the same ac-

count. When a certificate 𝐶 = cert[𝑅] with the expected sequence

number is received as a confirmation ( 4 ), this triggers the one-time

execution of 𝑂 ( 5 ) and allows the user account behind 𝑅 to move

on to the next sequence number. A confirmation certificate 𝐶 also

acts as a proof of finality, that is, a verifiable document proving that

the transaction (e.g., a payment) can be driven to success. In the

case of payments, recipients should obtain and verify the certificate

themselves before accepting the payment.

Finally, a third type of certificates associates a coin to an account

identifier 𝑖𝑑 . Section 5 introduces anonymous coins of the form

𝐴 = cert[(𝑖𝑑, 𝑐𝑚)] for some appropriate commitment 𝑐𝑚 on the

value 𝑣 of the coin.

Accounts and unique identifiers. Zef accounts are replicated

across all authorities. For a given authority 𝛼 , we use the notation

𝑋 (𝛼) to denote the current view of 𝛼 regarding some replicated

data 𝑋 . The features of Zef accounts can be summarized as follows:

• AZef account is addressed by an unique identifier (UID or simply

identifier for short) designed to be non-replayable. We use 𝑖𝑑 ,

𝑖𝑑1, . . . to denote account identifiers. In practice, we expect users

to publish the identifiers of some of their accounts, e.g. used

for fund raising, and to keep other account identifiers secret to

conceal their own payment activity—such as the timing and the

number of opaque coins that they spend.

• Every operation executed on an account 𝑖𝑑 follows from a cer-

tified request 𝐶 = cert[𝑅] that contains both 𝑖𝑑 and a sequence
number 𝑛. Validators must track the current sequence number

of each account 𝑖𝑑 , so that operations on 𝑖𝑑 are validated and

executed in the natural order of sequence numbers 𝑛 = 0, 1, 2 . . .

Under BFT assumption, this ensures that all validators eventu-

ally execute the same sequence of operations on each account.

• To create a new account identified by 𝑖𝑑 ′, the owner of an exist-

ing parent account 𝑖𝑑 must execute an account-creation opera-

tion. To ensure uniqueness, the new identifier is computed as

the concatenation 𝑖𝑑 ′ = 𝑖𝑑 :: 𝑛 of the parent address 𝑖𝑑 and the

current sequence number 𝑛 of the parent account.
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• Every account includes an optional public key pk𝑖𝑑 (𝛼) to au-

thenticate their owner, if any. When pk𝑖𝑑 (𝛼) = ⊥, the account is
said to be inactive. Zef makes it possible to safely and verifiably

transfer the control of an account to another user by executing

an operation to change the key pk𝑖𝑑 (𝛼).
• In addition to the public balance, noted balance𝑖𝑑 (𝛼), the owner
of an account 𝑖𝑑 may possess a number of opaque coins 𝐴 =

cert[(𝑖𝑑, 𝑐𝑚)] cryptographically linked to the account. The face

value of a coin is arbitrary and secretly encoded in 𝑐𝑚. Coins

that are consumed (i.e. spent) are tracked in a spent list for each
account—concretely, the protocol records 𝑐𝑚 in a set spent𝑖𝑑 (𝛼).
• An account can be deactivated by setting pk𝑖𝑑 (𝛼) = ⊥. This
operation is final. Because identifiers 𝑖𝑑 are never reused for

new accounts, deactivated accounts may be safely deleted by

authorities to reclaim storage (see discussion in Section 4).

Sharding and cross-shard queries. In order to scale the process-

ing of client requests, each Zef authority 𝛼 may be physically di-

vided in an arbitrary number of shards. Every request 𝑅 sent to

an account 𝑖𝑑 in 𝛼 is assigned a fixed shard as a public function

of 𝑖𝑑 and 𝛼 . If a request requires a modification of another target
account 𝑖𝑑 ′ (for instance, increasing its balance as part of a payment

operation), the shard processing the confirmation of 𝑅 in 𝛼 must

issue an internal cross-shard query to the shard of 𝑖𝑑 ′. Cross-shard
queries in Zef are asynchronous messages within each authority.

They are assumed to be perfectly reliable in the sense that are they

are never dropped, duplicated, or tampered with.

Transfer of anonymous coins. In Zef, anonymous coins are both

(i) unlinkable and (ii) opaque in the sense that during an anonymous

payment: (i) authorities cannot see or tracks users across coins

being created; (ii) authorities cannot see the values behind the

commitments 𝑐𝑚 of the coin being consumed or created.

Specifically, as illustrated in Figure 2, the owner of an account

𝑖𝑑 may spend an anonymous coin 𝐴𝑖𝑛 = cert[(𝑖𝑑, 𝑐𝑚𝑖𝑛)] linked
to 𝑖𝑑 and create new anonymous coins 𝐴𝑜𝑢𝑡

𝑗
as follows, using two

communication round-trips with validators ( 2 – 7 ):

• Obtain the receiving accounts 𝑖𝑑𝑜𝑢𝑡𝑗 and desired coin values 𝑣𝑜𝑢𝑡
𝑗

from recipients ( 1 ).

• Compute fresh random commitments 𝑐𝑚𝑜𝑢𝑡
𝑗

for 𝑣𝑜𝑢𝑡
𝑗

and fresh

blinded messages 𝐵 𝑗 = blind((𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑐𝑚𝑜𝑢𝑡
𝑗
), 𝑢 𝑗 ).

• Using the knowledge of the seed 𝑟 𝑖𝑛 and coin value 𝑣𝑖𝑛 behind

the random commitment 𝑐𝑚𝑖𝑛
, construct an NIZK proof 𝜋 that

the 𝐵 𝑗 are well-formed—in particular, that the values 𝑣𝑜𝑢𝑡
𝑗

are

non-negative and that

∑
𝑗 𝑣

𝑜𝑢𝑡
𝑗

= 𝑣𝑖𝑛 .

• Broadcast a request 𝑅 to spend the coin 𝐴𝑖𝑛
from the account

𝑖𝑑 , including the hash of the proof 𝜋 and the public values 𝑐𝑚𝑖𝑛

and 𝐵 𝑗 ( 2 ).

• Aggregate the responses from a quorum of authorities into a

certificate 𝐶 = cert[𝑅].
• Broadcast a suitable request 𝑅∗ containing the proof 𝜋 together

with 𝐶 , the coins 𝐴𝑖𝑛
, and the blinded messages 𝐵 𝑗 ( 5 ).

• Obtain signature shares from a quorum of authorities for each

𝐵 𝑗 ( 7 ), then unblind and aggregate the signatures shares to

form new coins 𝐴𝑜𝑢𝑡
𝑗

= cert[(𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑐𝑚𝑜𝑢𝑡
𝑗
)] ( 8 ).

Sender

Recipients

Zef Committee2 Coin spending request 𝑅

4 Vote on 𝑅

5 Coin creation request 𝑅∗

7 Blinded share

3 Validate 𝑅

6 Verify cert[𝑅], input
coin certificates, and

ZK-proof.

8 Unblind

& aggregate

shares

9 New coin

cert[(𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑐𝑚𝑜𝑢𝑡
𝑗
)]

1 𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑣𝑜𝑢𝑡
𝑗

Figure 2: An anonymous payment

Broker

New account
owner

Zef Committee

2 Request 𝑅

4 Vote on 𝑅

5 Confirm cert[𝑅]

5 Confirm cert[𝑅]

3 Validate 𝑅

6 Create new account

5 cert[𝑅]

1 Public key 𝑝𝑘

Figure 3: Request and creation of a new account

• Communicate each new coin 𝐴𝑜𝑢𝑡
𝑗

, as well as its commitment

seed and value, privately to the owner of 𝑖𝑑𝑜𝑢𝑡𝑗 ( 9 ).

Section 5 further elaborates on the creation of coins from public

balances balance𝑖𝑑 (𝛼) and supporting multiple source accounts.

The Zef protocol also supports the converse operation consisting

in transferring private coins into a public balance. Appendix B pro-

vides more details on an efficient cryptographic instantiation of

blind signatures andNIZK proofs using the Coconut scheme [30, 33].

For comparison, we also describe a simplified protocol for transpar-

ent coins (i.e., without blinding and ZK-proofs) in Appendix A.

Bootstrapping account generation. In Zef, creating a new ac-

count requires interacting with the owner of an existing parent
account. New identifiers are derived by concatenating the identi-

fier of such a parent account with its current sequence number.

This derivation ensures that identifiers are unique—and ultimately

accounts are removable—while avoiding the overhead and the com-

plexity of distributed random coin generation (see e.g., [11]).

While Zef lets any user derive new identifiers from an existing

account that they possess, it is important that users can also obtain

fresh identifiers in secret. Indeed, we expect users to regularly

transfer the funds that they receive on public accounts into secret

accounts in order to mitigate residual public information such as

the timing and the number of coins spent from an account.

Therefore, for privacy reasons, we expect certain entities to

specialize in creating fresh identifiers on behalf of other users.

We call them brokers. The role of brokers may also be assumed by

authorities or delegated to third parties. In what follows, we assume

that clients have a conventional way to pick an available broker

and regularly create many identifiers for themselves ahead of time.
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The resulting interactions are summarized in Figure 3. To protect

their identity, clients may also wish to interact with brokers and

Zef privately, say, using Tor [35] or Nym[27] ( 1 and 5 ).

The fact that the role of broker can be delegated without risking

account safety is an important property of the Zef protocol dis-

cussed in Section 4. The solution relies on the notion of certificate

for account operations—here used to prove finality of account cre-

ation, initialized with an authentication key chosen by the client.

In practical deployments, we expect authorities to charge a fee for

account creation and brokers to forward this cost to their users

plus a small margin. Discussing the appropriate pricing and means

of payment is out of scope of this paper.

Finally, a Zef system must be set up with a number of root ac-
counts (i.e., account without a parent). In the rest of the paper,

we assume that the initial configuration of a Zef system always

includes one root account 𝑖𝑑𝛼 per authority 𝛼 .

Transfers of account ownership. An interesting benefit of using
unique identifiers as account addresses is that the authentication

key pk𝑖𝑑 (𝛼) can be changed. Importantly, the change of key can be

certified to a new owner of the account. This unlocks a number of

applications:

• Implicit transfer of coins. Anonymous coins (see Section 5)

are defined as certificates of the form 𝐴 = cert[(𝑖𝑑, 𝑐𝑚)] for
some commitment value 𝑐𝑚. Spending 𝐴 to create new coins is

an unlinkable operation but it reveals that a coin is spent from

the account 𝑖𝑑 . Account transfers provide an alternative way to

transfer anonymous coins that is linkable but delays revealing

the existence of coins.

• Generalized authentication.Account transfers opens the door
to replacing pk𝑖𝑑 (𝛼) with a variety of methods to authenticate

a request made by the owner of an account. Common methods

include multi-signatures, threshold signatures, and NIZK proofs

of knowledge (see e.g. [26, 40]).

• Lower account-generation latency. While transferring own-

ership of an account 𝑖𝑑 requires the same number of messages

as creating a new account, we will see in Section 4 that it only

involves executing an operation within the shard of 𝑖𝑑 itself (i.e.,

no cross-shard requests are used). Hence, brokers who wish to

provide new accounts with the lowest latency may create a pool

of accounts in advance then re-assign UIDs to clients as needed.

4 ACCOUNT MANAGEMENT PROTOCOL
We now describe the details of the Zef protocol when it comes

to account operations. An upshot of our formalism is that it also

naturally generalizes the FastPay transfer protocol [5]. Notably, in

Zef, the one-time effect of a transaction consists in one of several

possible operations, instead of transparent payments only. Addi-

tionally, in order to support deletion of accounts, Zef must handle

the fact that a recipient account might be deleted concurrently with

a transfer.

Unique identifiers. A unique identifier (UID or simply identifier)
is a non-empty sequence of numbers written as 𝑖𝑑 = [𝑛1, . . . , 𝑛𝑘 ]
for some 1 ≤ 𝑘 ≤ 𝑘max. We use :: to denote the concatenation of one

number at the end of a sequence: [𝑛1, . . . , 𝑛𝑘+1] = [𝑛1, . . . , 𝑛𝑘 ] ::

𝑛𝑘+1 (𝑘 < 𝑘MAX). In this example, we say that 𝑖𝑑 = [𝑛1, . . . , 𝑛𝑘 ] is

the parent of 𝑖𝑑 :: 𝑛𝑘+1. We assume that every authority 𝛼 possesses

at least one root identifier of length one: 𝑖𝑑𝛼 = [𝑛𝛼 ] such that the

corresponding account is controlled by 𝛼 at the initialization of the

system (i.e., for every honest 𝛼 ′, pk𝑖𝑑𝛼 (𝛼 ′) = 𝛼).

Protocol messages. Amessage ⟨Tag, arg
1
, . . . , arg𝑛⟩ is a sequence

of values starting with a distinct marker Tag and meant to be sent

over the network. In the remainder of the paper, we use capital-

ized names to distinguish message markers from mathematical

functions (e.g. hash) or data fields (e.g. pk𝑖𝑑 (𝛼)), and simply write

Tag(arg
1
, . . . , arg𝑛) for a message.

Account operations. An operation is a message 𝑂 meant to be

executed once on a main account 𝑖𝑑 , with possible effects on an

optional recipient account 𝑖𝑑 ′. The operations supported by Zef

include the following messages:

• OpenAccount(𝑖𝑑 ′, 𝑝𝑘 ′) to activate a new account with a fresh

identifier 𝑖𝑑 ′ and public key 𝑝𝑘 ′—possibly on behalf of another

user who owns 𝑝𝑘 ′;
• Transfer(𝑖𝑑 ′,𝑉 ) to transfer an amount of value 𝑉 transparently

to an account 𝑖𝑑 ′;
• ChangeKey(𝑝𝑘 ′) to transfer the ownership of an account;

• CloseAccount to deactivate the account 𝑖𝑑 .

In Section 5, we introduce two additional account operations Spend
and SpendAndTransfer.

Account states. Every authority 𝛼 stores a map that contains the

states of the accounts present in 𝛼 , indexed by their identifiers. The

state of the account 𝑖𝑑 includes the following data:

• An optional public key pk𝑖𝑑 (𝛼) registered to control 𝑖𝑑 , as seen

before.

• A transparent (i.e., public) amount of value, noted balance𝑖𝑑 (𝛼)
(initially equal to balance𝑖𝑑 (init), where balance𝑖𝑑 (init) is 0 ex-

cept for some special accounts created at the beginning).

• An integer value, written next_sequence𝑖𝑑 (𝛼), tracking the ex-

pected sequence number for the next operation on 𝑖𝑑 . (This

value starts at 0.)

• pending𝑖𝑑 (𝛼), an optional request indicating that an operation

on 𝑖𝑑 is pending confirmation (the initial value being ⊥).
• A list of certificates, written confirmed𝑖𝑑 (𝛼), tracking all the

certificates𝐶𝑛 that have been confirmed by 𝛼 for requests issued

from the account 𝑖𝑑 . One such certificate is available for each

sequence number 𝑛 (0 ≤ 𝑛 < next_sequence𝑖𝑑 (𝛼)).
• A second list of certificates, written received𝑖𝑑 (𝛼), tracking all
the certificates that have been confirmed by 𝛼 and involving 𝑖𝑑

as a recipient account.

In Section 5, we will also assume a set of random commitments to

track spent coins, noted spent𝑖𝑑 (𝛼).

Operation safety and execution. Importantly, account opera-

tions may require some validation before being accepted. We say

that an operation 𝑂 is safe for the account 𝑖𝑑 in 𝛼 if one of the

following conditions holds:

• 𝑂 = OpenAccount(𝑖𝑑 ′, 𝑝𝑘 ′) and 𝑖𝑑 ′ = 𝑖𝑑 :: next_sequence𝑖𝑑 (𝛼);
• 𝑂 = Transfer(𝑖𝑑 ′,𝑉 ) and 0 ≤ 𝑉 ≤ balance𝑖𝑑 (𝛼);
• 𝑂 = ChangeKey(𝑝𝑘 ′) or 𝑂 = CloseAccount (no additional veri-

fication).
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Algorithm 1 Account operations (internal functions)

1: function Init(𝑖𝑑) ⊲ Set up a new account if necessary

2: if 𝑖𝑑 ∉ accounts then
3: pk𝑖𝑑 ← ⊥
4: next_sequence𝑖𝑑 ← 0

5: balance𝑖𝑑 ← balance𝑖𝑑 (init) ⊲ 0 except for special accounts

6: confirmed𝑖𝑑 ← [ ]
7: received𝑖𝑑 ← [ ]
8: spent𝑖𝑑 ← { }

9: function ValidateOperation(𝑖𝑑 , 𝑛,𝑂)

10: switch𝑂 do
11: case OpenAccount(𝑖𝑑′, 𝑝𝑘′) :
12: ensure 𝑖𝑑′ = 𝑖𝑑 :: next_sequence𝑖𝑑

13: case Transfer(𝑖𝑑′,𝑉 ) :
14: ensure 0 < 𝑉 ≤ balance𝑖𝑑

15: case ChangeKey(𝑝𝑘′) | CloseAccount:
16: pass

17: case Spend(𝑉 , 𝑐𝑚,𝜎,ℎ) :
18: ensure 0 ≤ 𝑉 ≤ balance𝑖𝑑

19: ensure 𝑐𝑚 ∉ spent𝑖𝑑

20: ensure 𝜎 is a valid coin signature for (𝑖𝑑, 𝑐𝑚)
21: case SpendAndTransfer(𝑖𝑑′, 𝜎, 𝑣, 𝑟 ) :
22: let 𝑐𝑚 = com𝑟 (𝑣)
23: ensure 𝑐𝑚 ∉ spent𝑖𝑑

24: ensure 𝜎 is a valid coin signature for (𝑖𝑑, 𝑐𝑚)
25: return true ⊲𝑂 is valid.

26: function ExecuteOperation(𝑖𝑑 ,𝑂 ,𝐶)

27: switch𝑂 do
28: case OpenAccount(𝑖𝑑′, 𝑝𝑘′) :
29: do asynchronously ⊲ Cross-shard request to 𝑖𝑑′

30: run Init(𝑖𝑑′)
31: pk𝑖𝑑

′ ← 𝑝𝑘′ ⊲ Activate authentication key

32: received𝑖𝑑
′ ← received𝑖𝑑

′
:: 𝐶 ⊲ Update receiver’s log

33: case Transfer(𝑖𝑑′,𝑉 ) :
34: balance𝑖𝑑 ← balance𝑖𝑑 −𝑉 ⊲ Update sender’s balance

35: do asynchronously ⊲ Cross-shard request to 𝑖𝑑′

36: run Init(𝑖𝑑′)
37: balance𝑖𝑑

′ ← balance𝑖𝑑
′ +𝑉 ⊲ Receiver’s balance

38: received𝑖𝑑
′ ← received𝑖𝑑

′
:: 𝐶

39: case ChangeKey(𝑝𝑘′) :
40: pk𝑖𝑑 ← 𝑝𝑘′ ⊲ Update authentication key

41: case CloseAccount:
42: pk𝑖𝑑 ← ⊥ ⊲ Make account inactive

43: case Spend(𝑉 , 𝑐𝑚,𝜎,ℎ) :
44: balance𝑖𝑑 ← balance𝑖𝑑 −𝑉 ⊲ Update balance

45: spent𝑖𝑑 ← spent𝑖𝑑 ∪ {𝑐𝑚} ⊲ Mark coin as spent

46: case SpendAndTransfer(𝑖𝑑′, 𝜎, 𝑣, 𝑟 ) :
47: let 𝑐𝑚 = com𝑟 (𝑣)
48: spent𝑖𝑑 ← spent𝑖𝑑 ∪ {𝑐𝑚} ⊲ Mark coin as spent

49: do asynchronously ⊲ Cross-shard request to 𝑖𝑑′

50: run Init(𝑖𝑑′, ⊥)
51: balance𝑖𝑑

′ ← balance𝑖𝑑
′ + 𝑣

52: received𝑖𝑑
′ ← received𝑖𝑑

′
:: 𝐶

When an operation 𝑂 for an account 𝑖𝑑 is confirmed (i.e. a suit-

able certificate𝐶 is received), we expect every authority 𝛼 to execute
the operation 𝑂 in following way:

• if𝑂 = OpenAccount(𝑖𝑑 ′, 𝑝𝑘 ′), then the authority 𝛼 uses a cross-

shard request to set pk𝑖𝑑
′
(𝛼) = 𝑝𝑘 ′; if necessary, a new account

𝑖𝑑 ′ is created first;

• if 𝑂 = ChangeKey(𝑝𝑘 ′), then the authority sets pk𝑖𝑑 (𝛼) = 𝑝𝑘 ′;
• if 𝑂 = Transfer(𝑖𝑑 ′,𝑉 ), the authority updates balance𝑖𝑑 (𝛼)
by subtracting 𝑉 and uses a cross-shard request to add 𝑉 to

balance𝑖𝑑
′
(𝛼); if necessary, the account 𝑖𝑑 ′ is created first using

an empty public key pk𝑖𝑑
′
(𝛼) = ⊥;

• if𝑂 = CloseAccount, then the authority deactivates the account

by setting pk𝑖𝑑 (𝛼) = ⊥.
These definitions translate to the pseudo-code in Algorithm 1.

The pseudo-code also includes the logging of certificates with

confirmed𝑖𝑑 (𝛼) and received𝑖𝑑 (𝛼) as well as additional operations
Spend and SpendAndTransfer that will be described in Section 5.

Account management protocol. We can now describe the pro-

tocol steps for executing an operation 𝑂 on an account 𝑖𝑑 :

(1) A client knowing the signing key of 𝑖𝑑 and the next sequence

number 𝑛 signs a request 𝑅 = Execute(𝑖𝑑, 𝑛,𝑂) and broadcasts it
to every authority in parallel, waiting for a quorum of responses.

(2) Upon receiving an authenticated request 𝑅 = Execute(𝑖𝑑, 𝑛,𝑂),
an authority 𝛼 must verify that 𝑅 is authenticated for the current

account key pk𝑖𝑑 (𝛼), that next_sequence𝑖𝑑 (𝛼) = 𝑛, that the

operation𝑂 is safe (see above), and that pending𝑖𝑑 (𝛼) ∈ {⊥, 𝑅}.
Then, it sets pending𝑖𝑑 (𝛼) = 𝑅 and returns a signature on 𝑅 to

the client.

(3) The client aggregates signatures into a confirmation certificate

𝐶 = cert[𝑅].
(4) The client (or another stakeholder) broadcasts Confirm(𝐶).
(5) Upon receiving Confirm(𝐶) for a valid certificate 𝐶 of value

𝑅 = Execute(𝑖𝑑, 𝑛,𝑂) when 𝑂 is an operation, each authority

𝛼 verifies that pk𝑖𝑑 (𝛼) ≠ ⊥, next_sequence𝑖𝑑 (𝛼) = 𝑛, then

increments next_sequence𝑖𝑑 (𝛼), sets pending𝑖𝑑 (𝛼) = ⊥, adds
𝐶 to confirmed𝑖𝑑 (𝛼), and finally executes the operation 𝑂 once

(see above).

The corresponding pseudo-code for the service provided by each

authority 𝛼 is summarized in Algorithm 2. Importantly, inactive ac-
counts, i.e., those accounts 𝑖𝑑 satisfying pk𝑖𝑑 (𝛼) = ⊥, cannot accept
any request (step (2)) or execute any confirmed operation (step (5)).

Note that step (1) above implicitly assumes that all authorities are

up-to-date with all past certificates. In practice, a client may need

to provide each authority with missing confirmation certificates for

past sequence numbers. (See also “Liveness considerations" below.)

Agreement on account operations. When it comes to the oper-

ations executed from one account 𝑖𝑑 , the Zef protocol guarantees

that authorities execute the same sequence of operations in the

same order. Indeed, the quorum intersection property entails that

two certificates 𝐶 and 𝐶 ′ must contain a vote by a same honest

authority 𝛼 . If they concern the same account 𝑖𝑑 and sequence

number 𝑛, the verification by 𝛼 in step (2) above and the increment

of next_sequence𝑖𝑑 (𝛼) in step (5) implies that 𝐶 and 𝐶 ′ certifies
the same (safe) request 𝑅.

It is easy to see by induction on the length of 𝑖𝑑 = [𝑛1, . . . , 𝑛𝑘 ]
that each authority can only execute certified operations for a

given 𝑖𝑑 by following the natural sequence of sequence numbers
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Algorithm 2 Account service (message handlers)

1: function HandleReqest(auth[𝑅 ])
2: let Execute(𝑖𝑑, 𝑛,𝑂) = 𝑅

3: ensure pk𝑖𝑑 ≠ ⊥ ⊲ The account must be active

4: verify that auth[𝑅 ] is valid for pk𝑖𝑑 ⊲ Check authentication

5: if pending𝑖𝑑 ≠ 𝑅 then
6: ensure pending𝑖𝑑 = ⊥
7: ensure next_sequence𝑖𝑑 = 𝑛

8: ensure ValidateOperation(𝑖𝑑 , 𝑛,𝑂)

9: pending𝑖𝑑 ← 𝑅 ⊲ Lock the account on 𝑅

10: return Vote(𝑅) ⊲ Success: return a signature of the request

11: function HandleConfirmation(𝐶)

12: verify that𝐶 = cert[𝑅 ] is valid
13: let Execute(𝑖𝑑, 𝑛,𝑂) = 𝑅

14: ensure pk𝑖𝑑 ≠ ⊥ ⊲ Make sure the account is active

15: if next_sequence𝑖𝑑 = 𝑛 then
16: run ExecuteOperation(𝑖𝑑 ,𝑂 ,𝐶)

17: next_sequence𝑖𝑑 ← 𝑛 + 1 ⊲ Update sequence number

18: pending𝑖𝑑 ← ⊥ ⊲ Make the account available again

19: confirmed𝑖𝑑 ← confirmed𝑖𝑑 :: 𝐶 ⊲ Log certificate

(i.e., next_sequence𝑖𝑑 (𝛼) = 0, 1, . . .). Indeed, by the induction hy-

pothesis (resp. by construction for the base case), at most one

operation of the form 𝑂 = OpenAccount(𝑖𝑑, ..) can ever be exe-

cuted by 𝛼 on the parent account of 𝑖𝑑 (resp. as part of the initial

setup if 𝑖𝑑 has no parent). We also note that due to the checks in

step (5), no operation can be executed from 𝑖𝑑 while the account

𝑖𝑑 is locally absent or if pk𝑖𝑑 (𝛼) = ⊥. Account creation executed

by the parent account of 𝑖𝑑 is the only way for pk𝑖𝑑 (𝛼) to be up-

dated from an empty value ⊥. Therefore, if an account 𝑖𝑑 is deleted

by 𝛼 due to an operation CloseAccount, it is necessarily so after

OpenAccount(𝑖𝑑, ..) was already executed once. The account 𝑖𝑑

may be created again by some operation Transfer(𝑖𝑑,𝑉 ) after dele-
tion, but since OpenAccount(𝑖𝑑, ..) is no longer possible, pk𝑖𝑑 (𝛼)
will remain empty, thus no more operations will be executed from

𝑖𝑑 at this point. Therefore, due to the checks in step (5), the oper-

ations executed on 𝑖𝑑 , necessarily while pk𝑖𝑑 (𝛼) ≠ ⊥, follows the
natural sequence of sequence numbers.

Agreement on account states. Let 𝛼 be authority and 𝑖𝑑 be an

account such that pending(𝛼) = ⊥ and 𝛼 has not executed an

operation CloseAccount on 𝑖𝑑 yet. We observe that the state of 𝑖𝑑

seen by 𝛼 is a deterministic function of the following elements:

• the sequence of operations previously executed by 𝛼 on 𝑖𝑑 , that

is, the content of confirmed𝑖𝑑 (𝛼), and
• the (unordered) set of operations previously executed by 𝛼 that

caused a cross-shard request to 𝑖𝑑 as recipient, that is, the content

of received𝑖𝑑 (𝛼).

Indeed, operations issued by 𝑖𝑑 are of the form ChangeKey(𝑝𝑘),
Transfer(..,𝑉𝑜𝑢𝑡

𝑗
), and OpenAccount(..). Similarly, possible oper-

ations received by 𝑖𝑑 are of the form OpenAccount(𝑖𝑑, 𝑝𝑘) and
Transfer(𝑖𝑑,𝑉 𝑖𝑛

𝑖
). We can determine the different components of

the account 𝑖𝑑 as seen by 𝛼 as follows:

• next_sequence𝑖𝑑 (𝛼) will be the size of confirmed𝑖𝑑 (𝛼);

• pk𝑖𝑑 (𝛼) will be the last key set by OpenAccount(𝑖𝑑, 𝑝𝑘) (or an
equivalent initial setup for special accounts) then subsequent

ChangeKey(𝑝𝑘) operations, and otherwise pk𝑖𝑑 (𝛼) = ⊥;
• balance𝑖𝑑 (𝛼) =

∑
𝑖 𝑉

𝑖𝑛
𝑖
− ∑

𝑗 𝑉
𝑜𝑢𝑡
𝑗
+ balance𝑖𝑑 (init), where

balance𝑖𝑑 (init) denotes a possibly non-zero initial balance for

some special accounts. (In the presentation of FastPay [5], addi-

tionally terms account for external transfers with the primary

blockchain in replacement of balance𝑖𝑑 (init).)

The agreement property on account operations (see above) en-

tails that whenever two honest authorities have executed the same

operations, they must also agree on the current set of active ac-

counts and their corresponding states. In other words, if for all

𝑖𝑑 , confirmed𝑖𝑑 (𝛼) = confirmed𝑖𝑑 (𝛼 ′), then for all 𝑖𝑑 such that

pk𝑖𝑑 (𝛼) ≠ ⊥ or pk𝑖𝑑 (𝛼 ′) ≠ ⊥, we have next_sequence𝑖𝑑 (𝛼) =
next_sequence𝑖𝑑 (𝛼 ′), pk𝑖𝑑 (𝛼) = pk𝑖𝑑 (𝛼 ′), and balance𝑖𝑑 (𝛼) =

balance𝑖𝑑 (𝛼 ′).
In particular, similar to the proof of FastPay [5], balance𝑖𝑑 (𝛼) ≥

0 holds for every 𝑖𝑑 once every certified operations has been exe-

cuted. Indeed, consider an honest authority which accepted to vote

at step (2) for the last transfer Transfer(..,𝑉𝑜𝑢𝑡
𝑗
) from 𝑖𝑑 .

Liveness considerations. Zef guarantees that conforming clients

may always (i) initiate new valid operations on their active accounts

and (ii) confirm a valid certificate of interest as a sender or as a

recipient. We note that question (i) is merely about ensuring that

the sequence number of an active sender account can advance after

a certificate is formed at step (3). This reduces to the question (ii)

of successfully executing step (5) for any honest authority, given a

valid certificate 𝐶 .

If the client, an honest authority 𝛼 , or the network was recently

faulty, it is possible that (a) the sender account 𝑖𝑑 may not be ac-

tive yet at 𝛼 , or (b) the sequence number of 𝑖𝑑 may be lagging

behind compared to the expected sequence number in 𝐶 . In the

latter case (b), similarly to Fastpay, the client should replay the

previously confirmed certificates 𝐶𝑖 of the same account—defined

as 𝐶𝑖 ∈ confirmed𝑖𝑑 (𝛼 ′) for some honest 𝛼 ′—in order to bring

an authority 𝛼 to the latest sequence number and confirm 𝐶 . In

the case (a) where 𝑖𝑑 is not active yet at 𝛼 , the client must con-

firm the creation certificate 𝐶 ′ of 𝑖𝑑 issued by the parent account

𝑖𝑑 ′ = parent(𝑖𝑑). This may recursively require confirming the his-

tory of 𝐶 ′. Note however that this history is still sequential (i.e.

there is at most one parent per account) and the number of parent

creation certificates is limited by 𝑘MAX.

Importantly, a certificate needs only be confirmed once per hon-

est authority on behalf of all clients. Conforming clients who initi-

ate transactions are expected to persist past certificates locally and

pro-actively share them with all responsive authorities.

In practice, the procedure to bring authorities up-to-date can be

implemented in a way that malicious authorities that would always

request the entire history do not slow down the protocol. (See the

discussion in FastPay [5], Section 5.)

Deactivation and deletion of accounts. We have seen that once

deactivated, an account 𝑖𝑑 plays no role in the protocol and that

𝑖𝑑 will never be active again. Therefore, it is always safe for an

authority to remove a deactivated account from its local storage.
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This important result paves the way for Zef deployments to

control their storage cost by incentivizing users to regularly create

new accounts and deactivate old ones. For instance, a deployment

may limit the maximum sequence number for account operations

and limit the number of opaque coins spent in each account.

Assuming that deactivated accounts are regularly produced, a

simple strategy for an authority 𝛼 to reclaim some local storage

consists in deleting an account 𝑖𝑑 whenever pk𝑖𝑑 (𝛼) changes its
value to ⊥. We note however that this strategy is only a best effort.

Effectively reclaiming the maximum amount of storage available

in the system requires addressing two questions:

(1) If an honest authority 𝛼 deletes 𝑖𝑑 , how to guarantee that the

account is not recreated later by 𝛼 ;

(2) If an honest authority 𝛼 deletes 𝑖𝑑 , how to guarantee that every

other honest authority 𝛼 ′ ≠ 𝛼 eventually deletes 𝑖𝑑 .

Regarding (1), when a cross-shard request is received for an

operation Transfer(𝑖𝑑,𝑉 ), the current version of the protocol may

indeed re-create an empty account 𝑖𝑑 . This storage cost can be

addressed by modifying Zef so that an authority 𝛼 does not re-

create 𝑖𝑑 (or quickly deletes it again) if it determines that no opera-

tion 𝑂 = OpenAccount(𝑖𝑑, ..) can occur any more. This fact can be

tested in background using |𝑖𝑑 | ≤ 𝑘max cross-shard queries. Indeed,

consider the opposite fact: an inactive account 𝑖𝑑 = 𝑖𝑑0 :: 𝑛 can
become active in 𝛼 iff it holds that (i) next_sequence𝑖𝑑0 (𝛼) ≤ 𝑛 and

(ii) the parent account 𝑖𝑑0 is either active or can become active.

Regarding (2), we note that sending and receiving clients in

payment operations have an incentive to fully disseminate the

confirmation certificates to all authorities—rather than just a quo-

rum of them—whenever possible. (The incentives are respectively

to fully unlock the sender’s account and to fully increase the re-

ceiver’s balance in the eventuality of future unresponsive authori-

ties.) However, such an incentive does not exist in the case of the

CloseAccount operation. Therefore, in practical deployments of

Zef, we expect authorities to either communicate with each other

a minima in background, or to incentivize clients to continuously

disseminate missing certificates between authorities.

Security of account generation. In the eventuality of malicious

brokers, a client must always verify the following properties before

using a new account 𝑖𝑑 ′:

• The certificate 𝐶 returned by the broker is a valid certifi-

cate 𝐶 = cert[𝑅] such that 𝑅 = Execute(𝑖𝑑, 𝑛,𝑂) and 𝑂 =

OpenAccount(𝑖𝑑 ′, 𝑝𝑘) for the expected public key 𝑝𝑘 . (Under

BFT assumption, this implies 𝑖𝑑 ′ = 𝑖𝑑 :: 𝑛.)

• If the client did not pick a fresh key 𝑝𝑘 , it is important to also

verify that 𝐶 is not being replayed.

For new accounts meant to be secret, clients should use a fresh

public key 𝑝𝑘 and consider communicating with a broker privately

(e.g. over Tor). How a client may anonymously purchase their first

identifiers from a broker raises the interesting question of how

to effectively bootstrap a fully anonymous payment system. (For

instance, a certain number of fresh key-less accounts could be given

away regularly for anyone to acquire and reconfigure them over

Tor before receiving their very first anonymous payment.)

Further comparison with FastPay. In FastPay, accounts are in-

dexed by the public key 𝑝𝑘 that controls payment transfers from the

account. Such a key is also called a FastPay address. The state of an
account 𝑝𝑘 is replicated by every authority 𝛼 and includes notably a

balance balance𝑝𝑘 (𝛼) and a sequence number next_sequence𝑝𝑘 (𝛼)
used to prevent replay of payment certificates.

The definition of FastPay addresses entails that an account 𝑝𝑘

(evenwith balance 0) can never be removed from the system. Indeed,

after the information on the sequence number next_sequence𝑝𝑘 (𝛼)
is lost, the account owner may re-create an account for the same

public key 𝑝𝑘 and exploit next_sequence𝑝𝑘 (𝛼) = 0 to replay all

past transfers originating from 𝑝𝑘 . In a context of privacy-aware

applications, users are less likely to re-use a same account 𝑝𝑘 many

times, thus amplifying the storage impact of unused accounts.While

anonymous coins introduced next in Section 3 and 5 can easily

be adapted to FastPay-like accounts indexed by 𝑝𝑘 , this would

cause requirements in local storage to never decrease even if some

accounts were explicitly deactivated.

In Zef, accounts are indexed by a unique identifier and deacti-

vated accounts can be safely deleted. On the downside, new users

must interact with a broker or an authority ahead of time to ob-

tain fresh identifiers. Existing users may also choose to trade some

privacy and derive identifiers from their existing account(s).

Cross-shard queries in both FastPay and Zef are asynchronous

in the sense that they do not block a client request to confirm

a certificate (see Algorithm 1). This is crucial to guarantee that

an authority with a lagging view on a particular account can be

brought up to date by providing missing certificate history for this

account and its parents only—as opposed to exponentially many

accounts. In Zef, this property results from a careful design of

the protocol allowing missing recipient accounts to be (re)created

with an empty public key pk𝑖𝑑 (𝛼) = ⊥ whenever needed. The

uniqueness property of identifiers guarantees that a deleted account

can never be reactivated later on.

5 ANONYMOUS PAYMENTS
We now describe the Zef protocol for anonymous payments using

generic building blocks. In particular, we use a blind signature

scheme, random commitments, and Zero-Knowledge (ZK) proofs

in a black-box way. A more integrated realization of the protocol

suitable for an efficient implementation is proposed in Appendix B.

Anonymous coins. An anonymous coin is a triplet𝐴 = (𝑖𝑑, 𝑐𝑚, 𝜎)
where 𝑖𝑑 is the unique identifier (UID) of an active account, 𝑐𝑚 is a

random commitment on a value 𝑣 ∈ [0, 𝑣max] using some random-

ness 𝑟 , denoted 𝑐𝑚 = com𝑟 (𝑣), and 𝜎 is a threshold signature from a

quorum of authorities on the pair (𝑖𝑑, 𝑐𝑚). Following the notations

of Section 3, an anonymous coin 𝐴 can also be seen as a certificate

𝐴 = cert[(𝑖𝑑, 𝑐𝑚)]. To effectively own a coin, a client must know

the value 𝑣 , the randomness 𝑟 , and the secret key controlling 𝑖𝑑 .

To prevent double-spending, for every account 𝑖𝑑 , every authority

keeps tracks of the coins that have already been spent by storing

commitments 𝑐𝑚 in a set spent𝑖𝑑 (𝛼).

Spending anonymous coins. We extend the account operations

of Section 4 with an operation 𝑂 = Spend(𝑉 , 𝑐𝑚, 𝜎, ℎ) meant to be

included in a request Execute(𝑖𝑑, 𝑛,𝑂). This operation prepares the

creation of new coins by consuming one opaque coin (𝑖𝑑, 𝑐𝑚, 𝜎) and
by transparently withdrawing some amount 𝑉 from the account.
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The hash value ℎ forces the sender to commit to specific output

coins (see next paragraph). Following the framework of Section 4:

• 𝑂 is safe iff 𝜎 is a valid signature for (𝑖𝑑, 𝑐𝑚), 0 ≤ 𝑉 ≤
balance𝑖𝑑 (𝛼), and 𝑐𝑚 ∉ spent𝑖𝑑 (𝛼).
• Upon receiving a valid certificate 𝐶 = cert[𝑅], the execution of

𝑂 consists in substracting 𝑉 from balance𝑖𝑑 (𝛼) and adding 𝑐𝑚

to spent𝑖𝑑 (𝛼).
See algorithm 1 for the corresponding pseudo-code.

Creating anonymous coins. Suppose that a user owns ℓ coins
𝐴𝑖𝑛
𝑖

= (𝑖𝑑𝑖𝑛𝑖 , 𝑐𝑚𝑖𝑛
𝑖
, 𝜎𝑖𝑛

𝑖
) (1 ≤ 𝑖 ≤ ℓ) such that the 𝑐𝑚𝑖𝑛

𝑖
are ℓ mu-

tually distinct random commitments, and 𝜎𝑖𝑛
𝑖

is a coin signature

on (𝑖𝑑𝑖𝑛𝑖 , 𝑐𝑚𝑖𝑛
𝑖
). Let 𝑣𝑖𝑛

𝑖
be the value of the coin 𝐴𝑖𝑛

𝑖
. Let 𝑉 𝑖𝑛

𝑖
≥ 0

be a value that the user wishes to withdraw transparently from

the account 𝑖𝑑𝑖𝑛𝑖 . Importantly, we require commitments 𝑐𝑚𝑖𝑛
𝑖

to be

distinct but not the identifiers 𝑖𝑑𝑖𝑛𝑖 . This allows several coins to be

spent from the same account.

We define the total input value of the transfer as 𝑣 =
∑
𝑖 𝑣

𝑖𝑛
𝑖
+∑

𝑖 𝑉
𝑖𝑛
𝑖

. To spend the coins into 𝑑 new coins with values 𝑣𝑜𝑢𝑡
𝑗

(1 ≤
𝑗 ≤ 𝑑) such that

∑
𝑗 𝑣

𝑜𝑢𝑡
𝑗

= 𝑣 , the sender requests a unique identifier

𝑖𝑑𝑜𝑢𝑡𝑗 from each recipient, then proceeds as follows:

(1) First, the sender constructs blinded messages 𝐵 𝑗 and a zero-

knowledge proof 𝜋 as follows:

(a) For 1 ≤ 𝑗 ≤ 𝑑 , sample randomness 𝑟𝑜𝑢𝑡
𝑗

and set 𝑐𝑚𝑜𝑢𝑡
𝑗

=

com𝑟𝑜𝑢𝑡
𝑗
(𝑣𝑜𝑢𝑡

𝑗
).

(b) For 1 ≤ 𝑗 ≤ 𝑑 , sample random blinding factor 𝑢 𝑗 and let

𝐵 𝑗 = blind((𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑐𝑚𝑜𝑢𝑡
𝑗
), 𝑢 𝑗 ).

(c) Construct a zero-knowledge proof 𝜋 for the following state-

ment regarding (𝑐𝑚𝑖𝑛
1
, . . . , 𝑐𝑚𝑖𝑛

ℓ
,
∑
𝑖 𝑉

𝑖𝑛
𝑖
, 𝐵1, . . . , 𝐵𝑑 ): I know

𝑣𝑖𝑛
𝑖
, 𝑟 𝑖𝑛
𝑖

for each 1 ≤ 𝑖 ≤ ℓ and 𝑣𝑜𝑢𝑡
𝑗

, 𝑟𝑜𝑢𝑡
𝑗

, 𝑢 𝑗 , 𝑖𝑑
𝑜𝑢𝑡
𝑗 for each

1 ≤ 𝑗 ≤ 𝑑 such that

• 𝑐𝑚𝑖𝑛
𝑖

= com𝑟 𝑖𝑛
𝑖
(𝑣𝑖𝑛
𝑖
) and 𝑐𝑚𝑜𝑢𝑡

𝑗
= com𝑟𝑜𝑢𝑡

𝑗
(𝑣𝑜𝑢𝑡

𝑗
)

• 𝐵 𝑗 = blind((𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑐𝑚𝑜𝑢𝑡
𝑗
), 𝑢 𝑗 )

• ∑
𝑖 𝑣

𝑖𝑛
𝑖
+∑𝑖 𝑉

𝑖𝑛
𝑖

=
∑

𝑗 𝑣
𝑜𝑢𝑡
𝑗

• Each value 𝑣𝑖𝑛
𝑖

and 𝑣𝑜𝑢𝑡
𝑗

is in [0, 𝑣max]
(2) For every input 𝑖 , the sender obtains a certificate 𝐶𝑖 for the

operation 𝑂𝑖 = Spend(𝑉 𝑖𝑛
𝑖
, 𝑐𝑚𝑖𝑛

𝑖
, 𝜎𝑖𝑛

𝑖
, hash(𝐵1, . . . , 𝐵𝑑 )) then

confirms 𝐶𝑖 . Concretely, as detailed in Section 4, this means

broadcasting an authenticated request𝑅𝑖 = Execute(𝑖𝑑𝑖𝑛𝑖 , 𝑛𝑖 ,𝑂𝑖 )
for a suitable sequence number 𝑛𝑖 , obtaining a quorum of votes

on 𝑅𝑖 , then broadcasting 𝐶𝑖 = cert[𝑅𝑖 ].
(3) Next, the sender broadcasts a free request 𝑅∗ =

CreateAnonymousCoins(𝜋,𝐶1, . . . ,𝐶ℓ , 𝐵1, . . . , 𝐵𝑑 ) and waits

for a quorum of responses.

(4) Upon receiving a free request of the form 𝑅∗ =

CreateAnonymousCoins(𝜋,𝐶1, . . . ,𝐶ℓ , 𝐵1, . . . , 𝐵𝑑 ) where 𝐶𝑖 =

cert[𝑅𝑖 ], 𝑅𝑖 = Execute(𝑖𝑑𝑖 , 𝑛𝑖 ,𝑂𝑖 ), 𝑂𝑖 = Spend(𝑉𝑖 , 𝑐𝑚𝑖 , 𝜎𝑖 , ℎ𝑖 ,

each authority 𝛼 verifies the following:

• Every 𝐶𝑖 is a valid certificate for 𝑅𝑖 . (Under BFT assumption,

this implies that 𝜎𝑖 is a valid signature on (𝑖𝑑𝑖 , 𝑐𝑚𝑖 ))
• The values 𝑐𝑚𝑖 are mutually distinct.

• ℎ𝑖 = hash(𝐵1, . . . , 𝐵𝑑 )).
• The proof 𝜋 is valid for the public inputs

(𝑐𝑚1, . . . , 𝑐𝑚ℓ ,
∑
𝑖 𝑉𝑖 , 𝐵1, . . . , 𝐵𝑑 ).

The authority then responds with 𝑑 signature shares, one for

each 𝐵 𝑗 = blind((𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑐𝑚𝑜𝑢𝑡
𝑗
);𝑢 𝑗 ).

(5) For every 𝑗 , the sender finally combines the signature shares

received by a quorum of authorities, then uses unblind to obtain

a signature 𝜎𝑜𝑢𝑡
𝑗

on (𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑐𝑚𝑜𝑢𝑡
𝑗

).

(6) The 𝑗𝑡ℎ recipient receives (𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑐𝑚𝑜𝑢𝑡
𝑗

, 𝑣𝑜𝑢𝑡
𝑗

, 𝑟𝑜𝑢𝑡
𝑗

, 𝜎𝑜𝑢𝑡
𝑗
). She

verifies that the values and identifiers are as expected, that the

commitments 𝑐𝑚𝑜𝑢𝑡
𝑗

are mutually distinct and each 𝜎𝑜𝑢𝑡
𝑗

is valid.

We note that finality is achieved as soon as the request 𝑅∗ is
formed by the sender. The pseudo-code for coin creation is pre-

sented in Algorithm 3.

Algorithm 3 Coin creation service

1: function HandleCoinCreationReqest(𝑅∗)
2: let CreateAnonymousCoins(𝜋,𝐶1, . . . ,𝐶ℓ , 𝐵1 . . . 𝐵𝑑 ) = 𝑅∗

3: for 𝑖 = 1..ℓ do
4: ensure𝐶𝑖 = cert[𝑅𝑖 ] is a valid certificate

5: match Execute(𝑖𝑑𝑖 , 𝑛𝑖 , Spend(𝑉𝑖 , 𝑐𝑚𝑖 , 𝜎𝑖 , ℎ𝑖 )) = 𝑅𝑖

6: ensure 𝑐𝑚𝑖 ∉ {𝑐𝑚𝑘 }𝑘<𝑖
7: ensure ℎ𝑖 = hash(𝐵1 . . . 𝐵𝑑 )
8: let𝑉 =

∑
𝑉𝑖

9: verify the ZK-proof 𝜋 on inputs (𝑐𝑚1 . . . 𝑐𝑚ℓ ,𝑉 , 𝐵1 . . . 𝐵𝑑 )
10: let 𝑠 𝑗 = SignShare(𝐵 𝑗 ) for each 𝑗 = 1..𝑑

11: return (𝑠1, . . . , 𝑠𝑑 ) ⊲ Return a blinded signature for each output

Redeeming anonymous coins. Suppose that a user owns a

coin 𝐴 = (𝑖𝑑, 𝑐𝑚, 𝜎). We define a new account operation 𝑂 =

SpendAndTransfer(𝑖𝑑 ′, 𝜎, 𝑣, 𝑟 ) meant to be included in a request

𝑅 = Execute(𝑖𝑑, 𝑛,𝑂). Following the framework of Section 4:

• 𝑂 is safe iff 𝜎 is a valid signature for (𝑖𝑑, 𝑐𝑚) with 𝑐𝑚 = com𝑟 (𝑣)
and 𝑐𝑚 ∉ spent𝑖𝑑 (𝛼).
• Upon receiving a valid certificate 𝐶 = cert[𝑅], the execution
of 𝑂 consists in adding 𝑐𝑚 to spent𝑖𝑑 (𝛼) and sending a cross-

shard request to add the value 𝑣 to balance𝑖𝑑
′
(𝛼) (possibly after

creating an empty account 𝑖𝑑 ′).

The pseudo-code for redeeming operations is presented in Algo-

rithm 1.

Safety of the protocol. If 𝑂 is a transfer operation, we write

amount(𝑂) for the value of the transfer, source(𝑂) for the main

account, recipient(𝑂) for the recipient account. By extension, we

write amount(𝐶) for the value of a valid confirmation certificate

containing such an operation 𝑂 .

If 𝐴 = (𝑖𝑑, 𝑐𝑚, 𝜎) is valid coin and 𝑐𝑚 = com𝑟 (𝑣), we write

id(𝐴) = 𝑖𝑑 , cm(𝐴) = 𝑐𝑚, and amount(𝐴) = 𝑣 . We also write

𝑐𝑚 ∈ spent𝑖𝑑 iff there exists a certificate 𝐶 = cert[𝑅] with 𝑅 =

Execute(𝑖𝑑, 𝑛,𝑂) and either 𝑂 = Spend(𝑉 , 𝑐𝑚, 𝜎, ℎ) for some 𝑛, 𝑉 ,

ℎ, or 𝑂 = SpendAndTransfer(𝑖𝑑 ′, 𝜎, 𝑣, 𝑟 ) for some 𝑛, 𝑖𝑑 ′.
Under BFT assumption, due to quorum intersection and thanks

to the logics related to the spent list in the code of Spend and

SpendAndTransfer, a coin can be spent only once. More precisely,

there is one-to-one mapping between certificates𝐶 and coins𝐴 that

justify cm(𝐴) ∈ spent𝑖𝑑 in the definition above. In what follows,

summations over certificates range over all valid certificates for

distinct requests or coins.
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We define the spendable value of an account 𝑖𝑑 as follows:

spendable𝑖𝑑 = balance𝑖𝑑 (init)
+

∑
recipient(𝐶)=𝑖𝑑

amount(𝐶) −
∑

source(𝐶)=𝑖𝑑
amount(𝐶)

+
∑{

id(𝐴) = 𝑖𝑑

cm(𝐴) ∉ spent𝑖𝑑

amount(𝐴)

We verify by inspection of the protocol that the total spend-

able value over all accounts, that is, 𝑆 =
∑
𝑖𝑑 spendable

𝑖𝑑
, never

increases during account operations, coin creation, and redeeming

of anonymous coins:

• Account operations have been studied in Section 4.

• Redeeming coins with a certificate 𝐶 for SpendAndTransfer in-
creases the balance of a recipient but burns a coin with corre-

sponding value (i.e. adds it to spent𝑖𝑑 ).
• Creating coins with a free request 𝑅∗ =

CreateAnonymousCoins(𝜋,𝐶1, . . . ,𝐶ℓ , 𝐵1, . . . , 𝐵𝑑 ) requires

withdrawing public amounts and burning the source coins

corresponding to 𝐶1, . . . ,𝐶ℓ . Importantly, 𝐶𝑖 contains a hash

commitment of (𝐵1, . . . , 𝐵𝑑 ). Therefore re-reusing the certificate
in a coin creation request results in the same coins as the first

time, and does not increase 𝑆 .

Privacy properties. The protocol to create anonymous coins guar-

antees the following privacy properties.

• Opacity: Except for the ZK proofs 𝜋 , the coin values under the

commitments 𝑐𝑚𝑖𝑛
𝑖

and 𝑐𝑚𝑜𝑢𝑡
𝑗

are never communicated publicly.

• Unlinkability: Assuming that the sender during coin creation is

honest, authorities cannot trace back to the origin of an anony-

mous coin when it is spent.

Regarding unlinkability, we note indeed that the receiver infor-

mation 𝑖𝑑𝑜𝑢𝑡𝑗 and 𝑐𝑚𝑜𝑢𝑡
𝑗

are only communicated to authorities in

blinded form. Besides, after unblinding, the threshold signature 𝜎 𝑗
does not depend on values controlled by authorities, therefore is

not susceptible to tainting.

To prevent double spending, the protocol must reveal the identi-

fiers 𝑖𝑑 of the coins being spent. This means that the sender who

initially created the coins linked to 𝑖𝑑 must be trusted for unlink-

ability to hold. To mitigate this concern, it is recommended that

receivers quickly transfer their new coins anonymously to a secret

account so that they can spend them privately later.

6 IMPLEMENTATION
We now sketch our prototype implementation of a multi-core, multi-

shard Zef authority in Rust. Our implementation is based on the

existing FastPay codebase
1
which already implemented the Byzan-

tine reliable broadcast primitive needed for Zef. In particular, we

were able to re-use modules based on Tokio
2
for asynchronous

networking and cryptographic modules based on ed25519-dalek
3

for elliptic-curve-based signatures. For simplicity, data-structures

in our Zef prototype are held in memory rather than persistent

storage. Our prototype supports both TCP and UDP for transport.

1
https://github.com/novifinancial/fastpay

2
https://tokio.rs

3
https://github.com/dalek-cryptography/ed25519-dalek

The core of Zef is idempotent to tolerate retries in case of packet

loss. Each authority shard is a separate native process with its own

networking and Tokio reactor core. We are open-sourcing Zef
4

along with any measurements data to enable reproducible results
5
.

Cryptographic primitives for anonymous coins. We have

chosen Coconut credentials [33] to implement the blind randomiz-

able threshold-issuance signatures 𝜎𝑖𝑛
𝑖

and 𝜎𝑜𝑢𝑡
𝑖

of Section 5. Zero-

Knowledge proofs are constructed using standard sigma protocols,

made non-interactive through the Fiat-Shamir heuristic [18]. As a re-

sult, our implementation of Zef assumes the hardness of LRSW [22]

and XDH [8] (required by Coconut), and the existence of random

oracles [18]. Appendix B presents this protocol in details. Our im-

plementation of Coconut is inspired from Nym’s
6
and uses the

curve BLS12-381 [39] as arithmetic backend.

We have implemented all range proofs using Bulletproofs [9]

as they only rely on the discrete logarithm assumption (which is

implied by XDH) and do not require a trusted setup. Unfortunately,

we couldn’t directly use Dalek’s implementation of Bulletproofs
7
as

it uses Ristretto [15] as arithmetic backend. Ristretto is incompatible

with Coconut (which requires a pairing-friendly curve). Therefore,

we have modified Dalek’s implementation to use curve BLS12-381.

This required significant effort as the curve operations are deeply

baked into the library. Our resulting library is significantly slower

than Dalek’s for two reasons: operations over BLS12-381 are slower

than over Ristretto, and we couldn’t take advantage of the parallel

formulas in the AVX2 backend present in the original library.We are

open-sourcing our Bulletproof implementation over BLS12-381
8
.

7 EVALUATION
We now present our evaluation of the performance of our Zef

prototype based on experiments on Amazon Web Services (AWS).

Our focus was to verify that (i) Zef achieves high throughput even

for large committees, (ii) Zef has low latency even under high load

andwithin aWAN, (iii) Zef scales linearly when addingmore shards,

and (iv) Zef is robust when some parts of the system inevitably

crash-fail. Note that evaluating BFT protocols in the presence of

Byzantine faults is still an open research question [4].

We deployed a testbed on AWS, using m5.8xlarge instances

across 5 different AWS regions: N. Virginia (us-east-1), N. California

(us-west-1), Sydney (ap-southeast-2), Stockholm (eu-north-1), and

Tokyo (ap-northeast-1). Authorities were distributed across those

regions as equally as possible. Each machine provided 10Gbps of

bandwidth, 32 virtual CPUs (16 physical core) on a 2.5GHz, Intel

Xeon Platinum 8175, 128GB memory, and ran Linux Ubuntu server

20.04. We selected these machines because they provide decent

performance and are in the price range of “commodity servers”.

In the following sections, each measurement in the graphs is

the average of 2 independent runs, and the error bars represent

one standard deviation
9
. We set one benchmark client per shard

(collocated on the same machine) submitting transactions at a fixed

rate for a duration of 5 minutes.

4
https://github.com/novifinancial/fastpay/tree/extensions

5
https://github.com/novifinancial/fastpay/tree/extensions/benchmark_scripts

6
https://github.com/nymtech/coconut

7
https://github.com/dalek-cryptography/bulletproofs

8
https://github.com/novifinancial/fastpay/tree/extensions/bulletproofs

9
Error bars are absent when the standard deviation is too small to observe.
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Figure 4: Throughput-latency graph for regular transfers. WAN
measurements with 10, 20, 30 authorities; 10 collocated shards per
authority. No faulty authorities.
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Figure 5: Maximum achievable throughput for regular transfers,
keeping the latency under 250ms and 300ms. WAN measurements
with 4 authorities; 1 to 10 shards per authority running on separate
machines. No faulty authorities.

7.1 Regular Transfers
We benchmarked the performance of Zef when making a regular

transfer as described in Section 4. When referring to latency in this

section, we mean the time elapsed from when the client submits the

request (Step 1 in Figure 1) to when at least one honest authority

processes the resulting confirmation certificate (Step 5 in Figure 1).

We measured it by tracking sample requests throughout the system.

Benchmark in the common case. Figure 4 illustrates the latency
and throughput of Zef for varying numbers of authorities. Every

authority ran 10 collocated shards (each authority ran thus a single

machine). The maximum throughput we observe is 20,000 tx/s

for a committee of 10 nodes, and lower (up to 6,000 tx/s) for a

larger committee of 50. This highlights the important of sharding

to achieve high-throughput. This reduction is due to the need to

transfer and check transfer certificates signed by 2𝑓 + 1 authorities;

increasing the committee size increases the number of signatures to

verify since we do not use threshold signatures for regular transfers.

Scalability. Figure 5 shows the maximum throughput that can be

achieved while keeping the latency under 250ms and 300ms. The

committee is composed by 4 authorities each running a data-center;

each shard runs on a separate machine. Figure 5 clearly supports our

scalability claim: the throughput increases linearly with the number

of shards, ranging from 2,500 tx/s with 1 shard per authority to

33,000 tx/s with 10 shards per authority.

Benchmark under crash-faults. Figure 6 depicts the perfor-

mance of Zef when a committee of 10 authorities suffers 1 to 3

crash-faults (the maximum that can be tolerated in this setting).

Every authority runs 35 collocated shards (each authority runs thus
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Figure 6: Throughput-latency graph for regular transfers under
crash-faults. WANmeasurements with 10 authorities; 35 collocated
shards per authority; 0, 1, and 3 crash-faults.

a single machine). Contrarily to BFT consensus systems [21], Zef

maintains a good level of throughput under crash-faults. The un-

derlying reason for the steady performance under crash-faults is

that Zef doesn’t rely on a leader to drive the protocol. The small

reduction in throughput is due to losing the capacity of faulty au-

thorities. To assemble certificates, the client is now required to wait

for all the remaining 2𝑓 + 1 authorities and can’t simply select the

fastest 2𝑓 + 1 votes; this accounts for the small increase of latency.

Note that the performance shown in Figure 6 are superior to those

shown in Figure 4 because the authorities run more shards.

7.2 Anonymous Payments
We benchmarked the performance of Zef when spending two

opaque coins into two new ones, as described in Section 5. When

referring to latency in this section, we mean the time elapsed from

when the client submits the request (Step 2 in Figure 2) to when

it assembles the new coins (Step 8 in Figure 2). We measured it by

tracking sample requests throughout the system.

Microbenchmarks. We report on microbenchmarks of the single-

CPU core time required to execute the cryptographic operations.

Table 1 displays the cost of each operation inmilliseconds (ms); each

measurement is the result of 100 runs on a AWS m5.8xlarge in-

stance. The first 3 rows respectively indicate the time to (i) produce

a coin creation request meant to spend two opaque coins into two

new ones, (ii) verify that request, and (iii) issue a blinded coin share.

The last 3 rows indicate the time to unblind a coin share, verify

it, and aggregate 3 coin shares into an output coin. The dominant

CPU cost is on the user when creating a coin request (438.35ms),

which involves proving knowledge of each input coins (1 Bullet-

proof per coin). However, verifying coin requests (142.31ms) is also

expensive: it involves verifying the input coins (1 pairing check per

input coin) and the output coins request (1 Bulletproof per coin).

Issuing a blinded coin share (1 Coconut signature per output coin)

is relatively faster (4.90ms). Unblinding (3.37ms), verifying (9.62ms)

and aggregating (1.70ms) coin shares take only a few milliseconds.

These results indicate that a single core shard implementation may

only settle just over 7 transactions per second—highlighting the

importance of sharding to achieve high-throughput.

Benchmark in the common case. Figure 7 illustrates the latency
and throughput of Zef for varying numbers of authorities. Every

authority runs 10 collocated shards. The performance depicted in

Figure 7 (anonymous payments) are 3 order of magnitude lower

than those depicted in Figure 4 (regular transfers); this is due to
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Measure Mean (ms) Std. (ms)

(User) Generate coin create request 438.35 1.10

(Authority) Verify coin creation request 142.31 0.24

(Authority) Issue a blinded coin share 4.90 0.01

(User) Unblind a coin share 3.37 0.05

(User) Verify a coin share 9.62 0.04

(User) Aggregate 3 coin shares 1.70 0.00

Table 1: Microbenchmark of single core CPU costs of anonymous
coin operations; average and standard dev. of 100 measurements.
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Figure 7: Throughput-latency graph for anonymous coins. WAN
measurements with 10, 20, 30 authorities; 10 collocated shards per
authority. No faulty authorities.
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Figure 8: Maximum achievable throughput for anonymous coins
while keeping the latency under 500ms and 1s.WANmeasurements
with 4 authorities; 1 to 10 shards per authority running on separate
machines. No faulty authorities.

the expensive cryptographic operations reported in Table 1. We

observe virtually no difference between runs with 10, 20, 30, or

even 50 authorities: Zef can process about 50 tx/s while keeping

latency under 1s in all configurations. This highlights that anony-

mous payments operations are extremely CPU intensive and that

bandwidth is far from being the bottleneck.

Scalability. Figure 8 shows the maximum throughput that can be

achieved while keeping the latency under 500ms and 1s. The com-

mittee was composed by 4 authorities each running a data-center;

each shard runs on a separate machine. Figure 5 demonstrates our

scalability claim: throughput increases linearly with the number

of shards, ranging from 5 tx/s with 1 shard per authority to 55 tx/s

with 10 shards per authority (with a latency cap of 1s).

Benchmark under crash-faults. Figure 9 depicts the perfor-

mance of Zef when a committee of 10 authorities suffers 1 to 3

crash-faults. Every authority ran 35 collocated shards (each author-

ity ran thus a single machine). There is no noticeable throughput

drop under crash-faults, and Zef can process up to 100 tx/s within
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Figure 9: Throughput-latency graph for anonymous coins under
crash-faults. WANmeasurements with 10 authorities; 35 collocated
shards per authority; 0, 1, and 3 crash-faults.

a second with 0, 1, or 3 faults. The performance of Zef shines com-

pared to Zcash [7] which is known to process about 27 tx/s with

a 1 hour latency [2]. Similarly, Monero [24] processes about 4 tx/s

with a 30 minute latency [2].

8 CONCLUSION
Zef is the first linearly-scalable BFT protocol for anonymous pay-

ments with sub-second latency. Zef follows the FastPay model [5]

by defining authorities as sharded services and by managing singly-

owned objects using reliable broadcast rather than consensus. To

support anonymous coins without sacrificing storage costs, Zef

introduces a new notion of uniquely-identified, spendable account.

Users can bind new anonymous coins to their accounts and spend

coins in a privacy-preserving way thanks to state-of-the-art tech-

niques such as the Coconut scheme [33].

Despite the CPU-intensive cryptographic operations required to

preserve opacity and unlinkability of digital coins, our experiments

confirm that anonymous payments in Zef provides unprecedent-

edly quick confirmation time (sub-second instead of tens of min-

utes) while supporting arbitrary throughput thanks to the linearly-

scalable architecture.

In future work, we wish to explore applications of Zef beyond

payments. To this end, one may consider generalizing account

balances using Commutative Replicated Data Types (CmRDTs) [32].

Alternatively, one could introduce short-lived instances of a BFT

consensus protocol whenever agreements on multi-tenant objects

are needed by the system.
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Figure 10: A payment with transparent coins
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A TRANSPARENT COINS
For comparison purposes, we sketch a simplified version of anony-

mous coins (Section 5) without opacity and unlinkability. At a high

level, the protocol is similar to anonymous coins in terms of com-

munication (Figure 10). Due to the absence of blinding and random

commitments, communication channels and validators must be

trusted for the privacy of every coin operation.

Transparent coins. A transparent coin is a certificate 𝑇 = cert[𝑆]
on a triplet 𝑆 = (𝑖𝑑, 𝑣, 𝑟 ) where 𝑖𝑑 is the identifier of an account,

𝑣 ∈ [0, 𝑣max], and 𝑟 is some random seed value. Seed values 𝑟 are

used to distinguish coins of the same value attached to the same 𝑖𝑑 .

To spend a transparent coin 𝑇 , a client must possess the authen-

tication key controlling 𝑖𝑑 . Importantly, authorities do not need to

store 𝑇 themselves—although they will observe such certificates

occasionally in clear.

New account operation. Similar to Section 5, we assume a new

account operation 𝑂 = Spend(𝑉 ,𝑇 , ℎ) meant to prepare the cre-

ation of new coins associated to ℎ, by consuming a coin 𝑇 and

by withdrawing an amount 𝑉 publicly. Consider an operation

𝑂 = Spend(𝑉 ,𝑇 , ℎ) included in a request 𝑅 = Execute(𝑖𝑑, 𝑛,𝑂).

• 𝑂 is safe iff 0 ≤ 𝑉 ≤ balance𝑖𝑑 (𝛼), 𝑇 = cert[𝑆] is a valid

certificate for 𝑆 = (𝑖𝑑, 𝑣, 𝑟 ), and 𝑟 ∉ spent𝑖𝑑 (𝛼).
• The execution of 𝑂 consists in adding 𝑟 to spent𝑖𝑑 (𝛼) and sub-

tracting 𝑉 from balance𝑖𝑑 (𝛼).

Transparent coin payment protocol. Suppose that a user owns
ℓ mutually distinct transparent coins 𝑇 𝑖𝑛

𝑖
= cert[𝑆𝑖𝑛

𝑖
] where 𝑆𝑖𝑛

𝑖
=

(𝑖𝑑𝑖𝑛𝑖 , 𝑣𝑖𝑛
𝑖
, 𝑟 𝑖𝑛
𝑖
) (1 ≤ 𝑖 ≤ ℓ). Let𝑉𝑖 ≥ 0 be a value that the user wishes

to withdraw publicly from the account 𝑖𝑑𝑖𝑛𝑖 . Similar to Section 5,

we require certificates 𝑇 𝑖𝑛
𝑖

to be distinct but not the identifiers 𝑖𝑑𝑖𝑛𝑖 .

We define the total input value of the transfer as 𝑣 =
∑
𝑖 𝑣

𝑖𝑛
𝑖
+∑𝑖 𝑉𝑖 .

To spend the coins into 𝑑 new coins with values 𝑣𝑜𝑢𝑡
𝑗

(1 ≤ 𝑗 ≤ 𝑑)

such that

∑
𝑗 𝑣

𝑜𝑢𝑡
𝑗

= 𝑣 , the sender requests an identifier 𝑖𝑑𝑜𝑢𝑡𝑗 from

each recipient, then proceeds as follows:

(1) For every 1 ≤ 𝑗 ≤ 𝑑 , sample randomness 𝑟𝑜𝑢𝑡
𝑗

. Let 𝑆𝑜𝑢𝑡
𝑗

=

(𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑣𝑜𝑢𝑡
𝑗

, 𝑟𝑜𝑢𝑡
𝑗
).

(2) For every input 𝑖 , the sender obtains a certificate 𝐶𝑖 = cert[𝑅𝑖 ]
and executes a request 𝑅𝑖 = Execute(𝑖𝑑𝑖𝑛𝑖 , 𝑛𝑖 ,𝑂𝑖 ) where 𝑂𝑖 =
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Spend(𝑉 𝑖𝑛
𝑖
,𝑇 𝑖𝑛
𝑖
, hash(𝑆𝑜𝑢𝑡

1
, . . . , 𝑆𝑜𝑢𝑡

𝑑
)), 𝑛𝑖 is the next available

sequence number for the account 𝑖𝑑𝑖𝑛𝑖 .

(3) Next, the sender broadcasts a free request 𝑅∗ =

CreateTransparentCoins(𝐶1, . . . ,𝐶ℓ , 𝑆
𝑜𝑢𝑡
1

, . . . , 𝑆𝑜𝑢𝑡
𝑑
) and

waits for a quorum of responses.

(4) Upon receiving a free request of the form 𝑅∗ =

CreateTransparentCoins(𝐶1, . . . ,𝐶ℓ , 𝑆1, . . . , 𝑆𝑑 ) where

𝑆 𝑗 = (𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑣𝑜𝑢𝑡
𝑗

, 𝑟𝑜𝑢𝑡
𝑗
), each authority 𝛼 verifies the fol-

lowing:

• 𝐶𝑖 = cert[𝑅𝑖 ] is a valid certificate for a request of the form

𝑅𝑖 = Execute(𝑖𝑑𝑖𝑛𝑖 , 𝑛𝑖 ,𝑂𝑖 ) where 𝑂𝑖 = Spend(𝑉 𝑖𝑛
𝑖
,𝑇𝑖 , ℎ𝑖 ),

• The certificates 𝑇𝑖 are mutually distinct.

• ∑
𝑖 𝑣

𝑖𝑛
𝑖
+ ∑

𝑖 𝑉𝑖 =
∑

𝑗 𝑣
𝑜𝑢𝑡
𝑗

.

The authority then responds with one signature for each 𝑆𝑜𝑢𝑡
𝑗

.

(5) For every 𝑗 , the sender finally combines a quorum of signatures

on 𝑆𝑜𝑢𝑡
𝑗

into a new coin 𝑇𝑜𝑢𝑡
𝑗

.

(6) The 𝑗𝑡ℎ recipient receives 𝑇𝑜𝑢𝑡
𝑗

= cert[(𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑣𝑜𝑢𝑡
𝑗

, 𝑟𝑜𝑢𝑡
𝑗
)]. She

verifies that the values and the identifiers are as expected, that

the random seeds 𝑟𝑜𝑢𝑡
𝑗

are mutually distinct, and that the certifi-

cates 𝑇𝑜𝑢𝑡
𝑗

are valid.

Redeeming transparent coins. Suppose that a user owns a trans-
parent coin 𝑇 linked to the account 𝑖𝑑 . We define a new account

operation 𝑂 = SpendAndTransfer(𝑖𝑑 ′,𝑇 ) meant to be included in

a request 𝑅 = Execute(𝑖𝑑, 𝑛,𝑂). Following the framework of Sec-

tion 4:

• 𝑂 is safe iff𝑇 = cert[𝑆] is a valid certificate for 𝑆 = (𝑖𝑑, 𝑣, 𝑟 ) and
𝑟 ∉ spent𝑖𝑑 (𝛼).
• Upon receiving a valid certificate 𝐶 = cert[𝑅], the execution
of 𝑂 consists in adding 𝑟 to spent𝑖𝑑 (𝛼), then sending a cross-

shard request to add the value 𝑣 to balance𝑖𝑑
′
(𝛼) (possibly after

creating an empty account 𝑖𝑑 ′).

B NIZK PROTOCOL
In this section, we show one possible efficient instantiation of the

anonymous payment protocol from Section 5 by opening up the

cryptographic primitives used. Our protocol here makes use of the

Coconut threshold credential scheme [33], which is based on the

work of Pointcheval and Sanders [28]. Informally, Coconut allows

users to obtain credentials on messages with private attributes in a

distributed setting using a threshold 𝑡 out of 𝑛 authorities.

B.1 Coconut++
We start by giving an overview of a suitable variant of the Coconut

scheme, nicknamed Coconut++. This variant of Coconut is formally

proven secure by Rial and Piotrowska [30]. At a high level, Coconut

allows a user to obtain, from a threshold number of authorities,

an anonymous credential on a private attribute𝑚 showing that it

satisfies some application-specific predicate 𝜙 (𝑚) = 1. Later, the

user can anonymously prove the validity of this credential to any

entity in possession of the verification key. While the standard

Coconut scheme works for a single attribute, [33] also includes an

extension that allows for credentials on a list of 𝑞 integer-valued

attributes �̄� = (𝑚1, . . . ,𝑚𝑞).

Below, we use the notation 𝑋 = (𝑋1, . . . , 𝑋𝑞) for any list of 𝑞

variables 𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑞). The scheme Coconut++ consists of the

following algorithms:

❖ Setup(1𝜆) → (𝑝𝑝): Choose groups (G1,G2,G𝑇 ) of order 𝑝 (a 𝜆-

bit prime) with a bilinear map 𝑒 : G1 × G2 → G𝑇 . Let 𝐻 : G1 →
G1 be a secure hash function. Let 𝑔1, ℎ1, . . . , ℎ𝑞 be generators

of G1 and let 𝑔2 be a generator of G2. The system parameters

are given as 𝑝𝑝 = (G1,G2,G3, 𝑝, 𝑒, 𝐻,𝑔1, 𝑔2, ¯ℎ). Parameters are

implicit in the remaining descriptions.

❖ KeyGen(𝑡, 𝑛) → (𝑠𝑘, 𝑣𝑘): Pick 𝑞 + 1 polynomials 𝑢,𝑤1, . . . ,𝑤𝑞

each of degree 𝑡 − 1 with coefficients in F𝑝 and set 𝑠𝑘 =

(𝑥,𝑦) =
(
𝑢 (0),𝑤1 (0), . . . ,𝑤𝑞 (0)

)
. Publish the verification

key 𝑣𝑘 = (𝛾, 𝛼, ¯𝛽) = (𝑔𝑦1

1
, . . . , 𝑔

𝑦𝑞
1
, 𝑔𝑥

2
, 𝑔

𝑦1

2
, . . . , 𝑔

𝑦𝑞
2
). Also

issue to each authority 𝑗 ∈ {1, . . . , 𝑛}, the secret key

𝑠𝑘 𝑗 = (𝑥 𝑗 , 𝑦 𝑗 ) = (𝑢 ( 𝑗),𝑤1 ( 𝑗), . . . ,𝑤𝑞 ( 𝑗)) and publish

the corresponding verification key 𝑣𝑘 𝑗 = (𝛾 𝑗 , 𝛼 𝑗 , ¯𝛽 𝑗 ) =

(𝑔𝑦 𝑗,1

1
, . . . , 𝑔

𝑦 𝑗,𝑞

1
, 𝑔

𝑥 𝑗

2
, 𝑔

𝑦 𝑗,1

2
, . . . , 𝑔

𝑦 𝑗,𝑞

2
).

❖ PrepareBlindSign(�̄�, 𝜙) → (𝑟,Λ): Pick a random 𝑜 ∈ F𝑝 . Com-

pute the commitment 𝑐�̄� and group element ℎ as

𝑐�̄� = 𝑔𝑜
1

𝑞∏
𝑖=1

ℎ
𝑚𝑖

𝑖
and ℎ = 𝐻 (𝑐�̄�)

For all 𝑖 = 1 . . . 𝑞, pick a random 𝑟𝑖 ∈ F𝑝 and compute the blinded

value 𝑐𝑖 as follows:

𝑐𝑖 = ℎ𝑚𝑖𝑔
𝑟𝑖
1

Output (𝑟,Λ) where Λ = (𝑐�̄�, 𝑐, 𝜋𝑠 ) where 𝜋𝑠 is defined as:

𝜋𝑠 = NIZK{(�̄�, 𝑜, 𝑟 ) : ∀𝑖, 𝑐𝑖 = ℎ𝑚𝑖𝑔
𝑟𝑖
1
∧ 𝑐�̄� = 𝑔𝑜

1

𝑞∏
𝑖=1

ℎ
𝑚𝑖

𝑖

∧ 𝜙 (�̄�) = 1}
❖ BlindSign(𝑠𝑘 𝑗 ,Λ, 𝜙)→ (𝜎 𝑗 ): The authority 𝑗 parses Λ =

(𝑐�̄�, 𝑐, 𝜋𝑠 ), and 𝑠𝑘 𝑗 = (𝑥 𝑗 , 𝑦 𝑗 ). Recompute ℎ = 𝐻 (𝑐�̄�). Verify
the proof 𝜋𝑠 using 𝑐, 𝑐�̄� and 𝜙 ; if the proof is valid, compute

�̃� 𝑗 = ℎ𝑥 𝑗
∏𝑞

𝑖=1
𝑐
𝑦 𝑗,𝑖

𝑖
and output 𝜎 𝑗 = (ℎ, �̃� 𝑗 ); otherwise output ⊥.

❖ Unblind(𝜎 𝑗 , 𝑟 , 𝛾 ) → (𝜎 𝑗 ): Parse 𝜎 𝑗 = (ℎ, 𝑠 𝑗 ), let 𝑠 𝑗 =

𝑠 𝑗
∏𝑞

𝑖=1
𝛾
−𝑟𝑖
𝑖

, and output 𝜎 𝑗 = (ℎ, 𝑠 𝑗 ).
This results in 𝜎 𝑗 = (ℎ, 𝑠 𝑗 ) where 𝑠 𝑗 = ℎ𝑥 𝑗

∏𝑞

𝑖=1
𝑐
𝑦 𝑗,𝑖

𝑖

∏𝑞

𝑖=1
𝛾
−𝑟𝑖
𝑖

=

ℎ𝑥 𝑗+
∑𝑞

𝑖=1
𝑦 𝑗,𝑖 𝑚𝑖

.

This is similar to a Waters signature [36] related to the public

key of each authority. Verification of partial coins is used in the

implementation of Zef for clients to validate a quorum of answers

received in parallel from authorities and discard erroneous values

before running the aggregation step.

❖ AggCred({𝜎 𝑗 } 𝑗 ∈𝐽 ) → (𝜎): Return ⊥ if |𝐽 | ≠ 𝑡 . Parse each 𝜎 𝑗 as

(ℎ, 𝑠 𝑗 ). Output 𝜎 = (ℎ,∏𝑗 ∈𝐽 𝑠
ℓ𝑗
𝑗
), where each ℓ𝑗 is the Lagrange

coefficient given by:

ℓ𝑗 =


∏

𝑘∈𝐼\{ 𝑗 }
(0 − 𝑘)




∏
𝑘∈𝐼\{ 𝑗 }

( 𝑗 − 𝑘)

−1

mod 𝑝
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This computation results in a value 𝜎 = (ℎ,ℎ𝑥+
∑𝑞

𝑖=1
𝑦𝑖 𝑚𝑖 ) that

does not depend on the set of authorities 𝐽 .

❖ ProveCred(𝑣𝑘, �̄�, 𝜎, 𝜙 ′)→ (Θ, 𝜙 ′): Parse 𝜎 = (ℎ, 𝑠) and 𝑣𝑘 =

(𝛾, 𝛼, ¯𝛽). Pick at random 𝑟, 𝑟 ′ ∈ F2

𝑝 , set ℎ
′ = ℎ𝑟

′
, 𝑠 ′ = 𝑠𝑟

′ (ℎ′)𝑟 ,
and 𝜎 ′ = (ℎ′, 𝑠 ′). Build 𝜅 = 𝛼 𝑔𝑟

2

∏𝑞

𝑖=1
𝛽
𝑚𝑖

𝑖
. Then, output (Θ, 𝜙 ′),

where Θ = (𝜅, 𝜎 ′, 𝜋𝑣) and 𝜙 ′ is an application-specific predicate

satisfied by �̄�, and 𝜋𝑣 is:

𝜋𝑣 = NIZK{(�̄�, 𝑟 ) : 𝜅 = 𝛼 𝑔𝑟
2

𝑞∏
𝑖=1

𝛽
𝑚𝑖

𝑖
∧ 𝜙 ′(�̄�) = 1}

❖ VerifyCred(𝑣𝑘,Θ, 𝜙 ′) → (𝑡𝑟𝑢𝑒/𝑓 𝑎𝑙𝑠𝑒): ParseΘ = (𝜅, 𝜎 ′, 𝜋𝑣) and
𝜎 ′ = (ℎ′, 𝑠 ′); verify 𝜋𝑣 using 𝑣𝑘 and 𝜙 ′. Output 𝑡𝑟𝑢𝑒 if the proof
verifies, ℎ′ ≠ 1 and the bilinear evaluation 𝑒 (ℎ′, 𝜅) = 𝑒 (𝑠 ′, 𝑔2)
holds; otherwise output 𝑓 𝑎𝑙𝑠𝑒 .

The bilinear evaluation is justified by the following equations:

𝑒 (ℎ′, 𝜅) = 𝑒 (ℎ𝑟
′
, 𝛼 𝑔𝑟

2

𝑞∏
𝑖=1

𝛽
𝑚𝑖

𝑖
) = 𝑒 (ℎ𝑟

′
, 𝑔

𝑥+𝑟+∑𝑖 𝑦𝑖 𝑚𝑖

2
)

𝑒 (𝑠 ′, 𝑔2) = 𝑒 (𝑠𝑟
′
(ℎ′)𝑟 , 𝑔2) = 𝑒 (ℎ𝑟

′ (𝑥+∑𝑖 𝑦𝑖 𝑚𝑖 ) ℎ𝑟𝑟
′
, 𝑔2)

B.2 Anonymous Transfer Protocol
We now instantiate the anonymous transfer protocol from Sec-

tion 5 using the Coconut scheme with three attributes �̄� = (𝑘, 𝑞, 𝑣)
consisting of a key 𝑘 , a random seed 𝑞, and a private coin value 𝑣 .

From the point of view of its owner, an opaque coin is defined as

𝐴 = (𝑖𝑑, 𝑥, 𝑞, 𝑣, 𝜎) where 𝑖𝑑 is the linked account, 𝑥 is an unique

index within the same account 𝑖𝑑 , 𝑞 is a secret random seed, 𝑣 is

the value of the coin, and 𝜎 denotes the Coconut credential for

𝑘 = hash(𝑖𝑑 :: [𝑥]), 𝑞 and 𝑣 . When a new opaque coin is created,

the three attributes are hidden to authorities. The account 𝑖𝑑 and

the index 𝑥 of a coin are revealed when it is spent to verify coin

ownership and prevent double-spending of coins within the same

account. We use the third attribute 𝑞 to guarantee the privacy of

the value 𝑣 even after 𝑘 is revealed
10
.

Suppose that a sender owns ℓ input coins 𝐴𝑖𝑛
𝑖

=

(𝑖𝑑𝑖𝑛𝑖 , 𝑥𝑖𝑛
𝑖
, 𝑞𝑖𝑛

𝑖
, 𝑣𝑖𝑛
𝑖
, 𝜎𝑖𝑛

𝑖
) (1 ≤ 𝑖 ≤ ℓ) and wishes to create 𝑑

output coins of the form (𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑥𝑜𝑢𝑡
𝑗

, 𝑞𝑜𝑢𝑡
𝑗

, 𝑣𝑜𝑢𝑡
𝑗

, 𝜎𝑜𝑢𝑡
𝑗
) (1 ≤ 𝑗 ≤ 𝑑).

Let 𝑉 𝑖𝑛
𝑖
≥ 0 denotes a public value to withdraw from the

account 𝑖𝑑𝑖𝑛𝑖 as in Section 5. The sender must ensure that∑
𝑖 𝑣

𝑖𝑛
𝑖
+ ∑𝑖 𝑉

𝑖𝑛
𝑖

=
∑

𝑗 𝑣
𝑜𝑢𝑡
𝑗

and that the coin indices (𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑥𝑜𝑢𝑡
𝑗
)

are mutually distinct.

Using Coconut for opaque coin transfers. We present an

overview of the changes to the anonymous transfer protocol from

Section 5 to implement opaques coins.

Recall that the sender must first construct blinded descriptions

of the desired output coins. These descriptions are meant to be

incorporated into a hash commitment ℎ in the spending certificates

𝐶𝑖 for input coins. To do so, the sender proceeds as follows. Define

10
As noted in the original Coconut paper [33], if a credential contains a single attribute

𝑚 of low entropy (such as a coin value), the verifier can run multiple times the

verification algorithm making educated guesses on the value of𝑚 and effectively

recover its value through brute-force.

𝜙 ′ is a predicate satisfied by the input and output coin values and

defined as follows: 𝜙 ′(𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡 ) = true iff

𝑙∑
𝑖

𝑣𝑖𝑛𝑖 +
𝑙∑
𝑖

𝑉 𝑖𝑛
𝑖 =

𝑑∑
𝑗

𝑣𝑜𝑢𝑡𝑗 ∧ 𝑣𝑜𝑢𝑡𝑖 ∈ [0, 𝑣max]

The predicate 𝜙 ′ binds the NIZKs associated with all ProveCred
proofs for the input coins and all PrepareBlindSign proofs for the

output coins. It also shows that the value on both sides of the

transfer is consistent.

For every 1 ≤ 𝑖 ≤ ℓ , considering 𝑘𝑖𝑛
𝑖

= hash(𝑖𝑑𝑖𝑛𝑖 :: [𝑥𝑖𝑛
𝑖
]) as

public parameters, the sender calls

Θ𝑖 ← ProveCred(𝑣𝑘, (𝑞𝑖𝑛𝑖 , 𝑣𝑖𝑛𝑖 ), 𝜎
𝑖𝑛
𝑖 , 𝜙 ′)

Then, for every 1 ≤ 𝑗 ≤ 𝑑 , she calls

((𝑟𝑘 𝑗 , 𝑟𝑞 𝑗 , 𝑟𝑣 𝑗 ),Λ 𝑗 ) ← PrepareBlindSign(𝑘𝑜𝑢𝑡𝑗 , 𝑞𝑜𝑢𝑡𝑗 , 𝑣𝑜𝑢𝑡𝑗 , 𝜙 ′)
Define 𝑃 = (Θ1, . . . ,Θℓ ,Λ1, . . . ,Λ 𝑗 , 𝜙

′) and ℎ = hash(𝑃).
The sender obtains 𝐶𝑖 = cert[𝑅𝑖 ] by broadcasting a request

𝑅𝑖 = Execute(𝑖𝑑𝑖 , 𝑛𝑖 , Spend(𝑉 𝑖𝑛
𝑖
, 𝑥𝑖𝑛

𝑖
, ℎ)) for some suitable se-

quence number 𝑛𝑖 . The operation Spend behaves as the one de-

scribed in Section 5 except that (i) the attribute 𝑥 plays the role

of 𝑐𝑚 w.r.t. the spent list spent𝑖𝑑 (𝛼); and (ii) for simplicity, we

differ the validation of each input coin credential (formerly the

signature 𝜎 in 𝑂) to the next step.

Next, the sender submits a request 𝑅∗ =

CreateAnonymousCoins(𝐶1, . . . ,𝐶ℓ , 𝑃). On receiving 𝑅∗ from the

sender, an authority 𝜒 now verifies the proofs Θ𝑖 and Λ 𝑗 and

the predicate 𝜙 ′ by running VerifyCred(𝑣𝑘,Θ𝑖 , 𝜙
′) for each 𝑖 and

𝜎𝑜𝑢𝑡
𝑗

= BlindSign(𝑠𝑘 𝜒 ,Λ 𝑗 , 𝜙
′) for each 𝑗 . If the proofs are valid, it

returns ˜̄𝜎𝑜𝑢𝑡 to the sender.

After collecting 𝑡 such responses, the sender can now run

Unblind and AggCred to obtain a valid credential on each created

output coin. Finally, to complete the transfer, it can send the coin

(𝑖𝑑𝑜𝑢𝑡𝑗 , 𝑥𝑜𝑢𝑡
𝑗

, 𝑞𝑜𝑢𝑡
𝑗

, 𝑣𝑜𝑢𝑡
𝑗

, 𝜎𝑜𝑢𝑡
𝑗
) to the 𝑗 th recipient.

Opaque coin construction. We present the cryptographic prim-

itives used by the opaque coins transfer protocol. The Setup and

KeyGen algorithms are exactly the same as Coconut.

❖ CoinRequest(𝑣𝑘, 𝜎𝑖𝑛, 𝑞𝑖𝑛, 𝑣𝑖𝑛, ¯𝑘𝑜𝑢𝑡 , 𝑞𝑜𝑢𝑡 , 𝑣𝑜𝑢𝑡 ,𝑉 𝑖𝑛
1
, . . . ,𝑉 𝑖𝑛

ℓ
) →

(( ¯𝑟𝑘, 𝑟𝑞, 𝑟𝑣), Γ):
Parse 𝑣𝑘 = (𝛾0, 𝛾1, 𝛾2, 𝛼, 𝛽0, 𝛽1, 𝛽2). For every input coin 𝜎𝑖𝑛

𝑖
(1 ≤

𝑖 ≤ ℓ), parse 𝜎𝑖𝑛
𝑖

= (ℎ𝑖 , 𝑠𝑖 ), pick at random 𝑟ℎ𝑖 , 𝑟𝑠𝑖 ∈ F2

𝑝 , and

compute

ℎ′𝑖 = ℎ
𝑟ℎ𝑖
𝑖

and 𝑠 ′𝑖 = 𝑠
𝑟ℎ𝑖
𝑖
(ℎ′𝑖 )

𝑟𝑠𝑖

Then set 𝜎 ′𝑖𝑛
𝑖

= (ℎ′
𝑖
, 𝑠 ′
𝑖
) and build:

𝜅𝑖 = 𝛼 𝑔
𝑟𝑠𝑖
2

𝛽
𝑞𝑖𝑛
𝑖

1
𝛽
𝑣𝑖𝑛
𝑖

2

For every output coin 𝑗 (1 ≤ 𝑗 ≤ 𝑑), pick a random 𝑜 𝑗 ∈ F𝑝 , and
compute the commitments 𝑐𝑚 𝑗 and the group elements

ˆℎ 𝑗 as

𝑐𝑚 𝑗 = 𝑔
𝑜 𝑗

1
ℎ
𝑘𝑜𝑢𝑡
𝑗

0
ℎ
𝑞𝑜𝑢𝑡
𝑗

1
ℎ
𝑣𝑜𝑢𝑡
𝑗

2
and

ˆℎ 𝑗 = 𝐻 (𝑐𝑚 𝑗 )

For all 1 ≤ 𝑗 ≤ 𝑑 , pick a random (𝑟𝑘 𝑗 , 𝑟𝑞 𝑗 , 𝑟𝑣 𝑗 ) ∈ F3

𝑝 and compute

the commitments (𝑐𝑘 𝑗 , 𝑐𝑞 𝑗 , 𝑐𝑣 𝑗 ) as follows:

𝑐𝑘 𝑗 = ˆℎ
𝑘𝑜𝑢𝑡
𝑗

𝑗
𝑔
𝑟𝑘,𝑗
1

and 𝑐𝑞 𝑗 =
ˆℎ
𝑞𝑜𝑢𝑡
𝑗

𝑗
𝑔
𝑟𝑞 𝑗

1
and 𝑐𝑣 𝑗 = ˆℎ

𝑣𝑜𝑢𝑡
𝑗

𝑗
𝑔
𝑟 𝑣 𝑗
1
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Output (( ¯𝑟𝑘, 𝑟𝑞, 𝑟𝑣), Γ) where Γ = (𝜎 ′𝑖𝑛, 𝜅, ¯𝑐𝑚, ¯𝑐𝑘, 𝑐𝑞, 𝑐𝑣, 𝜋𝑟 )
where 𝜋𝑟 is defined as:

𝜋𝑟 = NIZK{(𝑞𝑖𝑛, 𝑣𝑖𝑛, ¯𝑘𝑜𝑢𝑡 , 𝑞𝑜𝑢𝑡 , 𝑣𝑜𝑢𝑡 , 𝑟𝑠, 𝑜, 𝑟𝑘 , 𝑟𝑞, 𝑟𝑣) :

∀𝑖, 𝜅𝑖 = 𝛼 𝑔
𝑟𝑠𝑖
2

𝛽
𝑞𝑖𝑛
𝑖

1
𝛽
𝑣𝑖𝑛
𝑖

2

∧ ∀𝑗, 𝑐𝑚 𝑗 = 𝑔
𝑜 𝑗

1
ℎ
𝑘𝑜𝑢𝑡
𝑗

0
ℎ
𝑞𝑜𝑢𝑡
𝑗

1
ℎ
𝑣𝑜𝑢𝑡
𝑗

2

∧ ∀𝑗, 𝑐𝑘 𝑗 = ˆℎ
𝑘𝑜𝑢𝑡
𝑗

𝑗
𝑔
𝑟𝑘 𝑗

1

∧ ∀𝑗, 𝑐𝑞 𝑗 = ˆℎ
𝑞𝑜𝑢𝑡
𝑗

𝑗
𝑔
𝑟𝑞 𝑗

1

∧ ∀𝑐𝑣 𝑗 = ˆℎ
𝑣𝑜𝑢𝑡
𝑗

𝑗
𝑔
𝑟 𝑣 𝑗
1

∧
𝑙∑
𝑖

𝑣𝑖𝑛𝑖 +
𝑙∑
𝑖

𝑉 𝑖𝑛
𝑖 =

𝑑∑
𝑗

𝑣𝑜𝑢𝑡𝑗

∧ 𝑣𝑜𝑢𝑡𝑖 ∈ [0, 𝑣max]
}

❖ IssueBlindCoin(𝑠𝑘 𝜒 , 𝑣𝑘, Γ, ¯𝑘𝑖𝑛,𝑉 𝑖𝑛
1
, . . . ,𝑉 𝑖𝑛

ℓ
)→ (̃𝜎): The author-

ity 𝜒 parses 𝑠𝑘 𝜒 = (𝑥,𝑦0, 𝑦1, 𝑦2), 𝑣𝑘 = (𝛾0, 𝛾1, 𝛾2, 𝛼, 𝛽0, 𝛽1, 𝛽2),
and Γ = (𝜎 ′𝑖𝑛, 𝜅, 𝑐𝑚, ¯𝑐𝑘, 𝑐𝑞, 𝑐𝑣, 𝜋𝑟 ). Recompute

ˆℎ 𝑗 = 𝐻 (𝑐𝑚 𝑗 ) for
each 1 ≤ 𝑗 ≤ 𝑑 .

Verify the proof 𝜋𝑟 using Γ, ¯ℎ∗, 𝑣𝑘 , and 𝑉 𝑖𝑛
1
, . . . ,𝑉 𝑖𝑛

ℓ
. For each

1 ≤ 𝑖 ≤ ℓ , parse 𝜎 ′𝑖𝑛
𝑖

= (ℎ′
𝑖
, 𝑠 ′
𝑖
), verify ℎ′

𝑖
≠ 1, and that the

following bilinear evaluation holds:

𝑒 (ℎ′𝑖 , 𝜅𝑖 + 𝛽
𝑘𝑖𝑛
𝑖

0
) = 𝑒 (𝑠 ′𝑖 , 𝑔2)

If one of these checks fail, stop the protocol and output ⊥. Oth-
erwise, compute:

�̃� 𝑗 = ˆℎ𝑥𝑗 𝑐𝑘
𝑦0

𝑗
𝑐𝑞

𝑦1

𝑗
𝑐𝑣

𝑦2

𝑗

and output 𝜎 𝑗 = ( ˆℎ 𝑗 , �̃� 𝑗 ).
❖ PlainVerify(𝑣𝑘, 𝜎, 𝑘, 𝑞, 𝑣) → (true/false): Parse 𝜎 = (ℎ, 𝑠) and
𝑣𝑘 = (𝛾0, 𝛾1, 𝛾2, 𝛼, 𝛽0, 𝛽1, 𝛽2). Reconstruct 𝜅 = 𝛼𝛽𝑘

0
𝛽
𝑞

1
𝛽𝑣

2
. output

true if ℎ ≠ 1 and 𝑒 (ℎ, 𝜅) = 𝑒 (𝑠, 𝑔2); otherwise output false.
The user then calls AggCred and Unblind over each 𝜎 𝑗 exactly as

described in Appendix B.1.
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