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ABSTRACT
Bitcoin is the most secure blockchain in the world, supported by the

immense hash power of its Proof-of-Work miners, but consumes

huge amount of energy. Proof-of-Stake chains are energy-efficient,

have fast finality and accountability, but face several fundamental

security issues: susceptibility to non-slashable long-range safety

attacks, non-slashable transaction censorship and stalling attacks

and difficulty to bootstrap new PoS chains from low token valuation.

We propose Babylon, a blockchain platform which combines the

best of both worlds by reusing the immense Bitcoin hash power

to enhance the security of PoS chains. Babylon provides a data-

available timestamping service, securing PoS chains by allowing

them to timestamp data-available block checkpoints, fraud proofs

and censored transactions on Babylon. Babylon miners merge mine

with Bitcoin and thus the platform has zero additional energy cost.

The security of a Babylon-enhanced PoS protocol is formalized by

a cryptoeconomic security theorem which shows slashable safety

and liveness guarantees.

1 INTRODUCTION
1.1 From Proof-of-Work to Proof-of-Stake
Bitcoin, the most valuable blockchain in the world, is secured by a

Proof-of-Work protocol that requires its miners to solve hard math

puzzles by computing many random hashes. As of this writing,

Bitcoin miners around the world are computing in the aggregate

roughly 1.4 × 1021 hashes per second. This hash power is the basis

of Bitcoin’s security, as an attacker trying to rewrite the Bitcoin

ledger or censor transactions has to acquire a proportional amount

of hash power, making it extremely costly to attack the protocol.

However, this security also comes at a tremendous energy cost.

Many newer blockchains eschew the Proof-of-Work paradigm in

favor of energy-efficient alternatives, the most popular of which is

Proof-of-Stake (PoS). A prominent example is Ethereum, which is

currently migrating from PoW to PoS, a process 6 years in the mak-

ing. Other prominent PoS blockchains include Cardano, Algorand,

Solana, Polkadot, Cosmos Hub and Avalanche among others. In ad-

dition to energy-efficiency, another major advantage of many PoS

blockchains is their potential to hold protocol violators accountable

and slash their stake as punishment.

Contact author: DT.

1.2 Proof-of-Stake Security Issues
Early attempts at proving the security of PoS protocols were made

under the assumption that the majority or super-majority of the

stake belongs to the honest parties (e.g., [12, 16, 22, 23]). However,
modern PoS applications such as cryptocurrencies are increasingly

run by economic agents driven by financial incentives, that are not

a priori honest. To ensure that these agents follow the protocol

rules, it is crucial to incentivize honest behavior through economic

rewards and punishments for protocol-violating behavior. Towards

this goal, Buterin and Griffith [18] advocated the concept of ac-
countable safety, the ability to identify validators who have prov-

ably violated the protocol in the event of a safety violation. In lieu

of making an unverifiable honest majority assumption, this ap-

proach aims to obtain a cryptoeconomic notion of security for these

protocols by holding protocol violators accountable and slashing

their stake, thus enabling an exact quantification of the penalty

for protocol violation. This trust-minimizing notion of security is

central to the design of important PoS protocols such as Gasper

[19], the protocol supporting Ethereum 2.0, and Tendermint [15],

the protocol supporting the Cosmos ecosystem. However, there are

several fundamental limitations to achieving such trust-minimizing

cryptoeconomic security for PoS protocols:

(1) Safety attacks are not slashable: While a PoS protocol with

accountable safety can identify attackers, slashing of their

stake is not always possible. thus implying a lack of slash-
able safety. For example, a long-range history-revision attack

can be mounted using old coins after the stake is already with-

drawn and therefore cannot be slashed [12, 17, 23, 24]. These

attacks are infeasible in a PoW protocol like Bitcoin as the

attacker needs to counter the total difficulty of the existing

longest chain. In contrast, they become affordable in a PoS

protocol since the old coins have little value and can be bought

by the adversary at a small price. Such long-range attacks is a

long-known problem with PoS protocols, and there have been

several approaches to deal with them (Section 2). In Section

4.1, we show a negative result: no PoS protocol can provide

slashable safety without external trust assumptions. A typical

external trust assumption used in practice is off-chain social-
consensus checkpointing. But since this type of checkpointing
cannot be done very frequently, the stake lock-up period has

to be set very long (e.g., 21 days is a typical lock-up period for

Cosmos zones), reducing the liquidity of the system. Moreover,

social consensus cannot be relied upon in smaller blockchains

with an immature community.
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(2) Liveness attacks are not accountable or slashable: Exam-

ples of these attacks include protocol stalling and transaction

censorship. Unlike safety attacks where adversary double-signs

conflicting blocks, such attacks are hard to be held accountable

in a PoS protocol. For example, Ethereum 2.0 attempts to hold

protocol stalling accountable by slashing non-voting attesters

through a process called inactivity leak [14]. However, as we
discuss in Section 4.2, an attacker can create an alternative

chain and make it public much later, in which the honest at-

testers would not be voting and would therefore be slashed.

Moreover, there is no known mechanism to hold the censoring

of specific transactions accountable. In this context, we show

in Section 4.2 that accountable liveness, let alone slashable live-

ness, is impossible for any PoS protocol without external trust

assumptions.

(3) The bootstrapping problem: Even if a PoS protocol could

provide slashable security guarantees, the maximum financial

loss an adversary can suffer due to slashing does not exceed the

value of its staked coins. Thus, the cryptoeconomic security of

a PoS protocol is proportional to its token valuation. Many PoS

chains, particularly ones that support one specific application,

e.g., a Cosmos zone, start small with a low token valuation. This

makes it difficult for new blockchains to support high-valued

applications like decentralized finance or NFTs.

1.3 Reusing Bitcoin Mining to Provide
External Trust

Figure 1: The Babylon architecture. Babylon is a PoW chain
mergemined by Bitcoinminers and used by the PoS protocols
to obtain slashable security.

The PoS security issues above cannot be resolved without an exter-

nal source of trust. But a strong source of trust already exists in the

blockchain ecosystem: Bitcoin mining. Built on this observation, we

propose Babylon, a blockchain platform which reuses the existing
Bitcoin hash power to enhance the security for any PoS chain which

uses the platform (Figure 1). Babylon is a PoW blockchain on which

multiple PoS chains can post information and use the ordering and

availability of that information to obtain cryptoeconomic security

guarantees while retaining all of their desirable features such as fast

finalization. Babylon is mined by the Bitcoin miners via a technique

called merge mining [2, 3, 5], which enables the reuse of the same

hash power on multiple chains (cf. Appendix B). Thus, by reusing

the existing Bitcoin hash power, Babylon enhances the security of

PoS chains at no extra energy cost.

1.4 Babylon: A Data-available
Timestamping Service

A major reason behind the security issues of PoS protocols de-

scribed in Section 1.2 is the lack of a reliable arrow of time. For
example, long-range attacks exploit the inability of late-coming

nodes to distinguish between the original chain and the adversary’s

history-revision chain that is publicized much later [23, 24]. Baby-

lon resolves these security limitations by providing a data-available
timestamping service to the PoS chains.

To obtain slashable security guarantees, full nodes of the PoS

protocols post commitments of protocol-related messages, e.g., fi-
nalized PoS blocks, fraud proofs, censored PoS transactions, onto

the Babylon PoW chain (Figure 2). Babylon checks if the messages

behind these commitments are available and provides a timestamp

for the messages by virtue of the location of its commitments in the

Babylon chain. This enables PoS nodes, including the late-coming

ones, to learn the time and order in which each piece of data was

first made public. PoS nodes can then use the timestamps on this

data in conjunction with the consensus logic of the native PoS

protocol to resolve safety conflicts, identify protocol violators and

slash them before they can withdraw their stake in the event of

safety or liveness violations. For example, whenever there is a safety

violation in a PoS protocol causing a fork, timestamps on Babylon

can be used to resolve the fork by choosing the branch with the

earlier timestamp (Figure 2). Whenever there is a proof of double-

signing or liveness violation recorded on Babylon, responsible PoS

participants can be irrefutably identified and slashed using the

information on Babylon.

To resolve the security issues of PoS protocols, Babylon, in ad-
dition to timestamping PoS data, has to guarantee that this data is

available, i.e., has been publicized to the honest PoS nodes, when it

is timestamped. Otherwise an adversary that controls the majority

stake can mount a non-slashable long range attack by posting suc-

cinct commitments of finalized, yet private PoS blocks on Babylon

and releasing the block data to the public much later, after the ad-

versarial stake is withdrawn (Figure 3). Thus, Babylon must also

provide the additional functionality of checking for the availability

of the PoS data it is timestamping. This functionality cannot be

satisfied by solutions that timestamp PoS data by posting its suc-

cinct commitments directly on Bitcoin or Ethereum [32], whereas

posting all of the data raises scalability concerns (cf. Section 2 for

more discussion). Thus, it necessitates a new PoW chain, Babylon,

whose miners are instructed to check for the availability of the

timestamped data in the view of the PoS nodes.

Babylon is minimalistic in the sense that it provides a data-

available timestamping service and no more. It does not execute the
transactions on the PoS chains, does not keep track of their partici-

pants and in fact does not even need to understand the semantics

of the PoS block content. It also does not store the PoS data. All

Babylon needs to do is to check the availability of the PoS data it is

timestamping and make this data public to the PoS nodes, which

can be done efficiently (eg. [7, 36]). This minimalism allows the

scalability of Babylon to support the security of many PoS chains

simultaneously.
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Figure 2: Timestamping on Babylon. Babylon PoW chain provides a record of the times events happen on the PoS chains, thus
enabling PoS nodes to resolve safety violations on the PoS chain. For instance, since the checkpoints of the blocks in the top
branch of the PoS chain appears earlier on Babylon than the checkpoints of the blocks in the bottom branch, the canonical PoS
chain in this case follows the top branch.

Figure 3: An adversary that controls a super-majority of stake finalizes PoS blocks on two conflicting chains. It keeps the
blocks on one of the chains, the attack chain, private, and builds the other, the canonical one in public. It also posts succinct
commitments of blocks from both chains to a timestamping service, e.g., Bitcoin or Ethereum. Commitments from the attack
chain are ignored by the nodes since their data is not available and might be invalid. Finally, after withdrawing its stake and
timestamping it on the PoW chain, the adversary publishes the private attack chain. From the perspective of a late-coming
node, the attack chain is the canonical one as it has an earlier timestamp on block 𝑏 and its contents are now available. However,
this is a safety violation. Moreover, as the adversary has withdrawn its stake, it cannot be slashed or financially punished.

1.5 High-level Description of the Protocol
The Babylon architecture consists of two major components: the

Babylon PoW chain (Babylon for short), merge-mined by Bitcoin

miners, hereafter referred to as Babylon miners, and the Babylon-

enhanced PoS protocols each maintained by a distinct set of PoS

nodes (nodes for short). The Babylon-enhanced PoS protocol is con-

structed on top of a standard accountably-safe PoS protocol which

takes PoS transactions as input and outputs a chain of finalized
blocks called the PoS chain.

Babylon miners are full nodes towards Babylon, i.e., download
and verify the validity of all Babylon blocks. They also download the

data whose commitments are sent to Babylon for timestamping, but

do not validate it. PoS full nodes download and verify the validity

of all PoS blocks in their respective chains. All PoS nodes act as

light clients towards Babylon. Thus, they rely on Babylon miners to

hand them valid Babylon blocks, and download only the messages

pertaining to their PoS protocol from Babylon. A subset of PoS full

nodes, called validators, lock their funds for staking and run the

PoS consensus protocol by proposing and voting for blocks
1
.

PoS nodes can send different types of messages to Babylon for

timestamping (Figure 2). These messages are typically succinct

commitments of PoS data such as finalized PoS blocks, censored

transactions and fraud proofs identifying misbehaving PoS val-

idators. Finalized PoS blocks whose commitments are included in

Babylon are said to be checkpointed by the Babylon block that

includes the commitment.

PoS nodes use the timestamped information on Babylon to re-

solve safety violations and slash protocol violators as described

below (cf. Section 5 for details):

(1) Fork-choice rule: If there is a fork on the PoS chain due to

a safety violation, then the canonical chain of the Babylon-

enhanced PoS protocol follows the fork whose first check-

pointed block has the earlier timestamp on Babylon (Figure 2).

Thus, Babylon helps resolve safety violations on the PoS chains.

1
Not every PoS full node is necessarily a validator. Full nodes that are not validators

still download PoS blocks and process their transactions to obtain the latest PoS state.
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(2) Stake withdrawal and slashing for double-signing: A val-

idator can input a withdrawal request into the PoS protocol

to withdraw its funds locked for staking. A stake withdrawal

request is granted, as a transaction in a later PoS block, if the

PoS block containing the request is timestamped, i.e. check-
pointed, by a Babylon block that is at least 𝑘𝑤-block deep in

the longest Babylon chain and no fraud proof of the valida-

tor double-signing has appeared on Babylon (Figure 5). On

the other hand, if a fraud proof against this validator exists,

then the validator is slashed. Here, 𝑘𝑤 determines the stake

withdrawal delay.

(3) Slashing for transaction censoring: If a node believes that
a transaction is being censored on the PoS chain, it can submit

the transaction to Babylon along with a censorship complaint.
Upon observing a complaint on the Babylon chain, validators

stop proposing or voting for PoS blocks that do not contain

the censored transaction. PoS blocks excluding the censored

transaction and checkpointed on Babylon after the censorship

complaint are labeled as censoring. Validators that propose or
vote for censoring blocks are slashed.

Although Babylon is a timestamping service, granularity of

time as measured by its blocks depends on the level of its se-

curity. For instance, if the adversary can reorganize the last 𝑘𝑐
blocks on the Babylon chain, it can delay the checkpoints of

PoS blocks sent to the miners before a censorship complaint

until after the complaint appears on Babylon. Thus, to avoid

slashing honest validators that might have voted for these

blocks, PoS blocks checkpointed by the first 𝑘𝑐 Babylon blocks

following a censorship complaint are not labelled as censoring.

Since this gives the adversary an extra 𝑘𝑐 blocktime to censor

transactions, 𝑘𝑐 is an upper bound on the worst-case finaliza-

tion latency of transactions when there is an active censorship

attack.

(4) Slashing for stalling: If a PoS node believes that the growth
of the PoS chain has stalled due to missing proposals or votes,

it submits a stalling evidence to Babylon. Upon observing a

stalling evidence, validators record proposals and votes ex-

changed over the next round of the PoS protocol on Babylon.

Those that fail to propose or vote, thus whose protocol mes-

sages do not appear on Babylon within 𝑘𝑐 blocks of the stalling

evidence, are slashed. Again, the grace period of 𝑘𝑐 blocks

protects honest validators from getting slashed in case the

adversary delays their messages on Babylon.

We note that the Babylon checkpoints of finalized PoS blocks

are primarily used to resolve safety violations and slash adversarial

validators in the event of safety and liveness attacks. Hence, Babylon

does not require any changes to the native finalization rule of the

PoS protocols using its services, and preserves their fast finality

propert in the absence of censorship or stalling attacks.

Majority of the Babylon-specific add-ons used to enhance PoS

protocols treat the PoS protocol as a blackbox, thus are applicable

to any propose-vote style accountably-safe PoS protocol. In fact,

the only part of the Babylon-specific logic in Section 5 that uses

the Tendermint details is the part used to slash stalling attacks on

liveness. Hence, we believe that Babylon can be generalized to apply

to PoS protocols such as PBFT [20], HotStuff [35], and Streamlet

[21].

1.6 Security Theorem
Using Babylon, accountably-safe PoS protocols can overcome the

limitations highlighted in Section 1.2 and obtain slashable security.

To demonstrate this, we augment Tendermint [16] with Babylon-

specific add-ons and state the following security theorem for Babylon-

enhanced Tendermint. Tendermint was chosen as it provides the

standard accountable safety guarantees [15].

The Babylon chain is said to be secure for parameter 𝑟 , if the

𝑟 -deep prefixes of the longest Babylon chains in the view of honest

nodes satisfy safety and liveness as defined in [25]. A validator 𝑣

is said to become slashable in the view of an honest node if 𝑣 was

provably identified as a protocol violator and has not withdrawn its

stake in the node’s view. Formal definitions of safety and liveness for

the Babylon-enhanced PoS protocols, slashability for the validators

and security for the Babylon chain are given in Section 3.

Theorem 1. Consider a synchronous network where message de-
lays between all nodes are bounded, and the average time between
two Babylon blocks is set to be much larger than the network delay
bound. Then, Babylon-enhanced Tendermint satisfies the following
security properties if there is at least one honest PoS node at all times:

• Whenever the safety of the PoS chain is violated, either of the
following conditions must hold:
– S1: More than 1/3 of the active validator set becomes slash-

able in the view of all honest PoS nodes.
– S2: Security of the Babylon chain is violated for parameter

𝑘𝑤/2.
• Whenever the liveness of the PoS chain is violated for a duration

of more than Θ(𝑘𝑐 ) block-time as measured in mined Babylon
blocks, either of the following conditions hold:
– L1: More than 1/3 of the active validator set becomes slash-

able in the view of all honest PoS nodes.
– L2: Security of the Babylon chain is violated for parameter

𝑘𝑐/2.

Proof of Theorem 1 is given in Appendix D. Note that this is a

cryptoeconomic security theorem as it explicitly states the slashing

cost to the attacker to cause a safety or liveness violation (condi-

tions S1 and L1 respectively). There is no trust assumption on the

PoS validators such as having an honest majority. There are trust

assumptions on the Babylon miners (as reflected by conditions S2
and L2), but these trust assumptions are also quantifiable in terms

of the economic cost of the attacker to acquire the hash power to

reorganize certain number of Babylon blocks.

Specific implications of the theorem are:

(1) Slashable safety: Conditions S1 and S2 together say that,

when the PoS chain is supported by Babylon, the attacker

must reorganize 𝑘𝑤/2 blocks on Babylon if it does not want

to be slashed for a safety attack on the PoS chain. Since 𝑘𝑤 is

the stake withdrawal delay and determines the liquidity of the

staked funds, S2 quantifies the trade-off between stake liquidity

and the attacker’s cost. When reorganization cost of Babylon is

high as is the case for a chain merge-mined with Bitcoin, this
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trade-off also implies much better liquidity than in the current

PoS chains (e.g., 21 days in Cosmos).

(2) Slashable liveness: Conditions L1 and L2 together say that,

with Babylon’s support, the attacker must reorganize 𝑘𝑐/2
blocks on Babylon if it does not want to be slashed for a liveness

attack on the PoS chain. Since 𝑘𝑐 is the worst-case latency for

the finalization of transactions under an active liveness attack,

L2 quantifies the trade-off between the worst-case latency

under attack and the attacker’s cost.

1.7 Bootstapping New PoS Chains
In a PoS protocol with slashable security, the attack cost is deter-

mined by the token value (cf. Section 1.2). On protocols with low

initial valuation, this low barrier to attack pushes away high-valued

applications that would have increased the token value. To break

this vicious cycle, new PoS protocols can use Babylon as a second

layer of finalization. For instance, PoS nodes can require the check-

point of a finalized PoS block to become, e.g., 𝑘 blocks deep in the

Babylon PoW chain before they consider it finalized. Then, to vio-

late the security of the 𝑘-deep and finalized PoS blocks, the attacker

must not only forgo its stake due to slashing, but also acquire the

hash power necessary to reorganize Babylon for 𝑘 blocks. For this

purpose, it has to control over half of the total hash power for a

duration Θ(𝑘) blocks2[9]. Thus, by increasing 𝑘 , the attack cost can
be increased arbitrarily. Through this extra protection provided by

Babylon, newer PoS protocols can attract high value applications

to drive up their valuation.

Note that a large 𝑘 comes at the expense of finalization latency,

which no longer benefits from the fast finality of the PoS protocol.

This tradeoff between latency and the parameter 𝑘 can be made

individually or collectively by the PoS nodes in a manner that suits

the nodes’ or the protocol’s security needs. Moreover, once the

valuation of the protocol grows sufficiently large, the parameter 𝑘

can be decreased in proportion to the slashing costs, and eventually

removed altogether, enabling the PoS protocols to regain fast finality

after a quick bootstrapping period.

1.8 Outline
Section 2 surveys the related work and analyzes alternative times-

tamping solutions in terms of their ability to provide slashable

security. Section 3 introduces the model and the formal definitions

used throughout the paper. Section 4 formalizes the impossibility re-

sults for slashable safety and accountable liveness of PoS protocols.

Sections 5 and 6 give a detailed description of a Babylon-enhanced

PoS protocol, and discuss Babylon’s potential for scalability. Fi-

nally, Section 7 provides a reference design for Babylon-enhanced

Tendermint using Cosmos SDK.

2 RELATEDWORKS
2.1 Long-range Attacks
Among all the PoS security issues discussed in Section 1.2, long

range history revision attacks is the most well-known, [12, 17, 23,

24] and several solutions have been proposed: 1) checkpointing

2
Reorganizing one Bitcoin block costs about USD $0.5M, as of this writing [4]. Perhaps

more importantly, 0% of this hash power is available on nicehash.com.

via social consensus (e.g., [11, 13, 17, 23]); 2) use of key-evolving
signatures (e.g., [12, 22, 27]); 3) use of verifiable delay functions, i.e.,
VDFs (e.g., [34]); 4) timestamping on an existing PoW chain like

Ethereum [32] or Bitcoin [10].

2.1.1 Social Consensus. Social consensus refers to a trusted com-

mittee of observers, potentially distinct from the PoS nodes, which

periodically checkpoint finalized PoS blocks that have been made

available. It thus attempts to prevent long range attacks by making

the adversarial blocks that are kept private distinguishable from

those on the canonical PoS chain that contain checkpoints.

Social consensus suffers from vagueness regarding the size and

participants of the checkpointing committee. For instance, a small

oligarchy of trusted nodes would lead to a centralization of trust,

anathema to the spirit of distributed systems. Conversely, a large

committee would face the problem of reaching consensus on check-

points in a timely manner. Moreover, the question of who belongs

in the committee complicates the efforts to quantify the trust as-

sumptions placed on social consensus, in turn making any security

valuation prone to miscalculations. For instance, a re-formulation of

Theorem 1 in this setting would claim slashable security as long as

the social consensus checkpoints are ‘trustworthy’, without much

insight on how to value this trust in economic terms. In comparison,

the trust placed on Babylon is quantifiable and equals the cost of

acquiring the hash power necessary to reorganize the Babylon PoW

chain, which is well-known [4].

2.1.2 Key-evolving Signatures. Use of key-evolving signatures re-
quires validators to forget old keys so that a history revision attack

using old coins cannot be mounted. However, an adversarial ma-

jority can always record their old keys and use them to attack the

canonical chain by creating a conflicting history revision chain

once they withdraw their stake. This way, they can cause a safety

violation, yet upon detection, avoid any slashing of the stake as

it was already withdrawn. Hence, key-evolving signatures cannot

prevent long range attacks without an honest majority assumption,

thus cannot provide slashable security.

Security has been shown for various PoS protocols [12, 22] using

key-evolving signatures under the honest majority assumption,

which ensures that the majority of validators willingly forget their

old keys. However, this is not necessarily incentive-compatible as

there might be a strong incentive for the validators to remember

the old keys in case they become useful later on. Thus, key-evolving

signatures render the honest majority assumption itself question-

able by asking honest validators for a favor which they may be

tempted to ignore.

2.1.3 VDFs. As was the case with key-evolving signatures, VDFs

cannot prevent long range attacks without the honest majority as-

sumption, thus cannot provide slashable security. For instance, an

adversarial majority can build multiple conflicting PoS chains since

the beginning of time, and run multiple VDF instances simultane-

ously for both the public PoS chain and the attack chains that are

kept private. After withdrawing their stakes, these validators can

publish the conflicting attack chains with the correct VDF proofs.

Thus, VDFs cannot prevent an adversarial majority from causing a

safety violation at no slashing cost.
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Another problem with VDFs is the possibility of finding faster

functions [8], which can then be used to mount a long range attack,

even under an honest majority assumption.

2.1.4 Timestamping on Bitcoin or Ethereum. Timestamping directly

on an existing PoW chain, e.g., Bitcoin [10] or Ethereum [32] suffers

from the fact that these PoW chains do not check for the availability

of the committed data in the view of the PoS nodes, thus, as a solu-

tion, is vulnerable to the attack on Figure 3. To mitigate the attack,

either all of the committed PoS data, e.g., all the PoS blocks, must

be posted on the PoW chain to guarantee their availability, or an

honest majority must certify the timestamps to prevent unavailable

PoS blocks from acquiring timestamps on the PoW chain.

The first mitigation creates scalability issues since in this case,

miners must not only verify the availability of the PoS data, which

can be done through lightweight methods such as data availability

sampling [7, 36], but also store the data of potentially many different

PoS protocols indefinitely.

The second mitigation was implemented by [32] through an

Ethereum smart contract which requires signatures from over 2/3
of the PoS validators to timestamp changes in the validator sets.

Since [32] assumes honest majority, signatures from 2/3 of the

validators imply that the signed changes in the validator set are

due to transactions within available and valid PoS blocks. However,

the second mitigation cannot be used to provide cryptoeconomic

security without trust assumptions on the validators. In contrast,

Babylon miners are modified to do data availability checks, which

enables Babylon to rely on the miners themselves rather than an

honest majority of PoS validators for data availability.

2.2 Hybrid PoW-PoS Protocols
A Babylon-enhanced PoS protocol is an example of a hybrid PoW-
PoS protocol, where consensus is maintained by both PoS validators

and PoW miners. One of the first such protocols is the Casper FFG

finality gadget used in conjunction with a longest chain PoW proto-

col [18]. The finality gadget is run by PoS validators as an overlay

to checkpoint and finalize blocks in an underlay PoW chain, where

blocks are proposed by the miners. The finality gadget architec-

ture is also used in many other PoS blockchains, such as Ethereum

2.0 [19] and Polkadot [33]. Babylon can be viewed as a "reverse"

finality gadget, where the miners run an overlay PoW chain to

checkpoint the underlay PoS chains run by their validators. Our

design of Babylon that combines an existing PoW protocol with

PoS protocols also leverages off insights from a recent line of work

on secure compositions of protocols [28, 29, 31].

2.3 Blockchain Scaling Architectures
Scaling blockchains is a longstanding problem. A currently popular

solution on Ethereum and other platforms is the shift of transaction

execution from a base blockchain to rollups, which execute state

transitions and post state commitments on the blockchain. Emerg-

ing projects like Celestia [6] take this paradigm further by removing

execution entirely from the base blockchain and having it provide

only data availability and ordering. In contrast, the main goal of

the present work is not on scalability but on enhancing existing

or new PoS protocols with slashable security. While rollups derive

their security entirely from the base blockchain, the PoS protocols

are autonomous and have their own validators to support their

security. In this context, the main technical challenge of this work

is how to design the architecture such that the Babylon PoW chain

augments the existing security of the PoS protocols with slashable

security guarantees. Nevertheless, to scale up our platform to sup-

port many PoS protocols, we can leverage off scaling techniques

such as efficient data availability checks [7, 36] and sharding [1].

More discussions can be found in Section 6.

3 MODEL
Validators: PoS nodes that run the PoS consensus protocol are called
validators. Each validator is equipped with a unique cryptographic

identity. Validators are assumed to have synchronized clocks.

There are two sets of validators: passive and active. Validators

stake a certain amount of coins to become active and participate

in the consensus protocol. Although staked coins cannot be spent,

active validators can send withdrawal requests to withdraw their

coins. Once a withdrawal request by an active validator is finalized

by the PoS protocol, i.e., included in the PoS chain, the validator

becomes passive and ineligible to participate in the consensus pro-

tocol. The passive validator is granted permission to withdraw its

stake and spend its funds once awithdrawal delay period has passed
following the finalization of the withdrawal request.

Let 𝑛 denote the total number of validators that are active at

any given time. The number of passive validators is initially zero

and grows over time as active validators withdraw their stakes and

become passive.

Environment and Adversary: Transactions are input to the valida-
tors by the environmentZ. AdversaryA is a probabilistic poly-time

algorithm. A gets to corrupt a certain fraction of the validators

when they become active, which are then called adversarial valida-
tors. It can corrupt any passive validator.

Adversarial validators surrender their internal state to the ad-

versary and can deviate from the protocol arbitrarily (Byzantine

faults) under the adversary’s control. The remaining validators are

called honest and follow the PoS protocol as specified.

Networking: Validators can send each other messages. Network is

synchronous, i.e.A is required to deliver all messages sent between

honest validators, miners and nodes within a known upper bound

Δ.
Accountability: We assume that the PoS protocol supported by

Babylon has an accountable safety resilience of 𝑓a (parameter 𝑑 as

defined in [26]), i.e., 𝑓a adversarial validators (that are potentially
passive) are irrefutably identified by all PoS nodes as having vio-

lated the protocol in the event of a safety violation, and no honest

validator can be identified as a protocol violator. Moreover, for the

culpable validators, PoS nodes can create an irrefutable fraud proof

showing that they violated the protocol.

Safety and Liveness for the PoS Protocols: Let PoSLOG𝑡
𝑖
denote

the chain of finalized PoS blocks, i.e., the PoS chain, in the view of

a node 𝑖 at time 𝑡 . Then, safety and liveness for the PoS protocols

are defined as follows:

Definition 1. Let 𝑇
fin

be a polynomial function of the security
parameter 𝜎 of the PoS protocol Π. We say that Π is 𝑇

fin
-secure if the

PoS chain satisfies the following properties:
6
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• Safety: For any time slots 𝑡, 𝑡 ′ and honest PoS nodes 𝑖, 𝑗 , either
PoSLOG𝑡

𝑖
is a prefix of PoSLOG𝑡 ′

𝑗
or vice versa. For any honest

PoS node 𝑖 , PoSLOG𝑡
𝑖
is a prefix of PoSLOG𝑡 ′

𝑖
for all times 𝑡 and

𝑡 ′ such that 𝑡 ≤ 𝑡 ′.
• T

fin
-Liveness: IfZ inputs a transaction tx to the validators at

some time 𝑡 , then, tx appears at the same position in PoSLOG𝑡 ′
𝑖

for any time 𝑡 ′ ≥ 𝑡 +𝑇
fin

and for any honest PoS node 𝑖 .

A PoS protocol is said to satisfy 𝑓s-safety or 𝑓
l
-𝑇
fin
-liveness if

it satisfies safety or 𝑇
fin
-liveness whenever the number of active

adversarial validators is less than or equal to 𝑓s or 𝑓l respectively.

Safety and Liveness for the Babylon Chain: Let PoWChain𝑡
𝑖
denote

the longest, i.e., canonical, Babylon chain in the view of a miner

or PoS node 𝑖 at time 𝑡 . Then, safety and liveness for the Babylon

chain are defined as follows:

Definition 2 (From [25]). Babylon is said to be secure for pa-
rameter 𝑟 ≥ 1, 𝑟 ∈ Z, if it satisfies the following two properties:
• Safety: If a transaction tx appears in a block which is at least

𝑟 -deep in the longest Babylon chain of an honest node or miner,
then, tx will eventually appear and stay at the same position in
the longest Babylon chain of all honest nodes or miners forever.

• Liveness: If a valid transaction tx is received by all honest miners
for more than 𝑟 block-time, then tx will eventually appear at an
𝑟 -deep block in the longest Babylon chain of all honest nodes or
miners. No invalid transaction ever appears at an 𝑟 -deep block in
the longest Babylon chain held by any honest node or miner.

Thus, if Babylon satisfies security for the parameter 𝑟 , 𝑟 -deep pre-

fixes of the longest chains held by the honest nodes are consistent

with each other, grow monotonically, and transactions received by

the honest miners for more than 𝑟 block-time enter and stay in the

longest Babylon chain observed by the honest nodes forever.

Slashability: Slashing refers to the process of financial punish-

ment for the active validators detected as protocol violators.

Definition 3. A validator v is said to be slashable in the view of
a PoS node c if,

(1) c provably identified v as having violated the protocol for the first
time at some time 𝑡 , and,

(2) v has not withdrawn its stake in c’s view by time 𝑡 .

If a validator v is observed to be slashable by all honest PoS

nodes, no transaction that spends the coins staked by v will be

viewed as valid by the honest PoS nodes.

4 IMPOSSIBILITY RESULTS FOR
PROOF-OF-STAKE PROTOCOLS

4.1 Safety Violation is not Slashable
Without additional trust assumptions, PoS protocols are susceptible

to various flavors of long range attacks, also known as founders’

attack, posterior corruption or costless simulation. In this context,

[23, Theorem 2] formally shows that even under the honest ma-

jority assumption for the active validators, PoS protocols cannot

have safety due to long range attacks without additional trust as-

sumptions. Since slashable safety is intuitively a stronger result

than guaranteeing safety under the honest majority assumption,

Figure 4: Inactivity leak attack. At the top is adversary’s pri-
vate attack chain. At the bottom is the public canonical chain
built by the honest validators. Due to inactivity leak, honest
& adversarial validators lose their stake on the attack and
canonical chains respectively. A late-coming node cannot
differentiate the canonical and attack chains.

[23, Theorem 2] thus rules out any possibility of providing PoS pro-

tocols with slashable safety without additional trust assumptions.

This observation is formally stated by Theorem 3 in Appendix A.

4.2 Liveness Violation is not Accountable
Without additional trust assumptions, PoS nodes cannot identify

any validator to have irrefutably violated the PoS protocol in the

event of a liveness violation, even under a synchronous environ-

ment. To illustrate the intuition behind this claim, we show that

inactivity leak [14], proposed as a financial punishment for inactive

Ethereum 2.0 validators, can lead to the slashing of honest valida-

tors’ stake with non-negligible probability. Consider the setup on

Figure 4, where adversarial validators build a private attack chain

that forks off the canonical one and stop communicating with the

honest validators. As honest validators are not privy to the adver-

sary’s actions, they cannot vote for the blocks on the attack chain.

Thus, honest validators are inactive from the perspective of the

adversary and lose their stake on the attack chain due to inactivity

leak. On the other hand, as the adversarial validators do not vote

for the blocks proposed by the honest ones, they too lose their stake

on the public, canonical chain (Figure 4). Finally, adversary reveals

its attack chain to a late-coming node which observes two con-

flicting chains. Although the nodes that have been active since the

beginning of the attack can attribute the attack chain to adversarial

action, a late-coming node could not have observed the attack in

progress. Thus, upon seeing the two chains, it cannot determine

which of them is the canonical one nor can it irrefutably identify

any validator slashed on either chains as adversarial or honest.

To formalize the impossibility of accountable liveness for PoS

protocols, we extend the notion of accountability to liveness viola-

tions and show that no PoS protocol can have a positive accountable
liveness resilience, even under a synchronous network with a static

set of 𝑛 active validators that never withdraw their stake. For this

purpose, we adopt the formalism of [26] summarized below: During

the runtime of the PoS protocol, validators exchange messages, e.g.,
blocks or votes, and each validator records its view of the protocol

by time 𝑡 in an execution transcript. If a node observes that 𝑇
fin
-

liveness is violated, i.e., a transaction input to the validators at some

time 𝑡 by Z is not finalized in the PoS chain in its view by time

𝑡 +𝑇
fin
, it invokes a forensic protocol: The forensic protocol takes

7
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transcripts of the validators as input, and outputs an irrefutable

proof that a subset of them have violated the protocol rules. This

proof is sufficient evidence to convince any node, including late-

coming ones, that the validators identified by the forensic protocol

are adversarial.

Forensic protocol interacts with the nodes in the following way:

Upon observing a liveness violation on the PoS chain, a node asks

the validators to send their transcripts. It then invokes the forensic

protocol with the transcripts received from the validator. Finally,

through the forensic protocol, it constructs the irrefutable proof of

protocol violation by the adversarial validators, and broadcasts this

proof to all other nodes.

Using the formalization above, we next define accountable live-
ness resilience and state the impossibility theorem for accountable

liveness on PoS protocols in the absence of additional trust assump-

tions:

Definition 4. 𝑇
fin
-accountable liveness resilience of a protocol

is the minimum number 𝑓 of validators identified by the forensic
protocol to be protocol violators when 𝑇

fin
-liveness of the protocol is

violated. Such a protocol provides 𝑓 -𝑇
fin
-accountable-liveness.

Theorem 2. Without additional trust assumptions, no PoS proto-
col provides both 𝑓a-𝑇fin-accountable-liveness and 𝑓s-safety for any
𝑓a, 𝑓s > 0 and 𝑇

fin
< ∞.

Proof is presented in Appendix A and generalizes the indistin-

guishability argument for the conflicting chains from the inactivity

leak attack. It rules out any possibility of providing accountable

liveness for PoS protocols even under a Δ-synchronous network
and a static set of active validators.

A corollary of Theorem 2 is that PoS protocols cannot have a

positive slashable liveness resilience:

Definition 5. 𝑇
fin
-slashable liveness resilience of a protocol is the

minimum number 𝑓 of validators that are slashable in the view of
all PoS nodes per Definition 3 when 𝑇

fin
-liveness of the protocol is

violated. Such a protocol provides 𝑓 -𝑇
fin
-slashable-liveness.

Corollary 1. Without additional trust assumptions, no PoS pro-
tocol provides both 𝑓s-safety and 𝑓

l
-𝑇
fin
-slahable-liveness for any

𝑓s, 𝑓l > 0 and 𝑇
fin

< ∞.

Proof of Corollary 1 follows from the fact that accountable live-

ness resilience of PoS protocols is zero without additional trust

assumptions.

5 PROTOCOL
In this section, we specify how to obtain slashable security for any

accountably-safe PoS protocol using Babylon-specific add-ons. Un-

less stated otherwise, the accountably-safe PoS protocol is treated

as a black-box which takes PoS transactions as its input and out-

puts a chain of finalized PoS blocks containing these transactions.

We assume that the consensus-related messages required to verify

finalization of PoS blocks can be accessed by viewing the contents

of the child blocks.

For concreteness, sections below focus on the interaction be-

tween the Babylon chain and a single PoS protocol.

5.1 Handling of Commitments by Babylon
PoS nodes timestamp messages by posting their commitments on

Babylon. A commitment ℎ is a succinct representation of a piece of

data 𝐷3
. Babylon miners receive commitments from the PoS nodes

as pairs (tx, 𝐷), where tx is a Babylon transaction that contains the

commitment ℎ, and 𝐷 is the associated data. Upon receiving such a

pair, miners validateℎ against𝐷 , i.e., check ifℎ is a succinct commit-

ment of 𝐷 , on top of other transaction validation procedures for tx.
However, since Babylon is a generic data-available timestamping

service, miners do not check the syntax or semantics of the data

𝐷 . If the validation succeeds, miners consider the commitment ℎ

valid and include tx in the next Babylon block mined. They do not

include the data 𝐷 in the Babylon blocks.

Whenever a miner propagates a Babylon transaction to its peers,

either directly or as part of the block body, it also attaches the

associated data, so that the peers receiving the transaction can also

validate its availability. Since PoS nodes act as light clients of the

Babylon chain and are connected to the peer-to-peer network of the

Babylon miners, they also obtain the data broadcast by the miners.

This ensures the availability of data across all honest PoS nodes

once its commitment is validated and published by the Babylon

miners.

Miners merge-mine the Babylon chain following the longest

chain rule (cf. Appendix B for more details). A Babylon block is

said to be valid in the view of a miner if the Babylon transactions

included in the block are valid in the miner’s view.

5.2 Generation and Validation of Commitments
There are two types of commitments: message commitments and

checkpoints. Message commitment refers to the hash of the whole

message. For example, to timestamp a list of censored transactions,

a PoS node sends the hash of the list to the miners as the message

commitment ℎ and the whole list as the data 𝐷 (Algorithm 2). Then,

to validate the commitment, miners and PoS nodes check if the

hash of the data matches the commitment (Algorithms 1 and 3).

Checkpoints are commitments of finalized PoS blocks. A single

checkpoint can commit to multiple consecutive blocks from the

same PoS chain. To post a checkpoint on Babylon for consecutive

blocks 𝐵1, ..., 𝐵𝑛 , a PoS node first extracts the transaction roots txr𝑖 ,
𝑖 = 1, .., 𝑛, from the header 𝐵𝑖 .header of each block (Algorithm 2).

Then, using a binding hash function 𝐻 , it calculates the following

commitment
4
:

ℎ = 𝐻 (𝐵1 .header| |...| |𝐵𝑛 .header| |txr1 | |...| |txr𝑛). (1)

Finally, it sends the commitment ℎ, i.e., the checkpoint, to the min-

ers along with the data 𝐷 which consists of (i) the block headers

𝐵1 .header, .., 𝐵𝑛 .header, (ii) the block bodies, and (iii) the transac-

tion roots txr1, .., txr𝑛 separately from the headers.

Upon receiving a checkpoint or observing one on Babylon, min-

ers and PoS nodes parse the associated data𝐷 into the block headers,

block bodies and transaction roots. Miners view the commitment as

3
In a real-world implementation, commitments will also carry metadata such as a

PoS chain identifier, submitter’s signature and public key. The metadata will not be

validated by the Babylon miners.

4
In a real-world application, commitment also contains the header of block 𝐵𝑛+1 as it
contains the signatures necessary to verify the finalization of block 𝐵𝑛 . We omit this

fact above for brevity.
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Figure 5: Delayed granting of withdrawal request and slashing. A validator for the PoS chain-1 sends a stake withdrawal
request to its chain which is captured by the PoS block A. Block A is in turn checkpointed by the Babylon block b. This stake
withdrawal request will only be granted and executed at a later PoS block B, where B is generated by a validator that observes
the checkpoint of block A in block b become at least 𝑘𝑤 deep in Babylon and that there is no fraud proof. On the other hand,
the validator for the PoS chain-2 is not granted its withdrawal request and is slashed, since a fraud proof appears on Babylon
before block b becomes 𝑘𝑤-deep.

Figure 6: Slashing for censoring. A censored transaction tx is submitted to Babylon through a censorship complaint, and
included in a Babylon block 𝑏. Suppose A is the last PoS block honest nodes proposed or voted for before they observed the
censorship complaint on Babylon. Let 𝑏 ′ denote the first Babylon block containing a checkpoint and extending 𝑏 by at least 2𝑘𝑐
blocks. Since finalized PoS blocks are checkpointed frequently on Babylon, A will be checkpointed by 𝑏 ′, or a Babylon block in
its prefix. Then, any PoS block, e.g., B, checkpointed by a Babylon block following 𝑏 ′ must have been proposed or voted upon by
the validators after they have observed the censorship complaint, and must include tx. However, B, which is checkpointed
by 𝑏 ′′ extending 𝑏 ′, does not contain tx, thus, is a censoring block. Hence, validators that have proposed and voted for B will
be slashed for censorship. Here, the 2𝑘𝑐 grace period on Babylon between 𝑏 and 𝑏 ′ ensures that the honest validators are not
slashed for voting upon PoS blocks excluding the censored transactions, before they observed the censorship complaint.

valid if (i) expression (1) calculated using 𝐵1 .header, .., 𝐵𝑛 .header
and txr1, .., txr𝑛 matches the received commitment, and (ii) the roots

txr1, .., txr𝑛 commit to the transactions in the bodies of the blocks

𝐵1, .., 𝐵𝑛 (Algorithm 1). PoS full nodes view the commitment as

valid if conditions (i) and (ii) above are satisfied, (iii) txr1, .., txr𝑛
are the same as the transaction roots within the block headers

𝐵1 .header, .., 𝐵𝑛 .header and (iv) the checkpointed PoS blocks are

finalized in the given order within the PoS chain in their view (Al-

gorithm 3). Although each header already contains the respective

transaction root, a Babylon miner does not necessarily know the

header structure of different PoS protocols. Thus, miners receive

transaction roots separately besides the block headers and bodies.

Note that miners cannot check if the transaction root txr𝑖 it got
for a block 𝐵𝑖 is the same as the root within the header 𝐵𝑖 .header.
However, honest PoS nodes can detect any discrepancy between

the transaction roots in the headers and those given as part of the

data 𝐷 , and ignore incorrect commitments.

Checkpoints are designed to enable light clients towards the

PoS protocol to identify the checkpointed PoS blocks when they

observe a commitment on Babylon. Unlike full nodes, PoS light

clients do not download bodies of PoS blocks, thus cannot check if

txr𝑖 commits to the body of 𝐵𝑖 . However, since they do download

PoS block headers, these light clients can extract the transaction

roots from the headers, calculate expression (1) and compare it

9
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Figure 7: Slashing for stalling. A stalling evidence for height ℎ, where validators failed to finalize any PoS block, is submitted to
Babylon and captured by the Babylon block 𝑏. Upon observing 𝑏 with a stalling evidence, validators enter a new Tendermint
round whose messages are recorded on Babylon. During this round, they submit their proposals, prevotes and precommits to
Babylon. Validators, whose proposals do not appear on Babylon between 𝑏 and 𝑏1, are deemed to be unresponsive and slashed for
stalling the protocol. Similarly, validators, whose votes for the proposal selected from the interval [𝑏,𝑏1) are missing between
𝑏1 and 𝑏2, are slashed. Here, the 𝑘𝑐 block intervals between 𝑏, 𝑏1 and 𝑏2 ensure that the proposals, prevotes and precommits
submitted on time by the honest validators appear on Babylon in the appropriate interval, thus preventing honest validators
from getting slashed for stalling.

against the commitment on Babylon to verify its validity. PoS light

clients trust the Babylon miners to check if the transaction roots

txr𝑖 indeed commit to the data in the bodies of the checkpointed

blocks.

5.3 Checkpointing the PoS Chain
Nodes send checkpoints of all finalized blocks on the PoS chain

to the Babylon miners every time they observe the Babylon chain

grow by 𝑘𝑐 blocks
5
. We say that a Babylon block 𝑏 checkpoints a

PoS block 𝐵 in the view of a node c (at time 𝑡 ) if (i) 𝐵 is a finalized &

valid block in the PoS chain in c’s view, and (ii) 𝑏 is the first block

within the longest Babylon chain in c’s view (at time 𝑡 ) to contain

a valid checkpoint of 𝐵 alongside other PoS blocks.

Checkpoints that do not include information about new PoS

blocks are ignored by the PoS nodes during the interpretation of the

commitments on Babylon. Thus, given two consecutive checkpoints

on the Babylon chain that are not ignored by a PoS node, if they

do not commit to conflicting PoS blocks, then the latter one must

be checkpointing new PoS blocks extending those covered by the

earlier one.

Fork-choice Rule: (Figure 2, Algorithm 4) If there are no forks

on the PoS chain, i.e., when there is a single chain, it is the canonical
PoS chain.

If there are multiple PoS chains with conflicting finalized blocks,

i.e., a safety violation, in the view of a node c at time 𝑡 , c orders
these chains by the following recency relation : Chain A is earlier
than chain B in c’s view at time 𝑡 if the first PoS block that is on

A but not B, is checkpointed by an earlier Babylon block than the

one checkpointing the first PoS block that is on B but not A, on c’s
canonical Babylon chain at time 𝑡 . If only chain A is checkpointed

in this manner on c’s canonical Babylon chain, then A is earlier.

If there are no Babylon blocks checkpointing PoS blocks that are

exclusively on A or B, then the adversary breaks the tie for c. The
canonical PoS chain PoSLOG𝑡

c is taken by c to be the earliest chain

in this ordering at time 𝑡 . Thus, Babylon provides a total order

5
In reality, PoS nodes do not submit a commitment of all of the blocks on the PoS

chain in their view. They submit commitments of only those blocks that were not

captured by previous checkpoints on Babylon.

across multiple chains when there is a safety violation on the PoS

chains.

5.4 Stake Withdrawals and Slashing for Safety
Violations

Since the PoS protocol provides accountable safety, upon observ-

ing a safety violation on the PoS chain, any node can construct a

fraud proof that irrefutably identifies 𝑛/3 adversarial validators as
protocol violators, and send it to Babylon. Fraud proof contains

checkpoints for conflicting PoS blocks along with a commitment,

i.e., hash, of the evidence, e.g., double-signatures, implicating the

adversarial validators. Hence, it is valid as long as the checkpoints

and the commitments are valid, and serves as an irrefutable proof

of protocol violation by 𝑛/3 adversarial validators.
Stake withdrawal: (Figure 5, Algorithm 5) To withdraw its

stake, a validator v first sends a special PoS transaction called the

withdrawal request to the PoS protocol. Given 𝑘𝑤 , v is granted

permission to withdraw its stake in the view of a PoS node once

the node observes that

(1) A block 𝐵 on its canonical PoS chain containing the withdrawal

request is checkpointed by a block 𝑏 on its longest Babylon

chain, i.e., the longest Babylon chain in its view.

(2) There are 𝑘𝑤 blocks building on 𝑏 on its longest Babylon chain,

where 𝑘𝑤 , chosen in advance, determines the withdrawal delay.

(3) There does not exist a valid fraud proof implicating v in the

node’s longest Babylon chain.

Once the above conditions are also satisfied in v’s view, it submits

a withdrawal transaction to the PoS protocol, including a reference

to the 𝑘𝑤-th Babylon block building on 𝑏. Honest nodes consider

the withdrawal transaction included in a PoS block 𝐵′ as valid if

𝐵′ extends 𝐵, the block with the withdrawal request, and the above

conditions are satisfied in their view.

Slashing for Safety Attacks: Stake of a validator becomes

slashable in the view of any PoS node which observes that condition

(3) above is violated. In this case, nodes that sent the fraud proofs

on Babylon can receive part of the slashed funds as reward by

submitting a reward transaction to the PoS chain.
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5.5 Slashing for Liveness Violations
In the rest of this section, a validator or PoS node’s Babylon chain,

i.e., the Babylon chain in the view of a PoS node or validator, refers

to the 𝑘𝑐/2-deep prefix of the longest chain in their view. As a

liveness violation can be due to either censorship, i.e., lack of chain

quality, or stalling, i.e., lack of chain growth, we analyze these two

cases separately:

5.5.1 Censorship Resilience. (Figure 6, Algorithm 6) PoS nodes

send commitments of censored PoS transactions to Babylon via

censorship complaints. A complaint is valid in the miners’s view if

the commitment matches the hash of the censored transactions.

Upon observing a valid complaint on its Babylon chain, a valida-

tor includes the censored PoS transactions within the new blocks

its proposes unless they have already been included in the PoS

chain or are invalid with respect to the latest PoS state. Similarly,

among new PoS blocks proposed, validators vote only for those

that include the censored transactions in the block’s body or prefix

if the transactions are valid with respect to the latest PoS state.

Suppose a censorship complaint appears within some block 𝑏 on

a validator 𝑝’s Babylon chain (Figure 6). Let 𝑏 ′ be the first block on

𝑝’s Babylon chain that checkpoints a new PoS block and extends 𝑏

by at least 2𝑘𝑐 blocks. Then, a PoS block 𝐵 is said to be censoring
in 𝑝’s view if (i) it is checkpointed by a block 𝑏 ′′, 𝑏 ′ ≺ 𝑏 ′′ in 𝑝’s

Babylon chain, and (ii) 𝐵 does not include the censored transactions

in neither its body nor its prefix (cf. Algorithm 6 for a function

that detects the censoring PoS blocks with respect to a censorship

complaint).

5.5.2 Slashing for Censorship Attacks. Stake of a validator becomes

slashable in an honest PoS node 𝑝’s view if the validator proposed

or voted for a PoS block 𝐵 that is censoring in 𝑝’s view (e.g., block
B in Figure 6).

5.5.3 Stalling Resilience. (Figure 7, Algorithm 7) A node detects

that the PoS protocol has stalled if no new checkpoint committing

new PoS blocks appears on its Babylon chain within 2𝑘𝑐 blocks

of the last checkpoint. In this case, it sends a stalling evidence to
Babylon. Stalling evidence is labelled with the smallest height ℎ

at which a PoS block has not been finalized yet and contains a

checkpoint for the PoS blocks from smaller heights. Hence, it is

valid in the miners’ view if the included checkpoint is valid.

Stalling evidence signals to the validators that they should here-

after publish the PoS protocol messages, previously exchanged over

the network, on Babylon until a new PoS block is finalized. For

instance, in the case of Babylon-enhanced Tendermint, a stalling

evidence on Babylon marks the beginning of a new round whose

proposals and votes are recorded on Babylon. Thus, upon observ-

ing the first stalling evidence that follows the last checkpoint on

Babylon by 2𝑘𝑐 blocks, validators stop participating in their previ-

ous rounds and enter a new, special Tendermint round for height

ℎ, whose messages are recorded on-Babylon. Each of them then

pretends like the next round leader and sends a proposal message

to Babylon for the new round.

In the rest of this section, we focus on Tendermint [16] as the

Babylon-enhanced PoS protocol for the purpose of illustration. A

summary of Tendermint is given in Appendix C.1. The following

paragraphs explain how a Tendermint round is recorded on Babylon

in the perspective of a validator 𝑝 (cf. Algorithm 7). A detailed

description of this can be found in Appendix C.2

Let 𝑏 denote the Babylon block that contains the first stalling evi-

dence observed by 𝑝 (Figure 7). Let 𝑏1 and 𝑏2 denote the first blocks

in 𝑝’s Babylon chain that extend 𝑏 by 𝑘𝑐 and 2𝑘𝑐 blocks respectively.

If a new checkpoint for a PoS block finalized at height ℎ appears

between 𝑏 and 𝑏1, 𝑝 stops participating in the round on-Babylon

and moves to the next height, resuming its communication with

the other validators through the network. Otherwise, if there are

≥ 2𝑓 + 1 non-censoring proposal messages signed by unique valida-

tors between 𝑏 and 𝑏1, 𝑝 and every other honest validator selects

the message with the largest validRound as the unique proposal of
the round.

Once 𝑝 decides on a proposal 𝐵 and observes 𝑏1 in its Babylon

chain, it signs and sends prevote and precommit messages for 𝐵

to Babylon. Upon seeing 𝑏2 in its Babylon chain, 𝑝 finalizes 𝐵 if

there are more than 2𝑓 + 1 prevotes and precommits for 𝐵, signed

by unique validators, between 𝑏1 and 𝑏2. In this case, 𝑏2 is des-

ignated as the Babylon block that has checkpointed block 𝐵 for

height ℎ. After finalizing 𝐵, 𝑝 moves to the next height, resuming

its communication with other validators through the network.

5.5.4 Slashing for Stalling Attacks. Consider the validator 𝑝 and

the on-Babylon Tendermint round described above and suppose

there is no new checkpoint for a PoS block finalized at height ℎ

between 𝑏 and 𝑏1 (Figure 7). Then, if there are less than 2𝑓 + 1
uniquely signed non-censoring proposals between 𝑏 and 𝑏1, stake

of each validator with a censoring or missing proposal becomes

slashable in 𝑝’s view. Similarly, if there are less than 2𝑓 +1 uniquely
signed prevotes or precommits between 𝑏1 and 𝑏2 for the proposal

𝐵 selected by 𝑝 , stake of each validator with a missing prevote or

precommit for 𝐵 between 𝑏1 and 𝑏2 becomes slashable in 𝑝’s view.

To enforce the slashing of the validator’s stake in the case of

censorship or stalling, PoS nodes can submit a reward transaction

to the PoS chain, upon which they receive part of the slashed funds.

No validator is slashed by the slashing rules for censorship or

stalling if there is a safety violation on the PoS chains, in which

case slashing for safety (cf. Section 5.4) takes precedence.

6 SCALABILITY OF THE PROTOCOL
Babylon protocol above can be used by different PoS protocols si-

multaneously, which raises the question of how much data Babylon

miners can check for availability at any given time. To address this,

we first review the three physical limits that determine the amount

and speed of on-chain data generation by the PoS blockchains:

(1) hot storage capacity, which caps the amount of data generated

before cold storage or chain snapshot have to kick in;

(2) execution throughput, which limits the data generation speed

to how fast transactions and blocks can be created, validated,

and executed;

(3) communication bandwidth, which limits the data generation

speed to how fast transactions and blocks can be propagated

throughout the P2P network.
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Since Babylon does not permanently store
6
any PoS chain data,

it does not have to match aggregated storage capacity of the PoS

chains to provide data protection. Thus, there is no storage issue

for Babylon to scale, namely, to support many PoS protocols.

On the other hand, Babylon’s data processing speed, i.e. the
speed with which miners validate data availability, must match the

total data generation speed across the PoS chains. Currently, the

data generation speed of individual PoS chains is mostly limited by

the execution rather than communication bandwidth. As Babylon

only downloads the PoS data without executing it, it should also

able to accommodate many PoS chains from the speed perspective.

In the unlikely case that a certain PoS protocol is only limited

by the communication bandwidth and thus generates large blocks

frequently, Babylon could potentially apply sampling-based proba-

bilistic data availability checks [7, 36] to significantly reduce the

amount of data it needs to download and process per block, which

is a promising future research direction.

7 REFERENCE DESIGNWITH COSMOS SDK
Cosmos is a well-known open-source blockchain ecosystem that en-

ables customizable blockchains [30]. It also enables inter-blockchain

communications by using Cosmos Hub (ATOM) as the trust anchor.

Therefore, Cosmos provides both the tools through its SDK and

the ecosystem required to demonstrate the implementation of a

Babylon-enhanced PoS blockchain protocol. To this end, we first

briefly review how essential Cosmos modules work together to

protect the security of the Cosmos zones, i.e., its constituent PoS
blockchains, and then show how Babylon can enhance the security

of these zones via a straightforward module extension.

7.1 Cosmos Overview
Cosmos encapsulates the core consensus protocol and network-

ing in its Tendermint consensus engine, which uses Tendermint

BFT underneath. Several interoperable modules have been built to

work with this consensus engine together as a complete blockchain

system. Each module serves a different functionality such as autho-

rization, token transfer, staking, slashing, etc., and can be configured

to meet the requirements of the application. Among these modules,

the following are directly related to security:

• evidence module, which enables the submission by any proto-

col participant, and handling of the evidences for adversarial

behaviors such as double-signing and inactivity;

• slashing module, which, based on valid evidence, penalizes

the adversarial validators by means such as stake slashing and

excluding it from the BFT committee;

• crisis module, which suspends the blockchain in case a pre-

defined catastrophic incident appears, e.g., when the sum of

stakes over all the accounts exceed the total stake of the system;

• gov module, which enables on-chain blockchain governance

in making decisions such as software updates and spending

community funds.

We note that these modules currently are not able to handle

the aforementioned attacks such as long range attacks and trans-

action censorship. Moreover, in case catastrophic incidents such

6
Babylon may store the data committed in the recent Babylon blocks for the synchro-

nization between Babylon nodes.

Figure 8: Enhancing Cosmos zones via a new BE (Babylon-
enhancement) module.

as chain forking appear, system cannot recover from halt by itself.

The incident can only be resolved via human intervention, which

can be either proactive or reactive: Under proactive human inter-

vention, stakeholders of the system regularly agree on and publish

checkpoints on the blockchain to prevent long range attacks. Under

reactive human intervention, when a forking incident happens,

stakeholders get together to decide on a fork as the canonical chain.

Since both types of interventions require stakeholder meetings,

they are part of “social consensus”.

7.2 Enhancing Cosmos Security with Babylon
To enhance the security of Cosmos PoS chains with Babylon, we

add a new module called BE (Babylon-enhancement) to the Cosmos

SDK. This module executes the protocol described in Section 5 and

only requires straightforward interactions with existing Cosmos

modules. Some of the key interactions are as follows (Figure 8):

BE implements the Babylon-specific add-ons such as the fork-

choice rule specified in Section 5.3 to output the canonical PoS

chain. It monitors the PoS chain and creates the messages spec-

ified in Section 5 such as checkpoints, fraud proofs, censorship

complaints and stalling evidences. It communicates with the gov
module to obtain approval for the expenditure of community funds

to pay for the Babylon transaction fees. It submits the messages

mentioned above, through a customized client (Figure 10) to the

Babylon chain and uses Babylon transactions to pay the miners.

It also monitors the existing messages created for the same PoS

chain and timestamped on Babylon. In case any adversarial action

is detected through the interpretation of the messages on Babylon,

it submits the evidences to the evidence module and then works

with the slashing module to slash the adversarial validators on the

PoS chain. In the case of forking on the PoS chain, it interacts with

the crisis module to temporarily suspend the system, and proposes

resolution via the gov module to recover the system, where the res-

olution is derived using the fork-choice rule specified in Section 5.3.

When withdrawal requests and Babylon-related PoS transactions

are submitted to the Tendermint consensus engine, it helps the

engine verify such transactions.

All the above interactions can be supported by existing Cosmos

modules via API and data format configurations. These configura-

tions are explained below:
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• Tendermint consensus engine: redirect the validation of stake

withdrawal transactions and Babylon-related slashing transac-

tions to the BE module.

• evidence module: add evidence types such as fraud proofs,

censorship complaint and stalling evidence, corresponding to

Babylon-related violations;

• slashing module: define the appropriate slashing rules as de-

scribed in Sections 5.4, 5.5.2 and 5.5.4;

• crisismodule: add handling of safety violations reported by the

BE module;

• govmodule: add two proposal types (i) to use community funds

to pay for Babylon transaction fees and (ii) to execute fork

choice decision made by the BE module.
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A PROOFS FOR SECTION 4
To formalize slashable safety and its absence thereof, we define

slashable safety resilience for the PoS protocols and state the impos-

sibility theorem for slashable safety in the absence of additional

trust assumptions:

Definition 6. Slashable safety resilience of a protocol is the min-
imum number 𝑓 of validators that become slashable in the view of
all honest PoS nodes per Definition 3 in the event of a safety violation.
Such a protocol provides 𝑓 -slashable-safety.

Theorem 3. Assuming a common knowledge of the initial set
of active validators, without additional trust assumptions, no PoS
protocol provides both 𝑓s-slashable-safety and 𝑓

l
-𝑇
fin
-liveness for any

𝑓s, 𝑓l > 0 and 𝑇
fin

< ∞.

Proof. For the sake of contradiction, suppose there exists a

PoS protocol Π that provides 𝑓
l
-𝑇
fin
-liveness and 𝑓s-slashable-safety

for some 𝑓
l
, 𝑓s > 0 and 𝑇

fin
< ∞ without any additional trust

assumptions.

Let 𝑛 be the number of active validators at any given time. Let 𝑃 ,

𝑄 ′ and 𝑄 ′′ denote disjoint sets of validators such that 𝑃 := {v𝑖 , 𝑖 =
1, .., 𝑛}, 𝑄 ′ := {v′

𝑖
, 𝑖 = 1, .., 𝑛} and 𝑄 ′′ := {v′′

𝑖
, 𝑖 = 1, .., 𝑛}.

Next, we consider the following two worlds, where the adver-

sarial behavior is designated by (A,Z):
World 1: (A,Z) provides 𝑃 as the initial set of active validators.

Validators in 𝑄 ′ are honest. Validators in 𝑃 and 𝑄 ′′ are adversarial.
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At time 𝑡 = 0,Z inputs transactions tx′
𝑖
, 𝑖 = 1, .., 𝑛, to the valida-

tors in 𝑃 , where tx′
𝑖
causes v𝑖 ∈ 𝑃 to become passive and v′

𝑖
∈ 𝑄 ′ to

become active. Validators in 𝑃 emulate a set of honest validators

with equal size, except that they record every piece of information

in their transcripts. Since 𝑓
l
> 0 and 𝑇

fin
< ∞, there exists a con-

stant time 𝑇 such that upon receiving transcripts from the set of

active validators at time𝑇 , clients output a ledger Ledger for which
tx′
𝑖
∈ Ledger, 𝑖 = 1, .., 𝑛. Thus, the set of active validators at time

𝑇 is 𝑄 ′ in the view of any client. As passive validators withdraw

their stake within a constant time 𝑇 ′, by time 𝑇 +𝑇 ′, all validators
in 𝑃 have withdrawn their stake.

In parallel to the real execution above, (A,Z) creates a simulated

execution in its head where a different set of transactions, tx′′
𝑖
, 𝑖 =

1, .., 𝑛, is input to the validators in 𝑃 at time 𝑡 = 0. Here, tx′′
𝑖
causes

v𝑖 ∈ 𝑃 to become passive and v′′
𝑖
∈ 𝑄 ′′ to become active. Then,

upon receiving the transcripts of the simulated execution at time

𝑇 , clients would output a ledger Ledger′ for which tx′′
𝑖
∈ Ledger′,

𝑖 = 1, .., 𝑛. Then, the set of active validators at time 𝑇 would be 𝑄 ′′

in the view of any client. As passive validators can withdraw their

stake within a constant time 𝑇 ′, all validators in 𝑃 withdraw their

stake in the simulated execution by time 𝑇 +𝑇 ′.
Finally, (A,Z) spawns a PoS client c at time 𝑇 + 𝑇 ′, which

receives transcripts from both the simulated and real executions.

Since Ledger and Ledger′ conflict with each other and 𝑓s > 0, there

is a safety violation, and c identifies a set of irrefutably adversarial

validators by invoking the forensic protocol, a non-empty subset

of which is slashable. As the validators in 𝑃 have withdrawn their

stake and those in 𝑄 ′ are honest and did not violate the protocol,

this set includes at least one slashable validator from 𝑄 ′′.
World 2:World 2 is the same as World 1, except that (i) valida-

tors in 𝑄 ′ are adversarial and those in 𝑄 ′′ are honest, and (ii) the

transactions tx′
𝑖
and tx′′

𝑖
, 𝑖 = 1, .., 𝑛, are swapped in the description,

i.e. tx′
𝑖
is replaced by tx′′

𝑖
and vice versa.

***

Finally, as World 1 and 2 are indistinguishable, c again identifies

a validator from 𝑄 ′′ as slashable in World 2 with probability at

least 1/2. However, the validators in 𝑄 ′′ are honest in World 2,

and could not have been identified as irrefutably adversarial, i.e.
contradiction. □

Following theorem is used for the proof of Theorem 2.

Theorem 4. For any SMR protocol that is run by 𝑛 validators
and satisfies 𝑓s-safety and 𝑓

l
-𝑇
fin
-liveness with 𝑓s, 𝑓l > 0 (assuming

Byzantine faults) and 𝑇
fin

< ∞, it must be the case that 𝑓s < 𝑛 − 𝑓
l
.

Proof. For the sake of contradiction, assume that there exists an

SMR protocol Π that provides 𝑓
l
-𝑇
fin
-liveness for some 𝑓

l
> 0,𝑇

fin
<

∞ and 𝑓s-safety for 𝑓s = 𝑛 − 𝑓
l
. Then, the protocol should be safe

when there are 𝑛 − 𝑓
l
adversarial validators. Let 𝑃 , 𝑄 and 𝑅 denote

disjoint sets consisting of 𝑓
l
, 𝑓
l
and𝑛−2𝑓

l
> 0 validators respectively,

where we assume 𝑓
l
< 𝑛/2. Next, consider the following worlds

with two clients c1 and c2 prone to omission faults, where the

adversarial behavior is designated by (A,Z):
World 1: Z inputs tx1 to all validators. Those in 𝑃 and 𝑅 are

honest and the validators in 𝑄 are adversarial. There is only one

client c1. Validators in𝑄 do not communicate with those in 𝑃 and 𝑅;

they also do not respond to c1. Since 𝑃∪𝑅 has size𝑛− 𝑓
l
and consists

of honest validators, via 𝑓
l
-liveness, upon receiving transcripts from

the validators in 𝑃 and 𝑅, c1 outputs the ledger [tx1] by time 𝑇
fin
.

World 2: Z inputs tx2 to all validators. Those in 𝑄 and 𝑅 are

honest and the validators in 𝑃 are adversarial. There is only one

client c2. Validators in 𝑃 do not communicate with those in𝑄 and 𝑅;

they also do not respond to c2. Since𝑄∪𝑅 has size𝑛− 𝑓
l
and consists

of honest validators, via 𝑓
l
-liveness, upon receiving transcripts from

the validators in 𝑄 and 𝑅, c2 outputs the ledger [tx2] by time 𝑇
fin
.

World 3:Z inputs tx1 to the validators in 𝑃 , tx2 to the validators
in 𝑄 , and both transactions to the validators in 𝑅. Validators in 𝑃

are honest, those in 𝑄 and 𝑅 are adversarial. There are two clients

this time, c1 and c2. Validators in 𝑄 do not send any message to

any of the validators in 𝑃 ; they also do not respond to c1.Z also

omits any message sent from the validators in 𝑃 to c2.
Validators in 𝑅 perform a split-brain attack where one brain

interacts with 𝑃 as if the input were tx1 and it is not receiving any

message from 𝑄 (real execution). Simultaneously, validators in 𝑄

and the other brain of 𝑅 start with input tx2 and communicate with

each other exactly as in world 2, creating a simulated execution.

The first brain of 𝑅 only responds to c1 and the second brain of 𝑅

only responds to c2.
Since worlds 1 and 3 are indistinguishable for c1 and the honest

validators in 𝑃 , upon receiving transcripts from the validators in

𝑃 and the first brain of 𝑅, c1 outputs [tx1] by time 𝑇
fin
. Similarly,

since worlds 2 and 3 are indistinguishable for c2, upon receiving

transcripts from the validators in 𝑄 and the second brain of 𝑅, c2
outputs [tx2] by time 𝑇

fin
.

Finally, there is a safety violation in world 3 since c1 and c2
output conflicting ledgers. However, there are only 𝑓s = 𝑛 − 𝑓

l

adversarial validators in 𝑄 and 𝑅, which is a contradiction.

Proof for 𝑓
l
≥ 𝑛/2 proceeds via a similar argument, where sets

𝑃 , 𝑄 and 𝑅 denote disjoint sets of sizes 𝑛 − 𝑓
l
, 𝑛 − 𝑓

l
and 2𝑓

l
− 𝑛 > 0

respectively. □

Proof of Theorem 2 is given below:

Proof of Theorem 2. For the sake of contradiction, suppose

there exists a PoS protocol Π with a static set of validators that

provides 𝑓a-𝑇fin-accountable-liveness and 𝑓s-safety for some 𝑓a, 𝑓s >

0 and 𝑇
fin

< ∞ without any additional trust assumptions. Then,

there exists a forensic protocol which takes transcripts sent by the

validators as input, and in the event of a liveness violation, outputs

a non-empty set of validators which have irrefutably violated the

protocol rules.

Let 𝑓
l
denote the liveness resilience of Π. By Theorem 4, 𝑓

l
<

𝑛 − 𝑓s, i.e., 𝑓l ≤ 𝑛 − 2 as 𝑓s > 0. By definition of accountable

liveness resilience, 𝑓
l
≥ 𝑓a > 0. Let𝑚 ≥ 1 denote the maximum

integer less than 𝑛 − 𝑓
l
≥ 2 that divides 𝑛. Let 𝑃𝑖 , 𝑖 = 1, .., 𝑛/𝑚 (i.e.

𝑖 ∈ [𝑛/𝑚]) denote sets of size𝑚 that partition the 𝑛 validators into

𝑛/𝑚 disjoint, equally sized groups. We next consider the following

worlds indexed by 𝑖 ∈ [𝑛/𝑚] whereZ inputs a transaction tx to all
validators at time 𝑡 = 0 and the adversarial behavior is designated

by (A,Z):
World 𝑖: Validators in 𝑃𝑖 are honest. Validators in each set 𝑃 𝑗 ,

𝑗 ≠ 𝑖, 𝑗 ∈ [𝑛/𝑚], are adversarial and simulate the execution of𝑚

honest validators in their heads without any communication with
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the validators in the other sets. Validators in each 𝑃 𝑗 , 𝑗 ∈ [𝑛/𝑚]
generate a set of transcripts such that upon receiving transcripts

from the set of validators in 𝑃 𝑗 at time𝑇
fin
, a client outputs a (poten-

tially empty) ledger Ledger𝑗 , 𝑗 ∈ [𝑛/𝑚]. As |𝑃 𝑗 | < 𝑛 − 𝑓
l
, validators

in 𝑃𝑖 do not hear from the validators in 𝑃 𝑗 , 𝑗 ≠ 𝑖 , and the validators

in 𝑃 𝑗 , 𝑗 ≠ 𝑖 simulate the execution of the honest validators in world

𝑗 respectively, tx ∉ Ledger𝑗 for any 𝑗 ∈ [𝑛/𝑚].
Finally, (A,Z) spawns a client at time 𝑇

fin
, which receives tran-

scripts from both the real and the multiple simulated executions.

Since tx ∉ Ledger𝑗 for any 𝑗 ∈ [𝑛/𝑚], there is a liveness violation in
the client’s view. As 𝑓a > 0, by invoking the forensic protocol with

the transcripts received, client identifies a subset 𝑆𝑖 of validators as

irrefutably adversarial.

***

Finally, by definition of 𝑆𝑖 , it should be the case that

𝑆𝑖 ⊆
⋃

𝑗 ∈[𝑛/𝑚], 𝑗≠𝑖 𝑃 𝑗 . However, as worlds 𝑖 , 𝑖 ∈ [𝑛/𝑚] are in-

distinguishable for the client, there exists a world 𝑖∗, 𝑖∗ ∈ [𝑛/𝑚],
such that a node from 𝑃𝑖∗ is identified as adversarial in world 𝑖∗

with probability at least𝑚/𝑛 ≥ 1/𝑛, which is non-negligible. This

is a contradiction. □

Note that when the number of validators 𝑛 is large and 𝑓
l
= 𝑛−2,

probability that the forensic protocol for accountable livenessmakes

a mistake and identifies an honest validator as adversarial can

be small. However, assuming that 𝑛 is polynomial in the security

parameter of the PoS protocol, this probability will not be negligible

in the security parameter.

B MERGE MINING AND CLIENT
APPLICATIONS

Miners merge-mine the Babylon chain following the longest chain

rule. To merge-mine Babylon blocks, miners calculate hashes of

blocks containing both Bitcoin and Babylon transactions.Whenever

a miner finds a block with its hash falling into the Babylon range,
it shares the Babylon transactions in this block with its Babylon
client, which extracts a Babylon block from the received contents (cf.
Figure 9). Hash of this block is then sent over Bitcoin’s peer-to-peer

network to be included as a Bitcoin transaction [2]. Babylon blocks

have the same structure as Bitcoin blocks. Size of the Babylon range

determines the chain difficulty, in turn, the growth rate 𝜆 for the

Babylon chain.

Babylon client is run by the Bitcoin miners in parallel with the

Bitcoin client. Besides exchanging nonces and hashes with the

mining software for merge-mining, Babylon client also records the

commitments submitted by the PoS chains and checks for data

availability. Thus, miners follow the same longest chain mining

protocol as regular Bitcoin clients, except for the fact that they also

check for the availability of the PoS blocks before accepting their

commitments.

Similar to miners, each PoS node using Babylon runs a special

Babylon-embedded PoS chain client (Figure 10). This client is built

on top of an existing PoS client, but augmented with Babylon-

specific add-ons to allow the PoS node to post commitments and

checkpoints to Babylon as well as interpret the timestamps of these

messages.

C STALLING RESILIENCE
C.1 Tendermint Summary
Tendermint consensus proceeds in heights and rounds. Each height

represents a new consensus instance and the validators cannot

move on to the next height before a unique block is finalized for

the previous one. Heights consist of rounds, each with a unique

leader that proposes a PoS block. Goal of each round is to finalize a

block for its height.

Rounds are divided into three steps: propose, prevote and pre-

commit. An honest round leader proposes a block for its round at

the beginning of the propose step. Then, during the respective steps,

validators send prevote and precommit messages for the proposed

block or a nil block, depending on the proposal and their inter-

nal states. Each honest validator maintains four variables which

affect its decision whether to prevote for a proposal: lockedValue,
lockedRound, validValue and validRound. lockedValue denotes the
most recent non-nil block for which the validator sent a precom-

mit message. validValue denotes the most recent non-nil block

for which the validator has observed 2𝑓 + 1 prevotes. Recency

of a block is determined by the round it was proposed for by

the leader of that round. Thus, lockedRound and validRound re-

fer to the rounds for which lockedValue and validValue were pro-
posed respectively. At the beginning of each height, lockedValue,
lockedRound, validValue and validRound are reset to ⊥, −1, ⊥ and

−1 respectively.

C.1.1 Propose. If the leader of a round 𝑟 , height ℎ, is honest, it

broadcasts the following proposal message at the beginning of the

round if its validRound ≥ 0: ⟨PROPOSAL, ℎ, 𝑟, 𝑣 = validValue, 𝑣𝑟 =
validRound⟩. Otherwise, it proposes a new valid PoS block 𝐵:

⟨PROPOSAL, ℎ, 𝑟, 𝑣 = 𝐵, 𝑣𝑟 = −1⟩. Similarly, upon receiving a pro-

posal message ⟨PROPOSAL, ℎ, 𝑟, 𝑣, 𝑣𝑟 ⟩ (from the round leader) dur-

ing the propose step of round 𝑟 and height ℎ, an honest validator

broadcasts the following prevote message ⟨PREVOTE, ℎ, 𝑟, 𝑖𝑑 (𝑣)⟩
for the proposal if either (i) 𝑣 is the same block as its lockedValue,
or (ii) 𝑣𝑟 is larger than its lockedRound. Otherwise, it sends a pre-
vote for a nil block: ⟨PREVOTE, ℎ, 𝑟, 𝑛𝑖𝑙⟩. Thus, by proposing its

validValue instead of a new block when 𝑣𝑟 ≠ −1, an honest leader

ensures that honest validators locked on blocks from previous

rounds will be prevoting for its proposal instead of nil blocks.

If the honest validator does not observe any proposal message

within a timeout period of its entry to the propose step, it sends

a prevote for a nil block. After sending its prevote, it leaves the

propose step and enters the prevote step.

C.1.2 Prevote. Once in the prevote step, the honest validator waits

until it receives 2𝑓 + 1 prevotes, for potentially different blocks,

upon which it activates a prevote countdown. If it observes 2𝑓 +
1 prevotes for a valid block 𝐵 proposed for round 𝑟 and height

ℎ during this time, it sends the following precommit message

⟨PRECOMMIT, ℎ, 𝑟, 𝑖𝑑 (𝐵)⟩ and enters the precommit step. It also

updates its lockedValue, lockedRound, validValue and validRound
to 𝐵, 𝑟 , 𝐵 and 𝑟 respectively. If the honest validator receives 2𝑓 + 1
prevotes for nil blocks, it sends a precommit message for a nil block:

⟨PRECOMMIT, ℎ, 𝑟, 𝑛𝑖𝑙⟩.
If the honest validator does not receive 2𝑓 +1 prevotes for a valid

block 𝐵 before the countdown expires, it sends a precommit for a
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Figure 9: Interaction of the Babylon client run by Babylon miners with the mining software in the context of merge-mining.
Babylon client uses the same hashing results generated by the Bitcoin miners as a Bitcoin client, but the criterion of mining a
new Babylon block based on those results is different from that of mining a Bitcoin block.

Figure 10: Interaction between the Babylon-embedded PoS chain client and the Babylon client in the context of timestamping
PoS block commitments.

nil block. After sending its precommit, it leaves the prevote step

and enters the precommit step.

C.1.3 Precommit. Finally, during the precommit step, our honest

validator waits until it receives 2𝑓 + 1 precommit messages, for

potentially different blocks, upon which it activates a precommit

countdown. If it observes 2𝑓 + 1 precommit messages for a valid

block 𝐵 proposed for round 𝑟 and height ℎ, it finalizes 𝐵 for height ℎ

and moves on to the next height ℎ + 1. Otherwise, if the countdown
expires or there are 2𝑓 + 1 precommit messages for nil blocks,

validator enters the next round 𝑟 + 1 without finalizing any block

for height ℎ.

Timeout periods for proposal, prevote and precommit steps are

adjusted to ensure the liveness of Tendermint under Δ synchrony

when there are at least 2𝑓 + 1 honest validators. On the other hand,

the two step voting process along with the locking mechanism

guarantees its safety by preventing conflicting blocks from receiv-

ing more than 2𝑓 + 1 prevotes for the same round and more than

2𝑓 + 1 precommits for the same height.

C.2 Details of Stalling Resilience through
Babylon

This section presents a detailed description of how a Tendermint

round is recorded on Babylon and interpreted by the nodes when

the PoS chain is stalled. For the rest of this section, we assume that

the Babylon chain in the view of a node refers to the 𝑘𝑐/2-deep
prefix of the longest Babylon chain in its view.

To clarify the connection between censorship and stalling, we

extend the definition of censoring blocks presented in Section 5.5.1

to proposals recorded on Babylon: Consider an honest PoS node 𝑝

and let𝑏 be a Babylon block containing a valid censorship complaint

in 𝑝’s Babylon chain, i.e., the longest Babylon chain in 𝑝’s view.

Define 𝑏 ′ as the first block on 𝑝’s Babylon chain that contains a

checkpoint and extends 𝑏 by at least 2𝑘𝑐 blocks. Then, a proposal

message (cf. Appendix C.1.1) for a block 𝐵 is said to be censoring
in 𝑝’s view if (i) the proposal was sent in response to a stalling

evidence within a block 𝑏 ′′ such that 𝑏 ′ ≺ 𝑏 ′′ and comes after the

checkpoint in 𝑏 ′ in 𝑝’s Babylon chain, and (ii) 𝐵 does not include

the censored transactions neither in its body nor within its prefix.

The 2𝑘𝑐 lower bound on the gap between 𝑏 and 𝑏 ′ ensures that all
finalized PoS blocks which exclude the censored transactions and

were proposed or voted upon by honest validator are checkpointed

by 𝑏 ′ or other Babylon blocks in its prefix, thus leaving no room to

accuse an honest validator for censorship.

Next, we describe a Tendermint round recorded on-Babylon in

the perspective of an honest validator 𝑝 . Suppose there is a stalling

evidence for some height ℎ on 𝑝’s Babylon chain and the evidence

is at least 2𝑘𝑐 blocks apart from the last preceding checkpoint.

Then, upon observing the first such stalling evidence recorded by

a Babylon block 𝑏, 𝑝 enters a new Tendermint round for height

ℎ, whose messages are recorded on-Babylon, and freezes the pa-

rameters lockedValue, lockedRound, validValue and validRound in
its view. If 𝑝 has observed a new valid Tendermint block become

finalized at the height ℎ by that time, it sends a new checkpoint

to Babylon for that block. Otherwise, 𝑝 signs and sends a pro-

posal message to Babylon, pretending as the leader of the new

round. Since the round is recorded on Babylon, its number round𝑝
is set to a special value, Babylon. Thus, 𝑝’s PROPOSAL message

is structured as ⟨PROPOSAL, ℎ,Babylon, 𝐻 (𝑣), 𝑣𝑟 ⟩, where either (i)
(𝑣, 𝑣𝑟 ) = (validValue, validRound) held by 𝑝 if 𝑝’s validValue ≥ 0,

or (ii) (𝑣, 𝑣𝑟 ) = (𝐵,−1), where 𝐵 is a new PoS block created by 𝑝 , if

𝑝’s validValue = −1 (cf. Appendix C.1.1). If 𝑣𝑟 ≥ 0 and 𝑝 proposed
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its validValue as the proposal 𝑣 , it also sends a commitment of the

2𝑓 + 1 prevote messages for 𝑣 to Babylon along with the proposal.

This is to convince late-coming PoS nodes that the 2𝑓 + 1 prevote
messages for 𝑣 were indeed seen by 𝑝 before it proposed 𝑣 .

Note that 𝑝 only includes the hash of the proposed block 𝑣 in

the proposal message unlike the proposals in Tendermint (cf. Ap-
pendix C.1.1). To ensure that other PoS nodes can download 𝑣 if

needed, miners check its availability before accepting 𝑝’s proposal

message as valid. Similarly, miners check the availability of pre-

votes upon receiving a proposal that proposes a validValue held by

the validator.

Let 𝑏1 and 𝑏2 denote the first blocks on 𝑝’s Babylon chain that

extend 𝑏 by 𝑘𝑐 and 2𝑘𝑐 blocks respectively. If 𝑝 (or any honest PoS

node) observes a checkpoint for a PoS block finalized at height ℎ

between 𝑏 and 𝑏1, it stops participating in the round recorded on-

Babylon and moves to the next height, resuming its communication

with the other validators through the network. Otherwise, if there

are ≥ 2𝑓 + 1 non-censoring proposal messages signed by unique

validators between 𝑏 and 𝑏1, it selects the non-censoring valid

block proposed with the largest 𝑣𝑟 as the proposal of the ‘Babylon

round’ emulated on-Babylon. If there are multiple proposals with

the highest 𝑣𝑟 , 𝑝 selects the one that appears earliest between 𝑏 and

𝑏1 on Babylon. Selecting the proposal with the largest 𝑣𝑟 ensures

that the honest validators can later prevote and precommit for that

block without violating Tendermint rules (cf. Appendix C.1.1).
Once 𝑝 decides on a proposal 𝐵 and observes 𝑏1 in its Babylon

chain, if it is locked on PoS block, it checks if 𝐵 is the same block as

its lockedValue or if the proposal’s 𝑣𝑟 is larger than its lockedRound
(cf.Appendix C.1.1). If so, it sends the following prevote and precom-

mit messages for the selected proposal to Babylon: ⟨PREVOTE, ℎ,
Babylon, 𝑖𝑑 (𝐵)⟩ and ⟨PRECOMMIT, ℎ,Babylon, 𝑖𝑑 (𝐵)⟩ (cf. Sections
C.1.2 and C.1.3). If 𝑝 is not locked on any PoS block, it directly sends

the prevote and precommit messages. Unlike in Tendermint, 𝑝 does

not wait to observe 2𝑓 + 1 prevote messages for 𝐵 before it sends

its precommit message. This is because the purpose of the round

emulated on Babylon is to catch unresponsive validators stalling

the protocol, thus, does not need the two step voting. However, it

still keeps the two step voting for the purpose of consistency with

the Tendermint rounds that happened off-Babylon.

Finally, upon observing 𝑏2 in its Babylon chain, 𝑝 finalizes 𝐵 if

there are more than 2𝑓 +1 prevotes and precommits for 𝐵, signed by

unique validators, between 𝑏1 and 𝑏2. In this case, 𝑏2 is designated

as the Babylon block that has checkpointed the finalized block for

height ℎ. Upon finalizing 𝐵, 𝑝 moves to the next height, resuming

its communication with the other validators through the network.

If 𝑝 observes no new checkpoints and less than 2𝑓 + 1 uniquely
signed non-censoring proposals between𝑏 and𝑏1, it does not send a

prevote or precommit, and instead attempts to restart the round on-

Babylon by sending a new stalling evidence. Similarly, if 𝑝 observes

less than 2𝑓 + 1 uniquely signed prevotes or precommits for the

selected proposal 𝐵 between 𝑏1 and 𝑏2, it does not finalize 𝐵, again

restarting the round on-Babylon. Finally, if 𝑝 observes a fraud proof

on Babylon that implies a safety violation on the PoS chains, it stops

participating in the Tendermint round on-Babylon and temporarily

halts finalizing new PoS blocks.

D PROOF OF THEOREM 1
We prove Theorem 1 below by showing properties S1-S2 and L1-L2
for the PoS chains.

D.1 Proof of the Safety Claims S1 & S2
Proposition 1. If a transaction tx is sent to the miners at time

𝑡 + Δ such that |PoWChain𝑡c | ≤ 𝐿 for all nodes c, tx ∈ PoWChain𝑡
′
c′

for any honest node c′, where |PoWChain𝑡
′ | = 𝐿 + 𝑘𝑤/2.

Proof of Proposition 1 follows from the 𝑘𝑤/2-security of Babylon.

Proposition 2. Consider a PoS block 𝐵 ∈ PoSLOG𝑡
𝑖
, checkpointed

by a Babylon block 𝑏 ∈ PoWChain𝑡
𝑖
. Then, there cannot be any

Babylon block in the prefix of𝑏 that checkpoints a PoS block conflicting
with 𝐵. If 𝐵 ∈ PoSLOG𝑡

𝑖
and is not checkpointed in 𝑖’s view by time

𝑡 , then there cannot be any Babylon block 𝑏 ′ ∈ PoWChain𝑡
𝑖
that

checkpoints a PoS block conflicting with 𝐵.

Proof. For the sake of contradiction, suppose there exists a

Babylon block 𝑏 ′ ⪯ 𝑏 such that 𝑏 ′ checkpoints a PoS block 𝐵′ that
conflicts with 𝐵. Then, via the fork-choice rule in Section 5.3, 𝐵 ∉

PoSLOG𝑡
𝑖
, i.e. contradiction. Similarly, if 𝐵 is not checkpointed in

𝑖’s view by time 𝑡 and there exists a Babylon block 𝑏 ′ ∈ PoWChain𝑡
𝑖

such that 𝑏 ′ checkpoints a PoS block 𝐵′ that conflicts with 𝐵, again

via the fork-choice rule in Section 5.3, 𝐵 ∉ PoSLOG𝑡
𝑖
, i.e. contradic-

tion. □

To show the safety claims S1 and S2, we prove that if Babylon
is secure with parameter 𝑘𝑤/2, then whenever there is a safety

violation on the PoS chains, at least 1/3 of the validator set becomes

slashable in the view of all honest PoS nodes.

Proof. Suppose there is a safety violation on the PoS chains

and PoSLOG𝑡
𝑖
observed by an honest node 𝑖 at time 𝑡 conflicts with

PoSLOG𝑡 ′
𝑗
observed by an honest node 𝑗 at time 𝑡 ′ ≥ 𝑡 . Let 𝐵1 and

𝐵2 denote the first two conflicting PoS blocks on PoSLOG𝑡
𝑖
and

PoSLOG𝑡 ′
𝑗
respectively. Via synchrony, by time 𝑡 ′ +Δ, every honest

node observes 𝐵1 and 𝐵2, their prefixes and the protocol messages

attesting to their PoS-finalization. Since the PoS protocol has an

accountable safety resilience of 1/3, upon inspecting the blocks,

their prefixes and the associated messages, any node can irrefutably

identify 1/3 of the validator set for 𝐵1 and 𝐵2 as having violated

the protocol, and submit a fraud proof to Babylon by time 𝑡 ′ + Δ.
Let 𝑆 denote the set of the adversarial validators witnessed by the

fraud proof.

For the sake of contradiction, assume that there is a validator

v ∈ 𝑆 that has not become slashable in the view of an honest node

c. Then, there exists a time 𝑡0 and a PoS block 𝐵′
2
containing v’s

withdrawal request such that 𝐵′
2
is checkpointed by a Babylon block

𝑏 ′
2
that is at least 𝑘𝑤-deep in PoWChain𝑡0c and there is no fraud

proof showing v’s misbehavior on PoWChain𝑡0c (cf. Section 5.4).

Now, suppose 𝑏 ′
2
has not become at least 𝑘𝑤/2 deep in the longest

Babylon chain in the view of any node, including adversarial ones,

by time 𝑡 ′ + Δ. In this case, since the fraud proof submitted to the

Babylon chain by time 𝑡 ′ + Δ will appear and stay in the canonical

Babylon chain of all honest nodes within 𝑘𝑤/2 block-time of 𝑡 ′ by
Proposition 1, fraud proof will be on PoWChain𝑡0c as well. However,
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this is a contradiction, implying that there must be at least one,

potentially adversarial, node 𝑗 ′, which observes 𝑏 ′
2
become 𝑘𝑤/2

deep in its longest Babylon chain at some time 𝑠 ≤ 𝑡 ′ + Δ.
Next, we analyze the following cases:

• Case 1: There exists a Babylon block 𝑏1 ∈ PoWChain𝑡
𝑖
such

that 𝑏1 checkpoints 𝐵1 and 𝑏1 ⪯ 𝑏 ′
2
∈ PoWChain𝑡

𝑖
.

• Case 2: There exists a Babylon block 𝑏1 ∈ PoWChain𝑡
𝑖
such

that 𝑏1 checkpoints 𝐵1 and 𝑏
′
2
≺ 𝑏1.

• Case 3: 𝑏 ′
2
∉ PoWChain𝑡

𝑖
.

• Case 4: There does not exist a Babylon block 𝑏1 ∈ PoWChain𝑡
𝑖

checkpointing 𝐵1 at time 𝑡 and 𝑏 ′
2
∈ PoWChain𝑡

𝑖
.

Case 1: 𝑏1 ⪯ 𝑏 ′
2
. By Proposition 2, 𝑏1 ∉ PoWChain𝑡

′
𝑗
, which

implies that the 𝑘𝑤/2 blocks building on 𝑏 ′
2
in PoWChain𝑠

𝑗 ′ are not

in PoWChain𝑡
′
𝑗
at time 𝑡 ′ ≥ 𝑠 − Δ. However, this is a contradiction

with the 𝑘𝑤/2-safety of Babylon.

Case 2: 𝑏 ′
2
≺ 𝑏1. If 𝐵

′
2
conflicts with 𝐵1, as 𝐵1 ∈ PoSLOG𝑡

𝑖
,

via Proposition 2, 𝑏 ′
2
≺ 𝑏1 cannot be true, i.e. contradiction. On

the other hand, if 𝑏 ′
2
≺ 𝑏1 and 𝐵′

2
does not conflict with 𝐵1, then

𝐵′
2
≺ 𝐵1, in which case v cannot be in the validator set 𝑆 that voted

for 𝐵1, i.e. contradiction.
Case 3: 𝑏 ′

2
∉ PoWChain𝑡

𝑖
. Suppose 𝑡 ≥ 𝑠 . Since PoWChain𝑡

𝑖
does

not contain the 𝑘𝑤/2 Babylon blocks following 𝑏 ′
2
in 𝑗 ′’s canonical

Babylon chain at time 𝑠 , in this case, Babylon cannot be safe with

parameter 𝑘𝑤/2, i.e., contradiction.
On the other hand, if 𝑡 < 𝑠 , we consider the following sub-cases:

• Case 3-a: There exists a Babylon block 𝑏2 ∈ PoWChain𝑡
′
𝑗
such

that 𝑏2 checkpoints 𝐵2 and 𝑏2 ⪯ 𝑏 ′
2
.

• Case 3-b: There exists a Babylon block 𝑏2 ∈ PoWChain𝑡
′
𝑗
such

that 𝑏2 checkpoints 𝐵2 and 𝑏
′
2
≺ 𝑏2.

• Case 3-c: 𝑏 ′
2
∉ PoWChain𝑡

′
𝑗
.

• Case 3-d:There does not exist a Babylon block𝑏2 ∈ PoWChain𝑡
′
𝑗

checkpointing 𝐵2 at time 𝑡 ′ and 𝑏 ′
2
∈ PoWChain𝑡

′
𝑗
.

Case 3-a: 𝑏2 ⪯ 𝑏 ′
2
. In this case, as 𝑡 < 𝑠 , by time 𝑠 + Δ, node 𝑖

would have observed both PoS blocks 𝐵1 and 𝐵2 along with their

prefixes and sent a fraud proof to the Babylon miners. Then, by

Proposition 1, the fraud proof will appear in the prefix of the 𝑘𝑤-

th Babylon block building on 𝑏 ′
2
in c’s canonical Babylon chain.

However, this is a contradiction with the assumption that v has

withdrawn its stake in c’s view.
Case 3-b: 𝑏 ′

2
≺ 𝑏2. If 𝐵

′
2
conflicts with 𝐵2, as 𝐵2 ∈ PoSLOG𝑡 ′

𝑗
,

via Proposition 2, 𝑏 ′
2
≺ 𝑏2 cannot be true, i.e. contradiction. On

the other hand, if 𝑏 ′
2
≺ 𝑏2 and 𝐵′

2
does not conflict with 𝐵2, then

𝐵′
2
≺ 𝐵2, in which case v cannot be in the validator set 𝑆 that voted

for 𝐵2, again a contradiction.

Case 3-c: 𝑏 ′
2
∉ PoWChain𝑡

′
𝑗
. In this case, PoWChain𝑡

′
𝑗
does not

contain the 𝑘𝑤/2 Babylon blocks following 𝑏 ′
2
in 𝑗 ′’s canonical

Babylon chain at time 𝑠 ≤ 𝑡 ′ + Δ. However, this contradicts with
the 𝑘𝑤/2-safety of the Babylon chain.

Case 3-d:There does not exist a Babylon block𝑏2 ∈ PoWChain𝑡
′
𝑗

checkpointing 𝐵2 at time 𝑡 ′ and 𝑏 ′
2
∈ PoWChain𝑡

′
𝑗
. In this case, if

𝐵′
2
conflicts with 𝐵2 and 𝐵2 ∈ PoSLOG𝑡 ′

𝑗
, via Proposition 2, 𝑏 ′

2
∈

PoWChain𝑡
′
𝑗
cannot be true, i.e. contradiction. On the other hand,

if 𝐵′
2
≺ 𝐵2, v cannot be in the validator set 𝑆 that voted for 𝐵2,

again a contradiction. Finally, if 𝐵2 ⪯ 𝐵′
2
, then 𝑏 ′

2
also checkpoints

𝐵2 by the monotonicity of checkpoints (cf. Section 5.3), which is

a contradiction with the assumption that there does not exist a

Babylon block 𝑏2 ∈ PoWChain𝑡
′
𝑗
checkpointing 𝐵2 at time 𝑡 ′.

Case 4: There does not exist a Babylon block 𝑏1 ∈ PoWChain𝑡
𝑖

checkpointing 𝐵1 at time 𝑡 and 𝑏 ′
2
∈ PoWChain𝑡

𝑖
. In this case, if

𝐵′
2
conflicts with 𝐵1, as 𝐵1 ∈ PoSLOG𝑡

𝑖
, via Proposition 2, 𝑏 ′

2
∈

PoWChain𝑡
𝑖
cannot be true, implying contradiction. On the other

hand, if 𝐵′
2
≺ 𝐵1, v cannot be in the validator set 𝑆 that voted for 𝐵1,

again a contradiction. Finally, if 𝐵1 ⪯ 𝐵′
2
, then 𝑏 ′

2
also checkpoints

𝐵1 by the monotonicity of checkpoints (cf. Section 5.3), which is

a contradiction with the assumption that there does not exist a

Babylon block 𝑏1 ∈ PoWChain𝑡
𝑖
checkpointing 𝐵1 at time 𝑡 .

Thus, by contradiction, we have shown that if the Babylon chain

satisfies 𝑘𝑤/2-security, none of the validators in the set 𝑆 can with-

draw their stake in the view of any honest node by time 𝑡 ′ + Δ.
Moreover, since they have been irrefutably identified as protocol

violators by every honest node by time 𝑡 ′ + Δ, they are slashable

per Definition 3. Consequently, whenever there is a safety violation

on the PoS chains, at least 1/3 of the validators become slashable if

Babylon satisfies 𝑘𝑤/2-security. □

No honest validator becomes slashable in the view of any PoS

node due to a safety violation since fraud proofs never identify

an honest validator as a protocol violators via the accountability

guarantee provided by Tendermint [15]. Thus, even if the adversary

compromises the security of the Babylon chain, it cannot cause

honest validators to get slashed for a safety violation on the PoS

chain. However, when the security of the Babylon chain is violated,

honest validators might be subjected to slashing for censorship

and stalling as the arrow of time determined by Babylon is dis-

torted. Since accountable liveness is impossible without external

trust assumptions, slashing of honest nodes is unavoidable if the

adversary can cause arbitrary reorganizations of blocks on Babylon.

This point is addressed in the next section.

D.2 Proof of the Liveness Claims L1 & L2
In this section, we prove that if Babylon is secure with parameter

𝑘𝑐/2 ≤ 𝑘𝑤/2, whenever there is a liveness violation exceeding

Θ(𝑘𝑐 ) block-time, at least 1/3 of the active validator set becomes

slashable in the view of all honest nodes. Let 𝑓 denote the safety

and liveness resilience of Tendermint such that 𝑛 = 3𝑓 + 1. In the

rest of this section, we assume that there is no safety violation

on the PoS chains and there is no fraud proof posted on Babylon

that accuses 𝑓 + 1 active validators of equivocating on prevote or

precommit messages. We will relax this assumption and consider

the interaction between safety and liveness violations at the end of

this section.

In the rest of this section, we will assume that the Babylon chain

is 𝑘𝑐/2-secure per Definition 2 unless stated otherwise. Moreover,

in this section, Babylon chains in the view of honest nodes or

validators will refer to the 𝑘𝑐/2-deep prefix of the longest chain in

their view. Under the 𝑘𝑐/2-security assumption for Babylon, this

reference ensures that (i) the Babylon chains observed by different

honest nodes at any given time are prefixes of each other, and
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(ii) the data behind every commitment appearing on the Babylon

chains held by the honest nodes is available per Definition 2.

Let PoWChain𝑡 , without any node specified, denote the shortest

Babylon chain in the view of the honest nodes at time 𝑡 . Thus,

PoWChain𝑡 is a prefix of all Babylon chains held by the honest

nodes at time 𝑡 . Moreover, by the synchrony assumption, we deduce

that all Babylon chains held by the honest nodes at time 𝑡 − Δ are

prefixes of PoWChain𝑡 . Using the notation PoWChain𝑡 , we can

state the liveness property of the Babylon chain in the following

way:

Proposition 3. If a transaction tx is sent to the miners at time 𝑡+Δ
such that |PoWChain𝑡 | = 𝐿, tx ∈ PoWChain𝑡

′
, where |PoWChain𝑡

′ | =
𝐿 + 𝑘𝑐 .

Proof of Proposition 3 follows from the 𝑘𝑐/2-security of Babylon.
As stated in Section 5.5, at least one honest node sends check-

points for new finalized PoS blocks every time it observes the

Babylon chain grow by 𝑘𝑐 blocks. Moreover, if a PoS block is fi-

nalized for the first time in an honest node’s view at time 𝑡 , it is

finalized in every honest node’s view by time 𝑡+Δ via the synchrony

assumption.

Proposition 4. Suppose a PoS block is finalized in the view
of an honest node at time 𝑡 such that |PoWChain𝑡 | = 𝐿. Then, a
checkpoint for the finalized block appears in PoWChain𝑡

′
, where

|PoWChain𝑡
′ | = 𝐿 + 2𝑘𝑐 .

Proof of Proposition 4 follows from Proposition 3 and the as-

sumption above.

Lemma 1. Suppose |PoWChain𝑡 | = 𝐿 and |PoWChain𝑡
′ | = 𝐿+5𝑘𝑐

for times 𝑡 , 𝑡 ′, and the height of the last PoS block finalized in any
honest node’s view by time 𝑡 is ℎ−1. Then, either a new non-censoring
Tendermint block for height ℎ is checkpointed within the interval
(𝑡, 𝑡 ′] or 𝑓 + 1 active validators must have violated the slashing rules
for censorship and stalling in Sections 5.5.2, C.2 and 5.5.4 in the view
of all honest nodes.

Proof. Let 𝑡𝑖 denote the first time such that |PoWChain𝑡𝑖 | =
𝐿 + 𝑖𝑘𝑐 . If no new checkpoint for height ℎ appears on the Babylon

chain by time 𝑡2, at least one honest node must have sent a stalling

evidence to Babylon by that time. Thus, via Proposition 3, by time 𝑡3,

there exists a stalling evidence recorded in a block 𝑏 in the Babylon

chains held by all honest nodes. Similarly, by time 𝑡4, block 𝑏1 that

extends 𝑏 by 𝑘𝑐 blocks appears in the Babylon chain of all honest

nodes. At this point, there are three possibilities:

(1) There is a new checkpoint in the prefix of 𝑏1 that commits to a

new PoS block finalized for height ℎ.

(2) There are less than 2𝑓 + 1 proposal messages signed by unique

validators, proposing non-censoring PoS blocks between 𝑏 and

𝑏1.

(3) There are 2𝑓 + 1 or more proposal messages signed by unique

validators, proposing non-censoring PoS blocks between 𝑏 and

𝑏1.

Case 1 implies that there is a new checkpoint in every honest node’s

view by time 𝑡 ′ and case 2 implies that more than 𝑓 + 1 active

validators must have violated the slashing rules in Sections 5.5.2

and 5.5.4 in the view of all honest nodes.

If case 3 happens, validators are required to send prevote and

precommit messages for the unique non-censoring PoS block 𝐵

selected as described in Section C.2 by time 𝑡4. Moreover, by time

𝑡5, block 𝑏2 that extends 𝑏1 by 𝑘𝑐 blocks appears in the Babylon

chain of all honest nodes. Thus, if case 3 happens, there are two

possibilities at time 𝑡5:

(1) There are less than 2𝑓 + 1 prevote or precommit messages for

𝐵, signed by unique validators, between 𝑏1 and 𝑏2.

(2) There are 2𝑓 + 1 or more prevote and precommit messages for

𝐵, signed by unique validators, between 𝑏1 and 𝑏2.

In the former case, more than 𝑓 + 1 active validators must have

violated the slashing rules in Section 5.5.4 in the view of all honest

nodes. In the latter case, block 𝐵 is PoS-finalized and block 𝑏2 acts

as a new checkpoint for the PoS block at height ℎ as stated in

Section C.2. □

Lemma 2. No honest validator violates the slashing rules for cen-
sorship and stalling in Sections 5.5.2, C.2 and 5.5.4 in the view of any
honest node.

Proof. Censorship: Suppose a Babylon block 𝑏 containing a

censorship complaint first appears in the Babylon chains of all
honest nodes at time 𝑡0, |PoWChain𝑡0 | = 𝐿. Let 𝑡𝑖 denote the first

time such that |PoWChain𝑡𝑖 | = 𝐿 + 𝑖𝑘𝑐 . For the sake of contradic-
tion, suppose an honest validator proposed or voted (precommit

or commit) for a censoring PoS block 𝐵. Let 𝑏 ′ denote the Babylon
block containing the first checkpoint after 𝑏 that is more than 2𝑘𝑐
blocks apart from 𝑏. Given 𝑏 and 𝑏 ′, there are two cases for 𝐵:

• 𝐵 is PoS-finalized and checkpointed by a Babylon block 𝑏 ′′

such that 𝑏 ′ ≺ 𝑏 ′′ in all of the Babylon chains held by the

honest nodes.

• A proposal for 𝐵 appears in response to a stalling evidence

recorded by a Babylon block 𝑏 ′′ such that 𝑏 ′ ≺ 𝑏 ′′ (cf. Sec-
tion C.2).

Let ℎ denote the largest height for which a PoS block was final-

ized in the view of any honest node by time 𝑡0. Then, by Proposi-

tion 4, a checkpoint for that block appears in the Babylon chains

held by all honest nodes by time 𝑡2 in the prefix of the 2𝑘𝑐 -th block

extending 𝑏. Thus, by the monotonicity of checkpoints, the check-

point within block 𝑏 ′ must cover the PoS block finalized for height

ℎ + 1. Moreover, since honest validators cannot propose or vote

for PoS blocks at heights ≥ ℎ + 2 before a block for height ℎ + 1 is
finalized, if an honest validator proposed or voted for a PoS block

excluding the censored transactions by time 𝑡0, by definition, this

block must have been proposed for height ℎ + 1 or lower. Conse-
quently, as honest validators would not propose or vote for new

PoS blocks excluding the censored transactions after time 𝑡0, such

a block can only be finalized at heights ≤ ℎ + 1 and its checkpoint

can only appear as a checkpoint either in block 𝑏 ′ or within some

other Babylon block in its prefix. Hence, given the first case above,

it is not possible for an honest validator to have proposed or voted

for 𝐵, i.e. contradiction.
In the second case, by Proposition 3, any stalling evidence recorded

by a Babylon block 𝑏 ′′ such that 𝑏 ′ ≺ 𝑏 ′′, must have been sent after

block 𝑏 was observed by every honest node on their Babylon chains.

From the explanation above, we know that a block that excludes

the censored transactions and voted upon or proposed by honest
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validators can only be finalized at heights ≤ ℎ+1 and its checkpoint
can only appear as a checkpoint either in block 𝑏 ′ or within some

other Babylon block in its prefix. Thus, if a proposal for block 𝐵

appears in response to a stalling evidence recorded by 𝑏 ′ or one
of its descendants, 𝐵 must be for a height larger than ℎ + 1. Since
no honest validator proposes or votes for PoS blocks from heights

larger than ℎ + 1 that does not contain the censored transactions,

it is not possible for an honest validator to have proposed 𝐵, i.e.
contradiction. Consequently, no honest validator could have com-

mitted a slashable offense per the rules in Sections 5.5.2 and C.2,

thus become slashable, in the view of any honest node.

Stalling: Consider a stalling evidence for height ℎ recorded

by a Babylon block 𝑏 that is first observed by every honest node

at time 𝑡0 such that |PoWChain𝑡0 | = 𝐿. Define 𝑏1 and 𝑏2 as the

Babylon blocks that extend 𝑏 by 𝑘𝑐 and 2𝑘𝑐 blocks respectively in

the Babylon chains of all honest nodes. For the sake of contradiction,

suppose there is no checkpoint between 𝑏 and 𝑏1 for height ℎ and

a proposal message by an honest validator is missing in the same

interval. In this case, the validator could not have seen a PoS block

finalized for height ℎ by time 𝑡0 as it would have otherwise sent

a checkpoint for it and the checkpoint would have been recorded

between 𝑏 and 𝑏1 by Proposition 3. Hence, the validator must have

sent a proposal message by time 𝑡0, which would appear between

𝑏 and 𝑏1 by Proposition 3.

Next, assume that there are at least 2𝑓 + 1 proposal messages

for non-censoring blocks between 𝑏 and 𝑏1, and no checkpoint for

height ℎ. For the sake of contradiction, suppose that prevote or

precommit messages by an honest validator 𝑝 are either missing

between the blocks 𝑏1 and 𝑏2 or 𝑝 sent these messages for a PoS

block that is different from the proposal selected by another hon-

est node 𝑝 ′. In either case, 𝑝 becomes slashable for stalling in the

view of 𝑝 ′. To rule out both cases, we first show that all honest

validators choose the same block as their proposal, under our ini-

tial assumption that there is no fraud proof accusing 𝑓 + 1 active
validators.

If all of the proposalmessages between𝑏 and𝑏1 for non-censoring

PoS blocks have 𝑣𝑟 = −1, then all honest validators choose the block
proposed by the earliest message between 𝑏 and 𝑏1 as the proposal

of the on-Babylon Tendermint round (cf. Section C.2). If there is

only one proposal message between 𝑏 and 𝑏1 with 𝑣𝑟 ≠ −1 for a
non-censoring PoS block, then all honest validators choose this

block as the proposal for the on-Babylon Tendermint round. Finally,

suppose there are at least two proposal messages between 𝑏 and

𝑏1 with 𝑣𝑟 ≠ −1 and for different non-censoring PoS blocks. Then,

different PoS blocks must have acquired at least 2𝑓 + 1 prevote

messages for the same round 𝑣𝑟 ≠ −1 of the latest height ℎ (cf.
Section C.1). For different PoS blocks to acquire 2𝑓 + 1 prevote

messages for the same round 𝑣𝑟 of height ℎ, at least 𝑓 + 1 validators
from the active validator set must have sent prevotes for conflicting

blocks proposed for the same round 𝑣𝑟 . In this case, a fraud proof

implicating these 𝑓 + 1 current validators will be created by an hon-

est node and will eventually appear on the Babylon chain, which

contradicts with our assumption on fraud proofs. Thus, under this

assumption, either the maximum 𝑣𝑟 among all proposal messages

is greater than −1, in which case the messages with the largest 𝑣𝑟

propose the same non-censoring PoS block, or all of them have

𝑣𝑟 = −1, in which case the non-censoring block within the earliest

proposal on the Babylon chain between 𝑏 and 𝑏1 is selected by the

nodes. Hence, in any of the cases, 𝑝 could not have chosen, as its

proposal for the on-Babylon round, a PoS block that is different

from the proposal selected by another honest node 𝑝 ′.
Finally, if 𝑝’s lockedRound = −1, then it directly sends prevote

and precommit messages for the selected proposal upon observ-

ing block 𝑏1 (cf. Section C.2). Otherwise, if its lockedRound ≠ −1,
its −1 ≠ validRound ≥ lockedRound, and, as an honest valida-

tor, 𝑝 must have sent a proposal message with 𝑣𝑟sent equal to its

validRound. Then, for the 𝑣𝑟
sel

of the selected proposal, which is

the maximum among the 𝑣𝑟 values of all the proposals between

𝑏 and 𝑏1, thus 𝑣𝑟sel ≥ 𝑣𝑟sent = lockedRound ≥ lockedRound of 𝑝 ,

there are two cases:

• 𝑣𝑟
sel

exceeds 𝑝’s lockedRound, in which case 𝑝 sends prevote

and precommit messages for the proposal upon seeing block

𝑏1.

• 𝑣𝑟
sel

= lockedRound = validRound = 𝑣𝑟sent ≠ −1. In this case,

𝑝 has sent a proposal message with the largest 𝑣𝑟 and must

have proposed the same PoS block as the one suggested by

the selected proposal message via the reasoning above, which

is validValue by Tendermint rules (cf. Section C.1.1). As 𝑝’s

lockedRound = validRound, it should be the case that 𝑝’s

lockedValue = validValue unless again there are 𝑓 + 1 active
validators that sent prevote messages for conflicting blocks

at round lockedRound. Thus, 𝑝 again sends prevote and pre-

commit messages for the selected proposal upon seeing block

𝑏1.

Thus, 𝑝 sends prevote and precommit messages upon seeing 𝑏1 for

the selected proposal which is the same across all honest nodes,

and these votes appear on Babylon in the view of all honest nodes

between blocks 𝑏1 and 𝑏2 by Proposition 3. Consequently, 𝑝 could

not have committed a slashable offense per the rules in Section 5.5.4,

and thus become slashable, in the view of any node 𝑝 ′, i.e., contra-
diction. □

Liveness part of Theorem 1 is proven below:

Proof. Let 𝑡𝑖 denote the first time such that |PoWChain𝑡𝑖 | =
𝐿 + 𝑖𝑘𝑐 . Suppose a censorship complaint is sent to Babylon at time

𝑡0. Then, by Proposition 3, the complaint appears in the Babylon

chain of every honest node within some block 𝑏 by time 𝑡1. Let ℎ−1
be the height of the last PoS block finalized in any honest node’s

view by time 𝑡3.

Suppose no more than 𝑓 active validators violate the slashing

rules in Sections 5.5.2, C.2 and C.2 in the view of all honest nodes.

Then, via Lemma 1, a new non-censoring PoS block for height ℎ is

checkpointed by some Babylon block 𝑏 ′ within the interval (𝑡3, 𝑡8].
Similarly, again via Lemma 1, a new non-censoring PoS block 𝐵

for a height larger than ℎ is checkpointed by some Babylon block

𝑏 ′′ by the time 𝑡13. As 𝐵 is non-censoring and appears within a

Babylon block 𝑏 ′′ such that 𝑏 ′ ≺ 𝑏 ′′ (cf. Sections 5.5.1 and C.2), by

definition of censoring blocks, it includes the censored transactions.

Consequently, unless 𝑓 + 1 active validators violate the slashing
rules for censorship and stalling in the view of all honest nodes, any

valid PoS transaction becomes finalized and checkpointed within

13𝑘𝑐 blocktime of the time censorship is detected.
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Finally, via Lemma 2, no honest validator violates the slashing

rules for censorship and stalling in Sections 5.5.2, C.2 and 5.5.4 in

the view of any honest node. Hence, if there is a liveness violation

for a duration of more than 13𝑘𝑐 block-time, either of the following

conditions must be true:

• L1: More than 𝑓 + 1 ≥ 𝑛/3 active validators, all of which are

adversarial, must have violated the slashing rules for censorship

and stalling in the view of all honest nodes. Thus, these protocol

violators will be identified as irrefutably adversarial in the view

of all honest nodes. As they are active validators and have not

withdrawn their stake, they also become slashable in the view

of all honest nodes.

• L2: The Babylon chain is not secure with parameter 𝑘𝑐/2.
This concludes the proof of the liveness claims in Theorem 1 under

the assumption that no fraud proof appears on Babylon accusing

𝑓 + 1 validators of a slashable offense for safety.
Finally, we relax the assumption on the fraud proof and safety.

Suppose there is a fraud proof on Babylon implicating 𝑓 + 1 active
validators in a safety violation on the PoS chains. Then, the PoS

protocol is temporarily halted and no validator can be slashed for

any slashing rule other than for a safety violation (cf. Section 5.4).

This precaution prevents adversarial validators frommaking honest

ones slashable due to censorship or stalling in the event of a safety

violation on the PoS chains; however, results in a liveness violation

as the PoS protocol stops finalizing new blocks temporarily. Note

that if the Babylon chain is secure with parameter 𝑘𝑐/2, by the

assumption 𝑘𝑐 ≤ 𝑘𝑤 , it is also secure with parameter 𝑘𝑤 . Hence,

if the protocol halts due to a safety violation on the PoS chains, at

least one of the following conditions should be true:

• Babylon chain is not secure with parameter 𝑘𝑐/2, implying

clause L2.
• Babylon chain is secure with parameters 𝑘𝑐 and 𝑘𝑤 , implying

that at least 𝑓 +1 > 𝑛/3 adversarial validators become slashable

in the view of all honest nodes via the proof Section D.1, i.e.,
clause L1.

Thus, even though the halting of the protocol due to a safety viola-

tion could cause a liveness violation, the liveness claims of Theo-

rem 1 hold in this case as well. This concludes the liveness proof. □
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Algorithm 1 Validation of the commitments sent to Babylon by the miners. Returns true if the commitment is valid given the data 𝐷 .

function pow_validate_commitment(commitment, data, type)
if type == checkpoint

3: ⊲ Parse the data for the checkpoint.
block_headers, transaction_roots, block_bodies← parse_block_data(data)
⊲ Check if the transaction roots sent as part of the data commit to the PoS block bodies.

6: for (block_header, transaction_root, block_body) ← block_headers, transaction_roots, block_bodies
if transaction_root ≠ 𝐻 (block_body)

return False
9: end if

end for
⊲ Check if the checkpoint was correctly calculated.

12: if commitment == 𝐻 (block_headers | | transaction_roots)
return True

end if
15: return False

else if type == message
⊲ Check if the message commitment was correctly calculated.

18: if commitment == 𝐻 (data)
return True

end if
21: return False

end if
end function

Algorithm 2 Generation of the commitments by the PoS nodes. Returns the calculated commitment.

function generate_commitment(data, type)
if type == checkpoint

3: block_headers, transaction_roots, block_bodies← parse_block_data(data)
return 𝐻 (block_headers | | transaction_roots)

else if type == message
6: return 𝐻 (data)

end if
end function
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Algorithm 3 Validation of the commitments on Babylon by the full PoS nodes. Returns true if the commitment is valid given the data 𝐷 .

function pos_validate_commitment(commitment, data, type)
if type == checkpoint

3: ⊲ Parse the data for the checkpoint.
block_headers, transaction_roots, block_bodies← parse_block_data(data)
for 𝑖 ← 0, .., 𝑙𝑒𝑛(block_headers) − 1

6: block_header← block_headers[i]
transaction_root← transaction_roots[i]
block_body← block_bodies[i]

9: ⊲ Check if the checkpointed PoS blocks were finalized.
if !is_finalized(block_header)

return False
12: end if

⊲ Check if the checkpointed PoS blocks form a consecutive sequence on the PoS chain.
if 𝑖 ≠ 𝑙𝑒𝑛(block_headers) ∧ !block_headers[𝑖 + 1] .is_ancestor(block_header || block_body)

15: return False
end if
⊲ Check if the checkpoint was calculated with the correct transaction roots and if these roots commit to the PoS block body.

18: if transaction_root ≠ block_header.transaction_root ∨ transaction_root ≠ 𝐻 (block_body)
return False

end if
21: end for

⊲ Check if checkpoint was correctly calculated.
if commitment == 𝐻 (block_headers | | transaction_roots)

24: return True
end if
return False

27: else if type == message
⊲ Check if the message commitment was correctly calculated.
if commitment == 𝐻 (data)

30: return True
end if
return False

33: end if
end function
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Algorithm 4 Identifying the canonical PoS chain when there is a safety violation on the PoS chain. Returns the canonical PoS chain.

function identify_PoS_chain(Babylon_chain, PoS_blocktree)
PoS_canonical← []

3: ⊲ Obtaining a sequence of valid checkpoints and the associated data from the PoW chain. Note that if there are two consecutive valid
checkpoints on Babylon such that the second checkpoint commits to blocks conflicting with those of the first one, the second one is not
returned.

commitments, data← Babylon_chain.get_valid_checkpoints()
children← [PoS_blocktree.genesis_block]

6: next← True
⊲ 𝑖 keeps track of which checkpoint in the sequence of returned valid checkpoints PoS node is currently considering.
𝑖 ← 0

9: if 𝑖 ≥ 𝑙𝑒𝑛(commitments)
block_headers, transaction_roots, block_bodies← ⊥,⊥,⊥

else
12: cur_commitment← commitments[0]

cur_data← data[0]
block_headers, transaction_roots, block_bodies← parse_block_data(cur_data)

15: end if
while children ≠ ∅

for PoS_block← children
18: ⊲ Check if the current PoS block is committed by a valid and early checkpoint, and should be part of the canonical PoS chain.

if PoS_block.header ∈ block_headers
children← PoS_blocktree.get_children(PoS_block)

21: next← False
PoS_canonical← PoS_canonical + [PoS_block]
⊲ All of the blocks in the current checkpoint are accounted for. PoS node now considers the PoS blocks attested by the next

valid checkpoint.
24: if PoS_block.header == block_headers[-1]

𝑖 ← 𝑖 + 1
if 𝑖 ≥ 𝑙𝑒𝑛(commitments)

27: block_headers, transaction_roots, block_bodies← ⊥,⊥,⊥
else

cur_commitment← commitments[i]
30: cur_data← data[i]

block_headers, transaction_roots, block_bodies← parse_block_data(cur_data)
end if

33: end if
Break

end if
36: end for

⊲ If there is no checkpoint to help decide which children of a block on the PoS chain to follow as the next block on the canonical PoS
chain, decision is made in favor of the first child returned by the get_children function.

if next
39: PoS_canonical← PoS_canonical + [children[0]]

children← PoS_blocktree.get_children(children[0])
end if

42: next← True
end while
return PoS_canonical

45: end function
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Algorithm 5 Granting stake withdrawal request and slashing protocol violators in the event of a safety violation. Returns true if the

withdrawal request for the specified validator is to be granted in the view of the PoS node running the function, slashes the stake of the

validator if there is a fraud proof accusing it.

function grant_withdrawal_request(Babylon_chain, validator)
commitments, data← Babylon_chain.get_valid_checkpoints()

3: ⊲ get_all_checkpointed_blocks returns all checkpointed, valid and finalized PoS blocks given a sequence of commitments and data.
pos_blocks← get_all_checkpointed_blocks(commitments, data)
PoS_block← ⊥

6: for block← blocks
if ∃ withdrawal_req by validator ∈ block

PoS_block← block
9: Babylon_block_height← Height of the Babylon block containing the checkpoint for PoS_block

end if
end for

12: ⊲ Without a checkpoint for the PoS block containing the withdrawal request, request cannot be granted.
if PoS_block == ⊥

return False
15: end if

⊲ If the checkpoint of the PoS block containing the request is not sufficiently deep in Babylon in the view of the PoS node, then the
request is not granted.

if 𝑙𝑒𝑛(Babylon_chain) ≤ Babylon_block_height + 𝑘𝑤
18: return False

end if
⊲ If the checkpoint of the PoS block containing the request is indeed 𝑘𝑤 deep in Babylon in the view of the PoS node, then the request is

granted only after checking for the fraud proofs as specified by condition (3) in Section 5.4
21: Babylon_fragment← Babylon_chain[Babylon_block_height : Babylon_block_height + kw]

commitments, fraud_proofs← Babylon_fragment.get_valid_fraud_proofs()
for fraud_proof← fraud_proofs

24: if fraud_proof accuses validator
⊲ Validator is slashed if there is a valid fraud proof on Babylon that irrefutably accuses the validator.
slash_validator(validator, fraud_proof)

27: return False
end if

end for
30: return True

end function

Algorithm 6 Identifying all censoring PoS blocks with respect to a censorship complaint on Babylon. Takes as input the canonical Babylon

chain, height of the Babylon block with the censorship complaint, and the canonical PoS chain. Slashes the validators that proposed or voted

for the censoring blocks.

function is_block_censoring(Babylon_chain Babylon_block_height, PoS_block, PoS_canonical)
commitments, censored_txs← Babylon_chain[Babylon_block_height] .get_valid_censorship_complaint()

3: ⊲ Get all checkpoints that extend the Babylon block with the censorship complaint by at least 2𝑘𝑐 blocks.
commitments, data← Babylon_chain[Babylon_block_height + 2𝑘𝑐 :] .get_valid_checkpoints()
⊲ Parse over these checkpoints starting from the second one as stated in Section 5.5.1

6: for 𝑖 ← 1, .., 𝑙𝑒𝑛(data) − 1
block_headers, transaction_roots, block_bodies← parse_block_data(data)
⊲ Detect the censoring blocks on the PoS chain as attested by each checkpoint.

9: for PoS_block← block_headers, block_bodies
if censored_txs ∉ PoS_canonical[: PoS_block] ∧ censored_txs valid w.r.t the state of PoS_canonical[: PoS_block]

Slash validators that proposed and voted upon PoS_block
12: end if

end for
end for

15: end function
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Algorithm 7 Emulating a Tendermint round on Babylon when there is a stalling evidence. This function is evoked by validators if a stalling

evidence is observed on the 𝑘𝑤/2-deep prefix of the longest Babylon chain. There are 𝑛 = 3𝑓 + 1 active validators in total.

function emulate_round_on_Babylon
upon stalling_evidence ∈ Babylon_block

3: checkpoint_height← Babylon_chain.get_last_checkpoints_height()
commitment, data← Babylon_chain.get_last_checkpoint()
block_headers, transaction_roots, block_bodies← parse_block_data(data)

6: ⊲ Stalling evidence is taken into consideration only if it comes to Babylon at least 2𝑘𝑐 blocks after the last checkpoint on Babylon.
if Babylon_block.height ≥ checkpoint_height + 2𝑘𝑐

⊲ If the validator has observed new PoS blocks finalized at the heights not covered by the last checkpoint, it sends a checkpoint for
the new PoS blocks instead of emulating the round on Babylon.

9: if last_finalized_PoS_block.header ∉ block_headers
Send checkpoint to Babylon

else
12: ⊲ See Appendix C.2 for more information on how proposal messages are selected and structured.

Send Tendermint proposal to Babylon

end if
15: end if

end upon
⊲ This is block 𝑏1 on Figure 7.

18: upon Babylon block with height checkpoint_height + 3𝑘𝑐
proposals← Babylon_chain[−kc :] .get_non_censoring_proposals()
if 𝑙𝑒𝑛(proposals) < 2𝑓 + 1

21: Slash validators with missing or censoring proposals

Send new stalling evidence

return
24: else

⊲ Proposal with the largest validRound is selected, details are in Appendix C.2.
round_proposal← select_round_proposal(proposals)

27: ⊲ See Appendix C.2 for more information on how prevotes and precommits are structured.
Send prevote and precommit to Babylon for round_proposal

end if
30: end upon

⊲ This is block 𝑏2 on Figure 7.
upon Babylon block with height checkpoint_height + 4𝑘𝑐

33: prevotes← Babylon_chain[−kc :] .get_prevotes(proposal)
precommits← Babylon_chain[−kc :] .get_precommits(proposal)
if 𝑙𝑒𝑛(prevotes) < 2𝑓 + 1 ∨ 𝑙𝑒𝑛(precommits) < 2𝑓 + 1

36: Slash validators whose prevotes and precommits are missing for round_proposal
Send new stalling evidence

return
39: else

Finalize round_proposal
end if

42: end upon
end function
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