
BAT: Small and Fast KEM over NTRU Lattices
Pierre-Alain Fouque1, Paul Kirchner1, Thomas Pornin2 and Yang Yu3†

Rennes Univ, IRISA, Rennes, France
pa.fouque@gmail.com, paul.kirchner@irisa.fr

NCC Group, Quebec, Canada
thomas.pornin@nccgroup.com

BNRist, Tsinghua University, Beijing, China
yang.yu0986@gmail.com

Abstract. We present BAT – an IND-CCA secure key encapsulation mechanism
(KEM) that is based on NTRU but follows an encryption/decryption paradigm
distinct from classical NTRU KEMs. It demonstrates a new approach of decrypting
NTRU ciphertext since its introduction 25 years ago. Instead of introducing an
artificial masking parameter p to decrypt the ciphertext, we use 2 linear equations in
2 unknowns to recover the message and the error. The encryption process is therefore
close to the GGH scheme. However, since the secret key is now a short basis (not a
vector), we need to modify the decryption algorithm and we present a new NTRU
decoder. Thanks to the improved decoder, our scheme works with a smaller modulus
and yields shorter ciphertexts, smaller than RSA-4096 for 128-bit classical security
with comparable public-key size and much faster than RSA or even ECC. Meanwhile,
the encryption and decryption are still simple and fast in spite of the complicated
key generation. Overall, our KEM has more compact parameters than all current
lattice-based schemes and a practical efficiency. Moreover, due to the similar key pair
structure, BAT can be of special interest in some applications using Falcon signature
that is also the most compact signature in the round 3 of the NIST post-quantum
cryptography standardization. However, different from Falcon, our KEM does not
rely on floating-point arithmetic and can be fully implemented over the integers.
Keywords: Lattice-based cryptography · NTRU · KEM · Falcon

1 Introduction
Lattice-based schemes, especially when they have a polynomial structure, are a very strong
contender for post-quantum cryptography. They can be faster than widely deployed
cryptosystems based on RSA and ECDH. However, the sizes of public keys, signatures and
ciphertexts are significantly larger than in RSA and even larger by an order of magnitude
compared with ECDH cryptosystems. Such a large size is a major drawback of lattice
schemes, and can be a crucial obstacle in the following situations:

– Real-world protocols may have a maximum length designed for classical cryptography.
For a standard Ethernet connection, the maximum transmission unit (MTU) is 1500
bytes1, and forward secrecy requires several objects including public keys (certificates),
ciphertexts, signatures, for confidentiality and authentication.

– Large communication sizes increase the risk of lost packets and delays. Recent
experiments on post-quantum TLS [54] show that communication sizes come to

†Corresponding author: Yang Yu.
1https://en.wikipedia.org/wiki/Maximum_transmission_unit and Distributions on IP packets.

mailto:pa.fouque@gmail.com
mailto:paul.kirchner@irisa.fr
mailto:thomas.pornin@nccgroup.com
mailto:yang.yu0986@gmail.com
https://en.wikipedia.org/wiki/Maximum_transmission_unit

govern the performance when the packet loss rate is higher than 3%. Moreover,
[61] examines how the initial TCP window size affects post-quantum TLS and SSH
performance, and shows that even a small size increase can reduce the observed
post-quantum slowdown by 50%. In addition, transmission energy can also be a
significant part of the energy consumption on cryptography [58]. The size of signature
schemes in TLS handshakes is also important as analyzed in [62].

– In some lightweight applications, e.g. internet of things (IoT), encryption and verifi-
cation are done by some constrained devices. These devices only have small on-board
storage and modest processors so that they may not be compatible with large public
keys, signatures and ciphertexts.

With the preparation and deployment of post-quantum cryptography underway, it is
important to explore new lattice-based cryptosystems with smaller parameters.

In this light, a natural choice is NTRU [39], as its structure reduces the data to one
ring element. There have been many high-performance NTRU-based schemes ranging from
Falcon [33], BLISS [28] for signature to NTRU-HRSS [42], NTTRU [49], NTRUEncrypt [18],
NTRU Prime [11] for encryption and KEM. In particular, Falcon is the most compact
signature in the round 3 of the NIST post-quantum cryptography standardization [53]. In
addition, NTRU-based encryption and KEM schemes have some advantage in real-world
use: the relevant patents have expired; by contrast, there could be some (controversial)
intellectual property claims on the Ring/Module-LWE counterparts.

NTRU-based schemes are defined over some polynomial ringR that isR = Z[x]/(xn+1)
with n a power-of-2 in this work. The secret key of an NTRU cryptosystem is essentially
a pair of short polynomials (f, g) ∈ R2 while the public key is h = f−1g mod q. All
NTRU encryption schemes, ranging from the earliest proposal [39] to the round 3 NIST
submission [17], have followed essentially the same design rationale for more than 20 years.
Concretely, the ciphertext is c = phr +m mod q where p is the masking modulus, r is the
randomness, m is the message. A correct decryption is built upon that c′ = pgr + fm is
short so that c′ = (fc mod q). The masking modulus p is also necessary to decrypt: one
needs to first clean out pgr via reduction modulo p and then to recover m by multiplying
the inverse of f modulo p. For typical NTRU KEMs, (f, g) is sparse and of length about
C
√
n for small constant C.
By contrast, the design rationale for NTRU-based signatures went through some

significant changes. The first NTRU-based signature is NTRUSign [38] that is a hash-
and-sign scheme. However, its signature transcripts leak some secret key information
so that NTRUSign and some variants were broken by statistical attacks [52, 30]. Later,
Ducas et al. made use of the GPV hash-and-sign framework [35] and proposed a provably
secure NTRU-based signature [29] that further developed into Falcon [33]. The public key
of Falcon is still h = f−1g mod q for some short (f, g), while the actual secret key is a

trapdoor basis Bf,g =
(
g G
f F

)
∈ R2×2 such that gF − fG = q. The signing of Falcon

is essentially Gaussian sampling with a trapdoor [35, 31]. Consequently, the signature
size depends on the maximal Gram-Schmidt norm of Bf,g. As analyzed in [29], Falcon
chooses (f, g) of ‖(f, g)‖ ≈ 1.17√q for optimal parameters. Therefore, ‖(f, g)‖ in Falcon is
independent of n, which is different from the case of NTRU KEMs.

Some other NTRU-based signatures [28, 25] indeed use one vector (f, g) as the secret key
as the case of NTRU KEMs. However, to the best of our knowledge, there is no practical
NTRU-based KEM using a trapdoor basis as the secret key. Intuitively we expect (F,G)
to yield one more equation in decryption so that one can recover both the message and
encryption randomness via two equations. This in effect gets rid of the masking modulus
p in classical NTRU KEMs and thus hopefully allows smaller parameters. It is noteworthy
that the improvement in compactness of NTRU-based KEMs severely lags that in speed
of NTRU-based KEMs [49, 32] and in compactness of LWE-based KEMs [9, 47, 6, 21].

2

Moreover, when we unify the trapdoor function for both signature and KEM, part of the
code can be shared and we may also reduce some storage and communication. Therefore,
it would be interesting to investigate the practicality of a trapdoor basis for KEM.

Indeed, the earliest lattice-based cryptosystem GGH (Goldreich-Goldwasser-Halevi [36])
uses a trapdoor basis as the secret key and implements both encryption and signature
based on that trapdoor function. Later Micciancio improved the GGH trapdoor function
by using the Hermite normal form [50]. While GGH encryption has a long history as
NTRU, its practicality is far from well-studied and there is no GGH-like encryption/KEM
with concrete parameter and security analysis so far.

Our contributions. We present a new KEM based on NTRU, called BAT.2 Similar
to Falcon signature, BAT uses h = f−1g mod q as the public key and its secret key is
a trapdoor basis Bf,g with an additional ring element (for faster decapsulation). In
addition, BAT shares the same leading design principle with Falcon, i.e. minimizing the
communication size.

Our main improvement in BAT-KEM is a better decapsulation algorithm, which
represents a major modification to the NTRU encryption scheme since its introduction 25
years ago. Instead of following the original NTRU, we modify it according to the GGH-
Micciancio blueprint [37, 50]. The message m is now encapsulated as c = hm+ e mod q
where h is the NTRU public key and e is a small error. The decapsulation corresponds to
applying Babai’s nearest plane algorithm with the secret basis to decode the closest lattice
point, and therefore recovering the message. Compared with other NTRU KEMs, we do
not need the masking modulus p to extract the message. Instead of multiplying only by f ,
we multiply by F so that we get 2 linear equations in the 2 unknowns e,m.

However, Babai’s nearest plane algorithm heavily relies on floating-point arithmetic,
although most expensive calculation can be done in a pre-computation phase. To avoid
floating-point arithmetic in the decapsulation, we replace the high-precision Gram-Schmidt
vectors with integral approximations. Additionally, notice that m and e do not necessarily
follow the identical distribution, hence we take into account their different sizes to optimize
the decoding. We also use the Learning With Rounding (LWR) assumption [8, 19] in order
to further reduce the size of the ciphertext. Our improved decoding algorithm can be used
with a smaller modulus and dropping more bits, and thereby increases the security of the
scheme and decreases the communication.

Overall, our KEM achieves very impressive performance. First of all, for the same NIST
security level, BAT achieves the smallest communication size, namely “public key size +
ciphertext size”, among all current lattice cryptosystems and even RSA cryptosystems.
Secondly, the complexity of the code as well as its running time is asymmetric: while the
key generation is complicated, the frequent key usage is quite efficient. Specifically, the
encryption is very simple — essentially a ring multiplication —, and the decryption also
boils down to a few ring additions and multiplications. Cheap daily operations make BAT
particularly compatible with small devices. Thirdly, we can implement the whole scheme
fully over integers, which is different from the case of Falcon. Our implementation is
constant-time and uses some AVX2 optimizations. We can notice that BAT has performance
comparable to Kyber while being more compact. Furthermore, it is comparable to SIKE
p434 in size while being much more efficient. We gave the timing with x86 assembly
optimization, while with the same level of optimization we did, the SIKE performance
timing would be higher by one order of magnitude. We summarize the detailed comparisons
with some well-known schemes in Table 2.

Finally, we explain in a simplistic way why the new decryption algorithm leads to
smaller parameters. To correctly decrypt, our KEM needs (fc mod q) = gm + fe, i.e.
‖gm + fe‖∞ < q

2 , while previous NTRU KEMs need ‖pgr + fm‖∞ < q
2 . We also

compare with ring-LWE-based KEMs. For a typical ring-LWE-based KEM, its secret
2BAT stands for “Basis with Attractive Trapdoor”.

3

key is (f, g) ∈ R2, public key is (a, b = af + g) ∈ (R/qR)2 and ciphertext is (c1 =
ae0 + e1, c2 = be0 + e2 + b q2em) ∈ (R/qR)2. The requirement for correct decryption is
‖e0g − e1f + e2‖∞ < q

4 . Suppose that m, e, r, ei are drawn from a distribution of standard
deviation σe and f, g from a distribution of standard deviation σf . The coefficients of
gm+ fe, pgr+ fm, e0g− e1f + e2 are modeled as Gaussian. The comparison on parameter
restrictions are summarized in Table 1. It can be seen that given (n, τ, σe, σf), BAT allows
a smaller modulus q. Note that for fixed (n, σe, σf), a smaller q implies higher security.

Table 1: The parameter restrictions for correct decryption. The parameter τ is the
tail-bound parameter determining the decryption failure rate.

Requirement for correct decryption
NTRU τσeσf

√
(p2 + 1)n < q/2

Ring-LWE τσeσf
√

2n < q/4
BAT τσeσf

√
2n < q/2

Table 2: Comparisons with other KEMs including NTRU-HRSS [42], NTTRU [49],
Kyber [5], Saber [9], LAC [47], Round5 [6], ECC, RSA and SIKE [43]. Timings do not
include generation of a random seed (from the operating system’s RNG) or key derivation
costs. Sizes for BAT and LW-BAT include an optional one-byte identifying header. The
implementation of LW-BAT was not fully optimized with AVX2 opcodes. Measurements
for Kyber, Saber and RSA-4096 were performed on the exact same system (x86 Coffee
Lake) as BAT and LW-BAT. Measurements for NTRU-HRSS and NTTRU were given
in [49], those for LAC, Round5 and SIKE were as in their NIST documentations. Values
for ECC are for the curve25519 implementation in eBACS [12].

Security
Level

Ciphertext
(bytes)

PK
(bytes)

Keygen
(kcycles)

Encaps
(kcycles)

Decaps
(kcycles)

BAT NIST-I 473 521 29.4× 103 11.1 59.7
BAT NIST-V 1006 1230 145.6×103 25.6 131.16

LW-BAT 80 bits (C)a 203 225 19.0× 103 58.3 240.8

NTRU-HRSS NIST-I 1140 1140 220.3 34.6 65.0
NTTRU NIST-I 1248 1248 6.4 6.1 7.8

Kyber NIST-I 768 800 23.6 36.8 28.5
Kyber NIST-V 1568 1568 57.1 79.8 64.6
Saber NIST-I 736 672 50.0 59.0 57.2
Saber NIST-V 1472 1312 123.6 141.8 141.0
LAC NIST-I 712 544 59.6 89.1 140.2
LAC NIST-V 1424 1056 135.8 208.0 359.2

Round5 NIST-I 620 461 46 68 95
Round5 NIST-V 1285 978 105 166 247

Round5-iotb 96 bits (C) 394 342 41 52 28

RSA 4096 128 bits (C) 512 512 2.19× 106 212.1 13690
ECC 128 bits (C) 32 32 46 136 136

SIKE p434c NIST-I 346 330 5.9× 103 9.7× 103 10.3× 103

Compressed
SIKE p434b

NIST-I 236 197 10.2× 103 15.1× 103 11.1× 103

a Here “xxx bits (C)” represents xxx bits of security in classical setting, which does not match any
suggested NIST security level.

b Round5-iot is only IND-CPA secure rather than IND-CCA secure.
c SIKE and compressed-SIKE use x64 assembly optimizations.

4

Comparison with Falcon. BAT is similar in spirit to Falcon signature: they both
achieve good compactness by using some nice NTRU trapdoor basis as the secret key.
Nevertheless, some crucial distinctions exist between BAT and Falcon.

– At a high level, BAT and Falcon exploit their trapdoor to solve CVP (closest vector
problem), but the used CVP algorithms are very different. Specifically, Falcon makes
use of the KGPV Gaussian sampler [35] that is a randomized Babai’s nearest plane
algorithm. In contrast, BAT decrypts with a deterministic NTRU decoder that can
be viewed as a hybrid of Babai’s round-off and nearest plane algorithms.

– The algorithms of BAT are simpler than those of Falcon. On the one hand, the
signing of Falcon relies on high-precision Gaussian sampling, but the encryption and
decryption of BAT only need basic integer operations. On the other hand, Falcon
includes many high-precision intermediate values along with the trapdoor for faster
signing, but BAT just adds one integral polynomial for faster decryption.

– The NTRU trapdoors of BAT and Falcon are generated in different ways. In fact,
Falcon chooses its trapdoor for smaller signatures, which is equivalent to minimizing
the maximal Gram-Schmidt norm of the trapdoor basis. As for BAT, the trapdoor is
generated to minimize the decryption failure, and according to our new decoder, the
distributions of the message and error will also affect the trapdoor generation (see
Section 3 for more details).

Related works. Chuengsatiansup et al. [22] propose some extensions of Falcon signature
and NTRU encryption over Module-NTRU lattices. This allows more flexible parameters
for NTRU-based cryptosystems. Our techniques are likely to apply to the Module-NTRU-
based schemes as well.

In recent years, the performance of NTRU encryption has been greatly improved [49, 32].
These newly NTRU instantiations are mainly proposed for high efficiency and follow the
classical design of original NTRU. In contrast, BAT is proposed driven by the quest for
compactness and its design is different.

In order to improve parameters, some schemes [21, 65] are built upon a variant of
LWE in which the secret and error follow different distributions. Our work makes use of a
similar idea. Yet the main difference is that our KEM follows a novel pattern which is
essential to minimize the parameters.

2 Preliminaries
2.1 Notations
We follow the setting Zq = {−(dq/2e−1),−(dq/2e−2), · · · , q−dq/2e} and (a mod q) ∈ Zq
for any a ∈ Z. Let ln (resp. log) denote the logarithm with base e (resp. 2). For an integer
q > 0, let baeq = baqe/q ∈ (1/q) ·Z for a ∈ R. For a real-valued function f and a countable
set S, we write f(S) =

∑
x∈S f(x) assuming that this sum is absolutely convergent.

2.2 Linear algebra
Let B = (b0, . . . ,bn−1) ∈ Qn×n of rank n. The Gram-Schmidt orthogonalization of B
is B = B∗U, where U ∈ Qn×n is upper-triangular with 1 on its diagonal and B∗ =
(b∗0, . . . ,b∗n−1) is a matrix with pairwise orthogonal columns.

Let Rn = Z[x]/(xn + 1) with n a power-of-2 and Kn = Q[x]/(xn + 1). We denote
by (Rn mod q) the ring Rn/qRn. When the context is clear, we may write Rn (resp.
Kn) as R (resp. K). We identify f =

∑n−1
i=0 fix

i ∈ Kn with its coefficient vector

5

coef(f) = (f0, · · · , fn−1). Let ‖f‖ (resp. ‖f‖∞) denote the `2-norm (resp. `∞-norm) of
coef(f). We denote by f the conjugate of f , i.e. f(x−1). Let 1 =

∑n−1
i=0 x

i ∈ R. The
symbol b·eq is naturally generalized to Kn by applying it coefficient-wise.

2.3 Probability and statistics
Given a distribution χ, we write z ← χ when the random variable z is drawn from χ. For
z ← χ, let µ[z] (resp. σ[z]) denote the expectation (resp. standard deviation) of z, and
µ[χ] := µ[z] (resp. σ[χ] := σ[z]). If µ[χ] = 0, then χ is called centered. For a random
a ∈ K, if all its coefficients independently follow a distribution χ, then we call a iid-random
over χ. If a ∈ K is iid-random over χ, we write σa = σ[χ] and µa = µ[χ]. We call it
centered when µa = 0.

For a distribution χ, we denote by Sample(χ) the procedure of generating a random
sample of χ and by Sample(χ; seed) the sampling procedure with seed seed. For a finite
set S, let U(S) be the uniform distribution over S. In particular, for a positive integer k,
σ[U(Zk)] =

√
k2−1

12 and µ[U(Zk)] = 0 if k is odd; otherwise µ[U(Zk)] = 1
2 .

For σ > 0, let ρσ(x) = exp
(
− x2

2σ2

)
be the one-dimensional Gaussian function with

standard deviation σ. The centered discrete Gaussian over integers with standard deviation
σ is defined by the probability function DZ,σ(x) = ρσ(x)

ρσ(Z) for any x ∈ Z. Let erf(x) =
2√
π

∫ x
0 exp(−t2)dt be the error function. For a random variable X following a normal

distribution with mean 0 and variance 1/2, erf(x) is the probability of X in the range
[−x, x].

2.4 NTRU
Given f, g ∈ R such that f is invertible modulo some q ∈ Z, let h = f−1g mod q.
The NTRU lattice defined by h is denoted by Lh,q = {(u, v)t | u = hv mod q}. Given

(f, g), one can compute
(
g G
f F

)
∈ R2×2 a basis of Lh,q by solving the NTRU equation

gF−fG = q [38, 56]. Fixing (f, g), there are infinitely many such bases, whereas these bases

have the same Gram-Schmidt norms. Hence, we simply write Bf,g =
(
g G
f F

)
∈ R2×2.

While the public key of an NTRU-based scheme is h itself, the secret key can have
different forms. For most NTRU encryption schemes, the secret key is (g, f) itself, i.e. one
short vector of Lh,q. For some other applications, e.g. signature and IBE, the secret key is
Bf,g called an NTRU trapdoor basis. Falcon [33] is a representative example. Falcon is an
NTRU-based signature following the GPV hash-and-sign framework [35]. To sign a message
m, the signer computes a pair of short polynomials (s1, s2) such that s1 + hs2 = Hash(m).
This procedure is accomplished by lattice Gaussian sampling with Bf,g and the length of
the signature (s1, s2) depends on the sampled Gaussian width. The Gaussian sampler of
Falcon is a fast Fourier variant [31] of the KGPV sampler [35], hence the signature size is
proportional to the maximal Gram-Schmidt norm of Bf,g. For optimal parameters, Falcon
generates (f, g) such that ‖(f, g)‖ ≈ 1.17√q as per [29].

3 A New NTRU Decoder
In this section we present a new NTRU decoding algorithm that is the key component of
our KEM. In the context of NTRU, the code words are hs+ e mod q where h is the public
key and s, e are small polynomials. The decoding process recovers (s, e) with an NTRU
trapdoor. An ideal decoder is supposed to satisfy:

6

1. All operations are simple and efficient; no high-precision arithmetic is needed.

2. The decoding distance is large, i.e. being able to recover large errors (s, e). Note
that for our KEM, larger errors correspond to higher security level.

There have been two famed decoding algorithms due to Babai [7]: Babai’s round-off
algorithm (RO for short) and Babai’s nearest plane algorithm (NP for short). They have
respective pros and cons. The RO algorithm outperforms NP in efficiency and simplicity.
In addition, RO is particularly compatible with q-ary lattices: all operations are over
Zq. By contrast, NP is capable of decoding larger errors in both the worst and average
cases [57]. Yet the principal drawback of NP is its reliance on high-precision arithmetic.

Our decoder overcomes the main shortcomings of RO and NP. First, it is able to
tackle a larger decoding distance than RO. Second, while complicated computations are
still required, all involved algorithms can be implemented using fixed-point arithmetic in
practice, which outperforms NP. Meanwhile these expensive computations can be done in
the pre-computation and therefore do not affect the decoding efficiency. With an auxiliary
integer vector, our algorithm achieves the same efficiency as RO and all operations are
integer arithmetic. To optimize the decoding, our algorithm also takes into account the
distributions of s and e.

3.1 Babai’s algorithms for NTRU
For better contrast, we first recall RO and NP briefly in the NTRU setting. Let h ∈

(R mod q) be the public key and Bf,g =
(
g G
f F

)
∈ R2×2 be the trapdoor basis. In later

discussion, we shall treat Lh,q as a R-module of rank 2 rather than a Z-module of rank 2n.
The application of RO related to NTRU dates back to NTRUSign [38]. Given c =

hs+ e ∈ (R mod q), we have
(
c
0

)
∈ Lh,q +

(
e
−s

)
. The RO algorithm computes

(
e′

−s′
)

=(
c
0

)
−Bf,g

⌊
B−1
f,g

(
c
0

)⌉
as
(
e
−s

)
. As B−1

f,g = 1
q

(
F −G
−f g

)
, a correct decoding such that

(e′, s′) = (e, s) follows if (
F −G
−f g

)(
e
−s

)
=
(
Fc mod q
−fc mod q

)
.

This is equivalent to max{‖fe+ gs‖∞, ‖Fe+Gs‖∞} ≤ q
2 .

The NP algorithm is more complicated. It involves the Gram-Schmidt orthogonal

basis B∗f,g =
(
g G∗ = G− vg
f F ∗ = F − vf

)
where v = Ff+Gg

ff+gg
. A correct decoding follows if

max{‖fe+ gs‖∞, ‖F ∗e+G∗s‖∞} ≤ q
2 .

In some applications [29, 33], the trapdoor basis is optimal with respect to Gram-
Schmidt norms: ‖(g, f)‖ ≈ ‖(G∗, F ∗)‖. However, ‖(g, f)‖ and ‖(G,F)‖ are not so close:
‖(G,F)‖ ≈

√
n
12 · ‖(g, f)‖ [38]. As a consequence, ‖(e, s)‖ is dominated by the large

‖(G,F)‖ in the RO algorithm but by the small ‖(g, f)‖ in the NP algorithm, which leads
to a gap of O(

√
n).

3.2 Our decoding algorithm for NTRU
As shown in Section 3.1, RO boils down to solving two linear equations over R (without
modular reduction). To enlarge its decoding range, we hope to replace the large (G,F)
with some small vector (G′, F ′) of size ≈ ‖(g, f)‖. A natural candidate is (G∗, F ∗) =
(G− vg, F − vf) with v = Ff+Gg

ff+gg
as in NP. However, if we want to work with (G∗, F ∗)

directly, we have to resort to high-precision arithmetic. To overcome the precision issue,

7

we choose (G′, F ′) = (G − gbveq′ , F − fbveq′) ∈ (1/q′)R2. When q′ is sufficiently large,
(G′, F ′) converges to (G∗, F ∗) whose norm is about ‖(g, f)‖. In practice, a moderate q′
suffices to significantly improve the decoding.

We further refine our decoder as per the distributions of s and e. We focus on the
common case where both s and e are iid-random over some publicly known distributions χs
and χe. In practice, χs and χe are not necessarily the same or even close, which may cause a
gap between the sizes of s and e. For example, when ‖s‖ � ‖e‖, we expect a better decoding

by using a basis
(
g′ G′

f ′ F ′

)
with ‖g′‖ > ‖g‖ ≈ ‖f‖ > ‖f ′‖ and ‖G′‖ > ‖G‖ ≈ ‖F‖ > ‖F ′‖.

To this end, we introduce a parameter γ, by default γ = σe/σs, to compute the optimal
decoding basis. Moreover, χs and χe do not have to be centered, e.g. χs = U(Z2). For
given (f, g), non-centered s and e lead to a non-zero average of fe + gs. Therefore, we
also consider the impact of µs and µe during decoding. Here we assume µs, µe ∈ 1

Q · Z for
some Q ∈ N, which is indeed the case of our later schemes.

The decoding algorithm consists of two steps: (1) computing the auxiliary polynomial
w and (2) recovering (s, e). They are illustrated in Algorithms 3.1 and 3.2 respectively.
Notably, both algorithms can be fully implemented over the integers. In Algorithm 3.1,
the computation of v consists of one polynomial division, but the final output is actually
an integral approximation of q′v, which can be computed with fixed-point values. More
details are presented in Section 6.1.

Algorithm 3.1 ComputeVec

Input: a trapdoor basis Bf,g =
(
g G
f F

)
∈ R2×2, q′ ∈ N and γ > 0;

Output: w ∈ R
1: v ← γ2Ff+Gg

γ2ff+gg
2: return w = q′bveq′

Algorithm 3.2 Decode

Input: a trapdoor basis Bf,g =
(
g G
f F

)
∈ R2×2, w ∈ R, q, q′, Q ∈ N,

c = (hs+ e mod q) ∈ R with small (e, s) and µe, µs ∈ 1
Q · Z

Output: (e, s) ∈ R2

1: (Gd, Fd)← (q′G− gw, q′F − fw)
2: c′ ← (Qfc− f(Qµe1)− g(Qµs1) mod qQ)
3: c′′ ← (q′QFc− F (q′Qµe1)−G(q′Qµs1)− c′w mod qq′Q)

4: solving
(
e′

s′

)
from

(
f g
Fd Gd

)(
e′

s′

)
= 1

Q ·
(
c′

c′′

)
5: return (e = e′ + µe1, s = s′ + µs1)

Claim 1 gives a heuristic estimation of the probability of correct decoding of Algo-
rithm 3.2. The argument is in Appendix A.

Claim 1. Let R = Z[x]/(xn + 1) with n a power-of-2 and q ∈ N. Let f, g ∈ R be iid-

random over DZ,σf and h = f−1g mod q. Let Bf,g =
(
g G
f F

)
∈ R2×2 be an NTRU basis.

Let s, e ∈ R be iid-random over χs and χe respectively, and µe, µs ∈ 1
Q ·Z for some Q ∈ N.

Let γ = σe/σs, q′ ∈ N and w = ComputeVec(Bf,g, q
′, γ). Let I(γ) = 2 ln(γ)

γ2−1 for γ 6= 1

and I(1) = 1. Let σ1 =
√
nσfσs

√
γ2 + 1, σ2 = σs

(
qγ√
n·σf

√
I(γ) + n1.5

√
γ2+1

2q′ σf

)
. Let

8

τ = min
{

q

2
√

2σ1
, q

2
√

2σ2

}
. Then the probability of Decode(Bf,g, w, q, q

′, Q, (hs+e mod q)) =
(e, s) is heuristically estimated at least 1− 2n · (1− erf(τ)) over the randomness of s and e.

3.3 Decoding failure rate
Claim 1 gives a heuristic estimate for µ[P (Bf,g, w, χs, χe)] (over the randomness of (f, g))
where

P (Bf,g, w, χs, χe) = Pr[Decode(Bf,g, w, q, q
′, Q, (hs+ e mod q)) 6= (e, s) | e← χe, s← χs]

is the decoding failure rate for given (Bf,g, w). In fact, it is hard to numerically compute
µ[P (Bf,g, w, χs, χe)], since the distribution of (G′, F ′) (defined in Claim 4) is complicated.
It is however easy to numerically compute P (Bf,g, w, χs, χe) given (Bf,g, w).

We experimentally calculate P (Bf,g, w, χs, χe) for some (Bf,g, w) generated with the
suggested parameters (see Tables 3 and 4). The failure probabilities are smaller than for a
naive Gaussian model, and significantly so for a ring dimension of 256.

4 BAT KEM
In this section, we present a KEM scheme, called BAT, constructed following the afore-
mentioned encode/decode paradigm. Its secret key is an NTRU trapdoor basis as in the
Falcon signature. As a consequence, some codes for Falcon implementation can be reused.

BAT permits very compact parameters. Specifically, the modulus q is greatly reduced
in contrast to Falcon. More remarkably, the ciphertext is well compressed: each coefficient
requires only less than one byte of storage.

4.1 Algorithm description
Prior to the description of our KEM, we first present the underlying public key encryption.
It is specified by the following parameters:

– R = Z[x]/(xn + 1) with n = 2l.

– q = bk+1 with b, k ∈ N. Note that b determines the size of each ciphertext coefficient
and k determines the decoding distance.

– q′ ∈ N is used to control the decryption failure rate.

At a high level, our idea is to build an encryption scheme upon a one-way trapdoor
function. Indeed, for a pseudorandom public key h, the function F (s, e) = hs+ e mod q is
one-way under the Ring-LWE assumption, but one can invert it with the trapdoor Bf,g

as shown in Section 3. In our scheme, the encryption is to compute c = F (s, e) and the
decryption is to recover s by inverting F (s, e).

The key generation is shown in Algorithm 4.1. The first step is to generate an NTRU
trapdoor basis Bf,g along with the public key h. This is similar to the Falcon key generation,
but the size of the secret key is changed. The second step pre-computes an auxiliary
vector w. As explained in Section 3, w is used for decoding a larger error while avoiding
floating-point arithmetic in the decapsulation. We include it as a part of the secret key.
Note that Falcon key generation also pre-computes the Falcon tree for signing, but that
computation is useless in our scheme.

The encryption algorithm is described in Algorithm 4.3. The message space isM =
{0, 1}λ where λ denotes the claimed security level. The encryption is obtained by applying
a simple worst-case to average-case correctness (ACWC for short) transform, introduced
by a concurrent work [32], on a deterministic encryption (Algorithm 4.2). Thanks to

9

the ACWC transform, the encryption scheme achieves the IND-CPA security and its
decryption failure rate is independent of the message. The base encryption (Algorithm 4.2)
is to compute the trapdoor function on an ephemeral s. For better compactness, we replace
F (s, e) with F (s) =

⌊
(hs mod q)

k

⌉
and thus use Ring-LWR as the hardness assumption. It is

easy to see that the storage of a ciphertext is n log b+ λ bits. The decryption stems from
the decoding algorithm in Section 3. The formal description is provided in Algorithm 4.4.

Remark 1. The work [32] also introduces an ACWC transform avoiding the λ-bit overhead
on the ciphertext. That transform is not so direct and the analysis is more complicated.

Algorithm 4.1 KeyGenEnc
Input: the ring R = Z[x]/(xn + 1), integers q, k, q′ ∈ N

Output: public key h ∈ R, secret key (Bf,g, w) ∈ R2×2 ×R where Bf,g =
(
g G
f F

)
1: γ ←

√
k2−1

3

2: σf ←
√

qγ
n

√
I(γ)
γ2+1 where I(γ) is defined as in Claim 1

3: f, g ← DR,σf
4: if f or g is not invertible in (R mod q) then
5: restart
6: end if
7: if ‖(g, γf)‖ >

√
nσf

√
γ2 + 1 then

8: restart
9: end if
10: h← f−1g mod q
11: compute (F,G) ∈ R2 such that gF −Gf = q

12: Bf,g ←
(
g G
f F

)
∈ R2×2

13: w ← ComputeVec(Bf,g, q
′, γ)

14: (Gd, Fd)← (q′G− gw, q′F − fw)

15: if ‖(Gd, γFd)‖ > q′
(

qγ√
n·σf

√
I(γ) + n1.5

√
γ2+1

2q′ σf

)
then

16: restart
17: end if
18: return (h, (Bf,g, w))

Algorithm 4.2 Encryptbase
Input: public key h ∈ R, integers q, k ∈ N, message s ∈M′ = (R mod 2)
Output: ciphertext c
1: c←

⌊
(hs mod q)

k

⌉
2: e← (hs mod q)− kc1, γ ←

√
k2−1

3

3: if ‖(γs, e)‖ > 1.08
√

n(k2−1)
6 then

4: return ⊥
5: end if
6: return c

10

Algorithm 4.3 Encrypt
Input: public key h ∈ R, integers q, k ∈ N, message m ∈M, seed seed
Output: ciphertext (c1, c2)
1: s← Sample(U(R mod 2); seed)
2: c1 ← Encryptbase(h, q, k, s)
3: if c1 =⊥ then
4: return ⊥
5: end if
6: c2 ← Hashm(s)

⊕
m where Hashm is some hash with rangeM

7: return (c1, c2)

Algorithm 4.4 Decrypt
Input: ciphertext (c1, c2), public key h ∈ R, secret key (Bf,g, w), integers q, k, q′ ∈ N
Output: message m
1: c′ ← c1k
2: (e, s)← Decode (Bf,g, w, q, q

′, 2, c′)
3: γ ←

√
k2−1

3

4: if ‖(γs, e)‖ > 1.08
√

n(k2−1)
6 then

5: return ⊥
6: end if
7: if c1 =

⌊
(hs mod q)

k

⌉
then

8: return Hashm(s)
⊕
c2

9: else
10: return ⊥
11: end if

By some standard techniques [34, 26], an IND-CCA secure KEM immediately follows
from our IND-CPA encryption. Algorithms 4.5 and 4.6 describe the encapsulation and
decapsulation algorithms respectively, in which S (resp. K) is the set of seed (resp. shared
key). The detailed security arguments are given in Section 5.2.

Algorithm 4.5 Encapsulate
Input: public key h ∈ R, integers q, k ∈ N
Output: ciphertext c, key K
1: m← Sample(U(M))
2: (c1, c2)← Encrypt(h, q, k,m,Hashs(m)) where Hashs is some hash with range S
3: if (c1, c2) =⊥ then
4: restart
5: end if
6: K ← Hashk(m) where Hashk is some hash with range K
7: return ((c1, c2),K)

11

Algorithm 4.6 Decapsulate
Input: ciphertext (c1, c2), public key h ∈ R, secret key (Bf,g, w, r), integers q, k, q′ ∈ N
Output: key K
1: m′ ← Decrypt((c1, c2), h, (Bf,g, w), q, k, q′)
2: if m′ 6=⊥ and (c1, c2) = Encrypt(h, q, k,m′,Hashs(m′)) then
3: return K ← Hashk(m′)
4: else
5: return ⊥
6: end if

4.2 Parameter selection
We keep the same ring R as Falcon but choose a much smaller modulus q. Indeed, a smaller
modulus forbids the applications of a complete NTT, nevertheless similar techniques [48, 49]
still allow a very fast polynomial multiplication. For security, a smaller q implies a smaller
standard deviation of the secret key distribution and then less entropy of the secret key.
However such loss does not reduce the concrete security level much.

A notable modification exists in key generation. In Falcon, (f, g) is sampled to make
‖(g, f)‖ ≈ ‖(G∗, F ∗)‖ where (G∗, F ∗) is the Gram-Schmidt orthogonalization of (G,F) in
Bf,g. However, in BAT, we choose σf satisfying

√
nσf

√
γ2 + 1 = qγ√

n·σf

√
I(γ). This gives

rise to a nearly optimal decryption failure rate according to Claim 1. Particularly, when
γ = 1, the σf we use also makes ‖(g, f)‖ ≈ ‖(G∗, F ∗)‖ as the case of Falcon. Yet for this
case, σ used by BAT is different from that by Falcon, which is explained in Remark 5.

Let us recall that c′ = ck = hs− k
(
hs
k −

⌊
(hs mod q)

k

⌉)
:= hs+ e mod q. We model e

drawn from U(Znk) and thus3 σe =
√

k2−1
12 . As σs = 1

2 , it follows that γ = σe/σs =
√

k2−1
3 .

Our KEM tolerates a small decryption failure rate for better performance, as many current
lattice-based KEMs. The decryption failure rate is equal to the probability of incorrect
decoding. According to Claim 1, it is heuristically bounded by 2n · (1− erf(τ)) for some τ .
We bound the size of the error used to 1.08 its average to limit the impact of precomputed
messages on the decryption failure rates: the exponent may be reduced by 20% in the
worst case. As a contrast and verification, we also numerically computed the decryption
failure rate for 100 keys in practice: the standard deviation of the logarithm of the rate
over the secret key distribution is around 8, and the computed values are even smaller
than their heuristic estimates. Therefore we present the numerical values (the average for
randomly generated keys) for the decryption failure rate and the tail-bound parameter τ
for the heuristic estimates.

Table 3 shows the suggested parameters.

Table 3: Suggested parameters for BAT.

n (b, k, q) σf q′ τ Decryption Failure
BAT-512 512 (128, 2, 257) 0.596 64513 9.46 2−146.7

BAT-1024 1024 (192, 4, 769) 0.659 64513 10.42 2−166.7

The parameter set for lightweight BAT. We further suggest one more parameter set
particularly aiming at a lower security level (around 80 bits of security), which may be
of interest for some lightweight use-cases. We call this lightweight variant LW-BAT. In
LW-BAT, the degree n is only 256; for better compactness the modulus q does not support
NTT anymore. We choose a relatively high decryption failure rate 2−71.9, but it should be

3The actual distribution is within statistical distance 1/q of U(Zn
k).

12

sufficient for lightweight applications, e.g. IoT: for the Round5 IoT parameters [6], the
decryption failure rate is 2−41 even larger than ours. Table 4 summarizes the concrete
parameter set.

Table 4: Suggested parameters for LW-BAT.

n (b, k, q) σf q′ τ Decryption Failure
LW-BAT 256 (64, 2, 128) 0.595 64513 6.71 2−71.9

5 Security
We now report on the security of BAT. First, we demonstrate the IND-CCA security
of our KEM under some hardness assumptions. Then we estimate the concrete security
according to the best known attacks.

5.1 Assumptions
The (decision) NTRU assumption. Let R×q be the set of invertible elements in R/qR.
Let χ be some distribution over R×q . The advantage of adversary A in solving the decision
NTRU problem NTRUR,q,χ is

AdvNTRU
R,q,χ (A) =

∣∣Pr[b = 1 | f, g ←↩ χ; b← A(f−1g mod q)]− Pr[b = 1 | u←↩ U(R×q); b← A(u)]
∣∣ .

In our case, R = Z[x]/(xn + 1) and χ is the distribution of the secret key f and g.
Remark 2. There are some researches on the hardness of the decision NTRU assumption
over R = Z[x]/(xn + 1). Notably, as shown in [64], when χ is a discrete Gaussian of
standard deviation σ = ω̃(n√q), the ratio of f and g is statistically indistinguishable from
uniform, which gives a firm theoretical grounding. The decision NTRU assumption with a
narrow distribution χ is also closely related to Falcon [33] and sometimes referred to as
the Decisional Small Polynomial Ratio (DSPR) assumption [46, 14].

The (search) Ring-LWR assumption. Let χ be some distribution over R. The advantage
of adversary A in solving the search Ring-LWR problem RLWRR,q,k,χ is

AdvRLWR
R,q,k,χ(A) = Pr

a←↩U(R×q),s←↩χ

[
A
(
a,

⌊
(as mod q)

k

⌉)
= s

]
.

In our case, R = Z[x]/(xn + 1) and χ = U(R mod 2).
Remark 3. The theoretical foundation of the search Ring-LWR assumption is developed
in [8, 13, 19]. There are also some practical schemes, e.g. Lizard [21] and Saber [9], using
the Ring-LWR over Z[x]/(xn + 1) or its module variant as their hardness assumption.
Indeed, the provable hardness of Ring-LWR with a binary secret s remains open. Yet this
would not weaken the concrete security as per the state-of-the-art cryptanalysis results,
especially when q is relatively small (as in our case).

5.2 KEM security
The security notion we prove for BAT is IND-CCA security (indistinguishability against
chosen-ciphertext attacks). To this end, we first note that the underlying encryption
(Algorithms 4.3 and 4.4) is IND-CPA secure (indistinguishability against chosen-plaintext
attacks) under the assumptions in Section 5.1.

13

Theorem 2. Let Π be the public key encryption scheme defined by Algorithms 4.1, 4.3
and 4.4. For any adversary A, there exist adversaries A1 and A2 of roughly the same
running time as that of A such that

– AdvIND-CPA
Π (A) ≤ Adv, when Hashm is a classical random oracle;

– AdvIND-CPA
Π (A) ≤ 2dH

√
Adv, when A is a quantum adversary, Hashm is a quantum-

accessible random oracle and dH is the query depth.

where Adv = AdvNTRU
R,q,χ1

(A1) + AdvRLWR
R,q,k,χ2

(A2), χ1 is the distribution of the secret key (f, g)
and χ2 = U(R mod 2).

Proof. Let Πbase be the public key encryption scheme defined by Algorithms 4.1 and 4.2.
We first show the OW-CPA security of Πbase. Let Pr[Wi] be the probability of the adversary
winning Game i. Game 0 is the classical OW-CPA game, thus Pr[W0] = AdvOW-CPA

Πbase (A).
Game 1 and Game 0 only differ in the key generation: Game 1 samples the public key
h from U(R×q) instead. We exploit the different distributions of h in Game 0 and Game
1 to construct A1 for the decision NTRU problem. Upon input h ∈ R×q , A1 plays the
challenger in Game 0 except for setting pk = h directly, and claims that h is an NTRU
public key if A wins. Therefore AdvNTRU

R,q,χ1
(A1) = |Pr[W0] − Pr[W1]|. We then define A2

for the search Ring-LWR problem. Upon input (h, c), A2 plays the challenger in Game 1
except for setting pk = h and ct = c. It is easy to see that AdvRLWR

R,q,k,χ2
(A2) = Pr[W1]. It

immediately follows that AdvOW-CPA
Πbase (A) ≤ Adv.

The scheme Π is derived from Πbase by utilizing a simple ACWC transform [32]. Note
that in the NTRU setting, preimage resistance (called PRE-CPA security) is essentially
equivalent to OW-CPA security. Combining [32, Lemma 2.2] and [32, Theorem 3.3] (resp.
[32, Theorem 3.4]), the claim in the ROM (resp. QROM) follows.

The BAT KEM is obtained via applying a Fujisaki-Okamoto transform [26] to the
IND-CPA secure encryption. Theorem 3 gives the concrete security statement of the
IND-CCA security of BAT. Theorem 3 is adapted from [32, Theorems 2.4 and 2.5] that
was first developed in [40] and [27].

Theorem 3. Let Π be the public key encryption scheme defined by Algorithms 4.1, 4.3
and 4.4. Let ΠCCA be the IND-CCA secure KEM defined by Algorithms 4.5 and 4.6. LetM
be the message space, δ be the decryption error rate and γ be the weakly spread parameter
of Π.4 For any adversary A making at most qD decapsulation, qH hash (i.e. Hashk and
Hashs) queries, against the IND-CCA security of ΠCCA, there exists an adversary A′
against the IND-CPA security of Π such that

– AdvIND-CCA
ΠCCA

(A) ≤ 2
(

AdvIND-CPA
Π (A′) + qH/|M|

)
+ qD · 2−γ + qHδ, Time(A′) ≈

Time(A), when Hashk and Hashs are classical random oracles;

– AdvIND-CCA
ΠCCA

(A) ≤ 2qT
√

AdvIND-CPA
Π (A′) + 24q2

T

√
δ + 24

√
q3
T qD · 2−γ/4 with qT =

2(qD + qH), Time(A′) ≈ Time(A) +O(qH · qD ·Time(Encrypt) + q2
T), when A is a

quantum adversary, Hashk and Hashs are quantum-accessible random oracles.

5.3 Concrete security
We estimate the concrete security using the usual cryptanalytic methodology of assessing
the cost of the best attacks against key recovery and message recovery. For BAT, the cost
of key recovery relies on the hardness of NTRU, while the cost of message recovery relies
on the hardness of Ring-LWR. Thus we respectively analyze the costs of key recovery

4The definitions of δ and γ are specified in [40] and [27].

14

and message recovery based on the primal attack [4] that is a fundamental cryptanalysis
method in lattice-based cryptography [2]. For BAT, the primal attack indeed leads to
better security estimates than other attacks.

5.3.1 Cost of lattice reduction

We begin with a brief introduction to lattice reduction that is heavily used by the primal
attack. Currently, the most practical lattice reduction algorithms are BKZ [60] and BKZ
2.0 [20]. Let BKZ-β denote the BKZ/BKZ 2.0 with blocksize β. The cost of running
BKZ-β on a d-dimensional lattice is estimated by CBKZ-β = t ·d ·CSVP-β where t is the tour
number BKZ-β takes and CSVP-β is the cost of solving SVP on a β-dimensional lattice.
We follow a typical setting:

t = 1, CSVP-β =
{

20.292β Classical SVP solver [10]
20.257β Quantum SVP solver [16]

Remark 4. The BKZ cost model we use is not extremely conservative: some lattice-based
schemes use the Core-SVP model in which CBKZ-β = 20.292β (resp. 20.257β) for classical
(resp. quantum) setting. Nevertheless the used SVP cost models are quite conservative
and provide a safe margin: they ignore the lower order term o(β) in the exponent, which
is substantial for concrete security. For a fair comparison, we shall also show the required
blocksize β along with the estimated cost.

5.3.2 Primal attack

The primal attack consists of constructing a uSVP (unique-SVP) instance and solving it
by lattice reduction. We refer to [4, 3, 2] for details.

For key recovery, the uSVP instance is
(
qIn Mn(h)

In

)
∈ Z2n×2n where Mn(h) is

the matrix form of the public key h. The secret key pair
(
g
f

)
is a short vector of the

uSVP instance. To optimize the primal attack, one can reduce the instance dimension by
“forgetting” some equations and take homogeneousness into account.

For message recovery, it suffices to recover s from c1 =
⌊

(hs mod q)
k

⌉
. Let c = k · c1,

then c = hs− k
(
hs
k −

⌊
(hs mod q)

k

⌉)
:= hs+ e mod q. We construct the uSVP instance asqIn −Mn(h) coef(c)

In
1

 ∈ Z(2n+1)×(2n+1) that contains

es
1

 as a short vector. Unlike

the case of key recovery, the unknowns s and e have different distributions. Therefore, the
primal attack can be improved by re-scaling technique. Also, the strategy of “forgetting”
some equations still works here.

The primal attack with all above optimizations is systematically discussed in [24]. We
estimate the cost of primal attack with the open-source script5 of [24]. Numbers are shown
in Table 5.

5.3.3 Other attacks

We list some other known attacks, while they do not outperform the primal attack for the
proposed parameter sets.

Hybrid attack. This attack is a combination of lattice reduction and meet-in-the-
middle techniques. It was proposed as an improved attack against early NTRU [41] and

5https://github.com/lducas/leaky-LWE-Estimator

15

https://github.com/lducas/leaky-LWE-Estimator

Table 5: Concrete security estimate for BAT.

LW-BAT BAT-512 BAT-1024
Target security level lightweighta NIST-I NIST-V

Key recovery
{ BKZ blocksize 236 475 933

Classical security 77.8 148.5 283.2
Quantum security 69.5 131.9 250.6

Message recovery
{ BKZ blocksize 219 447 949

Classical security 72.8 140.3 287.8
Quantum security 65.2 124.7 254.6

a Around 80 bits of classical security. Due to the conservative SVP hardness and
the heavy memory cost of sieving, LW-BAT arguably reaches this level.

further studied in [15, 51, 63]. The hybrid attack is effective for the NTRU or LWE
problem with particularly sparse secret or error vectors. The secret and error in BAT have
enough entropy to resist this attack.

Dual attack. This attack is proposed to solve decision LWE problem and thus does
not apply to BAT that is actually an NTRU-type scheme [2].

Learning attacks. This kind of attacks [52, 30] were proposed to break insecure NTRU
signatures [38] in which signature transcripts leak secret information of the NTRU trapdoor.
While BAT uses NTRU trapdoor as the secret key, the ciphertext is indistinguishable from
uniform under the Ring-LWR assumption. Therefore, BAT resists to learning attacks.

Overstretched NTRU attacks. These attacks [1, 45] only work when the modulo q
is significantly larger than the NTRU secret coefficients. This is not the case of BAT.

Algebraic attacks. There is a rich algebraic structure in BAT. While there are some
results exploiting this algebraic structure [44] to speed up lattice reduction, the gains with
respect to their general lattice equivalent are no more than polynomial factors.

6 Implementation Details
We implemented BAT with integer-only computations. We provide here some details on the
used techniques. Our implementation is available at: https://github.com/pornin/BAT/

6.1 Key pair generation
Key pair generation starts with producing the short polynomials f and g, then solving
the NTRU equation to obtain F and G. This specific step uses the algorithm described
in [56]. Compared with the reference implementation of Falcon, the following differences
are noteworthy:

– BAT polynomials have a lower norm than their Falcon equivalent. The polynomial
resultants obtained at the deepest level of the recursive algorithm are then shorter,
which improves performance.

– All uses of floating-point operations (for Babai’s nearest-plane algorithm) have been
replaced with fixed-point values (over 64 bits, with 32 fractional bits), which removes
all dependencies on the floating-point unit. Since fixed-point values have a limited
range, this implies that the reduction may fail, leading to a key pair generation
restart. Failed cases can be efficiently filtered out early in the process by checking
the current partial solution to the NTRU equation modulo a small prime integer;
hence, the overhead implied by these restarts is low. At degree n = 512, about 30%
of candidate (f, g) pairs lead to a restart.

16

https://github.com/pornin/BAT/

– Some memory reorganization allowed for additional RAM savings, down to 12288
and 24576 bytes for n = 512 and 1024, respectively (compared to 14336 and 28672
bytes for Falcon).

Once the complete NTRU basis (f, g, F,G) has been obtained, ComputeVec is used to
obtain w. The polynomials γ2Ff +Gg and γ2ff + gg are first computed modulo a small
prime where NTT can be applied for efficient computations (a 31-bit prime is used; since
the basis coefficients are all small, it is easily seen that coefficients do not exceed 219 in
absolute value). The v polynomial is then obtained by performing the division in the FFT
domain, using the same fixed-point code as the one used for solving the NTRU equation.
The division itself is performed with a constant-time bit-by-bit routine.

Since fixed-point values are approximations of the real coefficients of v, the rounding
step may occasionally be wrong by 1. Extensive tests show that it is a relatively uncommon
occurrence (it happens in about 0.5% of keys at n = 512) and always when v is close to
z + 1/2 for some integer z; over 30000 random key pairs, the largest observed deviation
of v − 1/2 from the closest integer, for coefficients where our implementation rounds to
w incorrectly, is lower than 2× 10−4. This means that in all observed cases, |wi − vi| <
1/2 + 2× 10−4. Since the decoding process works as long as |wi − vi| < 1, the impact on
the decryption failure rate is negligible.

6.2 Field operations
Efficient and secure (constant-time) operations in the small base fields (modulo q and
q′) are implemented with Montgomery multiplication. Namely, a value x modulo q is
represented by an integer y in the 1 to q range (inclusive), such that y = 232x mod q.
Montgomery reduction can be implemented in two 16-bit multiplications, two shifts and
one addition; they can moreover be mutualized because analysis shows that reduction
works properly for values up to close to 232. For details on this technique, see [55].

On recent x86 platforms, SIMD opcodes can be used to further optimize operations.
AVX2 registers can store 16 values modulo q (or q′) and perform 16 Montgomery reductions
in parallel. The _mm256_mullo_epi16() and _mm256_mulhi_epu16() intrinsics compute,
respectively, the low and high halves of a 16-bit product, with a very low reciprocal
throughput (0.5 cycles). Computing 16 modular multiplications in parallel requires in
total only 6 invocations of such intrinsics.

6.3 NTT multiplication
Since q − 1 and q′ − 1 are multiples of 256 for BAT, the NTT can be applied to speed up
computations over polynomials modulo Xn + 1, when working with integers modulo either
q or q′. For n a power of two up to 27 = 128, the NTT representation of a polynomial f
is the set of f(ζ2i+1) for 0 ≤ i ≤ n− 1, where ζ is a primitive 2n-th root of 1 modulo q
(or q′). In NTT representation, addition and multiplication of polynomials can be done
coefficient-wise, hence with cost O(n) operations modulo q. Moreover, conversion to and
from NTT representation can be done in O(n logn) steps.

For larger degrees, we cannot use full NTT representation, but we can still optimize
operations by splitting polynomials as follows. Consider n = 512; the polynomial f modulo
X512 + 1 can be split into four sub-polynomials as follows:

f = f0(X4) +Xf1(X4) +X2f2(X4) +X3f3(X4)

the polynomials fi being of degree up to 127, and operating modulo X128 + 1. Then,
operations on such polynomials can be expressed as a relatively small number of operations
on the sub-polynomials, which themselves can be implemented in the NTT domain, since
the sub-polynomials are of degree less than 128.

17

In our implementation, the NTT representations of the sub-polynomials are interleaved,
so as to maximize parallelization efficiency.

6.4 Polynomial splitting and Karatsuba multiplication
For LW-BAT, we use q = 128, which prevents us from using the NTT straightforwardly6.
Instead, for polynomial multiplications, we use Karatsuba with an even/odd split, by writing
a polynomial f as: f = f0(X2) + Xf1(X2) with f0 and f1 being half-size polynomials
(they operate modulo Xn/2 + 1). We can then express the product of f and g as:

fg = (f0g0)(X2) +X2(f1g1)(X2) +X((f0 + f1)(g0 + g1)− f0g0 − f1g1)(X2)

i.e. we turn the multiplication of two polynomials modulo Xn+ 1 into three multiplications
of polynomials modulo Xn/2 + 1. We use this reduction recursively, until polynomials have
degree less than 4.

The same split is used to compute polynomial divisions modulo Xn + 1: this is used to
compute the public key h = g/f mod q, and also to rebuild G from f , g and F when the
short format for private key storage was used. The even-odd split allows us to write:

1
f

= f0(X2)−Xf1(X2)
(f0(X2) +Xf1(X2))(f0(X2)−Xf1(X2)) = f0(X2)−Xf1(X2)

(f2
0 +Xf2

1)(X2)

which reduces inversion modulo Xn + 1 to a multiplication (modulo Xn + 1) and an
inversion modulo Xn/2 + 1. Applied recursively, this method leads us to the simple
problem of inverting an integer modulo q = 128, which can be done in a few inexpensive
multiplications.

6.5 Decoding
Decoding involves computing polynomials with integer coefficients modulo q, q′ and Q.
The final step requires solving for e′ and s′; we only need s′ in practice, since we can use
encapsulation to verify the result. Moreover, there are only two possible values for each
coefficient of s′ (for 1/2 and −1/2) and we merely need to disambiguate between these two
values. To keep to integer values, we do not recover s′ but qq′Qs′; moreover, we perform
computations modulo an additional small prime distinct from q and q′. In practice, when
q = 257, we perform the last step by working modulo 769; when q = 128 or 769, we use
computations modulo 257.

6.6 Encoding and storage
We defined compact encoding formats for public keys, private keys, and ciphertexts. Each
format starts with a single header byte which identifies the object type and parameter set.

Public keys are polynomials with coefficients modulo q. When q = 257, we encode
coefficients by groups of eight, each group using 65 bits: each coefficient is split into a low
half (4 bits) and a high half (value 0 to 16, inclusive); eight “high halves” are encoded
over 33 bits in base 17. For q = 769, a similar mechanism is used, with 5 coefficients being
encoded over 48 bits. All encoding and decoding operations can be implemented with only
simple 32-bit multiplications, and can be done efficiently in a constant-time manner (this
last property does not nominally matter for public keys, which are public).

Ciphertexts are mainly polynomials with small, signed integer coefficients. When
q = 257, coefficients of c1 are in the −64 to +64 range; eight coefficients are encoded over
57 bits, in a way similar to public key encoding. For q = 769, coefficients of c are in the

6A very recent work [23] shows that by introducing an extra prime p such that p > nq2/2 and
p = 1 mod 2n, one can implement the multiplication over Rq with NTT over Rp.

18

−96 to +96 range, and five coefficients are encoded over 38 bits in base 193. The value c2,
which is a fixed-size binary value, is simply appended to the encoding of c1.

Private keys have a “short” and a “long” formats. The long format includes the
32-byte seed that was used to generate f , g, and the 32-byte value r (which is used when
decapsulation fails). This seed is followed by a copy of r, then the polynomials f , g, F , G
and w themselves, and the public key h. Coefficients of f and g are encoded over 4 bits
each, in two’s complement notation; for F and G, 6 bits are used per coefficient, and 17
bits for w. The public key h uses the same encoding as in the public key. The short format
only stores the 32-byte seed, and the polynomial F : the value r and the polynomials f
and g are regenerated with the same pseudorandom (deterministic) process that was used
during key pair generation; G is recomputed using the NTRU equation (modulo q); and w
and h are recomputed. While the short format is substantially shorter, decoding a private
key stored in the short format has a nonnegligible overhead, but is still much cheaper than
key pair generation, since the most expensive part (solving the NTRU equation from f
and g alone) is avoided.

The numbers for required storages are listed in Table 6.

Table 6: Storage requirements of BAT (in bytes, including the header byte).

Variant Public Key Ciphertext
(with FO)

Private key
(short format)

Private Key
(long format)

LW-BAT 225 203 225 1473
BAT-512 521 473 417 2953
BAT-1024 1230 1006 801 6030

6.7 Speed benchmarks

We provide two implementations — (1) plain portable C version and (2) AVX2 version. We
measured the speed on an Intel i5-8259U CPU clocked at 2.3 GHz; TurboBoost is disabled.
Compiler is Clang-10.0, with optimization flags “-O3”. The AVX2 implementation uses
intrinsic functions, and an additional optimization flag “-march=native”. For key pair
generation, the reported value is an average over several hundreds of key pairs7. For
encapsulation, the reported value includes decoding of the public key, core encapsulation
process with the FO transform, and ciphertext encoding to bytes; cost of generation of a
random seed (of 10, 16 or 32 bytes, for the three BAT variants) from the operating system
RNG is not included. For decapsulation, the value includes decoding of the ciphertext
from bytes, and core decapsulation process with the FO transform. All hashing operations
in the FO transform and for the PRNG used in key pair generation rely on the BLAKE2
function as specified in RFC 7693 (BLAKE2s for LW-BAT and BAT-512, BLAKE2b for
BAT-1024) [59].

The timing data for two implementations are illustrated in Tables 7 and 8 respec-
tively.

7By nature, that process takes a varying time, since each candidate (f, g) may or may not lead to a
successful key pair generation; it is still “constant-time” in that timing variations are independent of the
value of the private key which is ultimately generated.

19

Table 7: Performance of the plain C implementation of BAT (in clock cycles).

Variant Key Generation Encapsulation Decapsulation
LW-BAT ≈ 23.3× 106 81913 392062
BAT-512 ≈ 35.3× 106 45473 290341
BAT-1024 ≈ 160.2× 106 84666 552708

Table 8: Performance of the AVX2 implementation of BAT (in clock cycles).

Variant Key Generation Encapsulation Decapsulation
LW-BAT ≈ 19.0× 106 58263 240754
BAT-512 ≈ 29.4× 106 11135 59745
BAT-1024 ≈ 145.6× 106 25620 131162

Acknowledgements. This work is supported by the National Natural Science Foundation
of China (No. 62102216), the National Key Research and Development Program of China
(Grant No. 2018YFA0704701), the Major Program of Guangdong Basic and Applied
Research (Grant No. 2019B030302008) and Major Scientific and Techological Innovation
Project of Shandong Province, China (Grant No. 2019JZZY010133).

References
[1] Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU

assumptions. In: CRYPTO 2016. pp. 153–178 (2016)

[2] Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R., Postlethwaite, E.W.,
Virdia, F., Wunderer, T.: Estimate all the {LWE, NTRU} schemes! In: SCN 2018.
pp. 351–367 (2018)

[3] Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the Expected Cost
of Solving uSVP and Applications to LWE. In: ASIACRYPT 2017. pp. 297–322 (2017)

[4] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum Key Exchange—A
New Hope. In: USENIX Security 16. pp. 327–343 (2016)

[5] Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber (2020), https://pq-crystals.
org/kyber/data/kyber-specification-round3.pdf

[6] Baan, H., Bhattacharya, S., Cheon, J.H., Fluhrer, S., Garcia-Morchon, O., Laarhoven,
T., Player, R., Rietman, R., Saarinen, M.J.O., Son, Y., Tolhuizen, L., Arce, J.L.T.,
Zhang, Z.: Round5: KEM and PKE based on (Ring) Learning with Rounding (2020),
https://round5.org/doc/Round5_Submission042020.pdf

[7] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combi-
natorica 6(1), 1–13 (1986)

[8] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
EUROCRYPT 2012. pp. 719–737 (2012)

20

https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://round5.org/doc/Round5_Submission042020.pdf

[9] Basso, A., Mera, J.M.B., D’Anvers, J.P., Karmakar, A., Roy, S.S., Beirendonck,
M.V., Vercauteren, F.: SABER: Mod-LWR based KEM (2020), https://www.esat.
kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

[10] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. In: SODA 2016. pp. 10–24 (2016)

[11] Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
Reducing attack surface at low cost. In: SAC 2017. pp. 235–260 (2017)

[12] Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems. https://bench.cr.yp.to, accessed 3 January 2022

[13] Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: TCC 2016. pp. 209–224 (2016)

[14] Brakerski, Z., Döttling, N.: Lossiness and Entropic Hardness for Ring-LWE. In: TCC
2020 (2020)

[15] Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness of LWE with
binary error: Revisiting the hybrid lattice-reduction and meet-in-the-middle attack.
In: AFRICACRYPT 2016. pp. 24–43 (2016)

[16] Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks. In: ASIACRYPT
2021 (2021)

[17] Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe,
P., Whyte, W., Zhang, Z.: NTRU: A submission to the NIST post-quantum standard-
ization effort (2020), https://ntru.org/

[18] Chen, C., Hoffstein, J., Whyte, W., Zhang, Z.: NIST PQ Submission: NTRUEncrypt
A lattice based encryption algorithm (2017), https://ntru.org/resources.shtml

[19] Chen, L., Zhang, Z., Zhang, Z.: On the hardness of the computational Ring-LWR
problem and its applications. In: ASIACRYPT 2018. pp. 435–464 (2018)

[20] Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: ASIACRYPT
2011. pp. 1–20 (2011)

[21] Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: Cut off the tail! A practical post-
quantum public-key encryption from LWE and LWR. In: International Conference on
Security and Cryptography for Networks. pp. 160–177 (2018)

[22] Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon:
compact signatures based on module NTRU lattices. In: ASIACCS 2020 (2020)

[23] Chung, C.M.M., Hwang, V., Kannwischer, M.J., Seiler, G., Shih, C.J., Yang, B.Y.:
NTT Multiplication for NTT-unfriendly Rings. IACR Transactions on Cryptographic
Hardware and Embedded Systems p. to appear (2021)

[24] Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: Lwe with side information:
Attacks and concrete security estimation. In: Crypto 2020 (2020)

[25] Das, D., Hoffstein, J., Pipher, J., Whyte, W., Zhang, Z.: Modular lattice signatures,
revisited. Designs, Codes and Cryptography 88(3), 505–532 (2020)

[26] Dent, A.W.: A designer’s guide to KEMs. In: IMA International Conference on
Cryptography and Coding. pp. 133–151. Springer (2003)

21

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://bench.cr.yp.to
https://ntru.org/
https://ntru.org/resources.shtml

[27] Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quantum
random-oracle model. Cryptology ePrint Archive, Report 2021/280 (2021), https:
//ia.cr/2021/280

[28] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice Signatures and
Bimodal Gaussians. In: CRYPTO 2013. pp. 40–56 (2013)

[29] Ducas, L., Lyubashevsky, V., Prest, T.: Efficient Identity-Based Encryption over
NTRU Lattices. In: ASIACRYPT 2014. pp. 22–41 (2014)

[30] Ducas, L., Nguyen, P.Q.: Learning a Zonotope and More: Cryptanalysis of NTRUSign
Countermeasures. In: ASIACRYPT 2012. pp. 433–450 (2012)

[31] Ducas, L., Prest, T.: Fast Fourier Orthogonalization. In: ISSAC 2016. pp. 191–198
(2016)

[32] Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G., Unruh, D.: A
Thorough Treatment of Highly-Efficient NTRU Instantiations. Cryptology ePrint
Archive, Report 2021/1352 (2021), https://ia.cr/2021/1352

[33] Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-Fourier Lattice-based
Compact Signatures over NTRU (2020), https://falcon-sign.info/

[34] Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption
schemes. In: Crypto’99. pp. 537–554 (1999)

[35] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New
Cryptographic Constructions. In: STOC 2008. pp. 197–206 (2008)

[36] Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice
Reduction Problems. In: CRYPTO ’97. pp. 112–131 (1997)

[37] Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Crypto’97. pp. 112–131 (1997)

[38] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSIGN: Digital Signatures Using the NTRU Lattice. In: CT-RSA 2003. pp.
122–140 (2003)

[39] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem.
In: ANTS 1998. pp. 267–288 (1998)

[40] Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto
transformation. In: TCC 2017. pp. 341–371 (2017)

[41] Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against ntru. In: CRYPTO 2007. pp. 150–169 (2007)

[42] Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P.: High-Speed Key Encapsulation
from NTRU. In: CHES 2017. pp. 232–252 (2017)

[43] Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., Feo, L.D., Hess, B., Jalali,
A., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes, J., Soukharev, V.,
Urbanik, D., Pereira, G.: Supersingular Isogeny Key Encapsulation (2020), https:
//sike.org/files/SIDH-spec.pdf

[44] Kirchner, P., Espitau, T., Fouque, P.A.: Fast reduction of algebraic lattices over
cyclotomic fields. In: CRYPTO 2020. pp. 155–185 (2020)

22

https://ia.cr/2021/280
https://ia.cr/2021/280
https://ia.cr/2021/1352
https://falcon-sign.info/
https://sike.org/files/SIDH-spec.pdf
https://sike.org/files/SIDH-spec.pdf

[45] Kirchner, P., Fouque, P.A.: Revisiting lattice attacks on overstretched NTRU param-
eters. In: EUROCRYPT 2017. pp. 3–26 (2017)

[46] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on
the cloud via multikey fully homomorphic encryption. In: STOC 2012. pp. 1219–1234
(2012)

[47] Lu, X., Liu, Y., Jia, D., Xue, H., He, J., Zhang, Z., Liu, Z., Yang, H., Li, B., Wang,
K.: LAC: Lattice-based Cryptosystems (2019), https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions

[48] Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclotomic
rings and applications to lattice-based zero-knowledge proofs. In: EUROCRYPT 2018.
pp. 204–224 (2018)

[49] Lyubashevsky, V., Seiler, G.: NTTRU: Truly Fast NTRU Using NTT. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems pp. 180–201 (2019)

[50] Micciancio, D.: Improving lattice based cryptosystems using the Hermite normal form.
In: International Cryptography and Lattices Conference. pp. 126–145 (2001)

[51] Nguyen, P.Q.: Boosting the Hybrid Attack on NTRU: Torus LSH, Permuted HNF
and Boxed Sphere (2021)

[52] Nguyen, P.Q., Regev, O.: Learning a Parallelepiped: Cryptanalysis of GGH and
NTRU Signatures. In: EUROCRYPT 2006. pp. 271–288 (2006)

[53] NIST: Round 3 candidates of the NIST Post-Quantum Cryptography Standard-
ization (2020), https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions

[54] Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography in
TLS. In: PQCrypto 2020. pp. 72–91 (2020)

[55] Pornin, T.: Efficient Elliptic Curve Operations On Microcontrollers With Finite Field
Extensions. Cryptology ePrint Archive, Report 2020/009 (2020), https://eprint.
iacr.org/2020/009

[56] Pornin, T., Prest, T.: More efficient algorithms for the NTRU key generation using
the field norm. In: PKC 2019. pp. 504–533 (2019)

[57] Prest, T.: Gaussian Sampling in Lattice-Based Cryptography. Ph.D. thesis, École
Normale Supérieure (2015)

[58] Saarinen, M.J.O.: On PQC message lengths and some energy consumption
myths (2019), https://groups.google.com/a/list.nist.gov/forum/#!forum/
pqc-forum

[59] Saarinen, M.J., Aumasson, J.P.: RFC 7693: The BLAKE2 Cryptographic Hash and
Message Authentication Code (MAC) (2015)

[60] Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66(1-3), 181–199 (1994)

[61] Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Assessing the overhead of post-
quantum cryptography in TLS 1.3 and SSH. In: Han, D., Feldmann, A. (eds.) CoNEXT
’20: The 16th International Conference on emerging Networking EXperiments and
Technologies, Barcelona, Spain, December, 2020. pp. 149–156. ACM (2020)

23

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/009
https://eprint.iacr.org/2020/009
https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum

[62] Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in
TLS 1.3: A performance study. In: 27th Annual Network and Distributed System
Security Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020.
The Internet Society (2020)

[63] Son, Y., Cheon, J.H.: Revisiting the hybrid attack on sparse secret LWE and applica-
tion to HE parameters. In: WAHC 2019. pp. 11–20 (2019)

[64] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: EUROCRYPT 2011. pp. 27–47 (2011)

[65] Zhang, J., Yu, Y., Fan, S., Zhang, Z., Yang, K.: Tweaking the Asymmetry of
Asymmetric-Key Cryptography on Lattices: KEMs and Signatures of Smaller Sizes.
In: PKC 2020 (2020)

A Argument for Claim 1
To argue Claim 1, we need Claim 4 to estimate the norm of the involved vectors.
Claim 4. Let R = Z[x]/(xn + 1) with n a power-of-2. Let f, g ∈ R be iid-random over

DZ,σf , Bf,g =
(
g G
f F

)
∈ R2×2 be an NTRU basis. Let v = γ2Ff+Gg

γ2ff+gg
with γ > 0. Let

(G⊥, F⊥) = (G− gv, γF −γfv) and (G′, F ′) = (G− gbveq′ , F − fbveq′). Let I(γ) = 2 ln(γ)
γ2−1

for γ 6= 1 and I(1) = 1. Then
– ‖(G⊥, F⊥)‖ ≈ qγ√

n·σf

√
I(γ);

– ‖(G′, γF ′)‖ ≤ qγ√
n·σf

√
I(γ) + n1.5

√
γ2+1

2q′ σf .

Argument. First, it can be verified that (G⊥, F⊥) = qγ
(
−γf

γ2ff+gg
, g

γ2ff+gg

)
. Let ξn be a

2n-th primitive root of 1, then ‖f‖2 = 1
n

∑n
i=1 f(ξ2i−1

n)f(ξ2i−1
n) for any f ∈ Kn. Some

routine computation yields that

‖(G⊥, F⊥)‖2 = q2γ2

n

n∑
i=1

1
γ2f(ξ2i−1

n)f(ξ2i−1
n) + g(ξ2i−1

n)g(ξ2i−1
n)

.

We heuristically model all these f(ξ2i−1
n)f(ξ2i−1

n) and g(ξ2i−1
n)g(ξ2i−1

n) as independent
random variables drawn from the chi-square distribution of parameter k = 2 scaled by
n
2σ

2
f . The average of

n
2 σ

2
f

q2γ2 · ‖(G⊥, F⊥)‖2 is then estimated as∫ ∞
0

∫ ∞
0

1
γ2x+ y

e−
x+y

2

4 dxdy =
∫ ∞

0

∫ z

0

1
(γ2 − 1)x+ z

e−
z
2

4 dxdz = I(γ)
2 .

Further, we get the following approximation ‖(G⊥, F⊥)‖ ≈ qγ√
n·σf

√
I(γ).

Let ∆v = v − bveq′ , then ‖∆v‖∞ ≤ 1
2q′ . It is known that ‖f∆v‖ ≤ n

2q′ ‖f‖ for any
f ∈ Kn. We estimate ‖f‖ and ‖g‖ as

√
nσf . Then it follows that

‖(G′, γF ′)‖ ≤‖(G⊥, F⊥)‖+ ‖(g∆v, γf∆v)‖

≤‖(G⊥, F⊥)‖+ n

2q′ ‖(g, γf)‖

≈ qγ√
n · σf

√
I(γ) + n1.5

√
γ2 + 1

2q′ σf .

This completes the argument.

24

Remark 5. When γ = 1, our estimation of ‖(G⊥, F⊥)‖ is q√
n·σf

. This implies that for
optimal trapdoor, σf should be 4

√
2
√

q
2n ≈ 1.19

√
q

2n slightly larger than the previous
heuristic bound 1.17

√
q

2n suggested in [29]. The explanation of the factor 1.17 is given
in [57]: the argument makes use of the projection heuristic on both (g, f) and (G,F)
two parts. In fact, this explanation seems problematic: as Bf,g is symplectic, once the
Gram-Schmidt norms of the (f, g) part are fixed, those of the (G,F) part are determined as
well. Thus, the optimal bound for the Gram-Schmidt norm of Bf,g is entirely determined
by ‖b∗0‖

2

‖b∗
n−1‖2 = Tr(ff + gg) Tr

(
1

ff+gg

)
where Tr denotes the trace over Kn.

Argument of Claim 1. Let s′ = s− µs1 and e′ = e− µe1. It can be verified that

c′ = (Q(gs′ + fe′) mod qQ) and c′′ = (q′Q(Fe′ +Gs′)− c′w mod qq′Q).

If ‖fe′ + gs′‖∞ ≤ q
2 , then c′ = Q(gs′ + fe′) and c′′ = (Q(Fde′ + Gds

′) mod qq′Q).
Further, if max

{
‖fe′ + gs′‖∞, ‖Fde

′+Gds′‖∞
q′

}
≤ q

2 , it follows that c
′ = Q(gs′ + fe′) and

c′′ = Q(Fde′ +Gds
′), which ensures a correct decoding similar to the RO algorithm.

Let T1 = fe′+ gs′ and T2 = Fd
q′ e
′+ Gd

q′ s
′. We approximate T1, T2 by two random Gaus-

sian vectors of standard deviations σT1 =
√
nσfσs

√
γ2 + 1 = σ1 and σT2 = σs

q′ ‖(Gd, γFd)‖.

By Claim 4, we have σT2 ≤ σ2 and then τ ≤ min
{

q

2
√

2σT1
, q

2
√

2σT2

}
. Therefore, the

probability of correct decoding is at least 1− 2n · (1− erf(τ)).

25

	Introduction
	Preliminaries
	Notations
	Linear algebra
	Probability and statistics
	NTRU

	A New NTRU Decoder
	Babai's algorithms for NTRU
	Our decoding algorithm for NTRU
	Decoding failure rate

	BAT KEM
	Algorithm description
	Parameter selection

	Security
	Assumptions
	KEM security
	Concrete security

	Implementation Details
	Key pair generation
	Field operations
	NTT multiplication
	Polynomial splitting and Karatsuba multiplication
	Decoding
	Encoding and storage
	Speed benchmarks

	Argument for Claim 1

