
Compact Cut-and-Choose: Boosting the Security of Blind

Signature Schemes, Compactly

Rutchathon Chairattana-Apirom
Brown University

rutchathon.c@gmail.com

Anna Lysyanskaya
Brown University

anna@cs.brown.edu

December 31, 2021

Abstract

Blind signature schemes are one of the best and best-studied tools for privacy-preserving au-
thentication. It has a blind signing protocol in which a signer learns nothing about the message
being signed or the resulting signature; thus such a signature can serve as an anonymous authen-
tication token. Thus, constructing efficient blind signatures secure under realistic cryptographic
assumptions is an important goal.

A recent paper by Benhamouda, Lepoint, Loss, Orrù, and Raykova (Eurocrypt ’21) showed
that a large class of blind signature schemes secure in the stand-alone setting are no longer
secure when multiple instances of the blind signing protocol are executed concurrently. The
best known technique to salvage the security of such blind signatures was recently proposed
by Katz, Loss, and Rosenberg (Asiacrypt ’21). For the security parameter κ, their technique
transforms blind signature schemes that are secure for O(log κ) concurrent executions of the
blind signing protocol into ones that are secure for any N = poly(κ) concurrent executions.
The resulting, transformed blind signing protocol needs O(N) times more computation and
communication than the original one.

In this paper, we give an improved transform for obtaining a secure blind signing protocol
tolerating N = poly(κ) concurrent executions from one that is secure for O(log κ) concurrent
executions. Our technique still needs O(N) times more computation, but only O(logN) more
communication than the original blind signature.

1 Introduction

A blind signing protocol is a protocol between a signer and a user in which the user outputs a
digital signature on the desired message, while the signer learns nothing about the message or
the resulting signature. A blind signature scheme is a signature scheme that has a blind signing
protocol. In spite of having a relatively long history (they were introduced almost forty years ago
by David Chaum [7]), blind signatures are a subject of excitement in the cryptography research
community at the moment because they can be used as privacy-preserving authentication tokens
that can replace browser cookies in certain applications, for example by the VPN by Google One
(https://one.google.com/about/vpn/howitworks).

The formal definition of security of blind signatures [18, 13, 1, 21] requires two security prop-
erties: blindness and one-more unforgeability. Blindness guarantees that an adversarial signer can
neither learn the message in the signing protocol nor link a particular message-signature pair to

1

rutchathon.c@gmail.com
anna@cs.brown.edu
https://one.google.com/about/vpn/howitworks

a protocol execution. One-more unforgeability guarantees that an adversary cannot produce more
signed messages than the number of times it invoked the signing protocol.

It is important that security hold even as the the blind signing protocol is executed together with
other protocols. At a minimum, therefore, the blind signing protocol needs to be concurrently self-
composable. Unfortunately, when executed concurrently, some otherwise attractive blind signing
protocols [15, 20, 2, 6, 16, 4, 22, 23, 10] are no longer one-more-unforgeable; not in the sense
that their proofs of security no longer apply, but recently a concrete and practical attack was
discovered [5].

The starting point for our work is a recent paper by Katz, Loss and Rosenberg (KLR) [14] that
showed how to boost the concurrent security of certain blind signing protocols, from being able to
tolerate O(log κ) concurrent executions to being able to tolerate N = poly(κ) executions, where κ
is the security parameter. This is best explained by using the Okamoto-Schnorr blind signature [15]
as an example; Hauck, Kiltz and Loss [12] gave a general formulation of schemes that follow the
same structure and to which the KLR technique applies.

Let G be a group of prime order in which the discrete logarithm problem is hard, and let g and
h be its generators. Suppose that we have a prover and an honest verifier who are given as input a
group element W ; the prover is additionally given s and t such that W = gsht. Recall that there
is an efficient Sigma-protocol (i.e. a three-move honest-verifier zero-knowledge proof of knowledge
system with some additional properties) for proving knowledge of s and t.

The Okamoto-Schnorr digital signature scheme can be seen as converting this proof system
into a digital signature scheme using the Fiat-Shamir heuristic. More precisely, the public key
is W = gsht and the secret key is the pair (s, t). A Sigma-protocol for proving knowledge of
(s, t) starts with the message from the Prover, followed by a challenge from the Honest Verifier,
followed by the response from the Prover; this protocol can be converted to a signing algorithm if
the message from the Verifier is replaced by the output of a hash function modeled as a random
oracle for the purposes of proving security. In the Okamoto-Schnorr blind signing protocol, the
user executes the Verifier’s side of this Sigma protocol, while the signer executes the Prover’s side.
The user, therefore, queries the hash function himself, never showing the message to the signer;
moreover, the user blinds the values received from and sent to the signer, so that they cannot be
linked to the resulting signature.

Pointcheval and Stern [18] developed the machinery for proving blind signatures such as Okamoto-
Schnorr secure in the random-oracle model; however, their proof approach cannot tolerate more
than O(log κ) concurrent executions of this signature scheme; Benhamouda et al. [5] showed that
this is not an accident, since an adversary orchestrating κ concurrent executions can break one-
more-unforgeability. Therefore, a different approach is needed to obtain a concurrently secure blind
signature from Okamoto-Schnorr and other blind signatures with similar structure; Hauck, Kiltz
and Loss refer to such blind signatures as blind signatures from linear function families and also
show that they are secure under O(log κ) concurrent executions [12].

The KLR technique requires that the signer keep track of the number N of concurrent execu-
tions. In order to get one signature, the user creates N instances of the Okamoto-Schnorr user; each
instance uses its own random coins; the user commits to the randomness of each of these instances.
The first message from the signer to the user consists of N Okamoto-Schnorr first messages; the
response from the user to the signer consists of the N responses generated by these N instances.
Next, the signer asks to see the random coins of all but one instance (chosen uniformly at random),
and aborts if the user cannot provide the correct random coins that explain all the messages ex-

2

changed so far. If the user passes this check, then the signer completes the signing protocol for the
one instance whose randomness he didn’t obtain. KLR’s cut-and-choose blind signature, in other
words, chooses one out of N instances to complete, but only if the other N − 1 are executed cor-
rectly. Even though the randomness for all but one instance is revealed, the message that is being
signed stays hidden because in instance i, µi = H′(m, ri) is signed instead, where H′ is another
hash function, and random ri is not revealed to the signer as part of the check.

As we can see, the drawback of the KLR technique is that it increases both the communication
and the computational complexity of the resulting protocol by a factor of N . In this paper, we
show how to batch the messages between the signer and the user such that the communication
complexity increases only by a factor of logN .

Our first observation is that the random coins used in each instance can be derived from the
same master seed using a pseudorandom function; in order to reveal the random coins of all but
one of the instances it is sufficient to produce just logN values using techniques similar to those in
the pseudorandom function construction of Goldreich, Goldwasser and Micali [11] and puncturable
PRFs of Sahai and Waters [19]. Thus, the random coins that the user sends to the signer need
not take up more than O(logN) extra multiplicative factor. Our second insight is that in order to
batch the µi’s, we use randomizable commitments: the user commits to m and sends the resulting
commitment C to the signer. In each of the N instances, the user will randomize this commitment
to obtain the instance-specific commitment µi; the randomness to do this step is derived from the
master seed and therefore available to the signer during the verification step.

But how do we batch the messages from the signer to the user? Okamoto-Schnorr signatures and
their generalization to blind signatures from linear function families have homomorphic properties
that allow batching the messages from the signer. We present the details of the construction in
Section 3; in Section 5 we show that when batched this way, the blind signature is secure under
N = poly(κ) concurrent executions.

2 Preliminaries

Notation. For any positive integer n, let [n] = {1, 2, . . . , n}. The notation a ← S where S is a
set means that a is a value uniformly randomly sampled from the set S. While for an algorithm
A, a ← A(x) denotes a as an output of the algorithm A with input x. Denote κ as the security
parameter. A function ε : N→ [0, 1] is negligible if for some c > 0, for all polynomial p and κ ≥ c,
ε(κ) < 1/p(κ).

2.1 Blind Signatures

Definition 2.1 (Blind Signature Schemes [21]). A blind signature scheme consists of four algo-
rithms (KeyGen,Sign,User,Verify) defined as follows:

Key generation: KeyGen(1κ) takes as input the security parameter 1κ and generates the pubic-
secret key pair (pk, sk) along with the signer’s internal states state.

Signing algorithm: Sign(sk, state) is an interactive algorithm taking as input the secret key sk
and the state variable state. It interacts with the user algorithm User and outputs either
⊥(aborting) or 1(completion) and the updated state state′.

User algorithm: User(pk,m) is an interactive algorithm taking as input its message m and the
public key pk. It interacts with the signing algorithm Sign and outputs either ⊥(aborting) or

3

the signature σ.
Verification: Verify(pk,m, σ) takes as input the public key pk, a message m, and a signature σ.

It outputs either “accept” or “reject”.

We say that a blind signature scheme is correct if for all messages m, secret-public key pairs
(sk, pk) ← KeyGen(1κ), and states state returned from KeyGen or Sign, if Sign(sk, state) and
User(pk,m) are executed honestly with σ as the user’s output, then Verify(pk,m, σ) always accepts.

Definition 2.2 (Blindness [21]). A blind signature scheme (KeyGen, Sign,User,Verify) is blind if
for any probabilistic polynomial-time adversary A, A succeeds in the following game with negligible
advantage over 1

2 :

• (m0,m1, pk, stateA)← A(1κ). b← {0, 1}.
• Run AUser(pk,mb),User(pk,m1−b)(1κ, stateA) where A can interleave the execution between the two

oracles.
• Let σb, σ1−b be the outputs of the respective oracles. If σ0 = ⊥ or σ1 = ⊥, send ⊥ to A. If

not, send (σ0, σ1) to A.
• A outputs b′. It succeeds if b′ = b.

Definition 2.3 (One-more Unforgeability [21]). Let ` : N → N. A blind signature scheme
(KeyGen,Sign, User,Verify) is `-one-more unforgeable if for any probabilistic polynomial-time ad-
versary A, A succeeds in the following game with negligible probability.

• (sk, pk)← KeyGen(1κ).
• Run ASign(sk)(pk), where A may initiate an arbitrary number of oracle executions, but Sign(sk)

will only complete at most ` = `(κ) executions.
• A outputs `+ 1 message-signature pairs (m1, σ1), . . . , (m`+1, σ`+1).
• A wins if all pairs are distinct and Verify(pk,mi, σi) accepts for all i ∈ [`+ 1].

2.2 Randomizable Commitment

In this subsection, we define a randomizable commitment scheme. In our construction, such a
scheme will be used by the signature recipient, who will commit to the message to be be signed.
Our definition is based on that of Ananth, Deshpande, Kalai and Lysyanskaya [3] with slight
differences: (1) their definition is for bit commitment schemes and (2) the randomization factor in
our definition can come from a different domain.

Definition 2.4 (Randomizable Commitment [3]). A randomizable commitment consists of three
algorithms (Setup,Commit,Randomize) defined as follows:

Setup(1κ) generates parameters params used for the commitment schemes defining the message
space M, randomness space X , and randomization factor space X ′.

Commit(params,m; r) commits a message m with randomness r, returning a commitment com.
Randomize(params, com; r′) randomizes the commitment com with randomization factor r′ ∈ X ′,

returning a new commitment com′. If com← Commit(params,m; r), then com′ can be revealed
with (m,Φparams(r, r

′)) where Φ is an operation on r, r′.

When clear from the context, we will omit params and use Commit(m; r),Randomize(com; r′),
and Φ for simplicity.

Definition 2.5 (Correctness). A randomizable commitment scheme (Setup,Commit,Randomize) is
correct if for any com which can be opened to (m, r) and any r′ ∈ X , Randomize(com; r′) can be
opened to (m,Φ(r, r′)).

4

Our construction requires a randomizable commitment scheme with hiding and randomizability
as defined below:

Definition 2.6 (Hiding). A randomizable commitment scheme (Setup,Commit,Randomize) is (sta-
tistically/computationally) hiding if for all m0,m1, the distributions {Commit(m0; r) : r ← X} and
{Commit(m1; r) : r ← X} are (statistically/computationally) indistinguishable i.e. for any (un-
bounded/probabilistic polynomial time) adversary A, A cannot guess whether a given distribution
is based on m0 or m1, which are messages chosen by A, with non-negligible advantage over 1

2 .
Specifically, we say that a randomizable commitment is (t, εHide)-hiding if for any adversary A

running in time t, A cannot guess whether a given distribution is based on commitments to m0 or
m1, which are messages chosen by A, with more than εHide advantage over 1

2 .

Definition 2.7 (Randomizable). A randomizable commitment scheme (Setup,Commit,Randomize)
is (t, εRand)-randomizable if for any adversary A running in time t, A’s advantage over 1

2 in this
game is at most εRand:

• params← Setup(1κ).
• (m, state)← A(1κ, params)
• com← Commit(m; r) where r ← X
• b← {0, 1}, r′ ← X ′
• If b = 0, open = r′′ ← X . Else, open = Φ(r, r′)
• b′ ← A(com, open, state)
• A succeeds if b′ = b

(Our definition of randomizability is a relaxed version of the one given by Ananth, Deshpande,
Kalai and Lysyanskaya [3], which requires that for every randomness r, if r′ is chosen uniformly
at random, then Φ(r, r′) is uniformly random; the relaxation covers the Fujisaki-Okamoto commit-
ment [9, 8].)

Definition 2.8 (Binding). A randomizable commitment (Setup,Commit,Randomize) is (t, εBind)-
binding if for any adversary A running in time t, A’s advantage in the following game is at most
εBind:

• params← Setup(1κ).
• (m0, r0,m1, r1)← A(1κ, params)
• A succeeds if Commit(m0; r0) = Commit(m1; r1).

2.2.1 Examples of Randomizable Commitment Schemes

An example of a randomizable commitment is the Pedersen commitment [17] defined as follows:

Definition 2.9 (Pedersen Commitment). The Pedersen Commitment consists of three algorithms
(Setup,Commit,Randomize):

Setup(1κ) generates a cyclic group G of prime order q and two generators g, h ∈ G where the
message space, randomness space, and randomization factor space are all Zq.

Commit(m; r) outputs gmhr.
Randomize(com; r′) outputs com′ = com · hr′. If com = Commit(m; r), com′can be opened as

(m, r + r′).

5

The Pedersen commitment is perfectly hiding((t, 0)-hiding for any t), perfectly randomizable((t, 0)-
randomizable for any t), and computationally binding((t, εBind)-binding where εBind is negligible and
t = poly(κ)).

Another example is the Fujisaki-Okamoto commitment scheme [9, 8]:

Definition 2.10 (Fujisaki-Okamoto Commitment). The Fujisaki-Okamoto Commitment consists
of three algorithms (Setup,Commit,Randomize):

Setup(1κ) generates an integer N = pq such that p = 2p′ + 1, q = 2q′ + 1 and p, q, p′, q′ are primes
and picks g, h← QRN . The algorithm also defines the message space [0, N), the randomness
space [0, 22|N |N), and the randomization factor space [0, 2|N |N).

Commit(m; r) outputs gmhr (mod N).
Randomize(com; r′) outputs com′ = com ·hr′ (mod N). If com = Commit(m; r), com′can be opened

as (m, r + r′).

The Fujisaki-Okamoto commitment scheme is statistically hiding (more precisely, (t, ε)-hiding
for any t, where ε is negligible), (t, εRand)-randomizable for any t and with εRand negligible, and
computationally binding assuming that factoring such an integer N is hard.

2.3 Linear Function Family

Definition 2.11 ([12]). A linear function family LF is a tuple of algorithms (PGen,F,Ψ) defined
as follows:

PGen(1κ) returns system parameters params which define abelian groups S,D,R with |S|, |R| ≥ 2κ

and there exists scalar multiplication · : S × D → D with s · (x + x′) = s · x + s · x′ for
all s ∈ S and x, x′ ∈ D. The same applies for R. Note that it is not necessarily true that
(s+ s′) · x = s · x+ s′ · x. Hauck et al. call this a pseudo-module.

Fparams(x) takes as input the system parameters and an element from D. Fparams(x) returns an
element in R. As an abuse of notation, we will use F(·) as Fparams(·). We require that:

(1) F is a pseudo-module homomorphism: for all s ∈ S, x, y ∈ D, F(s ·x+y) = s ·F(x)+F(y)
(2) F has a pseudo torsion-free element in the kernel: there exists z∗ ∈ D such that F(z∗) = 0

and for all distinct s, s′ ∈ S, s · z∗ 6= s′ · z∗.
(3) F is smooth: if x← D is sampled uniformly, F(x) has uniform distribution in R.

Ψparams(y, s, s
′) takes as inputs y ∈ R, and s, s′ ∈ S, and returns a value in D. The function

satisfies for all y in the range of F and s, s′ ∈ S,

(s+ s′) · y = s · y + s′ · y + F(Ψparams(y, s, s
′))

Intuitively, the distributor function Ψ outputs a correction term that corrects for the fact that
the group operation in S may not distribute over R.

For example (from [14]), the Schnorr blind signature has an underlying linear function family
LF = (PGen,F,Ψ) such that PGen generates system parameters defining S = D = Zq and R = G
as a cyclic group of order q with generator g. F maps x to gx. However, F in this setting does not
have a pseudo torsion-free element, because F is a bijection. Ψ is a zero function.

We define two security properties for a linear function family:

6

Definition 2.12 (Preimage resistant [14]). A linear function family LF is preimage resistant if
for any adversary A, A’s success probability in the following game is negligible:

• params← PGen(1κ)
• x← D
• x′ ← A(params,F(x))
• A succeeds if F(x) = F(x′)

LF is (t, εPRE)-preimage resistant if for every A with running time at most t, A succeeds with
probability at most εPRE.

Definition 2.13 (Collision resistant [14]). A linear function family LF is collision resistant if
for any adversary A, A’s success probability in the following game is negligible:

• params← PGen(1κ)
• (x, x′)← A(params)
• A succeeds if F(x) = F(x′) and x 6= x′

LF is (t, εCR)-collision resistant if for every A with running time at most t, A succeeds with proba-
bility at most εCR.

In the case of the Schnorr blind signature, it is preimage-resistant based on the discrete logarithm
assumption and collision-resistant by its bijectivity.

2.4 Blind Signatures from a Linear Function Family

Hauck, Kiltz, Loss [12] defined the generic construction of a three-move blind signature schemes
from any linear function family LF and a hash functionH modeled as a random-oracle called BS[LF].
The construction of BS[LF] is briefly outlined in Figure 1 and formally defined in Appendix A. It
may be helpful to think about it as a generalization of the Okamoto-Schnorr blind signature scheme
described in the Introduction, or of the Schnorr blind signature scheme. Hauck, Kiltz, Loss [12]
proved the following theorem:

Theorem 2.14 ([12]). Let LF be a linear function family and H : {0, 1}∗ → S be a hash function
modeled as a random oracle. If LF is (ε′, t′)-collision resistant and has a pseudo torsion-free element
in the kernel, then there exists no adversary A with success probability greater than ε in `-one-more
unforgeability game against BS[LF] that runs in time t, initiates at most p protocol execution, and
makes at most qH queries to H where

t′ = 2t, ε′ = O

(ε
2
− (Q · (p− `))`+1

22κ

)3
1

Q2`3


and Q = qH + `+ 1. Moreover, BS[LF] is perfectly blind in the random oracle model.

This theorem shows that the Okamoto-Schnorr blind signature is `-one-more unforgeable for
` = O(log κ). However, in the setting of the blind Schnorr signature, the linear function F does not
contain pseudo torsion-free element in the kernel, so this result does not apply.

7

Sign(sk, pk) User(pk,m)
r ← D

R := F(r) R α← D, β ← S

R′ := R+ F(α) + β · pk
c′ := H(m,R′)

c := c′ + β

s := r + c · sk c

s if F(s) 6= R+ c · pk

abort

s′ := s+ α+ Ψ(pk, c,−c′)
Output σ := (c′, s′)

Figure 1: Interaction between the signer and the user in BS[LF] protocol. (Figure 1 in [14])

2.5 Cut-and-Choose Blind Signature Construction

Katz, Loss, and Rosenberg [14] introduced the cut-and-choose blind signature scheme CCBS[LF]
from a linear function family LF. We briefly outline the CCBS[LF] construction in Figure 2 and
formally define it in Appendix A. The construction is proven blind and `-one-more unforgeable for
any ` = poly(κ) if the underlying generic blind signature scheme from LF, BS[LF], is blind and
λ-one-more unforgeable for λ = O(log κ).

Theorem 2.15 ([14]). Let LF be a linear function family that is preimage resistant and H,H′
be random oracles. If BS[LF] satisfies blindness, then CCBS[LF] satisfies blindness. Moreover, if
BS[LF] satisfies λ-one-more unforgeablility for λ = O(log κ), then CCBS[LF] satisfies `-one-more
unforgeability for ` = poly(κ).

According to the theorem, this transformation can be applied to the Okamoto-Schnorr blind
signature to improve `-one-more unforgeability guarantee from ` = O(log κ) to ` = poly(κ).

3 Our Compact Cut-and-Choose Technique

In this section, we define our Compact Cut-and-Choose blind signature scheme for a linear func-
tion family LF, abbreviated as CCCBS[LF]. Let H1 : {0, 1}∗ → {0, 1}2κ,H2 : {0, 1}∗ → {0, 1}κ,H3 :
{0, 1}∗ → S × S × X ′,H4 : {0, 1}∗ → {0, 1}κ be random oracles. Also, let LF be a linear func-
tion family and (Setup,Commit,Randomize) be a randomizable commitment scheme. Then, the
CCCBS[LF] construction is defined as follows:

Initialization and key generation: Generate the parameters as follows: Sample paramsCommit ←
Setup(1κ) and params′ ← LF.PGen(1κ); the latter defines the distributions D,R,S. Set
params = (params′, paramsCommit). Initialize the variables N and ctr that are part of the
signer’s state as follows: N := 2 = 22 − 2, ctr := 0. Sample x ← D, and let sk = x,
pk = (params,F(x)).

8

Sign(params, sk); state N User(params, pk,m)

atomically increment N N for i ∈ [N]:

αi ← D, βi ← S
ϕi, γi ← {0, 1}κ

µi := H′(m,ϕi)
comi := H′(αi, βi, µi, γi)

for i ∈ [N]:

ri ← D
Ri := F(ri)

com1, . . . , comN

R1, . . . , RN for i ∈ [N]:

R′i := R+ F(αi) + βi · pk
c′i := H(µi, R

′
i)

ci := c′i + βi

c1, . . . , cN

I ← [N] I

{(αi, βi, µi, γi)i6=I}

for i ∈ [N] \ {I}:
R′i := R+ F(αi) + βi · pk

if ∃i 6= I s.t.

comi 6= H′(αi, βi, µi, γi)
or ci 6= H(µi, R

′
i) + βi :

abort

sI := rI + cI · sk sI if F(sI) 6= RI + cI · pk
abort

s′I := sI + αI + Ψ(pk, cI ,−c′I)
Output σ := (c′I , s

′
I , ϕI)

Figure 2: Interaction between the signer and the user in CCBS[LF] protocol. (Figure 2 in [14])

Signing protocol: the signer Sign(params, sk) with state (N, ctr) and the user User(pk,m) are
defined as follows; each item corresponds a round of communication in Figure 3:

1. First, the user commits to their message using the randomizable commitment scheme
C := Commit(m; r) where r is uniformly sampled from the domain of the randomness X
for the randomizable commitment, and sends C to the signer.

2. The signer atomically increments the counter ctr and, if ctr = N, sets N := 2N+2, ctr :=
0. The signer sends N to the user. Here, N is always in the form of 2l − 2.

3. The user computes N pseudorandom seeds for use in N signing sessions (only one of
which will ultimately be completed), as follows. First, it generates a random master
seed seed0,0 ← {0, 1}κ; all seeds will be computed deterministically from the master seed
in the same way as the GGM PRF construction [11] using H1 as the pseudorandom

9

generator in that construction. More precisely:

The seeds will be organized into a binary tree of depth l = log(N + 2); the master seed
seed0,0 is stored at the root of the tree. By seed i,j , we denote the seed that is stored at
depth i, in position j ≥ 0 from the left.

Recall that the random oracle H1 always outputs strings of length 2κ; by H1,0(x),
let us denote the first κ bits of H1(x), while H1,1(x) will denote the remaining bit
(i.e. the second half of the bits) of H1(x). For 0 < i ≤ l, 0 ≤ j < 2i, seed i,j =
H1,j mod 2(seed i−1,bj/2c). At the end of this process, the user will obtain sl,0, . . . , sl,N+1.

Next, the user computes hi := H2(seed l,i) and sends H1 := H2(h1, . . . , hN) to the signer.

4. The signer uniformly randomly generates ri ← D, Ri := F(ri) for i ∈ [l] and sends
R1, . . . , Rl to the user.

5. Upon receiving Ri’s, the user does the following for each 1 ≤ i ≤ N :

• Calculates R̃i :=
∑

j∈Si Rj where Si = {j ∈ [l] : jth -bit of i is 1}, and generate
αi, βi, ϕi := H3(seed l,i).

• Blinds R̃i and C into R̃′i := R̃i + F(αi) + βi · pk and µi := Randomize(C,ϕi) respec-
tively.

• Computes c′i := H(µi, R̃
′
i) and blinds it to ci := c′i + βi.

Then, using H4, the user computes and sends a hash H2 := H4(c1, . . . , cN) to the signer.

6. The signer uniformly generates I ← [N] forwarding it to the user.

7. The user reveals enough information for the signer to be able to compute seed l,i for
all i 6= I, such that seed l,I remains hidden, as follows: treat I as an l-bit string; for
1 ≤ o ≤ l, reveal the seed seedo,jo , where jo is a string of o bits that agrees with I on
the first o− 1 bits but disagrees on bit o.

8. The signer calculates all seed l,i for i 6= I, as follows: let o ≥ 1 be an integer such that,
when i and I are viewed as l-bit strings, i agrees with I on the first o − 1 bits but
disagrees on bit o. Then seed l,i was computed as a function of seedo,jo which the user
revealed to the signer in the previous step.

Next, the signer uses seed l,i to compute αi, βi, ϕi which are used for calculating ci for all
i 6= I.

Then, the signer verifies that H1 = H2(H2(seed l,0), . . . , hI , . . . ,H2(seed l,N+1)) received
from step (3) and checks that H2 = H4(c1, . . . , cN). If one of the checks does not verify,
the signer aborts. Lastly, the signer calculates sI :=

∑
j:j∈SI rj + cI · sk and sends it to

the user.

9. The user computes s′I := sI + αI + Ψ(pk, cI ,−c′I) and outputs σ = (c′I , s
′
I ,Φ(r, ϕI)).

Verification algorithm: Verify(pk,m, σ) takes as input a message m and a signature σ =
(c, s, ϕ). It runs and returns the output of the verification algorithm of BS[LF] on inputs
(Commit(m;ϕ), (c, s)).

We listed the differences of our construction CCCBS[LF] and the CCBS[LF] construction in
Appendix B. Below, we show that our construction is correct.

Theorem 3.1. The CCCBS[LF] construction is correct i.e. for all (pk, sk) ← KeyGen(1κ) and
messages m, if σ is the output of the signing protocol 〈Sign,User〉 on message m and public-secret
key pair (pk, sk), then Verify(pk,m, σ) = accept.

10

Sign(params, sk); states N, ctr User(params, pk,m)

Atomically do: (2)

ctr := ctr + 1

if ctr = N :

N := 2N + 2, ctr := 0

l := log(N + 2)

C r ← X , C := Commit(m; r) (1)

N seed0,0 ← {0, 1}κ (3)

for i = 1, . . . , l :

for j = 0, 2, . . . , 2i − 2 :

(seedi,j , seedi,j+1) := H1(seedi−1,j/2)

for i ∈ [N]:

hi = H2(seed l,i)

H1 := H2(h1, . . . , hN)

for i ∈ [l]: (4)

ri ← D, Ri := F(ri)

H1

R1, . . . , Rl for i ∈ [N]: (5)

R̃i :=
∑
j∈Si

Rj

αi, βi, ϕi := H3(seed l,i)

R̃′i := R̃i + F(αi) + βi · pk
µi := Randomize(C;ϕi)

c′i := H(µi, R̃
′
i), ci := c′i + βi

H2 := H4(c1, . . . , cN)

H2

I ← [N] (6) I Treating I as an l-bit string (7)

for o ∈ [l] :

jo := o-bit string such that

jo[1 . . . o− 1] = I[1 . . . o− 1]

but jo[o] 6= I[o]

seed ′o := seedo,jo

Reconstruct seed l,i’s from seed ′o’s (8)

compute ci’s for all i 6= I.

Verify seed l,i’s with H1

and c1, . . . , cn with H2

if not valid, the signer aborts.

sI :=
∑
j∈SI

rj + cI · sk

{seed ′o}o∈[l], hI , cI

sI s′I := sI + αI + Ψ(pk, cI ,−c′I) (9)

Output σ = (c′I , s
′
I ,Φ(r, ϕI))

Figure 3: Signing protocol of our construction in Section 3

11

Proof. We write the output of the signing protocol σ in the form (c′, s′,Φ(r, ϕ)). By the correctness
of BS[LF], c′ = H(µ,F(s′) − c′ · pk) where µ = Randomize(Commit(m; r);ϕ). Thus, by the correct-
ness of the randomizable commitment scheme, Randomize(Commit(m; r);ϕ) = Commit(m; Φ(r, ϕ)),
proving the correctness of CCCBS[LF].

4 Blindness

In this section, we state and prove the theorem guaranteeing blindness of our construction given
that BS[LF] is blind.

Theorem 4.1. Let H,H1,H2,H3,H4 be random oracles, LF be a linear function family, and
(Setup,Commit,Randomize) be a (t, εHide)-hiding and (t, εRand)-randomizable commitment. If there
exists an adversary A against blindness game of CCCBS[LF] where A runs in time t, makes at most
qH1 , qH2 , qH3 , qH4 to H1,H2,H3,H4 respectively, and advantage ε, then there exists an adversary
against blindness of BS[LF] running in time t′ ≈ t and advantage at least

1

N2

(
ε− 2(NL +NR) · (qH1 + qH2 + qH3)

2κ
− 2εRand − 2εHide

)
where N = max(NL, NR), and NL, NR are the number of sessions A selected for its left and right
oracle respectively.

Proof idea. Following [14], we begin by defining the event Bad where the adversary correctly guesses
some of the generated seeds and queries the oracles using those seeds before receiving them.

We then define a reduction B to break the blindness of BS[LF] using the adversary attacking the
blindness of CCCBS[LF]; we only care what happens conditioned on the event Bad not happening.
The reduction tries to guess the values IL, IR that the adversary will pick for both left and right
oracles. If the guesses are correct and Bad does not occur, we want the view of the adversary in our
reduction will be indistinguishable from that in the actual blindness game. In order to show that it
is indeed the case, we consider a series of experiments in which the CCCBS[LF] blindness challenger
get modified: first, it aborts when Bad happens; next, it guesses the values IL, IR that the adversary
will pick; finally, it forms the commitments µIL and µIR differently yet indistinguishably.

Thus, the reduction succeeds in the blindness game against the challenger running BS[LF] with
the advantage negligibly different from the adversary’s. For the other case, the reduction can
randomly guess the bit, so it succeeds with probability 1

2 . Combining everything, the reduction has
non-negligible advantage of breaking the blindness of BS[LF].

Proof. Let A be an adversary of the blindness game of CCCBS[LF] that succeeds with probability
1
2 + ε.

Consider an event Bad where A queries H1,H2, or H3 with some of the generated seeds before

A receives them. The probability of Bad occurring is at most
2(NL+NR)·(qH1

+qH2
+qH3

)

2κ because
there are at most 2(NL + NR) seeds independently and uniformly generated from {0, 1}κ via
the random oracles. Hence, the probability that A succeeds without Bad happening is at least
1
2 + ε− 2(NL+NR)·(qH1

+qH2
+qH3

)

2κ .
Consider the following reduction B breaking the blindness of BS[LF] using A as a subroutine:

12

1. A’s random oracle queries for H1,H2,H3,H4 are handled honestly, and A’s queries for H are
forwarded to B’s challenger. The only exception is when Bad occurs, B aborts and outputs a
random bit b′ ← {0, 1}.

2. B receives pk,m0,m1 from A and commits to m0,m1 resulting in µ0, µ1 such that µi :=
Commit(mi;ϕi), ϕi ← X for i = 0, 1. Then, forward pk, µ0, µ1.

3. Here, we will explain what happens in the left execution of B with A, and the right execution
will be analogous. (Superscripts L,R indicates left and right execution respectively.)

(a) B generates CL := Commit(m0; rL) such that rL ← {0, 1}κ and sends to A
(b) A replies with NL. B initializes iL ← [NL] and runs the user protocol honestly. Upon

receiving, RL1 , . . . , R
L
lL
B calculates R̃L

iL
and sends that to its left execution. Set cL

iL
as

the response from B’s own left oracle. For other i 6= iL, run the user protocol honestly.

(c) B follows the user protocol until receiving IL. If IL 6= iL, B aborts the experiment and
outputs a random bit b′ ← {0, 1}. Else, follow the user protocol honestly.

(d) B receives sL
iL

from A, and forwards it to its left oracle.

4. B receives (µ0, s
′
0, c
′
0), (µ1, s

′
1, c
′
1), and forwards to A as (m0, s

′
0, c
′
0, ϕ0), (m1, s

′
1, c
′
1, ϕ1). B then

forwards the output b′ from A to the challenger.

To analyze B’s success probability, we will consider the following experiments conditioning on
the events iL = IL and iR = iR.

Experiment 0: Blindness game of CCCBS[LF]. A’s advantage in this experiment is ε.

Experiment 1: Identical to Experiment 1, except that the challenger aborts when Bad happens.
A’s advantage in this experiment is ε− 2(NL +NR) · (qH1 + qH2 + qH3)/2κ.

Experiment 2: Identical to Experiment 1, except that the challenger does the same procedure
as our reduction B by uniformly choosing the index iL and in the iL-th session of the left
oracle uses µiL := Commit(mb;ϕb) where ϕb ← X . Then, when outputting the signatures,
the challenger uses ϕb instead of Φ(rL, ϕL

iL
).

When iL = IL, A’s advantage in this game differs from its advantage in Experiment 1 at
most εRand, because our commitment scheme is (t, εRand)-randomizable.

Experiment 3: Identical to Experiment 2, except that the challenger uniformly chooses the index
iR and in the iR-th session of the right oracle uses µiR := Commit(m1−b;ϕ1−b) where ϕ1−b ←
X . Then, when outputting the signatures, the challenger uses ϕ1−b instead of Φ(rR, ϕR

iR
).

Consider only when iL = IL and iR = iR. By the same argument as above, A’s advantage in
this game differs from its advantage in Experiment 2 at most εRand.

Experiment 4: Identical to Experiment 3, except that for both cases of b = 0, 1, the chal-
lenger commits CL := Commit(m0; rL) and uses this commitment throughout the left oracle’s
execution.

Consider only when iL = IL and iR = iR. A’s advantage in this game differs from its
advantage in Experiment 3 at most εHide, because our commitment scheme is (t, εHide)-hiding.
Note that in the reduction to show this claim, the reduction does not need to know the
opening of CL to complete the oracle execution.

13

Experiment 5: Identical to Experiment 4, except that for both cases of b = 0, 1, the challenger
commits CR := Commit(m1; rR) and uses this commitment throughout the left oracle’s exe-
cution.

Consider only when iL = IL and iR = iR. With the same argument, A’s advantage in this
game differs from its advantage in Experiment 4 at most εHide.

Hence, in Experiment 5 when iL = IL and iR = IR, A succeeds with advantage at least
ε − 2(NL + NR) · (qH1 + qH2 + qH3)/2κ − 2εHide − 2εRand. Also, when iL = IL and iR = IR,
Experiment 5 is identical to the reduction B’s interaction with A. Therefore, if A succeeds while
Bad does not happen and iL = IL, iR = IR, B succeeds in breaking the blindness of blind signature
on LF. In particular,

P[B succeeds] ≥ 1

2
P[IL 6= iL ∨ IR 6= iR] + P[A succeeds in Experiment 5 ∧ IL = iL ∧ IR = iR]

≥ 1

2
+

1

NLNR

(
ε− 2(NL +NR) · (qH1 + qH2 + qH3)

2κ
− 2εRand − 2εHide

)
proving the theorem.

5 Unforgeability

In this section, we state and prove the theorem guaranteeing one-more unforgeability claim of
CCCBS[LF] assuming that BS[LF] is λ-one-more unforgeable for λ = O(log κ) .

Theorem 5.1. Let H,H1,H2,H3,H4 be random oracles, LF be a linear function family with
(t, εPRE)-preimage resistant, and (Setup,Commit,Randomize) be a (t, εBind)-binding randomizable
commitment scheme. With ` = poly(κ), suppose there exists an adversary A with success probabil-
ity ε in the `-one-more unforgeability game with CCCBS[LF] such that A runs in time t, initiates
the protocol at most p times, and makes at most qH, qH1 , qH2 , qH3 , qH4 queries to H,H1,H2,H3,H4

respectively.
Then, there exists an adversary B in λ-one-more unforegability game of BS[LF], where λ =

3dlog pe + log 2
ε , such that B runs in time t′ ≈ t, initiates the protocol at most p times, makes at

most qH queries to H, and succeeds with probability

ε

2
−

4q2
H1

+ q2
H2

+ q2
H4

+ 2p · qH2 + p · qH4 + p2(p2 + qH)

2κ
− p · εPRE − εBind

Proof idea. Our proof is based on a similar hybrid argument from [14]’s one-more unforgeability
proof. Detailed differences can be found in Appendix C.

First, we observe that the adversary can successfully cheat only when it guesses the index I
correctly before committing its random seeds and challenges. (By “successful cheating”, we mean
that the adversary sends in a commitment not related to any of previous random oracle queries,
but later the signer does not catch any inconsistency.) This results in at most 1/N probability of
successful cheating in a protocol execution with state N . Then, we upper-bound the number of
successful cheating the adversary A can achieve over the course of ` completed protocol executions
to be at most λ. For the case when the adversary does not cheat, the reduction sets the values
R1, . . . , Rl and programs the random oracle H in a way that if the reduction is required to output

14

the response sI to a challenge cI , the reduction can respond without using the secret key. We call
the signatures from these executions fake. For the case that the adversary attempts to cheat, the
reduction lets its challenger respond instead which makes the number of issued signatures from the
challenger the same as the number of times the adversary successfully cheats.

When the adversary outputs `+1 message-signature pairs, the reduction identifies and removes
all the fake pairs from these `+1 pairs. Lastly, the reduction sends the remaining message-signature
pairs to its challenger. We will see that the number of remaining signatures is greater than the
number of successful cheating. Since we established that the number of successful cheating is the
same as the number of issued signatures from the challenger, the reduction wins with almost the
same probability as the adversary A.

Proof. Let A be an adversary playing the one-more unforgeability game with the challenger
running CCCBS[LF]. Suppose that A runs in in time t, initiates the protocol at most p times, makes
at most qH, qH1 , qH2 , qH3 , qH4 queries to H,H1,H2,H3,H4 respectively, and has success probability
ε. Let ` be the number of completed protocol sessions.

Experiment 0: identical to `-one-more unforgeability game. The success probability of A in
this experiment is ε.

We say that a value c is extractable from a random oracle H if there is a query v to H such that
H(v) = c.

Experiment 1: This experiment is identical to Experiment 0, except the experiment aborts
when at least one of the following occurs in one of the signing executions:

(1) There are collisions in H2,H4 or some first or last κ bits of the outputs of H1 are identical.

(2) H1, is not extractable from H2 when received, but later in the same protocol execution the
signer does not abort. (For this to occur, the adversary needs to guess seedl,i’s which commit
to H1.) This event has probability at most qH2/2

κ to occur for each protocol execution.

(3) H1 is extractable from H2 into h0, ..., hN+1, but for some i, hi is not extractable from H2;
however, even when I 6= i (the user needs to reveal seedl,i), the signer does not abort. The
event that one of hi that is not extractable occurs with probability at most qH2/2

κ for each
protocol execution.

(4) H2 is not extractable from H4 when received, but the signer does not abort later. This event
has probability at most qH4/2

κ to occur for each protocol execution.

(5) A outputs two signatures (m, s, c, ϕ), (m′, s, c, ϕ′) such that m 6= m′ but Commit(m;ϕ) =
Commit(m′;ϕ′). This event has probability at most εBind of happening, which is negligible.

Overall in Experiment 1, A succeeds with probability at least

ε−
(
4q2
H1

+ q2
H2

+ q2
H4

+ 2p · qH2 + p · qH4

)
/2κ − εBind

The purpose of the limitations in this experiment is to (1) ensure that each hash value corre-
sponds to a unique query, (2,3,4) rule out the possibility of the adversary cheating by not sending
correct hashes but was able to guess the input to get the correct hashes, and (5) prohibit the
adversary in outputting two distinct message-signature pairs that are identical after computing the
commitment of the message.

15

Definition 5.2 (Successful Cheating). The adversary A successfully cheats if the signer does
not abort, but one of the following occurs:

(1) H1, when received, is extractable from H2 into h0, ..., hN+1, but for some i, hi, is not ex-
tractable from H2 into seedl,i, or

(2) Although H1 is extractable from H2 into seedl,i’s, and the challenger can derive αI , βI , ϕI

generated from seedl,I , cI 6= H
(
µI = Randomize(C;ϕI), R̃I + F(αI) + βI · pk

)
+ βI .

With this definition, in Experiment 1, A can successfully cheat only if it guesses I correctly and
commits the wrong seed or the wrong cI . Hence, in a signing session, A has at most 1

N probability
of successfully cheating.

Next, we will upper-bound the expected number of times A successfully cheats in Experiment
1. Consider an integer k such that at protocol execution p, N = 2k − 2. By how the protocol
increments N and for large k,

p ≥
k−1∑
i=2

2i − 2 = 2k − 2k ≥ 2k−1

so k ≤ dlog pe+ 1. Thus, the expected number of cheating in Experiment 1 is upper-bounded by

k∑
i=2

2i−2∑
j=1

1

2i − 2
≤
dlog pe+1∑
i=2

2i−2∑
j=1

1

2i − 2
= dlog pe

Experiment 2: This experiment is identical to Experiment 1, except the experiment aborts
when the adversary successfully cheats more than λ = 3dlog pe+ log 2

ε times. The purpose of this
step is to limit the number of cheating happening in the experiment.

We can upper-bound the probability that A cheats more than λ times in Experiment 1 to ε/2:
Let X be a random variable for the number of times A successfully cheats in Experiment 1 and

k be the value such that at protocol execution p, N = 2k−2. By the analysis above, k ≤ dlog pe+1.
The random variable X is then bounded by the following sum of iid Bernoulli random variables i.e.

X ≤
dlog pe+1∑
i=2

2i−2∑
j=1

Bernoulli

(
1

2i − 2

)

Let Y be the sum of these iid Bernoulli random variables and µY = E[Y] = dlog pe.

P[X ≥ λ] ≤ P[Y ≥ λ]

= P[Y ≥ µY (1 + (λ/µY − 1))]

≤ exp

(
−µY (λ/µY − 1)2

2 + (λ/µY − 1)

)
; By Chernoff’s Bound

With x2/(2 + x) ≥ x− 2 for all x ≥ 0,

P[X ≥ λ] ≤ exp

(
−µY

(
λ

µY
− 3

))
= exp

(
3dlog pe − 3dlog pe − log

2

ε

)
=
ε

2

16

Thus, A successfully cheats in Experiment 1 with probability at most ε/2. Therefore, A’s success
probability in Experiment 2 is at least ε/2−

(
4q2
H1

+ q2
H2

+ q2
H4

+ 2p · qH2 + p · qH4

)
/2κ − εBind.

Experiment 3: This experiment is identical to Experiment 2 except that, after the signer
receives H1 in each protocol execution, the experiment does the following:

• The challenger randomizes j ← [N].

• If H1 is extractable from H2 into h0, ..., hN+1 and hj is extractable from H2 into seedl,j :

(a) Cj ← S
(b) Randomly select i′ among the 1-bits of j.

(c) ri′ ← D, Ri′ := F(ri′) + Cj · (−pk).

(d) After initializing other Ri’s, calculate αj , βj , ϕj , µj , R̃
′
j using the extracted seedl,j . If

H(µj , R̃
′
j) is already initialized, the experiment aborts. If not, set H(µj , R̃

′
j) := Cj − βj .

(e) Later when sI needs to be calculated where i′-th bit of I is 1, use ri′ +Cj · (−sk) as the
discrete log witness of Ri′ .

Note: We call the above session j that has H defined in this way as a programmed session.

If H1 or hj is not extractable from H2, set Cj := ⊥.

• After initializing Ri for each i ∈ [l] \ {i′}, for each k ∈ [N] \ {j}, if H1 is not extractable from
H2 , or it is extractable from H2 into h0, ..., hN+1, but hk is not extractable from H2, set
Ck := ⊥.

Otherwise, hk is extractable into seedl,k, so the experiment checks if H is initialized at
(µk, R̃

′
k). If it is, the experiment aborts. Else, uniformly randomly set H(µk, R̃

′
k) and let

Ck := H(µk, R̃
′
k) + βk.

• Send R1, ..., Rl to A after all of the above is done.

Ignoring the aborts, we claim that the view of the adversary A is identical to its view in
Experiment 2. To see this, first, the outputs of the random oracle H are still uniformly distributed
in S. Moreover, the distribution of R1, ..., Rl stays the same because the distribution of Ri′ =
F(ri′) + Cj · (−pk) = F(ri′ + Cj · (−sk)) is the same as F(ri′) given that ri′ is uniformly generated.
Furthermore, for the programmed session j, the joint distribution of (R̃′j , cj , sj) remains the same

because R̃′j = F(sj) + cj · pk in both experiments.
In this experiment, the change of A’s success probability only comes from the experiment

aborting when it cannot program the oracle H at some (µ,R). For H to be initialized at some
(µ,R) point, it needs to be queried from A or programmed by the experiment. Hence, we can
consider the following three cases where (µ,R) has been initialized:

(1) (µ,R) has been queried by A. The experiment tries to program the oracle with R =∑
i∈Sk Ri + F(αk) + βk · pk for some k ∈ [N], and Ri = F(ri) is uniform in R as ri is

uniform in D. Also, the value of R that A queried the random oracle is independent of Ri
because the experiment has not revealed Ri to the adversary yet. Thus, this happens with
probability at most 1/2κ.

17

(2) (µ,R) has been programmed by the experiment in another protocol execution. The same
argument from above applies as Ri is independent from other values from a different protocol
execution. Hence, this happens with probability at most 1/2κ.

(3) (µ,R) has been programmed by the experiment in the same protocol execution. Then,

R =
∑
i∈Sk1

Ri + F(αk1) + βk1 · pk =
∑
i∈Sk2

Ri + F(αk2) + βk2 · pk

where Sk1 6= Sk2 . Thus, there is some Ri = F(ri) such that i is in only one of Sk1 , Sk2 . Thus,
Ri is independent from any other values involved in the event. By the same argument, this
happens with probability at most 1/2κ.

Thus, A’s success probability is reduced by at most p2(p2 + qH)/2κ where p2 upper-bounds
the number of times the challenger tries to program H and p2 + qH upper-bounds the number
of times H is programmed or queried. Therefore, A’s success probability in this experiment is
ε/2−

(
4q2
H1

+ q2
H2

+ q2
H4

+ 2p · qH2 + p · qH4 − p2(p2 + qH)
)
/2κ − εBind.

Experiment 4: This experiment is identical to Experiment 3, except how the signer generates
random index I: After receiving H2, if H2 is extractable from H4 into c1, ..., cN and for all i ∈ [N],
ci = Ci i.e. there is no cheating from the adversary, set I := j where j is the value defined
in Experiment 3. Otherwise, if H2 is not extractable or extractable from H4 into c1, ..., cN , but
ci 6= Ci for some i ∈ [N], set I := (N + 1)⊕ j = (2l − 1)⊕ j which is the bitwise complement of j.

Since j is uniformly randomly generated, I’s distribution remains uniform in both cases. Hence,
the success probability of A remains the same as Experiment 3.

Then, we define new definitions regarding the programmed sessions and the signatures related
to them.

Definition 5.3 (Completed Programmed Sessions). A programmed session j is completed if I = j
and the signer does not abort the signing protocol.

Definition 5.4 (Fake signature). A valid signature σ = (m, c′, s′, ϕ′) is a fake signature if, with
R′ := F(s′) − c′ · pk and µ := Commit(m;ϕ′), there is a programmed session(not necessarily a
completed one) that H is programmed at (µ,R′).

Claim 5.5. In Experiment 4, if LF is (t, εPRE)-preimage resistant, then the probability that any ad-
versary A succeeds and outputs more fake signatures (Definition 5.4) than the number of completed
programmed sessions is at most p · εPRE.

Proof. Let A be an adversary in Experiment 4, and E be the event that A succeeds and out-
puts more fake signatures than the number of completed programmed sessions. From Exper-
iment 1, A cannot output two different signatures (m0, c

′, s′, ϕ0), (m1, c
′, s′, ϕ1) such that µ =

Commit(m0;ϕ0) = Commit(m1;ϕ1).
Then, we will construct a reduction B′ using A as a subroutine to break preimage resistance of

LF.

1. B′ receives the input (params, R) from the challenger of preimage resistant game for LF. B′
then randomizes k ← [p]. In the kth execution of the signing protocol, instead of setting
Ri′ := F(ri′) + Cj · (−pk), we set Ri′ := R + Cj · (−pk). Recall that i′-th bit of programmed
session j is 1, so R̃j will compose of R. If B′ needs to calculate sj , it will abort.

18

2. Later, if A succeeds and outputs more fake signatures than the number of completed pro-
grammed sessions, and the first fake signature which does not correspond to a completed
programmed session is from the kth execution, B′ can compute the preimage of R as follows:
Let σ = (m, c′, s′, ϕ), R′ = F(s′)− c′ · pk, and r′ =

∑
i 6=i′:i∈Sj ri.

R′ = R̃′j

F(s′)− c′ · pk = R+ Cj · (−pk) + F(αj) + βj · pk +
∑

i 6=i′:i∈Sj

F(ri)

F(s′) = R+ F(α) + c′ · pk + Cj · (−pk) + (Cj − c′) · pk + F
(
r′
)

= R+ F
(
α+ r′

)
+ c′ · pk + Cj · (−pk) + Cj · pk− c′ · pk + F(Ψ(pk, Cj ,−c′))

R = F
(
s′ − α−Ψ(pk, Cj ,−c′)− r′

)
giving us the preimage of R.

Therefore, B′ can win the preimage resistant game with 1/p of P[E]. Hence, with LF being (t, εPRE)-
preimage resistant, P[E] ≤ p · εPRE.

Experiment 5: This experiment is identical to Experiment 4 except that, after the adversary
outputs the signatures, the experiment aborts if there are more more fake signatures than the
number of completed programmed sessions.

From Claim 5.5, the success probability of A in Experiment 5 is at least

ε

2
−

4q2
H1

+ q2
H2

+ q2
H4

+ 2p · qH2 + p · qH4 + p2(p2 + qH)

2κ
− p · εPRE − εBind

Lastly, we will construct a reduction B trying to break λ-one-more unforgeability of BS[LF]
where λ = 3dlog pe+ log 2

ε , simulating Experiment 5, and using adversary A as a subroutine
The reduction B is defined as follows:

1. For the random oracle queries not for H, B outputs a random value normally. For queries
to H, B forwards the query to its challenger and sends back the output from the challenger
to A. However, on the programmed sessions, B will answer A’s queries for the programmed
sessions by itself by how it programs H in Experiment 3.

2. To start the game, B receives the public key pk from its challenger and forwards it to A.

3. For each signing protocol execution from A, B replicates the challenger in Experiment 5 and
additionally does the following:

• After A initiates a protocol execution, start a signing session with its challenger and
receive R∗. After initializing j ← [N] and Ri′ according to Experiment 5, pick another
i′′ such that i′′-th bit of j is 0 and let Ri′′ := R∗.

Then, B interacts with A by following the protocol of A’s challenger in Experiment 5.

• When the protocol requires B to send sI to A, B’s behavior will depend on the value of
I.

If I = j, B sends sI :=
∑

k∈SI rk +CI · (−sk) + cI · sk =
∑

k∈SI rk which doesn’t require
B to know the secret key because cI = CI by how H is programmed in Experiment 3
and how I is selected in Experiment 4.

19

For the case that I = (N + 1) ⊕ j, B forwards cI to its challenger. Upon receiving s∗

from its challenger, B sends sI := s∗ +
∑

k∈SI\{i′′} rk to A.

4. After A sends ` + 1 valid signatures to B, B identifies and removes all the fake signatures
from the `+ 1 signatures. Then, B forwards the remaining signatures to the challenger.

Using the analysis above(see Experiment 1), we know all the ` + 1 signatures of the form
(m, c′, s′, ϕ′) exist no two signatures sharing the same µ = Commit(m;ϕ′). Also, the number of
fake signatures is at most the number of completed programmed sessions which is upper-bounded
by ` − cheat where cheat is the number of times A successfully cheats. Therefore, the number of
remaining non-fake signatures is at least cheat + 1. As the number of issued signatures from the
challenger is equal to the number of times A successfully cheats, B outputs more signatures than
is issued.

Since B is simulating Experiment 5, the the number of times A successfully cheats is upper-
bounded by λ = dlog pe+log 2

ε . Therefore, B successfully breaks λ-one-more unforgeability of BS[LF]
with the same probability as A’s success probability in Experiment 5, proving the theorem.

Acknowledgements

Anna Lysyanskaya acknowledges support from the Facebook Faculty Research Award program.

References

[1] Michel Abdalla, Chanathip Namprempre, and Gregory Neven. On the (im)possibility of blind
message authentication codes. In David Pointcheval, editor, CT-RSA 2006, volume 3860 of
LNCS, pages 262–279. Springer, Heidelberg, February 2006.

[2] Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 271–286. Springer, Heidelberg,
August 2000.

[3] Prabhanjan Ananth, Apoorvaa Deshpande, Yael Tauman Kalai, and Anna Lysyanskaya. Fully
homomorphic NIZK and NIWI proofs. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019,
Part II, volume 11892 of LNCS, pages 356–385. Springer, Heidelberg, December 2019.

[4] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 1087–1098. ACM
Press, November 2013.

[5] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova.
On the (in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, EU-
ROCRYPT 2021, Part I, volume 12696 of LNCS, pages 33–53. Springer, Heidelberg, October
2021.

[6] Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract). In
Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 302–318. Springer, Hei-
delberg, August 1994.

20

[7] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest,
and Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA,
1982.

[8] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based
on groups with hidden order. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of
LNCS, pages 125–142. Springer, Heidelberg, December 2002.

[9] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS,
pages 16–30. Springer, Heidelberg, August 1997.

[10] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, January
2007.

[11] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press, October
1984.

[12] Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from
identification schemes. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part III, volume 11478 of LNCS, pages 345–375. Springer, Heidelberg, May 2019.

[13] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended
abstract). In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 150–164.
Springer, Heidelberg, August 1997.

[14] Jonathan Katz, Julian Loss, and Michael Rosenberg. Boosting the security of blind signa-
ture schemes. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology –
ASIACRYPT 2021, pages 468–492, Cham, 2021. Springer International Publishing.

[15] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages
31–53. Springer, Heidelberg, August 1993.

[16] Christian Paquin and Greg Zaverucha. U-prove cryptographic specification v1.1
(revision 3), December 2013. Released under the Open Specification Promise
(http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx).

[17] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer,
Heidelberg, August 1992.

[18] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, June 2000.

[19] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press,
May / June 2014.

21

[20] Claus-Peter Schnorr. Security of blind discrete log signatures against interactive attacks. In
Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou, editors, ICICS 01, volume 2229 of LNCS,
pages 1–12. Springer, Heidelberg, November 2001.

[21] Dominique Schröder and Dominique Unruh. Security of blind signatures revisited. Journal of
Cryptology, 30(2):470–494, April 2017.

[22] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic, Linus Gasser,
Nicolas Gailly, Ismail Khoffi, and Bryan Ford. Keeping authorities “honest or bust” with
decentralized witness cosigning. In 2016 IEEE Symposium on Security and Privacy, pages
526–545. IEEE Computer Society Press, May 2016.

[23] Alexandros Zacharakis, Panagiotis Grontas, and Aris Pagourtzis. Conditional blind signatures.
Cryptology ePrint Archive, Report 2017/682, 2017. https://ia.cr/2017/682.

A Formal Definitions to BS[LF] and CCBS[LF]

Definition A.1 (Blind Signature from Linear Function Family). Let LF be a linear function family
and H be a hash function modeled as a random oracle. Define the blind signature from linear
function family BS[LF] as the tuple of algorithms (PGen,KeyGen,Sign, User,Verify):

PGen(1κ) runs params← LF.PGen(1κ) and outputs params.
KeyGen(1k) randomly picks a sk ← D, computes pk := F(sk), and outputs (sk, pk) as the secret

and public key pair.
Signing protocol between the signer Sign(sk, pk) and the user User(pk,m)(outlined in Figure 1)

is defined as follows:

(1) The signer uniformly picks r ← D, computes R := F(r), and sends R to the user.

(2) The user uniformly randomly generates α← D, β ← S, computes R′ := R+F(α)+β ·pk,
queries c′ := H(m,R′), and sends c := c′ + β to the signer.

(3) The signer computes and sends s := r + c · sk to the user.

(4) The user checks whether F(s) = R+ c · pk and aborts if the check does not pass. Lastly,
it outputs the signature σ := (c′, s′ := s+ α+ Ψ(pk, c,−c′)).

Verify(pk,m, σ) takes as input the public key pk and the message-signature pair (m,σ = (c′, s′)).
Then, it accepts if c′ = H(m,F(s′)− c′ · pk) and rejects otherwise.

Definition A.2 (Cut-and-Choose Blind Signature). Let BS[LF] be a blind signature scheme from
linear function family LF with a hash function H, and H′ be a hash function modeled as a random or-
acle. Define the cut-and-choose blind signature CCBS[LF] as the tuple of algorithms (PGen,KeyGen,
Sign,User,Verify).

Parameter generation: remains that same as BS[LF].PGen.
Key generation algorithm: remains the same as BS[LF].KeyGen except that it also outputs the

state N := 1.
Signing protocol between the signer Sign(sk, pk) and the user User(pk,m) is defined as follows:

(1) The signer atomically increments its state N and sends N to the user.

22

https://ia.cr/2017/682

(2) For each i ∈ [N], the user prepares its randomness, commits the message m to µi with
randomness ϕi, and commits all the randomness and the commitment of the message to
comi with randomness γi. The user then sends com1, . . . , comN to to signer.

(3) For each i ∈ [N], the signer uniformly picks ri ← D, computes Ri := F(ri), and forwards
R1, . . . , RN to the user.

(4) For each i ∈ [N], the user blinds Ri to R′i, queries the oracle H getting c′i, and sends
c1, . . . , cN where ci := ci + β to the signer.

(5) The signer uniformly picks I ← [N] and sends this index to the user. The user then
opens each commitment comi for i 6= I.

(6) The signer verifies the openings and the challenges ci’s. If these values do not verify,
the signer aborts. Then, the signer computes and sends sI := rI + cI · sk to the user.

(7) The user checks if F(sI) = RI + cI · pk and aborts if it is not. Lastly, it computes
s′I := sI + αI + Ψ(pk, cI ,−c′I) and outputs the signature σ := (c′I , s

′
I , ϕI)

Verification: Verify(pk,m, σ) takes as input the message-signature pair (m,σ = (c′, s′, ϕ)), com-
putes µ := H′(m,ϕ), and accepts if and only if c′ = H(µ,F(s′)− c′ · pk).

B Differences between CCBS[LF] and CCCBS[LF]

1. The state information N that dictates how many sessions of BS[LF] the user creates was
slightly different. In CCBS[LF], it increased by one each new protocol execution, and it was
just a counter that counted protocol executions. In CCCBS[LF], we have N and a separate
counter ctr; the counter ctr counts the number of executions using the current N so far; N is
an upper bound on ctr that (basically) doubles each time that ctr catches up to it.

2. In CCBS[LF], the signature recipient creates state information for N blind signature sessions
of the original BS[LF]; the randomness needed for each session i is obtained from a separate
seed seed i. Here, we have a master seed value that generates seed i for each i; the resulting
seeds are organized in a binary tree so that just logN values are sufficient to reconstruct all
the seeds other than seed I . As a result, we reduce the communication complexity from the
user to the signer from N seeds to just logN .

The user must calculate hi = H2(seed i) for each resulting seed; this step is needed for the
proof of security in the random oracle model. The user sends H1 = H2(h1, . . . , hN) to the
signer; once the signer picks the index I, the user responds with enough information that hi
for i 6= I can be computed locally by the signer; so the only additional value the user must
provide so the signer can verify H1 is hI .

3. Instead of generating N separate and unrelated first messages R1 = F(r1), . . . , RN = F(rN)
to send to the user, the signer generates l = logN of them, F(r1), . . . ,F(rl); each i, 1 ≤
i ≤ N , can be viewed as an encoding of a non-empty proper subset Si ([l], inducing
R̃i =

∑
j∈Si F(rj). The user can compute R̃i locally from R1, . . . , Rl for any i. As a result,

we reduce the communication complexity from N group elements from the signer to the user
to just logN .

4. Since the user will ultimately have to show to the signer all the state information required
for all but one of the N sessions, they will have to reveal a commitment to the message used

23

in each of them. In CCBS[LF], the user sends all but one of these commitments to the signer,
which requires Ω(N) communication complexity. Here, we need to compress the information;
thus we have the user send just one commitment to the message; this commitment C is formed
using a randomizable commitment scheme. From seed i, the user obtains randomness ϕi that
randomizes C into an unlinkable commitment µi. This reduces the communication complexity
for communicating commitments to messages from Ω(N) bits to O(1) commitments.

5. In the challenge step of CCBS[LF], the user sent challenges c1, . . . , cN to the signer; each ci
was the challenge for the ith session of the BS[LF] protocol. To reduce the communication
complexity, our protocol hashes these values down to just one value H2 = H4(c1, . . . , cN).
After the signer has picked the specific index I, the user supplies the information from which
the signer derives seed i for i 6= I, and ci is computed from seed i. Therefore, in the challenge
step, the user will only need to send cI to ensure that the signer has all the information
needed to verify H2.

C Differences between CCBS[LF] and CCCBS[LF] unforgeability proof

In our proof in Section 5, we follow the same hybrid argument as in [14]’s proof. Below, we list the
differences between the two proofs.

1. Experiment 1. With more random oracles introduced into CCCBS[LF], we define our Ex-
periment 1 slightly different from [14]’s. In the original proof, the experiment aborts when
there is a collision in H′ or when some commitment of randomness comi is not extractable
from H′ for some i 6= I, but later the signer does not abort.

In our proof, the experiment still aborts when there are collisions or when some seed com-
mitments are not extractable but the signer doesn’t abort. However, due to CCCBS[LF] not
sending the challenges ci’s but sending the commitment of them instead, our experiment
1 also aborts when this commitment H2 is not extractable. Additionally, the experiment
aborts when the adversary outputs two signatures (m, s, c, ϕ), (m′, s, c, ϕ′) with m 6= m′ but
Commit(m;ϕ) = Commit(m′, ϕ′).

2. Definition of successful Cheating. Our definition of successful cheating is almost anal-
ogous to the original proof. In the original proof, successful cheating is defined as an event
when the signer does not abort but (1) some commitment comi sent by A in that execution
was not extractable or (2) for some i, the commitment comi sent in that execution was ex-
tractable with associated values αi, βi, µi, but ci 6= H(µi, Ri + F (αi) + βi · pk) + βi (where
Ri is the value sent by the signer in the corresponding session). In our proof, we leave (1)
essentially the same about H1, but for (2), we only consider cI as the user in CCCBS[LF] does
not send any other ci’s but the commitment of them as H2.

3. Experiment 2. The only difference in this experiment is the value of λ due to the difference
in incrementing N in the two constructions.

4. Experiment 3. In the original proof’s experiment 3, they introduced the programmed session
j with j ← [N] where they set Rj := F (rj) +Cj · (−pk) with Cj ← S and program the oracle
H(µj , R

′
j) with Cj − βj . Due to the signing protocol of CCCBS[LF] only sending R1, ..., Rl

24

where l ≈ logN , we cannot use the same trick. Here, the experiment pick the session j ← [N]
and i′ ← Sj .(As a reminder, Sj is defined as the set of indices where j has bit 1 in such index.)
Then, the experiment uniformly samples ri′ ← D, Cj ← S and set Ri′ := F(ri′) + Cj · (−pk).
Later when the experiment initialized all Ri, we program H(µj , R̃

′
j) := Cj−βj , before sending

the Ri’s.

5. Experiment 4. In this experiment, instead of setting I := j + 1 when the adversary cheats,
the experiment instead set I := (2l − 1)⊕ j as bitwise complement of j. With N = 2l − 2, I
is still uniformly distributed in [N] for both cases as j ← [N].

6. Experiment 5. Both our proof and the original proof have identical definition for experiment
5.

7. Reduction. In the reduction, the original proof the reduction sets Rj+1 := R∗ where R∗ is
the value received from the first round of a signing session with the reduction’s signing oracle
and j is the programmed session. In CCCBS[LF], we cannot set R̃′j+1 directly, so we have to
pick an index i′′ where i′′-th bit of j̄ is 1 to set Ri′′ := R∗.

Because of this reduction’s setting and how we deal with programmed sessions in experiment
3, we need any j ← [N] to have at least one 1-bit and 0-bit and that j̄ is uniformly distributed
in N . Hence, our N is selected to always be of the form 2l − 2.

25

	Introduction
	Preliminaries
	Blind Signatures
	Randomizable Commitment
	Examples of Randomizable Commitment Schemes

	Linear Function Family
	Blind Signatures from a Linear Function Family
	Cut-and-Choose Blind Signature Construction

	Our Compact Cut-and-Choose Technique
	Blindness
	Unforgeability
	Formal Definitions to BS[LF] and CCBS[LF]
	Differences between CCBS[LF] and CCCBS[LF]
	Differences between CCBS[LF] and CCCBS[LF] unforgeability proof

