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Abstract
Publish-subscribe protocols enable real-time multi-point-to-
multi-point communications for many dispersed computing
systems like Internet of Things (IoT) applications. Recent inter-
est has focused on adding processing to such publish-subscribe
protocols to enable computation over real-time streams such
that the protocols can provide functionalities such as sen-
sor fusion, compression, and other statistical analysis on raw
sensor data. However, unlike pure publish-subscribe proto-
cols, which can be easily deployed with end-to-end trans-
port layer encryption, it is challenging to ensure security in
such publish-process-subscribe protocols when the process-
ing is carried out on an untrusted third party. In this work,
we present XYZ, a secure publish-process-subscribe system
that can preserve the confidentiality of computations and sup-
port multi-publisher-multi-subscriber settings. Within XYZ,
we design two distinct schemes: the first using Yao’s garbled
circuits (the GC-Based Scheme) and the second using homo-
morphic encryption with proxy re-encryption (the Proxy-HE
Scheme). We build implementations of the two schemes as an
integrated publish-process-subscribe system. We evaluate our
system on several functions and also demonstrate real-world
applications. The evaluation shows that the GC-Based Scheme
can finish most tasks two orders of magnitude times faster
than the Proxy-HE Scheme while Proxy-HE can still securely
complete tasks within an acceptable time for most functions
but with a different security assumption and a simpler system
structure.

1 Introduction
Modern interconnected networked systems like Internet

of Things are dispersed often requiring a strategic, oppor-
tunistic movement of computation to data, and data to com-
putation, in a fashion that best suits user application needs.
Recent developments in IoT enable applications to use multi-
point-to-multi-point communication by use of the publish-
subscribe (pub-sub) paradigm [16]. The publish-subscribe mes-
saging allows multiple data consumers to connect to streams
of real-time data from multiple sensors. Commonly used ex-
amples of pub-sub protocols are Message Queue Telemetry
Transport (MQTT) [23], Advanced Message Queuing Protocol
(AMQP) [22] and commercial pub-sub platform as a service
(PaaS) providers such as PubNub [34] with their own pro-
prietary protocols and APIs. The key idea behind pub-sub
protocols is the use of a broker as a relay, which is typically
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centralized on a cloud server, such as Mosquitto [28]. Sensors
(also called publishers) publish messages to specified "topics"
that are sent to the broker; data consumers (also called sub-
scribers) send to the broker a subscribe request to specified
topics and receive data from the broker. The broker in a tradi-
tional pub-sub system plays primarily a message-forwarding
role with optional extension to client authentication, but this
basic functionality does not serve the emerging need for data
processing in such systems [26]. Enabling data processing on
the broker before forwarding instead of merely relaying raw
data helps provide more meaningful data derived from raw
sensor data and detect potential anomalies. In some cases, it
can also reduce the overall throughput and improve clients’
energy efficiency. This is important in IoT environments con-
sidering the fact that most IoT devices are of a low-budget
setting. One of the examples is that PubNub’s BLOCKS [35].
However, as brokers are typically hosted on third-party

servers, adding processing to pub-sub middleman introduces
concerns about security. An application that wishes to make
use of a third-party broker for traditional pub-sub messaging
could use end-to-end encryption to provide security [7], but
with computational functionality being moved to the server,
such encryption is no longer enough. Additionally, approaches
like moving computation to clients simply do not work when
sensitive individual data has to be aggregated but protected,
for example, building privacy-preserving machine learning
models from sensitive data of medical sensors [1] and federally
aggregating model parameters from multiple IoT users while
preventing information leakage especially for users with small
datasets [36]. To our knowledge, with the exception of pro-
posals [2, 4] to utilize trusted execution environments which
introduces extra hardware requirements, there is no prior prac-
tically implemented protocol that provides secure computation
on a pub-sub broker for IoT. Given the security vulnerabilities
identified with SGX in recent years [13, 21], a system based
on secure computation would be more desirable. Such a sys-
tem has the potential to dramatically lower the barrier for use
of third-party edge/cloud-based computation, especially for
privacy-sensitive data streams such as data from smart homes
and wearable devices collecting physiological information.
The main challenges concerning secure computation with

IoT pub-sub messaging are (a) data supply/demand asyn-
chronization where a publisher can publish its data before
a subscriber subscribes to the related topic without know-
ing who the subscriber is, thus, it does not know which key
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to use for encryption or which labels to agree on for encod-
ing upon publishing raw data; (b) indirect client commu-
nication where clients can only talk to each other via the
broker. These issues make it difficult to insert secure com-
putation primitives directly into traditional pub-sub IoT sys-
tems; (c) concurrent computation request from/to mul-
tiple clients where a secure computation request may come
from multiple subscribers and require data from different pub-
lishers; (d) restricted resources on IoT clientswhere client
devices are often lightweight machines with low power and
computation abilities. However, prior work did not provide
sufficient solutions to the unique challenges from adding se-
cure computation to IoT messaging protocols [7, 32, 37]. In
this paper, we propose a secure publish-process-subscribe sys-
tem to provide secure computation functionality to traditional
IoT messaging system while solving systematic integration
challenges.
Our Contributions. Our core contributions can be summa-
rized as follows:
(1) To integrate secure multi-party computation into IoT mes-

saging protocols while solving system challenges intro-
duced by the pub-sub structure as discussed above, we pro-
pose a system, XYZ, to provide secure publish-process-
subscribe functionality with computation offloaded on the
broker side. Specifically, XYZ is designed with novel sys-
tem solutions such as communication reduction and seed
synchronization (in the GC-based scheme) as well as key
exchange reduction and subscriber representative mecha-
nism (in the Proxy-HE scheme) respectively.

(2) To leverage among system complexity, security assump-
tions and additional overhead compromise, we propose and
implement two distinct multi-party computation schemes:
a lightweight scheme based on Yao’s garbled circuits [40]
and a minimalist-system scheme based on homomorphic
encryption [5] and proxy re-encryption [30].

(3) We constructed XYZ with basic functions and evaluated
them with real-world example applications to demonstrate
the feasibility of our system. The function library in our
system is designed to be easily extended to support more
complex functions.
The rest of the paper is structured as follows: in §2 we

provide an overview of our secure publish-process-subscribe
system and its related work; in §3 and §4 we introduce two
different schemes (the GC-Based Scheme and the Proxy-HE
Scheme) in our system respectively; in §5 and §6, we imple-
ment and evaluate our system with concrete real-world appli-
cations demonstration.

2 Overview and Related Work

2.1 Overview
Our secure publish-process-subscribe protocol should han-

dle secure computation on the broker’s side using encrypted
data from publishers and distribute encrypted processed data
to subscribers. Our protocol involves 𝑎 publishers, 𝑏 sub-
scribers and third-party server(s). We assume a semi-honest
adversary A who can corrupt a certain set of clients and the

server(s). A semi-honest adversary does not deviate from the
protocol but tries to learn as much information as possible.
Additionally, certain collusion is restricted. Our security def-
inition requires that A only learns the data from corrupted
publishers and final outputs from corrupted subscribers, but
nothing about honest parties’ inputs.
Ideal Functionality. We describe the ideal functionality as a
generic definition of a secure publish-process-subscribe pro-
tocol. Our ideal functionality F interacts with participating
parties as shown in Figure 1.

Initialization
• Each new publisher sends a policy to the broker specifying
allowed computation on its data.

Publish
• Each publisher publishes its data to F . If the data from
a publisher is not received in the given time period, F
marks it as null.

Subscribe
• To subscribe to the computation 𝐶 , each subscriber sends
a subscription message to the broker containing requested
𝐶 .
• The broker sends 𝐶 and its subscribers to F .
Process
• F determines a subset 𝑃 ′ ⊂ 𝑃 of publishers whose data
can be used for 𝐶 , then sends 𝑃 ′ to the broker.
• The broker sends back 𝑃𝐶 whose policies allow 𝐶 .
• If data of all available publishers in 𝑃𝐶 is enough for 𝐶 , F
evaluates it and sends the result to subscribers, otherwise
F sends an empty message to subscribers.

Figure 1: Ideal World Functionality

Real-World Scheme Choices. To find the right secure multi-
party computation schemes for our system, we look at three
different aspects: system complexity (also integration difficulty
in IoT messaging mode), security assumptions and additional
overhead compromise.

Fully homomorphic encryption (FHE) is a natural fit for our
IoT broker scenario here because it is designed for the general
server-aided secure computation outsourcing model. With the
help of proxy re-encryption, an FHE scheme can handle the
indirect and asynchronous communication challenge and sup-
port multi-client requests with extra setups mainly on the bro-
ker in the system. The FHE scheme requires a non-colluding
assumption between the broker server and subscribers, which
can be enforced by identity providers [25]. To reduce the im-
pact from performing secure computation on the overhead of
IoT devices, clients in the FHE scheme are only required to ei-
ther encrypt or decrypt the data, which is the relatively cheap
part in secure computation and has already existed in the pre-
vious secure pub-sub messaging protocol However, in cases
where broker servers are also relatively resource-constrained
or need to handle massive computation requests, introducing
FHE to the system inevitable yields a large additional over-
head.
Alternatively, it is also promising to look into other light-

weight alternatives such as the traditional two-party secure
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Scheme GC-Based Proxy-HE

Adversary Cannot control both Garbler and Broker Cannot control both Broker and Subscribers
Server Requirement Need both Garbler/Broker Only need Broker
Extra Constructions Key ratcheting/seed synchronization Proxy re-encryption and re-encryption delegate management

Typical Cost 10 ms 1000 ms
*Typical cost is from computing variance with 100 publishers.

Table 1: Comparison of Two Schemes in Our System

computation solution Yao’s garbled circuits. To comply with
the multi-party (𝑛 > 2) setting of our system, introducing
an extra server (the garbler) can preserve privacy against the
single middleman broker. Similarly, with system extentions
like key racheting and seed synchronization, a garbled circuits
scheme can circumvent the IoT communication challenges. In
terms of the system complexity and security assumptions, our
GC-Based Scheme needs both the garbler and the broker on
third-party servers while assuming that the two parties will
not collude with each other. Even with our reduced communi-
cation extension, which circumvents the direct communication
among the garbler and clients in pub-sub setup, this scheme
still requires the garbler as an independent intermediate party.
This non-colluding two-server setup requires certain changes
to the current messaging system and is also a strong assump-
tion for IoT applications where the broker server is usually
controlled by a single entity.
As a result, our system adopts two different multi-party

computation schemes using garbled circuits and homomor-
phic encryption with proxy re-encryption respectively. With
two flavors of solutions with different properties, we are able to
look at this secure computation system problem from different
perspectives and find a balance regarding system complexity,
security assumptions and overhead compromise for different
service requirements. This availability of different designs also
offers users flexible choices to better fit specific needs when
constructing secure publish-subscribe-process systems in prac-
tice: opt in the GC-based scheme when on-device (including
servers) computational ability is restrained but extra system
components are allowed; opt in the Proxy-HE scheme when
the broker has adequate computing power but minimum addi-
tional system modules are allowed. The summary of scheme
comparison is listed in Table 1. Note that the detailed security
assumptions, including definitions of A in our two different
schemes will be described in §3 and §4.

2.2 Related Work
Secure Pub/Sub Systems (Without Computation Func-
tionality). Previous studies on secure pub/sub messaging sys-
tems have been conducted and secure pub/sub schemes have
been proposed [31, 38], but these work all focused on the sim-
ple pub/sub system without a computation functionality from
the broker.
Systems Using Garbled Circuits. Our secure publish-
process-subscribe system is related to the work on garbled
circuits [11, 12, 20, 24] and homomorphic encryption [9, 19].
However, existing schemes do not directly fit our real-time
publish-process-subscribe system. Kamara et al. developed

two protocols, a covertly secure protocol that outsources the
garbled circuit generation and a maliciously secure protocol
that outsources evaluation [24]. Carter et al. also proposed a
maliciously secure protocol that outsources garbled circuit
evaluation but uses a new oblivious transfer mechanism
to reduce bandwidth and computation [12]. Bachrach et al.
developed a protocol that allows a set of parties with data
stored in the cloud to compute on encrypted data using a third-
party evaluator [20]. However, all the work above attempted
to provide a solution to more general cloud server models
using garbled circuits but didn’t address the issues from the
publish-subscribe protocol’s unique messaging mechanism.
Systems Using Homomorphic Encryption. Alternatively,
different from how garbled circuits work, homomorphic
encryption [5] allows arbitrary computation on encrypted
data. Gentry proposed the first fully homomorphic encryption
scheme [9, 19] followed by several improved schemes, e.g., the
BGV scheme [8]. Dijk et al. showed that privacy-preserving
outsourced computation on data from multiple parties and
supplying output to multiple parties requires, in addition
to homomorphic encryption, access-controlled ciphertexts
and re-encryption [37]. They reduce a scheme that computes
data from two parties and supplies outputs to two parties to
black-box program obfuscation, which is hard to accomplish
in general. Additionally, restrictions on parties in the paper
make its potential application less realistic. Nikolaenko et
al. proposed a scalable privacy-preserving system for ridge-
regression combining additive homomorphic encryption and
Yao’s garbled circuits [32]. In their setting, a single evaluator
is interested in learning ridge regression over data of a large
number of data owners without learning the individual data
of data owners. Our system works in a different way: (a) we
don’t want to reveal output to the evaluator, (b) we support
a multi-sub-multi-pub setting with an extensible function
library, and (c) our data owners, publishers, are oblivious of
subscribers and subscribers are oblivious of publishers.
IoT with Proxy Re-Encryption.We also make use of proxy
re-encryption in our Proxy-HE Scheme. This scheme, first pro-
posed as a method to delegate decryption rights [30], solves
the asynchronous encryption issue in publish-subscribe proto-
cols. Polyakov et al. proposed a proxy re-encryption scheme
based on homomorphic encryption to tackle this problem [7].
However, their work focused on the simple publish-subscribe
setup and did not further address the issue that publishers and
subscribers need to communicate back and forth via the broker
to generate re-encryption keys every time a communication
is established. Our work use their library but apply it with
additional optimization.
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3 The GC-Based Scheme
In this section, we describe our scheme designed with Yao’s

garbled circuits. The overall structure of the scheme is shown
in Figure 2. In the real world, F is replaced by our scheme
described in §3.2.

3.1 Components
Yao’s Garbled Circuits. Yao’s garbled circuits [40] allows the
participating parties to evaluate their private inputs in a func-
tion even if they do not trust each other. Yao’s garbled circuits
𝐺𝐶 , with algorithms (𝐺, 𝐸𝑛𝑐𝑜𝑑𝑒, 𝐸𝑣𝑎𝑙, 𝐷), can be defined as
follows [39]:

(1) On input circuit 𝑐 , the garbling algorithm 𝐺 outputs a
garbled circuit 𝐶 , encoding 𝑒 and decoding 𝑑 .

(2) On inputs (𝑒, 𝑥), the encoding algorithm 𝐸𝑛𝑐𝑜𝑑𝑒 outputs
a garbled output 𝑋 , where 𝑥 is the original input. Then
the evaluation algorithm 𝐸𝑣𝑎𝑙 takes in (𝐶,𝑋 ) and outputs
a garbled result 𝑌 .

(3) On inputs (𝑑,𝑌 ), the decoding algorithm 𝐷 outputs the
plaintext.

Reduced Communication Extension. The basic protocol
assumes direct communication with the garbler. However, the
publishers and subscribers in our system communicate with
the garbler only through the broker. To address this issue,
we describe an extension that allows clients and the garbler
to generate wire labels/masks independently. This ensures
our scheme’s compatibility with a standard publish-subscribe
system where all communication is only through the broker.

Publishers and the garbler share a random seed 𝑠 and use a
pseudorandom number generator to independently generate
two wire labels for each input bit, circumventing wire label
exchange between publishers and the garbler. Similarly, sub-
scribers for the computation 𝐶 and the garbler share a truly
random seed 𝑠 ′ and use a pseudorandom number generator to
independently generate output masks, avoiding direct output
mask exchange between subscribers and the garbler.
Seed Synchronization. The above method requires synchro-
nization between clients and the garbler. We adapt the key
ratcheting protocol of Signal, a popular secure messaging pro-
tocol, to generate seeds securely. Ratchet keys work by advanc-
ing a secret key at every round using the preimage-resistance
property of a cryptographic hash function [15] [18]. At any
round, a seed can be derived from a ratchet key to be used to
generate pseudorandom strings. To maintain synchronization
of the ratchet keys between the clients and the garbler, when
sending values, publishers add the round of the ratchet key
to derive the seeds used to generate the labels in the message.
When the broker requests the garbling of the circuit to the gar-
bler, it also specifies the rounds of the values it will use, such
that the garbler can advance the ratchet key accordingly to
derive the same seed and generate matching labels. Similarly,
the garbler tells the broker the function ratchet key round for
generating the mask, such that the broker can forward this
information to subscribers which in turn advance their stored
ratchet keys to derive a matching mask.

Forward-Secure Seeds.While the extension reduces publish-
ers’ and subscribers’ communication with the garbler signif-
icantly, an adversary stealing a seed 𝑠 from a publisher and
colluding with the broker compromises the confidentiality of
all of the publisher’s inputs, including past, current, and future
inputs. Similarly, an adversary stealing the seed 𝑠 ′ for the com-
putation 𝐶 from a subscriber and colluding with the broker
compromises the confidentiality of outputs of all executions.
We design an extra procedure that ensures that seeds are

forward-secure, i.e., an adversary stealing a seed wouldn’t be
able to compromise the confidentiality of any past inputs and
outputs. The key ratcheting used in our scheme can make all
seeds 𝑠 and 𝑠 ′ forward-secure. An adversary stealing publish-
ers’ seed 𝑠 or subscribers’ seed 𝑠 ′ would still learn all current
and future inputs of the publisher or outputs for computation
𝐶 . But once the adversary compromises target clients, it will
learn this information anyway with or without stealing the
seeds. The detailed protocol can be found in Figure 3.

3.2 Protocol Design
As shown in Figure 2, the design of our GC-Based Scheme in-

cludes four major parties: publisher(s), the broker, the garbler,
subscriber(s).We first describe the threatmodel for this scheme
and then explain the detailed design in two different settings:
single-publisher-single-subscriber and multi-publisher-multi-
subscriber.
Adversary Model. In the GC-Based Scheme, we have four
parties in 𝐺𝐶 (𝑎, 𝑏): 𝑎 publishers, the broker, the garbler and 𝑏
subscribers as defined.
Definition 1 (The GC-Based Adversary). A semi-honest ad-
versary AGC can corrupt any subset of 𝑏 subscribers and at
most 𝑎 − 2 publishers. AGC can corrupt the broker or the gar-
bler, but not at the same time. In other words, the broker and the
garbler can not collude.
Single-Publisher-Single-Subscriber. To publish a value,
the publisher generates two wire labels𝑤0 and𝑤1 for every
bit 𝑏 of the value, sends both labels𝑤0 and𝑤1 to the garbler,
and only𝑤𝑏 to the broker; the broker receives the computa-
tion request from the subscriber and requests the garbler to
garble the circuit; the garbler sends the masked result back
to the broker for it to evaluate; the subscriber unmasks the
result from the broker.
Multi-Publisher-Multi-Subscriber. The multi-sub func-
tionality can be realized by the garbler specifying a same
rachet key round number to share the same mask seed with
subscribers of the same computation. Similarly, the multi-
publisher functionality in the GC-Based Scheme requires that
publishers to also have a synchronized seed for a same set
of labels for the same computation. This synchronization is
hard to realize upon publishers’ publishing encrypted data.
A work-around would be the garbler translating labels into
one uniform set and informing the broker to do the same
encrypted translation for wire labels it received from different
publishers.

Figure 3 depicts how our GC-Based Scheme works and the
security analysis can be found in Appendix A. .
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Figure 2: Structure of the GC-Based Scheme: two cloud servers but the actual communication between clients and the garbler is via the broker

4 The Proxy-HE Scheme
In the previous section, we construct a secure publish-

process-subscriber scheme using Yao’s garbled circuits, which
requires both the broker and the garbler. Additionally, our
GC-Based Scheme restricts the adversary to compromising
only one third-party server (the broker or the garbler) at
one time while also requiring communication between the
garbler and clients goes through the broker. However, in the
IoT setting where typically IoT broker services are operated
by one single commercial entity, it is difficult to set up two
non-colluding servers.

In this section, we design a Proxy Homomorphic Encryption
(Proxy-HE) Scheme with a simpler structure and a different
security assumption while addressing the issues discussed
above. It also uses proxy re-encryption to solve encryption
issues in secure publish-subscribe systems. The system struc-
ture is shown in Figure 4. In the real world, F is replaced by
our scheme.

4.1 Components
Homomorphic Encryption. Homomorphic encryption
(HE) [5] is a scheme that allows computation to be performed
on encrypted data without revealing the data to the computing
parties. HE in general, with algorithms (𝐺, 𝐸𝑛𝑐, 𝐸𝑣𝑎𝑙, 𝐷), can
be defined as follows:
(1) The key generation algorithm 𝐺 outputs a key pair

(𝑃𝑘, 𝑆𝑘). The encryption algorithm 𝐸𝑛𝑐 takes in messages
𝑚1, · · · ,𝑚𝑛 and 𝑃𝑘 , then outputs 𝐶1, · · · ,𝐶𝑛 .

(2) On inputs (𝐶1, · · · ,𝐶𝑛) and the computation 𝑓 , the evalua-
tion algorithm 𝐸𝑣𝑎𝑙 outputs the result 𝐶𝑟𝑒𝑠𝑢𝑙𝑡 .

(3) The decryption algorithm 𝐷 takes inputs (𝑆𝑘,𝐶𝑟𝑒𝑠𝑢𝑙𝑡 ) and
outputs the plaintext result 𝑓 (𝑚1, · · · ,𝑚𝑛).

Proxy Re-Encryption. Proxy re-encryption (PRE) delegates
decryption rights [3] that enables ciphertexts to be decrypted
by a secret key that is not paired with the original public
key. PRE, with algorithms (𝐾𝐺, 𝐸, 𝑅𝐺, 𝑅𝐸, 𝐷), can be defined
as follows:
(1) The standard key generation algorithm 𝐾𝐺 outputs a key

pair (𝑃𝑘𝐴, 𝑆𝑘𝐴) for Party A and another key pair (𝑃𝑘𝐵, 𝑆𝑘𝐵 )

for Party B. Party A uses 𝑃𝑘𝐴 to encrypt the message𝑚
with the encryption algorithm 𝐸, which outputs ciphertext
𝐶𝐴 .

(2) The re-encryption key generation algorithm 𝑅𝐺 takes the
inputs (𝑃𝑘𝐴, 𝑆𝑘𝐴, 𝑃𝑘𝐵, 𝑆𝑘𝐵 ) and outputs a key
𝑅𝑘𝐴→𝐵 for re-encryption. On inputs (𝑅𝑘𝐴→𝐵,𝐶𝐴), the
proxy then applies the re-encryption algorithm 𝑅𝐸 and
outputs 𝐶𝐴→𝐵 .

(3) Party B applies the decryption algorithm 𝐷 on inputs
(𝐶𝐴→𝐵, 𝑆𝑘𝐵 ) and get the output𝑚.

In our scheme, publishers can encrypt the data using their
own public key; after proxy re-encryption, subscribers are
able to decrypt the ciphertext with subscribers’ secret key.
This solves the asynchronization issue under the traditional
publish-subscribe encryption, allowing publishers to publish
messages without the need to wait for subscribers’ public keys
to encrypt their data.
Key Exchange Reduction. Proxy re-encryption would re-
quire that, once a subscriber requests computation, publishers
(also the key authority of themselves) involved in the com-
putation have to receive the public key from the subscriber
and then regenerate a re-encryption key for re-encrypting the
original encrypted data [33]. This introduces the asynchro-
nous communication issue again under the IoT context and
also an additional communication cost. To solve this problem,
we design key exchange reduction. At the initialization state,
the broker asks all subscribers to upload their public keys.
Then each publisher regenerates a re-encryption key for each
subscriber once they receive subscribers’ public keys from the
broker. The broker maintains a map between a re-encryption
key and its subscriber-publisher pair. Every time when a new
client joins the system, the broker updates the map. Under
this design, whenever a subscriber requests computation, the
broker only needs to find the re-encryption keys from the map
to re-encrypt the data without going back to the publishers,
which reduces the key exchange communication.
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Initialization
• Each new publisher sends the broker a policy specifying
allowed computations on its data.
• Each new publisher generates and sends to the garbler a
random seed 𝑠 , which will be used to create wire labels
without interaction.

Subscribe
• To subscribe computation 𝐶 , each subscriber sends a sub-
scription request to the broker. If the broker does not allow
a subscriber to learn𝐶’s output, it sends back an error mes-
sage.
• Each new subscriber shares a truly random seed 𝑠 ′ with
the garbler for masking/unmasking the result.

Publish
• To publish 𝑘th value, the publisher generates two pseu-
dorandom wire labels, 𝑤0 and 𝑤1, using a seed 𝑠 from a
pseudorandom number generator (PRNG), for each bit of
the value. 𝑤0 is 𝑖th and 𝑤1 is (𝑖 + 1)th numbers in pseu-
dorandom sequence generated using 𝑠 , where 2𝑘𝐿 ≤ 𝑖 <
2(𝑘 + 1)𝐿 with 𝐿 being the bit-length of a value.
• For input bit 𝑏, the publisher sends wire label 𝑤𝑏 to the
broker.

Process
• After receiving𝑤𝑏 , the broker sends the garbler identifiers
of publishers along with the set of subscribers allowed
to the computation, then requests the garbler to garble
circuit for 𝑋𝑂𝑅 ◦ 𝐶 . 𝑋𝑂𝑅 is used to mask the output of
the circuit.
• The garbler independently generates input wire labels
using 𝑠 from each publisher and an output mask 𝑟 using
𝑠 ′ for the output.
• The garbler generates a garbled circuit 𝐺𝐶 for the circuit
𝑋𝑂𝑅 ◦𝐶 using both wire labels for each input bit,𝑤0 and
𝑤1 for a bit 𝑏. The garbler uses the mask 𝑟 it to mask the
output 𝑜 of 𝐶 , such that evaluating 𝐺𝐶 would result in a
masked output 𝑜 ⊕ 𝑟 .
• The broker evaluates the garbled circuit using wire labels
sent by publishers in set 𝑃𝐶 , obtains masked output 𝑜 ⊕ 𝑟 ,
and sends 𝑜 ⊕ 𝑟 to all subscribers of computation 𝐶 .
• Subscribers in the set 𝑆𝐶 use 𝑟 to unmask 𝑜 .
Forward-Secure Seeds
• Generate a truly random key 𝐾0.
• Generate, using pseudorandom function (PRF) with 𝐾0,
a pseudorandom seed 𝑠0 and a pseudorandom key for
ratchet Round 1. 𝑠0 is used for pseudorandom strings dur-
ing ratchet Round 0.
• At round 𝑖 , using PRF with key 𝐾𝑖 , generate a pseudoran-
dom seed 𝑠𝑖 and key for ratchet round 𝑖 + 1. Seed 𝑠𝑖 is used
to generate pseudorandom strings during ratchet round 𝑖 .

Figure 3: The GC-Based Scheme

4.2 Scheme Design
Figure 4 depicts the structure of the Proxy-HE Scheme,

which does not need an extra party (a garbler).
Adversary Model. The Proxy-HE Scheme 𝑃𝐻𝐸 (𝑎, 𝑏) has 𝑎
publishers, the broker and 𝑏 subscribers.

Definition 2 (The Proxy-HE Adversary). A semi-honest ad-
versary APHE can corrupt both the broker and at most 𝑎 − 1
publishers, or, APHE can corrupt any subset of 𝑏 subscribers
and at most 𝑎 − 2 publishers. It cannot corrupt the broker and
subscribers at the same time.

We believe the assumption that the broker can not collude
with subscribers is acceptable because it is inevitable that the
adversary can obtain a publisher’s raw data when it controls
both the server and subscribers.
Single-Publisher-Single-Subscriber. First, the publisher
publishes encrypted data; the broker re-encrypts the data
using the re-encryption key, and performs computation; the
subscriber requests computation then decrypts results from
the broker using its own private key.
Multi-Publisher. To operate homomorphic encryption, it is
important to have data from all different publishers encrypted
under the same key setting. Luckily, it is viable to handle this
issue using proxy re-encryption. Once the encrypted data is
re-encrypted, the data from different publishers can be con-
sidered as encrypted under the same key setting even with
different re-encryption keys.
Multi-Subscriber.When a group of subscribers request the
same computation, it is wasteful to recompute the result for
each subscriber. It is straightforward that we can reduce the
cost by only computing the result once then distributing it to
all subscribers having the same request. However, it would
be challenging to do so under the scheme of homomorphic
encryption since each subscriber has its own key pair. We
noticed that this problem is similar to the asynchronization
problem between publishers and subscribers but now among
subscribers. Hence, we apply PRE (2 hops) and a key map be-
tween subscribers to circumvent repetitive computation. The
system selects the subscriber with the smallest ID as the sub-
scriber representative, and the broker performs the encrypted
computation based on this representative’s key pair. Before
distributing the computation result, the broker re-encrypts
the result for each subscriber using the re-encryption key
associated with the representative and the subscriber. Each
subscriber then decrypts it using its own private key to get the
result. The performance improvement using our 2-hop-PRE
subscriber representative design compared to repetitive mode
(repeating evaluation for each subscriber) can be found in §6.

Our final scheme can be found in Figure 5 and the security
analysis can be found in Appendix B.

5 System
XYZ is designed to work on top of the standard pub-sub

protocols, such as MQTT. In this section, we discuss the spe-
cific system design around MQTT and explain the different
engineering constructions for two schemes respectively.

5.1 General Design
System Implementation Around MQTT. MQTT allows
subscribers and publishers to indirectly communicate with
each other via the broker by publishers publishing data to top-
ics and subscribers receiving it from topics after subscribing to
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Figure 4: Structure of the Proxy-HE Scheme: only one cloud server which handles both communication and computation

Initialization
• Each client generates its own pair of public and private
keys.
• Each publisher generates a re-encryption key 𝑃𝑘𝑟𝑝 associ-
ated with each subscriber and the broker updates the key
map.
• Each subscriber is assigned with a 𝐼𝐷 number. Each sub-
scriber works with the broker to generate re-encryption
keys for others subscribers whose 𝐼𝐷 numbers are larger
than its.

Publish
• Each publisher encrypts its data𝑀 using its own public key
and sends its encrypted data along with a policy specifying
allowed computations on its encrypted data to the broker.

Subscribe
• To subscribe computation 𝐶 , each subscriber sends a sub-
scription request to the broker and its public key 𝑃𝑘𝑠 . If
the broker does not allow a subscriber to learn 𝐶’s output,
it rejects the request.

Process
• First Re-Encryption Once the broker approves sub-
scribers’ request, it selects the representative subscriber 𝑋
with the smallest 𝐼𝐷 in a group of subscribers requesting
the same 𝐶 . Then the broker reencrypts 𝑀 using 𝑃𝑘𝑟𝑝
associated with X.
• The broker performs requested 𝐶 on re-encrypted data.
• Second Re-Encryption The broker re-encrypts the mes-
sage using 𝑃𝑘𝑟𝑠 for each pair of 𝑋 and one of other sub-
scribers.
• The broker sends the result of HE operations to sub-
scribers.

Decryption
• Each subscriber decrypts the message with its own private
key.

Figure 5: The Proxy-HE Scheme

them. To integrate our schemes into the MQTT protocol, we
require each client (either publisher or subscriber) to have a
device-specific topic that allows a two-way authenticated com-
munication between each client and the broker. The broker
(and the garbler in the GC-Based Scheme) will handle the com-
putation and distribute data. We implement the broker using

Eclipse Mosquitto 1.4.15 [28] and clients using Eclipse Paho
1.3 in Python [17]. Both of them support versions 5.0, 3.1.1,
and 3.1 of MQTT. We implement the cryptographic compo-
nents, namely garbled circuits, homomorphic encryption and
proxy re-encryption in C/C++. In our system, the Mosquitto
broker has to be configured using access control list file such
that certain topics where publishers publish unprocessed data
are inaccessible to other clients to protect private inputs from
publishers and only authorized subscribers can have access to
certain computation topics.
Supported Functions. We implement five functions in our
system: mean, variance, weighted mean, private set intersec-
tion (PSI) and secure federated learning (SFL). We will explain
the details later in this section.

5.2 The GC-Based Scheme
Ratchet Keys. In the GC-Based Scheme, to improve synchro-
nization and security of seeds, we adapt the key ratcheting
protocol which can advance a secret key at every round and
then deriving a seed from a ratchet key to generate pseudoran-
dom strings. To set up the ratchet keys, the broker will forward
the messages to the garbler such that clients can establish a
ratchet key with the garbler. This design choice of relaying
messages to the garbler through the broker is important to
maintain the MQTT semantics. However, we need to add au-
thentication in the MQTT messages using digital signatures
and a key exchange protocol. This way, the secrets can be
shared between the clients and the garbler via the broker. For
publishers, this authenticated key exchange is used to derive
the publisher’s ratchet key. For every computation subscrip-
tion from subscribers, key exchange is performed to derive a
key to encrypt the function ratchet key from the garbler.
Extending Libgarble. Libgarble [29] is a garbling library
written in C. As Libgarble is currently in development, it lacks
some functionality which we have to add in order to build
and garble circuits. On the garbling side, we implement the
NOT gate (expressed as the XOR of the input with 1 to take
advantage of the free-XOR optimization) and the OR gate. We
add arithmetic blocks to be used when building circuits in
order to allow signed fixed-point multiplication and signed
fixed-point division. Based on these implementations, we can
build mean, variance and weighted mean.
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Figure 6: Microbenchmark Results: here we have the cost on the server of three basic statistical operations (mean, variance and weighted mean).

5.3 The Proxy-HE Scheme
PALISADE Setup. We use PALISADE v1.10.5 [33] for the
Proxy-HE Scheme. PALISADE currently provides three differ-
ent homomorphic schemes, namely BGV, BFV and CKKS [10].
BGV is believed to have better performance than BFV does [10].
Thus, here we choose BGV for integer operation and CKKS for
real number operation. Note that PALISADE also has built-in
multi-hop proxy re-encryption. In our evaluation, we slightly
modified the default scheme parameters from PALISADE for
benchmark purposes. The parameter configuration can be
found in Table 2.

Scheme BGV CKKS

ring dimension 8192 8192
security level HEStd_128_classic HEStd_128_classic
multi depth 4 3

sigma 3.2 \
plaintext modulus 65537 \
scale factor bits \ 50

batch size \ 8
Table 2: Scheme Parameter Configuration: to fairly compare BGV with CKKS,
we try to keep ring dimensions and CRT moduli the same; we choose the base
128-bit security in our evaluation; we also select the minimum viable values of
multi depth for maximum possible multiplicative depth in our evaluation.

Extending PALISADE. The current PALISADE library pro-
vides basic functions like addition andmultiplication. To better
fit our needs, we extend PALISADE to have functions desired
in our system as discussed. More functions can be included in
our system in the future. We describe our implementation of
the functions under the Proxy-HE scheme as follows:

• Mean In our implementation, we choose between BGV and
CKKS for mean. It is straightforward to implement mean on
CKKS. However, BGV can only perform secure integer op-
erations such that we cannot calculate mean by multiplying
the sum and the inverse of n (a real number). This means
the computation of mean on BGV requires the plaintext of 𝑛.
Thus, a mean implementation on BGV will leak the number
of publishers involved in the computation. If this number is
not sensitive, we can choose BGV as well.
• Variance andweightedmean Implementing variance and
weighted mean on BGV shares a similar averaging structure
as mean. Thus, the scheme selection for these two functions
is the same as above.
• Private set intersectionWe use Chen’s algorithm [14, 41]
to construct our PSI (shown in Appendix B.3). We currently
consider BGV for PSI since CKKS’s approximation property
will introduce errors with zero.
• Secure federated learning SFL helps securely aggregate
model parameters for federated learning. We use a similar
secure FedAvg structure from [36] in our current system
with CKKS.

Data Transfer. We serialize cryptocontexts, keys and en-
crypted data into binary files for data transferring. During
the initialization, we create and store cryptocontexts and cor-
responding keys on each machine. Then MQTT transfers en-
crypted data in binary. The sizes of binary files are usually 100
kb to 200 kb.

8



6 Evaluation

6.1 Setup
We have evaluated XYZ on an IoT testbed with 1200

embedded computing nodes. Publishers and subscribers are
run on IoT nodes (Ubuntu 18.04.5 LTS with Dual-core Intel®
Atom™ E3826 and 2 GB of RAM); the broker/garbler is run on
a machine (Ubuntu 18.04.5 LTS with Intel Core i7-7700 CPU
and 16 GB of RAM) with sufficient computing power. Note
that for some functions we run multiple processes on one node
to imitate more clients.
We have selected five functions of varying complexity to

evaluate the cost of the different schemes discussed above.
We evaluate these functions upon receiving the values (real
number for garbled circuits and CKKS; integer for BGV) from a
variable number of publishers and sending results to multiple
subscribers.

We put the cost into two categories: time cost for the actual
computation and communication cost for the data transferred
between clients and the broker as in the size of data. Our mea-
sured time includes the time of publishers encrypting data,
the time of the broker evaluating data (also the time used for
garbling in the GC-Based Scheme and the time used for re-
encrypting data in Proxy-HE) and the time of the subscriber
decrypting results. We use the data exchanged to show com-
munication costs.

6.2 Results
In this part, we focus on evaluating our system regarding

its multi-publisher-multi-subscriber functionality as well as
its performance using different schemes.
Figure 6 shows the costs for the most relevant steps of

three numerical operations involving a varying number of
publishers with one subscriber requesting the computation.
From our results, the GC-Based scheme has a huge advantage
in both time cost and communication cost as the number of
publishers increases while the difference is not noticeable for
a small set of publishers. This is because the most expensive
steps of our GC-Based Scheme are the garbling and evaluation
(shown in Figure 7), which do not change much for multiple
publishers. Using the current version of PALISADE, CKKS
nearly doubles the time cost of BGV, but the communication
costs are close.

To microbenchmark our multi-subscriber functionality, we
first test our system on mean function for all three imple-
mentations and also demonstrate the cost improvement in the
Proxy-HE Scheme with our 2-hop-PRE subscriber represen-
tative design. We here only compare the computation cost
since the communication cost between the broker and the
subscribers has a nearly linear relationship with the number
of subscribers. As shown in Figure 9, under our GC design,
the number of subscribers should not affect the time cost in
the view of the system. For Proxy-HE, our scheme introduces
the cost of additional re-encryption while reducing the cost
from repetitive evaluation. Figure 9 also shows that our 2-hop-
PRE subscriber representative design considerably improves
the performance by avoiding repetitive evaluation operation

Figure 7: Distribution of Costs for Each Step

Encrypt Evaluate Decrypt Data
26.537 ms 24.361 ms 106.101 ms 1.196 MB
Table 3: Cost of Contact Tracing in Our System.

for each subscriber (re-encryption is always a lighter opera-
tion for complex functions like PSI). A further improvement
could be distributing the re-encryption overload on the broker
side to be parallel re-encrypting the message on subscribers
instead of the broker doing all the re-encryption (around 20
ms for each subscriber on BGV and around 90 ms on CKKS
but around 102 seconds for the broker with 1000 subscribers).
However, this would require each subscriber to maintain a
PRE key map, gets the ID of the representative and perform
the re-encryption, which adds workload on subscribers.
Figure 8 depicts the performance of PSI and SFL. At the

moment we implement PSI on BGV implementation. Each
publisher has an array with 10 elements. During the evaluation
of PSI, the first publisher’s data will be computed with the
rest of the publishers’ data iteratively. The cost of PSI in our
BGV implementation is nearly linear against the number of
publishers for both types of costs. We test our SFL on CKKS on
a medium-size convolutional neural network with 10 million
parameters. We compare the cost of SFL in our system to the
cost of plaintext FedAvg (GPU comparison runs on Google
Compute Engine backend). The major performance drawback
of our sFL is the re-encryption step because of input data size.
Additionally, our SFL can be seen as an encrypted form of
the regular FedAvg with acceptable approximation loss, thus
the performance of our model is similar to plaintext-trained
models.

6.3 Applications
We prepare concrete applications for IoT scenarios to show

potential practical use of our system. For demonstration pur-
poses, we use Proxy-HE Scheme here.
Contact Tracing. During the global pandemic, contact trac-
ing becomes a promising tool to help identify the potential
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Figure 8: Microbenchmarks of PSI (BGV) and FL (CKKS)

Statistics BGV CKKS BGV CKKS
Mean 47.0 ms 173.6 ms 115.1 MB 77.2 MB
Variance 2543.7 ms 4485.8 ms 115.2 MB 77.2 MB

Table 4: Cost Required to Evaluate Different Statistical Measures of the Parking
Lot Dataset.

patients who might have contact with confirmed Covid-19 pa-
tients and slow down the spread of the virus. However, privacy
is a major concern since the computation of regular contact
tracing can reveal sensitive personal location data. We demon-
strate a simple application using our system that implements
PSI for contact tracing without the need for plaintext location
information. Due to the sensitivity of the subject and the lack
of available public datasets, we wrote a python program to
generate random personal location datasets for testing pur-
poses. Each person in the dataset has 10 visited locations in
the same hour (in real cases the time granularity can be set to
be more accurate).

In this application, we have two publishers (the confirmed
patient and the potential contact) with IoT devices recording
their location data. These IoT devices, for example, can be
smartwatches and smartphones. The broker can be public
health authorities providing service. The broker receives the
encrypted location data from publishers, performs PSI on the
data and returns whether two publishers have been in contact
with each other. In Table 3, the cost of PSI requires adequate
computational resources on authority servers.
Daily Statistics of Parking Lots. In this application, we are
interested in obtaining daily statistics of the parking lots with-
out revealing private data at fine time granularity. For this
scenario, we have one publisher for one lot, which will be
sending the current number of free and occupied spots. We
use the live status of the parking lots of a major airport [27]
as our dataset. In particular, the airport provides updates of
the number of occupied and free parking spaces for each one
of the 9 parking lots every 5 minutes. This makes a total of
288 published values per day per parking lot.

(1) Cost of Multi-Sub Functionality on Different Schemes

(2) Multi-Sub Functionality in Proxy-HE: 2-Hop PRE vs Repetitive Mode 

Figure 9: Microbenchmarks of Multi-Subscriber Functionality: (1) cost compar-
ison between different schemes demonstrated using mean function; (2) perfor-
mance improvement with 2-hop-PRE subscriber representative design compared
to repetitive mode demonstrated using BGV.

We simulate the scenario by running it 288 times. The broker
will accumulate the data from each day and compute the daily
mean and variance for each day. From these statistics, we can
have an understanding of the parking lot’s operation state
from a daily perspective without invading detailed data. The
cost for such an application is shown in Table 4.

7 Conclusion
We present XYZ, a secure publish-process-subscribe sys-

tem with two multi-party computation schemes, i.e., the GC-
Based Scheme and the Proxy-HE Scheme with different secu-
rity assumptions and system constructions. To properly fit con-
straints from the traditional publish-subscribe structure, we
also propose optimizations such as reduced communication ex-
tension and seed synchronization in the GC-Based Scheme and
key exchange reduction along with multi-subscriber support
in the Proxy-HE Scheme. Without the need for two third-party
servers, our Proxy-HE Scheme has less system complexity than
the GC-Based Scheme does, but yields larger overhead due
to the time-consuming homomorphic encryption. Addition-
ally, our system supports multiple publishers and multiple
subscribers as well as provides an extensible library of several
functions.
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Our secure publish-process-subscribe system starts the con-
versation on integrating secure computation into IoT systems,
but future work needs to be further considered such as adding
support for a distributed set of brokers.

A Security Analysis for The Garbled
Circuits Scheme

Definition 3 (UC-Security-GC). Our protocol 𝜋𝐺𝐶 securely
realizes F in the presence of AGC in the real world, if there
exists a simulator S in the ideal world such that for all inputs,
probability distributions of the ideal world and the real world
are indistinguishable.
We describe a simulator S that simulates the view of the

adversary A𝐺𝐶 in the ideal world to prove that our scheme
guarantees both correctness and security.
S receives from F the number of publishers |𝑃𝐶 | whose

policy allows computing 𝐶 on their data. S creates 2𝑙 |𝑃𝐶 |
number of random wire labels (𝑟00 , 𝑟

1
0 ), . . . ,

(𝑟02𝑙 |𝑃𝐶 |−1, 𝑟
1
2𝑙 |𝑃𝐶 |−1), where 𝑙 being the bit-length of publisher

inputs. We use a blackbox garbled circuit simulator from the
projective prv.sim secure garbling scheme with circuit𝑀 ◦𝐶
being the side information [6].
S receives F (𝑀 ◦ 𝐶, ®𝑥𝐶 ) from F , where 𝑀 is an XOR

masking function. S sends F (𝑀 ◦ 𝐶, ®𝑥𝐶 ) to the garbled cir-
cuit simulator and obtains a fake garbled 𝐺𝐶𝑓 𝑎𝑘𝑒 . S gen-
erates a random string 𝑜𝑟 of the same length as output. S
sends (𝐺𝐶𝑓 𝑎𝑘𝑒 , 𝑟

0
0 , . . . , 𝑟

0
2𝑙 |𝑃𝐶 |−1, 𝑜𝑟 ) to the adversary. As gar-

bled circuits distribution is independent of the input wire la-
bels,𝐺𝐶𝑓 𝑎𝑘𝑒 is computationally indistinguishable from the𝐺𝐶
in the real execution. The random output 𝑜𝑟 in ideal execution
is indistinguishable from 𝑜 + 𝑟 in the real execution.

In the ideal world, S creates a fake garbled circuit. This fake
garbled circuit doesn’t use wire labels (𝑟00 , 𝑟

1
0 ), . . . , (𝑟

0
2𝑙 |𝑃𝐶 |−1,

𝑟12𝑙 |𝑃𝐶 |−1) for garbling. Otherwise, the adversary could use

𝑟00 , . . . , 𝑟
0
2𝑙 |𝑃𝐶 |−1 labels to evaluate the circuit on 0𝑙 |𝑃𝐶 | , which

would allow it to distinguish between real and ideal executions.
The view of S in the ideal world is indistinguishable from

the view that AGC has in the real world execution.

B Security Analysis for The Proxy-HE
Scheme

Our scheme 𝑃𝐻𝐸 can guarantee both correctness and secu-
rity under the adversary assumptions.

B.1 Correctness
Homomorphic Encryption A homomorphic encryption
scheme𝐻𝐸 = (𝐾𝐺, 𝐸𝑛𝑐, 𝐸𝑣𝑎𝑙, 𝐷𝑒𝑐) is correct if for all (𝑃𝑘, 𝑆𝑘) ←
𝐾𝐺 (1𝜆) with the security parameter 1𝜆 , all functions 𝑓 and
messages𝑚 in the message space𝑀 ,

Pr[Dec(𝑆𝑘, 𝐸𝑣𝑎𝑙 (𝑓 , 𝐸𝑛𝑐 (𝑃𝑘,𝑚1, · · · ,𝑚𝑛)))
= 𝑓 (𝑚1, · · · ,𝑚𝑛)] = 1.

(1)

Proxy Re-Encryption A party with the secret key (ei-
ther it’s from the data owner or the delegate party) should

be able to decrypt the message. A PRE scheme 𝑃𝑅𝐸 =

(𝐾𝐺, 𝑅𝐺, 𝐸𝑛𝑐, 𝑅𝐸, 𝐷𝑒𝑐) is correct for all (𝑃𝑘, 𝑆𝑘)
← 𝐾𝐺 (1𝜆) with the security parameter 1𝜆 , 𝑅𝑘 ← 𝑅𝐺 (
𝑃𝑘𝐵, 𝑆𝑘𝐴), all messages𝑚 in the message space𝑀 ,

Pr[Dec(𝑆𝑘1, 𝐸𝑛𝑐 (𝑃𝑘1,𝑚)) =𝑚] = 1, 𝑎𝑛𝑑
Pr[Dec(𝑆𝑘2, RE(𝑅𝑒𝑘, 𝐸𝑛𝑐 (𝑃𝑘1,𝑚))) =𝑚] = 1.

(2)

The correctness of the single-pub-single-sub 𝑃𝐻𝐸 (1, 1) is
obvious since it can be seen as a simple combination of HE and
PRE. However, in our multi-pub-multi-sub 𝑃𝐻𝐸 (𝑎, 𝑏), we ap-
ply PRE twice during the process. In order to achieve that, we
have to use multi-hop PRE scheme such that for all messages
𝑚 in the message space𝑀 ,

Pr[Dec(𝑆𝑘2, ReEnc(𝑅𝑒𝑘2,
ReEnc(𝑅𝑒𝑘1, 𝐸𝑛𝑐 (𝑃𝑘1,𝑚)))) =𝑚] = 1.

(3)

The correctness of our scheme is built on the correctness
of basic homomorphic encryption and multi-hop proxy re-
encryption. If both hold true [7, 19], we can prove that our
scheme is correct. Our scheme 𝑃𝐻𝐸 = (𝐾𝐺, 𝑅𝐺, 𝐸𝑛𝑐, 𝑅𝐸, 𝐸𝑣𝑎𝑙,
𝐷𝑒𝑐) can be proven correct: for all (𝑃𝑘, 𝑆𝑘) ← 𝐾𝐺 (1𝜆) with
the security parameter 1𝜆 , 𝑅𝑘 ← 𝑅𝐺 (𝑃𝑘𝐵, 𝑆𝑘𝐴), all functions
𝑓 and messages𝑚 in the message space𝑀 ,

𝑃𝑟 [𝐷𝑒𝑐 (𝑆𝑘𝑠 , 𝑅𝐸 (𝑅𝑒𝑘𝑠 , 𝐸𝑣𝑎𝑙 (𝑓 , 𝑅𝐸 (𝑅𝑒𝑘1,
𝐸𝑛𝑐 (𝑃𝑘1,𝑚1)), · · · , 𝑅𝐸 (𝑅𝑒𝑘𝑛, 𝐸𝑛𝑐 (𝑃𝑘𝑛,𝑚𝑛)))))

= 𝑓 (𝑚1, · · · ,𝑚𝑛)] = 1.
(4)

B.2 Privacy
As mentioned before, we do not consider the collusion ad-

versary scenario where the compromised broker is able to
collude with subscribers. Specifically, we assume the compro-
mised broker has no access to any subscriber’s secret key. We
describe a simulatorS that simulates the view of the adversary
APHE .
Single-Pub-Single-Sub In this case of 𝑃𝐻𝐸 (1, 1),APHE can
compromise the broker or the subscriber (compromising the
publisher means "stealing" ones own data).

The security of the scheme can be shown using the follow-
ing definitions [3]: for all p.p.t algorithms, for all (𝑃𝑘, 𝑆𝑘) ←
𝐾𝐺 (1𝜆), 𝑅𝑘 ← 𝑅𝐺 (𝑃𝑘𝐵, 𝑆𝑘𝐴), 𝑓 ∈ 𝐹 and𝑚 ∈ 𝑀 ,

𝑃𝑟 [𝐾𝐺 (1𝑘 ) → (𝑃𝑘𝑣, 𝑆𝑘𝑣), 𝐾𝐺 (1𝑘 ) → (𝑃𝑘ℎ, 𝑆𝑘ℎ),
𝑅𝐺 (𝑆𝑘𝑣, 𝑃𝑘ℎ) → 𝑅𝑘𝑣→ℎ,

𝐾𝐺 (1𝑘 ) → (𝑃𝑘𝑎, 𝑆𝑘𝑎), 𝑅𝐺 (𝑆𝑘𝑣, 𝑃𝑘𝑎) → 𝑅𝑘𝑣→𝑎,

𝐴𝑘 (𝑃𝑘𝑣, 𝑃𝑘ℎ, (𝑃𝑘𝑎, 𝑆𝑘𝑎), 𝑅𝑘𝑣→ℎ, 𝑅𝑘𝑣→𝑎) → (𝑚0,𝑚1, 𝛼),

{0, 1}𝜆 → 𝑏,𝐴𝑘 (𝛼, 𝐸𝑣𝑎𝑙 (𝑓 , 𝑅𝐸 (𝑅𝑘𝑣→ℎ, 𝐸𝑖 (𝑃𝑘𝑣,𝑚𝑏 ))) → 𝑏 ′ :

𝑏 = 𝑏 ′] < 1/2𝜆 + 1/𝑝𝑜𝑙𝑦 (𝑘).
(5)

, where 𝑣 is the benign publisher, ℎ is the honest subscriber
and 𝑎 is the adversary.

When the subscriber is corrupted, in the real world,APHE
learns the final output from the subscriber but nothing about
the publisher’s input. In the ideal world, S receives from F
the result of the computation 𝐶 , which is indistinguishable
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from the real-world execution. When the broker is corrupted,
in the real world, APHE only receives the encrypted input
from the publisher, and this is same to the view that S has in
the ideal world where it learns nothing about the publisher’s
input. During the process, only the subscriber who has the
private key 𝑆𝑘 are delegated the right to decrypt the final
result after re-encryption. A compromised broker only has
the re-encryption key but could not decipher the message
passing through it. In the case where the adversary controls
the subscriber, it is simple for the compromised subscriber
to decrypt the message and also possibly obtain the original
data (but sensitive original data can be regulated by the policy,
i.e., the publishers can make policies that reject computation
requesting raw data). However, the publisher’s secret key will
not be recovered after the decryption rights are delegated to
the subscriber.

In the real world, when APHE compromises both the bro-
ker and a subset of publishers and subscribers, the bound of
the number of publishers allowed to be compromised is 𝑎 − 1.
This means that if there is only one honest publisher and the
rest are all controlled byAPHE , that honest publisher’s input
is unknown to APHE due to the fact APHE does not have
access to any private key that can decrypt the data. In the case
whereAPHE compromises both any subset of the subscribers
and a subset of publishers, the bound of the number is 𝑎 − 2.
APHE has the final plaintext output of the computation and
the rest of 𝑎 − 2 publishers’ inputs but is unable to infer the
values of the 2 honest publishers’ inputs. In the ideal world, S
submits compromised publishers’ inputs but learns nothing
about the honest publishers’ inputs.S’s view in the ideal world
is indistinguishable from APHE ’s view in the real world.

B.3 Implementation of Private Set
Intersection on BGV

This appendix shows the PSI algorithm we use in BGV.

C Microbenchmark Results: Cost
Distribution

This part of the appendix provides some additional results
from the microbenchmark.

Algorithm 1: Private Set Intersection
Input: Two lists of items A and B
Output: Indices of intersection items
initialization;
𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝐴);
𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝐵);
while 𝑖 < 𝑙𝑒𝑛(𝐵) do

sample a random non-zero plaintext element 𝑟𝑖 ;
𝑡𝑒𝑚𝑝1 = 𝐸𝑣𝑎𝑙𝑆𝑢𝑏 (𝐵𝑖 , 𝐴0);
𝑡𝑒𝑚𝑝2 = 𝐸𝑣𝑎𝑙𝑆𝑢𝑏 (𝐵𝑖 , 𝐴1);
𝐶𝑖 = 𝐸𝑣𝑎𝑙𝑀𝑢𝑙𝑡 (𝑡𝑒𝑚𝑝1, 𝑡𝑒𝑚𝑝2);
while 𝑗 < 𝑙𝑒𝑛(𝐴) do

𝐶𝑖 = 𝐸𝑣𝑎𝑙𝑀𝑢𝑙𝑡 (𝐶𝑖 , 𝐸𝑣𝑎𝑙𝑆𝑢𝑏 (𝐵𝑖 , 𝐴 𝑗 ));
j++;

end
𝐶𝑖 = 𝐸𝑣𝑎𝑙𝑀𝑢𝑙𝑡 (𝑟𝑖 ,𝐶𝑖 );
i++;

end
𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝐶);
while 𝑖 < 𝑙𝑒𝑛(𝐶) do

𝐶𝑜𝑚𝑝𝑎𝑟𝑒 (𝐶𝑖 , 0);
end

Algorithm 2: Secure FedAvg
Input: A list of model parameters from n learners P

and a scailingfactor array s
Output: Aggregated model parameters C
initialization;
𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑃);
while 𝑖 < 𝑛 do

𝑡𝑒𝑚𝑝 = 𝐸𝑣𝑎𝑙𝑀𝑢𝑙𝑡 (𝑃𝑖 , 𝑆𝑖 );
𝐶 = 𝐸𝑣𝑎𝑙𝐴𝑑𝑑 (𝐶, 𝑡𝑒𝑚𝑝);
i++;

end
𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝐶);

Figure 10: Cost Distribution of Garbled Circuits
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Figure 11: Cost Distribution of Mean for BGV and CKKS

Figure 12: Cost Distribution of Variance for BGV and CKKS

Figure 13: Cost Distribution of Weighted Mean for BGV and CKKS

Figure 14: Cost Distribution of PSI for BGV
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