
Route Discovery in Private Payment Channel
Networks

No Author Given

No Institute Given

Abstract. In this work, we are the first to explore route discovery in
private payment channel networks. We first determine what “ideal” pri-
vacy for a routing protocol means in this setting. We observe that proto-
cols achieving this strong privacy definition exist by leveraging (topology
hiding) Multi-Party Computation but they are (inherently) inefficient as
route discovery must involve the entire network. We then present proto-
cols with weaker privacy guarantees but much better efficiency. In partic-
ular, route discovery typically only involves small fraction of the nodes
but some information on the topology and balances – beyond what is
necessary for performing the transaction – is leaked. The core idea is
that both sender and receiver gossip a message which then slowly prop-
agates through the network, and the moment any node in the network
receives both messages, a path is found. In our first protocol the message
is always sent to all neighbouring nodes with a delay proportional to the
fees of that edge. In our second protocol the message is only sent to one
neighbour chosen randomly with a probability proportional to its degree.
While the first instantiation always finds the cheapest path, the second
might not, but it involves a significantly smaller fraction of the network.
We additionally propose a more realistic notion of privacy in order to
measure the privacy leakage of our protocols in practice. Our realistic
notion of privacy challenges an adversary that join the network with a
fixed budget to create channels to guess the sender and receiver of a
transaction upon receiving messages from our protocols. Simulations of
our protocols on the Lightning network topology (for random transac-
tions and uniform fees) show that 1) forming edges with high degree
nodes is a more effective attack strategy for the adversary, 2) there is a
tradeoff between the number of nodes involved in our protocols (privacy)
and the optimality of the discovered path, and 3) our protocols involve
a very small fraction of the network on average.

Keywords: Payment Channel Networks · Privacy · Bitcoin · Route Discovery
· Lightning Network

1 Introduction

Payment channel networks (PCNs) is one of the most promising approaches to
scale cryptocurrencies like Bitcoin [19]. PCNs allow any pair of users to set up

2 No Author Given

a payment channel with each other, thereby enabling an unlimited number of
costless off-chain transactions between them. Users who are not directly con-
nected with a payment channel can still transact with each other by routing
the transaction through intermediate nodes in the network. These intermediate
nodes typically charge a fee for forwarding these transactions. There are several
PCN proposals [27,10,21,9,13,12,4,11,17]; the most widely used being the Bitcoin
Lightning Network [21].

To route a transaction in a PCN from sender to receiver, a two-step process
is necessary (but sometimes executed in parallel): (a) finding the optimal route
or route discovery, which typically means finding the shortest or cheapest path
from sender to receiver, and (b) executing the transaction payment in an atomic
fashion, i.e., the transaction is either executed or aborted in all the channels of
the path, so no party can lose money. The route discovery problem focuses on the
first step, and thus the goal is to find the optimal route from sender to receiver
in an efficient and privacy-preserving manner, while the atomic execution of
transactions is not considered. This is a well-researched problem with several
existing solutions [22,15,25,26,29,20]. However all these solutions assume that
the entire topology of the PCN is known by at least one party (for instance the
users who download the entire network [30] or trampoline nodes [22]).

Recently, however, the Bitcoin protocol upgraded to taproot [7] that uses
Schnorr signatures [16] to aggregate public keys and signatures, making a trans-
action involving multiple users indistinguishable from a transaction involving
just two users on the blockchain. As a result, the users of the Lightning Network
can now form private channels, leading eventually to a private payment channel
network with unknown topology. This in turn affects heavily the route discov-
ery process as all existing algorithms utilize the known PCN topology. Hence,
designing route discovery algorithms suitable for private PCNs is paramount.

Our Contribution. In this work, we consider for the first time the problem
of route discovery in private PCNs where the capacities, fees, and even the
mere existence of channels can be (partially) unknown. In particular, the route
discovery protocols we propose do not assume any knowledge about the network
other than the minimal requirement that nodes know about their own channels
(i.e., their balances, fees, and local neighborhood).

Our objective is to construct protocols that are efficient, private, and optimal
in terms of minimal fees. We identify several key challenges: (a) we observe that
in this setting, the only strategy a sender and receiver can follow to find an
(optimal) route is to send exploratory messages through the network. However,
this may incur high communication overhead. (b) To find the optimal path with
certainty, all nodes should be involved in the route discovery process, again
leading the high communication overhead. (c) To achieve ideal privacy, nodes
that end up in a payment path should not learn any information beyond the
amount and the nodes right before and after them in the path; even the sender
and receiver jointly should not learn the users on a path other than their direct
neighbours. Thus, no information can be leaked on the PCNs topology but even

Route Discovery in Private Payment Channel Networks 3

simple topology hiding broadcast protocols are highly inefficient [18,2]. (d) If
ideal privacy is out of reach, there is no practical notion of privacy for PCNs to
measure the possible privacy leakage.

We explain how we address these key challenges below. At its core, we exploit
a trade-off between the number of involved nodes (which defines efficiency and
affects privacy) and how cheap the discovered route is (optimality). To practi-
cally measure the privacy leakage, we present a novel game for route discovery
protocols over arbitrary networks. In detail, our contributions are:

– (Ideal and Practical Notion) We put forward a security notion for private
route discovery in Section 3 and give a feasibility result using multi-party
computation (MPC). Our notion is inspired by security notions from topol-
ogy hiding MPC. This solution is inefficient, not just because MPC compu-
tations are expensive, but also because it must involve the entire network
(and this inherent for any protocol achieving our ideal notion, confirming
challenge (c)). To account for the inefficiency of our ideal security notion, we
also define a practical notion of privacy in Section 4 inspired by metrics used
in information retrieval (addressing challenge (d)). We empirically analyse
our protocols with respect to our practical privacy notion.

– (Practical Protocols) We present a family of route discovery protocols on
private PCNs in Section 5 that are much more efficient, involving a small
fraction of the network (addressing challenges (a) and (b)). These proto-
cols work by propagating exploratory messages from the sender and receiver
through the PCN. When an intermediary node receives both messages, a
path is found. The first protocol we propose is Forward-to-All where nodes
forward messages on all their edges but each edge has a delay that is pro-
portional to its fee. In our second protocol Degree-Proportional Random Walk
nodes just send messages to one neighbour, chosen randomly with a prob-
ability proportional to their degree. Forward-to-All always finds the shortest
path, but it involves a larger fraction of the network than Degree-Proportional
Random Walk.

– (Simulations) We simulated our protocols on the Lightning Network and
a certain class of graphs (Barabási–Albert) that are used to model PCNs
in Section 6. Our simulation show that Forward-to-All typically involves
around 3% of nodes in Lightning, while Degree-Proportional Random Walk
only involves around 0.1%, and the discovered paths are around twice as
long as the optimal ones.

– (Analysis) We also prove some analytical bounds in Section 6 for our algo-
rithms on particular classes of graphs.

Transaction execution. Transaction execution is the counterpart problem to
route discovery for successfully executing mulit-hop payments in a PCN, as dis-
cussed previously. Although we do not consider this problem it is worth noting
that current solutions for this problem inevitably leak some information dur-
ing the setup phase of the execution. In particular, the common practice for
executing atomically multi-hop payments is to use Hash Timelock Contracts

4 No Author Given

(HTLCs) [21] which use decreasing timelocks depending on the exact position of
the node in the path, therefore leaking their position in the path. MAPPCN [30]
preserves the anonymity of the sender and receiver from the users on the pay-
ment path but the sender must know the nodes in the path. Alternative methods,
e.g., Blitz [3], reveal instead the identities of all nodes in the selected path. De-
signing a truly privacy-preserving protocol for this task is thus an interesting
and challenging research direction, albeit not the study of this work.

In the following, we use the terms user, node, and party interchangeably.

2 Model and Definitions

We model a payment channel network (PCN) as a directed graph G = (V,E)
where each node in the set V represents a user in the PCN and an edge (u, v) in
the set E indicates an open channel between the users u and v in V . We denote
with fu,v(.) the fee function, i.e., u charges fu,v(x) to transfer x coins over the
channel (u, v). In existing PCNs like the Lightning Network, fu,v(.) is set by u.

The route discovery problem in a PCN represents the task of finding the
path with the smallest aggregated fees, or the cheapest path, in a PCN for a
given pair of sender/receiver nodes us, ur ∈ V and amount x, i.e., a path (u0 =

us, u1, . . . , u` = ur), minimizing the aggregated fees
∑`

i=1 fui−1,ui(x+ φi−1). In
the previous formula, φi, i = 0, . . . , `− 1, is the aggregated fees that nodes
ui+1, ui+2, . . . , u`−1 charge. More precisely,

φi−1 = φi + fui,ui+1(x+ φi).

Since the receiver u` is the last node in the path, φ`−1 = 0. We use the notation
shortestPathG(us, ur, x) 7→ {u0 = us, u1, . . . , u`−1, u` = ur} to describe the func-
tionality that takes two nodes us and ur and a transaction amount x as inputs
and outputs the cheapest path between those two nodes.

Network model. We assume a synchronous network model, i.e., there exists
some known finite time bound ∆ and the adversary cannot delay delivery of any
message sent by honest parties for a larger than ∆ time period. We further as-
sume all users only have local knowledge of the topology of the payment channel
network with the addition of an estimate of the degree of their neighbours, i.e.,
each node u only knows their set of immediate neighbours and an estimate of
the degree of each neighbour in that set.

3 Ideal Privacy

We define below an ideal notion of privacy for route discovery and outline how
to construct protocols achieving this notion, albeit very impractical ones.

Ideal privacy for PCNs means that each party only learns the bare minimum
information required to participate in the transaction: its predecessor and suc-
cessor on the payment path and the amount to be transferred. This information

Route Discovery in Private Payment Channel Networks 5

is minimal, assuming that users know at the very least the current balances on
their own channels (as in the Lightning Network). In this case they learn the pre-
decessor, successor, and amount of a transaction they were involved in by simply
comparing the balances on their channels before and after the transaction.

We only consider path finding protocols Π, which always find the cheapest
path. Defining ideal privacy for protocols that do not necessarily output the
cheapest path is more complex because the privacy loss depends on the discov-
ered path. We also only consider passive adversaries, that is, an adversary can
corrupt users and learn their internal state, but not make them deviate from
honestly executing the protocol (e.g., by providing wrong or inconsistent input).

Our privacy notion is inspired by the Indistinguishability under Chosen
Topology Attack (IND-CTA) security definition from work on topology-hiding
multiparty computation [18], and it is defined as follows: We consider an adver-
sary that initially chooses two networks and a transaction for each of them, and
also a subset of nodes to corrupt. We then require that given the view of the
corrupted nodes after the path finding protocols has been executed on one of the
two networks, an adversary cannot determine which. Of course we must require
that the adversary chooses the networks, transactions, and corrupted nodes such
that the corrupted nodes have the same neighbours and fee functions, and the
final output of the corrupted nodes (either they are not on the path, and if, they
learn their predecessor, successor and amount to be transferred) is identical in
both cases; otherwise distinguishing between both networks is trivial for any
protocol as one can distinguish using just the initial view and final output of the
protocol. We give a more formal definition below.

3.1 The Ideal Privacy Security Game

We consider a security game involving an adversary A against a path-finding
protocol Π. The protocol is run by the players V on a network G = (V,E). Each
player initially gets as inputs its neighbours and fee functions.

When the protocol starts, two players us, ur get as extra input (us, ur, x)
informing them they are, respectively, the sender and the receiver of some
amount x. The correctness we require from our protocol is that every u 6∈
shortestPathGb(ubs, u

b
r, x) outputs ⊥, while every u on the path outputs its pre-

decessor, successor and amount they transfer in this optimal path. The security
game goes as follows:

– A chooses the following for i ∈ {0, 1}:
1. A network (directed graph) Gi = (V i, Ei), where every edge (u, v) is

labelled with a fee function f iu,v(.).

2. A sender and receiver pair (uis, u
i
r) and amount x.

A chooses a subset S ⊂ V0 ∩ V1 of nodes to corrupt. These nodes must have
the same neighbourhood and fee functions in both networks, and their final
output (predecessor, successor and amount) must be identical.

– We choose a random bit b ∈ {0, 1} and run Π on Gb (with input (ubs, u
b
r, x)).

– A gets the transcripts of the corrupted nodes.

6 No Author Given

– A outputs a bit b′. If b′ = b, A wins the game.

Let us call a path finding protocol Π ε-private if A wins the above game with
probability at most 1/2 + ε, and private if it is ε secure for some negligible ε.

3.2 Protocols with Ideal Privacy from MPC

If we assume a trusted third party T (that cannot be corrupted by the adversary
and has a channel to every node in the network), the design of a private path-
finding protocol is not challenging. In particular, each party in the network can
send their data to T , which will then locally compute the cheapest path and
send the output, i.e., either ⊥ or the amount, successor and predecessor in the
cheapest path, to every party.

To design a protocol without a trusted third party, we can instantiate T
using a multi-party computation (MPC) protocol. MPC is a protocol between
N users u1, . . . , uN who agree on some outputs functions f1, . . . , fN . Every user
ui holds an input xi, and at the end user ui learns some output fi(x1, . . . , xN).
The security requirement is that any coalition of users learns nothing about the
inputs of the other users beyond what is revealed through their own outputs.
As here the users need to share pairwise channels, they need to know about the
other users, which means in our security definition we need the users V 1 and V 2

in the two notworks to be identical V 1 ≡ V 2.
Our security notion is inspired by notions from topology-hiding MPC, where

the goal is to hide the topology of the communication channels. Instead, we
assume pairwise channels but want to hide the topology of the payment network.
But of course we could also use a topology-hiding MPC to instantiate T , in
which case we would only require communication channels between users that
share a channel. In this setting, one could potentially also achieve security when
V 1 6= V 2 as nodes would only talk to their neighbours, and for the corrupted
nodes, these are identical.

4 A Practical Notion of Privacy

Here we outline the following game as well as some metrics to measure the privacy
of any route discovery protocol over an arbitrary network. The game is played
with an adversary A over an arbitrary network G = (V,E). The adversary A
is given some budget B ∈ N and A can corrupt (as defined in Section 3.1) any
number of nodes in the network such that the total number of edges incident to
these nodes is no greater than B. Here we emphasise two pertinent aspects of
the corruption process: first, when A corrupts a node, all of the node’s channels
must be added to the total count, and second, we do not double count channels
that have already been accounted for (which is the case where A corrupts two
neighbouring nodes). The constraint on the number of edges the adversary can
create captures the notion that creating new nodes (i.e., wallets) in a PCN is
cheap, however, creating new edges (i.e., channels) comes with some fixed cost.

Route Discovery in Private Payment Channel Networks 7

We denote by Π a route discovery protocol run by a pair of honest nodes
(a source and a sink) over the graph G which may contain outputs (henceforth
called messages) for both honest and adversarial nodes in the process of running
the protocol. The goal of the adversary is to correctly identify the source or sink
of Π upon receiving a set of messages from Π.

Estimators. Let M denote the space of all messages adversarial nodes may
receive in process of honest nodes running Π. An estimator is simply a function
g that takes as input a set of messages M such that each message in the set is
fromM and outputs a pair of nodes in V . That is, given a set of messages from
Π, the adversary outputs a guess of the nodes that are the source and sink of
the route finding protocol Π.

Privacy metrics. We adopt a similar approach as in [31] and use recall to
measure the privacy our of route discovery protocols. Recall is a common per-
formance metric used in information retrieval to evaluate estimators in classi-
fication settings. Let M(u,v) denote the set of messages the adversary receives
that originates from a pair of honest nodes u, v ∈ V running an instance of Π.
The recall of an estimator g is defined as the number of classifications for the
pair (u, v) where either u is classified as the source or v is classified as the sink
over the total number of instances where Π is run between u as source and v as
sink. Formally,

Recg,(u,v) = 1{g(M(u,v)) = (u, ·) ∨ g(M(u,v)) = (·, v)} (1)

We note that it is common to average as well as macro-average the recall
over all honest nodes to get the macro-averaged expected recall E[Recg] =

1
|V×V |

∑
(u,v)∈V×V E[Recg,(u,v)].

5 A Family of Protocols

Consider a sender us ∈ V who wants to transfer x coins to a receiver ur ∈ V and
thus needs to know a path for the transaction, ideally the cheapest one. Next, we
present a family of exploratory route discovery protocols that provide solutions
to this problem. At its core, these protocols employ local probing: nodes send
exploratory messages (originating at the sender and receiver) to their neighbours
who in turn propagate them. Our protocols only require nodes to know their
incident channels, and some also require a degree estimate of each neighbour.

The protocols run in three phases, (1) exploration, which runs until the first
node receives both messages, i.e., the one originating at the sender and the re-
ceiver, (2) notification, where the relevant nodes are informed that a path was
found and (3) stopping, where the nodes currently participating in the explo-
ration phase are informed so they do not propagate messages further. Phase (1)
is running slow, i.e., messages are propagated with some delay which should be
significantly larger than the typical network delay, while in phase (2) and (3)
messages are relayed immediately. The main reason we need Phase (1) to be
slow is so the messages in the stopping phase can easily “catch up” to the nodes

8 No Author Given

which are in the exploration phase. This further helps to improve correctness
and even privacy.

Our protocols differ only on the proportion of nodes each node forwards the
message to. On one extreme, we have Forward-to-All that involves nodes sending
exploratory messages to all their neighbours, where each message is delayed
for some time proportional to the fees. As a result, the optimal path is always
discovered, and moreover, the first path that is found is also the cheapest one. On
the other end of the spectrum, we have a more parsimonious protocol, namely
Degree-Proportional Random Walk, that only involves sending messages to one
neighbour. In this case, we expect fewer nodes to be involved in the discovery
process but the optimal path may not be discovered.

As the protocols in the family are similar, we first present a generic overview
of Forward-to-All, and then briefly describe how to modify it to get Degree-
Proportional Random Walk. We then suggest some improvements to boost the
privacy of this family of protocols. We present our protocols along with a more
detailed description in Appendix A.

5.1 Forward-to-All Exploration Phase

In this protocol, both the sender us and receiver ur create messages with a
special identifier (so intermediate nodes who receive messages from us and ur
can associate them together), an amount x that us wants to send to ur, as well
as a tag Sender or Receiver which specifies whether they are sending or receiving
the transaction. The sender and receiver then propagate these messages through
the graph by sending these messages to all their neighbours who then in turn
propagate the message to all their neighbours. At every step of the propagation,
the nodes update the transaction amount adding their desired fees for routing the
transaction, and only forward the message after some time period has elapsed
that is proportional to their desired fees. All nodes store the messages they
received, as well as an id (not to be confused with identifier) of the node that
sent them the message. The precise rule and fee computation differs, however,
depending on whether a node gets a message from the sender or the receiver.

Fee computation for messages from receiver. Apart from the receiver,
each intermediate node ui upon receiving a message with the Receiver tag from
another node ui+1, updates the transaction amount to add a fee for sending
the transaction amount along the channel (ui, ui+1). This is to reflect the fee
ui would charge for forwarding the transaction to ui+1. Figure 1 illustrates this
process where the receiver ur sends a message with the transaction amount x to
all of ur’s neighbours. Upon receiving the message from ur, ui+1 adds a fee of
fui+1,ur

(x) to the transaction x. Messages with this updated transaction amount
of x+ fui+1,ur (x) would be sent to all of ui+1’s neighbours.

Fee computation for messages from sender. The fee computation for the
sender and the nodes that receive messages with the Sender tag is trickier. Al-
though the sender knows the transaction amount x, they do not know the total
amount they would have to send at the end of the protocol as it would include

Route Discovery in Private Payment Channel Networks 9

the fees along the path which is still unknown. Thus the sender would have to
add an estimate of the total fee of the path, δ, to the transaction amount in
their initial message. Each node that receives a message with the Sender tag,
updates the transaction amount to subtract a fee for each edge they propagate
the message to. This is to account for the fees the node will charge to forward the
transaction. For instance in Figure 1, the node ui−1, upon receiving a message
with transaction amount x + δ, subtracts fui−1,v(x + δ) from the transaction
amount before forwarding the message with this new transaction amount to the
node v. The node ui−1 does the same but subtracts fui−1,ui(x + δ) from the
transaction amount before sending the message to ui.

Delay time computation. Let d be a publicly available delay function that
maps fees to delay times. Let du,v denote the delay time for the total fee for
sending an arbitrary but fixed amount x over the channel (u, v), i.e., du,v =
d(fu,v(x)). Every node (except the sender and receiver) computes a delay time
with the delay function d and the fees computed as described above. In Figure 1
for instance, since the sender us and receiver ur do not have fees, us and ur will
send their exploratory messages immediately. The node ui+1 will wait dui+1,ur

before forwarding the message to ui, and ui−1 will wait dui−1,ui before forwarding
the message to ui.

5.2 Forward-to-All Notification Phase

Upon receiving a new message, a node checks its identifier with the identifiers of
the stored messages to see if the message identifiers can be associated together.
When a node ui finds an association of identifiers that indicate two messages are
from the sender and receiver of a given sender-receiver pair, ui begins a process
of notifying both sender and receiver that a path exists between them. We denote
the two nodes that sent ui the associated sender and receiver messages by ui−1
and ui+1, respectively. We also denote the transaction amounts in these messages
as xs and xr respectively. Then, ui immediately sends ui−1 a message with the
identifier and amount xs (resp. xr to ui+1). Both ui−1 and ui+1 then identify the
nodes that sent them the messages with the same identifier and forward these
messages to these nodes. Refer to Figure 2 for an illustration of the process.

This process repeats itself until the sender and receiver get the message. At
this point, the sender has enough information to proceed with the transaction. In
particular, the sender can easily compute the total fee of the path from x, x+δ, xs
and xr (communicated by the receiver).

Optimality of the discovered route. Using delay guarantees that in Forward-
to-All, either the notification message corresponding to the shortest path (subject
to the accuracy of the fee estimation of the sender) always reaches the sender
first, or the sender can find out if someone on the path deviated from the delay
protocol. For example, let L∗ be the optimal path from us to ur and L′ be a
strictly more expensive path. Suppose several adversarial nodes on L′ immedi-
ately forward messages without delay and as a result, us receives the notification
message from an intermediate node on L′ first. Since us knows the time they sent

10 No Author Given

the first exploratory messages, us can extract the fees from the message received
and check if the total delay time on this path is larger than the difference of the
current time and the time us sent the first exploratory messages.

5.3 Forward-to-All Stopping Phase

When both sender and receiver are aware that a path exists between them and
the sender is satisfied with the cost of the path, both sender and receiver can
stop the protocol by sending a stop message with their identifiers to the nodes
they sent the exploratory messages to. Nodes that have not yet sent the ex-
ploratory message to their neighbours would, upon receiving the stop message
with the identifier, stop the message propagation. Nodes that have already send
the exploratory messages would forward the stop message to the neighbours they
sent the exploratory message to. This process is fast and thus will reach the slow
propagation of the exploratory messages.

5.4 Degree-Proportional Random Walk

The Degree-Proportional Random Walk protocol is analagous to the Forward-to-
All protocol with the exception that each node only forwards the message to one
neighbour. Specifically, each node chooses a neighbour to forward the message
to randomly with probability proportional to its degree. Thus, the messages
are propagated according to two weighted random walks on the network, one
starting from the sender and the other from the receiver, with the weight of any
directed edge (u, v) corresponding to the degree of v. We observe that due to
the probabilistic nature of Degree-Proportional Random Walk, optimality of the
discovered path is not guaranteed unlike in Forward-to-All.

5.5 Improving Privacy

From the messages that originate at the sender and receiver and propagate
through the network, we only need the property that one can efficiently recognise
when a message from both is received. The simplest solution is to simply sample
some random nonce I and propagate it together with a one bit tag specifying
whether it is a sender or receiver originating message.

These messages are, however, completely linkeable. This is unfortunate as it
means that even if many path finding protocols are executed over the network
at the same time, a potential adversary that controls some nodes in the network
will still recognize with certainty which messages belong to the same path finding
request. Thus, we do not leverage the fact that many protocols are running at
the same time to improve privacy.

Making messages unlinkeable using bilinear maps. We can improve un-
linkability by using a bilinear map [14] e : G1 × G2 → GT (such a map allows
“for one multiplication in the exponent” as e(ga1 , g

b
2) = ga·bT where g1, g2, gT are

generators of G1, G2, GT) for a group where the DDH assumption holds in G1

Route Discovery in Private Payment Channel Networks 11

and G2. Concretely, the sender and receiver sample a random x and then the
sender, for every outgoing edge, samples a random r and propagates (gx·r1 gr1) as

the identifier, while the receiver propagates (g
r′/x
2 , gr

′

2).
A node that receives (gx·r1 , gr1) (similarly for the receiver tuples) propagates

it only after re-randomizing it by exponentiating both elements with some fresh
r′ which gives a tuple (gx·r

′′

1 , gr
′′

1) where r′′ = r · r′. This way an adversary
(who does not know x) will not be able to distinguish a pair of tuples of the
form (gx·r1 , gr1), (gx·r

′

1 , gr
′

1) from random, and thus cannot decide whether they
belong to the same instantiation of the path finding protocol. We stress that the
unlinkeability is limited as it only holds if the adversary has access to messages
originating either only at the sender or only at the receiver. This in inherent
as we need parties who receive tuples (a, b) and (a′, b′) originating at both to
efficiently recognize a path is found by checking whether e(a, a′) = e(b, b′) as

(a, b) = (gx·r1 , gr1), (a′, b′) = (g
r′/x
2 , gr

′

2)⇒ e(a, a′) = e(b, b′) = gr·r
′

T

Quantising the transaction and encrypting the fees. Messages that con-
tain the exact transaction amount are also linkeable, even when fees are added,
as the fees are typically miniscule compared to the transaction amount. To re-
duce this linkeability (at the cost of accuracy in fee estimation), the sender and
receiver can quantise the amount of the transaction by rounding it up to a pre-
defined value (for instance, a power of 2). Then, instead of adding the fees to
the quantised transaction amount, nodes encrypt their fees using an additive
homomorphic encryption scheme such as additive ElGamal encryption.

Specifically, the sender and receiver use the exact (not quantised) transaction
amount x as their secret key and gx as their public key, where g is the generator
of a cyclic group of order p. Intermediary nodes compute their fee using the
quantised amount xq. In this way, the sender and receiver can guarantee that
the discovered path has sufficient capacity to forward the transaction x since
x ≤ xq. If a lot of protocols are running simultaneously on the network, nodes
will see many messages with the same quantised transaction amount; effectively
reducing linkeability is reduced by leveraging simultaneous protocol executions.

6 Analysis and Evaluation

In this section, we empirically study the efficiency, optimality and privacy of
our family of protocols described in Section 5 on a recent snapshot (September
2021) of the Lightning network [8], which comprises of 13780 nodes and 63518
channels. We parameterise our family of protocols by β ∈ (0, 1] which repre-
sents the proportion (rounded up to the nearest integer) of neighbouring nodes
in the Degree-Proportional Random Walk protocol that any node chooses to pass
messages to. We note that β = 1 corresponds to Forward-to-All. In our experi-
ments using the Lightning network, we chose 1000 random pairs of sender and
receivers and ran our protocols for selected values of β with these random pairs.
Our choices of β can be seen in Table 1 also presenting a summary of our results.

12 No Author Given

6.1 Efficiency

We measure the efficiency of our protocols by the communication overhead. This
is measured by the average number of involved nodes in one route discovery
attempt, i.e., the number of nodes that receive at least one message in any given
run of our protocol. As we can see from the second column of Table 1, the
expected number of involved nodes in a single route discovery attempt ranges
from 16 (0.1% of the network) to 459 (3% of the network) with the smallest
value corresponding to sending messages to just 1 neighbour and the largest
value corresponding to Forward-to-All.

6.2 Optimality

The fee-proportional delay function that we described in the Notification Phase
of Section 5 guarantees that the first message that reaches the sender and the
receiver corresponds to the shortest path in Forward-to-All. There is no such guar-
antee, however, for our protocols in the case where β < 1 due to its probabilistic
nature. To measure the optimality of the discovered path for our protocols when
β < 1, we look at the average ratio of the discovered path length over the length
of the shortest path for various choices of β in the 1000 runs as described above.
In the third column of Table 1, we observe that protocols with β < 1 return
longer paths on average compared to Forward-to-All, as expected. However, even
for small values of β, e.g., β = 0.01, the average ratio is no more than 2.

β # involved nodes len(found path)
len(shortest path) Recall

only 1 neighbour 16 3.36 0.129
1% 34 1.54 0.129
10% 86 1.14 0.191
20% 133 1.10 0.249
40% 277 1.07 0.29
80% 431 1.01 0.371
100% 459 1 0.43

Table 1: Summary of the efficiency, optimality and privacy of our protocols. We
chose a budget of 0.15 (i.e., the adversary can corrupt nodes such that up to 15%
of the total edges are incident to corrupted nodes) in our estimation of recall.

6.3 Privacy

We empirically measure the privacy of our protocols using the notion of recall
as defined in Section 4. We stress that there are two integral components of our

Route Discovery in Private Payment Channel Networks 13

notion of recall. The first is the corruption strategy of the adversary, which is used
by the adversary to choose nodes up to the corruption budget B to corrupt. The
second is the choice of estimator the adversary uses to guess the source and sink
of an instance of the route discovery protocol. We will first describe 3 corruption
strategies, and then define the first spy estimator. We further show that the first
spy estimator is in general a good guessing heuristic for the adversary.

Corruption strategies. The first strategy, called random corruption, involves
choosing nodes at random in the network to corrupt (and all their edges) until the
total number of corrupted edges is less the adversarial budget B. In the second
strategy, termed well-connected corruption, we first sort the nodes in the network
based on their degree and then sequentially corrupt nodes in descending order
to their degree until the budget is depleted. The intuition behind this strategy is
that high-degree nodes tend to serve as hubs that route a large proportion of the
transactions in the Lightning Network [8,1]. However, this strategy assumes the
adversary has full knowledge of the degree of all nodes in the network, which is
not the case in private PCNs. To achieve similar results with only local knowledge
of the graph, we introduce our third strategy, called random hub corruption. In
this strategy, the adversary starts with a random node, but instead of corrupting
the node, it randomly corrupts one of its neighbours. This process continues until
the budget is depleted. Intuitively, the majority of nodes in a PCN are users
that are connected to high-degree hub nodes. As such, there is a high chance
that a random neighbour of a selected node is a hub node. We thus expect
this strategy to yield similar results to the well-connected corruption strategy in
practice, even though the adversary does not know the degree of all nodes. An
algorithmic description of all 3 corruption strategies is given in Appendix B.1.

First spy estimator. The choice of estimator in our experiments is the first-
spy estimator [31], which is simply guessing the first honest node that passes
a message from the protocol to any adversarial node as the source. We jus-
tify our choice of estimator with the following lemma (proof in Appendix B.2)
which shows that the first spy estimator is optimal in a restricted setting where
messages are not re-randomised, sender and receivers are randomly chosen, and
timing assumptions are not taken into account.

Lemma 1. For Degree-Proportional Random Walk (without re-randomisation),
assuming the sender-receiver pair is chosen uniformly and independently from the
set of honest nodes and the sender and receiver start propagating their messages
independently and randomly, the first spy estimator is the MAP1 estimator.

We stress that our theoretical results hold in a restricted setting which does
not mirror the realistic setting which we run our experiments on. Indeed in Ap-
pendix B.3, we highlight some limitations and counterexamples to the first spy
estimator under more realistic assumptions. Nevertheless, we believe it is a good
first step guessing heuristic and we leave developing stronger theoretical results
in the realistic setting as an interesting direction of future work.

1 Maximum a Posteriori

14 No Author Given

Average recall. Figure 3 presents the average recall for each of the corruption
strategies given the first spy estimator over 1000 random runs of each protocol.
We note that the well-connected and random hub corruption strategies perform
strictly better in terms of recall for all β values compared to random corruption.
Moreover, random hub corruption performs almost equally well compared to
well-connected corruption and thus is a good choice to use in practice when
there is only partial information known about node degrees. Finally, our plots
show that the adversary achieves the highest average recall with Forward-to-All
and the lowest with Degree-Proportional Random Walk.

6.4 Scalability of our protocols

We are also interested to see how our protocols perform as the Lightning Network
scales in size. To do so, we perform simulations of our protocols on Barabási–Albert
graphs. The Barabási–Albert model [6] is a popular algorithm to create scale
free networks using a preferential attachment mechanism (for details on the al-
gorithm, see Appendix C). Many real world networks, including the Lightning
network, are characterized as scale-free [5,23].

?? presents the average communication overhead as well as the average ratio
of the length of the found path over the optimal path. Our empirical simu-
lations show that the communication overhead for the Barabási–Albert graph
with 20000 nodes is similarly low (2%) when compared to the Lightning Network.

We complement our empirical analysis with a theorem (proof in Appendix D)
which states that for Barabási–Albert graphs the communication overhead of the
Degree-Proportional Random Walk protocol scales sublinearly in the number of
nodes n in the network.

Theorem 1. The expected number of involved nodes in the truncated Degree-
Proportional Random Walk protocol on a Barabási–Albert graph G with n nodes

is O(
√
n · log2 n

log logn).

6.5 Optimality and efficiency/privacy trade-off

In Forward-to-All, nodes forward messages to all their neighbours, and as a result
a large fraction of the network is involved in the route-discovery process, which
as we see in Section 6.1 and Section 6.3 has negative impact on the efficiency and
privacy of the protocol. On the other hand, reaching every node is the only way
to guarantee the shortest path is always found. In Degree-Proportional Random
Walk, each node just forwards messages to one neighbour and thus only a very
small fraction of the graph is involved. However, as we see from Section 6.1 the
paths are longer on average. We note that β values in between these extremes
allow users to trade off between optimality and efficiency/privacy.

7 Related Work

Existing work on route discovery in PCNs can be broadly classified into two cat-
egories: solutions which focus on efficiency, and solutions which focus on privacy.

Route Discovery in Private Payment Channel Networks 15

On the efficiency front, Flare [22] and SilentWhispers [15] route payments
through highly connected nodes to improve the scalability of route discovery.
SpeedyMurmurs [25] and VOUTE [24] employ a similar routing technique called
prefix embeddings, which makes the process even faster. These solutions require
nodes to have global knowledge of the network, whereas we present a protocol
that does not require any knowledge of the PCN topology. Spider Network [26]
splits payments into smaller units and routes them over multiple paths using
waterfilling. However, this does not guarantee the discovery of an optimal path,
whereas our protocol guarantees optimality by adding a fee-proportional delay
in the route discovery process. Flash [32] uses a modified max-flow algorithm
to find the optimal path, but also requires nodes to have global knowledge of
the network. Perun [13] avoids routing through intermediaries altogether by
introducing the notion of virtual channels. However, this does not solve the
route discovery problem.

On the privacy front, MAPPCN [30] focuses on anonymity and privacy during
transaction execution, but does not address the issue of route discovery as users
are required to know the payment path. LightPIR [20] uses private information
retrieval to perform private route discovery efficiently, but does not account for
optimality in the case of private channels. In contrast, our protocols employ
local probing, thus our solutions are still optimal even with private channels.
Recently, [28] uses MPC to perform privacy preserving routing of transactions,
however it is only limited to fixed star graph topologies.

8 Conclusion

We presented the first route discovery protocols that are suitable for private
PCNs. We first formalized the ideal notion of privacy in PCNs, and showed
that ideal privacy is feasible yet inefficient. We then presented a family of
practical route discovery protocols which trade off between optimality and effi-
ciency/privacy. To evaluate their privacy leakage, we introduced and leveraged
a novel practical notion of privacy.

The simulation of our protocols on the Lighting Network and Barabási–Albert
graphs validates our approach, unveiling the aforementioned trade-off. We also
observe that our protocols involve a very small fraction of the network on aver-
age, showcasing we can indeed design efficient and private routing algorithms
that rely on minimal to no assumptions on the topology of the PCN with
almost optimal results. From our simulations on Lightning we further deduce
that an effective strategy for an adversary is to connect with high-degree nodes,
i.e., payment hubs. We also discover through our empirical simulations on large
Barabási–Albert graphs that the efficiency and privacy of our algorithms per-
form much better on average compared to our theoretical upper bound, which
demonstrates that our algorithms also scale efficiently with the size of PCNs.

16 No Author Given

9 Figures

us ur
ui−1 ui

x

x

x

ui+1

x+ fui+1,ur (x)

x+ fui+1,ur (x)
x+ δ

x+ δ

x+ δ

x+ δ − fui−1,ui
(x+ δ)

vx+ δ − fui−1,v(x+ δ)

Fig. 1: Propagating exploratory messages from sender and receiver in the
Forward-to-All protocol. Each directed edge (u, v) is labelled with the transaction
amount in the message that u sends to v.

uius

ur

ui receives both messages from the sender and the receiver

ui−1

ui+1

NotificationNotification Notification

NotificationNotification

Notification

Fig. 2: Sending informative messages back to sender and receiver.

Route Discovery in Private Payment Channel Networks 17

0.0 0.2 0.4 0.6 0.8
Adversarial budget B

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

1 neighbour

β = 0.2

β = 0.4

β = 0.6

β = 0.8

β = 1.0

(a) Random corruption

0.0 0.2 0.4 0.6 0.8
Adversarial budget B

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

1 neighbour

β = 0.2

β = 0.4

β = 0.6

β = 0.8

β = 1.0

(b) Well-connected corruption

0.0 0.2 0.4 0.6 0.8
Adversarial budget B

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

1 neighbour

β = 0.2

β = 0.4

β = 0.6

β = 0.8

β = 1.0

(c) Random hub corruption

Fig. 3: Average recall over 1000 random runs of the protocols in the Lightning
network for different corruption strategies

5000 10000 15000 20000
Number of nodes (n)

0

100

200

300

400

In
vo

lv
ed

n
o
d

es

1 neighbour

β = 0.03

β = 0.05

β = 0.1

β = 0.4

β = 1

(a) Communication overhead

5000 10000 15000 20000
Number of nodes (n)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

O
p

ti
m

al
it

y

1 neighbour

β = 0.03

β = 0.05

β = 0.1

β = 0.2

β = 0.4

β = 1

(b) Ratio of length of found path to length
of optimal path

Fig. 4: Efficiency and optimality of our routing algorithms on Barabasi-Albert
graphs

18 No Author Given

References

1. Lightning network search and analysis engine. 1ml.com
2. Akavia, A., LaVigne, R., Moran, T.: Topology-hiding computation on all graphs.

J. Cryptology pp. 176–227 (2020). https://doi.org/10.1007/s00145-019-09318-y
3. Aumayr, L., Moreno-Sanchez, P., Kate, A., Maffei, M.: Blitz: Secure Multi-Hop

payments without Two-Phase commits. pp. 4043–4060. USENIX Association (Aug
2021), https://www.usenix.org/conference/usenixsecurity21/presentation/
aumayr

4. Avarikioti, Z., Kogias, E.K., Wattenhofer, R., Zindros, D.: Brick: Asynchronous
incentive-compatible payment channels. In: FC (2021), https://fc21.ifca.ai/

papers/168.pdf

5. Barabási, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random net-
works: the topology of the world-wide web. Physica A: statistical mechanics and
its applications pp. 69–77 (2000)

6. Barabási, A.L., Pósfai, M.: Network science. Cambridge University Press, Cam-
bridge (2016), http://barabasi.com/networksciencebook/

7. Bitcoin community: Bitcoin core 0.21.0-based taproot client 0.1. https://

bitcointaproot.cc/ (2021)
8. Decker, C.: Lightning network research; topology, datasets. https://github.com/

lnresearch/topology, accessed: 2020-10-01
9. Decker, C., Russell, R., Osuntokun, O.: eltoo: A simple layer2 protocol for bitcoin.

https://blockstream.com/eltoo.pdf (2018)
10. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin du-

plex micropayment channels. In: Stabilization, Safety, and Security of Distributed
Systems. pp. 3–18. Springer (2015)

11. Dong, M., Liang, Q., Li, X., Liu, J.: Celer network: Bring internet scale to every
blockchain (2018)

12. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostáková, K.: Multi-party virtual
state channels. In: Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. pp. 625–656. Springer (2019)

13. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment
hubs over cryptocurrencies. In: IEEE Symposium on Security and Privacy. pp.
327–344 (2017)

14. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptog-
raphers. Discrete Applied Mathematics 156(16), 3113–3121 (2008).
https://doi.org/https://doi.org/10.1016/j.dam.2007.12.010

15. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: Silentwhispers: Enforcing
security and privacy in decentralized credit networks. In: NDSS (2017)

16. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple schnorr multi-signatures
with applications to bitcoin. Des. Codes Cryptogr. 87(9), 2139–2164 (2019).
https://doi.org/10.1007/s10623-019-00608-x

17. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: Payment networks that go faster than lightning. In: International Con-
ference on Financial Cryptography and Data Security. pp. 508–526 (2019)

18. Moran, T., Orlov, I., Richelson, S.: Topology-hiding computation. In: Theory of
Cryptography Conference. pp. 159–181. Springer (2015)

19. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
20. Pietrzak, K., Salem, I., Schmid, S., Yeo, M.: Lightpir: Privacy-preserving route

discovery for payment channel networks. In: Proc. IFIP Networking (2021)

1ml.com
https://doi.org/10.1007/s00145-019-09318-y
https://www.usenix.org/conference/usenixsecurity21/presentation/aumayr
https://www.usenix.org/conference/usenixsecurity21/presentation/aumayr
https://fc21.ifca.ai/papers/168.pdf
https://fc21.ifca.ai/papers/168.pdf
http://barabasi.com/networksciencebook/
https://bitcointaproot.cc/
https://bitcointaproot.cc/
https://github.com/lnresearch/topology
https://github.com/lnresearch/topology
https://blockstream.com/eltoo.pdf
https://doi.org/https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1007/s10623-019-00608-x

Route Discovery in Private Payment Channel Networks 19

21. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2016)

22. Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: An
approach to routing in lightning network. White Paper (2016)

23. Rohrer, E., Malliaris, J., Tschorsch, F.: Discharged payment channels: Quantifying
the lightning network’s resilience to topology-based attacks. In: 2019 IEEE Euro-
pean Symposium on Security and Privacy Workshops (EuroS&PW). pp. 347–356.
IEEE (2019)

24. Roos, S., Beck, M., Strufe, T.: Voute-virtual overlays using tree embeddings. arXiv:
1601.06119 (2016), http://arxiv.org/abs/1601.06119

25. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast
and private: Efficient decentralized routing for path-based transactions. arXiv:
1709.05748 (2017), https://arxiv.org/abs/1709.05748

26. Sivaraman, V., Venkatakrishnan, S.B., Alizadeh, M., Fanti, G., Viswanath, P.:
Routing cryptocurrency with the spider network. In: Proc. 17th ACM Workshop
on Hot Topics in Networks. pp. 29–35 (2018)

27. Spilman, J.: Anti dos for tx replacement. https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2013-April/002433.html, accessed: 2020-11-22

28. Tiwari, S., Yeo, M., Avarikioti, Z., Salem, I., Pietrzak, K., Schmid, S.: Wiser:
Increasing throughput in payment channel networks with transaction aggrega-
tion. CoRR abs/2205.11597 (2022). https://doi.org/10.48550/arXiv.2205.11597,
https://doi.org/10.48550/arXiv.2205.11597

29. Tochner, S., Zohar, A., Schmid, S.: Route hijacking and dos in off-chain networks.
In: Proc. ACM Conference on Advances in Financial Technologies (AFT) (2020)

30. Tripathy, S., Mohanty, S.K.: Mappcn: Multi-hop anonymous and privacy-
preserving payment channel network. In: International Conference on Financial
Cryptography and Data Security. pp. 481–495. Springer (2020)

31. Venkatakrishnan, S.B., Fanti, G., Viswanath, P.: Dandelion: Redesigning the
bitcoin network for anonymity. Proc. ACM Meas. Anal. Comput. Syst. 1(1),
22:1–22:34 (2017). https://doi.org/10.1145/3084459, https://doi.org/10.1145/
3084459

32. Wang, P., Xu, H., Jin, X., Wang, T.: Flash: Efficient dynamic routing for offchain
networks. In: International Conference on Emerging Networking Experiments And
Technologies. p. 370–381 (2019). https://doi.org/10.1145/3359989.3365411

A Protocol Details

Here, we describe our protocol Forward-to-All in detail. We leave out the details
of Degree-Proportional Random Walk as it is analogous. We denote by us the
sender of a message and ur the receiver. Intermediate nodes are denoted by ui.
In the Forward-to-All protocol:

1. us picks a random identifier I from Zp

2. us sends I to the receiver ur through a secure communication channel.
3. us and ur both send path discovery requests (PDRs) to all their neighbours.

The PDR that us sends is

PDRs := (identifier : I,amount : x+ δ, tag : Sender)

http://arxiv.org/abs/1601.06119
https://arxiv.org/abs/1709.05748
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://doi.org/10.48550/arXiv.2205.11597
https://doi.org/10.48550/arXiv.2205.11597
https://doi.org/10.1145/3084459
https://doi.org/10.1145/3084459
https://doi.org/10.1145/3084459
https://doi.org/10.1145/3359989.3365411

20 No Author Given

and the PDR that ur sends is

PDRr := (identifier : I,amount : x, tag : Receiver)

.

Protocol 1 On receiving a new PDRs (Exploration Phase)
/* Here node ui receives a PDRs from ui−1 */

1 Inputs: {PDRs}

Goal: Forwarding the PDRs or finding a matching PDRr for it.

The protocol:

1. ui parses PDRs as PDRs = (Identifier, amount,Sender)
2. ui searches for a path discovery data (PDDr) with the same Identifier. If

they find it they skip the next steps and execute Protocol 3, otherwise they
proceed to the next steps.

3. ∀ v ∈ {neighbours[ui] | c (ui, v) ≥ amount , v 6= ui−1} ui waits dui,v and
then sends (Identifier, amount− fui,v(amount),Sender) to v

4. ui saves the following path discovery data PDDs on storage : PDDs := {PDR :
(Identifier, amount,Sender) ,previousNode : ui−1,nextNode : −}

Protocol 2 On receiving a new PDRr (Exploration Phase)
/* Here node ui receives a PDRr from ui+1 */

2 Inputs: {PDRr}

Goal: Forwarding the PDRr or finding a matching PDRs for it.

The protocol:

1. ui parses PDRr as PDRr = (Identifier, amount,Receiver)
2. ui searches for a PDDs with the same Identifier. If they find it they skip the

next steps and executes Protocol 3, otherwise they proceed to the next steps.
3. ∀ v ∈ {neighbours[ui] | c (v, ui) ≥ amount , v 6= ui+1} ui waits dui,ui+1 and

sends
(
Identifier, amount+ fui,ui+1

(amount),Receiver
)

to v.
4. ui saves the following path discovery data PDDr on storage : PDDr := {PDR :

(Identifier, amount,Receiver) ,previousNode : −,nextNode : ui+1}

Both PDRs and PDRr are gossiped through the network. Nodes execute either
Protocol 1 or Protocol 2 depending on whether they receive PDRs or PDRr respec-
tively. Note that a node ui may receive several PDRs (resp. PDRr) with the same

Route Discovery in Private Payment Channel Networks 21

identifier. In this case ui should only forward the message with the lowest fee
(in an ideal network with honest parties this will never happen as the cheaper
message will arrive first, however, in practice this could happen due to network
delay).

The moment a node ui receives two matching PDRs and PDRr (from say ui−1
and ui+1), ui waits for a delay time denoted by ∆. The delay time ∆ is calculated
based on the following rule:

1. If PDRs arrives first, or both messages arrive at the same time, ∆ = dui,ui+1

2. If PDRr arrives first, ∆ = min(dui,ui+1
, t) where t is the time the PDRs arrives

starting from the time ui receives the receiver message. If t < dui,ui+1
, i.e.,

the message from the sender arrives while ui is still in the middle of the

delay, then ui truncates the remaining delay period to ∆ =
dui,ui+1

−t
2 .

After the delay, ui creates and sends a path found message (PFM) to these
nodes. Specifically, ui sends PFMs = (Identifier, amounts,Sender,Path found message)
to ui−1 and PFMr = (Identifier, amountr,Sender,Path found message) to ui+1.
This is detailed in Protocol 3. Finally, Protocol 4 shows how the nodes that
receive PFMs can update their information about the found path and continue
forwarding PFMs until it reaches the sender. The protocol for PFMr is essentially
analogous to Protocol 4 but in the opposite direction towards the receiver and
hence we omit describing it.

Protocol 3 On finding a matching PDRs and PDRr (Exploration Phase)
/* Here ui receives PDRr from ui+1 that has the same identifier as

a PDDs that ui has stored before. */

3 Inputs: {PDRr, PDDs, ∆}

Goal: Matching the path discovery requests sent from the sender and the receiver.

The protocol:

1. ui parses PDRr and PDDs as follows: PDDs = {PDR :
(Identifier, amounts,Sender) ,previousNode : ui−1,nextNode : −}
and PDRr = (Identifier, amountr,Receiver)

2. ui waits ∆ // ∆ can be calculated using the timing of PDRs and

PDRr by ui
3. ui sends PFMs = (Identifier, amounts,Sender,Path found) to ui−1 and PFMr =

(Identifier, amountr,Sender,Path found) to ui+1

4. ui completes the nextNode item of the PDDs with ui+1.

Upon receiving the PFMs, both sender and receiver should send a stopping
request SR to all their neighbours to halt the PDR forwarding procedure. The
stopping request is of the form SR := (identifier : I, tag : Stopping Request).

22 No Author Given

Upon first receiving a SR, a node ui immediately stops sending all PDRs. Then
ui retrieves all the PDRs with the same identifier and forwards the SR to all
neighbours that are saved as either a previousNode or nextNode in the PDR.
In this way, every node that is involved in the protocol gets notified that a path
exists and so stops forwarding messages corresponding to this transaction.

Protocol 4 On receiving a new PFMs (Notification Phase)
/* Here node ui receives a PFMs from ui+1 */

4 Inputs: {PFMs}

Goal: Notifying the sender and the receiver that a path exists.

The protocol:

1. ui Parses PFMs as PFMs = (Identifier, amounts,Sender,Path found)
2. ui retrieves the corresponding PDRs as PDRs = {PDR :

(Identifier, amounts,Sender) ,previousNode : ui−1,nextNode : −}
and completes the nextNode item with ui+1

3. ui forwards the PFMs to ui−1

B Empirical Privacy Estimation Details

B.1 Corruption strategies

Here, we provide the algorithmic description of the corruption strategies de-
scribed in Section 6.3.

Algorithm 1: Random corruption

Input: {B,G(V,E)}
1 Rem B ← B · |E|
2 Label all the vertices in V with Honest
3 while Rem B > 0 do
4 Choose a node v randomly from V
5 Label v with Adversary
6 Retrieve the set of v’s neighbours i.e., Ne(v)
7 for v′ in Ne(v) do
8 if v′ is Honest then
9 Rem B = Rem B − 1

10 Remove v from V

Route Discovery in Private Payment Channel Networks 23

Algorithm 2: Well-connected corruption

Input: {B,G(V,E)}
1 Rem B ← B · |E|
2 Label all the vertices in V with Honest
3 Sort the set of vertices based on their degree and call the sorted list V̄
4 indx = 0
5 while Rem B > 0 do
6 v = V̄ [indx]
7 Label v with Adversary
8 Retrieve the set of v’s neighbours i.e., Ne(v)
9 for v′ in Ne(v) do

10 if v′ is Honest then
11 Rem B = Rem B − 1

12 indx = indx+ 1

Algorithm 3: Random hub corruption

Input: {B,G(V,E)}
1 Rem B ← B · |E|
2 Label all the vertices in V with Honest
3 while Rem B > 0 do
4 Choose a node v randomly from the set of vertices V
5 Retrieve the set of v’s neighbours i.e., Ne(v)
6 Choose a node h randomly from Ne(v)
7 Label h with Adversary
8 Retrieve the set of h’s neighbours i.e., Ne(h)
9 for v′ in Ne(h) do

10 if v′ is Honest then
11 Rem B = Rem B − 1

12 Remove h from V

24 No Author Given

B.2 Proof of Lemma 1

Proof. First, let’s focus only on the messages propagated by the sender. During
the propagation phase, adversarial nodes might receive the same message several
times from different nodes and in different timestamps. We define a random
variable S as the sender of the message which takes value from the set of honest
nodes VH . Moreover, we define a set of random variables {Ii}i≥1 where Ii is the
ith honest node that forwards the message to one of the adversarial nodes, Ii
takes value from the set of honest nodes, VH , too.

First, we argue that in the Degree-Proportional Random Walk, S−I1−{Ii}i≥2
form a Markov chain. Since each node only forwards the message to one of its
neighbors, given I1, we can find the probability of the message following different
routes without any dependency on S therefore we can find the probability distri-
bution of {I}i≥2 for any given graph too. In simpler words, we can think of I1 as
an artificial sender which starts the propagation phase. Therefore the guessing
strategy of the adversarial nodes will be a function of I1 instead of {Ii}i≥1 i.e.,

Now we argue why the guessing strategy should output I1 to maximize the
likelihood function. In the Degree-Proportional Random Walk algorithm, each
arbitrary node u upon receiving a message will forward it to one of its neighbors
based on a degree proportional distribution. Consider a fixed graph G(V,E).
Let’s define pu,v, ∀(u, v) ∈ E as the probability that u upon receiving a message
will choose v amongst its neighbors to forward the message to it. Let’s denote
the realization of I1 by i1, we write the Bayesian rule:

P [S = v|I1 = i1] ∝ P [I1 = i1|S = v] · P [S = v] (2)

Since the sender is chosen uniformly, P [S = v] = 1
|VH | , ∀v ∈ VH , therefore

the second term in the equation 2 is the same for all of the honest nodes and we
only need to show that v = i1 maximizes the first term.

Let’s call the adversarial node that i1 has sent the message to a1, then we
will have P [I1 = i1|S = i1] = pi1,a1 . For the sake of simplicity, we assume that
the probability that i1 is the sender but does not forward the message to a1 in
the first round is negligible compared to pi1,a1

, the proof will work with minor
changes if this assumption is not true. Now we find P [I1 = i1|S = v] for an
arbitrary v.

The message is originated from v and has passed a set of nodes j1, j2, . . . , jk, jk =
i1 after it has reached a1. Therefore P [I1 = i1|S = v] = pv,j1 ·

∏k−1
`=1 pj`,j`+1

·
pi1,a1 < pi1,a1 hence i1 maximizes the equation 2.

So we showed that for a single source of message, the first spy estimator is
the MAP estimator. For showing the same result in the case that both sender
and receiver propagate messages, we note that if the sender and receiver start
propagating messages in independent times unknown to the adversary, timing
does not add any information to the adversary, and the adversary can treat the
messages received from the sender and receiver as independent messages and
guess the sender in an independent process from the receiver and using the first
spy estimator. ut

Route Discovery in Private Payment Channel Networks 25

B.3 Limitations of the first spy estimator

We present an example where the first spy estimator might not be optimal when
we take into account timing assumptions. Consider the network in Figure 5, and
assume discrete time slots whereby messages are propagated one edge at a time.
That is, if we have time slots t1, t2, . . . a message travelling over a path (x, y, z)
sent at t1 would be sent over (x, y) at t1 and (y, z) at t2. In this setting, if the
adversary knows that the sender (s) and receiver (r), propagate their messages
at the same time, a2 will receive the receiver message 1 time slot earlier than the
slot which a1 receives their message. a1 can use this information to infer that
node i is not the real sender and the real sender is at least in distance 2 away
from a1.

a1 i

s

a2

r

Fig. 5: Counterexample to optimality of first spy estimator that accounts for
timing assumptions. Green nodes are honest and red nodes are adversarial.

C Barabási–Albert Network Creation Algorithm

The Barabási–Albert algorithm BA(n, 1) to create a graph with n vertices and
preferential attachment parameter 1 has the following steps:

1. We add the first node.

2. Each new node is connected to 1 existing node with a probability propor-
tional to the degree that the existing node has. Formally the probability of
connecting to node i is :

ki∑n
j=1 kj

where ki is the degree of node i.

Note that the second step is done sequentially for the n− 1 nodes.

The Barabási–Albert algorithm BA(n,m) to create a graph with n vertices
and preferential attachment parameter m is similar but we start with m0 con-
nected nodes at the first step, and at each step each new node connects to
m < m0 nodes with probability proportional to the existing node degree.

26 No Author Given

D Proof of Theorem 1

Proof. We analyse the case where G is the graph formed by the BA(n, 1) algo-
rithm. For graphs formed by BA(n,m),m > 1 the proof is analogous.

Label the vertices in G by the order in which they join the graph according
to the BA(n, 1) algorithm [6]. Thus, the initial vertex is labelled v1, the second
vertex v2, and the last vertex vN . We show that if two random nodes on the
network, start sending two matching packets based on Degree-Proportional Ran-

dom Walk protocol, after O(
√
n · log2 n

log logn) steps the probability that v1 haven’t
received both packets is bounded.

From [6], for j > i, the degree of a vertex vi at time j is
√

j
i . At any time

step i, the sum of degree of all the vertices in the graph is 2i as there are i edges

at time i. Thus, P[vi connects to v1] =

√
i
1

2i = 1
2
√
i
.

Now we will compute the probability of any vertex vi passing a message to
v1 given that there is an edge between vi and v1. The degree of v1 at the end
of the graph creation process is

√
n
1 =

√
n. If vi is connected to v1, then since

m = 1 we know that other neighbours of vi were added to the graph after vi, i.e,

If vj is vi’s neighbour and j 6= 1⇒ j > i⇒
√
n

j
<

√
n

i

Thus,
∑

vj∈N(vi)
deg(vj) <

√
n+

√
n
i ·
√

n
i .

Since in Degree-Proportional Random Walk, nodes choose one of their neigh-
bours proportional to the degree:

P[vi passes a message to v1 | vi is connected to v1] ≥
√
n

√
n+

√
n
i

2 =
i

i+
√
n

So if vi is a random node,

P[vi passes message to v1] =
i

i+
√
n
· 1

2
√
i
>

√
i

2(i+
√
n)

>
1

4
√
n

We know that the diameter of BA(n, 1) is logn
log logn and after visiting nx nodes,

the number of edges incident to them is below n
1+x
2 . That means that in logn

log logn

steps we visit a not visited vertex with probability at least n−n
1+x
2

n .
Imagine that vi initiates a Degree-Proportional Random Walk. After visiting

t different vertices the probability that the message has not met v1 is:

P[v1 did not get the message after s steps] < (1− 1

4
√
n

)t

Now consider the bidirectional Degree-Proportional Random Walk that we de-
scribed in section 5, if both the sender and the receiver send the message, the

Route Discovery in Private Payment Channel Networks 27

probability that after visiting t different vertices, at least one of their message
has not reached to v1 we say that the protocol is not successful. Using union
bound we say:

P[no success after t vertices] < 2 · (1− 1

4
√
n

)t

If we put t = 4
√
nlog n, the probability of not being successful when n is large

(using 1− x ≤ e−x) is :

2 · (1− 1

4
√
n

)4
√
n logn <

2

n

And to visit t = 4
√
n log n unvisited nodes, we need 4

√
n log2 n

log logn steps. ut

	Route Discovery in Private Payment Channel Networks

