
Autoguess: A Tool for Finding
Guess-and-Determine Attacks and Key Bridges ⋆

Hosein Hadipour(�) and Maria Eichlseder

Graz University of Technology, Graz, Austria
hsn.hadipour@gmail.com, maria.eichlseder@iaik.tugraz.at

Abstract. The guess-and-determine technique is one of the most widely
used techniques in cryptanalysis to recover unknown variables in a given
system of relations. In such attacks, a subset of the unknown variables
is guessed such that the remaining unknowns can be deduced using the
information from the guessed variables and the given relations. This
idea can be applied in various areas of cryptanalysis such as finding the
internal state of stream ciphers when a sufficient amount of output data
is available, or recovering the internal state and the secret key of a block
cipher from very few known plaintexts. Another important application
is the key-bridging technique in key-recovery attacks on block ciphers,
where the attacker aims to find the minimum number of required sub-key
guesses to deduce all involved sub-keys via the key schedule. Since the
complexity of the guess-and-determine technique directly depends on the
number of guessed variables, it is essential to find the smallest possible
guess basis, i.e., the subset of guessed variables from which the remaining
variables can be deduced. In this paper, we present Autoguess, an easy-to-
use general tool to search for a minimal guess basis. We propose several
new modeling techniques to harness SAT/SMT, MILP, and Gröbner basis
solvers. We demonstrate their usefulness in guess-and-determine attacks
on stream ciphers and block ciphers, as well as finding key-bridges in key
recovery attacks on block ciphers. Moreover, integrating our CP models
for the key-bridging technique into the previous CP-based frameworks to
search for distinguishers, we propose a unified and general CP model to
search for key recovery friendly distinguishers which supports both linear
and nonlinear key schedules.

Keywords: Lightweight block cipher· Guess & Determine· Key-Bridging
· CP · MILP · SMT · SAT · Gröbner basis

1 Introduction

The practical security of symmetric-key cryptographic primitives with respect
to known attacks is ensured by extensive cryptanalysis. There is a wide variety
of different cryptanalytic techniques, including differential cryptanalysis, linear
⋆ This is the full version of our paper accepted to ACNS 2022:

https://doi.org/10.1007/978-3-031-09234-3_12

https://orcid.org/0000-0002-3820-3765
https://orcid.org/0000-0002-8750-7423
https://doi.org/10.1007/978-3-031-09234-3_12

cryptanalysis, integral cryptanalysis (based on division properties), cube attacks,
and more. Many of these cryptanalytic techniques involve tracing the propagation
of certain cryptographic properties at the bit-level, which can be highly nontrivial.
From a designer’s perspective, to design a single primitive requires the analysis
with all these known techniques. As a consequence, the design and cryptanalysis
of symmetric-key primitives is a time-consuming and potentially error-prone
process. Therefore, it is of significant importance for the community to develop
automatic methods and tools.

One of the most widely used techniques in cryptanalysis is the guess-and-
determine (GD) technique, especially when only low amounts of data are available
to the attacker. Guess-and-determine is a general technique to recover the un-
known variables in a given system of relations on a set of variables: A subset
of the unknown variables is guessed such that the remaining unknowns can be
deduced using the information from the guessed variables. The correctness of the
guesses also can be checked using the given relations since it is assumed that the
incorrect guesses yield inconsistency.

The idea can be used in various areas of cryptanalysis. For instance, the
guess-and-determine technique can be applied to find all or part of the internal
state of a stream cipher when a sufficient amount of output data is available. In
the same way, the idea can be used to recover the internal state as well as the
secret key of a block cipher when some known or chosen plaintext/ciphertext
pairs are available. Another important application is the key-bridging technique
in key recovery attacks on block ciphers, where the attacker aims to find the
involved sub-keys based on the relations induced by the key schedule. Beyond
these cryptanalytic uses, the guess-and-determine technique also finds application
in a broader mathematical context, for example in its links to uniquely restricted
matching problems in graph theory [45]. In these applications, the complexity
of the guess-and-determine technique is directly dependent on the number of
guessed variables. It is thus essential to find the smallest possible subset of guessed
variables from which the remaining variables can be determined efficiently.

In this paper, we provide a general tool to search for a suitable set of guessed
variables with minimum size in the guess-and-determine technique. This tool
allows designers of symmetric-key primitives to easily and thoroughly analyze
their designs from the guess-and-determine attack point of view. In addition
to general guess-and-determine attacks on block and stream ciphers, our tool
can help designers to optimize their key schedule algorithms with respect to the
key-bridging technique.

Our contribution. Our contributions can be summarized as follows (see also
Table 1):
1. We present Autoguess, an easy-to-use open-source tool to automate guess-

and-determine attacks as well as the key-bridging technique. Adapting the
method introduced by Cen et al. [14] to formulate guess-and-determine attack
as an MILP problem, we introduce new encodings in CP and SAT/SMT
which achieve a better performance compared to MILP [14] in many cases,
particularly when searching for feasible solutions. In contrast to previous mod-

2

els [14, 21] where all variables should be deduced from the guessed variables,
our reformulation takes an arbitrary subset of variables as the target variables
into account. This enables us to extend the application to the key-bridging
technique, where only an arbitrary subset of variables needs to be deduced.
Besides, we adapt the method introduced by Danner et al. [21] to translate
guess-and-determine attacks to the problem of computing the Gröbner basis
of a Boolean ideal, and extend it for key-bridging technique as well. As a con-
sequence, Autoguess integrates a wide range of CP/SMT/SAT/MILP solvers
as well as the Gröbner basis algorithm to automate guess-and-determine
attacks and the key-bridging technique.

2. Applying our tool to search for key bridges in word-oriented block ciphers,
we improve the related-tweakey zero-correlation attacks on SKINNY-64-128
and SKINNY-64-192 from ToSC 2019 [2], by deducing one nibble of involved
sub-keys for free. Utilizing Autoguess to search for key-bridges in bit-oriented
block ciphers with nonlinear keyschedule, we also reduce the time complexity
of the analysis phase in linear attack on 26-round PRESENT-80 presented at
EUROCRYPT 2020 [38] from 265 to 264.

3. To show the application of our tool in the analysis of stream ciphers, we use
it to reduce the computational complexity of the guess-and-determine attack
on ZUC from 2392 [36] to 2390 while using the same amount of 9 keystream
output words.

4. We show that our tool can automatically re-discover many of the best results
obtained with the key-bridging technique, which previously had to be gener-
ated either manually or with dedicated, cipher-specific tools. We successfully
automatically re-discovered the Demirci-Selçuk meet-in-the-middle attack on
SKINNY-128-384 [15] and the integral attack on 24-round LBlock [19]. To show
the versatility of our tool, we also used it for finding low-data-complexity at-
tacks on block ciphers. More precisely, we used it to find guess-and-determine
attacks on AES, Khudra, CRAFT, and SKINNY. For example concerning AES,
we could rediscover the best previous GD attack on 3 rounds with data
complexity of merely one known plaintext/ciphertext pair.

5. Lastly, we show that our CP-based approaches for the key-bridging tech-
nique are consistent with the previous CP-based frameworks to search for
distinguishers. Thanks to this consistency, we integrate it into the the pre-
vious CP-based frameworks for automatic search of distinguishers to build
a general CP-model to find the key recovery friendly distinguishers taking
the key-bridging into account for both linear and nonlinear key schedules.
To show the usefulness of this new method, we could improve the memory
complexity of the best previous DS-MITM attack on 20-rounds of TWINE-80
by a factor of 220. We also utilized this new framework to find the DS-MITM
attacks on SKINNY-64-128, SKINNY-64-192 and SKINNY-128-256 for the first
time.

Software. We have provided an open-source tool Autoguess, implementing our
methods, which is publicly available via the following link:

https://github.com/hadipourh/autoguess

3

https://github.com/hadipourh/autoguess

Table 1: Summary of Our Attacks on SKINNY-128-256, SKINNY-64-192, SKINNY-64-128
and TWINE-80, where DS-MITM denote Demirci-Selçuk Meet-in-the-Middle cryptanaly-
sis and ST stands for single-tweakey setting.
Cipher #Rounds Data Memory Time Attack Setting Reference
SKINNY-128-256 19 296 CP 2210.99 2238.26 DS-MITM ST Section 9.2
SKINNY-64-192 21 260 CP 2133.99 2186.63 DS-MITM ST Section 9.3
SKINNY-64-128 18 232 CP 261.91 2126.32 DS-MITM ST Section 9.4
TWINE-80 20 232 CP 262.91 276.92 DS-MITM - Section 9.1
TWINE-80 20 232 CP 282.91 277.44 DS-MITM - [62]

Outline. In Section 2, we recall the preliminaries on guess-and-determine at-
tacks and the key-bridging technique. In Section 3, we propose the constraint
programming model of these two techniques, and in Section 4, we discuss an
alternative model using Gröbner bases. In Section 5, we introduce our tool Auto-
guess with its preprocessing and early-abort techniques. We apply it to find key
bridges for different ciphers in Section 6 as well as guess-and-determine attacks
on block ciphers in Section 7 and stream ciphers in Section 8. Finally, we provide
a discussion in Section 10 and conclude in Section 11.

2 Preliminaries

In this section, we introduce the notation used in this paper and provide a
brief overview of the cryptanalytic background, including the guess-and-determine
and key-bridging techniques, as well as modeling connection relations.

2.1 Notation

Table 2 summarizes the used notation throughout this paper.

2.2 Guess-and-Determine Technique

The guess-and-determine technique is a general method to solve a system of
equations, given as a set of variables linked by relations. In this method, the
values of a subset of the variables are guessed first. Next, using the relations,
one may find the values of a subset of the remaining unknown variables, which
is called knowledge propagation. If all of the remaining unknown variables are
determined from the guessed variables, we call the set of guessed variables a
guess basis [11]. In other words, a guess basis is a set of variables such that by
knowing their values, we can recover the remaining unknown variables.

For a given guess basis, we can enumerate all possible values for its variables,
derive all other variables, and verify whether the result satisfies all relations. The
solution set for the system of equations consists of those guesses for which all
relations are satisfied. Hence, the complexity is roughly equal to the number of

4

Table 2: Notation.
¬ bit-wise NOT
≪ i, ≫ i left rotation and right rotation by i bits, respectively
|| concatenation
∧ bit-wise And
∨ bit-wise Or
⊕ bit-wise Xor
⊞ modular addition
⊟ modular subtraction
x⇒ y y can be deduced from x
BVZExt(x, n) zero-extension of x by n bits:

n︷ ︸︸ ︷
0|| · · · ||0 ||x

BVAdd(x, y) bit-vector addition of bit-vectors x, and y
BVULE(x, y) unsigned less than or equal comparison of two bit-vectors x, and y
i ∼ j successive numbers from i to j

possible assignments for the guess basis. Therefore, the main goal is finding a
guess basis of minimal size.

For systems of equations obtained from cryptographic primitives, the guess-
and-determine technique is often used when data is very scarce, and statistical
attacks are therefore impossible. The main challenges of a guess-and-determine
attack are to find a suitable guess basis and to effectively propagate knowledge.

Guess-and-determine attacks were among the first ideas to recover internal
state of stream ciphers. [63] applied a divide-and-conquer attack to detect and
recover the internal states of LFSR-based ciphers. The attack was successfully
applied to a number of ciphers, including A5/1 [35], RC4 [46], SOBER [4] and
SNOW1 [40] constituting GD attacks on word-oriented stream ciphers. Since the
complexity of these attacks depends crucially on the size of the guess basis, several
improvements and approaches to minimize the number of guesses have been
proposed. For instance, Ahmadi and Ehglidos [1] proposed a heuristic approach
based on dynamic programming to automatically find guess-and-determine attack
for classes of stream ciphers. As another example, [70] uses the idea of SAT solver
and Monte-Carlo Optimization algorithms to find the guessed variables.

2.3 Key-Bridging Technique

Attacks on block ciphers can typically be divided into two parts: A distinguishing
part and a key recovery part. In the distinguisher part, the attacker finds a
certain property to distinguish r2 rounds of the cipher from a pseudorandom
permutation. Then, they add r1 and r3 rounds before and after the distinguished
part, respectively, to mount a key-recovery attack on r = r1 + r2 + r3 rounds. In
the key recovery part, the attacker guesses some key bits involved in first r1 and
last r3 rounds to find the internal states corresponding to the input and output
of the r2 middle rounds, for a particular set of messages, to see whether a certain
property for the middle part is satisfied.

5

The guessed key-bits may have some relations due to the key schedule, even
though they are separated by many rounds. The main goal of the key-bridging
technique is to find these relations and reduce the complexity of key recovery
by deducing some sub-keys from the other sub-keys. In other words, in the
key-bridging technique, we look for a minimal set of guessed sub-key bits which
is sufficient to determine all involved sub-key bits in the key recovery attack.

The key schedule of block ciphers is typically much simpler than the main
round function due to restrictions in memory and area consumption. This is
a potential source of weakness that can be exploited in attacks such as the
key-bridging technique. Key-bridging was introduced by Dunkelman et al. at
ASIACRYPT 2011 [26], where in their attack on 8 rounds of AES-192, they
provide a surprisingly long bridge between two sub-keys which are separated
by 8 key schedule rounds. At EUROCRYPT 2013, Derbez et al. improved the
attack on 8 rounds of AES-192, in which they used key-briding technique to lower
the time complexity of the attack. At FSE 2015, Biryukov et al. applied key-
bridging in meet-in-the-middle and impossible differential attacks on 25 rounds
of TWINE-128 [10]. One of the most interesting works concerning key-bridging is
an automatic method to search for key-bridging, introduced by Lin et al. at FSE
2016 [49]. They apply their approach to impossible differential and multidimen-
sional zero-correlation linear attacks on 23-round LBlock, 23-round TWINE-80,
and 25-round TWINE-128. However, their method is not sufficiently general to
handle all cryptographic operations such as modular addition, subtraction, and
multiplication. Besides, it merely determines an upper bound for the number
of solutions by extracting some relations between the key variables and does
not specify the guessed variables as well as the determination flow and hence is
not applicable to search for GD attacks on stream ciphers. Moreover, the tool
presented in [49] is based on a dedicated linear algebraic method and hence is not
consistent with the CP-based approaches to search for distinguishers, whereas as
we will show in Section 9, our CP-based approaches for key-bridging technique
can be merged into the previous CP-based tools for finding distinguishers.

2.4 Connection Relations
In order to describe the guess-and-determine technique in a systematic way, we
define two types of connection relations [14].

Definition 1 (Implication Relation) Let x0, . . . , xn−1, y denote some vari-
ables. If y can be uniquely determined from x0, . . . , xn−1, we say that x0, . . . , xn−1, y
have an implication relation, denoted as

r : x0, . . . , xn−1 ⇒ y .

We denote the left- and right-hand sides of this relation r as LHS(r) = {x0, . . . , xn−1}
and RHS(r) = {y}, respectively.

Example 1 Let (y3, y2, y1, y0) = S(x3, x2, x1, x0) denote a 4-bit S-box. Four
implication relations can be derived as follows:

∀ 0 ≤ i ≤ 3 : x0, x1, x2, x3 ⇒ yi .

6

If S is a bijective function, then four extra implication relations y0, y1, y2, y3 ⇒ xj

for all 0 ≤ j ≤ 3 can be derived as well.
Definition 2 (Symmetric relation) Let x0, . . . , xn−1 denote n variables. We
say they have a symmetric relation if and only if each variable xi can be uniquely
deduced when the remaining n− 1 variables are all known, denoted as

r : [x0, x2, . . . , xn−1] .

The number of distinct variables appearing in r is defined as the length |r| of r.
Example 2 Let F : F32

2 → F32
2 be a bijective function and x, y, z, k ∈ F32

2 , where
z = F (x⊞k)⊕y. Then, by knowing the value of three out of four variables x, y, z, k
in this relation, the value of the remaining one can be uniquely determined, x, y, z,
and k have a symmetric relation, which is denoted by [x, y, z, k].
Although a symmetric relation involving n variable can be described by n
implication relations, we prefer to use this compact notation when it is possible.

2.5 From a System of Equations to a System of Connection Relations
In this paper, we assume that the given system of equations can be described via
a combination of implication and symmetric relations. This assumption does not
impose significant limitations since equations for many cryptographic systems
can be described completely using a combination of implication or symmetric
connection relations. For instance, some rules are listed below to convert a system
of equations to a system of connection relations.
Proposition 1 (Xor) If y =

⊕n−1
i=0 xi, where x0, x1 . . . , xn−1, y ∈ Fn

2 , then
[x0, . . . , xn−1, y].

Proposition 2 (And) If y =
∧n−1

i=0 xi, where x0, x1 . . . , xn−1, y ∈ Fn
2 , then

x0, . . . , xn−1 ⇒ y.
Proposition 3 (Modular Addition) If y = ⊞n−1

0 xi, then [x0, . . . , xn−1, y],
where x0, x1 . . . , xn−1, y ∈ Fn

2 .
Proposition 4 (Bijective Function) If F : Fm

2 → Fn
2 is a bijective function

and y = F (x), then [x, y].
Proposition 5 (Split/Concatenation) Let x = x0|| . . . ||xn−1. The following
connection relations can be used to model this operation:

x0, . . . , xn−1 ⇒ x; ∀ 0 ≤ i ≤ n− 1 : x⇒ xi.

Proposition 6 (Elimination rule) If [x0, . . . , xn−1, x]∧[x, y0, . . . , yn−1], then:
[x0, . . . , xn−1, y0, . . . , yn−1].

Using a combination of the above rules, more complex equations can be modeled
as well.
Example 3 Let y1 = ((x0 ≫ 8) ⊞ y0) ⊕ (y0 ≪ 3), where x0, y0, y1 ∈ F64

2 . By
introducing some new variables, and then using the elimination rule, this equation
can be modeled via the symmetric relation [x0, y0, y1].

7

2.6 A Naive Approach for Guess and Determine Attack

Assume that there is a system of connection relations involving n unknown
variables for which we are looking for a guess basis of minimum size. A naive
approach to find a minimal guess basis is the exhaustive search method which
starts from k = 1, checking all possible subsets of size k where 1 ≤ k ≤ n, to
discover a minimal subset holding the property of guess basis. To check whether
a subset K of size k can be a guess basis, assuming that all variables in K are
known, through the given connection relations we propagate the knowledge to
obtain the new set of known variables Y = Propagate(K), where Propagate
performs the knowledge propagation (see Algorithm 4 in Appendix A). A minimal
guess basis is found as soon as a set G is found for which |Propagate(G)| = n
(Algorithm 5, Appendix).

Consequently, the complexity of the exhaustive search for a guess basis of
size less than or equal to m (if it exists) is roughly equal to

∑m
k=1

(
n
k

)
, which is

exponential with respect to both n and m. Therefore, this approach is infeasible
when m or n are large enough.

3 Constraint Programming Model of Guess-and-Determine
and Key-Bridging Techniques

In this section, we propose an SMT/SAT model of guess-and-determine attacks
and the key-bridging technique. Our model is inspired by the method introduced
by Cen et al. [14] to convert guess-and-determine attacks to an MILP problem.
Modeling these techniques as SMT/SAT problems is not only more straightfor-
ward than MILP, but also achieves a better performance in some cases, especially
when we want to find only a feasible solution. As a new cryptographic application,
we extend our approach to automatic search for key-bridging technique for the
first time.

3.1 From GD and Key-Bridging to Constraint Programming Model

Given a system of connection relations (X,R), where X = {x0, . . . , xn−1}, and
R = {r0, . . . , rm−1}, Cen et al. [14] introduced a method to formulate the problem
of searching for a minimal guess basis for X to an MILP problem. Here, the CP
and SMT/SAT alternative of this method is proposed and as a new cryptographic
application it is used to search for key-bridging technique as well.

Two main challenges of the guess-and-determine technique are knowledge
propagation and finding a minimal guess basis [11]. Finding a minimal guess
basis is an optimization problem. However, using a standard technique it can
be transformed into the sequence of decision problems in each of which, it is
answered that whether the sets of specific sizes can be a guess basis. One can
find a minimal guess basis by decreasing the explored sizes in the sequence of
decision problems. Therefore, the first and more critical step is modeling the
decision problem of whether sets of certain sizes can be a guess basis for which
one has to model the knowledge propagation.

8

The knowledge propagation is a procedural method in which the only consid-
ered (given) property of variables is whether a variable is known or unknown.
However, as it is depicted in Algorithm 4, during the knowledge propagation
one variable which is unknown at the current step may be determined from the
known variables at the next step. Hence, to model whether a variable is known
or unknown, more than one decision variable is needed.

Let (X,R) be a system of connection relations, where X = {x0, . . . , xn−1}
and R = {r0, . . . , rm−1}. Assuming that a subset of variables such as K0 ⊆ X is
initially known, the known/unknown status of each single variable x ∈ X in each
step can be represented by a new binary decision variable, the state variable:

Definition 3 (State variables) For a given system of connection relations
(X,R), where X = {x0, . . . , xn−1}, to represent the status of variables in terms
of being known or unknown in jth step of knowledge propagation, a set of binary
decision variables Sj = {x0,j , . . . , xn−1,j} is defined such that xi,j = 1, if and
only if xi is known at step j of knowledge propagation and xi,j = 0 otherwise,
where 0 ≤ i ≤ n− 1 and j ∈ Z≥0.

Therefore, for a given initial subset K0 ⊆ X of known variables, the knowl-
edge propagation can be represented using the following chain, where Sj =
{x0,j , . . . , xn−1,j} represents the status of variables in terms of being known or
unknown at jth step of knowledge propagation:

S0 → S1 → · · · → Sj → · · · .

Given that a variable can be involved in more than one connection relation,
to link each variable to its corresponding relations, a new type of binary decision
variable called path variable is defined as follows.

Definition 4 (Path variables) Let (X,R) be a system of connection relations
with R = {r0, . . . , rm−1}. Assume xi ∈ X appears in λ relations {ri

0, . . . , ri
λ−1},

where for each 0 ≤ k ≤ λ− 1, ri
k is either a symmetric relation or an implication

relation with xi ∈ RHS(ri
k). Then, for each step j of knowledge propagation, λ

new binary decision variables Path(xi,j) := {xi,j,k : 0 ≤ k ≤ λ− 1} are defined
as follows:

xi,j,k =
{

1 xi can be determined from the relation ri
k at step j − 1

0 otherwise,

where 0 ≤ i ≤ n − 1 and j ∈ Z≥1. Path(xi,j) is called the set of path variables
corresponding to xi ∈ X at the jth step of knowledge propagation. For j = 0 and
all 0 ≤ i ≤ n− 1, Path(xi,0) = ∅.

Proposition 7 (Knowledge propagation) Given a system of connection re-
lations (X,R), let xi,j and Path(xi,j) = {xi,j,k : 0 ≤ k ≤ λ − 1} represent the
state variable and set of path variables corresponding to xi ∈ X at jth step
of knowledge propagation, respectively. Then, xi at the jth step of knowledge
propagation is known, i.e., xi,j = 1, if and only if at least one of the following
conditions holds:

9

• Already known: xi,j−1 = 1, i.e., xi has been known since the previous steps,
• Determined: There exists xi,j,k ∈ Path(xi,j) such that xi,j,k = 1, i.e., xi,j

can be determined from the previously known variables.

For a given system of connection relations (X,R) and a subset of known variables,
any assignment for the state and path variables satisfying the definitions of state
and path variables as well as Proposition 7 corresponds to a valid knowledge
propagation. For a valid assignment of state and path variables, let Kj := {xi,j ∈
Sj : xi,j = 1}. According to the first condition in Proposition 7, if xi,j = 1,
then for all j′ ≥ j, xi,j′ = 1, where 0 ≤ i ≤ n − 1, since a variable remains
known after it becomes known once. As a consequence, K0 → · · · → Kj → · · · ,
where j ∈ Z≥0 is an ascending chain. On the other hand, the number of known
variables is upper bounded by |X| = n. Therefore, according to the ascending
chain condition, there exists a positive integer β such that Kβ = Kβ+1 = · · · .

While in the guess-and-determine technique one usually looks for a minimal
guess basis to deduce all of the remaining variables, in the key-bridging technique
we are looking for a minimal set of guessed variables to determine a certain subset
of variables, which are the sub-keys involved in the key-recovery. Accordingly,
we define the concept of guess basis for a subset T ⊆ X as the target variables,
where (X,R) is a system of connection relations.

Definition 5 (Guess basis) Let (X,R) be a system of connection relations
and T ⊆ X. The subset K ⊆ X is called a guess basis for T , if there exists some
positive integer β such that all variables in T can be deduced from K after β
steps of knowledge propagation.

Using the following proposition, one can characterize the guess basis for a
given system of connection relations and a subset of target variables.

Proposition 8 (Characterizing guess basis) Let (X,R) be a system of con-
nection relations and S0 → · · · → Sj → · · · be its corresponding chain of state
variables. K0 ⊆ X is a guess basis for T ⊆ X, if there exists a positive integer β,
and an assignment of state and path variables for which the following conditions
hold:

• For all xi,0 ∈ S0, if xi ∈ K0, then xi,0 = 1, and xi,0 = 0 otherwise.
• The assignment satisfies the definition of state and path variables and Propo-

sition 7.
• For all xi,β ∈ Sβ, if xi ∈ T , then xi,β = 1, i.e., all target variables should be

known in the final step of knowledge propagation.

Encoding Using CP

Proposition 9 (Link from path to state variables in CP encoding) Let
xi,j,k be a path variable corresponding to the state variable xi,j in connection rela-
tion ri

k. Assume that the variables of ri
k are xi and xi0 , . . . , xip−1 for some p ∈ Z≥1.

10

Then, the link between xi,j,k, and the state variables xi0,j−1, . . . , xip−1,j−1, is en-
coded as follows, where j ∈ Z≥1, and ri

k is either a symmetric relation, or an
implication relation such that xi ∈ RHS(ri

k):

xi,j,k = xi0,j−1 ∧ · · · ∧ xip−1,j−1.

Proposition 10 (Link from state to path variables in CP encoding) Let
Path(xi,j) be the set of path variables {xi,j,k : 0 ≤ k ≤ λ− 1} corresponding to
the state variable xi,j. The link between xi,j and Path(xi,j) can be encoded as
follows:

xi,j = xi,j−1 ∨ xi,j,0 ∨ · · · ∨ xi,j,λ−1.

For a given system of connection relations (X,R), let T ⊆ X be the set of target
variables for which we are looking for a minimal guess basis. To encode this
problem into a CP model, we firstly consider a fixed positive integer value for
β as the depth of knowledge propagation and then generate the state and path
variables corresponding to β steps of knowledge propagation. Assume that the
chain S0 → · · · → Sβ , represents the knowledge propagation through β steps
where Sj = {xi,j : 0 ≤ i ≤ n− 1}. Then, we set the objective function as follows:

min
n−1∑
i=0

xi,0,

such that xi,β = 1 for all xi ∈ T , and all CP constraints corresponding to links
between the state and path variables (Proposition 9 and 10) are satisfied. If the
constructed CP model is satisfiable, then the set M := {xi ∈ X : xi,0 = 1} is a
guess basis for T . According to the ascending chain rule, the set M converges to
a minimal guess basis for T when β is large enough. Algorithm 1 summarizes
the steps required for CP encoding.

Encoding Using SMT Satisfiability Modulo Theories (SMT) refers to the
decision problem of deciding whether a first-order logic formula is satisfiable
with respect to combinations of background theories such as arithmetic, bit-
vectors and arrays. SMT problems can be considered as a generalization of SAT
problems, since they can express constraints on a higher abstraction level while
SAT problems are only expressed in propositional (zero-order) logic. Most SMT
solvers can not only determine the satisfiablity of a problem but also obtain a
satisfying assignment [5,22,27,55]. In addition, some SMT solvers such as Z3 [22]
can also be used to find a satisfying assignments that are optimal with respect to
some objective functions. This allows applying SMT solvers not only for search
problems, but also for optimization problems. Using these features, encoding
knowledge propagation as SMT constraints is more intuitive compared to MILP
encoding [14]. We will show in Section 6 that using the SMT solvers also gives a
better performance in comparison to the MILP solvers in some cases, particularly
when we look for only a feasible solution rather than solving an optimization

11

Algorithm 1: CP Encoding
Input: A system of connection relations (X,R), where X = {x0, . . . , xn−1}, a

set of target variables T ⊆ X, the depth β ∈ Z≥1 of knowledge
propagation

Output: A sufficient subset G ⊆ X for T
1 Initialize the dictionary Deriver, where keys(Deriver) = X;
2 for i = 0→ n− 1 do
3 Deriver[xi]← [{xi}];
4 for r ∈ R do
5 if r is a symmetric relation and xi ∈ r then
6 Deriver[xi]← Deriver[xi] ∪ [{v ∈ r : v ̸= xi}];
7 if r is an implication relation and xi ∈ RHS(r) then
8 Deriver[xi]← Deriver[xi] ∪ [LHS(r)];

9 Declare an empty CP model M;
10 for j = 0→ β − 1 do
11 for i = 0→ n− 1 do
12 M.var ← {xi,j+1};
13 λ← |Deriver[xi]|;
14 for k = 0→ λ− 1 do
15 Let Deriver[xi][k] = {xi0 , . . . , xip−1};
16 M.var ← {xi,j+1,k} ∪ {xi0,j , . . . , xip−1,j};
17 M.con← xi,j+1,k =

∧
l=0,...,p−1 xil,j ▷ Link path to the state

variables;
18 M.con← xi,j+1 =

∨
k=0,...,λ−1 xi,j+1,k ▷ Link state to the path

variables;

19 for xi ∈ T do
20 M.con← xi,β = 1 ▷ Target variables must be known in final step ;

21 M.obj ← min .
∑n−1

i=0 xi,0 ▷ Objective function ;
22 solution←M.solve ▷ Call a CP solver;
23 return G = {xi ∈ X|xi,0 = 1};

problem. Hence, we are motivated to utilize the SMT model alongside the MILP
model in our tool.

We encode the links between the state and path variables into SMT constraints,
using the bit-vector theory. An SMT problem in the bit-vector theory includes
a set of bit-vector variables and a set of bit-vector constraints defined using
logical (e.g., Equals, NotEquals, Implies, etc.) and bit-vector operations (e.g.,
⊕,⊞,≪, etc.).

Proposition 11 (Link from path to state variables in SMT encoding)
Let xi,j,k be a path variable corresponding to the state variable xi,j appearing in
the connection relation ri

k, and let {xi0 , . . . , xip
} denote the variables included in

ri
k besides xi. Then xi,j,k = 1 if and only if xi can be determined from ri

k at step
j − 1. This link between xi,j,k and the state variables {xi0,j−1, . . . , xip,j−1} can

12

be encoded as follows, where ri
k is either a symmetric relation or an implication

relation with xi ∈ RHS(ri
k):

Equals(xi,j,k, xi0,j−1 ∧ · · · ∧ xip,j−1).

Proposition 12 (Link from state to path variables in SMT encoding)
Let Path(xi,j) = {xi,j,k : 0 ≤ k ≤ λ−1} be the path variables corresponding to the
state variable xi,j. According to Proposition 7, xi,j = 1 if and only if xi,j−1 = 1,
or there exists xi,j,k ∈ Path(xi,j) such that xi,j,k = 1. Therefore, the link between
xi,j and its path variables can be encoded using the following SMT constraint:

Equals(xi,j , xi,j−1 ∨ xi,j,0 ∨ · · · ∨ xi,j,λ−1).

Given a system of connection relations (X,R), a subset of target variables T ⊂ X,
and a positive integer β as the depth of knowledge propagation, we construct an
SMT model which decides whether a guess basis of size up to α for T exists. To
do so, we firstly generate the state and path variables corresponding to β steps
of knowledge propagation. Assuming that X = {xi,j : 0 ≤ j ≤ n− 1, 0 ≤ i ≤ β},
after adding the SMT constraints linking the state and path variables to model
the knowledge propagation according to Proposition 11 and 12, we add the two
following conditions to the SMT model:

1. For all 0 ≤ i ≤ n− 1 : if xi ∈ T then Equals(xi,β , 1),
2.

∑n−1
i=0 xi,0 ≤ α, which can be described as follows using e = ⌈log2(n)⌉:

BVULE(BVAdd(BVZExt(xi,0, e), . . . , BVZExt(xi,n−1, e)), α), (1)

The first condition describes that all variables of T must be known at the end of
knowledge propagation and the second one imposes an upper bound of α on the
size of the guess basis. The resulting SMT model yields as its solution a guess
basis of size up to α for T , or returns UNSAT if none exists.

We can also use this model to solve the dependency problem. For exam-
ple, assume that we want to know whether the variable y is independent of
x1, . . . , xn ⊂ X. It is sufficient to consider X \ {x1, . . . , xn} as the known vari-
ables and y as the target variable, and then check if there exists a guess basis of
size zero. If not, y depends on {x1, . . . , xn}. As an application of this problem,
we can check whether an output variable of a block or stream cipher depends
on a certain set of input variables. Moreover, we can find the maximum number
of deduced variables when the number of guessed variables should be at most
k. To do so, we replace Line 20 and Line 21 in Algorithm 1 with constraints∑n−1

i=0 xi,0 ≤ k, and max
∑n−1

i=0 xi,β , respectively.

Encoding Using SAT The Boolean satisfiability problem (SAT) is the first
known NP-complete decision problem [16] to decide whether a Boolean formula
in conjunctive normal form (CNF) is satisfiable. The most typical algorithms
used in modern SAT solvers are based on the original idea of Conflict-Driven
Clause-Learning (CDCL) [51]. Although the SAT problem is an NP-complete

13

problem, many SAT instances including the instances we will generate in this
paper can often be solved quickly in practice.

To describe the problem of knowledge propagation and deciding whether there
exists a guess basis of size up to α for a given system of connection relations and
a subset of target variables, we need to encode links between the state and the
path variables, as well as boundary conditions into a CNF formula. Given that
all SMT constraints for the links are simple propositional formulas and every
propositional formula can be easily converted into an equivalent formula in CNF
form, we can model the knowledge propagation as a SAT instance with ease.

When it comes to coding the problem of deciding whether a guess basis of size
up to α exists, the only constraint which is not straightforward to describe in CNF
form is constraint 1, i.e.,

∑n−1
i=0 xi,0 ≤ α, since integer addition is an unnatural

operation in SAT language. If all xi,0 are binary variables, such constraints are
called cardinality constraints and belong to a larger problem class called Pseudo-
Boolean constraints. A naive approach to convert the cardinality constraint into
CNF form is enumerating all possible combinations of no more than α out of n
variables being true. In other words, one can consider the conjunction of

(
n

α+1
)

clauses
∧

i0,...,iα
(¬xi0 ∧ · · · ∧ ¬xiα), which is not feasible when n or k is large.

Encoding cardinality constraint into CNF is a well-studied topic for which a
large number of methods have been presented such as sequential counters [64],
cardinality networks [3], modulo totalizer [57], and iterative totalizer [52]. The
most common idea to encode the cardinality constraint is to introduce new
dummy variables to lower the number of constraints, since the sizes of variables
and constraints both have an important effect on the performance of solving. For
example, the sequential counters method is used by the authors of [50] and [65]
to automatic search for linear and differential characteristics, respectively.

We encode the cardinality constraint
∑n−1

i=0 xi ≤ α using sequential counters.
For this, we introduce new variables ui,j(0 ≤ i ≤ n− 2, 0 ≤ j ≤ α). By adding
the following clauses to the CNF model, where 1 ≤ i ≤ n− 2, and 1 ≤ j ≤ α− 1,
it becomes unsatisfiable when the cardinality is larger than α:

(¬x0 ∨ u0,0), (¬xn−1 ∨ ¬un−2,α−1),
(¬xi ∨ ui,0), (¬ui−1,0 ∨ ui,0), (¬xi ∨ ¬ui−1,α−1),
(¬u0,j),
(¬xi ∨ ¬ui−1,j−1 ∨ ui,j), (¬ui−1,j ∨ ui,j).

4 From Guess Basis to Gröbner Basis

As discussed in the previous section, to model the propagation of information in
all CP-based approaches (including MILP, SMT, SAT, and CP) for solving the
guess-and-determine problem, we have to define some additional state variables
to represent the different steps of knowledge propagation, as well as a critical
parameter to specify the depth of knowledge propagation, i.e., β in Algorithm 1.
In contrast to the CP-based approaches for solving the guess-and-determine
problem in which the depth of knowledge propagation must be specified at first,

14

Danner and Kreuzer in [21] proposed a new algebraic approach to model the
guess-and-determine problem in which not only there is no need to specify the
depth of search, but also it guarantees to output a guess basis of minimal length.

In this section, we briefly recall the method introduced in [21] to translate the
guess-and-determine problem to the problem of computing the reduced Gröbner
basis of a Boolean polynomial ideal. We extend their model to take the target
variables and known variables into account, allowing us to model the key-bridging
problem as well. According to [21], the system of connection relations is translated
to a binomial ideal such that its reduced Gröbner basis includes at least one
guess basis of minimum length. Therefore, this approach has two prominent steps
including the translation of connection relations to a Boolean polynomial system
and next computing the reduced Gröbner basis.

Given a system of connection relations (X,R), where X = {x0, . . . , xn−1},
without loss of generality we can assume that all of the relations are implication
relations. For each implication relation such as xi0 , . . . , xim−2 ⇒ xim−1 , we replace
each variable xik

with a Boolean variable Xik
representing whether it is known.

This yields the logical formula (¬Xi0 ∨ . . . ∨ ¬Xim−2 ∨Xim−1). In mathematical
logic, such a logical formula with at most one positive literal is called a Horn
clause and the conjunction of several Horn clauses is called a Horn formula, which
is a particular kind of CNF. Accordingly, a system of connection relations can be
translated to a Horn formula.

Next, the Horn formula is translated to the algebraic language. Let C be
the derived CNF with n binary variables, and let Sat(C) be a subset of {0, 1}n

including all solutions of C. It is well-known that C can be represented via a
set of Boolean polynomials F such that Sat(C) = Z(F), where Z(F) denotes
the solution set of F . To do so, every Horn clause (¬Xi0 ∨ . . . ∨ ¬Xim−2 ∨
Xim−1) is translated to a binomial xi0 · · ·xim−2 · (xim−1 + 1) in the Boolean
polynomial ring F2[x0,...,xn−1]

⟨x2
0+x0,...,x2

n−1+xn−1⟩ . Besides this naive approach to translate a
CNF to the system of Boolean polynomials in which each clause is individually
translated to an ANF, there is a block-wise method [41] as well where the overlap
between multiple clauses is also taken into account. Consequently, every system
of connection relations can be translated to a set of Boolean binomials. The
following theorem represents the relation between a minimal guess basis for a
system of connection relations and the reduced Gröbner basis of its corresponding
algebraic representation.

Proposition 13 (Link between guess basis and Gröbner basis [21]) Let
(X,R) be a system of connection relations where X = {x0, . . . , xn−1}, and
K, T ⊆ X include the known and target variables respectively. Let F be the set
of Boolean binomials in F2[x0,...,xn−1]

⟨x2
0+x0,...,x2

n−1+xn−1⟩ as the algebraic representation of
(X,R). Besides, assume that σ is a degree-compatible term ordering and J is
the ideal generated by F ∪ {k + 1 : for all k ∈ K}. Next, compute the reduced
σ-Gröbner basis of J + ⟨t | for all t ∈ T ⟩. Then every monomial xi0 · · ·xim−1

of smallest degree in this reduced Gröbner basis corresponds to a guess basis
G = {xi0 , . . . , xim−1} of minimal length.

15

5 Autoguess

We have developed Autoguess, an easy-to-use tool that implements these tech-
niques to find guess-and-determine attacks and key bridges. It receives a text
file including the system of relations, target and known variables, as well as a
positive integer as the depth of knowledge propagation1 as input, and outputs a
guess basis of minimum size. Autoguess supports all encoding methods including
CP, MILP, SMT, and SAT enabling the user to utilize almost all state-of-the-art
CP, MILP, SMT and SAT solvers. It also supports the Gröbner encoding method
described in Section 4, which has the advantage that the user does not need
to specify the depth of knowledge propagation. The output of Autoguess not
only represents the guessed variables but also includes the determination flow
which illustrates how the target variables can be determined from the guessed
variables. Additionally, Autoguess uses graphviz [29] to generate a directed
graph visualizing the determination flow.

Fig. 1: The program flow of Autoguess

Figure 1 gives a high-level view of program flow in Autoguess. As illustrated
in Figure 1, for the Gröbner basis approach we use SageMath [67], which provides
a direct interface to a lot of state-of-the-art efficient Gröbner basis algorithms
including PolyBoRi [12] and Singular [23]. Utilizing MiniZinc [54] as a CSP
modeling language that is accepted by a wide range of solvers to derive the
CP model in our tool, we are able to use almost all state-of-the-art CP solvers
supported by MiniZinc such as Or-Tools [59]2, Gecode [34] and Choco [60]. The
MILP encoding in Autoguess relies on PuLP [53], a high-level modeling library
through which many MILP solvers such as Gurobi [37] and CPLEX [18] are
available. In order to encode the guess-and-determine problem into an SMT
1 This parameter is not required when the Gröbner algorithm is used as the solver
2 Gold medalist of 2018, and 2019 MiniZinc Challenge in both fixed, and parallel

categories, and winner of the 2020 MiniZinc Challenge in parallel category

16

problem, we apply PySMT [33], which allows us to use a wide range of SMT
solvers supported by PySMT, including Z3 [22], CVC4 [5], Boolector [56]3,
MathSAT [13] and Yices [27]. To provide a direct access to SAT solvers, we
use PySAT [42] in our tool which supports many modern SAT solvers such as
CaDiCaL [9], Lingeling [8], Minisat [28] and MapleSAT [32]. Additionally, PySAT
supports a variety of cardinality constraint encodings including the sequential
counter which was discussed earlier in Line 23. We also observed that CaDiCaL
performs fastest among the mentioned SAT solvers.

Example 1. In the following system of equations, F, G, and H are some bijective
functions, where u, v, w, x, y, z are 16-bit variables and c1, . . . , c5 are constants.

F (u ⊞ v)⊕G(x)⊕ y ⊕ (z ≪ 7) = c1
G(u⊕ w) ⊞ (y ≪ 3) ⊞ z = c2
F (w ⊕ x) ⊞ y ⊕ z = c3
F (u)⊕G(w ⊞ z) = c4
F (u) ·G(w ≪ 7) ⊞ H(z ⊕ v) = c5

(2)

To find a minimal guess basis for Equation (2), we introduce a variable t =
F (u)·G(w ≪ 7) to encode the connection relations corresponding to Equation (2)
in a text file as follows:

1 # Comments
2 connection relations
3 u, v, x, y, z
4 u, w, y, z
5 w, x, y, z
6 u, w, z
7 u, w => t
8 t, z, v
9 end

Assuming that the name of the text file is relations.txt we call Autoguess as
follows:

1 autoguess .py -i relations .txt --maxsteps 5 --solver cp

As the output, Autoguess generates a text file including the guess basis and its
correspoding determination flow, as well as a graph visualizing the determination
flow, as in Figure 2.

The user can choose the encoding method as well as the solver. For example,
to find a guess basis via the Gröbner basis-based method, we can use the following
command:

1 autoguess .py -i relations .txt --solver groebner

Besides, we can specify the target and known variables in the input text file as
follows:
3 Winner of the SMT-COMP 2019 in the bit-vector track [39]

17

t

w
x

y

u

z
v

Fig. 2: Determination flow of variables in Equation (2) when w, z are guessed
variables, the others are deduced variables.

1 # Comment
2 connection relations
3 u, v, x, y, z
4 u, w, y, z
5 w, x, y, z
6 u, w, z
7 u, w => t
8 t, z, v
9 target

10 u
11 v
12 x
13 known
14 w
15 end

5.1 Preprocessing Phase

When translating a system of equations to a system of connection relations,
we only consider the connectivity relations between the variables and not the
algebraic structure of the original system of equations. This is why neither the CP-
based nor the Gröbner basis-based method can exploit the algebraic structure of
the given system of equations. On the other hand, some cryptographic primitives
can be simply described via algebraic equations over the same algebraic structure.
The following example shows that by taking the algebraic structure into account,
we might be able to achieve a better result.

Example 2. Consider the following system of equations over F2.

F =

x0x2 + x1x3 + x0 + x2 + x3 = 0
x1x2 + x0x3 + x2x3 + x0 + x1 + x3 = 0
x1x3 + x2x3 + x0 + x2 + 1 = 0
x0x1 + x0x2 + x1x2 + x2 + x3 + 1 = 0
x0x1 + x1x2 + x0x3 + x2 = 0
x0x2 + x0x3 + x2x3 + x0 + x1 + x2 + x3 = 0
x0x1 + x1x3 + x0 + 1 = 0

(3)

18

Using the CP-based or Gröbner basis-based methods, the smallest guess
basis that can be found for F has 3 elements. For example, it can be seen that
{x0, x1, x2} is a guess basis. Applying Gaussian elimination yields the following
system of 7 equations:

F2 =

x3x1 + x1 = 0 x1x0 + x1 + x0 + 1 = 0
x3x2 + x1 + x2 + x0 + 1 = 0 x2x0 + x2 = 0
x3x0 + x1 + x2 + x0 + 1 = 0 x3 + x1 + x0 = 0
x1x2 = 0

(4)

Here, new equations with lower weight have been derived. Taking into account
that x1x2 is known, if we translate F ∪ F2 into a system of connection relations,
we can find a guess basis with one variable less than before, such as G = {x0, x3}.
The determination flow of deducing all variables from {x0, x3} is represented by
Figure 3.

x2x3

x0x3

x3
x0x2

x2

x0

x0x1
x1

x1x3

x1x2

Fig. 3: Determination flow of deducing all variables from {x0, x3} using Equation (3)
and (4). known variables, guessed variables, deduced variables.

Following the algebraic approaches to solve multivariate polynomial equations
over finite field such as the Gröbner basis and XL algorithms [17, 31,44], we can
even derive further equations. To do so, we use reduced row echelon form of the
degree-D Macaulay matrix which is defined as follows.

Definition 6 [44] For any integer k, let Tk be the set of monomials of degree
smaller than or equal to k, in F2[x0, . . . , xn−1]. The degree-D Macaulay matrix
of a system of equation F , denoted by MacD(F), is the matrix with coefficients
in F2 whose columns are indexed by TD and rows are indexed by the set {(u, fi) |
i ∈ [1; m], u ∈ TD−deg(fi)}, and whose coefficients are those of the products u fi

in the basis TD.

Although reduced row echelon form of the Macaulay matrix can be used to
compute the Gröbner basis if D is large enough [48], we use relatively small D to

19

only derive further relations. For example, the reduced echelon form of degree-3
Macaulay matrix of Equation (3) with respect to graded lexicographic order
(grevlex or deglex) results in:

F3 =

x3x1x2 = 0 x3x2 + x0 = 0 x2x0 + x0 = 0
x3x1x0 = 0 x3x0 + x0 = 0 x3 + 1 = 0
x3x2x0 + x0 = 0 x1x2 = 0 x1 + x0 + 1 = 0
x1x2x0 = 0 x1x0 = 0 x2 + x0 = 0
x3x1 + x0 + 1 = 0

(5)

It can be seen that G = {x0} is a guess basis of F ∪ F3. As demonstrated
in this example, using the new algebraic equations derived from the original
equations using the reduced Macaulay matrix can result in a smaller guess basis.
Accordingly, we are motivated to use the degree-D Macaulay matrix where
D is relatively small (D ≤ 3) as a preprocessing phase when there are some
algebraic equations over finite field F2 among the given original equations. To
take advantage of the algebraic structure of the original equations, we have
included the Macaulay matrix preprocessing phase into Autoguess. Thanks to
this feature, the user is able to include the algebraic equations into the input
text file making a hybrid relation file consisting of connection relations as well
as algebraic relations. According to the given degree for the Macaulay matrix,
which is specified by the user, Autoguess applies the preprocessing phase on the
algebraic equations and converts the derived equations into connection relations
before encoding the guess-and-determine attack.

5.2 Early-Abort Technique

In this section we show that beside the size of the guess basis, other properties
of the guess basis which can be detected by investigating the determination flow
also have a significant impact on the computational complexity of the resulting
GD attack.

Example 3. Consider the following system of equations where each variable
represents a 16-bit word and S, L are bijective functions:

F3 =

 (x0 ≪ 3)⊕ S(x1)⊕ x2 = 0 x2 ⊞ L(x3) = 0
S(x0)⊕ S(x2)⊕ (x5 ≪ 2) = 0 (S(x3 · S(x1 · x4))⊕ L(x0)) ⊞ x6 = 0
L(x1 ⊞ x2) ⊞ x5 = 0 (S(x4)⊕ L(x6)) ⊞ x3 = 0

(6)

Let t = S(x3 · S(x1 · x4)), then Figure 4 shows the output of Autoguess to find a
guess basis for Equation (6) and demonstrates that all variables can be uniquely
deduced from G = {x0, x4, x5}. The dashed lines represent that x1 can be deduced
from {x5, x2} besides {x0, x2}. As illustrated in Figure 4, before guessing x4,
we can uniquely determine the value of x1 from two different equations, i.e.,
(x0 ≪ 3)⊕ S(x1)⊕ x2 = 0, and L(x0 ⊞ x2) ⊞ x5 = 0. Therefore, before guessing
x4, we can use the first equation to uniquely determine the value of x1, and

20

reserve L(x0 ⊞ x2) ⊞ x5 = 0 to merely check the correctness of the previous
guesses. Given that the equation L(x0 ⊞ x2) ⊞ x5 = 0 holds with probability of
2−16, we can filter out a fraction 2−16 of wrong guesses for (x0, x5) ∈ F32

2 before
guessing x4. Thus, the computational complexity of the GD attack is reduced
from 248 to 232.

x5

x2 x0

x1

x3 x4

x6t

Fig. 4: Determination flow of deducing all variables from {x0, x5, x4} using Equation (6).
Dashed lines represent that besides {x0, x2}, {x2, x5} also uniquely determines the value
of x1.

Beside the variable deduction from multiple independent paths, the unused
equations between deduced variables before guessing the entire basis can be
used for an early abortion of wrong guesses as well. If a variable deduction from
multiple independent paths or an unused relation between deduced variables
appears after guessing the entire guess basis, we can still use them for checking
the correctness of our guesses, but not for early abortion. As we will see in the
next sections, we can use this technique to reduce the data complexity of our GD
attack on block ciphers. To help the user to simply detect the unused equations
and the variables that can be deduced from multiple paths, Autoguess returns
all unused equations as well as those variables deducing from multiple paths, in
addition to the determination flow. Given that applying the preprocessing phase
may result in some redundant connection relations, the dependency between
multiple paths deducing one variable should be manually checked if we aim to
use both preprocessing and early abortion technique.

6 Application to Automatic Search for Key Bridges

In order to demonstrate the usefulness of our tool, we show its application to
automatic search for key bridges in both bit-oriented and word-oriented key
schedules.

6.1 Application to PRESENT

PRESENT is an ISO-standard ultra-lightweight SPN block cipher taking a 64-bit
plaintext and 80-bit (or 128-bit) key K = κ0 . . . κ79 (or K = κ0 . . . κ127) as input,
and returns a 64-bit ciphertext. The key schedule of PRESENT which include the
nonlinear operation S-box, are described in Algorithm 2 and 6 for key length of
80 and 128 respectively.

21

Algorithm 2: Key schedule of PRESENT-80
Input: A master key K = κ0 · · ·κ79 of 80 bits, a number of rounds r where

r ≤ 31
Output: r + 1 round sub-keys Ki of 64 bits

1 K0 ← κ0 · · ·κ63; ▷ Extract first round sub-key;
2 for i = 1→ r do
3 κ0 . . . κ79 ← κ61 . . . κ79κ0 . . . κ60; ▷ Rotate 19 bits to the right;
4 κ0κ1κ2κ3 ← S(κ0κ1κ2κ3); ▷ Apply S-box on leftmost nibble;
5 κ60κ61κ62κ63κ64 ← κ60κ61κ62κ63κ64 ⊕ i; ▷ Add round counter;
6 Ki ← κ0 . . . κ63; ▷ Extract round sub-key;
7 return {Ki}r

i=0;

Given that round counter i in line 6 of Algorithm 2 is known at each round,
the round counter addition does not have any impact on knowledge propagation.
Hence, to construct the system of connection relations corresponding to the
key schedule of PRESENT-80, we only consider rotation and S-box operations. To
model the S-box we assume that the output bits are deduced if all input bits
are known, and vice versa. Hence we use 2n implication relations to model each
S-box.

Let k0,r, . . . , k79,r represent whether the key bits κ0, . . . , κ79 are known in
round r, where 0 ≤ r ≤ 31, and k0,0, . . . , k79,0 correspond to the master key bits.
Since round counter are known, the system of connection relations for R rounds
of key schedule is

kr+1,i + kr,(i+61 mod 80),

kr,0, kr,1, kr,2, kr,3 ⇒ kr+1,i; kr+1,0, kr+1,1, kr+1,2, kr+1,3 ⇒ kr,i for 0 ≤ i ≤ 3,
(7)

where 0 ≤ r ≤ R−1. Similarly, to model R rounds of key schedule of PRESENT-128,
it is sufficient to use the following relations alongside the relations in Equation (7),
where 0 ≤ r ≤ R− 1:

kr,4, kr,5, kr,6, kr,7⇒kr+1,i;kr+1,4, kr+1,5, kr+1,6, kr+1,7⇒kr,i for 4 ≤ i ≤ 7. (8)

The best attacks on PRESENT so far are the linear attacks on 28 rounds of both
variants of this cipher, which have been proposed at EUROCRYPT 2020 [38]. The
authors of [38] introduced a new generalized and efficient key recovery technique
for linear cryptanalysis and used their method to improve the linear attacks on
26 and 27 rounds of both variants of PRESENT, and successfully applied it to
provide the first attack on 28 rounds of both variants of PRESENT. They also tried
to use the dependency relationships between the sub-key bits involved in the key
recovery to reduce the time complexity of their general key recovery algorithm
in simple, multiple and multidimensional linear cryptanalysis. Although it is
possible to use the dependency relationship between the sub-key bits in their
key recovery algorithm, they admit that have been unable to provide an efficient
general algorithm which takes account of all dependency relationships between
the key-bits involved in the key recovery.

22

In total, 96 of the key bits need to be guessed in the 26-round key recovery
attack on PRESENT-80 in [38]:

T ={k0,16∼47, k1,20∼27, k1,36∼43, k25,0, k25,2, k25,8, k25,10, k25,16, k25,18, k25,24,

k25,26, k25,32, k25,34, k25,40, k25,42, k25,48, k25,50, k25,56, k25,58}∪
{k26,2·i : 0 ≤ i ≤ 31}.

Exploiting the dependency relationships between the involved key bits, the
authors of [38] showed that they can all be deduced from 61 bits. However, using
Autoguess running on a single core of Intel Core i9 processor at 3.6 GHz, we
can find the minimal guess basis KT of size 60 in less than 3 seconds with the
Gröbner basis approach, which includes the following variables:

{k26,2·i : 0 ≤ i ≤ 7}∪{k6,42, k26,15∼22, k26,24, k26,26∼63, k26,67, k26,69, k26,75, k26,77}.

According to [38], the cost of computing the multiple linear cryptanalysis statistic
throughout the analysis phase of the multiple linear attack on 26 rounds of
PRESENT is M2 · 2|KT |, where M2 = 16. Consequently, our finding reduces the
time complexity of the analysis phase from 265 in [38] to 264. However, the total
complexity of the attack remains the same as [38], because the bottleneck of the
attack is the search phase with the time complexity of 268.2.

Moreover, to compute the time complexity of the analysis phase in the 28-
round multiple linear attack on PRESENT-128 [38], it is supposed that all the
involved key bits can be deduced from 114 bits, whereas the minimum-size guess
basis for the involved key bits that we could discover using our tool would
include 115 bits. Contacting the authors of [38] concerning this observation,
they confirmed that it is a typo, and they have also discovered a guess basis
of size 115 throughout their analysis. Consequently, the time complexity of the
analysis phase in the multiple linear attack on 28 rounds of PRESENT-128 in [38]
is expected to be more than 2121.58, whereas the authors of [38] claimed that it
should be less than 2121. However, the total time complexity of 28-round attack
on PRESENT-128 remains at 2122, as the analysis phase is not the bottleneck of
the attack.

6.2 Application to SKINNY

SKINNY [6] is a family of lightweight tweakable block ciphers with several block
and tweakey sizes, where the tweakey state can contain both key and tweak
material. Each instance of the SKINNY family is represented by SKINNY-n-t, where
n and t denote the block size and tweakey size, respectively (n ∈ {64, 128}, t ∈
{n, 2n, 3n}). The internal state of SKINNY can be viewed as a 4 × 4 array of
nibbles (for 64-bit block size) or bytes (for 128-bit block size), in which entries
are arranged row-wise. As illustrated in Figure 5a, five basic operations are
performed on the internal state in each round of SKINNY. The tweakey state is
also viewed as a collection of z 4 × 4 arrays, where z = t/n. We denote these
arrays by TK1 when z = 1, TK1 and TK2 when z = 2, and by TK1, TK2 and

23

TK3 when z = 3. The tweakey arrays are updated according to Figure 5b, which
illustrates one round of the tweakey schedule. It should be noted that SKINNY’s
tweakey schedule is linear and thus more amenable to different techniques for
finding minimal guess bases based on linear algebra in some cases. However, our
approach has the advantage that it can be directly merged into existing CP and
optimization models and thus take the key schedule into account when searching
for the best attacks, rather than only finding the best attacks based on a given
distinguisher.

(a) Round function (b) Tweakey schedule

Fig. 5: The SKINNY round function and key schedule

Let TK i[j] denotes the jth cell of TK i where i ∈ {1, 2, 3}. SKINNY does
not use a whitening tweakey. In each round of its tweakey schedule, firstly,
a permutation PT is performed on the cell positions of all tweakey arrays,
i.e., TK i[j] ← TK i[PT [j]], for all i ∈ {1, 2, 3}, 0 ≤ j ≤ 15, where PT =
[9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Then, for the SKINNY versions where
TK2 and TK3 are used, every cell of the first and second rows of TK2 and TK3
are individually updated with an LFSR. Finally, the first and second rows of
all tweakey arrays are extracted and bitwise Xored to the cipher internal state.
One can refer to [6] for detailed description of the SKINNY cipher.

For SKINNY versions where TK1, and TK2 are used, assume that TK1r[j]
and TK2r[j] denote the jth cell of tweakey arrays TK1 and TK2 at round r
respectively, where 0 ≤ r ≤ 35, 0 ≤ j ≤ 15, and TK10 = TK1, and TK20 = TK2.
Besides, let TK r[j] represents the jth cell of sub-tweakey which is Xored to
the cipher internal state at round r, where 0 ≤ j ≤ 7. Accordingly, TK r[j] =
TK1r[j] ⊕ TK r[j], for all 0 ≤ j ≤ 7, and 0 ≤ r ≤ 48. Given that TK r[j] =
TK1r[j]⊕ TK r[j] is a symmetric relation, and one can determine the value of
TK ir[j] by knowing the value of TK i[j] for all i ∈ {1, 2}, and 0 ≤ j ≤ 15, the
following symmetric connection relations hold:[

TK r[j], TK1[P (r)
T [j]], TK2[P (r)

T [j]]
]

, for 0 ≤ j ≤ 7, 0 ≤ r ≤ 48, (9)

where P
(r)
T represents the rth iteration of PT . For SKINNY versions where TK3

is used, assuming that TK3r[j] represents the jth cell of tweakey array TK3 at
round r where TK30 = TK3, we have TK r[j] = TK1r[j]⊕ TK2r[j]⊕ TK3r[j].
Hence, similarly the following symmetric connection relations will hold:[
TK r[j], TK1[P (r)

T [j]], TK2[P (r)
T [j]], TK3[PT (r)[j]]

]
, for 0 ≤ j ≤ 7, 0 ≤ r ≤ 56.

(10)

24

At FSE 2019, Ankele et al. [2] proposed a related-tweak zero-correlation attack
on 20 rounds of SKINNY-64-128 and 23 rounds of SKINNY-64-192. In the following,
we show how to improve their attacks.

Related-Tweakey ZC Attack on 20 Rounds of SKINNY-64-128 In the 20-
round related-tweak zero-correlation attack on SKINNY-64-128 proposed in [2], in
total, 20 sub-tweakey nibbles are guessed in the key-recovery attack, indicated by
crosses in Figure 6. Thus, the size of the involved secret sub-tweakey is 20×4 = 80
bits.

Fig. 6: Related-tweak zero-correlation key-recovery attack on 20-round SKINNY-64-
128 [2]. In the original attack, 20 nibbles must be guessed (marked by ×). However,
they can be deduced from 19 sub-tweakey nibbles (dark red). From these, all green
nibbles can be deduced.

Using our tool, we prove that these 20 sub-tweakey nibbles can be deduced
by guessing 19 sub-tweakey nibbles (dark red). As illustrated in Figure 6, the
following sub-tweakey nibbles (marked by ×) are involved in the key recovery:

T ={TK15[5], TK16[0], TK16[6], TK17[1], TK17[3], TK17[4], TK17[7], TK18[0], TK18[1],
TK18[3 ∼ 5], TK18[7], TK19[0], TK19[1], TK19[3 ∼ 5], TK19[6], TK19[7]}.

Considering the connection relations in Equation (9), and T as the set of target
variables in our tool, we found that the following set of variables G (dark red in
Figure 6) is sufficient:

G={TK1[13], TK16[0], TK16[6], TK17[1], TK17[4], TK17[7], TK18[0], TK18[1], TK18[3],
TK18[4], TK18[5], TK18[7], TK19[0], TK19[1 ∼ 4], TK19[5], TK19[6], TK19[7]}.

25

The following determination flow as an output of our tool proves that all
sub-tweakey nibbles highlighted in green can be deduced by knowing the variables
of G:

TK1[13],TK19[7]⇒TK2[13], TK1[13],TK2[13]⇒TK17[3], TK1[13],TK2[13]⇒TK15[5].

Therefore, the actual number of guessed sub-tweakey nibbles is 19 nibbles with
the key-bridging technique. Referring to Table 3 in [2], by guessing TK1[13]
(instead of TK17[3]) in step 8, we can determine the value of TK15[5] in the final
step. Therefore, the time complexity can be computed as:

3× 264 + 272 + 276 + 2× 280 + 284 + 2× 292 + 3× 288 ≈ 293.13.

Given that one structure filters incorrect guesses by a factor of 2−4 and in total
76 key bits should be guessed, 76/4 = 19 structures are sufficient to uniquely
determine the secret key. Consequently, the total time complexity is 297.36, the
data complexity is 19× 264 ≈ 268.25, and the memory complexity is 282 64-bit
blocks.

Fig. 7: Key recovery in related-tweak zero-correlation attack on 23-round SKINNY-64-
192 [2].

Related-Tweakey ZC Attack on 23 Rounds of SKINNY-64-192 In the
23-round related tweak zero-correlation attack on SKINNY-64-192 proposed in [2],

26

37 secret sub-tweakey nibbles are involved which are denoted by a cross in
Figure 7. Using the meet-in-the middle technique for integral attacks, the authors
of [2] evaluate

⊕
Z15[5] and

⊕
Z15[13] independently to see whether the involved

sub-tweakey nibbles satisfy
⊕

Z15[5] =
⊕

Z15[13]. Given that for a random
permutation

⊕
Z15[5] =

⊕
Z15[13] holds with probability of 2−4, and assuming

that the involved sub-tweakey nibbles take 2(37×4) = 2148 possible values, the
authors of [2] claim that 148/4 = 37 different structures are needed to uniquely
determine the involved secret key. However using our tool, we prove that 37
involved sub-tweakey nibbles can be deduced from 36 sub-tweakey nibbles. Hence,
the involved sub-tweakey nibbles take 236×4 = 2144 values, and 36 different
structures will be enough to uniquely determine the secret key.

According to the authors’ claim in [2], to compute
⊕

Z15[5], a set of 34
sub-tweakeys corresponding to the cells labeled orange and yellow in Figure 7 are
involved, which is represented by T1. On the other hand, a set of 25 sub-tweakey
nibbles corresponding to the cells highlighted in blue and yellow in Figure 7, are
involved in evaluation of

⊕
Z15[13] which is denoted by T2. Although there is no

guess basis of size less than 34 and 25 for T1 and T2 respectively, we discovered
that there is a guess basis of size 36 for T1 ∪ T2. Let the following set of variables
G be guessed:

G = {TK1[5], TK3[5], TK17[0, 6], TK18[1, 4, 7], TK19[0, 2, 3, 4, 5, 7], TK20[0 ∼ 7],
TK21[0 ∼ 7], TK22[0], TK22[2 ∼ 7]}.

Considering the connection relations of Equation (10), and set T1 ∪ T2 as the
target set, TK2[5], TK16[5], TK18[3] and TK22[1] can be deduced as follows:

TK1[5], TK3[5], TK20[7]⇒ TK2[5], TK1[5], TK2[5], TK3[5]⇒ TK16[5],
TK1[5], TK2[5], TK3[5]⇒ TK18[3], TK1[5], TK2[5], TK3[5]⇒ TK22[1].

Hence, G is a guess basis for T1∪T2, and all 37 involved sub-tweakey nibbles take
2(36×4) = 2144 values, and 36 structures are enough to uniquely determine the
secret key. In conclusion, the total time complexity is 36×(2150.4+2112.3) ≈ 2155.57,
the data complexity is 36 × 268 ≈ 273.17, and the memory complexity is 2138

64-bit blocks.

6.3 Application to LBlock

As another application of our tool on a cipher with nonlinear key schedule, we
apply it on LBlock [69]. Algorithm 7 describes the detailed key schedule of
LBlock, where S8 and S9 are two 4-bit S-boxes defined in [69], where the full
description of cipher can be found in as well. In the following examples, we denote
the input block in round i by Xi = Xi

L||Xi
R, the concatenation of two 32-bit

words, and the 32 sub-keys generated by the key schedule algorithm are denoted
by Ki for 0 ≤ i ≤ 31.

27

Application to Integral Attack on 24 Rounds of LBlock The best known
single-key attack on LBlock in terms of the number of attacked rounds so far,
except for biclique attack [68], is the 24-round integral attack proposed by Cui
et al. [19]. The authors exploit the relations between the sub-keys to reduce the
time complexity of the attack. Here, we show that our tool can automatically
detect the relations between the key bits and produce the determination flow
through which the involved key bits are deduced from the guessed variables. Let
Xi[j]{k} represent the kth bit of Xi[j], where Xi[j] denotes the jth nibble of Xi,
for 0 ≤ i ≤ 31 and 0 ≤ j ≤ 3. To mount a key-recovery attack on 24 rounds of
LBlock, the authors of [19] use a 17-round integral distinguisher based on which
the correctness of

⊕
Z17[4]{3, 2} =

⊕
X18

L [4]{3, 2} must be checked. Thanks
to the meet-in-the-middle technique, the authors of [19] compute

⊕
Z17[4] and⊕

X18
L independently to further reduce the time complexity of the attack. Let

kr,i, denote the ith bit of the sub-key in round r, where kr,0 is the least significant
bit of kr, for 0 ≤ i, r ≤ 31. As the key schedule of LBlock is similar to the key
schedule of PRESENT, we use the same method as before to extract the connection
relations for the key schedule of LBlock. To calculate the

⊕
Z17[4], 80 key bits

are involved:
T1 = {k17,8∼11, k18,4∼7, k19,24∼27, k20,16∼23, k21,0∼3, k21,8∼11, k21,28∼31, k22,28∼31,

k22,0∼7, k22,16∼23, k23,0∼19, k23,24∼31}.

Our tool automatically detects in less than a second that all key bits in T1 can
be determined from 55 key bits:

G1 = {k24,50∼79, k24,38∼47, k24,21∼29, k24,0∼3, k23,33.k19,33}

On the other hand, 48 key bits are involved in calculation of
⊕

X18
L [4] as follows:

T2 = {k19,12∼15, k20,12∼15, k21,24∼27, k21,12∼15, k22,24∼27, k22,20∼23, k22,12∼15,

k23,28∼31, k23,24∼27, k23,20∼23, k23,12∼15, k23,8∼11}.

Our tool automatically detects that all 48 key bits in T2 can be determined from
the following 47 key bits:

G2 = {k24,71∼79, k24,59∼66, k24,42∼49, k24,34∼37, k24,30, k24,17∼20, k24,8, k23,34∼36,

k23,29∼31, k22,34∼36, k21,34∼36}

Hence, guessing 47 bits is sufficient to compute
⊕

X18
L [4]. Lastly, we applied our

tool to find a guess basis for T = T1 ∪ T2, and it automatically detected that all
128 involved key bits in T can be deduced from the following 69 variables:

G = {k24,0∼8, k24,17∼30, k24,34∼79}.

Application to Impossible Differential Attack on 23 Rounds of LBlock
Applying our tool to find the key bridges among the key bits involved in the
impossible differential attack on 23 rounds of LBlock, we could reproduce the
same result as [49] in a couple of seconds thanks to the Gröbner basis-based
method. As illustrated in Figure 16, 144 involved sub-key bits in the impossible
differential attack on 23 rounds of LBlock can be deduced from 73 sub-key bits.

28

7 Application to Automatic Guess-and-Determine Attack
on Block Ciphers

In this section, we demonstrate the usefulness of our tool to automatically find
guess-and-determine attacks on block ciphers. In Appendix B and Appendix C
we also discuss the application to GD attack on CRAFT and SKINNY, respectively.

7.1 Automatic GD Attack on AES

AES [20] is an iterated block cipher which supports 128-bit blocks and keys of
lengths 128, 192, or 256 bits. Three different versions of AES, including AES-128,
AES-192, and AES-256 iterate a round function 10, 12, and 14 times respectively
to produce a 128-bit ciphertext. Figure 8 represents the round function of AES.

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

AK SB

x
x
x
x

SR

x
x

x
x

MC

wr−1 xr yr zr wr

Fig. 8: Round function of AES [43]

As illustrated in Figure 8, the 128-bit plaintext is arranged column-wise into
a 4× 4 array of bytes, and then each round performs 4 basic operations on the
internal state. Let wr,i,j , xr,i,j , yr,i,j and zi, denote whether the jth byte in the
ith row of internal state before AK, before SB, before SR, and before MC are known,
respectively.

The SB layer applies the same 8×8 S-box on each byte of the state array. Given
that xr,i,j is known if and only if yr,i,j is known for all 0 ≤ i, j ≤ 15, we can assume
that xr,i,j = yr,i,j . In the SR layer, the ith row is rotated by i bytes to the left. The
MC layer multiplies each column of the input state by a constant 4×4 MDS matrix
M . Given that M is a 4× 4 MDS matrix, if w = M × z, then knowing four bytes
of (z, w) is sufficient to uniquely determine the remaining four bytes. Furthermore,
zr,i,j = yr,i,(j+i) mod 4 and yr,i,j = xr,i,j for all 0 ≤ i, j ≤ 15. Hence, each matrix
multiplication (wr,0,j , wr,1,j , wr,2,j , wr,3,j)t = M × (zr,0,j , zr,1,j , zr,2,j , zr,3,j)t with
0 ≤ j ≤ 3 in the MC layer can be modeled via

(8
5
)

= 56 symmetric relations, each
of which including five variables from the following set:

{wr,0,j , wr,1,j , wr,2,j , wr,3,j , xr,0,j , xr,1,j+1, xr,2,j+2, xr,3,j+3}.

Therefore, in total, 4×
(8

5
)

= 224 symmetric relations or equivalently 224×5 = 1120
implication relations are required to model the MC layer.

The key schedule of AES-128 is represented in Figure 9. Let kr,i,j denote
whether the jth byte in the ith row of the sub-key in round r is known, where
0 ≤ i, j ≤ 3, and 0 ≤ r ≤ 10. Since round constant ci is known, we can model the

29

Fig. 9: AES-128 key schedule

key schedule of AES via linear algebraic relations. To do so, for each key variable
kr,i,3, 0 ≤ i ≤ 3, in the third column of the key state, we define a new variable
skr,i,3 as well as the new symmetric relation [kr,i,3, skr,i,3], since kr,i,3 can be
uniquely determined from skr,i,3 and vice versa. Therefore, we can model the key
schedule as follows:

kr,i,j ⊕ kr+1,i,j−1 ⊕ kr+1,i,j = 0, 0 ≤ i ≤ 3, 1 ≤ j ≤ 3,

kr,3,0 ⊕ skr,0,3 ⊕ kr+1,3,0 = 0, kr,1,0 ⊕ skr,2,3 ⊕ kr+1,1,0 = 0,

kr,2,0 ⊕ skr,3,3 ⊕ kr+1,2,0 = 0, kr,0,0 ⊕ skr,1,3 ⊕ kr+1,0,0 = 0.

The advantage of modeling the key schedule via the algebraic equations is
that we can apply the preprocessing phase on the above equations to derive more
relations between the key variables4. In the AK layer, 16 bytes of sub-key are
Xored to the internal state, which can be modeled via the following connection
relations:

[wr−1,i,j , kr,i,j , xr,i,j] for all 0 ≤ i, j ≤ 15.

Consider an adversary who seeks to break one full round of AES, i.e., AK ◦ MC ◦
SR ◦ SB ◦ AK, where only a single known plaintext is available. Given the system
of connection relations corresponding to one round of AES as well as the known
and target variables, (with or without preprocessing phase) Autoguess finds a
minimal guess basis of size 6 bytes:

G = {k0,0,1, k1,0,0, k1,3,1, x0,2,3, k0,0,2, k0,0,0}. (11)

It means there is a guess-and-determine attack with time complexity of 248

on one full rounds of AES. Assisting the output of Autoguess, we can specify
4 In this case we set the degree of Macaulay matrix in preprocessing phase to be 1

which is equivalent to applying Gaussian elimination on the original equations.

30

the number of required known plaintext/ciphertext pairs for this attack. Fig-
ure 10(right) is generated by Autoguess and visualizes the determination flow in
the GD attack on one round of AES, where the known, guessed and determined
variables are represented by blue, red, and green squares, respectively and dashed
arrows link variables that can be deduced from multiple paths. It can be seen in
Figure 10 that k0,2,1 can be deduced from both {p2,1, x0,2,1}, and {k1,2,0, k1,2,1}.
Therefore, this gives us an 8-bit condition to check the correctness of the guesses.
There is a similar situation for k1,3,3 and k0,1,0 as well. w0,0,3 can also be deduced
either from {x1,0,3, k1,0,3} or from {x0,0,3, x0,3,2, w0,1,3, w0,2,3} (MC layer). Besides,
according to the output of Autoguess which prints out the unused relations, we
notice that two symmetric relations [k0,2,0, k0,3,3, k1,2,0], and [k0,1,1, k1,1,0, k1,1,1]
have not been used during the determination which can be reserved for checking
the correctness of guesses. These all give 48-bit conditions which hold with a
probability of 2−48. Hence, given a known pair of plaintext/ciphertext, by guess-
ing 6 bytes we can uniquely determine the internal state as well as the secret key,
without the need for an additional pair of plaintext/ciphertext for checking the
correctness.

Fig. 10: Determination flow in GD attack on one full round of AES. Red and blue circles
represent the guessed and known variables, respectively, and green circles the deduced
variables.

31

It should be noted that this attack has been already discovered in [25], using
manual approaches. However, with Autoguess running on a single-core Intel Core
i9 processor at 3.6 GHz, we can discover this attack in less than 0.01 second after
14 steps of knowledge propagation when the SAT solver CaDiCal is called as the
solver. Using the Gröbner basis-based method we also discovered a guess basis of
size 6 bytes (after about 5 seconds on the same system).

Applying Autoguess on 2 and 3 rounds of AES, we find guess bases of size 11 and
15 bytes, respectively. Thanks to the output of Autoguess, in the same way as our
attack on 1 round of AES, we make sure that only one known plaintext/ciphertext
pair is sufficient to uniquely determine the unknown variables. It means that there
are guess-and-determine attacks with time complexity of 288 and 2120 on 2 and 3
rounds of AES, respectively, which require only one known plaintext/ciphertext
pair. Figure 17 and Figure 19 represent the determination flow in guess-and-
determine attacks on 2 and 3 rounds of AES, respectively. It is worth noting that
running Autoguess on a single core Intel Core i9 processor at 3.6 GHz, and using
the SAT-based method (CaDiCal), it took less than a minute, to find the GD
attack on 3 rounds of AES, whereas it took about 10 hours when we used the
Gröbner basis approach (PolyBoRi). We also used the MILP-based methods
(Gurobi) to find the GD attack on AES, and noticed that it also much slower than
the SAT-based method in this application even if we want to find only a feasible
solution.

It should be mentioned that the best previous GD attacks on 1 and 2 rounds
of AES proposed in [11] are still better by guessing one byte less than our attacks.
Although the tool proposed in [11] also works on byte-level, it implements a
dedicated algorithm to search for GD and MITM attacks on AES and hence
exploits the algebraic dependencies in AES-like equations, whereas in our CP-
based method we are not able to make the most of the algebraic dependencies. For
instance, the 2-round GD attack on AES with time complexity of 280 in [11] exploits
the algebraic dependencies between non-consecutive sub-keys (observation 3
in [11]), which can not be completely exploited even with the preprocessing phase
of Autoguess. We noticed that if we manually include the relations between
non-consecutive sub-keys into the system of relations corresponding to 2 rounds
of AES, Autoguess also finds a GD attack with a time complexity of 280 on two
rounds of AES which requires only one known plaintext/ciphertext pair as shown
in Figure 18. Although the dedicated tool introduced in [11] exploits the algebraic
dependencies, Autoguess gives the same result as [11] concerning the GD attack
on 3 rounds of AES, when only one known plaintext/ciphertext pair is available.

7.2 Automatic GD Attack on Khudra

Khudra [47] is a lightweight block cipher designed for FPGA based platforms. It
receives a 64-bit plaintext with an 80-bit master key and then iterates a generalized
Feistel structure 18 times to produce a 64-bit ciphertext. After splitting the 80-bit
master key into five 16-bit sub-keys k0, . . . , k4, Khudra periodically uses two
different sub-keys in each round. For more details about the specification of
Khudra, we refer to [47]. Mehmet et al. [58] proposed an equivalent representation

32

for Khudra which reveals that the effective key length for one round of Khudra
is 16 bits. Thanks to this new alternative representation, they discovered a GD
attack on 14 rounds of Khudra, using manual approaches. Figure 11 depicts the
round function in the equivalent representation of Khudra. Here, using Autoguess
we automatically rediscover the best GD attacks on 14 rounds of Khudra.

Fig. 11: The rth and last round in the equivalent representation of Khudra

Let y = F(x), since F is a bijective function, x is known if and only if y is
known. Besides, the constants are also known. Hence, F as well as constants can
be omitted in our connection relations. Assuming that xr,i denotes whether the
ith branch at the input of round r is known, and according to Figure 11, the
connection relations corresponding to R rounds of Khudra are as follows, where
0 ≤ r ≤ R− 1 and d = k2 ⊕ k3:

[xr,0, k(2r+1)%5, xr,1, xr+1,0], [xr,2, xr,3, xr+1,2], [xr,0, xr+1,3],
[xr,2, xr+1,1], [xR,0, k4, xR+1,0], [xR,1, k4, xR+1,1],
[xR,2, xR+1,2], [k2, k3, d], [xR,3, d, xR+1,3].

Note that x0,0||x0,1||x0,2||x0,3 and xR+1,0||xR+1,1||xR+1,2||xR+1,3 are both known,
as they are corresponding to the plaintext and ciphertext, respectively. Table 3
briefly describes the time and data complexity of the discovered GD attacks
by Autoguess on 1 to 14 rounds of Khudra. For 14 rounds four 16-bit variables
should be guessed, which yields a GD attack with time complexity of 264 in
which merely 2 known plaintexts are required. Figure 20 (top) represents the
determination flow in the GD attack on 14 rounds of Khudra. From the output
of Autoguess, we noticed that one variable can be deduced from two independent
relations, and two symmetric relations each of which inducing a 16-bit condition
are not used during the determination which can be reserved for checking the
correctness of guesses. Hence, there are three 16-bit conditions which can be
satisfied with a probability of 2−48. Given that we are required to check the
correctness of 64 guessed bits, one additional known plaintext/ciphertext pair is
required to uniquely determine the internal state as well as the secret key.

33

Table 3: Number of guessed variables in GD attack on 1 to 14 rounds of Khudra
#Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14
#Guessed variables 0 1 1 1 2 3 3 3 3 4 4 4 4 4
#Required data (KP) 1 1 1 1 2 2 2 2 2 2 2 2 2 2

8 Application to Automatic Guess and Determine Attack
on Stream Ciphers

This section is dedicated to showing the application of Autoguess for the guess-
and-determine attack on stream ciphers.

8.1 Automatic GD Attack on ZUC

ZUC is a word-based stream cipher which has two versions, ZUC-128 [30] and ZUC-
256 [66]. ZUC-128 takes a 128-bit key with 128-bit IV, whereas the length of key and
IV in ZUC-256 is 256 and 128 bits, respectively. Although the initialization phase
of ZUC-128 and ZUC-256 is different, they perform exactly the same keystream
generation phase as illustrated in Figure 12.

Fig. 12: The keystream generation pahse of ZUC stream cipher

The keystream generation phase of ZUC consists of three layers including a
linear feedback shift register (LFSR); the bit-reorganization layer (BR) and

34

a nonlinear block which is denoted by F . The LFSR layer is composed of 16
cells denoted by St, . . . , St+15 at clock t, such that each cell stores 31 bits as
an element from the finite field GF (p), where p = 231 − 1. The LFSR part is
updated according to the following relation:

S16+t = 215S15+t + 217S13+t + 221S10+t + 220S4+t + (1 + 28)St mod p. (12)

Besides, if S16+t = 0, then S16+t = p. As the connection layer between the
LFSR and F , the BR layer extracts 128 bits from LFSR to form four 32-bit
words X0, X1, X2, and X3 such that the first three words are fed to F and the
last one is Xored with the output of F to generate the keystream. If we denote
the value of registers X0, X1, X2, X3, X4 at clock t as X0t, X1t, X2t, X3t, then
we have X0t = SH15+t||SL14+t, X1t = SL11+t||SH9+t, X2t = SL7+t||SH5+t,
and X3t = SL2+t||SHt, where SHt and SLt represent the high and low 16 bits
of register St, respectively, i.e., SHt = St[30 . . . 15] and SLt = St[15 . . . 0]. Note
that, in this representation, SLt[15] = SHt[0], i.e., the least significant bit of
SHt is the same as the most significat bit of SLt. The nonlinear function F
has two 32-bit registers R1 and R2 which takes X0t, X1t, X2t as the input and
produces one 32-bit word which is used to generate the keystream output word
Zt as follows:

Zt = ((R1t ⊕X0t) ⊞32 R2t)⊕X3t, (13)

where R1t and R2t represent the value of registers R1 and R2 at clock t, respec-
tively. Next, F is updated according to the following relations:

W1t = R1t ⊞32 X1t, (14)
W2t = R2t ⊕X2t, (15)
R1t+1 = S (L1 (W1Lt||W2Ht)) , (16)
R2t+1 = S (L2 (W2Lt||W1Ht)) , (17)

where W1Ht, and W1Lt represent the high and low 16 bits of W1 at clock t,
respectively. W2Lt, and W2Ht are defined in the same way. Here S is a 32× 32
one-to-one S-box, and L1, L2 are two 32× 32 linear functions. Because the attack
in this paper uses only the keystream generation phase, we ignore the initialization
phase, but refer to [30] and [66] for more details.

The best previous guess-and-determine attack on ZUC has been proposed
in [36] and has a computational complexity of 2392 while requiring 9 keystream
outputs. The GD attack in [36] is based on half-words, i.e., 16-bit blocks, by
splitting the registers in the LFSR and F into high and low 16 bits, where some
1-bit additional variables are introduced to link the half-words. Here, assisted
by Autoguess, we propose a GD attack on ZUC with a computational complexity
of 2390, whereas we use the same amount of keystream outputs as [36], i.e., 9
keystream outputs.

To find the GD attack on ZUC, we use the same half-word-based model as [36],
but we use Autoguess to find a guess basis rather than the manual approach.
Firstly, we recall the half-word-based relations in [36]. Assume that R1Ht and

35

R1Lt represent the high and low 16 bits of R1 at clock t. R2Ht and R2Lt are
defined in the same way. According to Equation (13), we have:

ZLt = ((SL14+t ⊕R1Lt) ⊞16 R2Lt)⊕ SHt, (18)
ZHt = ((SH15+t ⊕R1Ht) ⊞16 R2Ht ⊞16 c1t)⊕ SL2+t, (19)

where ZLt, and ZHt denote the high and low 16 bits of output word Z at clock t,
and c1t represents the carry bit in modular addition (SL14+t ⊕R1Lt) ⊞16 R2Lt.
Hence, we have:

c1t =
{

1 (SL14+t ⊕R1Lt) + R2Lt ≥ 216

0 (SL14+t ⊕R1Lt) + R2Lt < 216.
(20)

Splitting the Equation (14) into two 16-bit halves, we have:

W1Lt =R1Lt ⊞16 SH9+t, (21)
W1Ht =R1Ht ⊞16 SL11+t ⊞16 c2t, (22)

where c2t is the carry bit of modular addition (SL14+t ⊕R1Lt), which is defined
as below:

c2t =
{

1 R1Lt + SH9+t ≥ 216

0 R1Lt + SH9+t < 216.
(23)

In the same way we can split the Equation (15) into two 16-bit parts as follows:

W2Lt =R2Lt ⊕ SH5+t, (24)
W2Ht =R2Ht ⊕ SL7+t. (25)

As it can be seen, all of the derived relations can be simply modeled via
symmetric relations, except for Equation (20) and Equation (23) which can be
modeled via the implication relations. For example, according to Equation (20) we
can deduce the value of c1t if we know the values of SL14+t, R1Lt, and R2Lt, i.e.,
SL14+t, R1Lt, R2Lt ⇒ c1t. The Equation (23) can be modeled via an implication
relation in the same way. Besides the main equations, we define some trivial
implication relations to link each 32-bit word to its corresponding half-words.
For example, to link St to its corresponding half-words SHt and SLt, we include
the following implication relations into the model:

St ⇒ SHt, St ⇒ SLt, SHt, SLt ⇒ St.

Therefore, we can generate the system of connection relations modeling the
knowledge propagation through to the given number of clock cycles of ZUC based
on half-words. In contrast to the previous system of connection relations in our
paper, where all variables have the same amount of information, the system
of connection relations for ZUC is composed of variables with different lengths.
To consider the length of each variable, we use a weighted objective function
in Line 21 of Algorithm 1, such that each variable is multiplied by its length.

36

Consequently, solving the generated model yields a guess basis of minimum
weight, which corresponds to the minimum number of guessed bits to derive the
internal state of ZUC.

After applying Autoguess on the system of connection relations derived from
9 clock cycles of ZUC, we noticed that finding a minimal guess basis is very time
consuming such that the state-of-the-art MILP or CP solvers are not able to
solve the derived optimization problem in a reasonable time. However, we are
still able to find some feasible solutions which result in some guess basis smaller
than the guess basis proposed in [36] by two bits. The following is one of the
guess bases of size 391 bits we found using Autoguess:

G = {S5, R15, S19, SH13, S6, S7, S9, S10, SL13[14 . . . 0], S15, S16, S18, S20, c25,

SH12, c13}.

Note that it is supposed that Zt and subsequently ZLt, ZHt are known for
0 ≤ t ≤ 8. Thanks to the output of Autoguess, which precisely represents the
determination flow, we noticed that two halves of S11, i.e., SL11 and SH11 can be
deduced from two independent paths. Besides, using Autoguess we could simply
detect that both SL11 and SH11 are independent of c13, SH12. To do so, we
simply consider G \ {c13, SH12} as the known variables and T = {SL11, SH11}
as the target variable in the input file of Autoguess and next run Autoguess to see
whether there is a guess basis of size zero. This is the case, which means SL11 and
SH11 can be uniquely deduced from G \ {c13, SH12}. As a consequence, we can
check the condition SH11[0] = SL11[15], before guessing c13, SH12 as an early
abortion technique to filter out half of the wrong guesses. Algorithm 3 precisely
describes our GD attack on ZUC more. Before Line 18 of Algorithm 3, 374 bits
are guessed in total. Since the condition in Line 18 holds with a probability
of 2−1, the lines after Line 18 will be performed 2373 times on average, where
there is a loop enumerating 217 possible cases for (SH12, c13). Hence, the total
computational complexity of our GD attack on ZUC is 2390, in which we use 9
output keystream to determine the whole internal state.

9 Key-Recovery-Friendly Distinguishers

As we saw in the previous sections, the complexity of the attack on block ciphers
is not only dependent on the distinguisher, but also depends on the actual key
bits involved in the extended rounds before and after the distinguisher. However,
most of the automatic CP-based methods to search for distinguishers are blind to
the key recovery phase and only describe the distinguishing part. Very recently,
some authors have tried to make a unified CP-model combining the distinguisher
and key recovery phases to directly find a key recovery attack, but they are
limited to block ciphers with linear key schedules [15, 61,62]. To the best of our
knowledge, no general CP-based model integrating the distinguishing and key
recovery phases in which key-bridging can be considered for both linear and
nonlinear key schedules has been introduced so far. In this section, we show

37

Algorithm 3: GD Attack on ZUC With Time Complexity of 2390

Input: Output keystream derived from 9 clock cycles of ZUC: (Z0, . . . , Z8)
1 forall (S5, R15, S19, SH13) ∈ F110

2 do
2 W 1L4, W 2H4 ⇐ (16); R1L4 ⇐ (21); R2L5 ⇐ (18); c15 ⇐ (20); c24 ⇐ (23);
3 forall (S20, S7) ∈ F62

2 do
4 X05 ⇐ SH20||SL19; X35, X20 ⇐ SL7, SH5; R25 ⇐ (13);
5 W 1H4, W 2L4 ⇐ (17);
6 forall (S16, S10, c25, S9, S15, S18, S6) ∈ F178

2 do
7 W 1H5 ⇐(22); W 2L5 ⇐(24);R26 ⇐ (17); X14, X28 ⇐ SL15||SH13;
8 S21 ⇐ (12); R14 ⇐ (14); R2L4 ⇐ (24); R1L6 ⇐ (18); S22 ⇐ (12);
9 X04 ⇐ SH19||SL18; SH4 ⇐ (18); c14 ⇐ (20); R2H4 ⇐ (19);

10 X34 ⇐ SL6||SH4; W 1L3, W 2H3 ⇐ (16); c16 ⇐ (20);
11 X22, X37 ⇐ SL9||SH7; c26 ⇐ (23); W 1L3, W 2H3 ⇐ (16);
12 W 1L6 ⇐ (21); SL11 ⇐ (25); R24 ⇐ (13); X07 ⇐ SH22||SL21;
13 R2H3 ⇐ (25);
14 forall SL13[14 . . . 0] ∈ F15

2 do
15 W 2H6 ⇐ (25); R17 ⇐ (16); S3 ⇐ (12);
16 R27 ⇐ (13); W 2L6, W 1H6 ⇐ (17);
17 SH11 ⇐ (24); X10 ⇐ SL11||SH9; X12 ⇐ SL13||SH11;
18 if SH11[0] = SL11[15] then
19 forall (SH12, c13) ∈ F17

2 do
20 W 1H3, W 2L3 ⇐ (17); c23 ⇐ (23); R1H3 ⇐ (19);
21 R1L3 ⇐ (21); SL14 ⇐ (22); X17 ⇐ SL18||SH16;
22 W 17 ⇐ (14); W 2H7 ⇐(25); R18 ⇐(16); W 2L7 ⇐(24);
23 R28 ⇐(17); SH8 ⇐(18); R2L3 ⇐(24); SL17 ⇐(18);
24 R1H6 ⇐(22); SL8 ⇐(19); X21 ⇐SL8||SH6;
25 W 1L2, W 2H2 ⇐(16); W 1H2, W 2L2 ⇐(17); R1L2 ⇐(21);
26 R12 ⇐(14); W 1L1, W 2H1 ⇐(16); R22 ⇐(15);
27 W 2L1, W 1H1 ⇐(17); X16 ⇐SL17||SH15; R16 ⇐(14);
28 W 1L5, W 2H5 ⇐(16); SL12 ⇐(25); X11 ⇐SL12||SH10;
29 R11 ⇐(14); R21 ⇐(15); W 1L0, W 2H0 ⇐(16); R10 ⇐(14);
30 W 2L0, W 1H0 ⇐(17); R20 ⇐(15); X00 ⇐SH15||SL14;
31 X30 ⇐ (13); SL2 ⇐ X30; R2L2 ⇐ (24); SH2 ⇐ (18);
32 SH14 ⇐ (21); S17(12); S1 ⇐(12); S4 ⇐(12); S0 ⇐(12);
33 if ZUC18clks(S0, . . . , S15, R10, R20) = (Z0, . . . , Z17) then
34 return (S0, . . . , S15, R10, R20)
35 else
36 Go to step 1 and try another guesses.

that our CP-based approach to find the key-bridges is consistent with previous
CP-based methods to search for distinguishers, and hence they can be merged
to directly find a key-recovery-friendly distinguisher. To do so, we extend the
CP model introduced in [62] to take the key recovery as well as the key-bridging
technique into account while searching for DS-MITM distinguishers for ciphers
with linear and nonlinear key schedules.

In [62], the attacks are built based on two approaches. The first approach
enumerates several distinguishers where some valid DS-MITM distinguishers are
enumerated in advance by listing some solutions of the underlying CP model
that only describes the distinguisher phase. Next, key recovery is mounted upon
the listed distinguishers from which they pick the best one. Hence, this approach
is not efficient when there are many solutions for the distinguishing phase. In the
second approach, taking the key recovery attack into account, they generate a
more advanced CP model to produce a key recovery attack directly. However, the

38

authors of [62] admit that their advanced CP models are unable to completely
exploit the key-bridging technique. For example, they limit the guessed sub-key
variables to be in a special round which should be specified by the user in advance.
Hence, by extending the CP model proposed in [62], the authors of [15] tried to
propose a CP model taking the key-bridging technique into account, but only for
SKINNY-128-384, which has a linear key schedule.

Our strategy to integrate the key-bridging technique into the previous CP-
based frameworks for automatic search of distinguishers can be summarized as
follows:

1. First, we generate the constraints describing the distinguisher part based
on the previous CP-based approaches. In this step, some additional con-
straints can be used to limit the data, memory, and time complexity of the
distinguishing phase.

2. Next, we generate the constraints modeling the active cell propagation before
and after the distinguisher, based on which the involved sub-keys can be
determined.

3. Then, to model the key-schedule taking the key-bridging technique into
account, we generate the constraints describing the key-bridging technique
based on our approach.

4. We define a few additional constraints to link the variables for the last step
of knowledge propagation in the key-bridging constraints to the variables
indicating the involved sub-keys in the outer rounds.

5. Finally, we look for a feasible solution minimizing the actual number of
guessed sub-key variables such that all involved sub-keys can be deduced.

Note that, although the above model aims to minimize the number of actual
guessed sub-keys, it can be easily modified to minimize the memory or data
complexity when the number of actual guessed sub-keys is limited to be lower
than or equal to some bound. Modeling the distinguisher part as well as the
active cells propagation through the outer rounds (Item 1 and Item 2) has been
sufficiently discussed in the previous works [61,62]. Item 3 also has been described
in the previous sections. Hence, we now explain Item 4.

Fig. 13: A high level view of the involved key materials in a key recovery attack.

39

Among the variables defined in Item 2, let ISKr,i be a binary variable
indicating whether the ith word (bit) of sub-key in round r is involved. Assuming
that wk sub-key words (bits) are used in each round, as illustrated in Figure 13,
suppose that B = {ISKr,i : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ wk − 1}, and F = {ISKr,i :
rb + rm ≤ r ≤ rb + rm + rf − 1, 0 ≤ i ≤ wk − 1} include the indicator variables
corresponding to the involved sub-key words in the rounds before and after
the distinguisher, respectively. Moreover, assuming that β ∈ Z≥0 denotes the
depth of knowledge propagation in our key-bridging technique, let SKr,i,j specify
whether the ith word of the sub-key in round r is known at the jth step of
knowledge propagation. In contrast to our previous key-bridging models, where
the target sub-keys were specified in advance, we include the following constraints
to dynamically determine the target sub-key variables in our new model:

{SKr,i,β ≥ ISKr,i : 0 ≤ r ≤ rb−1 ∨ rb+rm ≤ r ≤ rb+rm+rf−1, 0 ≤ i ≤ wk−1}.

Therefore, if ISKr,i = 1 then SKr,i,β = 1, which ensures that each involved
sub-key variable should be deduced after β steps of knowledge propagation.
Consequently, to find the minimum number of guessed sub-key variables, it is
enough to minimize the number of guessed sub-key variables at the first step of
knowledge propagation, i.e.,

∑
r,i SKr,i,0.

To model the distinguisher part as well as the active cells propagation, we
use the same method as [62], and our notations in the rest of this section follow
theirs.

9.1 Improved DS-MITM Attack on TWINE-80

The best DS-MITM attack on TWINE-80 is a 20-round attack built upon a
11-round distinguisher [62]. Thanks to combining our key-bridging technique
with the automatic method to search for DS-MITM distinguishers in [62], we
discovered that using a 10-round distinguisher yields a better key recovery attack
on 20-round TWINE-80 in terms of time complexity and memory complexity.

Complexity As illustrated in Figure 21, the DS-MITM distinguisher requires
guessing 14 nibbles (compared to 19 in [62]) and hence the time complexity of the
offline phase is 24×14×24×1× 14

20×8 CE ≈ 256.48CE (compared to 276.93CE in [62]),
where CE is the time of running 20 rounds of TWINE-80. The memory complexity
is (24 − 1) × 4 × 2 × 24×14 ≈ 262.91 bits (previously 282.91). As illustrated in
Figure 23, 26 sub-key nibbles are involved in the key recovery phase of our attack.
With the key-bridging technique, all 26 sub-key nibbles can be deduced from
19 sub-key nibbles (Figure 24). The number of involved S-boxes in the outer
rounds is 7 + 12 = 19 (Figure 22), so the time complexity of the online phase is
24×19× 24×1× 7+12

20×8 ≈ 276.92, slightly lower than in [62]. The 76-bit subkey space
is reduced by 4 bits. The data complexity is 24×8 = 232, since 8 input nibbles
are active (Figure 22).

40

9.2 DS-MITM Attack on SKINNY-128-256
To show the usefulness of our method for ciphers with linear key schedules,
we apply it to find a DS-MITM attack on 19 rounds of SKINNY-128-256 in the
single-tweakey setting. Although there is a 9.5-round DS-MITM distinguisher on
SKINNY-128-256 which we can extend to a key recovery attack on 19 rounds, we
discovered that using an 8.5-round distinguisher yields a better attack in terms
of time complexity and memory complexity.

Complexity For distinguisher part (Figure 25), 30 words should be guessed to
determine the output sequence. Hence, in the offline phase the time complexity is
28×25 × 28×1 × 25

16×19 CE ≈ 2204.39CE , and the memory complexity is (28 − 1)×
8× 1× 28×25 ≈ 2210.99 bits. 12 cells are active in the input state (Figure 26), so
the data complexity is 28×12 = 296. For the online phase (Figure 27), 45 sub-key
bytes are involved in the key recovery, but thanks to the key-bridging technique
they can be deduced from 29 sub-key bytes. In total, 22 + 69 = 91 S-boxes are
involved in the outer rounds (Figure 26), so the time complexity of the online
phase is 229×8 × 28×1 × 22+69

16×19 × CE ≈ 2238.26CE , where CE is the running time
of 19 rounds of SKINNY-128-256.

While we demonstrated the application of our method only for DS-MITM
attacks, it can be straightforwardly applied to find key-recovery-friendly distin-
guishers in linear or differential cryptanalysis as well.

9.3 DS-MITM Attack on SKINNY-64-192
Applying our searching method to find a DS-MITM attack for SKINNY-64-192,
we discovered a 21-round DS-MITM attack in the single-tweakey setting relying
on 8.5-round distinguisher. Again, although there is a 9.5-round DS-MITM
distinguisher for SKINNY-64-192 which can be used to construct a 21-round
attack, thanks to our new model we noticed that building the attack on an
8.5-round distinguisher results in a better attack in terms of complexity.

Complexity Figure 29 illustrates the distinguisher of our attack on 21 rounds of
SKINNY-64-192, where 31 nibbles should be guessed in the offline phase. Hence,
the time complexity of the offline phase is 24×31 × 24×2 × 31

21×16 CE ≈ 2128.56CE ,
and the memory complexity is (24×2 − 1) × 4 × 24×31 ≈ 2133.99 bits. As it is
shown in Figure 30, 15 nibbles are active in the input state in the first round,
which shows that the data complexity of our attack is 24×15 = 260 chosen
plaintexts. Figure 31 represents that 63 sub-key nibbles are involved in the key
recovery attack, but as it can be seen in Figure 32 they can be deduced from
only 45 sub-key nibbles. As a result, the time complexity of the online phase is
245×4 × 24×2 × 29+101

21×16 CE ≈ 2186.63CE .

9.4 DS-MITM Attack on SKINNY-64-128
We also applied our method to find an 18-round DS-MITM attack on SKINNY-
64-128, which relies on a 7.5-round distinguisher rather than an 8.5-round distin-
guisher.

41

Complexity We use a 7.5-round distinguisher as illustrated in Figure 33 in our
attack on 18 rounds of SKINNY-64-128. According to Figure 33, 14 nibbles should
be guessed in the offline phase. Hence, the time complexity of the offline phase is
24×14× 24×1× 14

18×16 CE ≈ 255.64CE , and the memory complexity of this phase is
(24×1− 1)× 4× 1× 24×14 ≈ 261.91bits. As it can be seen in Figure 35, 47 sub-key
nibbles are involved in our attack. However, as it can be seen in Figure 36 only
31 sub-key nibbles should be actually guessed. As a result the time complexity
of the online phase is 24×31 × 24×1 × 16+74

18×16 CE ≈ 2126.32CE . By the way, since 8
nibbles are active in the input of round 0 in Figure 34, the data complexity is
24×8 = 232 chosen plaintexts.

10 Comparison Between Solvers and Limitations

Throughout our experiments, we observed that in many cases, the SAT-based
method outperforms the other methods when we want to find only a feasible
solution. For instance, thanks to the SAT-based method implemented in Au-
toguess, and executing on a single core Intel Core i9 processor at 3.6 GHz, it
takes less than a second to reproduce the GD attack on Enocoro-128v2 in [14],
whereas finding the same result (i.e., a feasible solution) via the MILP-based
method takes at least couple of minutes. We had the same observation in applying
Autoguess to reproduce the best previous GD attacks on SNOW1, SNOW2, SNOW3,
KCipher2, etc. However, we observed that in some other applications, using the
Gröbner basis approach gives a better performance. For instance, we observed
that the Gröbner basis-based method performs very well in our applications for
the key-bridging technique, while it also ensures the optimum output. Therefore,
it makes sense to integrate different encoding methods in one tool, since each
encoding method might be suitable for a specific application. Although our tool
is easy to use, it is very general, and hence it may produce attacks slower than
the dedicated attacks designed for a specific cipher. We would like to discuss
some of its main limitations and directions for future work as follows:

• Autoguess currently does not support automatically finding solutions in which
a function (or group) of variables is guessed rather than guessing every single
variable. For example, it is not possible to find a solution in which x⊕ y is
guessed unless we define a dummy variable such as d = x⊕ y in the system
of connection relations.

• The choice of a new variable to guess depends only on previously guessed
variables and ignores the guessed values, whereas considering the values
during the guessing process might result in a guess-and-determine attack
with less complexity (static guessing strategy vs. dynamic guessing strategy).
• Guessing some variables might result in a system of linear equations in the

middle steps of knowledge propagation which causes some other variables
to be determined for free. However, we are currently unable to check the
existence of such systems of linear equations in our method.

• In some cases, the derived SAT or MILP models are too heavy to solve in
a reasonable time. For instance, applying Autoguess to bit-oriented ciphers

42

with large block sizes such as Ascon [24] yields a very heavy SAT or MILP
models.

11 Conclusion

In this paper, we proposed Autoguess, an easy-to-use, general and open-source
tool to search for a minimal guess basis in guess-and-determine attacks which is
also applicable to find key-bridges in key recovery attacks on block ciphers. As a
new encoding method, we introduced the SAT/SMT encoding of the guess-and-
determine problem which outperforms the MILP and Gröbner basis approaches
from the performance point of view particularly when searching for feasible
solutions. Our tool integrates the new SAT/SMT encoding method, as well as
MILP- and Gröbner basis-based methods to automate guess-and-determine and
key-bridging techniques. To demonstrate the usefulness of our tool, we showed
that many previous guess-and-determine attacks as well as key-bridges, which
were usually discovered based on tedious and error-prone manual approaches, can
now simply be discovered in a couple of seconds using our tool. Moreover, using
our tool, we could improve several of the previous results regarding key-bridging
technique and guess-and-determine attack. This demonstrates the potential of
using Autoguess for both design and cryptanalysis. Moreover, we managed to
integrate our CP-based approach for key-bridging technique into the previous
CP-based frameworks for finding distinguishers and introduced a general CP
model to search for key recovery friendly distinguishers supporting both linear
and nonlinear key schedules for the first time.

Acknowledgments

The authors would like to thank Mohammad Ali Orumiehchiha and Siwei Sun
for motivating discussions and some helpful comments on the earlier version of
the tool.

References

1. Ahmadi, H., Eghlidos, T.: Heuristic guess-and-determine attacks on stream ciphers.
IET Information Security 3(2), 66–73 (2009)

2. Ankele, R., Dobraunig, C., Guo, J., Lambooij, E., Leander, G., Todo, Y.:
Zero-correlation attacks on tweakable block ciphers with linear tweakey ex-
pansion. IACR Transactions on Symmetric Cryptology 2019(1), 192–235 (Mar
2019). https://doi.org/10.13154/tosc.v2019.i1.192-235, https://tosc.iacr.
org/index.php/ToSC/article/view/7402

3. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality
networks and their applications. In: Theory and Applications of Satisfiability
Testing – SAT 2009. pp. 167–180. Springer (2009)

43

https://doi.org/10.13154/tosc.v2019.i1.192-235
https://tosc.iacr.org/index.php/ToSC/article/view/7402
https://tosc.iacr.org/index.php/ToSC/article/view/7402

4. Babbage, S., De Cannière, C., Lano, J., Preneel, B., Vandewalle, J.: Cryptanal-
ysis of SOBER-t32. In: Johansson, T. (ed.) Fast Software Encryption – FSE
2003. LNCS, vol. 2887, pp. 111–128. Springer (2003). https://doi.org/10.1007/
978-3-540-39887-5_10

5. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Computer Aided Verification – CAV 2011. pp.
171–177. Springer (2011), available from https://github.com/CVC4/CVC4

6. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Advances in Cryptology – CRYPTO 2016. pp. 123–153.
Springer (2016)

7. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. IACR Trans. Sym-
metric Cryptol. 2019(1), 5–45 (2019). https://doi.org/10.13154/tosc.v2019.
i1.5-45

8. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT competition
2013. Proceedings of SAT competition 2013, 1 (2013), available from https:
//github.com/arminbiere/lingeling

9. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) SAT Competition
2020 – Solver and Benchmark Descriptions. Department of Computer Science
Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

10. Biryukov, A., Derbez, P., Perrin, L.: Differential analysis and meet-in-the-middle
attack against round-reduced TWINE. In: Fast Software Encryption – FSE 2015.
pp. 3–27. Springer (2015)

11. Bouillaguet, C., Derbez, P., Fouque, P.A.: Automatic search of attacks on round-
reduced AES and applications. In: Advances in Cryptology – CRYPTO 2011. pp.
169–187. Springer (2011)

12. Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner-basis computa-
tions with Boolean polynomials. Journal of Symbolic Computation 44(9), 1326 –
1345 (2009). https://doi.org/DOI:10.1016/j.jsc.2008.02.017, effective Meth-
ods in Algebraic Geometry. Available from http://polybori.sourceforge.net

13. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT
4 SMT solver. In: Computer Aided Verification – CAV 2008. pp. 299–303. Springer
(2008), available from https://mathsat.fbk.eu/

14. Cen, Z., Feng, X., Wang, Z., Cao, C.: Minimizing deduction system and its applica-
tion. arXiv preprint arXiv:2006.05833 (2020), https://arxiv.org/abs/2006.05833

15. Chen, Q., Shi, D., Sun, S., Hu, L.: Automatic Demirci-Selçuk meet-in-the-middle
attack on SKINNY with key-bridging. In: International Conference on Information
and Communications Security – ICICS 2019. pp. 233–247. Springer (2019)

16. Cook, S.A.: The complexity of theorem-proving procedures. In: Symposium on
Theory of computing – STOC 1971. pp. 151–158 (1971)

17. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solv-
ing overdefined systems of multivariate polynomial equations. In: Advances in
Cryptology – EUROCRYPT 2000. pp. 392–407. Springer (2000)

18. Cplex, I.I.: V12.10.0: User’s manual for cplex (2020), available from https://www.
ibm.com/analytics/cplex-optimizer

19. Cui, Y., Xu, H., Qi, W.: Improved integral attacks on 24-round LBlock and LBlock-s.
IET Information Security (2020)

44

https://doi.org/10.1007/978-3-540-39887-5_10
https://doi.org/10.1007/978-3-540-39887-5_10
https://github.com/CVC4/CVC4
https://doi.org/10.13154/tosc.v2019.i1.5-45
https://doi.org/10.13154/tosc.v2019.i1.5-45
https://github.com/arminbiere/lingeling
https://github.com/arminbiere/lingeling
https://doi.org/DOI: 10.1016/j.jsc.2008.02.017
http://polybori.sourceforge.net
https://mathsat.fbk.eu/
https://arxiv.org/abs/2006.05833
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer

20. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999), https://csrc.nist.gov/
csrc/media/projects/cryptographic-standards-and-guidelines/documents/
aes-development/rijndael-ammended.pdf

21. Danner, J., Kreuzer, M.: A fault attack on KCipher-2. International Journal of
Computer Mathematics: Computer Systems Theory pp. 1–22 (2020)

22. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems – TACAS 2008. pp. 337–340. Springer
(2008), available from https://github.com/Z3Prover/z3

23. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-2-0 — A
computer algebra system for polynomial computations. http://www.singular.
uni-kl.de (2020)

24. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to the CAESAR Competition (2016)

25. Dunkelman, O., Keller, N.: The effects of the omission of last round’s MixColumns
on AES. Information Processing Letters 110(8-9), 304–308 (2010)

26. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Advances in Cryptology – ASIACRYPT 2010. pp.
158–176. Springer (2010)

27. Dutertre, B.: Yices 2.2. In: Computer Aided Verification – CAV 2014. pp. 737–744.
Springer (2014), available from https://yices.csl.sri.com/

28. Een, N.: MiniSat: A SAT solver with conflict-clause minimization. In: Theory and
Applications of Satisfiability Testing – SAT 2005. pp. 502–518 (2005), available
from http://minisat.se

29. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz – open
source graph drawing tools. In: Graph Drawing – GD 2001. pp. 483–484. Springer
(2001), https://graphviz.org

30. ETSI/SAGE: Specification of the 3gpp confidentiality and integrity algorithms
128-EEA3 and 128-EIA3: ZUC specification. ETSI/SAGE, Document 2, Version
1.6 (2011)

31. Faugere, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 international symposium on
Symbolic and algebraic computation. pp. 75–83 (2002)

32. Ganesh, V., Liang, J.: MapleSAT (2017), available from https://sites.google.
com/a/gsd.uwaterloo.ca/maplesat/maplesat

33. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT Workshop 2015 (2015), available from https:
//github.com/pysmt/pysmt

34. Gecode Team: Gecode: Generic constraint development environment (2006), avail-
able from http://www.gecode.org

35. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) Advances
in Cryptology – EUROCRYPT ’97. LNCS, vol. 1233, pp. 239–255. Springer (1997).
https://doi.org/10.1007/3-540-69053-0_17

36. Guan, J., Ding, L., Liu, S.: Guess and determine attack on SNOW3G and ZUC.
Journal of Software 24(6), 1324–1333 (2013)

37. Gurobi Optimization, Incorporate: Gurobi optimizer reference manual (2020),
available from https://www.gurobi.com

38. Gutiérrez, A.F., Naya-Plasencia, M.: Improving key-recovery in linear attacks:
Application to 28-round PRESENT. In: Advances in Cryptology – EURO-
CRYPT 2020. LNCS, vol. 12105. Springer (2020). https://doi.org/10.1007/
978-3-030-45721-1_9

45

https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://github.com/Z3Prover/z3
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
https://yices.csl.sri.com/
http://minisat.se
https://graphviz.org
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/maplesat
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/maplesat
https://github.com/pysmt/pysmt
https://github.com/pysmt/pysmt
http://www.gecode.org
https://doi.org/10.1007/3-540-69053-0_17
https://www.gurobi.com
https://doi.org/10.1007/978-3-030-45721-1_9
https://doi.org/10.1007/978-3-030-45721-1_9

39. Hadarean, L., Hyvarinen, A., Niemetz, A., Reger, G.: 14th international satisfiability
modulo theories competition (SMT-COMP 2019): Rules and procedures

40. Hawkes, P., Rose, G.G.: Guess-and-determine attacks on SNOW. In: Selected Areas
in Cryptography – SAC 2002. pp. 37–46. Springer (2002)

41. Horáček, J., Kreuzer, M.: On conversions from CNF to ANF. Journal of Symbolic
Computation 100, 164–186 (2020)

42. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit for pro-
totyping with SAT oracles. In: Theory and Applications of Satisfiability Testing –
SAT 2018. pp. 428–437 (2018), available from https://pysathq.github.io/docs/
html/api/solvers.html

43. Jean, J.: TikZ for Cryptographers. https://www.iacr.org/authors/tikz/ (2016)
44. Joux, A., Vitse, V.: A crossbred algorithm for solving Boolean polynomial systems.

In: International Conference on Number-Theoretic Methods in Cryptology. pp. 3–21.
Springer (2017)

45. Khazaei, S., Moazami, F.: On the computational complexity of finding a minimal
basis for the guess and determine attack. ISeCure – The ISC International Journal
of Information Security 9(2), 101–110 (2017)

46. Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis
methods for (alleged) RC4. In: Ohta, K., Pei, D. (eds.) Advances in Cryptology
– ASIACRYPT ’98. LNCS, vol. 1514, pp. 327–341. Springer (1998). https://doi.
org/10.1007/3-540-49649-1_26

47. Kolay, S., Mukhopadhyay, D.: Khudra: a new lightweight block cipher for FPGAs.
In: Security, Privacy, and Applied Cryptography Engineering – SPACE 2014. pp.
126–145. Springer (2014)

48. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of
algebraic equations. In: European Conference on Computer Algebra. pp. 146–156.
Springer (1983)

49. Lin, L., Wu, W., Zheng, Y.: Automatic search for key-bridging technique: applica-
tions to LBlock and TWINE. In: Fast Software Encryption – FSE 2016. pp. 247–267.
Springer (2016)

50. Liu, Y., Wang, Q., Rijmen, V.: Automatic search of linear trails in ARX with
applications to SPECK and Chaskey. In: Applied Cryptography and Network
Security – ACNS 2016. pp. 485–499. Springer (2016)

51. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

52. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints
for MaxSAT. In: Principles and Practice of Constraint Programming – CP 2014.
pp. 531–548. Springer (2014)

53. Mitchell, S., OSullivan, M., Dunning, I.: PuLP: a linear programming toolkit for
Python. The University of Auckland, Auckland, New Zealand (2011), available from
https://github.com/coin-or/pulp

54. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
Towards a standard CP modelling language. In: Principles and Practice of Constraint
Programming – CP 2007. pp. 529–543. Springer (2007)

55. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. Journal on
Satisfiability, Boolean Modeling and Computation 9, 53–58 (2014 (published 2015))

56. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. Journal on
Satisfiability, Boolean Modeling and Computation 9, 53–58 (2014 (published 2015))

57. Ogawa, T., Liu, Y., Hasegawa, R., Koshimura, M., Fujita, H.: Modulo based CNF
encoding of cardinality constraints and its application to MaxSAT solvers. In:

46

https://pysathq.github.io/docs/html/api/solvers.html
https://pysathq.github.io/docs/html/api/solvers.html
https://www.iacr.org/authors/tikz/
https://doi.org/10.1007/3-540-49649-1_26
https://doi.org/10.1007/3-540-49649-1_26
https://github.com/coin-or/pulp

International Conference on Tools with Artificial Intelligence – ICTAI 2013. pp.
9–17. IEEE (2013)

58. Özen, M., Çoban, M., Karakoç, F.: A guess-and-determine attack on reduced-round
Khudra and weak keys of full cipher. IACR Cryptol. ePrint Arch. 2015, 1163
(2015)

59. Perron, L., Furnon, V.: OR-Tools (2021), https://developers.google.com/
optimization/

60. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Solver Documentation. TASC,
INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016), http://www.
choco-solver.org

61. Qin, L., Dong, X., Wang, X., Jia, K., Liu, Y.: Automated Search Oriented to Key
Recovery on Ciphers with Linear Key Schedule: Applications to Boomerangs in
SKINNY and ForkSkinny. IACR Transactions on Symmetric Cryptology 2021(2),
249–291 (Jun 2021). https://doi.org/10.46586/tosc.v2021.i2.249-291, https:
//tosc.iacr.org/index.php/ToSC/article/view/8911

62. Shi, D., Sun, S., Derbez, P., Todo, Y., Sun, B., Hu, L.: Programming the Demirci-
Selçuk meet-in-the-middle attack with constraints. In: Advances in Cryptology –
ASIACRYPT 2018. pp. 3–34. Springer (2018)

63. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE
Transactions on Computers 34(1), 81–85 (1985). https://doi.org/10.1109/TC.
1985.1676518

64. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints.
In: Principles and Practice of Constraint Programming – CP 2005. pp. 827–831.
Springer (2005)

65. Sun, L., Wang, W., Wang, M.: More accurate differential properties of LED64
and Midori64. IACR Transactions on Symmetric Cryptology 2018(3), 93–123 (Sep
2018). https://doi.org/10.13154/tosc.v2018.i3.93-123, https://tosc.iacr.
org/index.php/ToSC/article/view/7298

66. Team, Z.D.: The ZUC-256 stream cipher (2018), http://www.is.cas.cn/ztzl2016/
zouchongzhi/201801/W020180126529970733243.pdf

67. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.2.0) (2021), https://www.sagemath.org

68. Wang, Y., Wu, W., Yu, X., Zhang, L.: Security on LBlock against biclique crypt-
analysis. In: Workshop on Information Security Applications – WISA 2012. pp.
1–14. Springer (2012)

69. Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) Applied Cryptography and Network Security – ACNS 2011. pp. 327–344.
Springer (2011)

70. Zaikin, O., Kochemazov, S.: An improved SAT-based guess-and-determine attack
on the alternating step generator. In: Information Security Conference – ISC 2017.
pp. 21–38. Springer (2017)

47

https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://www.choco-solver.org
http://www.choco-solver.org
https://doi.org/10.46586/tosc.v2021.i2.249-291
https://tosc.iacr.org/index.php/ToSC/article/view/8911
https://tosc.iacr.org/index.php/ToSC/article/view/8911
https://doi.org/10.1109/TC.1985.1676518
https://doi.org/10.1109/TC.1985.1676518
https://doi.org/10.13154/tosc.v2018.i3.93-123
https://tosc.iacr.org/index.php/ToSC/article/view/7298
https://tosc.iacr.org/index.php/ToSC/article/view/7298
http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf
http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf
https://www.sagemath.org

— Auxiliary Material —

A Brute-force Search to Find a Guess Basis

Algorithm 4: Propagate
Input: Set K of variables, and set R of connection relations over X ⊇ K
Output: Set Y = Propagate(K)

1 Initialize a dictionary KnownVars of length n, where, keys(KnownVars) = X;
2 for v ∈ X do
3 if v ∈ K then
4 KnownVars[v]← 1;
5 else
6 KnownVars[v]← 0;

7 Y ← ∅;
8 while Y ̸= K do
9 Y ← K;

10 for r ∈ R do
11 if r is a symmetric relation then
12 if

∑
v∈r

KnownVars[v] = |r| − 1 then
13 DeterminedVar← v ∈ r for which KnownVars[v] = 0;
14 K ← K ∪ {DeterminedVar};
15 KnownVars[DeterminedVar]← 1;

16 if r is an implication relation then
17 if

∧
v∈LHS(r) v = 1 then

18 DeterminedVar← v ∈ RHS(r);
19 K ← K ∪ RHS(r);
20 KnownVars[DeterminedVar]← 1;

21 return Y;

Algorithm 5: Exhaustive Search for a Minimal Guess Basis
Input: Set X of variables and set R of connection relations over X
Output: A minimal guess basis G

1 n← |X|;
2 for k = 1→ n do
3 P ← {S : S ⊆ X, |S| = k};
4 for S ∈ P do
5 if Propagate(S) = X then
6 return G = S

48

B Automatic GD Attack on CRAFT

CRAFT [7] is a lightweight tweakable block cipher which receives a 64-bit plaintext
with a 128-bit master key plus a 64-bit master tweak and then perform an SPN
round function as shown in Figure 14 for 32 times to produce a 64-bit ciphertext.
To produce the sub-tweakeys, the tweakey schedule of CRAFT splits the 128-bit
key K of CRAFT into two halves K0 and K1 at first and then using the nibble-wise
permutation Q, it mixes the key K with the given master tweak T according to
the following relations to produce four different tweakeys:

TK0 = K0 + T, TK1 = K1 + T, TK2 = K0 + Q(T), TK3 = K0 + Q(T),

where Q = [12, 10, 15, 5, 14, 8, 9, 2, 11, 3, 7, 4, 6, 0, 1, 13]. After that, starting from
TK0, CRAFT uses the four derives tweakeys TK0, TK1, TK2, TK3 periodically as
the sub-tweakey in each round.

Fig. 14: The Round Function of CRAFT

Here, given one (or at most two) known plaintext/ciphertext pair(s), we look
for a word-oriented GD attack on reduced-round CRAFT. As it is represented in
Figure 14, let Xr and Yr denote the input and output of MixColumn layer of
round r respectively. Besides, to represent the ith nibble of Xr and Yr we use
Xr,i and Yr,i respectively. According to Figure 14 and taking into account that
the master tweak T is publicly known, the connection relations corresponding to
R rounds of CRAFT are as follows:

[Xr,i, Yr,i+8, Xr,i+12, Yr,i] for 0 ≤ i ≤ 3,

[Xr,i+4, Yr,i+12, Yr,i+4] for 0 ≤ i ≤ 3,

[Xr,i+8, Yr,i+8] for 0 ≤ i ≤ 3,

[Xr,i+12, Yr,i+12] for 0 ≤ i ≤ 3,

[Yr,i, Kr%2,i, Xr+1,P [i]] for 0 ≤ i ≤ 15,

where r%2 denote r modulo 2, 0 ≤ r ≤ R, and P is the nibble-wise permutation
used in each round of CRAFT. Note that X0, and XR both are known as they

49

are corresponding to the plaintext and ciphertext, respectively. Table 4 briefly
describes the result of our nibble-wise GD attack on CRAFT. We also couldn’t
find a nibble-wise GD attack on 14 rounds of CRAFT. In conclusion, at least 14
rounds of CRAFT are required to mix all the key nibbles into the cipher.

Table 4: Number of guessed variables in GD attack on 1 to 13 rounds of CRAFT
#Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13

#Guessed nibbles 0 16 16 20 20 23 23 26 26 28 28 29 30
#Required data (KP) 1 2 2 2 2 2 2 2 2 2 2 2 2

C Automatic GD Attack on SKINNY

We also applied our tool on SKINNY to search for word-oriented GD attacks on
reduced-round of this cipher. As it is illustrated in Figure 15, let Xr and Yr denote
the internal state before SB and after ART layers respectively. Besides, according
to the tweakey schedule of SKINNY-n-n, the ith cell of round tweakey TKr is
equal to P

(r)
T [i]th cell of TK1. Hence, the connection relations corresponding to

R rounds of SKINNY-n-n are as follows:

[Xr[i], TK1[P (r)
T [i]], Yr[i]] for 0 ≤ i ≤ 7,

[Xr[i], Yr[i]] for 8 ≤ i ≤ 15,

[Yr[P [i]], Yr[P [i + 8]], Yr[P [i + 12]], Xr+1[i]] for 0 ≤ i ≤ 3,

[Yr[P [i]], Xr+1[P [i + 4]]] for 0 ≤ i ≤ 3,

[Yr[P [i + 4]], Yr[P [i + 8]], Xr+1[i + 8]] for 0 ≤ i ≤ 3,

[Yr[P [i]], Yr[P [i + 8]], Xr+1[i + 12]] for 0 ≤ i ≤ 3,

where P is the permutation of SKINNY’s round function which is performed on
the position of cells and defined as follows:

P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12].

Given one (or at most two) known plaintext/ciphertext pair(s) we are inter-
ested to find the minimum number of guessed words such that all of the involved
sub-tweakeys can be deduced. In a similar way, we can discover GD attacks on
the other variants of SKINNY. Table 5, summarizes our results for GD attack on
SKINNY. As it can be seen our attacks reach up to 11 rounds of this cipher.

50

Fig. 15: Variables used in GD attack on SKINNY-n-n

Table 5: Number of guessed variables in GD attack on 1 to 11 rounds of SKINNY
Cipher #Rounds 1 2 3 4 5 6 7 8 9 10 11

SKINNY-n-n #Guessed variables 0 0 3 5 6 9 10 12 12 14 15
#Required data (KP) 1 1 1 1 1 1 1 1 1 1 1

SKINNY-n-2n
#Guessed variables 8 16 19 21 22 25 26 28 28 30 31
#Required data (KP) 1 2 2 2 2 2 2 2 2 2 2

SKINNY-n-3n
#Guessed variables 16 32 35 37 38 41 42 44 44 46 47
#Required data (KP) 2 2 2 2 2 2 2 2 2 2 2

D Key Schedule of PRESENT-128

Algorithm 6: Key schedule of PRESENT-128
Input: A master key K = κ0 · · ·κ127 of 128 bits, a number of rounds r

where r ≤ 31
Output: r + 1 round sub-keys Ki of 64 bits

1 K0 ← κ0 · · ·κ63; ▷ Extract first round sub-key;
2 for i = 1→ r do
3 κ0 . . . κ127 ← κ61 . . . κ127κ0 . . . κ60; ▷ Rotate 61 bits to the left;
4 (κ0κ1κ2κ3)← S(κ0κ1κ2κ3);
5 (κ4κ5κ6κ7)← S(κ4κ5κ6κ7); ▷ Apply S-box on two leftmost

nibbles;
6 κ61κ62κ63κ64κ65 ← κ61κ62κ63κ64κ65 ⊕ i; ▷ Add round counter;
7 Ki ← κ0 . . . κ63; ▷ Extract round sub-key;
8 return {Ki}r

i=0;

51

E Key Schedule of LBlock

Algorithm 7: Key schedule of LBlock
Input: A master key K = κ0 · · ·κ79 of 79 bits, a number of rounds r

where 0 ≤ r ≤ 31
Output: r + 1 sub-keys Ki of 32 bits

1 K0 ← κ0 · · ·κ31; ▷ Extract first round sub-key;
2 for i = 1→ r do
3 κ0 . . . κ79 ← κ29 . . . κ79κ0 . . . κ28; ▷ Rotate 29 bits to the left;
4 (κ0κ1κ2κ3)← S9(κ0κ1κ2κ3);
5 (κ4κ5κ6κ7)← S8(κ4κ5κ6κ7); ▷ Apply S-box on two leftmost

nibbles;
6 κ29κ30κ31κ32κ33 ← κ29κ30κ31κ32κ33 ⊕ i; ▷ Add round counter;
7 Ki ← κ0 . . . κ31; ▷ Extract round sub-key;
8 return {Ki}r

i=0;

52

F Determination of Key Bits Involved in Key Recovery of
Integral Attack on 24 Rounds of LBlock

Fig. 16: Determination flow in key recovery of impossible differential attack on 23
rounds of LBlock

53

G Determination of GD Attack on AES

x1,1,3

w0,1,3

w0,0,3

x0,1,0

w0,3,3

x0,2,1

w0,3,1

x1,3,1

x1,2,0

w1,3,2

w1,2,2

k0,1,2

k1,1,2

x0,1,2

k1,1,3

x1,1,2

k2,1,2

k0,1,3 k0,0,0

k1,0,0

k2,1,3

k2,0,0

w1,0,0

w0,0,0

k0,0,1

w1,1,1

x1,0,1

w1,0,1

x1,2,3

k2,1,1

w1,2,1

k1,0,1

w0,1,1

w0,2,1

x0,2,3

x1,1,1

k2,0,1

k2,0,2

k2,0,3

w1,0,2

p2,3

k0,2,3

k0,1,0

k1,2,3

k1,2,0

k2,3,2

k1,0,3

k0,0,3

k2,3,0

x2,2,0

k2,2,0

k1,2,1

x2,2,2 k2,2,2

k2,2,3

x1,3,2

w1,3,3

x1,1,0

w1,2,3

x1,0,3

k2,3,3

w0,3,2

w0,0,2

w0,1,2

x0,3,1

x0,1,3

x1,0,2

x2,0,3 w1,0,3

x2,1,0 w1,1,0 x1,0,0

x1,3,3

x1,2,2

w1,2,0

k1,3,1

k0,3,2

k2,3,1

k1,3,2

w0,2,0

x0,1,1

w0,1,0

x0,3,3

x0,3,2

k1,3,3

w1,1,2

p0,3

x0,0,3

x0,0,0

x1,3,0

k1,3,0

x2,0,1

x1,2,1

x0,2,0

k0,2,0

w0,2,3

w1,1,3

p1,3

p3,3

k0,3,3

x0,0,2

k0,0,2

k1,0,2

k0,3,0

k1,1,0k2,2,1

k0,2,2

k2,1,0

w1,3,0

x0,3,0

k0,2,1

k0,3,1

p1,1

k0,1,1

p2,1

x0,0,1

k1,1,1

w0,3,0

p0,2

w0,2,2

k1,2,2

p1,0

p1,2

w1,3,1

p2,2
x0,2,2

p2,0

w0,0,1

x2,1,3

x2,1,2

p3,1

x2,3,3

p0,0

x2,3,0

x2,2,1

x2,1,1

p0,1

p3,0

p3,2

x2,0,0

x2,2,3

x2,0,2

x2,3,2

x2,3,1

Fig. 17: Determination flow in GD attack with time complexity of 288 on two rounds
of AES which required only one known plaintext/ciphertext pair

k0,0,3

k2,0,1
k1,0,2

k1,3,0

w1,0,1

k0,0,1
x0,2,3

w0,2,1

w0,0,1

w0,1,1

w0,3,1

k1,2,1

k0,1,2

x0,1,2

k1,1,2

k1,0,1

k1,3,3

k0,3,3

k2,2,1

x1,3,3

k0,2,0

x0,3,3

x0,1,0

w0,2,3

x0,0,3

x0,3,2

w0,0,3

x1,2,3

k1,3,1

k1,3,2

k2,3,1

k0,3,1

w0,3,2

k2,0,3 k2,0,2

x1,1,3

x1,0,2

x1,2,0

w1,2,2

x1,3,1

w0,1,3

w0,0,2

w1,1,3 k2,1,3

k1,1,3

k0,1,3

k1,1,0

k2,1,0

w0,1,0

w1,1,0

w1,2,0

w1,0,0

x1,2,2

x1,0,0

x1,1,1

k2,0,0

x2,1,0

x0,0,2

w0,1,2

x0,1,3

x1,1,0 x0,0,0

w0,0,0

x0,1,1

x0,2,0w1,3,2

k0,0,2

w1,1,1

k2,1,1

p3,3

w0,2,2

x1,0,3

x1,2,1

k1,0,3

x1,3,2

w0,3,3

p1,1

k0,1,1

w0,2,0

k2,3,3

w1,3,3

x0,3,0

k0,3,0

k1,1,1

k2,2,2

x1,3,0

x1,0,1

x1,1,2

w0,3,0

k2,1,2

w1,1,2

x2,0,1

k0,2,1

x0,2,1

k1,2,0

x2,1,3

p2,1

k0,0,0

k2,3,0

w1,3,0

k2,3,2

k1,2,2

k0,2,2

x0,2,2

x0,3,1

x2,0,2

w1,0,2

w1,3,1

k1,0,0

w1,0,3

k2,2,0

w1,2,1

k0,2,3

k0,3,2

w1,2,3

p2,3

x2,2,1

k0,1,0

x2,0,3

p3,2

x0,0,1

k1,2,3

k2,2,3

p1,0

x2,3,2

x2,2,2

x2,3,3

p3,0

x2,2,3

p0,0

x2,3,1

p0,3

p2,0

x2,1,1

p2,2

x2,1,2

p0,1

p1,2

x2,2,0

x2,0,0

p3,1

x2,3,0

Fig. 18: Determination flow in GD attack with time complexity of 280 on two rounds
of AES which required only one known plaintext/ciphertext pair

54

x
1
,0
,0

x
1
,2
,2

x
1
,3
,3

x
1
,1
,1

k
1
,3
,0

k
0
,2
,2

k
2
,3
,0

x
2
,3
,3

x
2
,0
,0

x
2
,1
,1

x
2
,2
,2

k
1
,3
,3

k
0
,0
,0

P
3
,0

K
0
,3
,0

K
1
,1
,1

k
0
,1
,1

K
0
,1
,2

K
0
,1
,1

k
0
,0
,1

x
0
,0
,1

k
0
,3
,1

x
0
,3
,0

K
2
,2
,0

K
1
,2
,1

K
3
,2
,0

K
1
,2
,0

k
0
,2
,1

K
0
,2
,2

K
0
,2
,1

K
3
,2
,1

k
2
,2
,0

x
2
,1
,2

k
1
,1
,2

k
1
,0
,2

x
1
,0
,2

x
0
,3
,1

K
0
,3
,1

K
1
,3
,0

K
1
,1
,3

K
0
,1
,3

K
1
,0
,0

x
1
,1
,3

x
0
,1
,3

K
0
,0
,0

x
1
,3
,1

K
0
,2
,0

x
1
,2
,0

x
0
,2
,0

K
1
,0
,3

K
2
,0
,2

K
1
,0
,2

k
1
,1
,0

k
0
,3
,3

k
1
,0
,0

K
0
,3
,3

x
0
,3
,3

k
0
,3
,0

k
0
,1
,0

k
0
,2
,0

k
2
,1
,2

K
3
,1
,2

k
2
,3
,2

x
2
,3
,1

k
2
,0
,2

x
2
,0
,2

K
3
,1
,1

K
2
,1
,3

x
2
,1
,3

k
1
,1
,3

K
3
,3
,2

k
2
,1
,3

x
2
,3
,2

K
3
,1
,3

x
2
,1
,0

k
2
,3
,3

x
2
,2
,1

k
1
,3
,2

x
0
,2
,3

x
1
,3
,2

x
1
,2
,1

x
1
,0
,3

k
1
,2
,3

k
0
,3
,2

k
1
,2
,0

k
2
,1
,0

K
3
,1
,0

K
2
,1
,0

K
2
,1
,1

k
1
,1
,1

K
1
,1
,2

k
1
,0
,1

x
1
,0
,1

x
1
,3
,0

k
1
,2
,1

k
0
,1
,3

k
0
,2
,3

k
0
,0
,3

x
0
,0
,3

x
2
,3
,0

x
2
,0
,1

k
2
,0
,1

x
2
,2
,0

k
1
,3
,1

k
2
,1
,1

K
0
,2
,3

K
0
,1
,0

x
0
,1
,0

K
3
,0
,0

x
0
,1
,2

K
0
,0
,1

K
2
,3
,2

K
1
,3
,3

K
1
,3
,2

P
2
,2

x
0
,2
,2

x
3
,3
,2

K
2
,3
,3

K
2
,2
,2

k
1
,2
,2

K
1
,2
,3

K
1
,2
,2

K
3
,3
,0

K
3
,3
,1

K
2
,3
,0

k
2
,3
,1

x
3
,2
,1

k
2
,2
,1

x
0
,0
,2

k
0
,1
,2

k
0
,0
,2

K
0
,0
,2

x
1
,1
,2

k
2
,2
,2

K
3
,2
,2

K
3
,0
,2

x
1
,1
,0

x
0
,2
,1

x
1
,2
,3

K
2
,0
,1

k
2
,0
,0

K
1
,0
,1

x
3
,3
,0

K
2
,2
,3

x
2
,2
,3

K
2
,0
,0

k
2
,2
,3

K
3
,2
,3

K
3
,0
,1

x
3
,3
,3

K
3
,3
,3

K
2
,2
,1

P
2
,1

K
1
,1
,0

k
2
,0
,3

K
3
,0
,3

x
3
,0
,0

x
3
,2
,3

K
0
,0
,3

K
0
,3
,2

x
0
,3
,2

P
2
,0

P
3
,3

x
0
,1
,1

x
3
,0
,1

P
1
,1

K
2
,3
,1

K
1
,3
,1

x
0
,0
,0

K
2
,1
,2

P
3
,2

x
2
,0
,3

k
1
,0
,3

K
2
,0
,3

P
1
,0

x
3
,2
,0

x
3
,1
,1

x
3
,3
,1

x
3
,1
,3

x
3
,0
,2

x
3
,0
,3

P
2
,3

P
0
,1

P
1
,2

P
3
,1

P
0
,2

x
3
,2
,2

x
3
,1
,0

P
0
,0

x
3
,1
,2

P
1
,3

P
0
,3

F
ig

.1
9:

D
et

er
m

in
at

io
n

flo
w

in
G

D
at

ta
ck

on
th

re
e

ro
un

ds
of

A
E

S

55

H GD Attack on Khudra

Fig. 20: Guess-and-determine attack on 14 rounds of Khudra

56

I DS-MITM attack on 20-round TWINE-80

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

Round 0

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Round 10

Fig. 21: Distinguisher for DS-MITM attack on 20-round TWINE-80: A 10-round DS-
MITM distinguisher for TWINE-80 with A = [14] (the nibble denoted by crosshatch in
round 0), B = [3] (the nibble denoted by crosshatch in round 10), and Deg(A,B) = 14
(the nibbles marked in red).

57

Round 0
RK RK RK RK RK RK RK RK

Round 1
RK RK RK RK RK RK RK RK

Round 2
RK RK RK RK RK RK RK RK

Round 3
RK RK RK RK RK RK RK RK

Round 4
RK RK RK RK RK RK RK RK

Round 5

10-round Distinguisher

Round15
RK RK RK RK RK RK RK RK

Round16
RK RK RK RK RK RK RK RK

Round17
RK RK RK RK RK RK RK RK

Round18
RK RK RK RK RK RK RK RK

Round19
RK RK RK RK RK RK RK RK

Round 20

Fig. 22: Key recovery for DS-MITM attack on 20-round TWINE-80: Backward differential
and forward determination relationship in the outer rounds based on the 10-round
distinguisher in Figure 21 as E1 in the middle. Nibbles in Guess(E0) and Guess(E2) are
marked in blue. From the input state in round 0, we know that Ā = [1, 2, 3, 6, 7, 13, 14, 15],
and hence the data complexity of the attack is 28×4 = 232.

58

Round 0

RK RK RK RK RK RK RK RK

Round 1

RK RK RK RK RK RK RK RK

Round 2

RK RK RK RK RK RK RK RK

Round 3

RK RK RK RK RK RK RK RK

Round 4

RK RK RK RK RK RK RK RK

Round 5

10-round Distinguisher

Round15

RK RK RK RK RK RK RK RK

Round16

RK RK RK RK RK RK RK RK

Round17

RK RK RK RK RK RK RK RK

Round18

RK RK RK RK RK RK RK RK

Round19

RK RK RK RK RK RK RK RK

Round 20

Fig. 23: Guessed values in DS-MITM attack on 20-round TWINE-80: Derive kE0 and kE2

from Figure 22. The sub-keys marked in orange must be guessed (without key-bridging).
With the knowledge of these nibbles, we can derive the values of those nibbles of P 0

marked in orange, from which we can determine all blue nibbles in Figure 22.

59

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 2 3 0

8 9 10 11 12 13 14 15 16 17 18 19 1 2 3 0 5 6 7 4

12 13 14 15 16 17 18 19 1 2 3 0 5 6 7 4 9 10 11 8

16 17 18 19 1 2 3 0 5 6 7 4 9 10 11 8 13 14 15 12

1 2 3 0 5 6 7 4 9 10 11 8 13 14 15 12 17 18 19 16

5 6 7 4 9 10 11 8 13 14 15 12 17 18 19 16 2 3 0 1

9 10 11 8 13 14 15 12 17 18 19 16 2 3 0 1 6 7 4 5

13 14 15 12 17 18 19 16 2 3 0 1 6 7 4 5 10 11 8 9

17 18 19 16 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 18 19 16 17

6 7 4 5 10 11 8 9 14 15 12 13 18 19 16 17 3 0 1 2

10 11 8 9 14 15 12 13 18 19 16 17 3 0 1 2 7 4 5 6

14 15 12 13 18 19 16 17 3 0 1 2 7 4 5 6 11 8 9 10

18 19 16 17 3 0 1 2 7 4 5 6 11 8 9 10 15 12 13 14

3 0 1 2 7 4 5 6 11 8 9 10 15 12 13 14 19 16 17 18

7 4 5 6 11 8 9 10 15 12 13 14 19 16 17 18 0 1 2 3

11 8 9 10 15 12 13 14 19 16 17 18 0 1 2 3 4 5 6 7

15 12 13 14 19 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11

Round 0

S S

Round 1

S S

Round 2

S S

Round 3

S S

Round 4

S S

Round 5

S S

Round 6

S S

Round 7

S S

Round 8

S S

Round 9

S S

Round 10

S S

Round 11

S S

Round 12

S S

Round 13

S S

Round 14

S S

Round 15

S S

Round 16

S S

Round 17

S S

Round 18

S S

19 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Round 19

Fig. 24: Key-bridging in DS-MITM attack on 20-round TWINE-80: All green sub-key
nibbles can be uniquely deduced from the 19 sub-key nibbles marked in red. All sub-key
nibbles corresponding to sub-keys colored in orange in Figure 23 are included in the
guessed or determined sub-keys. In each round, sub-key nibbles [1, 3, 4, 6, 13, 14, 15, 16]
are used as round keys.

60

J DS-MITM attack on 19-round SKINNY-128-256

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 2 Round 3

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 4 Round 5

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 6 Round 7

SB,AC

AK,SR

Round 8

Fig. 25: Distinguisher for DS-MITM attack on 19-round SKINNY-128-256: A 8.5-round
DS-MITM distinguisher for SKINNY-128-256 such that A = [13] (the cell denoted by
crosshatch in round 0), B = [12] (the cell denoted by crosshatch in the last state
array), and Deg(A,B) = 25 (the cells marked in red). The cells marked in blue can be
determined from the red cells due to the connection relations imposed by the linear
layer of SKINNY.

61

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

SB,AC

AK,SR

MC

Round 2 Round3

· · · 8-round Distinguisher · · · MC

Round 12 Round 13

Round 14 Round 15

Round 16 Round 17

Round 18 Round 19

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC

Fig. 26: Key recovery for DS-MITM attack on 19-round SKINNY-128-256: Backward
differential and forward determination relationship in the outer rounds based on the 8.5-
round distinguisher in Figure 25 as E1 in the middle. Cells in Guess(E0) and Guess(E2)
are marked in red. 62

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

SB,AC

AK,SR

MC

Round 2 Round3

Round 12 Round 13

Round 14 Round 15

Round 16 Round 17

Round 18 Round 19

· · · 8-round Distinguisher · · · MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC

Fig. 27: Guessed values for DS-MITM attack on 19-round SKINNY-128-256: Derive kE0

and kE2 from Figure 26. The sub-keys marked in orange must be guessed (without key-
bridging). With the knowledge of these nibbles, we can derive the values of those nibbles
of P 0 marked in orange, from which we can determine all red nibbles in Figure 26.

63

Fig. 28: Key-bridging for DS-MITM attack on 19-round SKINNY-128-256: All green
sub-key cells can be uniquely deduced from the sub-key nibbles marked in red. All
sub-key cells corresponding to orange sub-keys in Figure 27 are included in the guessed
or determined sub-keys.

64

K DS-MITM attack on 21-round SKINNY-64-192

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 2 Round 3

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 4 Round 5

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 6 Round 7

SB,AC

AK,SR

Round 8

Fig. 29: Distinguisher for DS-MITM attack on 21-round SKINNY-64-192: A 8.5-round
DS-MITM distinguisher for SKINNY-64-192 such that A = [0, 13] (the cell denoted
by crosshatch in round 0), B = [12] (the cell denoted by crosshatch in the last state
array), and Deg(A,B) = 31 (the cells marked in red). The cells marked in blue can be
determined from the red cells due to the connection relations imposed by the linear
layer of SKINNY.

65

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

SB,AC

AK,SR

MC

Round 2 Round3

· · · 11-round Distinguisher · · · MC

Round 12 Round 13

Round 14 Round 15

Round 16 Round 17

Round 18 Round 19

Round 20 Round 21

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC

Fig. 30: Key recovery for DS-MITM attack on 21-round SKINNY-64-192: Backward
differential and forward determination relationship in the outer rounds based on the 8.5-
round distinguisher in Figure 29 as E1 in the middle. Cells in Guess(E0) and Guess(E2)
are marked in red.

66

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

SB,AC

AK,SR

MC

Round 2 Round3

Round 12 Round 13

Round 14 Round 15

Round 16 Round 17

Round 18 Round 19

Round 20 Round 21

· · · 11-round Distinguisher · · · MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC

Fig. 31: Guessed values for DS-MITM attack on 21-round SKINNY-64-192: Derive kE0

and kE2 from Figure 30. The sub-keys marked in orange must be guessed (without key-
bridging). With the knowledge of these nibbles, we can derive the values of those nibbles
of P 0 marked in orange, from which we can determine all red nibbles in Figure 30.

67

Fig. 32: Key-bridging for DS-MITM attack on 21-round SKINNY-64-192: All green
sub-key cells can be uniquely deduced from the sub-key nibbles marked in red. All
sub-key cells corresponding to orange sub-keys in Figure 31 are included in the guessed
or determined sub-keys.

68

L DS-MITM attack on 18-round SKINNY-64-128

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 2 Round 3

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 4 Round 5

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 6 Round7

Fig. 33: Distinguisher for DS-MITM attack on 18-round SKINNY-64-128: A 7.5-round
DS-MITM distinguisher for SKINNY-64-128 such that A = [7] (the cell denoted by
crosshatch in round 0), B = [9] (the cell denoted by crosshatch in the last state
array), and Deg(A,B) = 14 (the cells marked in red). The cells marked in blue can be
determined from the red cells due to the connection relations imposed by the linear
layer of SKINNY.

69

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

SB,AC

AK,SR

MC

Round 2 Round3

· · · 7-round Distinguisher · · · MC

Round 11 Round 12

Round 13 Round 14

Round 15 Round 16

Round 17 Round 18

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC

Fig. 34: Key recovery for DS-MITM attack on 18-round SKINNY-64-128: Backward
differential and forward determination relationship in the outer rounds based on the 7.5-
round distinguisher in Figure 33 as E1 in the middle. Cells in Guess(E0) and Guess(E2)
are marked in red. 70

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

SB,AC

AK,SR

MC

Round 2 Round3

Round 11 Round 12

Round 13 Round 14

Round 15 Round 16

Round 17 Round 18

· · · 7-round Distinguisher · · · MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC

Fig. 35: Guessed values for DS-MITM attack on 18-round SKINNY-64-128: Derive kE0

and kE2 from Figure 30. The sub-keys marked in orange must be guessed (without key-
bridging). With the knowledge of these nibbles, we can derive the values of those nibbles
of P 0 marked in orange, from which we can determine all red nibbles in Figure 34.

71

Fig. 36: Key-bridging for DS-MITM attack on 18-round SKINNY-64-128: All green
sub-key cells can be uniquely deduced from the sub-key nibbles marked in red. All
sub-key cells corresponding to orange sub-keys in Figure 35 are included in the guessed
or determined sub-keys.

72

	Autoguess: A Tool for Finding Guess-and-Determine Attacks and Key Bridges

