
Universally Composable Almost-Everywhere Secure Computation ∗

Nishanth Chandran1, Pouyan Forghani2, Juan Garay2† , Rafail Ostrovsky3‡ , Rutvik Patel2,
and Vassilis Zikas4§

1Microsoft Research, nichandr@microsoft.com
2Texas A&M University, {pouyan.forghani,garay,rsp7}@tamu.edu

3UCLA, rafail@cs.ucla.edu
4Purdue University, vzikas@cs.purdue.edu

May 19, 2023

Abstract

Most existing work on secure multi-party computation (MPC) ignores a key idiosyncrasy of mod-
ern communication networks, that there are a limited number of communication paths between any
two nodes, many of which might even be corrupted. The problem becomes particularly acute in the
information-theoretic setting, where the lack of trusted setups (and the cryptographic primitives they
enable) makes communication over sparse networks more challenging. The work by Garay and Os-
trovsky [EUROCRYPT’08] on almost-everywhere MPC (AE-MPC), introduced “best-possible security”
properties for MPC over such incomplete networks, where necessarily some of the honest parties may be
excluded from the computation.

In this work, we provide a universally composable definition of almost-everywhere security, which al-
lows us to automatically and accurately capture the guarantees of AE-MPC (as well as AE-communication,
the analogous “best-possible security” version of secure communication) in the Universal Composability
(UC) framework of Canetti. Our results offer the first simulation-based treatment of this important but
under-investigated problem, along with the first simulation-based proof of AE-MPC. To achieve that
goal, we state and prove a general composition theorem, which makes precise the level or “quality” of
AE-security that is obtained when a protocol’s hybrids are replaced with almost-everywhere components.
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1 Introduction

Secure multi-party computation (MPC) allows n parties communicating over a network to compute a func-
tion on their private inputs so that an adversary corrupting some of the parties can neither disrupt the
computation (correctness) nor learn more than (what can be inferred from) the output of the function being
computed (privacy).

Despite great progress on the problem since it was first introduced and proven feasible [Yao82, GMW87,
BGW88, CCD88] involving hundreds, if not thousands, of publications in cryptography and security, and,
more recently, even implemented systems, the overwhelming majority of the solutions assume a complete
communication network of either authenticated (aka reliable) or secure (both authenticated and private)
point-to-point channels. In fact, with only a few exceptions, this is the case for both practical and theoretical
works on MPC, and in particular for works on composable security of MPC—indeed, the latter almost
exclusively assume a network that cannot be disconnected by the adversary. This creates a disconnect (pun
intended) between the vast MPC literature and modern ad-hoc networks, such as the Internet, where the
communication might be occurring over an incomplete graph, with some nodes even being routing nodes.

At first approximation, there are two situations that might present themselves in such an incomplete
network: Either the adversary is able to disconnect the communication graph—by corrupting nodes whose
edges are in cuts of the graph—or not. In the former case, it is known that if the parties do not share an
authentication-enabling setup, such as a PKI, then the best that can be achieved is the so-called secure com-
putation without authentication [BCL+11]: The adversary is able to break down the player set into connected
components, so that parties in different connected components compute different instances of the function
with inputs from the component—and all other inputs chosen by the adversary, and potentially different for
each component. Even this weak form of security is only achievable for computationally bounded adversaries;
if one is after information-theoretic (aka unconditional) security, where the adversary is unbounded, then
the above guarantee is too much to ask for.

Notwithstanding, even in the latter case, where the adversary cannot disconnect the network, the situation
is trickier than one might expect. Indeed, if a PKI-like setup is not assumed,1 then it is known that secure
communication between any two parties requires the existence of O(t) paths among them (known to or
discoverable by the receiver), the majority of which must remain uncorrupted. This is the well-known
secure message transmission (SMT) problem [DDWY90]. The result holds even for the reliable message
transmission (RMT) problem, in which only correctness is required.

That leads to the following natural question: What is the “best-possible” MPC security we can obtain
in such a situation where SMT cannot be in general guaranteed? Towards answering this question, Garay
and Ostrovsky [GO08] introduced the properties of almost-everywhere MPC (AE-MPC), which extended
the concept of AE reliable communication previously studied by Dwork et al. [DPPU86]. In a nutshell,
the paradigm of almost-everywhere security (AE-security) recognizes that when even all-to-all SMT is not
possible (and only AE-SMT is available), then inevitably there will be uncorrupted parties for which we are
unable to offer the security guarantees that honest parties enjoy in MPC (privacy, correctness, etc). The core
mission is then to minimize the number of such left-out (aka doomed) parties in an AE-secure construction,
while tolerating the maximum number of corruptions.

However, despite a number of elegant combinatorial arguments to achieve the above goal, the security
definition used by these constructions has not caught up with the state of the art in MPC security. In
particular, to the best of our knowledge, there exists no simulation-based treatment of AE-security. This
means that one cannot directly compose the elegant constructions of AE-secure primitives into a higher
level protocol. For example, one would hope to be able to prove that running a standard MPC protocol
over an AE-SMT network yields an AE-MPC protocol which does not leave more doomed parties than the
underlying AE-SMT construction. Given the state of the art, such a modular statement would be impossible,
and one would need to prove AE-MPC security from scratch. Instead, a simulation-based treatment in one of
the composable security frameworks would inherit a modular composition theorem making such statements
tractable and simpler.

This work’s main goal is to derive such a treatment in the Universal Composability (UC) framework of
Canetti [Can01]. A major challenge, which we tackle, is to obtain a generic definition of AE-security which
can be applied to any type of functionality and captures both AE-communication and AE-computation, two

1A PKI trivializes the problem in this case as a complete graph can be built by gossip (i.e., flooding) of signed messages.
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primitives whose treatment has been very different. In fact, we achieve this goal by introducing a generic,
composition-preserving transformation from a secure variant of a functionality to its AE-secure counterpart.
We show that the derived AE-secure functionalities for secure communication (AE-RMT and AE-SMT) and
for secure MPC (AE-MPC): (1) preserve all the desired properties of the previous definitions, and (2) are
realized by (straightforward UC adaptations of) classical AE-secure protocols. Since our treatment preserves
composability of the (AE-)security statements, we obtain as a simple corollary the first simulation-based proof
of AE-MPC.

In passing, we note that although we adopt the language of UC in our treatment, our definitional
framework is generic and can be applied to any of the main-stream composable security frameworks for
cryptographic protocols [BPW03, CDPW07, MR11, HS15, CKKR19, BCH+20]. Before providing more
details on our results, we first provide some necessary literature background that should help the reader
appreciate the relevance of our contributions and the challenges associated with them.

1.1 Related Work

The origins of the “almost-everywhere” (AE) notion can be traced back to the work of Dwork et al. [DPPU86],
who considered the task of Byzantine agreement [PSL80, LSP82] over sparse communication networks. In
such networks, correctness cannot be guaranteed for all honest parties, since for example the adversary can
isolate a node by corrupting all its neighbors. Thus, some honest parties must be given up, and correctness
is guaranteed only almost-everywhere, i.e., only for the remaining honest parties. The AE notion can be
applied to other distributing computing tasks as well: Given a set of parties P and an adversary who corrupts
T ⊆ P , the parties in some set D ⊆ P − T (D for “doomed”) are considered abandoned and the correctness
conditions of the task are only guaranteed for the parties in W = P −T −D (called “privileged”). Note that
both D and W are functions of T as well as of the underlying protocol and graph. The number of doomed
parties thus becomes another parameter to the problem, and the goal is to construct a low-degree network
(ideally of constant degree) admitting a protocol that tolerates a large number t of corruptions (ideally a
constant fraction) while dooming as few nodes as possible (ideally O(t) for constant-degree networks).

Returning to the problem of Byzantine agreement, Dolev [Dol81] showed that it requires connectivity
at least 2t + 1 to solve, which implies that every node in the network must have degree Ω(t). Given this
high connectivity requirement, Dwork et al. [DPPU86] proposed the notion of AE agreement, in which
the agreement and validity properties are guaranteed only for the privileged parties. They showed how to
simulate, over an incomplete network, an agreement protocol designed for a complete network by replacing the
point-to-point communication with a transmission scheme that works over multiple paths between any two
nodes. Thus, they reduced the problem of AE agreement to the problem of AE reliable message transmission
(AE-RMT), which guarantees that any two privileged nodes can communicate perfectly reliably.

Dwork et al. gave a number of constructions achieving AE-RMT with various combinations of parameters;
the two most important are a constant-degree graph admitting an AE-RMT scheme tolerating t = O(n/ log n)
corruptions while dooming O(t) nodes (suboptimal corruption tolerance), and a graph of degree nε (for any
0 < ε < 1) admitting an AE-RMT scheme tolerating t = O(n) corruptions while dooming O(t) nodes
(suboptimal degree). Several follow-up works have obtained improved parameters for AE-RMT (and thus
also for AE agreement). Upfal [Upf92] gave a transmission scheme tolerating t = O(n) corruptions and
dooming O(t) nodes in a network of constant degree, which is the optimal set of parameters, but the protocol
runs in exponential time. Chandran et al. [CGO10] proposed a scheme tolerating t = O(n) corruptions and
dooming O(t/ log n) nodes in a network of poly-logarithmic degree. Most recently, Jayanti et al. [JRV20]
used the probabilistic method to show the existence of a logarithmic-degree graph admitting an AE-RMT
scheme with the same parameters, thereby strictly improving the result from [CGO10].

Due to the results in [Dol81, DDWY90], standard MPC (guaranteeing correctness and privacy for all
honest parties) is possible only in networks with connectivity at least 2t + 1. To circumvent this high-
connectivity requirement and still obtain a meaningful notion of (property-based) MPC over sparse networks,
Garay and Ostrovsky [GO08] introduced the notion of AE-MPC2, which guarantees correctness and privacy
only for the privileged parties. “Regular” information-theoretic MPC (i.e., MPC over a complete network)
requires t < n/3 [BGW88, CCD88]. In the AE setting, the effect of dooming nodes is equivalent to letting

2Technically, they considered the related task of secure function evaluation (SFE). We do the same, although for consistency
we still refer to the functionality that we realize as AE-MPC.
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the adversary corrupt some additional t′ nodes (which are doomed) by requesting the corruption of t nodes
(which are actually corrupted). As shown by Garay and Ostrovsky, AE-MPC in the information-theoretic
setting can be achieved when t + t′ < n/3. Their approach resembles that of Dwork et al. [DPPU86] for
simulating a protocol meant for a complete network, but to replace point-to-point secure channels, they
introduced a new model for the existing (perfectly) SMT problem termed secure message transmission by
public discussion (SMT-PD), which we now turn to.

The original SMT problem [DDWY90] considers two honest parties, a sender S and a receiver R, con-
nected by n disjoint “wires” and sharing no information. The task is for S to send a message to R in the
presence of a computationally unbounded adversary A who can adaptively corrupt up to t of the wires.
SMT requires that the message be conveyed perfectly reliably to R, and also that no information about
the message leaks to A. While the simpler task of RMT (with no secrecy requirement) can be achieved for
t < n/2 by simply duplicating the message over all wires, Dolev et al. [DDWY90] showed that SMT is also
possible if and only if t < n/2. We give a more detailed history of the SMT literature in Appendix A.1.

Returning to the work by Garay and Ostrovsky [GO08], the SMT-PD model overcomes the necessity
of 2t + 1 wires in SMT by additionally allowing access to an authentic and reliable public channel. Given
such a channel (which can be constructed using, e.g., a broadcast protocol), they gave a protocol that is
secure as long as at least one of the wires remains honest, at the cost of a small error. To use their SMT-
PD protocol over sparse networks (in effect achieving AE-SMT), the wires are replaced by multiple paths
between a pair of nodes and the public channel is replaced by AE broadcast. Garay and Ostrovsky provided
a way to construct graphs that admit SMT-PD from any of the networks in the AE agreement literature,
with asymptotically preserved parameters. Finally, they showed how to “compile” a standard information-
theoretic MPC protocol into an AE-MPC protocol over any such graph, so that the resulting protocol dooms
the same number of parties as the underlying (AE-secure) communication network.

In a follow-up, Chandran, Garay, and Ostrovsky [CGO15] considered (information-theoretic) AE-MPC
with edge corruptions. In this model, the adversary is additionally allowed to corrupt edges in the graph,
independently of the endpoints of those edges. Chandran et al. presented a definitional framework and also
demonstrated feasibility via a randomized construction. In our work, we consider only node corruptions.

To reiterate, all the above constructions are shown secure in a property-based manner. In Appendix A.2,
we review other related notions from the literature, which do not quite consider AE-security.

1.2 Overview of Our Results

In this work we put forth the first composable (simulation-based) definition and treatment of AE-security.
In particular, we devise a definition in Canetti’s UC framework [Can01] and prove that the (UC adaptation
of) existing AE-secure communication/computation protocols achieve this definition. We emphasize that all
of our constructions tolerate adaptive corruptions.

There are several challenges associated with such a task. First, as should be evident from the above
discussion, the related literature—from RMT/SMT, to Byzantine agreement, to MPC, and even their AE
counterparts—treats the underlying network in different ways: for example, in MPC the network is typically
a complete graph of point-to-point channels (between each pair of parties), whereas the literature on (AE-
)RMT assumes multiple paths (wires or indirect paths) between two parties. Thus, to derive a formulation
general enough to capture the security of the above constructions, one first needs to develop a unified
approach. Towards this goal, we adopt the graph model as a basis for all these protocols, and express the
wires in the RMT/SMT literature as a simple graph which for each wire includes a path going through a
unique “wire-party.” We can then model corrupted wires as standard (party) corruptions in UC.

The second, and more thorny challenge is regarding the (simulation of) doomed parties. Recall that these
are parties that due to their poor connectivity (which might be the result of the sparsity of the graph and
the corruption choices of the adversary) cannot enjoy the security guarantees that the protocol is designed to
offer to honest parties (e.g., correctness and privacy for an MPC protocol). A strawman approach would be
to capture those parties plainly as corrupted. This, however, is problematic for several reasons: For instance,
corrupted parties lose their security guarantees as soon as they become corrupted, unlike doomed parties
who might, at the adversary’s discretion, still be allowed some level of security. In particular, the real-world
adversary might allow those parties to receive their outputs, which would mean that in the ideal world, the
simulator would also need to allow them to produce an output on their output tape, which is not allowed by

5



the UC corruption mechanism.
An attempt to fix the above issue would be to define weaker corruption types corresponding to the flexible

guarantees offered to the doomed parties. This, however, is also problematic, as corruptions in UC are by
default known to (and declared by) the adversary/environment, whereas the actual identities of doomed
parties are not, and depend on the behavior of the adversary (not just the identities of malicious parties).
In particular, an adversary following, e.g., a random strategy might not even be aware who is becoming
doomed by this strategy.

A third attempt would be to completely change the corruption mechanism of UC so that certain cor-
ruptions are not to be declared by the environment. But this would immediately invalidate the composition
theorem, which defeats the purpose of using UC in the first place.

It might seem like we are in a deadlock, but the second attempt above is the one that breaks through. In
particular, we observe that although the adversary might not include in its view the identities of the doomed
parties, still its behavior defines these identities and the corresponding guarantees they receive. This is
similar to how inputs of corrupted parties are treated in standard UC security: It is the job of the simulator
to extract them from the adversary and hand them over to the functionality.

Accordingly, instead of modifying the foundations of UC, we define a class of functionalities that take
requests from their adversary (simulator) to mark parties as doomed, and allow the simulator to use these
parties as if they were corrupted, but without declaring them as corrupted to the framework and without
grounding their input/output tapes (e.g., the simulator might still instruct the functionality to deliver output
for doomed parties). In fact, this is done in a black-box manner, by wrapping an underlying (non-AE)
functionality.

In more detail, our AE wrapper builds the entire infrastructure of UC around it (including a fake cor-
ruption directory), and whenever a doom request comes in, the wrapper pretends towards its wrapped
functionality to be an adversary that corrupts this party. Thus, the party remains honest as far as the UC
experiment is concerned, but the wrapper now has the ability to give full control over this party to the
simulator it interacts with.

The final piece of the puzzle is capturing different ratios of corrupted vs doomed parties while making
a composable statement. Here we use an idea inspired by [BMTZ17]: We parameterize the wrapper by the
set of all allowable corruption/doom patterns, and make sure that any request outside this set is ignored.
For example, to prove security of AE-MPC with t < αn corruptions and d < βn doomed parties, we can
parameterize the wrapper with the pair (α, β) and ignore requests of simulators that do not respect the
above requirements.

In fact, to allow for the tightest possible results that accurately translate non-threshold corruption/doom
patterns (the types of results we get by using structural properties of the underlying graph), we draw
inspiration from the mixed general adversary literature [HM97, BFH+08]: We parameterize the wrapper
with a corruption/doom structure (“doom structure” for short), which consists of all allowed pairs (C,D)
where parties in D can be doomed simultaneously to parties in C being corrupted. As is common in the
general adversary literature, such a structure might be exponentially large. Although this is not an issue in
our definition, we note that all our concrete instantiations consider structures that have a polynomial (in n)
representation.

We then apply our definitional framework to capture known AE-secure constructions and (simulation-
based) AE-MPC. Next, we describe our results in greater detail.

Almost-Everywhere RMT and SMT. We start in Section 3 by modeling the tasks of RMT and SMT
(with a dedicated sender and receiver connected by a number of corruptible wires). As part of this, we show
how these primitives, which have classically only been considered for an honest majority of wires, can be
captured so that their security is defined independently of the number of corrupted wires. This seemingly
simple task already has complications when ported to a composable framework like UC: the wires cannot
be viewed as reliable/secure message transmission functionalities, since UC functionalities are by default
incorruptible. We cast the problem so that we can apply a unified treatment: We model each wire with
a (corruptible) dummy party called a “wire-party,” which simply relays messages between the sender and
receiver.

In Section 3.1, we confirm that classical RMT/SMT protocols [DDWY90] are UC-secure (in the ordinary,
non-AE sense) in our model against corrupted minorities of wire-parties. To handle corrupted majorities
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(and more generally to capture AE-security), in Section 3.2 we introduce an AE wrapper functionality
(Figure 6) that is parameterized by a doom structure as defined above. The wrapper accepts requests to
doom parties from the simulator according to the doom structure and the current set of corruptions, and
it pretends to the underlying functionality that those parties are actually corrupted. We are then able to
state the AE-security of RMT/SMT protocols independently of the number of corrupted wire-parties, by
using a simple doom structure like the one that allows dooming the sender or receiver when a majority
of the wire-parties are corrupted. We finish up in Section 3.3 with a universally composable treatment of
the SMT-PD problem [GO08]. We model the public channel using access to the same functionality that
we use to capture RMT security. Looking ahead, we need SMT-PD when we want to elevate AE-RMT to
AE-SMT over some classes of sparse graphs (like those in [Upf92, CGO10, JRV20]) that do not rely on an
honest majority of paths to obtain AE-RMT. However, for other sparse graphs (like those in [DPPU86]) the
technique from [DDWY90] suffices.

Almost-Everywhere Remote RMT and SMT. In Section 4, we move on to the more complicated case
where an incomplete graph connects several parties and yet all-to-all communication is desired. Interestingly,
we show that the same wrapper from Section 3.2, which allowed for the simulation-based treatment of tasks
like RMT and SMT (with dedicated sender and receiver) even against corrupted majorities of wires, can also
be used to model AE-security of the all-to-all versions of those tasks (with wires replaced by not necessarily
disjoint paths in an incomplete graph). In particular, in Section 4.1 we use the same ideal functionalities
and wrapper (of course, with more complex doom structures) from Section 3 to provide the first universally
composable treatment of (AE) reliable communication over the sparse graphs constructed in [DPPU86,
Upf92, CGO10, JRV20], which we refer to as AE remote RMT. In Section 4.2, we extend our treatment to
AE remote SMT for all of these graphs. First, we show that an SMT protocol from [DDWY90] can be adapted
to UC-realize perfectly secure AE-SMT over a class of sparse graphs constructed in [DPPU86]. In general,
the same approach cannot be directly extended to achieve privacy for other graphs. To overcome this, we
adapt an SMT-PD protocol from [GO08] to realize AE-SMT over the graphs in [Upf92, CGO10, JRV20], at
the cost of obtaining only statistical UC security. Somewhat surprisingly, for each class of graphs considered
in Section 4, both AE-RMT and AE-SMT are achieved using the same doom structure.

Almost-Everywhere Secure Computation. Lastly, in Section 5 we study the composability of AE-
security guarantees, with the ultimate goal of realizing AE-MPC. In Section 5.1, we state and prove a
general composition theorem, which makes precise the level or “quality” of AE-security (as captured in a
doom structure) that is obtained when a protocol’s hybrids are replaced with AE counterparts, even against
general (i.e., not necessarily threshold) adversaries (Theorem 26). We emphasize that this AE compiler need
not replace all of the hybrids with AE-wrapped versions using the same doom structure; thus, we are able
to explain, e.g., what happens when a protocol uses subprotocols to emulate secure channels and broadcast
over a sparse network, but those subprotocols provide differing levels of AE-security.

Our composition theorem applies even to protocols that already carry some level of AE-security, and
therefore the compiled protocol can easily be composed with higher-level protocols. The crux of the security
proof is that the simulator for the compiled protocol can make use of an existing simulator for the original
protocol, by pretending that doomed parties are fully corrupted (in reality the situation is more complex,
because the given simulator may itself request to doom parties according to the AE-security of the original
protocol). As a simple corollary, we show that a protocol achieving standard (non-AE) security using a single
hybrid can be compiled into an AE-secure protocol while preserving the doom structure associated with the
AE-wrapped hybrid, at the cost of tolerating a lower corruption threshold (Corollary 27).

We conclude in Section 5.2, by applying this corollary to obtain the first simulation-based proof of AE-
MPC, over any of the classes of sparse graphs considered in the AE agreement literature [DPPU86, Upf92,
CGO10, JRV20]. In more detail, we simply overlay an AE-secure communication protocol (designed for a
sparse network) with a standard information-theoretically secure MPC protocol (designed for fully connected
networks), to obtain an AE-secure MPC protocol that only relies on secure channels between parties actually
connected in the sparse network and yet achieves the same level of AE-security as the underlying AE-secure
communication protocol (Corollaries 28 and 29). Depending on which class of sparse graphs is used, our
results from Section 4.2 on realizing AE-SMT over those graphs convey either perfect or statistical UC
security.
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Changes from Previous Versions. The present version of the paper includes numerous small improve-
ments and minor corrections. In particular, we point to Theorem 25, which claims that one can realize
SMT-PD over a suitable graph Gn, with respect to a doom structure Dsmt-pd that satisfies certain proper-
ties, assuming access to AE-RMT over that graph (essentially a public channel between privileged parties).
A previous version of the paper attempted to construct Dsmt-pd rather than simply enforcing its structure;
this was corrected in the proceedings version.

Next, we review some preliminaries. For the sake of readability, some of the functionalities, protocols,
and proofs are presented in the appendices.

2 Preliminaries

2.1 UC Basics

Our results are in the UC framework [Can01] and we briefly summarize it here. Protocol machines, ideal
functionalities, the adversary, and the environment are all modeled as interactive Turing machine (ITM)
instances, or ITIs. An execution of protocol π consists of a series of activations of ITIs, starting with the
environment Z who provides inputs to and collects outputs from the parties and the adversary A; parties can
also give input to and collect output from sub-parties, and A can communicate with parties via messages.
Corruption of parties is modeled by a special corrupt message sent from A to the party; upon receipt of
this message, the party sends its entire local state to A, and in all future activations follows the instructions
of A. Note that a party pi can only be corrupted once A receives a special (corrupt pi) input from Z.
Denote by execπ,A,Z the probability distribution ensemble corresponding to the (binary) output of Z at
the end of an execution of π with adversary A. The ideal-world process for functionality F is simply defined
as an execution of the ideal protocol idealF , in which the so-called “dummy” parties just forward inputs
from Z to F and forward outputs from F to Z (in particular, the dummy parties do not communicate with
the adversary, but rather the adversary is expected to send messages directly to F , including corruption
messages). The corresponding ensemble is denoted by idealF,S,Z , as the adversary in the ideal world is
actually a simulator S.

We are interested in unconditional security. Thus, we say that a protocol π UC-realizes an ideal
functionality F if for any computationally unbounded adversary A, there exists a simulator S (which is
polynomial in the complexity of A) such that for any computationally unbounded environment Z, we
have idealF,S,Z ≡ execπ,A,Z . Statistical UC-realization requires only that the two ensembles be in-
distinguishable, not identical. When π is a (G1, . . . ,Gn)-hybrid protocol (i.e., making subroutine calls to
idealG1 , . . . , idealGn), we say that π UC-realizes F in the (G1, . . . ,Gn)-hybrid model. It turns out that
(regular) UC-realization is equivalent to UC-realization with respect to a very specific adversary, namely the
“dummy” adversary D, which simply follows the instructions of Z on which messages to send and moreover
reports all received messages to Z. We sometimes use this alternate definition of security, as it is simpler to
work with and involves one less quantifier.

Synchrony. We will assume synchronous computation. That is, our protocols proceed in rounds, where
in each round: the uncorrupted parties generate their messages for the current round, as described in the
protocol; then, the messages addressed to the corrupted parties become known to the adversary; then,
the adversary generates the messages to be sent by the corrupted parties in this round; and finally, each
uncorrupted party receives all the messages sent in this round. Although our treatment is in the (G)UC
setting, to avoid over-complicating the exposition we use the standard round-based language of, e.g., [Can00,
Nie03] to specify our protocols. Notwithstanding, such specifications can be translated to the synchronous
UC model of Katz et al. [KMTZ13] by assuming a clock functionality and bounded (zero) delay channels.

2.2 Building Blocks

Here we present some building blocks that we will use in our constructions, as well as (somewhat informal)
property-based definitions to contrast with our simulation-based treatment in later sections.
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Recall that the SMT problem involves a sender S connected to a receiver R over n disjoint wires. A
solution to SMT is formally defined as follows:

Definition 1 (SMT). A protocol Π achieves (t-)SMT if it allows S to send a message m ∈ M to R such
that the following hold for any adversary A corrupting up to t of the wires:

• Reliability: R correctly outputs m′ = m.

• Secrecy: A learns no information about m.

We can define RMT by simply omitting the secrecy property, and AE-RMT and AE-SMT are defined by
only requiring the properties to hold for privileged S and R (e.g., according to some protocol over a sparse
graph).

For simplicity, we will use the three-phase SMT protocol Πddwy(~γ,m) (shown in Figure 10 in Appendix B),
which is essentially the “FastSMT” protocol from [DDWY90] that tolerates the optimal threshold (a mi-
nority) of corrupted wires. The n wires are denoted by ~γ = (γ1, . . . , γn), and τ = dn2 e − 1 specifies how
many corrupted wires can be tolerated. Although the protocol assumes access to an authenticated channel
between S and R, this can be implemented by simply sending the message m over all wires and having R
take majority. The high-level description of the protocol is as follows. In the first phase, S chooses nτ + 1
secret pads and secret-shares them via the n wires, associating each share with some checking pieces; the
shares and the corresponding checking information constitute a “strong pad.” In the second phase, if some
received strong pad is correct (i.e., the shares can be successfully interpolated, regardless of the checking
pieces), then R sends its index back to S over the authenticated channel. In this case, in the third phase S
uses the corresponding pad to encrypt the message m, and sends it to R over the authenticated channel; R
also knows the pad and therefore decrypts m successfully. Otherwise, if no correct strong pad is received,
it is possible for R (using the checking information) to choose all but one of them to return to S over the
authenticated channel, such that the faulty shares of the retained strong pad will be detected by S. In this
case, in the third phase S sends the detected faults along with an encryption of m (using the retained pad)
to R over the authenticated channel; now R can remove the faulty shares to compute the pad, and once
again decrypts m. Secrecy follows from the fact that the adversary sees at most τ shares of the secret pad,
and does not receive enough checking pieces to learn anything about any of the remaining shares.

We will sometimes need an SMT-PD protocol, and for that we use protocol Πpub-smt(~γ,Pub,m) (shown
in Figure 11 in Appendix B), which was given in [GO08] and tolerates n−1 corrupted wires, assuming access
to public channel Pub and allowing a small probability of error (determined by a parameter l). The protocol
starts with S sending n random bit strings of length 15l to R, one over each wire. Next, S reveals 3l random
positions in each bit string over Pub (recall that the public channel is perfectly reliable). R compares these
bits to what was received over the wires, and reports any detected corruptions back to S using Pub. For
each (potentially honest) wire that remains, S chooses a random mi, such that m =

⊕
imi; each mi is

encoded using an error-correcting code (with code-rate 1
12 and correcting up to a 1

4 fraction of errors) and
then encrypted using the 12l unopened bits that were sent over the corresponding wire, before being sent to
R over Pub. Finally, R uses the 12l bits that were received over each of those wires to decrypt each codeword
(possibly with some errors), and with the help of the decoding algorithm can correct any undetected faults
to recover each mi and ultimately compute m. Secrecy is perfect as long as there is at least one honest wire,
because the bits sent on that wire will remain hidden from the adversary and therefore mask the message.
However, reliability is contingent on the adversary not being able to flip more than 3l (or 1

5 ) of the 15l bits
sent on any wire without being detected when 3l random bits are revealed, so there is an error probability

bounded by n
(

4
5

)3l
. In order to achieve any small error ε, it suffices to set l > log(n/ε)

3 log(5/4) .

Finally, we present the security definition for (property-based) AE-MPC that was given in [GO08]. Recall
that W is the set of privileged nodes, as a function of the set of corruptions.

Definition 2 (AE-MPC, [GO08]). An n-player two-phase protocol Π achieves AE-MPC if for any initial
value xi for party Pi for each i ∈ [n], any probabilistic polynomial-time computable function f , and any
adversary A corrupting a set T of parties, there exists a subset W of honest parties such that the following
properties hold at the end of the respective phases.
Commitment phase: During this phase, all players commit to their inputs.
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• Binding: For each Pi there is a uniquely defined value x∗i ; if Pi ∈W , then x∗i = xi.

• Privacy: For all Pi ∈W , x∗i is information-theoretically hidden.

Computation phase:

• Correctness: Each Pi ∈W outputs f(x∗1, . . . , x
∗
n).

• Privacy: [Informal] For all Pi ∈ W , no information about x∗i (beyond what can be inferred from the
output) leaks to A.

3 Almost-Everywhere RMT and SMT

In this section, we use the UC framework to capture classical RMT and SMT protocols, which work in a
model where the sender S and receiver R are connected by n disjoint wires, as in the abstract formulation
of [DDWY90]. Although this is a simple model, here we give a novel treatment of these tasks that also serves
as a warm-up to our later results, which look at these tasks over sparse graphs. Since the classical protocols
may not provide security when enough of the wires are corrupted, we also introduce an AE wrapper that
allows parties interacting with the underlying functionality to be marked as “doomed” in such cases. In
Section 4, where we consider remote RMT and SMT, we will realize the same functionalities for RMT and
SMT defined in this section, just in a wrapped form with different parameters.

We begin by modeling the disjoint wires from the classical setting as virtual wires that are represented
by UC parties, which we call wire-parties and denote by W1, . . . ,Wn ( ~W for short). The idea is that a
wire-party can securely forward a message from S to R or vice versa as long as it is not corrupted, just
as a wire in the classical model can securely transmit a message between S and R as long as it is free of
corruptions. Since the basic communication model in UC is completely unprotected, we assume access to the

ideal secure channel functionality FS,R, ~Wsc shown in Figure 1, which provides secure communication between
an honest S or R and an honest wire-party over a single round.3 Looking ahead, this functionality is very
similar to the functionality we use to capture secure channels between every pair of nodes connected by an

edge in a sparse graph. In FS,R, ~Wsc (and all of our functionalities), l(·) refers to length and Infl is short for
“influence” (see, e.g., [GKZ10]).

For convenience, we use FS,R, ~Wsc to realize the wire channel functionality FS,R, ~Wwc shown in Figure 2, which
abstracts the process of sending a message to a wire-party, who then forwards it to S or R. The functionality
actually allows sending a potentially different message through each wire-party in parallel, and it provides
security for a given message as long as S, R, and the wire-party in question are all honest. In addition
to simplifying our RMT and SMT protocols, this functionality also has a very intuitive interpretation: it
models the sending of messages in a single “phase” or direction, in the terminology of the PSMT literature
(see Appendix A.1 for a discussion of phases). Note that since we are considering virtual wires that consist
of just one intermediate node, the wire channel functionality requires two rounds to generate output.

We can use the simple protocol Πwc(S,R, ~W ) (shown in Figure 12 in Appendix B) to realize FS,R, ~Wwc .
We prove the following proposition in Appendix C.1.

Proposition 3. Protocol Πwc(S,R, ~W ) UC-realizes FS,R, ~Wwc in the FS,R, ~Wsc -hybrid model.

3.1 Universally Composable RMT and SMT

We model the task of RMT in UC with the authenticated communication functionality FP,rndauth shown in
Figure 3, which is essentially Canetti’s Fauth [Can05] with explicit synchrony (the rnd parameter). There is
also a parameter P representing the set of possible senders and receivers (the functionality itself is single-
use). This parameter allows the functionality to verify that the actual sender and receiver can be identified
as specific nodes in the network topology over which it is being realized, which is necessary because the
realizing protocol will need to perform the same verification.

3Our RMT protocols require only reliable edges. However, we eventually need secure channels to achieve SMT and MPC,
so for simplicity we present everything in the secure channels hybrid model.
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Functionality FS,R, ~Wsc

The secure channel functionality Fsc is parameterized by the identities of the sender S, the receiver R,
and the n wire-parties ~W = (W1, . . . ,Wn), and it proceeds as follows. At the first activation, verify
that sid = (Pi, Pj , sid

′), where one of Pi and Pj is either S or R, and the other is some wire-party Wi;
else halt. Initialize variable m to a default value ⊥.

• Upon receiving input (Send, sid, v) from Pi in round ρ, record m← v. If Pi or Pj is marked as cor-
rupted, then send (SendLeak, sid,m) to the adversary; otherwise send (SendLeak, sid, l(m)).

• Upon receiving (InflSend, sid,m′) from the adversary: If Pi or Pj is corrupted, and
(Sent, sid,m) has not yet been sent to Pj , then update m ← m′; otherwise, ignore the com-
mand.

• Upon receiving (Fetch, sid) from Pj in round ρ+ 1, output (Sent, sid,m) to Pj if it has not yet
been sent.

• Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ {Pi, Pj}, mark P as corrupted and
send (SendLeak, sid,m) to the adversary.

Figure 1: The secure channel functionality for the wire-party model.

Functionality FS,R, ~Wwc

The functionality is parameterized by the identities of the sender S, the receiver R, and the n wire-
parties ~W = (W1, . . . ,Wn). At the first activation, verify that sid = (Ps, Pr, sid

′), where {Ps, Pr} =
{S,R}. Initialize variables m1, . . . ,mn to ⊥.

• Upon receiving input (Send, sid,Wi, vi) from Ps in round ρ (which is the same for all Wi), record
mi ← vi. If any P ∈ {Ps, Pr,Wi} is marked as corrupted, then send (SendLeak, sid,Wi,mi) to
the adversary; otherwise send (SendLeak, sid,Wi, l(mi)).

• Upon receiving (InflSend, sid,Wi,m
′
i) from the adversary: If any P ∈ {Ps, Pr,Wi} is corrupted,

and (Sent, sid,Wi,mi) has not yet been sent to Pr, then set mi ← m′i.

• Upon receiving (Fetch, sid,Wi) from Pr in round ρ′: If Pr is corrupted, then send
(FetchLeak, sid,Wi) to the adversary; otherwise, if ρ′ = ρ+ 2, then output (Sent, sid,Wi,mi)
to Pr if it has not yet been sent.

• Upon receiving (Output, sid,Wi) from the adversary: If Pr is corrupted, then output
(Sent, sid,Wi,mi) to Pr if it has not yet been sent.

• Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ {Ps, Pr,W1, . . . ,Wn}, mark P
as corrupted. If P is some wire-party Wi, then send (SendLeak, sid,mi) to the adversary;
otherwise, send (SendLeak, sid,m1, . . . ,mn). If P = Pr, then additionally leak any previous
fetch requests made by Pr.

Figure 2: The wire channel functionality.
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Functionality FP,rndauth

The authenticated communication functionality Fauth is parameterized by a set P of possible senders
and receivers as well as an integer rnd indicating the number of rounds that will be used to realize it,
and it proceeds as follows. At the first activation, verify that sid = (S,R, sid′), where S,R ∈ P; else
halt. Initialize variable m to a default value ⊥.

• Upon receiving input (Send, sid, v) from S in round ρ, record m ← v and send
(SendLeak, sid,m) to the adversary.

• Upon receiving (InflSend, sid,m′) from the adversary: If S or R is marked as corrupted, and
(Sent, sid,m) has not yet been sent to R, then update m← m′; otherwise, ignore the command.

• Upon receiving input (Fetch, sid) from R in round ρ′: If R is corrupted, then send
(FetchLeak, sid) to the adversary; otherwise, if ρ′ = ρ + rnd, then output (Sent, sid,m) to
R if it has not yet been sent.

• Upon receiving (Output, sid) from the adversary: If R is corrupted, then output (Sent, sid,m)
to R if it has not yet been sent; otherwise, ignore the command.

• Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ {S,R}, mark P as corrupted. If
P = R, then leak any previous fetch requests made by R to the adversary.

Figure 3: The authenticated communication functionality.

To realize FP,rndauth in the wire-party model (P = {S,R}) assuming only a minority of the wire-parties
get corrupted, we can simply duplicate the message through all wire-parties and have the receiver (who
may actually be S) take majority; see Figure 13 in Appendix B for a formal specification of Protocol

Πauth(S,R, ~W ). We prove the following theorem in Appendix C.2.

Theorem 4. Protocol Πauth(S,R, ~W ) UC-realizes F{S,R},rndauth for rnd = 2 in the FS,R, ~Wwc -hybrid model, against
an adversary corrupting up to a minority of the wire-parties.

Next, we capture SMT in UC with the secure message transmission functionality FP,rndsmt shown in Figure 4,
which is essentially Canetti’s Fsmt [Can05] with synchrony.

To realize FP,rndsmt in the wire-party model assuming only a minority of the wire-parties get corrupted,
we can use the protocol Πsmt(S,R, ~W ) shown in Figure 5, which is essentially the FastSMT protocol
from [DDWY90] adapted for our UC treatment (see Section 2.2).

Theorem 5. Protocol Πsmt(S,R, ~W ) UC-realizes F{S,R},rndsmt for rnd = 6 in the (FS,R, ~Wwc ,F{S,R},2auth )-hybrid
model, against an adversary corrupting up to a minority of the wire-parties.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that
no (unbounded) environment can distinguish whether it is interacting with Πsmt(S,R, ~W ) and A, or with

F{S,R},rndsmt and S. The simulator internally runs a copy of A, and plays the roles of FS,R, ~Wwc , F{S,R},2auth , and the
parties in a simulated execution of the protocol. All inputs from Z are forwarded to A, and all outputs from
A are forwarded to Z. Moreover, whenever A corrupts a party in the simulation, S corrupts the same party

in the ideal world by interacting with F{S,R},rndsmt (except if the party is a wire-party), and if the corruption
was direct (i.e., not via one of the aiding functionalities), then S sends A the party’s state and follows A’s
instructions thereafter for that party.

The simulated execution starts upon S receiving (SendLeak, sid, m̂) from F{S,R},rndsmt in round ρ for
sid = (Ps, Pr, sid

′), where m̂ ∈ {m, l(m)} and m is the message to be sent. Now, S executes the first two
phases of the protocol honestly, by simulating sending random strong pads (shares hi(·) and checking pieces

Ci = (c1i, . . . , cni)) from Ps to Pr through the n wire-parties (i.e., by simulating leakage from FS,R, ~Wwc to A,

and responding to corruption and influence requests directed from A to FS,R, ~Wwc ) and by simulating sending
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Functionality FP,rndsmt

The secure message transmission functionality Fsmt is parameterized by a set P of possible senders and
receivers as well as an integer rnd indicating the number of rounds that will be used to realize it, and
it proceeds as follows. At the first activation, verify that sid = (S,R, sid′), where S,R ∈ P; else halt.
Initialize variable m to a default value ⊥.

• Upon receiving input (Send, sid, v) from S in round ρ, record m← v. If S or R is marked as cor-
rupted, then send (SendLeak, sid,m) to the adversary; otherwise, send (SendLeak, sid, l(m)).

• Upon receiving (InflSend, sid,m′) from the adversary: If S or R is corrupted, and (Sent, sid,m)
has not yet been sent to R, then update m← m′; otherwise, ignore the command.

• Upon receiving input (Fetch, sid) from R in round ρ′: If R is corrupted, then send
(FetchLeak, sid) to the adversary; otherwise, if ρ′ = ρ + rnd, then output (Sent, sid,m) to
R if it has not yet been sent.

• Upon receiving (Output, sid) from the adversary: If R is corrupted, then output (Sent, sid,m)
to R if it has not yet been sent; otherwise, ignore the command.

• Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ {S,R}, mark P as corrupted and
send (SendLeak, sid,m) to the adversary. If P = R, then additionally leak any previous fetch
requests made by R.

Figure 4: The secure message transmission functionality.

Protocol Πsmt(S,R, ~W )

Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (Ps, Pr, sid
′) and {Ps, Pr} = {S,R},

party Ps executes protocol Πddwy(~γ, v) with party Pr, where the wires γ1, . . . , γn in ~γ are taken to be
the virtual wires corresponding to the wire-parties W1, . . . ,Wn:

1. In the first phase, Ps uses a single instance of FS,R, ~Wwc with sid1 = (sid, 1) to send all the messages
instead of using wires in ~γ. Next, in the second and third phases, Pr and Ps substitute the

authenticated channel with separate instances of F{S,R},2auth with sid2 = (Pr, Ps, sid
′, 2) and sid3 =

(Ps, Pr, sid
′, 3), respectively. To receive output from the aiding functionalities, Ps and Pr have

to send Fetch messages to the functionalities using the correct session IDs as generated above.
Note that Ps and Pr execute the protocol in rounds, with two rounds per flow of communication

as both FS,R, ~Wwc and F{S,R},2auth are two-round functionalities.

2. Upon receiving input (Fetch, sid) from Z in round ρ′ = ρ+ 6, Pr outputs (Sent, sid,m′) to Z
if it receives m′ as the output of this protocol.

Figure 5: The SMT protocol in the wire-party model.

the response from Pr to Ps over the authenticated channel (i.e., by appropriately playing the role of F{S,R},2auth

for A). For the third phase of the protocol, S simulates honestly, except for choosing z when Ps and Pr
are both honest in which case S simulates sending a random value z from Ps to Pr over F{S,R},2auth instead of

z = m + p. When Ps or Pr is corrupted by A, S learns m via leakage from F{S,R},rndsmt and thus can send
z = m + p just like in the real protocol. Note that if the simulated Pr aborts by outputting ⊥, then S can

influence F{S,R},rndsmt , since this can only happen if A corrupts Ps or Pr.

If Ps or Pr is corrupted before S decides about z in its internal execution, F{S,R},rndsmt leaks m to S allowing
for perfect simulation. It is also easy to perfectly simulate when both Ps and Pr are honest throughout the
whole execution. In particular, when A does not corrupt Ps or Pr, for each strong pad at most τ shares and
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their associated checking pieces are revealed to A in the real world because of our assumption that only a
minority of wire-parties are corrupted. Assume that I is the set of indices for corrupted wire-parties, so for
each strong pad A learns hj(·), (c1j , c2j , . . . , cnj) for all j ∈ I where cij = hi(j) for all i ∈ [n]. Since all hi(·)’s
are random polynomials of degree τ , Pr[hi(0) = a | {cij}j∈I ] = Pr[hi(0) = a] and since the hi(·)’s are chosen
independently, Pr[hi(0) = a | {ckj}k∈[n],j∈I ] = Pr[hi(0) = a]. Therefore, by corrupting all the wires with
indices in I|I|≤τ , no information about hi(0) for i /∈ I leaks to A. Moreover, we know that hi(0) = f(i) and
since f(·) is also a random polynomial of degree τ we have Pr[f(0) = a | {hi(0)}i∈I ] = Pr[f(0) = a] (where
f(0) is the value of the pad). The last probability implies that whichever strong pad is chosen by the protocol,
it looks uniformly random to A and alternatively Z. It means that regardless of which distribution m is
chosen from, z = m+p looks uniformly random to A and Z if no more than τ wire-parties are corrupted and
Ps and Pr are both honest. Therefore, choosing a random value z by S looks perfectly indistinguishable from

the real protocol execution to Z. At the same time, F{S,R},2auth provides genuine authentication of messages
intended to be sent on the authenticated channel in the protocol, and hence in the real world Pr outputs the
sender’s input.

An important case arises when both Ps and Pr are honest at the beginning of the third phase (at the
time S decides the value of z), but then at least one of them gets corrupted later on. In this scenario, A
receives sufficient leakage from FS,R, ~Wwc to interpolate the pad and compute the value of the message from
z. Since z is randomly chosen by S, the message learned by A deviates from what is originally sent by Ps,
causing Z to distinguish between the real and ideal worlds. In such a situation, S learns the actual value of

m through leakage from F{S,R},rndsmt and can cheat by calculating a fake pad p′ that satisfies z = m + p′. S
can then simulate leakage from FS,R, ~Wwc to reveal p′. Therefore, even in this last scenario, the simulation is
perfect.

Note that during the simulation, S has the capability to send an InflSend message to F{S,R},rndsmt when Ps
or Pr is corrupted in order to modify the message as necessary, taking into account the behavior of A during
its internal execution. This allows S to actively control and manipulate the message so that Pr always gets
the updated message. Furthermore, in cases where Pr is corrupted and S receives a FetchLeak message

from F{S,R},rndsmt , S can proceed with its internal execution by sending a Fetch input to (the simulated)
Pr. By doing so, S can observe the internal execution and based on the behavior of A, exert influence and

potentially send an Output message to F{S,R},rndsmt .

3.2 Corrupted Majorities of Wire-Parties

In the wire-party model, Fauth and Fsmt can only be realized when the adversary is restricted to corrupt-
ing only a minority of wire-parties. When corrupted majorities are allowed, the sender and receiver may
essentially become doomed. To allow the simulator to handle such cases, we introduce an AE wrapper func-
tionality (shown in Figure 6) that allows parties to be marked as doomed according to the current set of
corruptions. The wrapper accepts “doom” requests according to an adversary structure, and it processes
them by simply having the underlying functionality treat doomed parties as fully corrupted. Recall that an
adversary structure is a set of c-vectors of subsets of a participant set P, where each component of a vector
represents corruptions of a certain type. We consider adversary structures that consist of doubles of subsets,
corresponding to a corrupted set and a doomed set, respectively, although the two may intersect.4 We call
such structures doom structures.

We are now equipped to realize wrapped F{S,R},rndauth and F{S,R},rndsmt , with respect to the following doom
structure Dpsmt (PSMT stands for “perfectly secure message transmission,” as it was called by Dolev et
al. [DDWY90]):

Definition 6 (doom structure over P = {S,R,W1, . . . ,Wn}). Let (Ti, Di) ∈ Dpsmt if and only if either
|Ti − {S,R}| < n

2 and Di = ∅, or |Ti − {S,R}| ≥ n
2 and Di ⊆ {S,R}.

The following theorem is a straightforward extension of Theorem 4, but we give a brief proof in Ap-
pendix C.3.

4This is a technicality, which simplifies some of our definitions and results. For example, the definition of AE-monotonicity
(introduced in Definition 24) would not be quite as short and intuitive otherwise.
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Wrapper Functionality WD
ae(F)

The wrapper is parameterized by a doom structure D = {(T1, D1), . . . , (Tm, Dm)}, where each
(Ti, Di) ∈ 2P × 2P . The underlying functionality is F . Let T be the set of currently corrupted
parties and let D be the set of currently doomed parties, both initialized to ∅.

• Upon receiving (Corrupt, sid, Pi) from the adversary for Pi ∈ P: If (T ∪{Pi}, D) ∈ D , then set
T ← T ∪ {Pi}, relay the message to F , and send back F ’s response.

• Upon receiving (Doom, sid, Pi) from the adversary for Pi ∈ P: If (T,D ∪ {Pi}) ∈ D , then set
D ← D ∪ {Pi}, send (Corrupt, sid, Pi) to F , and send back F ’s response.

• Any other request from any party or the adversary is simply relayed to F without any further
action and the output is relayed to the destination specified by F .

Figure 6: The AE wrapper functionality.

Theorem 7. Protocol Πauth(S,R, ~W ) UC-realizes WDpsmt
ae (F{S,R},rndauth ) for rnd = 2 in the FS,R, ~Wwc -hybrid

model, even against corrupted majorities of wire-parties.

To realize wrapped F{S,R},rndsmt , define protocol Π′smt(S,R, ~W ) by replacing invocations of F{S,R},2auth in

protocol Πsmt(S,R, ~W ) with invocations of WDpsmt
ae (F{S,R},2auth ). We sketch a proof here, to illustrate the usage

of our wrapper.

Theorem 8. Protocol Π′smt(S,R, ~W ) UC-realizesWDpsmt
ae (F{S,R},6smt ) in the (FS,R, ~Wwc ,WDpsmt

ae (F{S,R},2auth ))-hybrid
model, even against corrupted majorities of wire-parties.

Proof. [Sketch] We construct a simulator S that is very similar to the simulator in the proof of Theorem 5.
However, S now interacts with a wrapped Fsmt functionality, and corruption messages for wire-parties are
indeed sent because they can now be processed by the wrapper. Another difference concerns the case in
which Ps and Pr are not corrupted by A. If A corrupts only a minority of the wire-parties, then S can simply
use a random value of z in the third phase of the protocol, and let the dummy Pr fetch its output as before,
albeit from the wrapper. Otherwise, as soon as enough wire-parties are corrupted, S sends a Doom message
for Ps to the wrapper, which will be accepted by definition of Dpsmt, and obtains m as leakage because
the wrapper will send a corruption message for Ps to the underlying Fsmt functionality. Now, S can use
z = m+ p in the third phase, and influences the wrapper every time the value that the real-world Pr would
have output changes (these influence messages will be accepted by the wrapper). Another issue that comes
up in the case that Ps and Pr remain honest is that A might exceed a minority of wire-party corruptions
only after S has already chosen a random z. However, S can handle this by cheating and computing a fake
pad consistent with m, like the simulator in the proof of Theorem 5 does. Once again, the simulation is
perfect.

Next we turn to SMT-PD, which offers an alternative way to achieve SMT against a corrupted majority
of wires, in the presence of a public channel.

3.3 Universally Composable SMT-PD

To capture SMT-PD in UC, we use our wire-party model from before, with the public channel modeled

by assuming access to F{S,R},rnd
′

auth for some rnd′. Assuming at least one wire-party remains honest, we can

realize (unwrapped) F{S,R},rndsmt using the protocol Πsmt-pd(S,R, ~W ) shown in Figure 7, which is essentially
a UC adaptation of the classical SMT-PD protocol Πpub-smt(~γ,Pub,m) that was presented in Section 2.2.
However, the trade-off is that we obtain only statistical security.

Theorem 9. Protocol Πsmt-pd(S,R, ~W ) statistically UC-realizes F{S,R},rndsmt for rnd = 2 + 3 · rnd′ in the

(FS,R, ~Wwc ,F{S,R},rnd
′

auth )-hybrid model, against an adversary corrupting up to all but one of the wire-parties.
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Protocol Πsmt-pd(S,R, ~W )

Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (Ps, Pr, sid
′) and {Ps, Pr} = {S,R},

party Ps executes protocol Πpub-smt(~γ,Pub, v) with party Pr, where the wires γ1, . . . , γn in ~γ are taken

to be the virtual wires corresponding to the wire-parties W1, . . . ,Wn in ~W :

1. In the first step, Ps uses a single instance of FS,R, ~Wwc with sid1 = (sid, 1) to send all the random
bit strings instead of using wires in ~γ. In the second, third, and fourth steps, Ps and Pr substi-

tute the public channel Pub with separate instances of F{S,R},rnd
′

auth using sid2 = (Ps, Pr, sid
′, 2),

sid3 = (Pr, Ps, sid
′, 3), and sid4 = (Ps, Pr, sid

′, 4), respectively. To receive output from the aiding
functionalities, Ps and Pr have to send Fetch messages to the functionalities using the correct
session IDs as generated above. Note that Ps and Pr execute the protocol in rounds, with two

rounds for the invocation of FS,R, ~Wwc and rnd′ rounds per invocation of F{S,R},rnd
′

auth .

2. Upon receiving input (Fetch, sid) from Z in round ρ′ = ρ+2+3·rnd′, Pr outputs (Sent, sid,m′)
to Z if it receives m′ as the output of this protocol.

Figure 7: The SMT-PD protocol in the wire-party model.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that

no environment Z can distinguish whether it is interacting with Πsmt-pd(S,R, ~W ) and A, or with F{S,R},rndsmt

and S. The simulator internally runs a copy of A, and plays the roles of FS,R, ~Wwc , F{S,R},rnd
′

auth , and the parties
in a simulated execution of the protocol. All inputs from Z are forwarded to A, and all outputs from A
are forwarded to Z. Moreover, whenever A corrupts a party in the simulation, S corrupts the same party

in the ideal world by interacting with F{S,R},rndsmt (except if the party is a wire-party), and if the corruption
was direct (i.e., not via either of the aiding functionalities), then S sends A the party’s state and thereafter
follows A’s instructions for that party.

The simulated execution starts upon S receiving (SendLeak, sid, m̂) from F{S,R},rndsmt in round ρ for
sid = (Ps, Pr, sid

′), where m̂ ∈ {m, l(m)} and m is the message to be sent. Now, S simulates the first
three steps of the protocol honestly, by simulating sending random bit strings from Ps to Pr through the

n wire-parties (i.e., by simulating leakage from FS,R, ~Wwc to A, and responding to corruption and influence

requests directed from A to FS,R, ~Wwc ), and by simulating sending a message from Ps to Pr or vice versa over

the public channel (by appropriately playing the role of F{S,R},rnd
′

auth for A). In the fourth step, S chooses
random mi’s to be encoded (rather than mi’s such that m = m1 ⊕ · · · ⊕ms) if Ps and Pr are still honest; if

Ps or Pr is corrupted by A, then S learns m via leakage from F{S,R},rndsmt .
Next, we describe how S simulates the remaining part of the execution until when Pr (or A when Pr is

corrupted) generates the output. If Ps or Pr was corrupted prior to S making a decision about the mi’s,
the simulation becomes straightforward because S has access to the private input. Consequently, everything
will naturally add up in the view generated by S. If both Ps and Pr are honest throughout the whole
execution, then S does not learn the message m at all and needs to simulate using some message m′ that
with high probability is not equal to m. However, in that case the adversarial view would be independent of
the message, which does not let Z distinguish. The main reason for this is that we assumed adversaries who
will not corrupt all the wire-parties. Therefore, there will be at least one mi that A would not learn (the
one whose corresponding bit string is not known), which allows the adversarial view to remain consistent
with any message m provided by Z.

A more intricate case arises when Ps or Pr is corrupted only after S has already decided on the random
mi’s to be encoded in the fourth step. In this scenario, A can recover some m′ from its view by receiving

leakages from all the instances of FS,R, ~Wwc . If m′ does not match m, then Z can distinguish between the real
and ideal worlds. The challenge lies in the fact that S had to choose a message before learning m, which,
with high probability, makes it different from m. However, S can handle this case by simulating what was
sent in the first step. In particular, at least one bit string (corresponding to an uncorrupted wire-party) sent
in the first step is not visible to A, so S can redefine it to be consistent with m (which S learns from leakage
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from F{S,R},rndsmt ).
There are some important details regarding the simulation that we should mention here. S has the

capability to send an InflSend message to F{S,R},rndsmt when Ps or Pr is corrupted in order to modify the
message as necessary, taking into account the behavior of A during its internal execution. This allows S
to actively control and manipulate the message so that Pr always gets the updated message. Furthermore,

in cases where Pr is corrupted and S receives a FetchLeak message from F{S,R},rndsmt , S can proceed with
its internal execution by sending a Fetch input to (the simulated) Pr. By doing so, S can observe the
internal execution and based on the behavior of A, exert influence and potentially send an Output message

to F{S,R},rndsmt .
The views generated in the real and ideal worlds are identical whenever the protocol succeeds. However,

in the real world, with a small probability A can manipulate the random bit strings sent through corrupted
wire-parties such that they cannot be corrected by the error-correcting code, and yet will not be detected
when Ps opens some random bits of the bit strings to identify and discard corrupted wires. Such a scenario
cannot happen in the ideal world, which may allow Z to distinguish. Therefore, the simulation is not perfect
and it only yields statistical UC-realization.

4 Almost-Everywhere Remote RMT and SMT

In this section, we consider remote—i.e., over a (possibly sparse) graph Gn—RMT and SMT. As in Section 3,
we model the network topology using a parameterized secure channel functionality FGn

sc , shown in Figure 8,
which provides secure channels only between parties that are connected in Gn.

Functionality FGn
sc

The functionality is parameterized by a graph Gn = (V,E) of party identities and communication
edges. At the first activation, verify that sid = (Pi, Pj , sid

′), where (Pi, Pj) ∈ E; else halt. Initialize
variable m to a default value ⊥.

• Upon receiving input (Send, sid, v) from Pi in round ρ, record m← v. If Pi or Pj is marked as cor-
rupted, then send (SendLeak, sid,m) to the adversary; otherwise send (SendLeak, sid, l(m)).

• Upon receiving (InflSend, sid,m′) from the adversary: If Pi or Pj is corrupted, and
(Sent, sid,m) has not yet been sent to Pj , then update m ← m′; otherwise, ignore the com-
mand.

• Upon receiving (Fetch, sid) from Pj in round ρ+ 1, output (Sent, sid,m) to Pj if it has not yet
been sent.

• Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ {Pi, Pj}, mark P as corrupted and
send (SendLeak, sid,m) to the adversary.

Figure 8: The secure channel functionality for (incomplete) graph Gn.

For convenience, instead of always working directly in the FGn
sc -hybrid model, we use FGn

sc to realize the
remote secure channel functionality FGn

r-sc (shown in Figure 14 in Appendix B), which is the counterpart to

FS,R, ~Wwc from Section 3. This functionality provides secure communication over a single path, as long as
no node on the path is corrupted. We emphasize that even privileged nodes may not be able to use FGn

r-sc

to communicate securely, if the chosen path is corrupted. Using protocol Πr-sc(Gn) (shown in Figure 15
in Appendix B), we can realize FGn

r-sc by simply forwarding the message along the path, which leads to the
following statement. We omit the proof, as it is very similar to the proof of Proposition 3.

Proposition 10. Protocol Πr-sc(Gn) UC-realizes FGn
r-sc in the FGn

sc -hybrid model.
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4.1 AE Remote RMT

We first show how classical AE-RMT protocols from the AE agreement literature can be adapted to UC-
realize our wrapped FP,rndauth functionality, using doom structures that are derived from the protocol and the
underlying sparse graph.

4.1.1 Graphs of Constant Degree

We first describe a scheme due to Dwork et al. [DPPU86], which guarantees AE reliable communication
in classes of constant-degree graphs (such as their “butterfly” network) that admit a certain three-phase
transmission scheme. At a high level, the scheme associates with every node v a fan-in set Γin(v) and a fan-
out set Γout(v) of a fixed (but not necessarily constant) size s. In addition, (not necessarily vertex-disjoint)
paths from a node to its sets are specified, as well as (vertex-disjoint) paths from one node’s fan-out set
to another node’s fan-in set. Node u transmits a message m to node v by running the following protocol
Πdppu(u, v,m): first u sends m to all members of Γout(u); each member then forwards the message to its
connected (via a path) node in Γin(v); and finally each member of Γin(v) forwards the message to v, who
simply takes majority. Now, let t denote the maximum number of corruptions, and for every node v suppose
that |Γin(v)| = |Γout(v)| = s > 4t. Given a set of adversarial nodes T , it is shown in [DPPU86] that if less
than 1

8 of the paths from a node u to Γout(u) are corrupted (the path includes the end point in Γout(u)),
less than 1

4 of the paths from Γout(u) to Γin(v) are corrupted (which is guaranteed as long as s > 4t), and
less than 1

8 of the paths from Γout(v) to node v are corrupted, then u and v can communicate reliably.
Furthermore, it is shown in [DPPU86] how to construct the above three-phase transmission scheme for

several classes of graphs. Using the terminology from Section 1, the set of privileged nodes W (T ) in this
case consists of the nodes u such that less than 1

8 of both the paths from u to Γout(u) and the paths from
Γin(u) to u are corrupted, and D(T ) is the corresponding set of doomed nodes. Let x be the maximum size
of D(T ) over all T of size at most t. Recall that we would like to obtain as low a value of x as possible (O(t)
is optimal in this case), while tolerating a large value of t (ideally O(n)). Although Dwork et al. constructed
several classes of graphs admitting AE-RMT with various combinations of parameters, we consider only the
graphs that use the three-phase transmission scheme described above (the other graphs use an appended or
different transmission scheme). The parameters achieved are as follows:

• for the butterfly network on n nodes: t = O( n
logn ) and x = O(t log t); and

• for almost every r-regular graph (r ≥ 5): t = O(n1−ε) and x = O(t1+δ log t), for some 0 < δ < ε < 1.

Let Gdppu
n = (Vdppu, Edppu) be a graph that admits such a three-phase transmission scheme. To realize

wrapped FVdppu,rnd
auth , we use protocol Πdppu

r-auth (presented in Figure 16 in Appendix B), which is a straightforward

UC adaptation of Πdppu in the FG
dppu
n

r-sc -hybrid model, and the following doom structure Ddppu.

Definition 11 (doom structure over Vdppu). For any corruption set Ti, let Ddppu(Ti) be the set of all
participants P such that at least 1

8 of the paths from P to Γout(P ) or at least 1
8 of the paths from Γin(P ) to

P are corrupted. Then, let (Ti, Di) ∈ Ddppu if and only if |Ti| < s/4 and Di ⊆ Ddppu(Ti).

We prove the following theorem in Appendix C.4.

Theorem 12. Protocol Πdppu
r-auth UC-realizes WDdppu

ae (FVdppu,rnd
auth ) for some rnd ∈ O(log n) in the FG

dppu
n

r-sc -hybrid
model, against an adversary corrupting less than s/4 nodes.

We can also formulate the above result in threshold (as opposed to doom-structure) terms (cf. [DPPU86]):

Corollary 13. Over a butterfly network of n = m2m nodes and in the presence of an adversary corrupting
up to t < 2m/4 nodes, Πdppu

r-auth guarantees (perfect) reliable message transmission among all but at most
32t log 16t honest nodes.

Building on [DPPU86], Upfal [Upf92] proposed an alternative transmission scheme for constant-degree
graphs, which actually works over any graph; however, optimality is achieved only on constant-degree ex-
pander graphs with specific parameters. The main limitation of the scheme is that it is computationally
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inefficient. Node u transmits a message m to node v by sending it through all the simple paths connecting
them. As the message travels along a path to v, each node on the path appends the ID of the previous node
to the message. This way each message received from a corrupted path will contain the ID of at least one
corrupted node, and v can enumerate over all the possible corruption sets to recover m. Denote this protocol
by Πupfal(u, v,m).

Let Gupfal
n = (Vupfal, Eupfal) be a d-regular graph with λ ≤ 2

√
d− 1 (i.e., an n-node Ramanujan graph).5

To realize wrapped FVupfal,rnd
auth , we use protocol Πupfal

r-auth (presented in Figure 17 in Appendix B), which is

a straightforward UC adaptation of Πupfal in the FG
upfal
n

sc -hybrid model, and the following doom structure
Dupfal.

Definition 14 (doom structure over Vupfal). First, define Dupfal(Ti) by the following iterative process:
Starting with the set S = Ti, repeatedly add all participants Q /∈ S such that at least 1

5 of Q’s neighbors are
in S. Then, let (Ti, Di) ∈ Dupfal if and only if |Ti| ≤ 1/72n and Di ⊆ Dupfal(Ti).

We prove the following theorem in Appendix C.5.

Theorem 15. Protocol Πupfal
r-auth UC-realizes WDupfal

ae (FVupfal,rnd
auth ) for some rnd ∈ O(log n) in the FG

upfal
n

sc -hybrid
model, against an adversary corrupting up to 1/72n nodes.

The simulator we construct needs to run the potentially exponential-time process that the receiver does
at the end of the protocol, to determine the output when the sender or receiver is doomed, although that
seems reasonable since the protocol itself is inefficient. As before, in threshold terms (cf. [Upf92]), we obtain:

Corollary 16. Over any d-regular graph G with λ(G) ≤ 2
√
d− 1 and in the presence of an adversary

corrupting up to t = 1/72n nodes, Πupfal
r-auth guarantees (perfect) reliable message transmission among all but

at most 6t nodes.

We note that explicit constructions of d-regular graphs with λ(G) ≤ 2
√
d− 1 exist, for any d = p+ 1, p

a prime [LPS86].

4.1.2 Graphs of Poly-Logarithmic Degree

Chandran et al. [CGO10] proposed a randomly constructed graph Gcgo
n = (Vcgo, Ecgo) of poly-logarithmic

degree, admitting an AE-RMT scheme that tolerates O(n) corruptions while dooming only O(t/ log n) nodes.
The graph is constructed by first forming n logk n overlapping committees (for some constant k) of size
O(log log n) via random walks on an expander graph. All nodes within a committee are connected by a
clique, and the committees (viewed as “super-nodes”) are connected by “super-edges” according to the
constant degree butterfly network from [DPPU86]. A super-edge between two committees is formed by
connecting the i’th node in one committee to the i’th node in the other committee (according to, say, a
lexicographic ordering of nodes). Finally, each node is assigned to O(logk n) “helper” committees according
to a bipartite expander; a node is connected by an edge to each node in each of its helper committees.

The proposed protocol Πcgo(u, v,m) for transmitting a message m from node u to node v is as follows:
first u sends m to all of its helper committees; those committees then transmit the message to v’s helper
committees using Πdppu (at the committee level); finally, v takes majority over the values received from
its helpers. To send a message from one committee to another over a super-edge, each node in the source
committee sends the message to its corresponding node in the other committee, and then all nodes in the
destination committee run a differential agreement6 protocol [FG03] over the values they have received. This
serves as a sort of error correction as the message travels from committee to committee, ensuring that two
“honest” committees (defined below) that are connected by a super-edge can communicate reliably.

To realize wrapped FVcgo,rnd
auth , we use protocol Πcgo

r-auth (presented in Figure 18 in Appendix B), which is a

straightforward UC adaptation of Πcgo in the FG
cgo
n

sc -hybrid model, and the following doom structure Dcgo.

5Given a d-regular graph G, λ(G) is defined as the maximum absolute value of any eigenvalue of the adjacency matrix of G
other than d.

6Differential agreement guarantees that if many (not necessarily all) of the honest parties begin with the same value, then
all of the honest parties will output that value.
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Definition 17 (doom structure over Vcgo). First, for any corruption set Ti, let Dcgo(Ti) be the set of all
participants P such that at least 1

6 of P ’s helper committees are unprivileged. A committee is considered
corrupted if at least 1

4 of its members are corrupted, and committees are categorized as unprivileged according
to the Ddppu(·) function (Definition 11). Then, let (Ti, Di) ∈ Dcgo if and only if corrupting the nodes in Ti

causes at most n logk n
4 log(n logk n)

committees to become corrupted, and Di ⊆ Dcgo(Ti).

Chandran et al. [CGO10] proved that there exists a constant αcgo such that for any adversary corrupting

at most αcgon nodes, at most n logk n
4 log(n logk n)

committees become corrupted. Thus, for that constant we have

the following theorem, proven in Appendix C.6.

Theorem 18. Protocol Πcgo
r-auth UC-realizes WDcgo

ae (FVcgo,rnd
auth ) for some rnd ∈ O(log n · log log n) in the FG

cgo
n

sc -
hybrid model, against an adversary corrupting at most αcgon nodes.

Chandran et al. also showed that there exists a constant βcgo such that for any Ti with |Ti| ≤ t = αcgon,
it holds that |Dcgo(Ti)− Ti| ≤ βcgo t

logn . Now we can formulate the above result in terms of thresholds over

the number of corrupted and doomed nodes, as stated in [CGO10] in the property-based setting:

Corollary 19. There exist constants αcgo, βcgo such that over Gcgo
n and in the presence of an adversary

corrupting up to t = αcgon nodes, Πcgo
r-auth guarantees perfect reliable message transmission among all but at

most βcgo
t

logn honest nodes.

4.1.3 Graphs of Logarithmic Degree

Jayanti et al. [JRV20] recently proposed a family of randomly constructed graphs of logarithmic degree,
admitting AE-RMT with O(n) corruptions and O(t/ log n) doomed nodes (this is the best-known efficient
AE-RMT protocol tolerating a constant fraction of corruptions). Their graphs consist of z = k log n layers,
where k is a constant, which are constructed using the same method but over a random permutation of the
vertex set. To form a layer, the nodes are arbitrarily partitioned into n/s committees of size s = c log log n,
where c is a constant. Each committee is instantiated with Gupfal, and committees are connected by “super-
edges” according to the butterfly network Gdppu. A super-edge is simply a perfect matching between the
node sets of two committees. Let Gjrv be the family of graphs constructed as above.

The proposed protocol Πjrv(u, v,m) for reliable message transmission over graphs in Gjrv is as follows:
node u transmits a message m to node v by sending it through each layer separately, and in the end v takes
majority over the values received from all the layers. In each layer, if u and v are in the same committee,
they simply invoke Πupfal(u, v,m) within the committee. Otherwise, if u and v are located in different
committees, u first sends m to all the nodes in its committee using Πupfal; then u’s committee sends the
message to v’s committee over super-edges using Πdppu; every node in v’s committee (except v) now sends
the message to v using Πupfal, and v takes majority over all the incoming messages. To send a message over
a super-edge between committees, each node in the source committee sends the message to its matched node
in the destination committee, who then sends it to all other nodes in the committee using Πupfal, and finally
each node locally computes the majority of the received messages. As in [CGO10], this procedure provides
a type of error correction as messages travel from committee to committee across super-edges.

LetGjrv
n = (Vjrv, Ejrv) ∈ Gjrv (see below). To realize wrapped FVjrv,rnd

auth , we use protocol Πjrv
r-auth (presented

in Figure 19 in Appendix B), which is a straightforward UC adaptation of Πjrv in the FG
jrv
n

sc -hybrid model,
and the following doom structure Djrv.

Definition 20 (doom structure over Vjrv). First, in each layer of Gjrv
n , if a committee contains more than

1
72s corruptions, call it bad. If the total number of bad committees in a layer exceeds n/s

4 log(n/s) , call the layer

bad. Next, for any corruption set Ti, let Djrv(Ti) be the set of all participants P that are doomed in more
than 1

10z good layers. A node is considered doomed in a layer if it is located in a doomed committee (with
respect to the Ddppu(·) function from Definition 11) or is doomed itself within its committee (with respect
to the Dupfal(·) function from Definition 14). Then, let (Ti, Di) ∈ Djrv if and only if corrupting the nodes
in Ti causes at most 1

5 of the layers to become bad, and Di ⊆ Djrv(Ti).

Jayanti et al. [JRV20] proved that there exist a graph Gjrv
n ∈ Gjrv and constant αjrv such that for any

adversary corrupting at most αjrvn nodes, at most 1
5 of the layers become bad. For such a graph and

constant we have the following theorem, proven in Appendix C.7.
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Theorem 21. Protocol Πjrv
r-auth UC-realizes WDjrv

ae (FVjrv,rnd
auth ) for some rnd ∈ O(log n · log log log n) in the

FG
jrv
n

sc -hybrid model, against an adversary corrupting at most αjrvn nodes.

Jayanti et al. also showed that there exists a constant βjrv such that for any Ti with |Ti| ≤ t = αjrvn, it
holds that |Djrv(Ti)− Ti| ≤ βjrv t

logn . Again, in threshold terms, we obtain (cf. [JRV20]):

Corollary 22. There exist a graph Gjrv
n and constants αjrv, βjrv such that in the presence of an adversary

corrupting up to t = αjrvn nodes, Πjrv
r-auth guarantees perfect reliable message transmission among all but at

most βjrv
t

logn honest nodes.

4.2 AE Remote SMT

To achieve AE secure communication over the constant-degree graphs studied by Dwork et al. [DPPU86], we
can apply the approach that was used in Section 3.2 to obtain AE-SMT in the wire-party model. Specifically,
we can adapt protocol Π′smt(S,R, ~W ) to work over the s paths used by the three-phase transmission scheme

over Gdppu
n . The resulting protocol Πdppu

r-smt (shown in Figure 20 in Appendix B) realizes wrapped FVdppu,rnd
′

smt

for some rnd′ with the same doom structure Ddppu from Section 4.1. In further detail, the sender runs the
classical SMT protocol Πddwy(~γ,m) in [DDWY90] (see Figure 10 in Appendix B) with the receiver, using

separate instances of FG
dppu
n

r-sc in phase 1 as a substitute for sending messages through the wires in ~γ, and
separate instances of WDdppu

ae (FVdppu,rnd
auth ) (for some rnd depending on the length of the used paths) in phases

2 and 3 as a substitute for the authenticated channel. Let ` denote the maximum length of any of the paths
used in the protocol. We stress that the s paths from S to R are not necessarily the same (except reversed)
as the s paths from R to S.

We prove the following theorem in Appendix C.8.

Theorem 23. Protocol Πdppu
r-smt UC-realizes WDdppu

ae (FVdppu,`+2·rnd
smt ) in the (FG

dppu
n

r-sc ,WDdppu
ae (FVdppu,rnd

auth ))-hybrid
model for some rnd ∈ O(log n), against an adversary corrupting less than s/4 nodes.

Note that the bounds on the number of corruptions and the number of doomed parties are encoded in
the doom structure and were already mentioned in Section 4.1.

The technique described above cannot generally be extended to other AE-RMT schemes because it relies
on a majority of honest paths between privileged nodes to establish a secure link between them. However,
many transmission schemes, including Upfal’s [Upf92], do not guarantee this property for privileged nodes.
Actually, according to [DPPU86], this condition is not necessary at all to achieve AE-RMT. To achieve AE-
SMT using other transmission schemes, one approach is to work in the SMT-PD model, which only requires a
single honest path between the sender and receiver to establish a secure channel, assuming access to a public
channel. This approach can be employed to add privacy to any AE-RMT scheme, as these schemes provide
an authenticated (public) channel between privileged nodes and ensure at least one honest path between
them. We employ a UC adaptation of the classical SMT-PD protocol Πpub-smt(~γ,Pub,m) in [GO08] (see
Figure 11 in Appendix B), which we modify to operate over the graphs utilized by the transmission schemes.
Hence it is crucial to emphasize, as discussed in Section 3.3, that this approach only offers statistical security.
Before presenting further details, we first introduce some notation.

Definition 24 (properties of doom structures). Let D be a doom structure with participant set P, and
denote by dom(D) the set of values that appear as a first component in D (in other words, the set of all
corruption sets allowed by D). We say that D is:

1. t-complete if dom(D) = {T ⊆ P : |T | ≤ t} (in other words, if all possible sets of corruptions of size at
most t are allowed by D);

2. D-monotone if whenever (Tj , Dj) ∈ D and Di ⊆ Dj , it holds that (Tj , Di) ∈ D ; and

3. AE-monotone if whenever (Ti, Di) ∈ D and Ti ⊆ Tj for Tj ∈ dom(D), it holds that (Tj , Di) ∈ D .

We remark that t-completeness simply allows for UC-security statements in threshold terms. Moreover
D-monotonicity, akin to the standard notion of monotonicity in the general adversary literature,7 simply

7One could similarly define a notion of T-monotonicity, but such a property would not be satisfied by realistic doom
structures.
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ensures compatibility with our AE wrapper, which does not accept batched doom requests. On the other
hand, AE-monotonicity is different in that it captures the intuitive property that when additional parties
are corrupted, parties that were previously doomed are still doomed (or newly corrupted). In fact, the
work of [GO08] included a similar assumption: that the function mapping the set of corrupted parties to
the corresponding set of unprivileged parties is monotonically increasing. AE-monotonicity seems to be
important for simulatability; for example, after a new corruption all of the previously doomed parties should
still be allowed to be doomed, since otherwise the wrapper would ignore the new corruption request and the
simulation would fail. A more subtle issue, which does not hinge on the specifics of our wrapper, is discussed
in Section 5.1 in the context of proving our composition theorem. Fortunately, all of our doom structures
are t-complete, D-monotone, and AE-monotone.

Now, letGn = (V,E) be a graph with polynomially many paths of length at most ` specified between every

pair of nodes. Suppose we already know how to realize wrapped FV,rndauth for some rnd, with respect to a doom
structure Dsmt-pd (with P = V ) that is t-complete, D-monotone, and AE-monotone and moreover satisfies
the following condition: For all T ⊆ V with |T | ≤ t, at least one of the specified paths between any pair of

nodes in V −T−∪(T,Di)∈Dsmt-pd
Di is completely contained in V −T . Then, we can realize wrapped FV,rnd

′

smt (for
some rnd′ depending on rnd and `) using protocol Πr-smt-pd(Gn) (shown in Figure 21 in Appendix B), which

is essentially protocol Πsmt-pd(S,R, ~W ) from Section 3.3 adapted to work over the specified paths in Gn, and

the same doom structure Dsmt-pd. In more detail, we substitute functionalities FS,R, ~Wwc and F{S,R},rnd
′

auth with
FGn

r-sc and WDsmt-pd
ae (FV,rndauth ), respectively. For such a doom structure and parameters we obtain the following

statement, proven in Appendix C.9.

Theorem 25. Protocol Πr-smt-pd(Gn) statistically UC-realizes WDsmt-pd
ae (FV,rnd

′

smt ) for rnd′ = `+ 3 · rnd in the

(FGn
r-sc,WDsmt-pd

ae (FV,rndauth ))-hybrid model, against a t-adversary.

It is worth mentioning that a similar statement can be proven for general adversaries by considering a
doom structure Dsmt-pd that is D-monotone, AE-monotone, and satisfies the following condition: For all
T ∈ dom(Dsmt-pd), at least one of the specified paths between any pair of nodes in V − T −∪(T,Di)∈Dsmt-pd

Di

is completely contained in V − T .
According to [DPPU86], all the realizable doom structures for AE remote RMT satisfy the former con-

dition above. In short, the existence of at least one completely honest path between any pair of privileged
nodes is guaranteed by the fact that corrupted nodes cannot disconnect any pair of privileged nodes. There-
fore, protocol Πr-smt-pd(Gn) can be used with any of the classes of sparse graphs discussed in Section 4.1 to
achieve AE remote SMT with statistical security.

5 Almost-Everywhere Secure Computation

In this section, we consider general UC-secure computation in the AE setting. We start by proving a
composition theorem that shows how to compile a protocol Π realizing some functionality F with the help of
several hybrids into an almost-everywhere version of Π, by wrapping each hybrid with a potentially different
doom structure Di. These structures can be arbitrary, subject only to the AE-monotonicity property that was
presented in Definition 24, although they must correspond to the same participant set (indeed, composition
would not make much sense otherwise); the compiled protocol is then shown to realize a wrapped version
of F , using a new doom structure D ′. In its full generality, our composition theorem is not restricted
to security against only threshold adversaries, and moreover the original protocol Π may itself realize a
wrapped functionality associated with some doom structure D . This latter fact, along with the fact that
AE-monotonicity carries over to the new doom structure D ′, make the compiled protocol readily amenable to
further composition. We conclude by applying a special case of the composition theorem to obtain AE-MPC
over the classes of sparse graphs that were considered in Section 4. Rather than constructing protocols from
scratch, we simply apply our generic AE compiler to replace the secure channels that are used in standard
MPC protocols with AE-SMT, which we have already shown how to realize over these sparse graphs.
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Compiler CD1,...,Dm(Π)

Apply the following modifications to protocol Π (which uses F1, . . . ,Fm as hybrids):

1. For each i ∈ [m], instead of using Fi, parties use WDi
ae (Fi) (which has the same input/output

format to the parties).

Figure 9: The AE compiler.

5.1 A General Composition Theorem

The AE compiler is shown in Figure 9. It takes as input a protocol Π realizing some wrapped functionality
WD

ae(F) in the (F1, . . . ,Fm)-hybrid model and turns it into a protocol for the (WD1
ae (F1), . . . ,WDm

ae (Fm))-
hybrid model. Of course, the compiled protocol will not in general realize wrapped F with the same doom
structure D . In the following theorem, we construct a new doom structure D ′ representing the level of
AE-security that is retained. Since we consider general adversaries, the compiled protocol can tolerate a
set T ′ of corruptions only if T ′ can be tolerated by all of the assumed doom structures (i.e., D as well as
D1, . . . ,Dm). Furthermore, the set of parties in the compiled protocol that are considered doomed (relative
to the corruptions in T ′) can consist of, roughly speaking, parties that are doomed with respect to any of
the wrapped hybrids (such parties are collected in D(T ′) below) or that would have been doomed in the
original protocol Π (the parties denoted by A). In fact, since Π may already carry some level of AE-security,
as captured by D , we must expand the latter set to include parties that only become doomed when some or
all of the parties in the former set are actually corrupted. This is crucial for our simulation strategy to work,
and it explains why we require that T ′ ∪D is tolerated by D , for all D ⊆ D(T ′). As mentioned above, we
additionally require that D ,D1, . . . ,Dm are all AE-monotone, so that the constructed D ′ is AE-monotone.
This is used in the reduction, as the simulator may want to make a doom request for a newly doomed party
only after some additional parties are corrupted in the meantime, and in such a case the doom structure
needs to admit that request. Indeed, AE-monotonicity seems generally important for simulatability in the
AE setting.

Theorem 26. Let D ,D1, . . . ,Dm be AE-monotone doom structures over the same participant set P. Let
T = dom(D) and T ′ = (

⋂m
i=1 dom(Di)) ∩ T . For any T ′ ∈ T ′, define

D(T ′) =

m⋃
i=1

 ⋃
(T ′,Dj)∈Di

Dj

 .

Suppose that for all T ′ ∈ T ′ and D ⊆ D(T ′), it holds that T ′ ∪D ∈ T . If protocol Π UC-realizes WD
ae(F)

in the (F1, . . . ,Fm)-hybrid model against a T -adversary, then CD1,...,Dm(Π) UC-realizes WD′

ae (F) in the
(WD1

ae (F1), . . . ,WDm
ae (Fm))-hybrid model against a T ′-adversary, where D ′ is defined as follows: For all

T ′ ∈ T ′, we have (T ′, D ∪A) ∈ D ′ if D ⊆ D(T ′) and (T ′ ∪D(T ′), A) ∈ D . Moreover, D ′ is AE-monotone.

Proof. We first prove that D ′ is AE-monotone. Suppose that (Ti, Di) ∈ D ′ and Ti ⊆ Tj for Tj ∈ T ′. This
means that Di = D∪A for some D,A such that D ⊆ D(Ti) and (Ti ∪D(Ti), A) ∈ D . We want to show that
(Tj , Di) ∈ D ′, and it suffices to show that D ⊆ D(Tj) and (Tj ∪D(Tj), A) ∈ D . Since D(Ti) ⊆ D(Tj) (using
the assumption that D1, . . . ,Dm are all AE-monotone), it follows that D ⊆ D(Tj). On the other hand, since
Ti ∪D(Ti) ⊆ Tj ∪D(Tj), it follows that (Tj ∪D(Tj), A) ∈ D (using the assumptions that D is AE-monotone
and that Tj ∪D(Tj) ∈ T ). We now prove the security of the compiled protocol.

Let S be a simulator (guaranteed to exist by the security of Π) such that no environment Z can distinguish
whether it is interacting with Π and the dummy adversary D, or withWD

ae(F) and S. We use S to construct
a simulator S ′ such that no environment Z ′ can distinguish whether it is interacting with CD1,...,Dm(Π) and
D, or with WD′

ae (F) and S ′.
S ′ internally runs S and plays the role of the environment and WD

ae(F) for it. Inputs from Z ′ are
forwarded to S, with some additional processing. When Z ′ sends a corruption request directed to a party
(i.e., telling D to corrupt a party directly), this is forwarded without modification. However, when Z ′ sends
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message delivery requests directed to an instance of WDi
ae (Fi) for some i ∈ [m] (e.g., telling D to send a

Corrupt or Influence message to that functionality), S ′ sends message delivery requests directed to a
corresponding instance of Fi, with the following exception: a request to deliver a Doom message is replaced
by a request to deliver a Corrupt message if the doom structure Di would accept it, and is dropped
otherwise.

Similarly, outputs from S are forwarded to Z ′, with some additional processing. Assuming that Π uses
instances of F1, . . . ,Fm to handle all inter-party communication, these outputs should take the form of
reports of incoming messages directed from either a party or an instance of an aiding functionality Fi to the
dummy adversary for Π; thus, the processing done by S ′ is that reported messages from an instance of Fi are
replaced by reported messages from an instance of WDi

ae (Fi). Finally, S ′ plays the role of WD
ae(F) by simply

forwarding messages from WD′

ae (F) to S as if coming from WD
ae(F), and forwarding messages directed to

WD
ae(F) (from S) to WD′

ae (F), except that Corrupt messages for doomed parties (i.e., parties that Z ′ did
not request to corrupt) are replaced by Doom messages. We emphasize in particular that Doom requests
from S are forwarded without modification, which works because of the definition of D ′. It remains to reduce
to the security of Π.

Assume for the sake of a contradiction that there is an environment Z ′ such that idealWD′
ae (F),S′,Z′ 6≡

execCD1,...,Dm (Π),D,Z′ . Then, we construct an environment Z such that idealWD
ae(F),S,Z 6≡ execΠ,D,Z . The

environment Z will simulate an interaction between Z ′ and D, and output whatever Z ′ outputs, as well as
do some additional processing that mimics the processing done by S ′. First, Z ′ is “activated” with Z’s input
z. Whenever Z ′ instructs its dummy adversary to deliver a message to an instance of an aiding functionality
WDi

ae (Fi), this is translated by Z into a delivery request for a corresponding instance of Fi and forwarded
to the external adversary (either S or D), except that a request to deliver a Doom message is converted
into a request to deliver a Corrupt message if allowed by Di and dropped otherwise. Corruption requests
directed to parties are forwarded to the external adversary unmodified.

Next, whenever Z receives subroutine output from the external adversary, this is forwarded to Z ′, except
that reported messages from instances ofWDi

ae (Fi) are translated into reported messages from corresponding
instances of Fi. Finally, Z simply relays inputs and outputs between Z ′ and parties. We now claim that
idealWD′

ae (F),S′,Z′ ≡ idealWD
ae(F),S,Z and execCD1,...,Dm (Π),D,Z′ ≡ execΠ,D,Z . Indeed, if Z interacts with

WD
ae(F) and S, then the view of the simulated Z ′ within Z is identical to the view of Z ′ when interacting

with WD′

ae (F) and S ′, and similarly if Z interacts with Π and D, then the view of the simulated Z ′ within
Z is identical to the view of Z ′ when interacting with CD1,...,Dm(Π) and D. That concludes the proof.

In the specific case that Π realizes an unwrapped functionality F (indeed, one can always apply our AE
wrapper to F with a doom structure of the form {(Ti, ∅)}i, which is trivially AE-monotone, in order to obtain
an equivalent functionality) in the G-hybrid model against a threshold adversary, we obtain the following
corollary, which requires some additional properties that were introduced in Definition 24.

Corollary 27. Let D be a t′-complete, D-monotone, and AE-monotone doom structure, and let

t = max
|T ′|=t′

∣∣∣∣∣∣
( ⋃

(T ′,Di)∈D

Di

)
∪ T ′

∣∣∣∣∣∣ .
If protocol Π UC-realizes F in the G-hybrid model against a t-adversary, then CD(Π) UC-realizes WD

ae(F) in
the WD

ae(G)-hybrid model against a t′-adversary.

Observe that t′-completeness allows the simulator to handle a threshold adversary that can corrupt any
t′ parties, and D-monotonicity is needed for the doom structure D that is used to wrap G to be preserved
when wrapping F . We remark that t has a very natural interpretation: the maximum number of parties
that can become unprivileged (with respect to D) when t′ parties are corrupted.

5.2 AE-MPC

We now present our main result: how to achieve almost-everywhere MPC over several classes of sparse graphs
in a composable manner. We assume a protocol that achieves “regular” MPC over a complete network of
point-to-point secure channels, and show how to transform it into a protocol that achieves AE-MPC (with
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a lower corruption threshold) over a sparse network with secure channels only between connected parties,

using our AE compiler. To capture the MPC task for n-ary function f , we use the functionality Ff,P,rndmpc

(shown in Figure 22 in Appendix B), which is essentially Canetti’s Fsfe [Can05] with synchrony.
While standard information-theoretic MPC protocols tolerating t < n

3 corruptions are known [BGW88,
CCD88], they assume access to a broadcast channel, noting that broadcast can be realized when t < n

3 .
However, [HZ10] showed that classical broadcast protocols are not adaptively secure in a simulation-based
setting, and gave a VSS-based protocol that does in fact realize adaptively secure broadcast with perfect
security for t < n

3 , assuming only secure channels. Therefore, there exists a protocol that UC-realizes Ff,P,rndmpc

for any n-ary function f and some rnd in the FP,1smt -hybrid model, against an adversary corrupting less than
n
3 parties. Clearly this holds even in the FP,`smt-hybrid model, for arbitrary `. Now, by invoking Corollary 27
(which of course also offers statistical security) and then applying the (regular) UC composition theorem
in tandem with our results in Theorems 23 and 25 showing how to achieve AE-SMT over several classes
of sparse graphs with either perfect or statistical security, we obtain the following corollaries showing how
to achieve AE-MPC over those classes of graphs, with different combinations of parameters (recall that the
maximum number of doomed nodes is encoded into each doom structure), for any n-ary function f :

Corollary 28. There exists a protocol that UC-realizesWDdppu
ae (Ff,Vdppu,rnd

mpc ) in the FG
dppu
n

sc -hybrid model against
a t-adversary, for some rnd and t ∈ O( n

logn ).

Corollary 29. Let x ∈ {upfal,cgo, jrv}. There exists a protocol statistically UC-realizing WDx
ae (Ff,Vx,rnd

mpc )

in the FG
x
n

sc -hybrid model against a t-adversary, for some rnd and t ∈ O(n).
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[CKKR19] Jan Camenisch, Stephan Krenn, Ralf Küsters, and Daniel Rausch. iuc: Flexible universal
composability made simple. In Steven D. Galbraith and Shiho Moriai, editors, Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Application
of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part
III, volume 11923 of Lecture Notes in Computer Science, pages 191–221. Springer, 2019.

26

https://ia.cr/2000/067
https://ia.cr/2000/067


[DDWY90] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure message trans-
mission. In 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, October 22-24, 1990, Volume I, pages 36–45. IEEE Computer Society, 1990.

[Dol81] Danny Dolev. Unanimity in an unknown and unreliable environment. In 22nd Annual Symposium
on Foundations of Computer Science, Nashville, Tennessee, USA, 28-30 October 1981, pages
159–168. IEEE Computer Society, 1981.

[DPPU86] Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. Fault tolerance in networks of
bounded degree (preliminary version). In Juris Hartmanis, editor, Proceedings of the 18th Annual
ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages
370–379. ACM, 1986.

[FG03] Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and differential
consensus. In Elizabeth Borowsky and Sergio Rajsbaum, editors, Proceedings of the Twenty-
Second ACM Symposium on Principles of Distributed Computing, PODC 2003, Boston, Mas-
sachusetts, USA, July 13-16, 2003, pages 211–220. ACM, 2003.

[FHM98] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for privacy in uncon-
ditional multi-party computation (extended abstract). In Hugo Krawczyk, editor, Advances in
Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in Computer
Science, pages 121–136. Springer, 1998.

[GKZ10] Juan A. Garay, Aggelos Kiayias, and Hong-Sheng Zhou. A framework for the sound specifica-
tion of cryptographic tasks. In Proceedings of the 23rd IEEE Computer Security Foundations
Symposium, CSF 2010, Edinburgh, United Kingdom, July 17-19, 2010, pages 277–289. IEEE
Computer Society, 2010.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred V. Aho, editor, Proceedings of
the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA,
pages 218–229. ACM, 1987.

[GO08] Juan A. Garay and Rafail Ostrovsky. Almost-everywhere secure computation. In Nigel P. Smart,
editor, Advances in Cryptology - EUROCRYPT 2008, 27th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008.
Proceedings, volume 4965 of Lecture Notes in Computer Science, pages 307–323. Springer, 2008.

[GP92] Juan A. Garay and Kenneth J. Perry. A continuum of failure models for distributed computing.
In Adrian Segall and Shmuel Zaks, editors, Distributed Algorithms, 6th International Workshop,
WDAG ’92, Haifa, Israel, November 2-4, 1992, Proceedings, volume 647 of Lecture Notes in
Computer Science, pages 153–165. Springer, 1992.

[Gri12] Jacopo Griggio. Perfectly secure message transmission protocols with low communication over-
head and their generalization. PhD thesis, Universiteit Leiden, 2012.

[HM97] Martin Hirt and Ueli M. Maurer. Complete characterization of adversaries tolerable in secure
multi-party computation (extended abstract). In James E. Burns and Hagit Attiya, editors,
Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing,
Santa Barbara, California, USA, August 21-24, 1997, pages 25–34. ACM, 1997.

[HS15] Dennis Hofheinz and Victor Shoup. GNUC: A new universal composability framework. J.
Cryptol., 28(3):423–508, 2015.

[HZ10] Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Henri Gilbert, editor, Advances
in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Monaco / French Riviera, May 30 - June 3, 2010.
Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 466–485. Springer, 2010.

27



[JRV20] Siddhartha Jayanti, Srinivasan Raghuraman, and Nikhil Vyas. Efficient constructions for almost-
everywhere secure computation. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryp-
tology - EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II,
volume 12106 of Lecture Notes in Computer Science, pages 159–183. Springer, 2020.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable
synchronous computation. In Amit Sahai, editor, Theory of Cryptography - 10th Theory of
Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, volume
7785 of Lecture Notes in Computer Science, pages 477–498. Springer, 2013.

[KS08] Kaoru Kurosawa and Kazuhiro Suzuki. Truly efficient 2-round perfectly secure message trans-
mission scheme. In Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT 2008, 27th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in Computer
Science, pages 324–340. Springer, 2008.

[KS09] Valerie King and Jared Saia. From almost everywhere to everywhere: Byzantine agreement
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A Further Related Work

Here we continue our discussion of related work from Section 1.1.

A.1 History of SMT

The (perfectly) secure message transmission (SMT) problem was first studied by Dolev et al. [DDWY90],
and we already introduced it in Section 1.1. Dolev et al. showed that 1-way SMT is possible if and only
if t < n/3, and that 2-way SMT is possible if and only if t < n/2. (An SMT protocol is called 1-way if
information flows only from the sender S to the receiver R, and 2-way if S and R are allowed to converse.)
They gave both 2-phase and 3-phase protocols for 2-way SMT, where a phase is a flow of communication
from S to R or vice versa, although their 2-phase solution is not efficient (polynomial-time). We use their
3-phase protocol in our constructions. A rich line of follow-up works improving the efficiency of 2-phase
SMT ensued, including work by Sayeed and Abu-Amara [SA96], who gave a solution with transmission rate
(total number of bits transmitted to the bit-size of the secret) O(n3), communication complexity O(n3 log n),
and polynomial computational costs; Srinathan et al. [SNR04] demonstrated a lower bound of O(n) on the
transmission rate; Agarwal et al. [ACdH06] constructed a protocol with the optimal transmission rate,
but the computational costs are exponential; while Kurosawa and Suzuki [KS08] gave a breakthrough result
achieving an optimal transmission rate of 25n+o(n) with polynomial computational costs, while maintaining
a communication complexity of O(n3 log n) (a polynomial-time 2-phase SMT protocol). Griggio [Gri12] was
able to reduce the transmission rate to 6n + o(n). Finally, Spini and Zémor [SZ16] further reduced the
transmission rate to 5n+ o(n), while also improving the communication complexity to O(n2 log n).

A.2 Related Models

We start with hybrid failure models (e.g., [GP92, FHM98]), which allow the adversary to maliciously corrupt
some parties as well as cause another form of failure (e.g., passive or fail-stop corruption) to some other
parties. Another relevant failure model is the one explored by Alon et al. [AOP20], which technically
considers two independent adversaries, one corrupting maliciously and the other one only passively. Their
model is a special case of the adaptive model such that the malicious adversary can only corrupt statically
before the protocol starts while the passive corruptions can be done at the end of the execution, and the
main motivation is to address the counterintuitive fact that standard protocols often do not provide privacy
against other honest parties. While this notion of “friends-and-foes” security has special significance in the
context of AE remote SMT, where a secret message shared over not necessarily disjoint paths may leak to
an honest node that appears on sufficiently many of those paths, for simplicity we do not address this in our
treatment.

In the AE setting, adversarial corruptions also have the effect of indirectly influencing the behavior of
some of the honest parties (those who become “doomed”). The difference is that in our model, this other
type of failure is defined structurally, based on the graph and the set of corruptions.

Also related is the work by King and Saia [KS09] (and follow-ups) who considered randomized Byzantine
agreement over complete networks, but without all-to-all communication in order to improve the commu-
nication complexity. Their aim, however, is still to obtain full (not AE) agreement. The same approach is
also explored by Boyle et al. [BCDH18], who investigated special characteristics (in particular, expansion)
of the communication graph that is dynamically determined as a part of the protocol. In a recent follow-up,
Boyle et al. [BCG21] defined an “almost-everywhere communication functionality” and used it as a hybrid
in their low-communication Byzantine agreement protocols. However, this functionality is used to model
a very specific communication tree, in which parties assigned to the root node can use the tree to send
messages to all but a small fraction of the honest parties (called “isolated”), while the underlying model is
still a complete network of point-to-point authenticated channels.

B Functionalities and Protocols
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Protocol Πddwy(~γ,m)a

1. (Phase 1) The sender S sends nτ +1 strong pads SP1, SP2, . . . , SPnτ+1 to the receiver R, where
n is the number of wires in ~γ and τ = dn2 e − 1. To send each strong pad, S chooses a random
polynomial f(x) ∈ Zq(x) of degree τ and computes the pad p = f(0). Then for each i ∈ [n],
S chooses an additional random polynomial hi(x) ∈ Zq(x) of degree τ such that hi(0) = f(i).
Finally, for each i ∈ [n], S sends hi(·) along with a vector of checking pieces Ci = (c1i, c2i, . . . , cni)
to R on wire γi, where cji = hj(i) for all j ∈ [n].

2. (Phase 2) For each k ∈ [nτ+1], let Tk denote what is received by R in the attempted transmission
of SPk, and gi(·) and Di = (d1i, d2i, . . . , dni) denote the possibly corrupted information received
on wire γi (any wires on which syntactically incorrect messages were received are thrown out).
If for any Ta the received shares {gi(0)} can be interpolated by a polynomial of degree τ , then
R computes the pad pa and sends “a, OK” to S over the authenticated channel. Otherwise, R
finds a k such that {conflicts of Tk} ⊆ ∪l 6=k{conflicts of Tl}, where a pair (i, j) is called a conflict
of Tk if dji 6= gj(i). Then R sends k and all Tl, l 6= k back to S over the authenticated channel.

3. (Phase 3)

• If “a, OK” was received over the authenticated channel in phase 2, then S sends z = m+ pa
to R over the authenticated channel. Otherwise, S performs error detection on all Tl’s
received from R, and sends any detected faults and z = m+ pk to R over the authenticated
channel.

• If R previously sent “a, OK” to S in phase 1, then s/he outputs m = z − pa. Otherwise, R
corrects the faults in the retained Tk to interpolate the pad pk, and outputs m = z − pk.

aThe protocol works for messages in the field M = Zq for prime q > n, and all the arithmetic is modular.

Figure 10: The SMT protocol from [DDWY90].

Protocol Πpub-smt(~γ,Pub,m)

1. The sender S sends n uniformly random bit strings R1, R2, . . . , Rn of length 15l to the receiver R
on wires γ1, γ2, . . . , γn, respectively. Let R′1, R

′
2, . . . , R

′
n be the strings received by R; any wires

for which |R′i| 6= 15l are thrown out.

2. For i ∈ [n], S generates R∗i by replacing 12l randomly chosen positions of Ri with “∗.” Then S
sends R∗1, R

∗
2, . . . , R

∗
n to R over Pub.

3. For any i ∈ [n], if R∗i and R′i differ in any “opened” bits, R marks γi as “faulty.” Then R sends
an n-bit string to S over Pub that identifies faulty wires. Let ~γ = {γ1, γ2, . . . , γs}, s ≤ n denote
the set of non-faulty wires, and Ri, |Ri| = 12l, 1 ≤ i ≤ s, denote the corresponding string of
unopened bits; let R′i be the corresponding string in R’s possession.

4. For 1 ≤ i ≤ s, S chooses mi such that m = m1 ⊕m2 ⊕ · · · ⊕ms, and sends Si = E(mi) ⊕ Ri,
1 ≤ i ≤ s, over Pub. R computes m′i = D(Si ⊕ R′i) for all 1 ≤ i ≤ s.a Then R outputs
m′ = m′1 ⊕m′2 ⊕ · · · ⊕m′s.

aRecall that E and D are respectively the encoding and decoding algorithms for an error-correcting code with appro-
priate parameters.

Figure 11: The SMT-PD protocol from [GO08].
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Protocol Πwc(S,R, ~W )

1. Upon receiving input (Send, sid,Wi, vi) from Z in round ρ (which is the same for all Wi), where
sid = (Ps, Pr, sid

′) and {Ps, Pr} = {S,R}, party Ps sends (Send, sid1
i , vi) to an instance of

FS,R, ~Wsc with sid1
i = (Ps,Wi, sid).

2. Upon activation in round ρ + 1, each wire-party Wi sends (Fetch, sid1
i ) to FS,R, ~Wsc . Upon

receiving back (Sent, sid1
i ,mi), Wi sends (Send, sid2

i ,mi) to an instance of FS,R, ~Wsc with sid2
i =

(Wi, Pr, sid).

3. Upon receiving input (Fetch, sid,Wi) from Z in round ρ + 2, party Pr sends (Fetch, sid2
i ) to

FS,R, ~Wsc . Upon receiving back (Sent, sid2
i ,m

′
i), Pr outputs (Sent, sid,Wi,m

′
i) to Z.

Figure 12: The wire communication protocol.

Protocol Πauth(S,R, ~W )

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (Ps, Pr, sid
′) and {Ps, Pr} =

{S,R}, party Ps sends (Send, sidauth,Wi, v) for each wire-party Wi to a single instance of FS,R, ~Wwc

with SID sidauth = (sid,auth).

2. Upon receiving input (Fetch, sid) from Z in round ρ+2, party Pr sends (Fetch, sidauth,Wi) for

each Wi to FS,R, ~Wwc . Upon receiving back (Sent, sidauth,Wi,mi) for each Wi, Pr takes a simple
majority of the mi’s. More precisely, after receiving at least bn2 c+ 1 copies of some message m′

corresponding to different wire-parties, Pr outputs (Sent, sid,m′) to Z. (If not enough copies
were received, e.g. because Ps was corrupted, then Pr outputs ⊥.)

Figure 13: The RMT protocol in the wire-party model.
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Functionality FGn
r-sc

The remote secure channel functionality Fr-sc is parameterized by a graph Gn = (V,E) of party
identities and communication edges, and it proceeds as follows. At the first activation, verify that
sid = (S, P1, . . . , Pk−1, R, sid

′), where γ = (S, P1, . . . , Pk−1, R) is a path in Gn; else halt. Initialize
variable m to a default value ⊥.

• Upon receiving input (Send, sid, v) from S in round ρ, record m ← v. If any P ∈ γ
is marked as corrupted, then send (SendLeak, sid,m) to the adversary; otherwise send
(SendLeak, sid, l(m)).

• Upon receiving (InflSend, sid,m′) from the adversary: If any P ∈ γ is corrupted, and
(Sent, sid,m) has not yet been sent to R, then update m ← m′; otherwise, ignore the com-
mand.

• Upon receiving (Fetch, sid) from R in round ρ′: If R is corrupted, then send (FetchLeak, sid)
to the adversary; otherwise, if ρ′ = ρ+ k, then output (Sent, sid,m) to R if it has not yet been
sent.

• Upon receiving (Output, sid) from the adversary: If R is corrupted, then output (Sent, sid,m)
to R if it has not yet been sent; otherwise, ignore the command.

• Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ γ, mark P as corrupted and send
(SendLeak, sid,m) to the adversary; if P = R, then additionally leak any previous fetch requests
made by R.

Figure 14: The remote secure channel functionality for single-path communication.

Protocol Πr-sc(Gn)

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S, P1, . . . , Pk−1, R, sid
′) and

(S, P1, . . . , Pk−1, R) is a path in Gn, the sender S sends (Send, sid1, v) to an instance of FGn
sc

with SID sid1 = (S, P1, 1, sid
′).

2. For each i ∈ [k − 1]: Upon activation in round ρ + i, party Pi sends (Fetch, sidi) to FGn
sc .

Upon receiving back (Sent, sidi,m), Pi sends (Send, sidi+1,m) to an instance of FGn
sc with SID

sidi+1 = (Pi, Pj , i+ 1, sid′), where Pj = Pi+1 if i < k − 1 and Pj = R if i = k − 1.

3. Upon receiving input (Fetch, sid) from Z in round ρ+ k, the receiver R sends (Fetch, sidk) to
FGn

sc . Upon receiving back (Sent, sidk,m
′), R outputs (Sent, sid,m′) to Z.

Figure 15: The remote secure channel protocol over graph Gn.
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Protocol Πdppu
r-auth

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S,R, sid′) for S,R ∈ Vdppu,

the sender S sends (Send, sidi, v) to an instance of FG
dppu
n

r-sc with SID sidi = (γi, sid
′) for each of

the paths γ1, . . . , γs from S to R as specified by the Πdppu transmission scheme.

2. For each i ∈ [s]: Upon activation in round ρ + li, where li is the length of path γi, the receiver

R sends (Fetch, sidi) to FG
dppu
n

r-sc . Upon receiving back (Sent, sidi,mi), R stores mi as the value
received on path γi.

3. Upon receiving input (Fetch, sid) from Z in round ρ+ rnd, where rnd is the maximum length of
any three-step path (i.e., not just one from S to R) specified by Πdppu, R takes a simple majority
of the stored mi’s. More precisely, after receiving at least b s2c+ 1 copies of the same message m′,
R outputs (Sent, sid,m′) to Z. (If not enough copies were received, then R outputs ⊥.)

Figure 16: The AE-RMT protocol over Gdppu
n .

Protocol Πupfal
r-auth

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S,R, sid′) for S,R ∈ Vupfal,
the sender S executes protocol Πupfal(S,R, v) with the receiver R, where sending a message from

node to node is replaced by separate invocations of FG
upfal
n

sc (note that we do not use FG
upfal
n

r-sc here,
because Πupfal actually requires appending to the message as it travels along a path to R). To

receive output from the instances of FG
upfal
n

sc , all nodes involved have to send Fetch messages in
the correct rounds.

2. Upon receiving input (Fetch, sid) from Z in round ρ + rnd, where rnd is the maximum length
of any path used in the protocol, R outputs (Sent, sid,m′) to Z if it receives m′ as the output
of this protocol.

Figure 17: The AE-RMT protocol over Gupfal
n .

Protocol Πcgo
r-auth

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S,R, sid′) for S,R ∈ Vcgo,
the sender S executes protocol Πcgo(S,R, v) with the receiver R, where sending a message from

node to node is replaced by separate invocations of FG
cgo
n

sc . To receive output from the instances

of FG
cgo
n

sc , all nodes involved have to send Fetch messages in the correct rounds.

2. Upon receiving input (Fetch, sid) from Z in round ρ+rnd, where rnd is (two plus) the maximum
number of rounds required by the Πdppu transmission scheme over the committees multiplied by
one plus the maximum number of rounds required by differential agreement inside the committees,
R outputs (Sent, sid,m′) to Z if it receives m′ as the output of this protocol.

Figure 18: The AE-RMT protocol over Gcgo
n .
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Protocol Πjrv
r-auth

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S,R, sid′) for S,R ∈ Vjrv,
the sender S executes protocol Πjrv(S,R, v) with the receiver R, where sending a message from

node to node is replaced by separate invocations of FG
jrv
n

sc . To receive output from the instances

of FG
jrv
n

sc , all nodes involved have to send Fetch messages in the correct rounds.

2. Upon receiving input (Fetch, sid) from Z in round ρ+ rnd, where rnd is two times the maximum
number of rounds required by the Πupfal transmission scheme inside the committees, plus the
maximum number of rounds required by the Πdppu transmission scheme over the committees
multiplied by one plus the maximum number of rounds required by the Πupfal transmission
scheme inside the committees, R outputs (Sent, sid,m′) to Z if it receives m′ as the output of
this protocol.

Figure 19: The AE-RMT protocol over Gjrv
n .

Protocol Πdppu
r-smt

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S,R, sid′) for S,R ∈ Vdppu,
the sender S executes protocol Πddwy(~γ, v) with the receiver R, where the wires γ1, . . . , γs in ~γ for
communication from S to R are taken to be the s paths λ1, . . . , λs from S to R (as specified by the
Πdppu transmission scheme), respectively. More precisely, in the first phase S and R use s different

instances of FG
dppu
n

r-sc with SIDs sidi = (λi, sid
′) to send all the messages instead of using the wires

in ~γ. Next, in the second and third phases, the authenticated channel is substituted with separate
instances of WDdppu

ae (FVdppu,rnd
auth ) with SIDs sidauth1 = (R,S, 1, sid′) and sidauth2 = (S,R, 2, sid′),

respectively, where rnd is the maximum length of any three-step path specified by Πdppu. To
receive output from the aiding functionalities, S and R have to send Fetch messages to the
functionalities using the correct session IDs as generated above and in the correct rounds. In
particular, the first-phase messages are fetched in rounds ρ + li where li is the length of path
λi, the second-phase message is sent in round ρ + ` (` is the maximum value of the li’s), and
the second-phase and third-phase messages are respectively fetched in rounds ρ + ` + rnd and
ρ+ `+ 2 · rnd.

2. Upon receiving input (Fetch, sid) from Z in round ρ+ `+ 2 · rnd, R outputs (Sent, sid,m′) to
Z if it receives m′ as the output of this protocol.

Figure 20: The AE-SMT protocol over Gdppu
n .
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Protocol Πr-smt-pd(Gn)

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S,R, sid′) for S,R ∈ V , the
sender S executes protocol Πpub-smt(~γ,Pub, v) with the receiver R, where ~γ is taken to be the
set of specified paths γ1, . . . , γs from S to R. More precisely, in the first step, S uses s different
instances of FGn

r-sc with SIDs sidi = (γi, sid
′) to send all the random bit strings instead of using

wires in ~γ. In the second, third, and fourth steps, S and R substitute the public channel Pub
with separate instances of WDsmt-pd

ae (FV,rndauth ) with SIDs sid2 = (S,R, 2, sid′), sid3 = (R,S, 3, sid′),
and sid4 = (S,R, 4, sid′), respectively. To receive output from the aiding functionalities, S and
R have to send Fetch messages to the functionalities using the correct session IDs as generated
above and in the correct rounds. In particular, the first-step messages are fetched in rounds ρ+ li
where li is the length of path γi, the second-step message is sent in round ρ+` (` is the maximum
value of the li’s) and fetched in round ρ+`+rnd, the third-step message is sent in round ρ+`+rnd
and fetched in round ρ+ `+ 2 · rnd, and the fourth-step message is sent in round ρ+ `+ 2 · rnd
and fetched in round ρ+ `+ 3 · rnd.

2. Upon receiving input (Fetch, sid) from Z in round ρ+ `+ 3 · rnd, R outputs (Sent, sid,m′) to
Z if it receives m′ as the output of this protocol.

Figure 21: The SMT-PD protocol over Gn.

Functionality Ff,P,rndmpc

The MPC functionality Fmpc is parameterized by a function f : ({0, 1}∗ ∪ {⊥})n × R → ({0, 1}∗)n, a
participant set P, and an integer rnd indicating the number of rounds that will be used to realize it,
and it proceeds as follows. At the first activation, verify that sid = (V, sid′), where V is an ordered set
of n identities from P, denoted P1, . . . , Pn; else halt. Initialize variables x1, . . . , xn and y1, . . . , yn to a
default value ⊥.

• Upon receiving input (InputF, sid, vi) from some Pi ∈ V in round ρ (which is the same for all Pi),
set xi ← vi. If Pi is marked as corrupted, then send (InputLeakF, sid, Pi, xi) to the adversary;
otherwise send (InputP, sid, Pi).

• Upon receiving (InflInputF, sid, Pi, x
′
i) from the adversary for some Pi ∈ V: If Pi is corrupted,

and (OutputF, sid, yj) has not yet been sent to any Pj ∈ V, then update xi ← x′i; otherwise,
ignore the command.

• Upon receiving (InflOutputF, sid, Pi, y
′
i) from the adversary for some Pi ∈ V, store y′i.

• Upon receiving (Fetch, sid) from some Pi ∈ V in round ρ′: If Pi is corrupted, then send
(FetchLeak, sid, Pi) to the adversary; otherwise, if ρ′ = ρ+ rnd, do the following:

– If xj has been set for all uncorrupted Pj ∈ V, and no yj has been set for any uncorrupted
Pj ∈ V, then choose r ← R and set (y1, . . . , yn) = f(x1, . . . , xn; r).

– Output (OutputF, sid, yi) to Pi if it has not yet been sent.

• Upon receiving (Output, sid, Pi) from the adversary for some Pi ∈ V: If Pi is corrupted, then
output (OutputF, sid, y′i) to Pi if it has not yet been sent.

• Upon receiving (Corrupt, sid, Pi) from the adversary for some Pi ∈ V, mark Pi as corrupted
and send (LeakF, sid, Pi, xi, yi) to the adversary. Additionally leak any previous fetch requests
made by Pi.

Figure 22: The MPC functionality.
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C Proofs

For convenience, we restate the propositions and theorems before proving them.

C.1 Proof of Proposition 3

Proposition 3. Protocol Πwc(S,R, ~W ) UC-realizes FS,R, ~Wwc in the FS,R, ~Wsc -hybrid model.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that

no environment Z can distinguish whether it is interacting with Πwc(S,R, ~W ) and A, or with FS,R, ~Wwc and

S. The simulator internally runs a copy of A, and plays the roles of FS,R, ~Wsc and the parties in a simulated
execution of the protocol. All inputs from Z are forwarded to A, and all outputs from A are forwarded to
Z. Moreover, whenever A corrupts a party in the simulation, S corrupts the same party in the ideal world

by interacting with FS,R, ~Wwc , and if the corruption was direct (i.e., not via FS,R, ~Wsc ), then S sends A the
party’s state and thereafter follows A’s instructions for that party. The simulated execution starts upon S
receiving (SendLeak, sid,Wi, m̂i) from FS,R, ~Wwc in round ρ for sid = (Ps, Pr, sid

′), where m̂i ∈ {mi, l(mi)}
and mi is the message to be sent through wire-party Wi, and it involves simulating Ps sending mi to Wi

through an instance of FS,R, ~Wsc (i.e., by simulating leakage from FS,R, ~Wsc to A, and responding to corruption
and influence requests directed from A to that functionality). Note that while S does not know mi when Ps,
Pr, and Wi are all honest, this is not a problem because in this case the real-world adversary only obtains

l(mi) from FS,R, ~Wsc . Messages to be sent by Ps through other wire-parties in round ρ are simulated in the

same way. Next, in round ρ + 1, S simulates Wi fetching from FS,R, ~Wsc and then forwarding the obtained

value to Pr, by once again playing the role of FS,R, ~Wsc for A.
Finally, we describe how S simulates Pr’s response to a Fetch input from Z in round ρ + 2. If Pr is

corrupted by A, then S can wait to receive (FetchLeak, sid,Wi) from FS,R, ~Wwc , upon which it leaks the
fetch to A if Pr was corrupted directly, and then sends InflSend and Output messages (for wire-party

Wi) to FS,R, ~Wwc as appropriate. Otherwise, if Ps or Wi is corrupted by A, then S influences FS,R, ~Wwc (for

wire-party Wi) every time the value that would be fetched from FS,R, ~Wsc by the simulated Pr changes, e.g.

due to A’s influencing of FS,R, ~Wsc (note that this might occur in round ρ). If none of Ps, Pr, and Wi are

corrupted by A, then S can simply let the dummy Pr fetch from FS,R, ~Wwc when instructed by Z, because in
this case the real-world adversary cannot prevent Pr from fetching the actual message to be sent through
Wi. It is easy to see that this simulation is perfect.

C.2 Proof of Theorem 4

Theorem 4. Protocol Πauth(S,R, ~W ) UC-realizes F{S,R},rndauth for rnd = 2 in the FS,R, ~Wwc -hybrid model, against
an adversary corrupting up to a minority of the wire-parties.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that

no environment Z can distinguish whether it is interacting with Πauth(S,R, ~W ) and A, or with F{S,R},rndauth

and S. The simulator internally runs a copy of A, and plays the roles of FS,R, ~Wwc and the parties in a
simulated execution of the protocol. All inputs from Z are forwarded to A, and all outputs from A are
forwarded to Z. Moreover, whenever A corrupts a party in the simulation, S corrupts the same party in

the ideal world by interacting with F{S,R},rndauth (except if the party is a wire-party), and if the corruption was

direct (i.e., not via FS,R, ~Wwc ), then S sends A the party’s state and thereafter follows A’s instructions for

that party. The simulated execution starts upon S receiving (SendLeak, sid,m) from F{S,R},rndauth in round
ρ for sid = (Ps, Pr, sid

′), and it involves simulating Ps sending m to Pr through the n wire-parties via a

single instance of FS,R, ~Wwc (i.e., by simulating leakage from FS,R, ~Wwc to A, and responding to corruption and
influence requests directed from A to that functionality).

Next, we describe how S simulates Pr’s response to a Fetch input from Z in round ρ + 2. If Pr is

corrupted by A, then S can wait to receive (FetchLeak, sid) from F{S,R},rndauth , upon which it does the
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following. If the corruption was not direct, then S sends an InflSend message to F{S,R},rndauth with the value

that the real-world Pr would have output after fetching n values from FS,R, ~Wwc (in particular, S takes into

account any InflSend messages sent by A to the simulated instance of FS,R, ~Wwc ), before sending an Output
message; if the corruption was in fact direct, then S simulates Pr reporting to A that a Fetch input from

Z was received, and then sends appropriate InflSend and Output messages to F{S,R},rndauth once A instructs
Pr to output something to Z (recall that in this case, the simulated Pr follows the instructions of A each

time it is activated). If Pr is not corrupted by A, but Ps is, then S influences F{S,R},rndauth every time the
value that the real-world Pr would have output changes (this might happen after A influences the simulated

instance of FS,R, ~Wwc , or, in the case that Ps was corrupted directly, after A instructs the simulated Ps to send

a different message via the instance of FS,R, ~Wwc ). Finally, if neither Ps nor Pr is corrupted, then S can simply

let the dummy Pr fetch from F{S,R},rndauth when instructed by Z, because the assumption that A corrupts only
a minority of the wire-parties implies that the real-world Pr receives enough copies of Ps’s input m = v.
Note that in this case, the dummy Pr immediately outputs the fetched value to Z, which is fine because
the real-world Pr cannot be corrupted in the time between receiving a Fetch input from Z and outputting

to Z, since the activations alternate between Pr and the instance of FS,R, ~Wwc . It is easy to see that this
simulation is perfect.

C.3 Proof of Theorem 7

Theorem 7. Protocol Πauth(S,R, ~W ) UC-realizes WDpsmt
ae (F{S,R},rndauth ) for rnd = 2 in the FS,R, ~Wwc -hybrid

model, even against corrupted majorities of wire-parties.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that no

environment can distinguish whether it is interacting with Πauth(S,R, ~W ) and A, or withWDpsmt
ae (F{S,R},rndauth )

and S. The simulator S is very similar to the simulator that was constructed in the proof of Theorem 4.
However, S now interacts with a wrapped Fauth functionality, and corruption messages for wire-parties are
indeed sent because they can now be processed by the wrapper. The other difference is that the case in
which Ps and Pr are not corrupted by A becomes more complicated. If A corrupts only a minority of
the wire-parties, then S can simply let the dummy Pr fetch its output as before, albeit from the wrapper.
Otherwise, as soon as enough wire-parties are corrupted, S sends a Doom message for Ps to the wrapper,
which will be accepted by definition of Dpsmt. Now, S can influence the wrapper every time the value that
the real-world Pr would have output changes (note that these influence messages will in fact be accepted,
because the wrapper will have sent a corruption message for Ps to the underlying Fauth functionality). Once
again, the simulation is perfect.

C.4 Proof of Theorem 12

Theorem 12. Protocol Πdppu
r-auth UC-realizes WDdppu

ae (FVdppu,rnd
auth ) for some rnd ∈ O(log n) in the FG

dppu
n

r-sc -hybrid
model, against an adversary corrupting less than s/4 nodes.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that no
environment Z can distinguish whether it is interacting with Πdppu

r-auth and A, or with WDdppu
ae (FVdppu,rnd

auth ) and

S. The simulator internally runs a copy of A, and plays the roles of FG
dppu
n

r-sc and the parties in a simulated
execution of the protocol, which starts when S receives (SendLeak, sid,m) from the wrapper. Whenever A
corrupts a party in the simulated execution, S corrupts the same party in the ideal world, and as a result S
is able to influence the wrapper with the appropriate value when S or R is corrupted by A. If S and R are
not corrupted by A, but at least one of S and R has at least 1

8 of its paths to Γout or from Γin corrupted,
then S can still influence the wrapper because in this case S can doom at least one of S and R according
to Ddppu. The only case in which S cannot influence is when both S and R are privileged, which means
they have less than 1

8 of their paths to Γout and from Γin corrupted. However, it follows from the results
in [DPPU86] that A also cannot influence the value recovered by R in this case, so S can simply let the
dummy R fetch from the wrapper when instructed by Z.
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All the paths specified by the Πdppu transmission scheme have length O(log n). Since Πdppu
r-auth transmits

the message from S to R by sending it through the specified paths, its execution requires only rnd ∈ O(log n)
rounds.

C.5 Proof of Theorem 15

Theorem 15. Protocol Πupfal
r-auth UC-realizes WDupfal

ae (FVupfal,rnd
auth ) for some rnd ∈ O(log n) in the FG

upfal
n

sc -hybrid
model, against an adversary corrupting up to 1/72n nodes.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that no
environment Z can distinguish whether it is interacting with Πupfal

r-auth and A, or with WDupfal
ae (FVupfal,rnd

auth ) and

S. The simulator internally runs a copy of A, and plays the roles of FG
upfal
n

sc and the parties in a simulated
execution of the protocol, which starts when S receives (SendLeak, sid,m) from the wrapper. Whenever
A corrupts a party in the simulated execution, S corrupts the same party in the ideal world, and as a result
S is able to influence the wrapper with the appropriate value when S or R is corrupted by A. If S and R
are not corrupted by A, but at least one of S and R is returned by Dupfal(T ), then S can still influence the
wrapper because in this case S can doom at least one of S and R according to Dupfal. The only case in
which S cannot influence is when both S and R are privileged, which means that they are not returned by
Dupfal(T ). However, it follows from the results in [Upf92] that A also cannot influence the value recovered
by R in this case, so S can simply let the dummy R fetch from the wrapper when instructed by Z.

It is well-known that the diameter of an expander graph is O(log n). Since we are working over expander
graphs and the Πupfal transmission scheme uses only simple paths between S and R, all the messages are
received by R in O(log n) rounds. Therefore, Πupfal

r-auth requires rnd ∈ O(log n) rounds to terminate.

C.6 Proof of Theorem 18

Theorem 18. Protocol Πcgo
r-auth UC-realizes WDcgo

ae (FVcgo,rnd
auth ) for some rnd ∈ O(log n · log log n) in the FG

cgo
n

sc -
hybrid model, against an adversary corrupting at most αcgon nodes.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that no
environment Z can distinguish whether it is interacting with Πcgo

r-auth and A, or with WDcgo
ae (FVcgo,rnd

auth ) and

S. The simulator internally runs a copy of A, and plays the roles of FG
cgo
n

sc and the parties in a simulated
execution of the protocol, which starts when S receives (SendLeak, sid,m) from the wrapper. Whenever
A corrupts a party in the simulated execution, S corrupts the same party in the ideal world, and as a result
S is able to influence the wrapper with the appropriate value when S or R is corrupted by A. If S and R
are not corrupted by A, but at least 1

6 of the helper committees of S or R are unprivileged, then S can still
influence the wrapper because in this case S can doom at least one of S and R according to Dcgo. The only
case in which S cannot influence is when both S and R are privileged, which means less than 1

6 of their
helpers are unprivileged. As it is shown in [CGO10], A also cannot influence the communication in this case,
so S can simply let the dummy R fetch from the wrapper when instructed by Z.

Each transmission over super-edges consists of some parallel instances of FG
cgo
n

sc (between corresponding
nodes) followed by an execution of differential agreement inside the destination committee. According
to [FG03], deterministic differential agreement requires at most a linear number of rounds. Since in the
Πcgo transmission scheme committees are of size O(log log n), the number of rounds required by each super-
edge transmission is O(log log n). We also know that in the Πcgo transmission scheme, there are n logk n
committees communicating using the Πdppu transmission scheme over super-edges. We discussed earlier that
the Πdppu transmission scheme requires a logarithmic number of rounds. Therefore, the total number of
rounds required by Πcgo

r-auth is O(log(n logk n) · log log n) = O(log n · log log n).

C.7 Proof of Theorem 21

Theorem 21. Protocol Πjrv
r-auth UC-realizes WDjrv

ae (FVjrv,rnd
auth ) for some rnd ∈ O(log n · log log log n) in the

FG
jrv
n

sc -hybrid model, against an adversary corrupting at most αjrvn nodes.
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Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that
no environment Z can distinguish whether it is interacting with Πjrv

r-auth and A, or with WDjrv
ae (FVjrv,rnd

auth ) and

S. The simulator internally runs a copy of A, and plays the roles of FG
jrv
n

sc and the parties in a simulated
execution of the protocol, which starts when S receives (SendLeak, sid,m) from the wrapper. Whenever A
corrupts a party in the simulated execution, S corrupts the same party in the ideal world, and as a result S
is able to influence the wrapper with the appropriate value when S or R is corrupted by A. If S and R are
not corrupted by A, but either S or R is doomed in more than 1

10z good layers, then S can still influence
the wrapper because in this case S can doom at least one of S and R according to Djrv. The only case in
which S cannot influence is when both S and R are privileged, which means they are doomed in at most
1
10z good layers. As it is shown in [JRV20], A also cannot influence the communication in this case, so S
can simply let the dummy R fetch from the wrapper when instructed by Z.

Each transmission over super-edges consists of some parallel instances of FG
jrv
n

sc (between corresponding
nodes) followed by some parallel executions of the Πupfal transmission scheme inside the destination com-
mittee. As discussed earlier, the Πupfal transmission scheme requires a logarithmic number of rounds. Since
in the Πjrv transmission scheme each committee has size s = O(log log n), each super-edge transmission
takes O(log log log n) rounds. We also know that in the Πjrv transmission scheme, there are n/s commit-
tees communicating using the Πdppu transmission scheme over super-edges. We discussed earlier that the
Πdppu transmission scheme requires a logarithmic number of rounds. Therefore, the total number of rounds
required by Πjrv

r-auth is O (log(n/s) · log log log n) = O(log n · log log log n).

C.8 Proof of Theorem 23

Theorem 23. Protocol Πdppu
r-smt UC-realizes WDdppu

ae (FVdppu,`+2·rnd
smt ) in the (FG

dppu
n

r-sc ,WDdppu
ae (FVdppu,rnd

auth ))-hybrid
model for some rnd ∈ O(log n), against an adversary corrupting less than s/4 nodes.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that
no environment can distinguish whether it is interacting with Πdppu

r-smt and A, or with WDdppu
ae (FVdppu,`+2·rnd

smt )
and S. The simulator S is similar to the simulator in the proof of Theorem 8. However, S needs to simulate
different aiding functionalities for which the structure of the internal simulation is the same. Moreover, now
S can doom S or R under a slightly different condition according to Ddppu. More specifically, the simulator
in the proof of Theorem 8 needs to doom at least one of Ps and Pr (denoted S and R here) when a majority
of the wire-parties between them are corrupted (which is allowed by Dpsmt) but S can do that if at least 1

8
of the paths to Γout or from Γin are corrupted for at least one of S and R. As it is discussed in [DPPU86],
whenever a majority of wires between S and R are corrupted, at least 1

8 of the paths to Γout or from Γin are
corrupted for at least one of S and R. Therefore, the difference in the doom structures does not affect the
correctness of the simulation.

The round complexity is easily established by inspection (recall that AE-RMT over Gdppu
n takes O(log n)

rounds).

C.9 Proof of Theorem 25

Theorem 25. Protocol Πr-smt-pd(Gn) statistically UC-realizes WDsmt-pd
ae (FV,rnd

′

smt ) for rnd′ = `+ 3 · rnd in the

(FGn
r-sc,WDsmt-pd

ae (FV,rndauth ))-hybrid model, against a t-adversary.

Proof. LetA be an adversary in the real world. We construct a simulator S in the ideal world, such that no en-
vironment Z can distinguish whether it is interacting with Πr-smt-pd(Gn) and A, or withWDsmt-pd

ae (FV,`+3·rnd
smt )

and S. The simulator S is very similar to the simulator that was constructed in the proof of Theorem 9.
However, S now interacts with a wrapped Fsmt functionality, and corruption messages for all parties are
sent. Moreover, S needs to simulate different aiding functionalities, although the general structure of the
internal simulation is the same. The other difference is that the case in which S and R (which were denoted
Ps and Pr in Section 3.3) are not corrupted by A becomes more complicated because we are now working
with access to a wrapped Fauth functionality rather than an ideal authenticated channel.

If S can doom either S or R according to the doom structure Dsmt-pd before the fourth step, then S does

not need to cheat because it learns m through leakage fromWDsmt-pd
ae (FV,rnd

′

smt ). However, S still needs to exert

constant influence on WDsmt-pd
ae (FV,rnd

′

smt ).
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Furthermore, if S cannot doom S and R throughout the entire execution, it implies thatWDsmt-pd
ae (FV,rndauth )

behaves like an ideal authenticated channel (since it is wrapped using the same doom structure). In ad-
dition, according to the assumed properties of Dsmt-pd, at least one path between S and R must remain
uncorrupted. Therefore S, who does not know m in this case, can choose mi’s randomly for the fourth step
and still make the simulation work. This simulation strategy is effective because A, who cannot tamper with
WDsmt-pd

ae (FV,rndauth ) or corrupt all the paths, will not learn all the pads and hence gains no information about
the message.

In a more elaborate scenario, neither S nor R is doomed at the beginning of the fourth step. However,
at a later point, one of them becomes doomed due to the evolution of the corruption set. In such a case,
S cannot learn the value of m before deciding on the mi’s. Consequently, instead of selecting mi’s that
satisfy m = m1 ⊕ · · · ⊕ms, S chooses them randomly. There are two possibilities to consider, in both of
which the aforementioned strategy works effectively. First, suppose that the new corruption, which leads
to the doom of either S or R, does not corrupt any existing honest path between them. As a result, there
remains at least one bit string that is unknown to A, making it impossible for A to gain any information
about m. It is important to note that since S or R only becomes doomed after the third step, A cannot
manipulate WDsmt-pd

ae (FV,rndauth ) to eliminate all honest paths and force S to transmit messages solely through
corrupted paths. Therefore, choosing random mi’s is a viable approach in this situation. Now, let us consider
the second possibility where the doom of S or R is associated with the corruption of a new path between
them. In such circumstances, it is possible for A to learn the actual message m through leakages from FGn

r-sc.

However, since S or R is now doomed, S also obtains the correct value of m from WDsmt-pd
ae (FV,rnd

′

smt ). S
can then cheat by recalculating the bit string transmitted via the last (newly) corrupted path in a way that
allows the desired message to be recovered at the end. Afterward, S simulates the leakage of this adjusted bit
string from the instance of FGn

r-sc corresponding to the last corrupted path. This guarantees that A acquires
the correct message m. Hence, the simulation strategy is effective in both cases.

It should be noted that once S or R becomes doomed, S gains complete control over WDsmt-pd
ae (FV,rnd

′

smt )
and can exert influence as required to emulate A’s behavior regarding the correctness of the message.

The round complexity is easily established by inspection.
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