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Abstract

Branching program (BP) is a DAG-based non-uniform computational model for L/poly class.
It has been widely used in formal verification, logic synthesis, and data analysis. As a special BP,
a decision tree is a popular machine learning classifier for its effectiveness and simplicity. In this
work, we propose a UC-secure efficient 3-party computation platform for outsourced branching
program and/or decision tree evaluation. We construct a constant-round protocol and a linear-
round protocol. In particular, the overall (online + offline) communication cost of our linear-round
protocol is O(d(` + logm + logn)) and its round complexity is 2d− 1, where m is the DAG size,
n is the number of features, ` is the feature length, and d is the longest path length. To enable
efficient oblivious hopping among the DAG nodes, we propose a lightweight 1-out-of-N shared
OT protocol with logarithmic communication in both online and offline phase. This partial result
may be of independent interest to some other cryptographic protocols. Our benchmark shows,
compared with the state-of-the-arts, the proposed constant-round protocol is up to 10X faster in
the WAN setting, while the proposed linear-round protocol is up to 15X faster in the LAN setting.

1 Introduction

Branching program (BP) or binary decision diagram is a nonuniform computational model for L/poly
class. The computation is specified by a directed acyclic graph (DAG) with a unique source node and
several sink nodes; an evaluation is usually performed by traverse from the source node to a sink node.
BP has been widely used in formal verification, logic synthesis and data analysis, etc. In particular,
decision tree is a special case of BP, known for its effectiveness and simplicity as a machine learning
classifier with a number of useful applications, including credit-risk assessment, spam classification,
medical diagnosis.

Privacy concerns often raise, when sensitive information are involved. In the past decades, the
privacy-preserving BP and decision tree evaluation problem has been extensive studied in the litera-
ture [1–9]. These works can be divided into two main categories based on protocol round complexity:
(i) constant-round solutions [1, 2, 4–6], and (ii) linear-round solutions [8–11] whose round complexity
is linear in the longest path length d. As summarized in [7], a typical constant-round solution consists
of three functional modules: (a) private feature selection, (b) secure comparison, and (c) oblivious
path evaluation. Each step can be realized by either garbled circuit or homomorphic encryption based
protocols. The overall protocol usually needs to obliviously evaluate each decision node of the DAG
for privacy preservation; therefore, they are suitable for BPs and decision trees with small DAG size,
say less than 220. On the other hand, linear-round solutions can bypass this limitation by obliviously
hopping along a DAG path according to the outcome of previous decision nodes. This is known as
oblivious access index (OAI) [9], which can be realized by either OT or ORAM. The OT-based OAI
private decision tree evaluation protocol proposed in [9] takes linear communication (in tree size, m)
and 4d rounds. When OAI is realized by Circuit ORAM [12], the online communication complexity
can be reduced to O(d4), but it takes up to O(d2) rounds.

The best linear-round solution is recently proposed by Ma et al. [11]. It reduces the online commu-
nication cost to O(d) using key management and conditional OT. However, prior to each evaluation,
the model owner has to prepare and share a one-time encoding of the tree to the client, which leads to
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Table 1: Performance comparison: m is the DAG(or decision tree) size, mc is the number of decision
nodes, m̃ is the DAG(or decision tree) size after depth-padding, m̃c is the number of decision nodes
in padded tree, n is the number of features, N is the number of model owners, ` is the bit-length of
feature and classification value, λ1 is the size of symmetric ciphertext (= 128), λ2 is the size of ElGamal
ciphertext (= 514), λ3 is the size of DGK ciphertext (= 2048), λ4 is the size of Paillier ciphertext (=
4096), λ5 is the size of BGV(SWHE) public key, λ6 is the size of BGV ciphertext, λ7 is the size of
MKBGV ciphertext, λ8 is the size of AES key (= 128).

Scheme
Communication

Rounds Outsourcing
offline online

[3] (GGG)
((n + m̃c) log n + 2mc log m̃c − n + 2 + 2m̃c)`λ1 +
2m̃c(λ1 + log(m̃c + 1))

n`(2λ1 + 1) 2 ◦

[6] (HHH) - ((mc + n)`+ 2(mc + 1) + n)λ2 4 ◦
[7] (GGH) ((n+mc) log n+ 2mc logmc − n+ 2 + 2mc)`λ1 n`(2λ1 + 1) + (3mc + 2)λ2 4 ◦
[7] (HGH) 5mc`λ1 (mc + n)λ3 +mc`(2λ1 + 1) + (3mc + 2)λ2 6 ◦
[13]** - n`λ1 + λ5 + λ6 + (2N + 5)λ7 2 •
Ours (const-round) 2d(3 log n+ `)λ8 2d(6 log n+ 4`+ λ8) + 2dλ8 4 •
[10] 6(2dn`+ d(3`− log l − 2) + 2d − 1) 4(2dn`+ d(3`− log l − 2) + 2d − 1) log `+ d+ 1 •
[14] 6((2dn+ 4)`− 5) 4((2dn+ 4)`− 5) 2`− 1 •
[15]** 6(2d − 1)` 3 · 2d−1λ4 + 4(2d − 1)` d+ 1 •
[9] (OT) 6d`λ1 d((m+ n)`+ 2(logm+ log n)λ1) 4d ◦
[11] (complete) 2d(`+ log n) d(4λ1 + n`+ (7`+ 8)λ1) 2d− 1 •
[11] (sparse) m(`+ log n+ λ1 + 3d) d((4λ1 + n`) + (7`+ 8)λ1 + 8) 2d− 1 ◦
Ours (linear-round) 12d(log n+ logm+ `)λ8 12d(3(logm+ log n) + 2`) 2d− 1 •
** Those protocols do not hide the feature index from the servers.

linear communication in the offline phase. Meanwhile, the protocol proposed by [11] can be modified
to fit the outsourcing setting, where the model owner and the data owner just need to share their
private input to the computing servers without heavily involved in the evaluation process. This setting
enables the usage scenarios when the features are spited among multiple clients, and it is friendly
to mobile devices with low-computation resources, such as IoT sensors. However, their outsourcing
solution [11] needs to pad the decision tree to a complete tree for privacy preservation, and it costs
O(2d) communication to refresh the shared decision tree in the offline phase of each evaluation. In
addition, their solution does not naturally support BP evaluation.

1.1 Our approach

In this work, we investigate the outsourced private branching program and decision tree evaluation
problem. Our approach follows the line of research initiated by Boyle et al. [16], which introduces
the distributed point function (DPF). DPF enables an efficient two-server PIR protocol, where two
servers hold the same set of messages x, and the client wants to obliviously fetch xi. Namely, the
client first generates a pair of DPF keys encoding a point function fi(x), which has only one non-
zero output, 1, when the input is i. The client then distributes the DPF keys to the two servers,
and the servers jointly evaluate and return xi :=

∑N−1
j=0 fi(j) · xj . Later, Doerner et al. [17] adopt

DPF in the MPC setting to achieve ORAM. In [17], both servers S0 and S1 hold encrypted messages
x̃j := xj ⊕ PRFk(j), j ∈ ZN , where k is shared between them. For a given shared index i ∈ ZN ,
S0 and S1 first generates the DPF keys for fi(x) via MPC. After obtaining the shared x̃i, S0 and S1

then needs to obliviously evaluate PRFk(i) via MPC to decrypt xi. Therefore, the entire process is
time-consuming. Recently, [18] introduce a 3-party DPF-based distributed read protocol with semi-
honest security for a single corrupted party. It eliminates the needs of aforementioned two costly MPC
operations by introducing replicated shares. However, the DPF keys [18] used are related to the secret
input and also require a lot of communication.

We promote the 3-party distributed read protocol of [18] to an efficient shared OT protocol in
online/offline model, where the costly computation and communication of the DPF key generation
and distribution are transferred to the offline phase.

Our constant-round solution. We construct a 4-round private decision tree evaluation protocol,
using the proposed 1-out-of-N shared OT protocol as a building block. We assume the model and
features are already shared among the three servers. Note that the model needs to be padded to a
complete tree to avoid privacy leakage. In the first round, the servers obliviously select corresponding
features for all decision nodes. In the second round, for each decision node, a secure comparison is
performed using distributed interval containment function (DICF) [19]. More specifically, S2 plays the
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role of DICF key generator while S0 and S1 play the role of DICF evaluators. In the offline phase,
S2 precomputes the DICF keys and distribute them to S0 and S1. In the online phase, the servers
mask the difference of its threshold and feature, and open it to S0 and S1. They then jointly evaluate
DICF to securely compare the corresponding feature with the threshold. When the feature is less than
the threshold, S0 and S1 obliviously set the left out-going edge cost of the decision node to 0 and the
right out-going edge cost to a random value; vice versa. In the third round, for each leaf node of the
decision tree, S0 and S1 sum up the edge costs along the path to get its path cost. They then cyclic
shift the vector of path costs of all the leaf nodes together with the corresponding classification values,
and jointly generate a random vector to mask the shifted classification values. After that, S0 and S1

open the shifted path costs and masked shifted classification values to S2. In the fourth round, S2

generates a pair of DPF keys according to the location of path cost is 0, and distributes keys to S0

and S1. Finally, S2 outputs the masked classification value of the leaf node whose path cost is 0 to
the receiver, while S0 and S1 can output the corresponding mask in the shared form.

Our linear-round solution. For large decision trees (and BP DAGs), we construct a 2d-round
private decision tree and BP evaluation protocol as follows. Our protocol supports sparse trees, and
it only needs to pad one dummy node instead of transforming the model into a complete tree. The
dummy node points to itself and all sink nodes point to it. For uniformity, besides sink nodes, all
the other nodes have a dummy classification value 0. The protocol takes d steps with 2 rounds each.
For each step along the evaluation path, the servers first invoke the shared OT protocol to obliviously
fetch the current node together with its corresponding feature; they then jointly perform a conditional
shared OT (CSOT) to determine the index of the next node together with the corresponding feature
index. In a CSOT, the servers want to obliviously obtain one of two (shared) messages in the shared
form based on a secure comparison result. It can be realized by a DICF evaluation and then a shared
multiplication, but it would take 2 rounds. To reduce round complexity, we divide the four servers
into two groups. Each group independently evaluates a DICF to perform secure comparison between
the corresponding threshold and feature in parallel. Subsequently, the shared multiplication can be
reduced to a scalar product which can be evaluated locally without further communication. Once a
sink node is reached, the servers would obliviously evaluate the dummy node (repeatedly) until the
protocol reaches d total steps. The classification values of all nodes in the evaluation path are summed
to the final result.

Performance. Table 1 shows the communication and round complexity comparison between our
scheme and the related works. The schemes that supports outsourcing are marked with •. m is the
DAG size, mc is the number of decision nodes, m̃ is the DAG size after depth-padding, m̃c is the
number of decision nodes in padded tree, n is the number of features, ` is the bit-length of feature and
classification value. We emphasize that the concrete security parameters vary a lot among different
schemes, and we use λ1, . . . , λ8 to differentiate them. For instance, λ4 refers to the ciphertext size
of Paillier encryption, which is 4096 bits; whereas, the security parameter λ8 is the 128-bit AES key
size in our schemes. Note that some works (marked with **), e.g., [13, 15] do not protect the feature
indices from the servers.

Our constant-round protocol supports outsourcing without the leakage of feature index, but it needs
to pad the DAG to a complete tree; therefore, its communication size linearly depends on 2d; yet it has
the best performance for small tree evaluations in the WAN setting when the network delay is 80ms.
(cf. Sec. 7) With regards to linear-round solutions, [11] is the most efficient scheme in the literature;
nevertheless, their offline communication depends on the tree size, and complete tree padding is needed
to support outsourcing. Our linear-round scheme has logarithmic communication in both online and
offline phase.

2 Preliminaries

Notations. Throughout this paper, we use the following notations and terminologies. Let λ ∈ Z be the
security parameter. Denote a value x indexed by a label b as x(b), while xb means the value of x power
of b. Denote a (2, 2)-additive secret sharing in Zn by JxK := {x(0), x(1)}, where x(0) +x(1) = x (mod n)
and Sj holds x(j) for j ∈ Z2. Denote a (3, 3)-additive secret sharing in Zn by 〈x〉 := {x(0), x(1), x(2)},
where Sj holds x(j) for j ∈ Z3, such that x(0) + x(1) + x(2) = x (mod n). Denote a (3, 2)-additive
sharing in Zn by 〈x〉rep := {x(0), x(1), x(2)}, where S0 holds {x(0), x(1)}, S1 holds {x(1), x(2)}, and S2
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holds {x(2), x(0)}, such that x(0)+x(1)+x(2) = x (mod n). Namely, 〈x〉rep is a replicated secret sharing.
When K is a set, k ← K stands for sampling k uniformly at random from K, and |K| stands for the
size of K in terms of the number of elements. When f is a algorithm, y ← f(x) stands for running
f on input x. We map x ∈

[
−2`−1, 2`−1

]
to Z2` , i.e., when x is negative, x′ = x + 2`−1. Denote the

decomposition point of positive and negative numbers as τ := 2`−1 − 1.

Branching Program and Decision Tree. In this work, we focus on the deterministic branching
program based on DAG and support its generalizations to integer-valued sink labels and input features.
Let B denote a branching program. B has a unique source node and one or more sink nodes. Each
non-sink node of B corresponds to an input feature x ∈ Z2` and has two outgoing edges labeled 0 or
1. Each sink node of B has a label vi ∈ Z2` that determines the output of B evaluation. For a B, m is
defined as the number of its nodes, mc is defined as the number of its non-sink nodes, and its depth d
is the length of the longest path.

A decision tree is a special branching program whose underlying DAG is a tree. Denote a decision
tree by T . Without loss of generality, we assume T is a binary tree, which can be met by converting
a general tree to a binary tree. T follows the notations of B. The leaves and root in T correspond to
the sinks and source node in B, respectively. In addition, each non-sink node of T has a comparison
function for input feature x ∈ Z2` and a given threshold t ∈ Z2` .

The evaluation of T or B is performed by traversing from the source node to a sink node. Thus
the evaluation takes linear time with respect to d. In detail, T or B receives an n-dimensional feature
vector x := (xi)i∈Zn as evaluation input. Starting from the source node, for the i-th node, if current
node is a non-sink node, fetch xki from x, where ki ∈ Zn is the index of the corresponding feature.
Then determine the next node as

c← (xki < ti) for T , or

c← xki for B.

If c = 1, the next node is connected to outgoing edge labeled 1 of the current node; otherwise, if c = 0,
the next node is connected to outgoing edge labeled 0 of the current node. If current node is a leaf
node (or sink node), the attached vi is outputted as evaluation result. We refer to the path from the
root to a leaf (or from the source node to the sink node) as the evaluation path for given x.

In addition, we use depth-padding to indicate that dummy nodes are introduced in B or T such
that its evaluation path for each input x ∈ (Z2`)

n has the same length. B′ (or T ′) stands for B (or T )
after depth-padding, while m̃ is defined as the number of its nodes and m̃c is defined as the number
of its non-sink nodes.

Function Secret Sharing. Function Secret Sharing (FSS) is introduced by Boyle et al. [16]. Given
a function family F = {f(x) : Gin → Gout}, a dealer uses the FSS scheme for F to split a function
f(x) ∈ F into two additive shares Jf(x)K := {f (0)(x), f (1)(x)}, such that ∀x ∈ Gin, f (0)(x) +f (1)(x) =
f(x) (mod |Gout|).

Distributed Point Function (DPF) is an FSS scheme for the point function fα,β(x) : Gin → Gout

whose range only has one non-zero value fα,β(α) = β. It consists of algorithms Gen and Eval defined
as follows:

• Gen(1λ, fα,β) is a key generation algorithm that outputs a pair of keys (K(0),K(1)). Each key
includes a random PRF seed s and dlog2 |Gin|e+1 correction words. Each key is able to efficiently
describe the share of fα,β without revealing α, β.

• Eval(b,K(b), x) is an evaluation algorithm. ∀x ∈ Gin, ∀b ∈ Z2, it outputs β
(b)
x ∈ Gout, such that

β
(0)
x + β

(1)
x = fα,β(x) (mod |Gout|).

When DPF is used to realize a PIR protocol, the servers need to run Eval on every element of the
input domain, named full domain evaluation. [20] provides a more efficient scheme for this case,
rather than executing |Gin| independent invocations of Eval. We adopt their scheme and denote it
by EvalAll(b,K(b)).

Distributed Comparison Function (DCF) is an FSS scheme for the comparison function f<α,β(x) :

Gin → Gout, which outputs β if 0 ≤ x < α and outputs 0 if x ≥ α. Based on the DCF scheme, [19]
provides the Distributed Interval Containment Function (DICF) construction to compute interval
containment for a secret input and a publicly known interval. Denote the interval containment function
as f IC

p,q(x) : Gin → Gout, which outputs 1 if x ∈ [p, q] and outputs 0 otherwise. DICF is an FSS scheme

for the offset interval containment function f IC
p,q,rin,rout(x) : Gin → Gout with given random offset rin, rout,
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Figure 1: System architecture.

such that f IC
p,q,rin,rout(x+rin)−rout = f ICp,q(x). Similar to DPF, DICF also consists of a pair of algorithms

(GenIC,EvalIC) as follows:
• GenIC

p,q(1
λ, f IC

p,q,rin,rout) generates (K(0),K(1)). Each key is able to efficiently describe the share of

f IC
p,q,rin,rout with publicly known p, q but without revealing rin, rout.

• EvalICp,q(b,K(b), x+ rin) outputs β(b) for b ∈ Z2, such that β(0) + β(1)− rout = f ICp,q(x) (mod |Gout|).
In the rest of paper, we focus on the case of rout = 0 and thus omit rout in the offset interval containment
function and the parameters of the DICF key generation algorithm.

Definition 1. Let T ⊂ [2]. We say a two-party FSS scheme (Gen,Eval) is T -secure for function family
F = {f : Gin → Gout}, if for all non-uniform PPT adversaries A, it holds that

Adv(1λ,A) =

∣∣∣∣∣∣∣∣Pr


(f1, f2, φ)← A(1λ); b← {1, 2};
(K(0),K(1))← Gen(1λ, fb);
b∗ ← A((K(i))i∈T , φ) :
f1, f2 ∈ F ∧ b = b∗

− 1

2

∣∣∣∣∣∣∣∣
is negligible in λ.

3 System Architecture and Security Model

System Architecture. Fig. 1 gives a high-level architecture of our outsourced private decision tree
and BP evaluation platform. The entities consists of a set of three non-colluding computing servers
S := {S0, S1, S2}, the model owner M , the data owner D, and the receiver R. Initially, the model
owner shares its modelM among the computing servers. For each evaluation, a subset of data owners
provide their feature data to the computing servers in the shared form; the servers then obliviously
evaluate the model on given data and output the result to a subset of the receivers.

Universal Composability. Our security model is based on the Universal Composibility (UC) frame-
work [21], which lays down a solid foundation for designing and analyzing protocols secure against
attacks in an arbitrary network execution environment (therefore it is also known as network aware
security model). Roughly speaking, in the UC framework, protocols are carried out over multiple in-
terconnected machines; to capture attacks, a network adversary A is introduced, which is allowed to
corrupt some machines (i.e., have the full control of all physical parts of some machines); in addition,
A is allowed to partially control the communication tapes of all uncorrupted machines, that is, it sees
all the messages sent from and to the uncorrupted machines and controls the sequence in which they
are delivered. Then, a protocol ρ is a UC-secure implementation of a functionality F , if it satisfies that
for every network adversary A attacking an execution of ρ, there is another adversary S—known as
the simulator—attacking the ideal process that uses F (by corrupting the same set of machines), such
that, the executions of ρ with A and that of F with S makes no difference to any network execution
environment.

The idea world execution. In the ideal world, the computing servers S := {S0, . . . , Sκ−1}, the model
owner M , the data owner D, and the receiver R only communicate with an ideal functionality Fκbp
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It interacts with the model owner M , the data owner D, the receiver R, a set of computing servers S :=

{S0, . . . , Sκ−1}, and the adversary Sim. It is parameterized with a set J and a variable status.
Initially, set J := ∅ and status := 0.

Outsourcing phase:

• Upon receiving (Model, sid,M) from M :
– Send notification (Model, sid,M, (M.m,M.d)) to Sim;

– Set status := 1;

– Record M;
• Upon receiving (Data, sid,x) from D, if status = 1:

– Send notification (Data, sid, D, |x|) to Sim;
– Set status := 2;

– Record x;

Evaluation phase:

• Upon receiving (Eval, sid) from server Si ∈ S, if status = 2 does:

– Send notification (Eval, sid, Si) to Sim;
– Set J := J ∪ {Si};
– If |J | = κ, run y ←M(x);

– Send (Result, sid, y) to R via private input delayed channel.

Functionality Fκbp

Figure 2: The ideal functionality Fκbp

It interacts with S := {S0, S1, S2} and the adversary Sim.

• Upon receiving (Fetch, sid,x(j),x(j+1 (mod 3)), i(j)) from Sj ∈ S, where x(j) := (x
(j)
0 , . . . , x

(j)
N−1):

– Send notification (Fetch, sid, Sj) to Sim;
– Record (x(j),x(j+1 (mod 3)), i(j));

• Once all players have submitted their input, does:

– Assert the same name shares are identical.
– Compute i :=

∑2
j=0 i

(j) (mod N);

– Upon receiving (Rand, sid, y∗) from Sim for the corrupted party Sk:

∗ Pick random y(0), y(1), y(2) ∈ Z2` s.t. y(k) = y∗ and
∑2
j=0 y

(j) =
∑2
j=0 x

(j)
i (mod 2`);

∗ Send (Return, sid, y(j)) to all parties Sj ∈ S via private delayed channel.

Functionality FN,`sot

Figure 3: The shared OT functionality FN,`sot

during the execution. As depicted in Fig. 2, the ideal functionality Fκbp consists of two phases. In the
outsourcing phase, the model owner M sends its model M to the ideal functionality. Later, the data
owner D sends its data x to the ideal functionality. Note that the size and depth of the model as
well as the number of features are leaked to the adversary Sim. During the evaluation phase, once all
computing servers has sent (Eval, sid) to the functionality Fκbp, Fκbp runs y ←M(x) and then sends
(Result, sid, y) to R via input delayed channel.

The real world execution. In the real world, the model owner M , the data owner D, and the receiver
R, only communicate with the computing servers S := {S0, . . . , Sκ−1} to submit the input and/or
obtain the output. While the computing servers jointly evaluate the model with privacy preservation.
The protocols are described in Sec. 6, below.

Definition 2. We say protocol Π UC-secure realizes functionality Fκbp if for all PPT adversaries A
there exists a PPT simulator Sim such that for all PPT environment Z it holds:

ExecΠ,A,Z ≈ ExecFκbp,Sim,Z
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Initialization:

• S0 and S1 agree on a random seed η0 ← {0, 1}λ;

• S1 and S2 agree on a random seed η1 ← {0, 1}λ;
• S2 and S0 agree on a random seed η2 ← {0, 1}λ.

Offline phase:

• Upon initialization, Sj , j ∈ Z3 does:

– Generate ϕj ← ZN ;

– Set (K(0)
ϕj ,K

(1)
ϕj )← DPF.Gen(1λ, fϕj ,1) for the point function fϕj ,1 : ZN → Z2` ;

– Send (sid,K(0)
ϕj ) to Sj+1, (sid,K(1)

ϕj ) to Sj+2;

Online phase:

• Upon receiving (Fetch, sid,x(j),x(j+1), i(j)) from the environment Z, the player Sj , j ∈ Z3 does:
– For k ∈ Z3, set:

∗ wk,j ← PRF
ZN
ηj (sid, k), wk,j+2 ← PRF

ZN
ηj+2

(sid, k);

∗ δ
(j)
k := i(j) − wk,j + wk,j+2 (mod N);

– Set δ
(j)
j := δ

(j)
j − ϕj (mod N);

– Send (sid, δ
(j)
j , δ

(j)
j+1) to Sj+2, (sid, δ

(j)
j , δ

(j)
j+2) to Sj+1;

• Upon receiving (sid, δ
(j+1)
j+1 , δ

(j+1)
j+2 ) from Sj+1, receiving (sid, δ

(j+2)
j+2 , δ

(j+2)
j+1 ) from Sj+2, the player Sj , j ∈ Z3

does:

– For k ∈ Z3/j, set δk := δ
(1)
k + δ

(2)
k + δ

(3)
k (mod N);

– Set (β
(1)
k,ϕj+1

)k∈ZN ← DPF.EvalAll(1,K(1)
ϕj+1

);

– Set (β
(0)
k,ϕj+2

)k∈ZN ← DPF.EvalAll(0,K(0)
ϕj+2

);

– Set y(j) :=
N−1∑
k=0

(x
(j)
k+δj+1

· β(1)
k,ϕj+1

+ x
(j+1)
k+δj+2

· β(0)
k,ϕj+2

);

– Set ζj ← PRF
Z
2`
ηj (sid), ζj+2 ← PRF

Z
2`
ηj+2

(sid);

– Return y(j) := y(j) + ζj − ζj+2 (mod 2`).

Protocol ΠN,`
sot

Figure 4: Shared OT protocol ΠN,`
sot . For simplicity, we omit (mod 3) from the expressions with

j ∈ Z3.

4 3-party Shared OT

In the shared OT, given shared data x := (x0, . . . , xN−1) and an shared index i ∈ ZN , the MPC
players can jointly obtain xi in the shared form without revealing i. We introduce an efficient 3-party
shared OT protocol designed in the online/offline model. Analogy to [18], the data are replicated
shared while the index is additively shared in our protocol. That is, S0 holds {x(0),x(1), i(0)}, S1 holds

{x(1),x(2), i(1)}, and S2 holds {x(2),x(0), i(2)}, where x =
∑2
j=0 x(j) and i =

∑2
j=0 i

(j) (mod N).

Intuition. Our construction is inspired by [18]. The main idea is that each MPC player serves as the
generator of DPF scheme, when the other two players serve as evaluators to learn the i-th position value
of their replicated data shares. More specifically, in the case of S0 as the generator, [18] lets S1 and S2

first randomly pick r(1), r(2) ← ZN respectively, and then exchange r(1)−i(1) and r(2)−i(2) while sending
r(1), r(2) to S0. After that, the players S1 and S2 can compute δ := r(1) − i(1) + r(2) − i(2) (mod N);
the player S0 generates a pair of DPF keys for the point function fω,1(x), where ω := i(0) + r(1) + r(2)

(mod N), and distributes the DPF keys to S1 and S2. Finally, S1 and S2 full-domain evaluate the
shared Jfω,1(x)K to correspondingly scale and sum the “shifted shares”, which results by shifting the

position of every entry in x(2) by δ. Note that this leads to S1 and S2 holding Jx(2)
i K. However, since ω

is related to a share of the secret index i, [18] cannot pre-construct the shared fω,1(x) for reducing the
online communication. To address this issue, we let S0 generate and distribute DPF keys of fϕ,1(x) in
the offline phase, where ϕ← ZN is randomly selected by S0. In the online phase, three players jointly
compute and open 〈δ〉 := 〈i〉+ 〈0〉−ϕ (mod N) to S1, S2. Subsequently, S1 and S2 can play the DPF

evaluators to obtain the shared x
(2)
i in the same way as [18].

Theorem 1. Let DPFZN ,Z2` be a secure function secret sharing scheme for point function fα,β(x) :

ZN 7→ Z2` with adversarial advantage Adv
DPF

ZN,Z2` (1λ,A). Let PRFZN : {0, 1}λ × {0, 1}in 7→ ZN be

7



It interacts with S := {S0, S1, S2} and the adversary Sim.

• Upon receiving (Sel, sid,x(j),m(j)) from Sj ∈ S:
– Send notification (Sel, sid, Sj) to Sim;

– Record (x(j),m(j));

• Once all players have submitted their input, does:

– For k ∈ {0, 1}, compute xk :=
∑3
j=1 x

(j)
k (mod 2`0 ) and mk :=

∑2
j=0m

(j)
k (mod 2`1 );

– Set b← (m0 < m1);

– Upon receiving (Rand, sid, y∗) from Sim for the corrupted party Sk:
∗ Pick random y(0), y(1), y(2) ∈ Z2`0 s.t. y(k) = y∗ and

∑2
j=0 y

(j) = x1−b (mod 2`0 );

∗ Send (Return, sid, y(j)) to all parties Sj ∈ S via private delayed channel.

Functionality F`0,`1csot

Figure 5: The conditional shared OT functionality F`0,`1csot

a secure pseudorandom function with adversarial advantage AdvPRFZN (1λ,A). The protocol ΠN,`
sot as

described in Fig. 4 UC-realizes FN,`sot as described in Fig. 3 against semi-honest adversaries who can
statically corrupted up to 1 server with distinguishing advantage

9 · AdvPRFZN (1λ,A) + 2 · Adv
DPF

ZN,Z2` (1λ,A) .

Protocol description. Our 3-party shared OT protocol is symmetric as depicted in Fig. 4. To
reduce the protocol communication, we assume that S0 and S1 agree on a random seed η0 ∈ {0, 1}λ;
S1 and S2 agree on a random seed η1 ∈ {0, 1}λ; S2 and S0 agree on a random seed η2 ∈ {0, 1}λ. We
take these shared seeds as PRF keys to enable non-interactive random-number sharing using PRF.
This method is, known as Pseudorandom Secret Sharing (PRSS), originally introduced in [22]. In the

offline phase, S0 generates a pair of DPF keys (K(0)
ϕ0 ,K

(1)
ϕ0 ) for fϕ0,1 : ZN → Z2` , where ϕ0 ← ZN

is randomly picked. S0 then sends K(0)
ϕ0 to S1, K(1)

ϕ0 to S2. Repeat the above with S1 and S2 as
the DPF generator. This results in S1, S2 sharing the point function fϕ0,1, S0, S2 sharing fϕ1,1, and
S0, S1 sharing fϕ2,1. In the online phase, the MPC players first construct several 〈0〉 using the random
seeds and pseudorandom function PRF without communication. Next, for j ∈ Z3, three players jointly
compute and reveal 〈δj〉 := 〈i〉 + 〈0〉 − ϕj (mod N) to Sj+1 (mod 3), Sj+2 (mod 3). After that, S1 and

S2 full-domain evaluate K(0)
ϕ0 ,K

(1)
ϕ0 respectively to obtain a shared unit vector (Jβk,ϕ0K)k∈ZN , and then

jointly compute

Jx(2)
i K :=

N−1∑
k=0

(x
(2)
k+δ0

· Jβk,ϕ0
K) (mod 2`).

Similarly for obtaining Jx(0)
i K and Jx(1)

i K. Note that xi =
∑2
j=0 x

(j)
i (mod 2`). Finally, we re-randomize

shares to ensure their uniform distribution.

Efficiency. ΠN,`
sot is a one-round shared OT protocol with offline communication cost 6λ logN bits

and online communication cost 12` bits.

Security. We show the security of our 1-out-of-N shared OT Protocol ΠN,`
sot with the following theorem,

and its proof can be found in section A of the supplemental material.

5 Conditional Shared OT

In the conditional shared OT protocol, given a vector of shared messages x := (x0, x1) ∈ (Z2`0 )2 and
two shared keywords m := (m0,m1) ∈ (Z2`1 )2, the MPC players first securely compare b← (m0 < m1)
and then obtain x1−b in the shared form without revealing b. As depicted in Fig. 5, our conditional
shared OT is a 3-party computation protocol. The messages and keywords are additively shared among

the 3 parties. Let x(j) := (x
(j)
0 , x

(j)
1 ) and m(j) := (m

(j)
0 ,m

(j)
1 ) be the shares of player Sj , j ∈ Z3. We

have x =
∑2
j=0 x(j) and m =

∑2
j=0 m(j).

Intuition. Naively, the conditional shared OT protocol can be realized by a secure comparison
followed by a oblivious selection (a.k.a. multiplication) protocol. However, this would result a 2-round
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Initialization:

• S0 and S1 agree on a random seed η0 ← {0, 1}λ;

• S1 and S2 agree on a random seed η1 ← {0, 1}λ;
• S2 and S0 agree on a random seed η2 ← {0, 1}λ.

Offline phase:

• Upon initialization, Sj , j ∈ Z3 does:

– Set ρj ← Z2`1 , τ := 2`1−1 − 1;

– Set (K(0)
ρj ,K

(1)
ρj )← DICF.GenIC

0,τ (1λ, f IC0,τ,ρj ,0) for the function f IC0,τ,ρj ,0 : Z2`1 → Z2`0 ;

– Send (sid,K(0)
ρj ) to Sj+1, (sid,K(1)

ρj ) to Sj+2.

Online phase:

• Upon receiving (Sel, sid,x(j),m(j)) from the environment Z, player Sj , j ∈ Z3 does:
– For k ∈ Z3, set

∗ wk,j ← PRF
Z
2`1
ηj (sid, k), wk,j+2 ← PRF

Z
2`1
ηj+2

(sid, k);

∗ δ
(j)
k := m

(j)
1 −m(j)

0 − wk,j + wk,j+2 (mod 2`1 );

– Set δ
(j)
j := δ

(j)
j + ρj (mod 2`1 );

– For i ∈ Z2, set

∗ ζj,i ← PRF
Z
2`0
ηj (sid, i), ζj+2,i ← PRF

Z
2`0
ηj+2

(sid, i);

∗ x̃
(j)
i := x

(j)
i + ζj,i − ζj+2,i (mod 2`0 )

– Send (sid, δ
(j)
j , δ

(j)
j+1, x̃

(j)) to Sj+2;

– Send (sid, δ
(j)
j , δ

(j)
j+2) to Sj+1;

• Upon receiving (sid, δ
(j+1)
j+1 , δ

(j+1)
j+2 , x̃(j+1)) from Sj+1, (sid, δ

(j+2)
j+2 , δ

(j+2)
j+1 ) from Sj+2, the player Sj , j ∈ Z3

does:
– For k ∈ Z3/j, set δk := δ

(1)
k + δ

(2)
k + δ

(3)
k (mod 2`1 );

– Set β
(1)
j+1 ← DICF.EvalIC0,τ (1,K(1)

ρj+1
, δj+1);

– Set β
(0)
j+2 ← DICF.EvalIC0,τ (0,K(0)

ρj+2
, δj+2);

– Set y(j) := x̃
(j)
1 +

1∑
q=0

1∑
k=0

(−1)k · x̃(j+q)k · β(1−q)
j+1+q ;

– Set ζj,2 ← PRF
Z
2`0
ηj (sid, 2), ζj+2,2 ← PRF

Z
2`0
ηj+2

(sid, 2);

– Return y(j) := y(j) + ζj,2 − ζj+2,2 (mod 2`0 ).

Protocol Π`0,`1
csot

Figure 6: Conditional shared OT Protocol Π`0,`1
csot . For simplicity, we omit (mod 3) from the expressions

with j ∈ Z3.

protocol. We compress the round complexity to one. In our protocol, any two servers form a group,
i.e., there are three groups namely {S0, S1}, {S1, S2} and {S2, S0}. Three players jointly compute and
open δ := m1−m0 to each group with the corresponding DICF random offset. At the same round, we
convert the shared massages 〈m〉 from (3, 3)-addictive secret sharing to replicated secret sharing. After
that, each group holds a same share of message, and shares an offset interval containment function
for δ. Therefore, the oblivious selection can be computed locally by scalar product of the replicated
shares and the DICF evaluation result.

Protocol description. Our 1-round conditional shared OT is depicted in Fig. 6. During the initial-
ization, S0 and S1 agree on a random seed η0 ∈ {0, 1}λ; S1 and S2 agree on a random seed η1 ∈ {0, 1}λ;
S2 and S0 agree on a random seed η2 ∈ {0, 1}λ. In the offline phase, for j ∈ Z3, the MPC player
Sj generates DICF keys of the offset interval containment function f IC0,τ,ρj ,0(x) : Z2`1 → Z2`0 , where
ρj ∈ Z2`1 is randomly picked. Sj then distributes the DICF keys to the servers Sj+1 and Sj+2. In
the online phase, three players jointly compute 〈δj〉 := 〈m1〉 − 〈m0〉 + 〈0〉 + ρj for j ∈ Z3, where
〈0〉 is constructed by random seeds and PRF, and then open 〈δj〉 to Sj+1, Sj+2. Meanwhile, to build

the replicated secret sharing of messages x := (x0, x1), S0 sends re-randomized (x̃
(0)
0 , x̃

(0)
1 ) to S2, S1

sends (x̃
(1)
0 , x̃

(1)
1 ) to S0, S2 sends (x̃

(2)
0 , x̃

(2)
1 ) to S1. After that, servers evaluate DICF with the received

keys and the masked δ to obtain the shared comparison result Jβ0K, Jβ1K, Jβ2K. Finally, servers locally
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Figure 7: Complete tree depth-padding.

Figure 8: Path cost diagram.

compute scalar multiplication to get 〈x1−b〉 as

〈x1−b〉 :=

2∑
j=0

(JβjK · x̃(j+2)
0 + (1− JβjK) · x̃(j+2)

1 ) (mod 2`0)

and re-randomize the result to ensure the shares of the selected message in uniform distribution.

Efficiency. Π`0,`1
csot is a one-round protocol with offline communication cost 6λ`1 bits and online com-

munication cost 6`0 + 12`1 bits.

Security. We show the security of our conditional shared OT Protocol Π`0,`1
csot with the following

theorem, and its proof can be found in section B of the supplemental material.

Theorem 2. Let DICFZ
2`1

,Z
2`0 be a secure function secret sharing scheme for the offset interval con-

tainment function f IC
p,q,rin,rout(x) : Z2`1 7→ Z2`0 with adversarial advantage Adv

DICF
Z
2`1

,Z
2`0

(1λ,A). Let

PRFZ
2`0 : {0, 1}λ × {0, 1}in 7→ Z2`0 be a secure pseudorandom function with adversarial advantage

Adv
PRF

Z
2`0

(1λ,A). Let PRFZ
2`1 : {0, 1}λ × {0, 1}in 7→ Z2`1 be a secure pseudorandom function with

adversarial advantage Adv
PRF

Z
2`1

(1λ,A). The protocol Π`0,`1
csot as described in Fig. 6 UC-realizes F`0,`1csot

as described in Fig. 5 against semi-honest adversaries who can statically corrupted up to 1 server with
distinguishing advantage

6 · Adv
PRF

Z
2`0

(1λ,A) + 9 · Adv
PRF

Z
2`1

(1λ,A)

+ 2 · Adv
DICF

Z
2`1

,Z
2`0

(1λ,A) .

6 Private Decision Tree and BP Evaluation

In this section, we propose two solutions for outsourced private decision tree and BP evaluation. The
first solution is a constant-round protocol for (small) complete trees; whereas, the second solution is a

10



• Upon receiving (Model, sid, (P,v)) from the environment Z, the model owner M :
– Foreach element i in P:

∗ Set k
(0)
i ← Zn , k

(1)
i := ki − k

(0)
i (mod n)

∗ Set t
(0)
i ← Z2` , t

(1)
i := ti − t

(0)
i (mod 2`);

∗ Set P
(0)
i := {k(0)i , t

(0)
i } , P

(1)
i := {k(1)i , t

(1)
i };

– Foreach element i in v:

∗ v
(0)
i ← Z2` , v

(1)
i := vi − v

(0)
i (mod 2`);

– Send (P(0),v(0)) to S0, (P(1),v(1)) to S1.
• Upon receiving (Data, sid,x) from the environment Z, the data owner D:

– Foreach feature xi ∈ x:

∗ Generate x
(0)
i , x

(1)
i ← Z2` ;

∗ Set x
(2)
i := xi − x

(0)
i − x

(1)
i (mod 2`);

– For j ∈ Z3, send (x(j),x(j+1 (mod 3))) to Sj .

Outsourcing Protocol Πconst
os

Figure 9: Outsourcing Protocol Πconst
os .

linear-round protocol for BP and (large) sparse tree evaluation.

6.1 Constant-Round Protocol

Our constant-round protocol requires four communication rounds and a complete decision tree, which
can be transformed from a normal DAG by adding dummy nodes as illustrated in Fig. 7, i.e. m̃ = 2d−1,
m̃c = 2(d−1)− 1 . All leaf nodes extended by dummy decision nodes have the same classification value
as real path. We use a vector, denoted as P, to represent all decision nodes and complete tree structure.
Each Pi ∈ P consists of the input selection index ki and a threshold value ti. The left and right child
of Pi are P2i+1 and P2i+2, respectively. The leaf nodes’ classification values form the other vector,
denoted as v.

Our protocol selects corresponding features and compares thresholds with them for all decision
nodes. For each Pi ∈ P, S0 and S1 obliviously set its “selected” out-going edge cost (based on the
comparison result) to 0, and set the other out-going edge cost to random value. Then S0 and S1 sum
up the share of edge costs along all paths to get a vector of path costs in a shared form. As shown in
Fig 8, only one path cost takes the value of 0 and the corresponding leaf nodes’ classification value is
the evaluation result.

Outsourcing. First of all, the model owner M invokes Πconst
os as described in Fig. 9 to generate the

additive share of P,v and distribute them to S0 and S1. This step only needs to be performed once
for a given model. Before the start of each evaluation, the data owner D shares the input features
x := (xi)i∈Zn to three servers in replicated secret sharing. After the exection, S0 holds x(0),x(1), S1

holds x(1),x(2), and S2 holds x(2),x(0), such that x(j) := (x
(j)
i )i∈Zn for j ∈ Z3 and x = x(1)+x(2)+x(3).

Evaluation. Our constant-round protocol follows the modular design framework of [7]. As depicted
in Fig. 10, it consists of feature selection, comparison and path evaluation.

Feature selection. For each Pi ∈ P, with the secret shared index JkiK in S0 and S1, we construct 〈ki〉 as

follows: S2 first sets k
(2)
i := 0, three servers then randomize their shares to build (3, 3)-secret-sharing of

ki. After that, three servers invoke our shared OT protocol described in Sec. 4 to obtain corresponding
feature 〈xki〉.
Comparison. Our comparison protocol is based on the DICF scheme [19], where S2 plays the role
of generator and S0, S1 play the role of evaluators. For each Pi ∈ P, to avoid leaking features and
thresholds to servers, in the offline phase, we let S2 precompute a pair of DICF keys, which is used
to compare the corresponding input value with a random value ρi. S2 then distributes the keys
to the DICF evaluators S0 and S1. In the online phase, MPC players jointly compute and open
∆xi := ti − xki + ρi to S0 and S1. After that, S0 and S1 are able to jointly obtain the comparison
result JbiK by evaluating DICF keys with ∆xi, where bi := 1 if ti−xki is positive and bi := 0 otherwise.

Path evaluation. S0 and S1 first generate random, unique and non-zero masks ri together for each
decision node Pi ∈ P, and then locally compute the left out-going edge cost Jei,0K := J(1− bi) · riK and
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Initialization:

• S0 and S1 agree on a random seed η0 ← {0, 1}λ;
• S1 and S2 agree on a random seed η1 ← {0, 1}λ;

• S2 and S0 agree on a random seed η2 ← {0, 1}λ.

Offline phase:

• Upon initialization, the player S2 does:

– For τ := 2`−1 − 1, i := 0 to m̃c − 1:
∗ Generate ρi ← Z2` ;

∗ Set K(0)
ρi ,K

(1)
ρi ← DICF.GenIC

0,τ (1λ, f IC
0,τ,ρi,0

) for the function f IC
0,τ,ρi,0

: Z2` → Z2λ ;

– Send (sid,K(0)
ρi )i∈Zm̃c to S0, (sid,K(1)

ρi )i∈Zm̃c to S1;

Online phase:

• Upon receiving (Eval, sid) from the environment Z, the player Sj , j ∈ Z3 does:

– For i := 0 to m̃c − 1:

∗ Set wi,j ← PRF
Z
2`
ηj (sid, i), wi,j+2 ← PRF

Z
2`
ηj+2

(sid, i);

∗ Set w′i,j ← PRFZn
ηj

(sid, i), w′i,j+2 ← PRFZn
ηj+2

(sid, i);

// feature selection

∗ If j = 2, set k
(j)
i := 0 and t

(j)
i := ρi;

∗ Set k
(j)
i := k

(j)
i + w′i,j − w′i,j+2 (mod n);

∗ Send (Fetch, sid,x(j),x(j+1), k
(j)
i ) to Fn,`sot to get x

(j)
ki

;

// comparison

∗ Set ∆x
(j)
i := t

(j)
i − x

(j)
ki

+ wi,j − wi,j+2 (mod 2`);

– Send (sid,∆x(j)) to S0 and S1;

• Upon receiving (sid,∆x(1−j)) from S1−j , (sid,∆x(2)) from S2, the player Sj , j ∈ {0, 1} does:

– For i := 0 to m̃c − 1, set:

∗ ∆xi :=
∑2
k=0 ∆x

(k)
i (mod 2`);

∗ b
(j)
i ← DICF.EvalIC0,τ (j,K(j)

ρi ,∆xi);

// path evaluation

∗ ri ← PRF
Z
2λ
η0 (sid, i);

∗ e
(j)
i,0 := (1− j − b(j)i ) · ri and e

(j)
i,1 := b

(j)
i · ri;

– For δ ← PRF
Zm̃c+1
η0 (sid, 0), i := 0 to m̃c:

∗ Sum up the share of edge costs along i-th leaf node’s path to get c
(j)
i , set ĉ

(j)
i := c

(j)
i−δ (mod m̃c+1)

;

∗ Set w
(0)
i ← PRF

Z
2`
η0 (sid, i, 0), w

(1)
i ← PRF

Z
2`
η0 (sid, i, 1);

∗ Set v̂(j) := v
(j)
i−δ (mod m̃c+1)

− w(j)
i (mod 2`);

– Set ĉ(j) := (ĉ
(j)
i )i∈Zm̃c+1

, v̂(j) := (v̂
(j)
i )i∈Zm̃c+1

;

– Send (sid, ĉ(j), v̂(j)) to S2;

• Upon receiving (sid, ĉ(0), v̂(0)) from S0, (sid, ĉ(1), v̂(1)) from S1, the player S2 does:

– For p := 0 to m̃c, if ĉ
(0)
p + ĉ

(1)
p = 0 (mod 2λ):

∗ Set (K(0)
p ,K(1)

p )← DPF.Gen(1λ, fp,1) for the point function fp,1 : Zm̃c+1 → Z2` ;

∗ Send (sid,K(0)
p ) to S0, (sid,K(1)

p ) to S1;

∗ Return y(3) := v̂
(0)
p + v̂

(1)
p (mod 2`) to the receiver R.

• Upon receiving (sid,K(j)
p ) from S2, Sj , j ∈ {0, 1} does:

– Set (β
(j)
i )i∈Zm̃c+1

← DPF.EvalAll(j,K(j)
p );

– Set y(j) :=
∑m̃c
i=0(w

(0)
i + w

(1)
i ) · β(j)

i (mod 2`);

– Return y(j) to the receiver R.

Constant-round Evaluation Protocol Πconst
eval

Figure 10: Constant-round Evaluation Protocol Πconst
eval in the Fsot-hybrid model. For simplicity, we

omit (mod 3) from the expressions with j ∈ Z3.

right out-going edge cost Jei,1K := Jbi ·riK of the node Pi. Subsequently, as shown in Fig. 8, for each leaf
node vi ∈ v, S0 and S1 jointly compute its corresponding path cost JciK by summing up the edge costs
along the path from root to vi ∈ v. All path costs form a shared vector JcK := (JciK)i∈Zm̃c+1

, whose
only one entry with 0 value indicates the position of the classification result. To obliviously select
the classification result according to JcK, S0 and S1 generate a random offset δ ← Zm̃c+1 together,
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Figure 11: Sparse DAG depth-padding.

and jointly cyclic-shift c and v to the left δ positions to get ĉ and v′; then generate a random vector
w := (wi)i∈m̃c+1 ← (Z2`)

m̃c+1 together, and jointly compute v̂ := v′ − w. After that, they open ĉ
and v̂ to S2. Upon reconstructing ĉ and v̂, S2 generates a pair of DPF keys for the point function
fp,1(x) according to the position p of ĉp = 0, and distributes DPF keys to S0 and S1. Finally, S0, S1

evaluate DPF keys on the random vector w as

JwpK :=

m̃c∑
i=0

wi · Jfp,1(i)K (mod 2`)

and then return JwpK to the receiver, while S2 directly returns v̂p. It is easy to see, the result vp =
wp + v̂p (mod 2`).

Correctness. The correctness of our evaluation would not hold only when more than one entry of
the path-cost vector c is equal to 0, e.g., c7 := r0 + r2 + r6 = 0 in Fig. 8. Because the party S2 who
opens the shifted ĉ cannot select the correct result position from multiple 0 entries. Except for the
result path, we find that the last non-zero edge cost of each path is unique. Thus we can say that this
unique edge cost “determines” the corresponding path cost. For example, r6 “determines” the value
of c7 := r0 + r2 + r6 in Fig. 8, and c7 = 0 only if r6 = −r0− r2. Therefore, the probability of appearing
any extra 0 entry in the path-cost vector c, i.e., the failure probability of our constant-round protocol,
is (2d−1 − 1)/2λ. It is negligible in λ.

Security. We show the security of our constant-round protocol (Πconst
os , Πconst

eval ) with the following
theorem, and its proof can be found in section C of the supplemental material.

Theorem 3. Let DICFZ
2`
,Z

2λ be a secure function secret sharing scheme for f IC
p,q,rin,rout(x) : Z2` 7→ Z2λ

with adversarial advantage Adv
DICF

Z
2`
,Z

2λ
(1λ,A). Let DPFZm̃c+1,Z2` be a secure function secret sharing

scheme for point function fα,β(x) : Zm̃c+1 7→ Z2` with adversarial advantage Adv
DPF

Zm̃c+1,Z2` (1λ,A).

Let PRFZ
2` : {0, 1}λ × {0, 1}in 7→ Z2` be a secure pseudorandom function with adversarial advantage

Adv
PRF

Z
2`

(1λ,A). Let PRFZn : {0, 1}λ × {0, 1}in 7→ Zn be a secure pseudorandom function with adver-

sarial advantage AdvPRFZn (1λ,A). Let PRFZ
2λ : {0, 1}λ × {0, 1}in 7→ Z2λ be a secure pseudorandom

function with adversarial advantage Adv
PRF

Z
2λ

(1λ,A). Let PRFZm̃c+1 : {0, 1}λ × {0, 1}in 7→ Zm̃c+1 be

a secure pseudorandom function with adversarial advantage Adv
PRF

Zm̃c+1 (1λ,A). The protocols Πconst
os

as described in Fig. 9 and Πconst
eval as described in Fig. 10 UC-realize F3

bp as described in Fig. 2 in the
Fsot-hybrid model against semi-honest adversaries who can statically corrupted up to 1 server with
distinguishing advantage at most

3m̃c · AdvPRF
Z
2`

(1λ,A) + 3m̃c · AdvPRFZn (1λ,A)

+ m̃c · AdvDICF
Z
2`
,Z

2λ
(1λ,A) + Adv

DPF
Zm̃c+1,Z2` (1λ,A)

+ (m̃c + 1) · Adv
PRF

Z
2λ

(1λ,A) + Adv
PRF

Zm̃c+1 (1λ,A)

+ 2(m̃c + 1) · Adv
PRF

Z
2`

(1λ,A) .
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Figure 12: Overview of our linear-round protocol.

6.2 Linear-Round Protocol

Our linear-round protocol supports sparse tree and BP evaluation. To hide the model structure, we
introduce only one dummy node instead of transforming the sparse decision tree into a full tree, i.e.
m̃ = m + 1. Let the dummy node point to itself and all leaf nodes point to it as shown in Fig. 11.
The main idea is that, during privacy-preserving evaluation, once a sink node is reached, servers will
obliviously access this dummy node (repeatedly) until the protocol reaches d steps. Thus, the length
of evaluation path is always d.

We use a vector to describe this padded model, which includes all kinds of nodes. Without confu-
sion, we also denote it as P. Each Pi ∈ P consists of the index I left

i and the input selection index J left
i

of its left child, the index Iright
i and the input selection index J right

i of its right child, a threshold value

ti and a classification value vi of Pi. If Pi represents the dummy node, I left
i and Iright

i take the value of

the index of dummy node m̃, J left
i and J right

i take random values, and vi is equal to 0. If Pi represents

a decision node, vi is dummy data such that vi = 0. If Pi represents a sink node, I left
i , Iright

i , J left
i and

J right
i are the same dummy data as the dummy node. Since there only is one leaf node in a path, and

only if v belongs to a leaf node the value of v is non-zero, the accumulation of v of all nodes in the
evaluation path is exactly equal to the classification value of the reached leaf node.

Our linear-round protocol requires 2d rounds. Referring to the example in Fig. 12, for i-th step in
the evaluation, servers first obliviously fetch the “current node” Pidi and the appropriate feature xki
in the Round 1. Then compute:

y := y + vi,

c← (xki < ti).

and indicates the next node index is I left
i (c = 1) or Iright

i (c = 0) in the Round 2. After repeating the
above process d times, 〈y〉 is open to receiver as the evaluation result.

Outsourcing. For linear-round protocol, the data owner outsourcing protocol is identical to our
constant-round scheme, but the model owner outsourcing protocol is different. As described in Fig. 13,
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• Upon receiving (Model, sid,P) from the environment Z, the model owner M :

– Build the position mapping, denote i-th element as Pi := {I left
i , Iright

i ,J left
i ,J right

i , ti, vi};
– For i := 0 to m̃− 1, set:

∗ I left,(0)
i , I left,(1)

i , Iright,(0)
i , Iright,(1)

i ← Zm̃;

∗ I left,(2)
i := I left

i − I
left,(0)
i − I left,(1)

i (mod m̃);

∗ Iright,(2)
i := Iright

i − Iright,(0)
i − Iright,(1)

i (mod m̃);

∗ J left,(0)
i ,J left,(1)

i ,J right,(0)
i ,J right,(1)

i ← Zn;

∗ J left,(2)
i := J left

i − J left,(0)
i − J left,(1)

i (mod n);

∗ J right,(2)
i := J right

i − J right,(0)
i − J right,(1)

i (mod n);

∗ t
(0)
i , t

(1)
i , v

(0)
i , v

(1)
i ← Z2` ;

∗ t
(2)
i := ti − t

(0)
i − t

(1)
i (mod 2`);

∗ v
(2)
i := vi − v

(0)
i − v(1)i (mod 2`);

– Set id1 := 0 and k1 to the feature index of the root;

– Set id
(0)
1 , id

(1)
1 ← Zm̃, k

(0)
1 , k

(1)
1 ← Zn;

– Set id
(2)
1 := id1 − id

(0)
1 − id

(1)
1 (mod m̃);

– Set k
(2)
1 := k1 − k(0)1 − k(1)1 (mod n);

– For j ∈ Z3, send (P(j),P(j+1 (mod 3)), id
(j)
1 , k

(j)
1 ) to Sj ;

• Upon receiving (Data, sid,x) from the environment Z, the data owner D:
– Foreach feature xi ∈ x:

∗ Generate x
(0)
i , x

(1)
i ← Z2` ;

∗ Set x
(2)
i := xi − x

(0)
i − x

(1)
i (mod 2`);

– For j ∈ Z3, send (sid,x(j),x(j+1 (mod 3))) to Sj .

Outsourcing Protocol Πlinear
os

Figure 13: Outsourcing Protocol Πlinear
os .

the model owner M generates replicated secret sharing of P among three servers. In order to make
servers aware of the evaluation entry, M shares the element index id1 and the feature selection index
kid1 of the root node to three servers in (3, 3)-additive secret sharing.

Evaluation. For i-th step in the evaluation, with the secret shared element index 〈ki〉 and feature
index 〈idi〉 , three servers invoke our shared OT protocol to fetch the feature 〈xki〉 and the element
〈Pidi〉 in parallel. For readability, we describe our protocol Πlinear

eval in the {Fsot,Fcsot}-hybrid model in
Fig. 14. Then servers jointly sum the vidi for path evaluation, which is a free operation in our protocol.
If i < d, servers invoke the conditional shared OT protocol to compare the threshold and corresponding
feature of current node and obtain the element index 〈ki+1〉 and feature index 〈idi+1〉 of next node;
then repeat the above operation. If i = d, each server returns its share of y to the requester, who is
able to reconstruct the classification result locally.

Security. We show the security of our linear-round protocol (Πlinear
os , Πlinear

eval ) with the following theorem,
and its proof can be found in section D of the supplemental material.

Theorem 4. The protocol Πlinear
os as described in Fig. 13 and Πlinear

eval as described in Fig. 14 UC-realizes
F3

bp as described in Fig. 2 in the {Fsot,Fcsot}-hybrid model against semi-honest adversaries who can
statically corrupted up to 1 server.

7 Implementation and Benchmarks

The proposed constant-round scheme and linear-round scheme are implemented in C++. The DCF
and DPF schemes are improved from [23]. Since Ma et al. [11] did not release their source code,
we re-implement their scheme using AES-NI and EMP-toolkits [24]. In addition, the state-of-the-art
constant-round protocols are adopted from the open source of [7] for performance comparison. Our
benchmarks are executed on a desktop with Intel(R) Core i7 8700 CPU @ 3.2 GHz running Ubuntu
18.04.2 LTS; with 6 CPUs, 32 GB Memory and 1TB SSD. Their network environments are simulated:
local-area network (LAN, RTT: 0.1ms, bandwidth: 1Gbps), metropolitan-area network (MAN, RTT:
6ms, bandwidth: 100Mbps), and wide-area network (WAN, RTT: 80ms, bandwidth: 40Mbps).
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• Upon receiving (Eval, sid) from Z, the player Sj , j ∈ Z3 does:

– Set y(j) := 0;

– For i := 1 to d:
∗ Send (Fetch, sid,x(j),x(j+1), k

(j)
i ) to Fn,`sot , get x

(j)
ki

;

∗ Send (Fetch, sid,P(j),P(j+1), id
(j)
i ) to Fm̃,∗sot , get P

(j)
idi

:= (I left,(j)
idi

, Iright,(j)
idi

,J left,(j)
idi

,J right,(j)
idi

, t
(j)
idi
, v

(j)
idi

)a

∗ Set y(j) := y(j) + v
(j)
idi

(mod 2`);

∗ If i ≥ d, return y(j) to the receiver R and break;

∗ Obliviously fetch id
(j)
i+1 and k

(j)
i+1 by sending:b

· (Sel, sid, (I left,(j)
idi

, Iright,(j)
idi

), (x
(j)
ki
, t

(j)
idi

)) to F log m̃,`
csot ;

· (Sel, sid, (J left,(j)
idi

,J right,(j)
idi

), (x
(j)
ki
, t

(j)
idi

)) to F logn,`
csot .

aHere, we invoke Fm̃,∗sot for readability. In practice, the servers select each item for the element P
(j)
idi

by the

same DPF keys but different output bit-lengths of evaluation. More specifically, the DPF key generator will
generate several correction words of different bit-lengths for the last conversion operation as shown in [19];
and the DPF evaluators will perform the conversion operation multiple times to get several outputs of differ-
ent bit-lengths using these correction words. And all selections of i-th step are performed in the same round,
including the feature selection of the previous row.

bServers select idi+1 and ki+1 based on the same DCF keys and during the same round.

Linear-round Evaluation Protocol Πlinear
eval

Figure 14: Linear-round Evaluation Protocol Πlinear
eval in the {Fsot,Fcsot}-hybrid model.

Our experiment uses datasets from the UCI machine learning repository [25], which consists of Iris,
Wine (chemical analysis), Linnerud (physical exercise performance), Breast (cancer), Digits, Spambase,
Diabetes, and Boston (housing value). Their concrete parameters are shown in Table 2. We set secure
parameter λ to 128, feature bit-length ` to 64. Note that the performance results of the related works,
e.g., MTZC [11], are slightly different from that presented in the original papers due to different
implementation and experiment environment. The main overhead of the offline phase of our protocol
is to generate the FSS key. Compared with MTZC [11], as shown in Table. 3, our protocol is slightly
slower for small DAG models, while it is about 4X faster for big DAG models.

Fig.15 illustrates the online runtime comparison between our two protocols and the related works.
The results are taken as the average of 10 evaluations. We fail to obtain the evaluation results for
Diabetes and Boston models for our constant-round protocol and MTZC outsourcing protocols, as both
protocols require complete-tree padding. For depth d = 28, 30 trees, complete decision tree padding
would cause the memory out of computer capacity.

In a network environment with higher bandwidth and lower latency such as the LAN setting, our
linear-round protocol runs much more faster than the state-of-the-arts. More precisely, our linear-
round protocol is up to 15X faster than the others in the LAN setting. In a network environment with
lower bandwidth and higher latency such as the WAN setting, our constant-round protocol outperforms
the state-of-the-art protocols. In particular, our constant-round protocol is up to 10X faster than the
others in the WAN setting.

Our constant-round protocol has low round complexity (3-round), high communication (but better

Table 2: Parameters of the models in the UCI dataset.

Decision Tree Features Depth Nodes
Iris 4 4 7

Wine 7 5 11
Linnerud 3 6 19

Breast 12 7 21
Digits 47 15 168

Spambase 57 17 58
Diabetes 10 28 393
Boston 13 30 425
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Table 3: Offline phase running time comparison (ms) between our (2d-1)-round protocol and
MTZC [11] in the outsourced setting. (Network setting: MAN (100Mbps/6ms RTT) and WAN
(40Mbps/80ms RTT)

Linnerud Breast Digits Spambase

MAN
MTZC 10.319 11.190 158.6 177.5

Ours(Linear) 17.433 23.103 43.423 45.43

WAN
MTZC 87.541 91.56 615.9 879.9

Ours(Linear) 108.45 109.382 145.55 209.376

than all other known constant-round protocols), and high computation; whereas, our linear-round pro-
tocol has linear round complexity (2d-1 rounds), low communication, and low computation. Therefore,
our constant-round protocol outperforms all the other protocols in the WAN setting. Our linear-round
protocol outperforms all the other protocols in the LAN setting. In terms of the MAN setting, our
linear-round protocol has an increasing advantage along with the increase of the tree size due to its
low communication.

8 Related Work

There has been a huge literature in private BP and/or decision tree evaluation. The first work is
proposed by Ishai and Paskin [1]. They evaluate a BP on encrypted input via homomorphic public-
key cryptosystem, and require O(md) communication. It is impractical for cases with a large number
of input features, like medical diagnosis. And their protocol does not include comparison in each
non-sink node.

Later, many evaluation protocols are proposed also with constant communication round. Brikell
et al. [2] present a private diagnosis system based on BP model. They implement privately feature
selection with additive HE (AHE) and oblivious transfer (OT), and transform the whole BP into a
secure program consisiting of GCs representing permuted nodes to evaluate comparisons. [4] treats
a decision tree as a high-degree polynomial with a priori fixed multiplicative depth and evaluate
the polynomial through costly full HE (FHE) to obtain result. [5] gets rid of FHE by using DGK
protocol based on AHE for comparison and OT for leaf node selection. But [5] requires a complete
tree (with dummy nodes) and permuting it. [6] improves [5] by a new “path cost” approach, which is
a linear function for each path and determines whether a leaf node contains the classification result.
Their protocol is purely based on AHE, without introducing dummy nodes. Obviously, [5] and [6]
take advantage of the properties of the tree structure, thus no longer support BP evaluation. [7]
systematically reviews prior constant-round solutions and proposes a modular construction from three
constant-round sub-protocols: (a) private feature selection, (b) secure comparison, and (c) oblivious
path evaluation. [7] also identifies novel combinations of these linear sub-protocols that provide better
tradeoffs.

On the other hand, constant-round protocols above always require the client to have at least linear
computation in the model size m, which is not friendly to weak client with limited computational re-
source. Thus, researchers are attracted to pursue new solutions with sublinear computation complexity
for client, i.e., the parties can only adaptively perform necessary feature selections and comparisons
along with the evaluation path. The main idea is to obliviously select only one decision node for
comparison at each layer of the DAG via either OT or ORAM, such as [8] and [9]. The dependence
of the current selection on previous comparison results leads to the round complexity of protocol is
usually linear in the length d of the longest path.

Recently, the outsourcing extension is considered in private BP and/or decision tree evaluation1.
The protocol of [10] is based on boolean secret sharing. It requires (padded) full decision trees, and
includes m secure matrix multiplications for input selection, 2d−1−1 bit-wise comparison with SS and
O(2d) multiplications for path evaluation, which needs O(d) rounds and O(mn) communication. [14]
is inspired by [10], and use additive secret sharing. [14] introduces a standard modulus conversion
after bit-wise comparison and follows the path cost computation of [6]. The protocol of [14] has the

1We consider the secure outsourcing without the leakage of the index mapping between decision nodes and input
features. [15] and [13] do not meet this condition.
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(a) LAN(1Gbps/0.1ms) (b) MAN(100Mbps/6ms)

(c) WAN(40Mbps/80ms)

Figure 15: Online runtime (in different log scales) in LAN/MAN/WAN (bandwidth/RTT) set-
ting.Ours(Linear)/Ours(Const) refers to our linear-round/constant-round protocol. MTZC(sparse)
refers to the sparse tree variant of [11]; MTZC(complete) refers to their outsourcing variant.

same communication complexity as [10]. The state-of-the-art work of outsourced evaluation protocol
is from [11]. It presents a key management and uses conditional OT to reduce the communication cost,
and reaches 2d− 1 rounds and O(d) communication in online phase. The outsourced protocol of [11]
requires both parties refresh their shared decision tree for each evaluation, and only support complete
decision tree. They lead to O(2d) offline communication. In addition, none of the above outsourced
evaluation protocol support privacy-preserving BP evaluation.

9 Concluding Remarks

We presented a 3-server MPC platform for outsourced private decision tree and BP evaluation. For
uniformity, we assume each BP decision node also has a comparison; however, it can be easily removed
to adapt to any other binary decision diagram. Our key building block is a lightweight 1-out-of-N
shared OT protocol with logarithmic communication. Unlike [17], we utilize the DPF scheme in a
novel way such that the ORAM functionality is achieved without the need of oblivious PRF evaluation
via MPC. Our linear-round outsourced private decision tree evaluation protocol achieves logarithmic
communication in both online and offline; yet, it is unknown if there exists a constant-round protocol
with logarithmic overall communication. We leave this as an open problem.
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A Proof of Theorem 1

Theorem 1. Let DPFZN ,Z2` be a secure function secret sharing scheme for point function fα,β(x) :

ZN 7→ Z2` with adversarial advantage Adv
DPF

ZN,Z2` (1λ,A). Let PRFZN : {0, 1}λ × {0, 1}in 7→ ZN be

a secure pseudorandom function with adversarial advantage AdvPRFZN (1λ,A). The protocol ΠN,`
sot as

described in Fig. 4 UC-realizes FN,`sot as described in Fig. 3 against semi-honest adversaries who can
statically corrupted up to 1 server with distinguishing advantage

9 · AdvPRFZN (1λ,A) + 2 · Adv
DPF

ZN,Z2` (1λ,A) .

Proof. To prove Thm. 1, we construct a PPT simulator Sim such that no non-uniform PPT environment
Z can distinguish between (i) the real execution ExecΠN,`sot ,A,Z

where the parties S := {S0, S1, S2} run

protocol ΠN,`
sot in the real world and the corrupted parties are controlled by a dummy adversary A

who simply forwards messages from/to Z, and (ii) the ideal execution ExecFN,`sot ,Sim,Z where the parties

S0, S1, S2 interact with functionality FN,`sot in the ideal world, and corrupted parties are controlled by
the simulator Sim. Since the protocol is symmetric, we assume S0 is corrupted for readability.

Simulator. The simulator Sim internally runs A, forwarding messages to/from the environment
Z. Since the semi-honest setting, Sim can obtain the correct i(0),x(0),x(1) by simulating a dummy
corrupted party S0 to receive the messages from the environment Z in the ideal world. Sim simulates
the interface of honest parties S1, S2. In addition, the simulator Sim simulates the following interactions
with A.
• Upon initialization, the simulator Sim acts as the honest party Sj , j ∈ {1, 2} to do:

– Generate ϕj ← ZN ;

– Set (K(0)
ϕj ,K

(1)
ϕj )← DPF.Gen(1λ, fϕj ,1) for the point function fϕj ,1 : ZN → Z2` ;

– Send (sid,K(0)
ϕj ) to Sj+1, (sid,K(1)

ϕj ) to Sj+2;
• The simulator Sim picks random wk,j ← ZN for k, j ∈ Z3;

• Upon receiving (Fetch, sid, Sj) for an honest party Sj , j ∈ {1, 2} from the external FN,`sot , the
simulator Sim does:
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– For k ∈ Z3, set δ
(j)
k := −wk,j + wk,j+2 (mod N);

– Set δ
(j)
j := δ

(j)
j − ϕj (mod N);

– Send (sid, δ
(j)
j , δ

(j)
j+1) to Sj+2, (sid, δ

(j)
j , δ

(j)
j+2) to Sj+1 on behave of Sj ;

• Upon receiving (sid, δ
(0)
0 , δ

(0)
1 ) from the corrupted S0 to S2 and (sid, δ

(0)
0 , δ

(0)
2 ) from the corrupted S0

to S1, the simulator Sim does:
– Send (Fetch, sid,x(0),x(1), i(0)) to the external FN,`sot ;

– Compute δ1 := δ
(0)
1 + δ

(1)
1 + δ

(2)
1 (mod N);

– Compute δ2 := δ
(0)
2 + δ

(1)
2 + δ

(2)
2 (mod N);

– Set (β
(1)
k,ϕ1

)k∈ZN ← DPF.EvalAll(1,K(1)
ϕ1 );

– Set (β
(0)
k,ϕ2

)k∈ZN ← DPF.EvalAll(0,K(0)
ϕ2 );

– Set y(0) :=
N−1∑
k=0

(x
(0)
k+δ1

· β(1)
k,ϕ1

+ x
(1)
k+δ2

· β(0)
k,ϕ2

) (mod 2`);

– ζ0 ← PRF
Z
2`
η0 (sid), ζ2 ← PRF

Z
2`
η2 (sid);

– Compute y(0) := y(0) + ζ0 − ζ2 (mod 2`).

– Send (Rand, sid, y(0)) to the external FN,`sot ;

Indistinguishability. We assume that the parties S0, S1, S2 communicate with each other via the
secure channel functionality Fsc (omitted in the protocol description for simplicity). The indistin-
guishability is proven through a series of hybrid worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution ExecΠN,`sot ,A,Z

.

Hybrid H1: H1 is the same as H0 except that in H1, {wj,k}j,k∈Z3
are picked uniformly random from

ZN instead of calculating from PRFZN .

Claim 1. If PRFZN : {0, 1}λ×{0, 1}in 7→ ZN is a secure pseudorandom function with adversarial advan-
tage AdvPRFZN (1λ,A), then H1 and H0 are indistinguishable with advantage ε1 := 9 ·AdvPRFZN (1λ,A).

Proof. We have changed 3 PRF outputs to uniformly random strings; therefore, the overall advantage
is 9 · AdvPRFZN (1λ,A) by hybrid argument via reduction.

Hybrid H2: H2 is the same as H1 except that in H2:
• For j ∈ {1, 2}, the simulator Sim does:

– Generate ϕj ← ZN ;

– For k ∈ Z3, set δ
(j)
k := −wk,j + wk,j (mod N);

– Set δ
(j)
j := δ

(j)
j − ϕ (mod N);

instead of
• For j ∈ {1, 2}, the honest party Sj does:

– Generate ϕj ← ZN ;

– For k ∈ Z3, set δ
(j)
k := i(j) − wk,j + wk,j (mod N);

– Set δ
(j)
j := δ

(j)
j − ϕ (mod N);

Claim 2. If DPFZN ,Z2` := (Gen,Eval) is a secure function secret sharing scheme for point function
fα,β(x) : ZN 7→ Z2` with adversarial advantage Adv

DPF
ZN,Z2` (1λ,A), then H2 and H1 are indistin-

guishable with advantage ε2 := 2 · Adv
DPF

ZN,Z2` (1λ,A).

Proof. Note that ϕ1, ϕ2 are used to generate the DPF keys K(0)
ϕ1 ,K

(1)
ϕ1 ← DPF.Gen(1λ, fϕ1,1) and

K(0)
ϕ2 ,K

(1)
ϕ2 ← DPF.Gen(1λ, fϕ2,1). The corrupted party S0 only sees K(1)

ϕ1 ,K
(0)
ϕ2 , {δ

(j)
1 , δ

(j)
2 }j∈Z3 ; there-

fore, the modification of K(0)
ϕ1 ,K

(1)
ϕ2 , {δ

(j)
0 }j∈Z3

is oblivious to S0. In the hybrid H1, we have

• δ
(0)
1 := i(0) − w1,0 + w1,2, δ

(1)
1 := i(1) − w1,1 + w1,0 − ϕ1;

• δ
(2)
1 := i(2) − w1,2 + w1,1, δ

(0)
2 := i(0) − w2,0 + w2,2;

• δ
(1)
2 := i(1) − w2,1 + w2,0, δ

(2)
2 := i(2) − w2,2 + w2,1 − ϕ2.

It is straightforward that the distribution of {δ(j)
1 , δ

(j)
2 }j∈Z3

are uniformly random under the condition

δ1 :=
∑2
j=0 δ

(j)
1 = i− ϕ1 and δ2 :=

∑2
j=0 δ

(j)
2 = i− ϕ2. Whereas in the hybrid H2, we have

• δ
(0)
1 := i(0) − w1,0 + w1,2, δ

(1)
1 := −w1,1 + w1,0 − ϕ1;
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• δ
(2)
1 := −w1,2 + w1,1, δ

(0)
2 := i(0) − w2,0 + w2,2;

• δ
(1)
2 := −w2,1 + w2,0, δ

(2)
2 := −w2,2 + w2,1 − ϕ2.

The distribution of modified {δ(j)
1 , δ

(j)
2 }j∈Z3

are uniformly random under the condition δ1 := i(0) − ϕ1

and δ2 := i(0) − ϕ2. Note that the opened δ1, δ2 are also uniformly random in both hybrid H1

and hybrid H2 because of the random ϕ1, ϕ2. Using the opened δ1, δ2 and the input i from the
environment Z, the adversary A can extract ϕ̃1 := i−δ1, ϕ̃2 := i−δ2. The adversary A can distinguish

the view of H2 from the view of H1 if and only if A can distinguish whether K(1)
ϕ1 is generated

by DPF.Gen(1λ, fϕ̃1,1) or whether K(0)
ϕ2 is generated by DPF.Gen(1λ, fϕ̃2,1) without the knowledge of

K(0)
ϕ1 ,K

(1)
ϕ2 . In other words, if there exists an adversary A who can distinguish the view of H2 from the

view of H1 then we can construct an adversary B who uses A in a blackbox fashion can break either of
the two DPFZN ,Z2` := (Gen,Eval) above. Therefore, H2 and H1 are indistinguishable with adversarial
advantage ε2 := 2 · Adv

DPF
ZN,Z2` (1λ,A).

The adversary’s view of H2 is identical to the simulated view ExecFN,`sot ,S,Z . Therefore, the overall

distinguishing advantage is

9 · AdvPRFZN (1λ,A) + 2 · Adv
DPF

ZN,Z2` (1λ,A) .

This concludes the proof.

B Proof of Theorem 2

Theorem 2. Let DICFZ
2`1

,Z
2`0 be a secure function secret sharing scheme for the offset interval

containment function f IC
p,q,rin(x) : Z2`1 7→ Z2`0 with adversarial advantage Adv

DICF
Z
2`1

,Z
2`0

(1λ,A). Let

PRFZ
2`0 : {0, 1}λ × {0, 1}in 7→ Z2`0 be a secure pseudorandom function with adversarial advantage

Adv
PRF

Z
2`0

(1λ,A). Let PRFZ
2`1 : {0, 1}λ × {0, 1}in 7→ Z2`1 be a secure pseudorandom function with

adversarial advantage Adv
PRF

Z
2`1

(1λ,A). The protocol Π`0,`1
csot as described in Fig. 6 UC-realizes F`0,`1csot

as described in Fig. 5 against semi-honest adversaries who can statically corrupted up to 1 server with
distinguishing advantage

6 · Adv
PRF

Z
2`0

(1λ,A) + 9 · Adv
PRF

Z
2`1

(1λ,A)

+ 2 · Adv
DICF

Z
2`1

,Z
2`0

(1λ,A) .

Proof. To prove Thm. 2, we construct a PPT simulator Sim such that no non-uniform PPT environment
Z can distinguish between (i) the real execution Exec

Π
`0,`1
csot ,A,Z where the parties S := {S0, S1, S2} run

protocol Π`0,`1
csot in the real world and the corrupted parties are controlled by a dummy adversary A who

simply forwards messages from/to Z, and (ii) the ideal execution ExecF`0,`1csot ,Sim,Z where the parties

S0, S1, S2 interact with functionality F`0,`1csot in the ideal world, and corrupted parties are controlled by
the simulator Sim. Since the protocol is symmetric, we assume S0 is corrupted for readability.

Simulator. The simulator Sim internally runs A, forwarding messages to/from the environment Z.
Since the semi-honest setting, Sim can obtain the correct input x(0),m(0) by simulating a dummy
corrupted party S0 to receive the messages from the environment Z in the ideal world. Sim simulates
the interface of honest parties S1, S2. In addition, the simulator Sim simulates the following interactions
with A.
• Upon initialization, the simulator Sim acts as the honest party Sj , j ∈ {1, 2} to do:

– Set ρj ← Z2`1 , τ := 2`1−1 − 1;

– Set (K(0)
ρj ,K

(1)
ρj )← DICF.GenIC

0,τ (1λ, f IC0,τ,ρj ,0) for the function f IC0,τ,ρj ,0 : Z2`1 → Z2`0 ;

– Send (sid,K(0)
ρj ) to Sj+1, (sid,K(1)

ρj ) to Sj+2.
• The simulator Sim picks random wk,j ← Z2`1 and ζj,i ← Z2`0 for k, j ∈ Z3, i ∈ Z2;

• Upon receiving (Sel, sid, Sj) for an honest party Sj , j ∈ {1, 2} from the external FN,`0sot , Sim does:

– For k ∈ Z3, set δ
(j)
k := −wk,j + wk,j+2 (mod 2`1);

– Set δ
(j)
j := δ

(j)
j + ρj (mod 2`1);

– For i ∈ Z2, set x̃
(j)
i := ζj,i − ζj+2,i (mod 2`0)
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– Send (sid, δ
(j)
j , δ

(j)
j+1, x̃

(j)) to Sj+2, send (sid, δ
(j)
j , δ

(j)
j+2) to Sj+1 on behalf of the honest party Sj ;

• Upon receiving (sid, δ
(0)
0 , δ

(0)
1 , x̃(0)) from the corrupted S0 to S2 and (sid, δ

(0)
0 , δ

(0)
2 ) from the corrupted

S0 to S1, the simulator Sim does:
– Send (Sel, sid,x(0),m(0)) to the external F`0,`1csot ;

– For k ∈ {1, 2}, set δk := δ
(.)
k + δ

(1)
k + δ

(2)
k (mod 2`1);

– Set β
(1)
1 ← DICF.EvalIC0,τ (1,K(1)

ρ1 , δ1);

– Set β
(0)
2 ← DICF.EvalIC0,τ (0,K(0)

ρ2 , δ2);

– Set y(0) := x̃
(0)
1 +

∑1
q=0

∑1
k=0(−1)k · x̃(q)

k · β
(1−q)
1+q + PRF

Z
2`0
η0 (sid, 2)− PRF

Z
2`0
η2 (sid, 2) (mod 2`0);

– Send (Rand, sid, y(0)) to the external F`0,`1csot .

Indistinguishability. We assume that the parties S0, S1, S2 communicate with each other via the
secure channel functionality Fsc (omitted in the protocol description for simplicity). The indistin-
guishability is proven through a series of hybrid worlds H0, . . . ,H3.
Hybrid H0: It is the real protocol execution Exec

Π
`0,`1
csot ,A,Z .

Hybrid H1: H1 is the same as H0 except that in H1, {wk,j}k,j∈Z3 are picked uniformly random

from Z2`1 instead of calculating from PRFZ
2`1 ; {ζj,i}j∈Z3,i∈Z2

are picked uniformly random from Z2`0

instead of calculating from PRFZ
2`0 .

Claim 3. If PRFZ
2`0 : {0, 1}λ × {0, 1}in 7→ Z2`0 is a secure pseudorandom function with adversarial

advantage Adv
PRF

Z
2`0

(1λ,A), PRFZ
2`1 : {0, 1}λ × {0, 1}in 7→ Z2`1 is a secure pseudorandom function

with adversarial advantage Adv
PRF

Z
2`1

(1λ,A), then H1 and H0 are indistinguishable with advantage

ε1 := 6 · Adv
PRF

Z
2`0

(1λ,A) + 9 · Adv
PRF

Z
2`1

(1λ,A).

Proof. We have changed 6 PRFZ
2`0 outputs and 9 PRFZ

2`1 outputs to uniformly random strings;
therefore, the overall advantage is 6 ·Adv

PRF
Z
2`0

(1λ,A) + 9 ·Adv
PRF

Z
2`1

(1λ,A) by hybrid argument via
reduction.

Hybrid H2: H2 is the same as H1 except that in H2:
• For j ∈ {1, 2}, the simulator Sim does:

– Generate ρj ← Z2`1 ;

– For k ∈ Z3, set δ
(j)
k := −wk,j + wk,j+2 (mod 2`1);

– Set δ
(j)
j := δ

(j)
j + ρj (mod 2`1);

instead of
• For j ∈ {1, 2}, the honest party Sj does:

– Generate ρj ← Z2`1 ;

– For k ∈ Z3, set δ
(j)
k := m

(j)
1 −m

(j)
0 − wk,j + wk,j+2 (mod 2`1);

– Set δ
(j)
j := δ

(j)
j + ρj (mod 2`1);

Claim 4. If DICFZ
2`1

,Z
2`0 be a secure function secret sharing scheme for the offset interval containment

function f IC
p,q,rin,rout(x) : Z2`1 7→ Z2`0 with adversarial advantage Adv

DICF
Z
2`1

,Z
2`0

(1λ,A), then H2 and

H1 are indistinguishable with advantage ε2 := 2 · Adv
DICF

Z
2`1

,Z
2`0

(1λ,A).

Proof. Note that ρ1 and ρ2 are used to generate the DICF keys K(0)
ρ1 ,K

(1)
ρ1 ← DICF.GenIC

0,τ (1λ, f IC0,τ,ρ1,0)

andK(0)
ρ2 ,K

(1)
ρ2 ← DICF.GenIC

0,τ (1λ, f IC0,τ,ρ2,0), and the corrupted party S0 only seesK(1)
ρ1 ,K

(0)
ρ2 , {δ

(j)
1 , δ

(j)
2 }j∈Z3

;

therefore, the modification of K(0)
ρ1 ,K

(1)
ρ2 , {δ

(j)
0 }j∈Z3 is oblivious to S0. In the hybrid H1, we have

• δ
(0)
1 := m

(0)
1 −m

(0)
0 − w1,0 + w1,2 (mod 2`1);

• δ
(1)
1 := m

(1)
1 −m

(1)
0 − w1,1 + w1,0 + ρ1 (mod 2`1);

• δ
(2)
1 := m

(2)
1 −m

(2)
0 − w1,2 + w1,1 (mod 2`1);

• δ
(0)
2 := m

(0)
1 −m

(0)
0 − w2,0 + w2,2 (mod 2`1);

• δ
(1)
2 := m

(1)
1 −m

(1)
0 − w2,1 + w2,0 (mod 2`1);

• δ
(2)
2 := m

(2)
1 −m

(2)
0 − w2,2 + w2,1 + ρ2 (mod 2`1).
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It is straightforward that the distribution of {δ(j)
1 , δ

(j)
2 }j∈Z3

are uniformly random under the condition

δ1 :=
∑2
k=0 δ

(k)
1 = m1−m0 +ρ1 and δ2 :=

∑2
k=0 δ

(k)
2 = m1−m0 +ρ2. Whereas δ1 := m

(0)
1 −m

(0)
0 +ρ1

and δ2 := m
(0)
1 −m

(0)
0 + ρ2 in the hybrid H2. Using the opened δ1, δ2 and the input m0,m1 from the

environment Z, the adversity A can extract ρ̃1 := δ1 −m1 +m0, ρ̃2 := δ2 −m1 +m0. The adversary

A can distinguish the view of H2 from the view of H1 if and only if A can distinguish whether K(1)
ρ1

is generated by DICF.GenIC
0,τ (1λ, f IC0,τ,ρ̃1,0

) or whether K(0)
ρ2 is generated by DICF.GenIC

0,τ (1λ, f IC0,τ,ρ̃2,0
)

without the knowledge of K(0)
ρ1 ,K

(1)
ρ2 . In other word, if there exists an adversary A who can distinguish

the view of H2 from the view of H1 then we can construct an adversary B who uses A in a blackbox
fashion can break either of the two DICFZ

2`1
,Z

2`0 := (GenIC,EvalIC) above. Therefore, H2 and H1 are
indistinguishable with adversarial advantage ε2 := 2 · Adv

DICF
Z
2`1

,Z
2`0

(1λ,A).

Hybrid H3: H3 is the same as H2 except that in H2:

• For j ∈ {1, 2}, i ∈ Z2, x̃
(j)
i := ζj,i − ζj+2,i (mod 2`0);

instead of
• For j ∈ {1, 2}, i ∈ Z2, x̃

(j)
i := x

(j)
i + ζj,i − ζj+2,i (mod 2`0).

Claim 5. H3 and H2 are perfectly indistinguishable.

Proof. Since {ζj,i}j∈Z3,i∈Z2
are uniformly random in Z2`0 , the distribution of {x̃(j)

0 , x̃
(j)
1 }j∈Z3

in H2

and H3 are identical. Therefore, H3 and H2 are perfectly indistinguishable.

The adversary’s view of H3 is identical to the simulated view ExecF`0,`1csot ,S,Z . Therefore, the overall

distinguishing advantage is

6 · Adv
PRF

Z
2`0

(1λ,A) + 9 · Adv
PRF

Z
2`1

(1λ,A)

+ 2 · Adv
DICF

Z
2`1

,Z
2`0

(1λ,A) .

This concludes the proof.

C Proof of Theorem 3

Theorem 3. Let DICFZ
2`
,Z

2λ be a secure function secret sharing scheme for f IC
p,q,rin,rout(x) : Z2` 7→ Z2λ

with adversarial advantage Adv
DICF

Z
2`
,Z

2λ
(1λ,A). Let DPFZm̃c+1,Z2` be a secure function secret sharing

scheme for point function fα,β(x) : Zm̃c+1 7→ Z2` with adversarial advantage Adv
DPF

Zm̃c+1,Z2` (1λ,A).

Let PRFZ
2` : {0, 1}λ × {0, 1}in 7→ Z2` be a secure pseudorandom function with adversarial advantage

Adv
PRF

Z
2`

(1λ,A). Let PRFZn : {0, 1}λ × {0, 1}in 7→ Zn be a secure pseudorandom function with ad-

versarial advantage AdvPRFZn (1λ,A). Let PRFZ
2λ : {0, 1}λ×{0, 1}in 7→ Z2λ be a secure pseudorandom

function with adversarial advantage Adv
PRF

Z
2λ

(1λ,A). Let PRFZm̃c+1 : {0, 1}λ × {0, 1}in 7→ Zm̃c+1 be

a secure pseudorandom function with adversarial advantage Adv
PRF

Zm̃c+1 (1λ,A). The protocols Πconst
os

as described in Fig. 9 and Πconst
eval as described in Fig. 10 UC-realize F3

bp as described in Fig. 2 in the
Fsot-hybrid model against semi-honest adversaries who can statically corrupted up to 1 server with
distinguishing advantage at most

3m̃c · AdvPRF
Z
2`

(1λ,A) + 3m̃c · AdvPRFZn (1λ,A)

+ m̃c · AdvDICF
Z
2`
,Z

2λ
(1λ,A) + Adv

DPF
Zm̃c+1,Z2` (1λ,A)

+ Adv
PRF

Zm̃c+1 (1λ,A) + 2(m̃c + 1) · Adv
PRF

Z
2`

(1λ,A)

+ (m̃c + 1) · Adv
PRF

Z
2λ

(1λ,A) .

Proof. To prove Thm. 3, we construct a PPT simulator Sim such that no non-uniform PPT environ-
ment Z can distinguish between (i) the real execution ExecFsot

{Πconst
os ,Πconst

eval },A,Z
where the parties M,D,

S := {S0, S1, S2} run protocol Πconst
os , Πconst

eval in the Fsot-hybrid world and the corrupted parties are
controlled by a dummy adversary A who simply forwards messages from/to Z, and (ii) the ideal ex-
ecution ExecF3

bp,Sim,Z where the parties M,D, S0, S1, S2 interact with functionality F3
bp in the ideal
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world, and corrupted parties are controlled by the simulator Sim. We consider following cases.

Case 1: S0 (or S1) is corrupted.

Simulator. The simulator Sim internally runs A, forwarding messages to/from the environment Z.
Sim simulates the interface of Fsot as well as honest parties M,D, S1, S2. In addition, the simulator
Sim simulates the following interactions with A.
• Upon receiving (Model, sid,M, (m, d)) from the external F3

bp , the simulator Sim computes m̃c :=

2d−1 − 1 and acts as the honest model owner M to do:
– For i := 0 to m̃c − 1:

∗ Pick random k
(0)
i ← Zn, t

(0)
i ← Z2` ;

∗ Set P
(0)
i := {k(0)

i , t
(0)
i };

– For i := 0 to m̃c, pick random v
(0)
i ← Z2` ;

– Send (P(0),v(0)) to S0.
• Upon receiving (Data, sid, D, n) from the external F3

bp, the simulator Sim acts as the honest data
owner D to do:
– For i ∈ Zn, pick random x

(0)
i , x

(1)
i , x

(2)
i ← Z2` ;

– Send (x(0),x(1)) to S0.
• Upon initialization, the simulator Sim acts as the honest party S2 to do:

– For τ := 2`−1 − 1, i := 0 to m̃c − 1:
∗ Generate ρi ← Z2` ;

∗ Set K(0)
ρi ,K

(1)
ρi ← DICF.GenIC

0,τ (1λ, f IC
0,τ,ρi,0) for the function f IC

0,τ,ρi,0 : Z2` → Z2λ ;

– Send (sid,K(0)
ρi )i∈Zm̃c to S0, (sid,K(1)

ρi )i∈Zm̃c to S1;
• The simulator Sim picks random wi,j ← Z2` , w

′
i,j ← Zn for i ∈ Zm̃c , j ∈ Z3;

• Upon receiving (Eval, sid, Sj) for an honest party Sj , j ∈ {1, 2} from the external F3
bp, Sim does:

– For i := 0 to m̃c − 1, set:

∗ Set k
(j)
i := w′i,j − w′i,j+2;

∗ Send (Fetch, sid,x(j),x(j+1), k
(j)
i ) to Fn,`sot ;

∗ ∆x
(j)
i := (j − 1) · (ρi − t(j)i + x

(j)
ki

) + wi,j − wi,j+2;

– Send (sid,∆x(j)) to S0 on behalf of the honest party Sj .
• When the simulated Fsot receives input from the corrupted party S0, Sim sends (Eval, sid) to the

external F3
bp;

• Upon receiving (sid, ĉ(0), v̂(0)) from the corrupted party S0, the simulator Sim send (Eval, sid) to the
external F3

bp and acts as the honest party S2 to do:
– Pick random p← Zm̃c+1;

– Set (K(0)
p ,K(1)

p )← DPF.Gen(1λ, fp,1) for the point function fp,1 : Zm̃c+1 → Z2` ;

– Send (sid,K(0)
p ) to S0 on behalf of the honest party S2;

• When the simulated receiver R terminates, the simulator Sim allows the (Result, sid, y) message to
be delivered to R in the ideal world.

Indistinguishability. We assume that the parties S0, S1, S2 communicate with each other via the
secure channel functionality Fsc (omitted in the protocol description for simplicity). The indistin-
guishability is proven through a series of hybrid worlds H0, . . . ,H3.
Hybrid H0: It is the real execution ExecFsot

{Πconst
os ,Πconst

eval },A,Z
.

Hybrid H1: H1 is the same as H0 except that in H1, {wi,j}i∈Zm̃c ,j∈Z3
are picked uniformly random

from Z2` instead of calculating from PRFZ
2` , and {w′i,j}i∈Zm̃c ,j∈Z3 are picked uniformly random from

Zn instead of calculating from PRFZn

Claim 6. If PRFZ
2` : {0, 1}λ × {0, 1}in 7→ Z2` is a secure pseudorandom function with adversarial

advantage Adv
PRF

Z
2`

(1λ,A), and PRFZn : {0, 1}λ × {0, 1}in 7→ Zn is a secure pseudorandom function

with adversarial advantage AdvPRFZn (1λ,A), then H1 and H0 are indistinguishable with advantage
ε1 := 3m̃c · AdvPRF

Z
2`

(1λ,A) + 3m̃c · AdvPRFZn (1λ,A).

Proof. We have changed 3m̃c PRFZ
2` outputs and 3m̃c PRFZn outputs to uniformly random strings;

therefore, the overall advantage is 3m̃c ·AdvPRF
Z
2`

(1λ,A) + 3m̃c ·AdvPRFZn (1λ,A) by hybrid argument
via reduction.
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Hybrid H2: H2 is the same as H1 except that in H2:
• For i := 0 to m̃c − 1:

– Set ∆x
(1)
i := wi,1 − wi,0 (mod 2`);

– Set ∆x
(2)
i := ρi − t(0)

i + x
(0)
ki

+ wi,2 − wi,1 (mod 2`);
instead of
• For i := 0 to m̃c − 1:

– Set ∆x
(1)
i := t

(1)
i − x

(1)
ki

+ wi,1 − wi,0 (mod 2`);

– Set ∆x
(2)
i := ρi − x(2)

ki
+ wi,2 − wi,1 (mod 2`);

Claim 7. If DICFZ
2`
,Z

2λ := (Gen,Eval) is a secure function secret sharing scheme for the offset interval
containment function f IC

p,q,rin,rout(x) : Z2` 7→ Z2λ with adversarial advantage Adv
DICF

Z
2`
,Z

2λ
(1λ,A), then

H2 and H1 are indistinguishable with advantage ε2 := m̃c · AdvDICF
Z
2`
,Z

2λ
(1λ,A).

Proof. For i ∈ Zm̃c , in the hybrid H1, it is straightforward that the distribution of {∆x(j)
i }j∈Z3

are uniformly random under the condition ∆xi :=
∑2
j=0 ∆x

(j)
i = ti − xki + ρi, where ρi is used

to generate the DICF keys K(0)
ρi ,K

(1)
ρi ← DICF.GenIC

0,τ (1λ, f IC
0,τ,ρi,0). Whereas ∆xi := t

(0)
i + ρi in the

hybrid H2, we can show that if there exists an adversary A who can distinguish the view of H2 from
the view of H1 then we can construct an adversary B who uses A in a blackbox fashion can break
DICFZ

2`
,Z

2λ := (Gen,Eval) with the same advantage. Therefore, H2 and H1 are indistinguishable with
adversarial advantage ε2 := m̃c · AdvDICF

Z
2`
,Z

2λ
(1λ,A).

Hybrid H3: H3 is the same as H2 except that in H3:
• Pick random p← Zm̃c+1;
instead of
• Pick p under the condition ĉ

(1)
p + ĉ

(2)
p = 0 (mod 2λ).

Claim 8. If DPFZm̃c+1,Z2` be a secure function secret sharing scheme for point function fα,β(x) :
Zm̃c+1 7→ Z2` with adversarial advantage Adv

DPF
Zm̃c+1,Z2` (1λ,A), then H2 and H3 are indistinguishable

with advantage ε2 := Adv
DPF

Zm̃c+1,Z2` (1λ,A).

Proof. p is used to generate the DPF keys (K(0)
p ,K(1)

p ) ← DPF.Gen(1λ, fp,1) for the point function
fp,1 : Zm̃c+1 → Z2` . We can show that if there exists an adversary A who can distinguish the
view of H2 from the view of H1 then we can construct an adversary B who uses A in a blackbox
fashion can break DPFZm̃c+1,Z2` := (Gen,Eval) with the same advantage. Therefore, H3 and H2 are
indistinguishable with adversarial advantage ε1 := Adv

DPF
Zm̃c+1,Z2` (1λ,A).

The adversary’s view of H3 is identical to the simulated view ExecF3
bp,S,Z . Therefore, the overall

distinguishing advantage of case 1 is

3m̃c · AdvPRF
Z
2`

(1λ,A) + 3m̃c · AdvPRFZn (1λ,A)

+ m̃c · AdvDICF
Z
2`
,Z

2λ
(1λ,A) + Adv

DPF
Zm̃c+1,Z2` (1λ,A) .

Case 2: S2 is corrupted.

Simulator. The simulator Sim internally runs A, forwarding messages to/from the environment Z.
Sim simulates the interface of Fsot as well as honest parties M,D, S0, S1. In addition, the simulator
Sim simulates the following interactions with A.
• Upon receiving (Model, sid,M, (m, d)) from the external F3

bp , the simulator Sim computes m̃c :=

2d−1 − 1;
• Upon receiving (Data, sid, D, n) from the external F3

bp, the simulator Sim acts as the honest data
owner D to do:
– For i ∈ Zn, pick random x

(0)
i , x

(2)
i ← Z2` ;

– Send (x(0),x(2)) to S2.
• Upon receiving (Eval, sid, Sj) for an honest party Sj , j ∈ {0, 1} from the external F3

bp, Sim does:

– For i := 0 to m̃c − 1, send (Fetch, sid, (0, 0), (0, 0), 0) to Fn,`sot ;
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• When the simulated Fsot receives input from the corrupted party S2, Sim sends (Eval, sid) to the
external F3

bp;

• Upon receiving (sid,∆x(2)) from the corrupted S2 to S0 and S1, the simulator Sim does:
– Pick random p← Zm̃c+1;
– For i := 0 to m̃c:

∗ Pick random ci ← Z∗2λ , c
(0)
i ← Z2λ ;

∗ If i = p, set ci = 0;

∗ Set c
(1)
i := ci − c(0)

i (mod 2λ);

∗ Pick random w
(0)
i ← Z2` , w

(1)
i ← Z2` ;

∗ For j ∈ {0, 1}, set ĉ
(j)
i := c

(j)
i , v̂(j) := −w(j)

i ;
– Send (sid, ĉ(0), v̂(0)) to S2 on behalf of the party S0;
– Send (sid, ĉ(1), v̂(1)) to S2 on behalf of the party S1;

• When the simulated receiver R terminates, the simulator Sim allows the (Result, sid, y) message to
be delivered to R in the ideal world.

Indistinguishability. We assume that the parties S0, S1, S2 communicate with each other via the
secure channel functionality Fsc (omitted in the protocol description for simplicity). The indistin-
guishability is proven through a series of hybrid worlds H0,H1,H2.
Hybrid H0: It is the real execution ExecFsot

{Πconst
os ,Πconst

eval },A,Z
.

Hybrid H1: H1 is the same as H0 except that in H1, δ is picked uniformly random from Zm̃c+1

instead of calculating from PRFZm̃c+1 , and {w(0)
i , w

(1)
i }i∈Zm̃c+1

are picked uniformly random from Z2`

instead of calculating from PRFZ
2` .

Claim 9. If PRFZm̃c+1 : {0, 1}λ×{0, 1}in 7→ Zm̃c+1 is a secure pseudorandom function with adversarial
advantage Adv

PRF
Zm̃c+1 (1λ,A), and PRFZ

2` : {0, 1}λ×{0, 1}in 7→ Z2` is a secure pseudorandom function

with adversarial advantage Adv
PRF

Z
2`

(1λ,A), then H1 and H0 are indistinguishable with advantage

ε1 := Adv
PRF

Zm̃c+1 (1λ,A) + 2(m̃c + 1) · Adv
PRF

Z
2`

(1λ,A).

Proof. We have changed 1 PRFZm̃c+1 outputs and 2(m̃c + 1) PRFZ
2` outputs to uniformly random

strings; therefore, the overall advantage is Adv
PRF

Zm̃c+1 (1λ,A) + 2(m̃c+ 1) ·Adv
PRF

Z
2`

(1λ,A) by hybrid
argument via reduction.

Hybrid H2: H2 is the same as H1 except that in H2, {ci}i∈Zm̃c+1
are picked uniformly random from

Z2λ instead of calculating from the outputs of PRFZ
2λ .

Claim 10. If PRFZ
2λ : {0, 1}λ × {0, 1}in 7→ Z2λ is a secure pseudorandom function with adversarial

advantage Adv
PRF

Z
2λ

(1λ,A), then H2 and H1 are indistinguishable with advantage ε2 := (m̃c + 1) ·
Adv

PRF
Z
2λ

(1λ,A).

Proof. In the hybrid H1, {ci}i∈Zm̃c+1
are calculated by summing up the share of edge costs (i.e.,

outputs of PRFZ
2λ ri) along i-th leaf node’s path. It is straightforward that each ci is the sum of the

elements of a unique subset of {ri}i∈Zm̃c . Whereas {ci}i∈Zm̃c+1
are uniformly random strings in the

hybrid H2, they can be separated out uniformly random strings {ri}i∈Zm̃c by subtracting adjacent two

elements. Therefore, we have equivalently changed m̃c + 1 PRFZ
2λ outputs, and the overall advantage

is ε2 := (m̃c + 1) · Adv
PRF

Z
2λ

(1λ,A) by hybrid argument via reduction.

The adversary’s view of H2 is identical to the simulated view ExecF3
bp,S,Z . Therefore, the overall

distinguishing advantage of case 2 is

Adv
PRF

Zm̃c+1 (1λ,A) + 2(m̃c + 1) · Adv
PRF

Z
2`

(1λ,A)

+ (m̃c + 1) · Adv
PRF

Z
2λ

(1λ,A) .

This concludes the proof.
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D Proof of Theorem 4

Theorem 4. The protocol Πlinear
os as described in Fig. 13 and Πlinear

eval as described in Fig. 14 UC-realizes
F3

bp as described in Fig. 2 in the {Fsot,Fcsot}-hybrid model against semi-honest adversaries who can
statically corrupted up to 1 server.

Proof. To prove Thm. 4, we construct a PPT simulator Sim such that no non-uniform PPT environment
Z can distinguish between (i) the real execution ExecFsot,Fcsot

{Πlinear
os ,Πlinear

eval },A,Z
where the parties M,D, S :=

{S0, S1, S2} run protocol Πlinear
os , Πlinear

eval in the {Fsot,Fcsot}-hybrid world and the corrupted parties are
controlled by a dummy adversary A who simply forwards messages from/to Z, and (ii) the ideal
execution ExecF3

bp,Sim,Z where the parties M,D, S0, S1, S2 interact with F3
bp in the ideal world, and

corrupted parties are controlled by Sim. Since the protocol is symmetric, we assume S0 is corrupted
for readability.

Simulator. The simulator Sim internally runs A, forwarding messages to/from the environment Z.
Sim simulates the interface of {Fsot,Fcsot} as well as honest parties M,D, S1, S2. In addition, the
simulator Sim simulates the following interactions with A.
• Upon receiving (Model, sid,M, (m, d)) from the external F3

bp , Sim acts as the honest model owner
M to do:
– For i ∈ Zm, j ∈ Z3, pick random:

∗ I left,(j)
i , Iright,(j)

i ← Zm, J left,(j)
i ,J right,(j)

i ← Zn;

∗ t
(j)
i , v

(j)
i ← Z2` ;

– Pick random id
(0)
1 ← Zm, k

(0)
1 ← Zn;

– Send (P(0), id
(0)
1 , k

(0)
1 ) to S0;

• Upon receiving (Data, sid, D, n) from the external F3
bp, the simulator Sim acts as the honest data

owner D to do:
– For i := 0 to n− 1, pick random x

(0)
i , x

(1)
i , x

(2)
i ← Z2` ;

– Send x(0) to S0.
• Upon receiving (Eval, sid, Sj) for an honest party Sj , from the external F3

bp, Sim does:
– For i := 1 to d :

∗ Send (Fetch, sid,x(j),x(j+1), 0) to Fn,`sot ;

∗ Send (Fetch, sid,P(j),P(j+1), 0) to Fm̃,∗sot ;
∗ Pick random y(j) ← Z2` ;
∗ If i ≥ d, return y(j) to the receiver R and break;

∗ Send (Sel, sid, (0, 0), (0, 0)) to F log m̃,`
csot ;

∗ Send (Sel, sid, (0, 0), (0, 0)) to F logn,`
csot ;

• When the simulated {Fsot,Fcsot} receives input from the corrupted party Sj , the simulator Sim sends
(Eval, sid) to the external F3

bp;
• When the simulated receiver R terminates, the simulator Sim allows the (Result, sid, y) message to

be delivered to R in the ideal world.

Indistinguishability. We assume that the parties M,D, S0, S1, S2 communicate with each other
via the secure channel functionality Fsc (omitted in the protocol description for simplicity). The

views of A and Z in ExecFsot,Fcsot

{Πlinear
os ,Πlinear

eval },A,Z
and ExecF3

bp,Sim,Z are identical. Therefore, it is perfectly

indistinguishable.
This concludes the proof.
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