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Abstract. Blockchain systems have severe scalability limitations e.g.,
long confirmation delays. Layer-2 protocols are designed to address such
limitations. The most prominent class of such protocols are payment
channel networks e.g., the Lightning Network for Bitcoin where pairs
of participants create channels that can be concatenated into networks.
These allow payments across the network without interaction with the
blockchain. A drawback is that all intermediary nodes within a pay-
ment path must be online. Virtual Channels, as recently proposed by
Dziembowski et al. (CCS’18), allow payments without this limitation.
However, these can only be implemented on blockchains with smart con-
tract capability therefore limiting its applicability. Our work proposes
the notion of –Lightweight– Virtual Payment Channels, i.e. only requir-
ing timelocks and multisignatures, enabling Virtual Channels on a larger
range of blockchain systems of which a prime example is Bitcoin. More
concretely, other contributions of this work are (1) to introduce a fully-
fledged formalization of our construction, and (2) to present a simulation
based proof of security in Canetti’s UC Framework.

1 Introduction

Blockchains implement decentralized ledgers via consensus protocols run
by mutually distrustful parties. Despite the novelty of such design, it has
inherent limitations, for example, effectively all transactions committed
to the ledger have to be validated by all parties. Croman et al. [6] showed
that this severely limits a blockchain’s throughput. Moreover, there is
a minimal delay between submission of a transaction and verification
thereof that is intrinsic to the system’s security, e.g. one hour in the case
of Bitcoin.
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Layer-2 protocols, such as payment channel networks, allow confir-
mation of transactions outside the consensus protocol while using it as
fallback. These protocols are referred as “off-chain” protocols in contrast
to processing transactions via the consensus protocol “on-chain”. An ele-
mentary protocol realizes channels and commonly works as follows: Two
(or more) parties put together their funds and lock them on-chain by
requiring a 2-out-of-2 (n-out-of-n) multisignature to claim them. Then
these funds are spent by another transaction or a tree of transactions.
These transactions represent the distribution of funds between both par-
ties and are not committed to the blockchain except when parties enforce
the fund distribution on-chain and unlock the funds. The parties can
perform a payment, i.e. update the balance distribution within the chan-
nel, by recomputing that tree of transactions while invalidating previous
transaction trees. Payments between parties are processed immediately
and only involve interaction between the two parties. Channels can be
extended to form channel networks by using Hashed Time Lock Con-
tracts (HTLC) [7,16]. Payments are performed by finding a path from
payer to payee within the network and atomically replicating the pay-
ment on each channel along that path. A drawback of HTLCs is that a
payment requires interaction with all intermediary nodes within a path.
Virtual State Channels as proposed by Dziembowski et al. [8,9] devise a
technique for creation of channels that allow execution of state machines
instead of being limited to payments, and use an off-chain protocol that
expands the network with new channels. The latter reduces the network’s
diameter yielding shorter payment paths, and allowing parties to per-
form payments without interacting with any intermediary nodes if they
are adjacent in the now extended network. However, this construction re-
quires blockchain with smart-contract capability, therefore not applicable
to Bitcoin. Later we will see that this work addresses this limitation with
a novel construction.

Use cases for virtual channels are manifold. A virtual payment channel
provides the same benefits to the two parties sharing one as pairwise pay-
ment channels without the need to set it up by committing transactions
to the ledger that can incur expensive fees. Payments can be executed
offchain, without interaction with a third party and without incurring
any fees, e.g. for routing an HTLC, making rapid micro-payments viable.
This could enable new services such as a service-gateway. Such a gate-
way would consist of a node that sets up payment channels with different
service provider that operate using micro-transactions, e.g. Video on De-
mand (VoD) services that bill by watch-time. A user could then create
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one payment channel with the gateway node and with the use of virtual
channels created ad-hoc connections to the different (VoD) services in-
stead of having to set up individual payment channels with each service
they want to use. A more general use case is that virtual channels al-
low payment hubs, that have a high degree within a payment channel
network, to interconnect their individual partners in exchange for a fee.

Related Work. HTLCs allow atomic payments across multiple hops.
This is done by performing a conditional payment in each channel along a
path from payer to payee. Executing a payment requires revealing a secret
x ∈ N such that H(x) = y where H is a cryptographic hash function.
After setup, starting from the payee each node within the payment path
reveals x to its predecessor. This proofs that the payment can be enforced
on-chain which allows parties to resolve the payment by performing it off-
chain. A timelock is used to cancel the transaction after a preset amount of
time which unlocks the funds from the conditional payment. Although our
construction can be used to enable payments across a payment channel
network by creating a virtual channel between payer and payee, we argue
that our work is orthogonal to HTLCs and both techniques can be used in
tandem. First our construction is used to expand the underlying payment
channel network with additional virtual channels and then HTLCs can
be used to perform payments across this expanded infrastructure.

Dziembowski et al. introduced Virtual State Channels [8] and State
Channel Networks [9]. A state channel depends on a smart contract pre-
viously committed to the blockchain. It contains (1) application specific
code, and (2) code for state channel management. More specifically par-
ties can send messages to the smart contract changing its state according
to (1), or compute a state-transition message where the resulting state
is computed by the parties and summarized in the state-transition mes-
sage for (2). The state-transition message can be kept off-chain, and only
committed to the blockchain in case of parties’ dispute. A virtual state
channel can be built on top of two channels that were previously created in
this manner. Similar to our work, virtual channels cannot be open indefi-
nitely but have a fixed lifetime that is decided upon construction. In con-
trast to our work this technique requires a blockchain with smart-contract
capability. Chakravarty et al. proposed Enhanced Unspent Transaction
Outputs (EUTxO) [4] and constructed the Hydra Protocol [5]. EUTxO
enables running constraint emitting state machines on top of a ledger
which is used to setup a Hydra heads among a set of parties. This al-
lows them to take their funds off-chain and confirm transactions with
these funds among the participants of the Hydra head. Although parties
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can interact with each other using arbitrary transactions as they would
on-chain, no new participants can be added to the Hydra head which is
in contrast to payment channel networks. Moreover implementing Hydra
requires blockchains with EUTxO capability limiting its applicability.

Our Contributions. This work proposes a new variant of Virtual Chan-
nels, we name it Lightweight Virtual Payment Channels, that is based on
UTXO and requires only multisignatures and timelocks, that is, it does
not require smart-contracts, yielding the first virtual channel construc-
tion implementable on blockchains such as Bitcoin, which currently has
the highest market capitalization of all cryptocurrencies 3 and still is the
most widely used, and blockchains operating with the recently introduced
EUTxO [4] effectively improving the state of the art in both cases.

In a nutshell, our Layer-2 protocol for Virtual Payment Channels takes
two payment channels between three parties as input, and opens three
payment channels, i.e. one for each pair of parties. Our protocol can be
applied iteratively allowing for virtual payment channels across multi-
ple hops of the underlying payment channel network. Our construction
(1) can be used to expand a payment channel network with virtual pay-
ment channels, (2) allows payments without interaction with intermedi-
ary nodes if payer and payee share a virtual payment channel, (3) can be
used in tandem with HTLCs and (4) can be used with different payment
channel implementations as Duplex Payment Channel [7], Lightning [16],
Eltoo [15]. We formalize our work in Canetti’s Universal Composability
(UC) Framework [1] by introducing a functionality for lightweight vir-
tual payment channels FLVPC,FPWCH

. Although formalizations for ledgers,
including Bitcoin, within the UC framework exist [9,8] we present the
first global functionality GUTXO−Ledger for an Unspent Transaction Out-
put (UTXO) based ledger. Moreover we present an auxilliary functionality
FScript modeling a scripting language modelling access to timelocks and
multisignatures. Our construction makes use of GCLOCK by Katz et al.
[10], modified by Kiayias et al. [12,11] and FSIG by Canetti et al. [2]. We
present pseudo-code protocols Open VC, Close VC and Enforce VC.

Structure of this Work. In the remainder of this work, first, we briefly
introduce notation and the model used in this work in Section 2. Next
we formalize a UTXO based ledger and their components in Section 3
and review pairwise payment channel in Section 4. Afterwards we give
a high-level description and analysis of our approach in Section 5 before
presenting pseudo-code protocols in Section 6. Following this we formalize

3 https://coinmarketcap.com
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our approach in the UC framework by, first, introducing auxiliary func-
tionalities in Section 7, then the pairwise payment channel functionality
FPWCH in Section 8 and the virtual channel functionality FLVPC,FPWCH

in
Section 9. Next we introduce formal protocols implementing FPWCH and
FLVPC,FPWCH

namely protocols PWCH and LVPCv
PWCH in Section 10 and

Section 11 respectively. We provide simulation based proofs that the pro-
tocols implement the respective functionalities in Section 12. Lastly we
discuss directions for future work in Section 13.

2 Preliminaries

Let negl(n) denote the negligible function. Furthermore consider the stan-
dard definition for computational indistinguishability X ≈c Y, i.e., there is
no PPT algorithm D such that D can distinguish between two ensembles
of probabilistic distributions X = {Xn}n∈N and Y = {Yn}n∈N, in other
words Pr[D(Xn, 1

n) = 1]−Pr[D(Yn, 1
n) = 1]| ≤ negl(n). Moreover let ∪,

∩ and \ denote set union, intersection, subtraction, and ∅ be the empty
set. We make frequent use of tuples to structure data. Assume a tuple of
type A is defined as (a0, a1, . . . , an) and A is an instantiation of such a
tuple. For simplicity we denote the entry labeled ai of A as A.ai.

The Adversarial and Computational Model. We model the execu-
tion of our protocol π via the Universal Composability (UC) Framework
with Global Setup by Canetti et al. [3] where all the entities are PPT
Interactive Turing Machines (ITM), and the global setup is given by the
global functionality G, and the execution is controlled by the environ-
ment Z. In this simulation based model, all parties from π have access
to the auxiliary functionality Faux, i.e., πFaux , in the hybrid world ex-
ecution HYBRIDπFaux ,A,Z in the presence of the adversary A which can
see and delay the messages within a communication round. Whereas the
ideal execution, i.e., IDEALF ,S,Z , is composed by the functionality F in
the presence of the simulator S. In both executions, the environment Z
access the global functionality G. We assume static corruption by a ma-
licious adversary. Given the randomness r and input z, the environment
Z drives both executions IDEALF ,S,Z and HYBRIDπFaux ,A,Z , and output
either 1 or 0. Therefore, let IDEALF ,S,Z and HYBRIDπFaux ,A,Z be respec-
tively the ensembles {IDEALF ,S,Z(n, z, r)}n∈N,z∈{0,1}∗ and
{HYBRIDπFaux ,A,Z(n, z, r)}n∈N,z∈{0,1}∗ of the outputs of Z for both ex-

ecutions. Thus, we say that πFaux realizes F in the Faux-Hybrid model
when, there exist a PPT simulator S, such that for all PPT Z, we have
IDEALF ,S,Z ≈c HYBRIDπFaux ,A,Z .
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Communication Model. We assume synchronous communication where
time is split into communication rounds. If any party sends a message to
a receiving party within a round, the message reaches the receiving party
at the beginning of the following communication round.

3 The UTXO Model

In the following we review the notion of Unspent Transaction Outputs
(UTXO), UTXO based ledger and transactions. Thereafter we briefly
review payment channel.

Overview. A UTXO wraps an amount of currency and comes with a
script. To claim an UTXO, a witness needs to be provided s.t. if provided
as input into the script, it evaluates to true. A UTXO based ledger’s state
is a set of all UTXO that are in circulation. The state can be altered
using transactions that contain a set of inputs and a list of outputs. Each
input references a UTXO and contains its witness. Each output is a newly
defined UTXO. Submitting such a transaction to the ledger alters its state
by removing the UTXO referenced in the inputs and adding the UTXO
defined in the outputs. Moreover, a transaction might contain a point in
time t ∈ N called timelock s.t. it is not possible to submit the transaction
to the ledger before time t. Note that in this work we only make use of
scripts that verify multisignatures. More formally, we have the following.

The UTXO Tuples. The UTXO are tuples (b, Party), where b ∈ N is
the amount of coins and Party is a set of parties. We denote a reference
to a UTXO out by ref(out). Note UTXO are uniquely identifiable, e.g. in
Bitcoin UTXOs are identifiable by the hash of the transaction in which
they were defined, and their index within the transaction’s outputs.

Funding UTXO Pattern. A Funding UTXO F UTXO(x,P0,P1) is of
the form (x, {P0,P1}) where x ∈ N and P0,P1 are parties.

Transactions. A transaction is a tuple (t, In, Out) where t ∈ N is a
point in time specifying a timelock, Out is a list of UTXO and In is a set
of inputs. An input is of the form (ref, Σ) where ref is a reference to an
UTXO and Σ is a set of signatures. A transaction is valid and can be
committed to the ledger after time t, if all UTXO in Tr.Ref are unique,
each input contains a correct witness and it holds that

∑
ref(i)∈Tr.Ref i.b ≥∑

o∈Tr.Out o.b, i.e. it spends at most as many funds as it claims.

UTXO Ledger. A UTXO ledger’s state is represented by a set of UTXO
U . Parties may read the ledger’s state and change it by submitting a valid
transaction. All UTXO referenced by the inputs are removed from U and
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all UTXO in the outputs are added to the ledger. As conventionally done
in the literature, in the remainder of this work we assume that any such
transaction will be processed on the ledger within duration ∆ ∈ N.

Transactions as Graphs. Transactions submitted to alter a ledger’s
state form a tree where transactions themselves form nodes, the UTXO
specified in their outputs form outgoing edges and UTXO referenced in
their inputs form incoming edges. Note that transactions within a tree
can only be committed to the ledger if its root is committed to the ledger.

Partial Mappings. We abstract away from transactions and represent
them as partial mappings of UTXO of the form (In, Out) where In,Out are
UTXO that represent the transaction’s inputs and outputs respectively.
We assume there is a function φ that takes a mapping (In, Out) and time t
and outputs a respective transaction with timelock t. Analogously φ−1 is
a function that takes a transaction and outputs a mapping and timelock.

4 Pairwise Payment Channel

A pairwise payment channel allows two parties to exchange funds without
committing a transaction to the ledger for the individual payments. Such
a channel is setup by having parties commit a transaction on the ledger
that collects some of each party’s UTXO and spends all of it within a
Funding UTXO. Committing this transaction on the ledger locks these
funds. The Funding UTXO is spent by a transaction subtree representing
the channel’s state where committing it to the ledger unlocks and returns
all of the parties’ funds, however, instead, the parties hold off committing
them. When executing a payment, they update the transaction subtree to
represent the new state while invalidating the previous subtree. Invalida-
tion can be done by spending the Funding UTXO with a transaction that
has a timelock of at least ∆ less than the previous subtree. We remark
that alternative invalidation methods do exist [7,15,16]. The channel is
closed by committing the transaction subtree or a transaction summariz-
ing it onto the ledger.

We design our construction to be agnostic of the underlying pairwise
payment channel construction, however, for the sake of having a complete
formal treatment we formalize a simple pairwise payment channel con-
struction based on timelocks. This construction consists of two types of
transactions called Funding and Refund transactions.

Funding. A Funding transaction is parametrized with (x, P0, P1) where
x ∈ N is an amount of coins and P0, P1 are parties where P0 6= P1. It is an
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Alice : �X

Bob : �Y

Alice  
& Bob : 
�X + Y

�0
Funding

�t
Refund

� Bob : �Y + δ

Alice: �X − δ

(a) Simple Payment Channel.

Alice : �X

Bob : �Y

Alice  
& Bob : 
�X + Y

�0
Funding Channel

� Bob : �Y + δ

Alice : �X − δ

(b) Abstract representation.

Fig. 1: Figure 1a depicts a possible implementation of a simple pairwise
payment channel whereas Figure 1b depicts an implementation indepen-
dent abstraction.

arbitrary valid transaction Tr for which holds that there exists a Funding
UTXO f out ∈ Tr.Out parametrized with (x,P0,P1) and its timelock is 0.

Refund. A Refund transaction is parametrized with (ref, tr, xr, yr) where
ref is a reference to a Funding UTXO f out = F UTXO(xf ,P0,P1), t ∈ N
is a point in time, and xr, yr ∈ N are amounts of coins. It is a trans-
action Tr of form (tr, {ref},Out, Σ) where Out = {(x, f out.P0), (y,P1)},
xf ≥ x + y. In the following we denote a Refund transaction with these
parameters with REFUND TR(f out, tr, xr, yr) and an analogous mapping
with REFUND MAP(f out, xr, yr).

Pairwise Payment Channel. The implementation of a timelock-based
pairwise payment channel is depicted in Figure 1a. It consists of a Fund-
ing transaction that locks both parties funds into the channel as well as a
Refund transaction that holds the current state, i.e. fund distribution, of
the channel. Two parties who want to create such a channel proceed as
follows. (1) Create and exchange Funding and Refund transactions, (2)
sign and exchange signatures of Refund transaction, (3) sign and commit
Funding transaction to the blockchain.

As soon as the Funding transaction is included in the blockchain, a
payment can be done by creating a copy of the Refund transaction with
a new balance distribution, a timelock that is smaller by at least ∆ to the
previous Refund transaction’s timelock, but higher than the current time,
and exchanging signatures for it. The channel is closed by either party by
committing the latest refund transaction to the blockchain at expiration
of its timelock. Alternatively a channel can be closed by creating a Refund
transaction with a timelock of 0 and committing it to the blockchain.

5 Overview of the Construction

The construction consists of three protocols, Open VC, Close VC and
Enforce VC used for setup, tear-down and dispute of virtual channels
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respectively. We remark that the executions of Open VC and Close VC
require consent between all involved parties, and Enforce VC can be ex-
ecuted by a party unilaterally.

Types of Transactions. We use three types of transactions, they are
are Split, Merge and Punish transactions as illustrated in Figure 2. A
Split transaction spends a Funding UTXO and creates two new Funding
UTXO between the same pair of parties. A Merge transaction takes two
Funding UTXO between three parties and equal balance as input, and
creates two UTXO with the same amount of funds as the inputs each.
One is a Funding UTXO between the two parties that do not share a
Funding UTXO within the inputs, and one is a UTXO that gives funds
to the third party. Lastly the Punish transaction takes a Funding UTXO
as input and creates an UTXO that gives it all to one of the parties.

Assumptions. Timelocks are used to invalidate transactions. That is, a
transaction invalidates another one if it spends the same UTXO within
its inputs, but has a timelock that is lower by at least ∆. We assume that
the original payment channel between Alice and Bob has a timelock of at
least t0 + ∆, and the one between Bob and Charlie has a timelock of at
least t1 + ∆. After tear-down of our construction the timelocks of both
channels will be t0 −∆ and t1 −∆ respectively. We note that this does
not make the construction incompatible with pairwise payment channel
constructions that do not rely on timelocks for transaction invalidation,
such as lightning network style channels. Such channels can perform a
state updates using their invalidation method that introduce a timelock
before construction, and remove the timelock after tear-down.

Malicious Behavior. Parties abort protocols Open VC and Close VC
when they observe another party deviating from the protocol, or if a party
delays execution until expiration of the virtual channel, i.e. t0 − ∆ and
t1 −∆ respectively.

Open VC takes an amount of coins δ ∈ N and two pairwise payment
channel between three parties as input and creates three new pairwise
payment channels, one between each pair of parties. In the following we
assume the parties are Alice, Bob and Charlie with payment channels
between Alice and Bob, and between Bob and Charlie. Our construction
creates a set of transactions as illustrated in Figure 3. In a nutshell, the
purpose of the construction is to allow parties to enforce payout of all
of their funds distributed among the offchain channels, while providing
fall-back security of their funds in case all other parties misbehave.
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First, two Split transactions are created, each spending one of the
Funding UTXO that are spent by the original pairwise payment channels.
Their timelocks are t0 and t1 respectively s.t. they invalidate the original
payment channels. One of the UTXO of each Split transaction contains δ
coins and is used as input into a Merge transaction. The other UTXO of
each Split transaction is used as Funding UTXO to re-create the original
payment channels, albeit each party has δ/2 coins less in these channels.
The Merge transaction takes the UTXO with δ coins as input, creates
a Funding UTXO for a channel between Alice and Charlie where each
possess initially δ/2 coins, and another UTXO gives δ coins to only Bob
which represents his collateral. Lastly, two Punish transactions spend the
same UTXO as the Merge transaction but give all coins to Alice and
Charlie respectively. They have a timelock of max(t0, t1) + 2∆ such that
they are invalidated by the Merge transaction.

Close VC takes a virtual channel construction as input and closes them
while setting up the original pairwise payment channel but with a bal-
ance distribution reflecting the balances in the three payment channel
built on-top of the construction. Effectively Alice pays Bob the funds she
owes Charlie while Bob forwards these funds to Charlie - and vice versa.
The channels have timelocks t0−∆ and t1−∆ respectively to invalidate
the Split transactions. Note that a virtual channel construction can only
be closed until time min(t0, t1) − ∆ as otherwise the newly constructed
payment channels cannot invalidate the Split transactions. Note that hav-
ing Bob take out δ/2 coins out of both of his original channels within the
construction ensures that no party has a negative balance within a pair-
wise payment channel upon tear-down.

Enforce VC lets a party enforce the current state by having it commit
a transaction to the blockchain as soon as its timelock expires.

Atomic Construction. We require that all transactions within our con-
struction are created and respectively invalidated atomically. This is en-
forced by the order in which transactions are signed. First, parties have
to exchange signatures for all transactions except of those spending the
original Funding UTXO, i.e. the Split transactions in Open VC and the
root of the pairwise payment channel sub-trees in Close VC. Afterwards,
Alice and Charlie sign these remaining transactions and send the signa-
tures to Bob. Lastly Bob signs them and sends his signatures to Alice
and Charlie. Only if a party holds all signatures for all transactions it is
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involved in, it will consent in performing payments. This ensures security
as we will discuss in the following.

Alice 
& Bob : �X

Alice  & Bob : 
�X − Y

�t
Split

Alice  & Bob : 
�Y

�t + Δ
Merge

Alice & Charlie : 
�Y

Bob : �Y

Alice & Bob : 
�Y

Bob & Charlie  : 
�Y

Alice  
& Bob : 

�Y

�t + 2Δ
Punish

Alice: 
�Y

Fig. 2: Illustrations of transactions used through out this work represented
as nodes of a transaction graph. A transaction’s inputs are listed on the
left-hand-side whereas a transaction’s outputs are on the right-hand-side.
The value on top represents the transaction’s timelock.

Alice  
& Bob : 
XA + YA

Channel Alice & Bob

Alice : (XA + YA) − δ/2 − δA,B

Bob  
& Charlie : 
XB + YB

Bob : (XA + YA) − δ/2 + δA,B

Bob : (XB + YB) − δ/2 − δB,C
Charlie : (XB + YB) − δ/2 + δB,C

Alice : δ/2 − δA,C
Charlie : δ/2 + δA,C

Alice  & Bob : 
(XA + YA) − δ

t0
Split

Alice  & Bob : 
δ

Bob & Charlie: 
(XB + YB) − δ

t1
Split

Bob & Charlie: 
δ

𝗆𝖺𝗑(t0, t1)+Δ
Merge

Alice & Charlie : δ
Bob : δ

Channel Alice & Charlie

Channel Bob & Charlie
𝗆𝖺𝗑(t0, t1)+2Δ

Punish

Charlie: δ

𝗆𝖺𝗑(t0, t1)+2Δ
Punish

Alice: δ

Funding UTXO

Funding UTXO

Fig. 3: Overview of the virtual channel construction as a transaction tree.
On the left-hand side are Funding UTXO either on the ledger or within
previous virtual channels. Boxes with round corners represent the trans-
actions of our construction while the boxes on the right-hand side abbre-
viate pairwise payment channel’s transaction sub-trees. We omit stating
inputs explicitly as they are clear from context.

Only Alice is honest. (1) As Bob is the last one to sign, he might in-
terrupt the protocol before Alice receives a signature for the Split trans-
action. In this case Alice will not consent to any payments and the con-
struction does not change her total balance. Alice can receive her funds
by waiting for expiration of her original payment channel’s timelock or

11



commitment of the Split transaction by Bob. (2) Bob and Charlie can
collude and spend the Funding UTXO that is referenced by their Split
transaction. As such the whole transaction sub-tree with the Split trans-
action as root cannot be committed to the ledger, including the Merge
transaction. In that case Alice can commit the Split transaction, and sub-
sequently the Punish transaction. Alice will receive δ coins which is the
maximum amount of coins she can receive within her pairwise payment
channel with Charlie, as such she does not lose coins. Note that Alice’s
channel with Bob is unaffected as it is not within the sub-tree that Bob
and Charlie invalidated.

Only Bob is honest. (1) As Bob is the last to sign transactions, he
can assure either both Split transactions are fully signed and they can
be committed to the ledger, or none. Moreover he can assure that either
both Split transactions will be invalidated upon lockdown or none. (2)
Spending the Funding UTXO referenced by the Split transactions always
require Bob’s consent by requiring a signature such that Alice and Char-
lie cannot invalidate any part of the construction’s transaction sub-tree,
making Bob to pay out his collateral via a Punish transaction.

Iterative Construction. The pairwise payment channels used as in-
put can either have a Funding UTXO located on a ledger, or a Funding
UTXO created by a previous virtual channel construction. In that case
timelocks have to be chosen such that within its transaction sub-tree any
transaction has a timelock larger than its predecessor’s timelock by at
least ∆ in order to ensure there is sufficient time to commit them to the
ledger. Moreover virtual channel constructions have to be torn-down in
reverse order in which they were setup. Iterative constructions requires
further analysis of security. The key part to make iterative construction
work is the design of the Punish transactions as they secure a party’s
funds, including potential collateral payments, while not over-punishing
a potentially honest intermediary party: The punishment amount cannot
exceed a party’s collateral. Assume the channel between Bob and Char-
lie is created using a virtual channel construction with channels between
Bob and Ingrid and between Ingrid and Charlie. In that case Ingrid and
Charlie can collude by spending their Funding UTXO invalidating the
Split transaction between Bob and Charlie making Bob have to pay coins
within the Punish transaction between him and Alice. However, these
funds as well as the funds Bob has in his channel between him and Char-
lie are covered by a Punish transaction he has between him and Charlie.
Indeed this is the reason why the same amount of coins δ has to be paid
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into the Merge transaction from both of its Funding UTXO and only
those coins are covered by the Punish transaction. This ensures that all
funds are covered while not over-punishing the intermediary party in case
of iterative virtual channel construction.

Mitigating Wormhole attacks. Malavolta et al. [13] showed an attack
in which two colluding parties skip intermediary parties within a HTLC
payment within a payment channel network (1) withholding fees that
would have been paid to the intermediary parties and (2) obtaining the
fees themselves instead. A variant of this attack could be applied to our
construction as we do not require parties to verify that all pairwise pay-
ment channel but the ones they participate in were validly constructed.
We discuss how to mitigate possible attacks. Although detailed discussion
about payout of fees is beyond the scope of this work, we suggest that fees
are paid to the intermediary party as compensation for locking up collat-
eral. We note that due to this attacker cannot obtain more fees than they
are owed (2). However, attackers could still collude to withhold fees of
intermediary parties (1). A mitigation to this attack is that parties would
need to proof that such a payment channel was previously constructed,
but showing the Funding UTXO that were used and are located on the
ledger as well as the whole transaction subtree originating those. A party
that receives this information can do a sanity check and store the sub-tree
in case they have to do the same proof. This poof serves to show that
fees have been paid to the intermediate parties, however, we note that
the information might be out-of-date as malicious parties can close their
pairwise channel effectively invalidating the whole subtrees.

6 Protocols

Here we informally introduce the constructions for Open VC, Close VC
and Enforce VC for setup, tear-down and dispute protocols of virtual
channels. To help intuition these are heavily simplified but derived from
the formal protocol LVPCPWCH in Section 11 that implements Function-
ality FLVPC,FPWCH

from Section 9.

In the following protocols we assume that: When executing any pro-
tocol all involved honest parties check that execution with the given pa-
rameters is permissible, i.e. it will not result in transactions with negative
balances, timelocks in the past and that the pairwise payment channel in
Open VC or the virtual channel in Close VC are not currently in use with
another virtual channel construction. Moreover, for protocols Open VC
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and Close VC they check that all parties consent execution. Lastly, they
abort execution if they observe a party deviating from the protocol includ-
ing when their signatures fail verification or when execution times-out.
For details we refer to Functionality FLVPC,FPWCH

.
Before introducing the protocols, first we define the individual types of

transactions used in our construction as well as pairwise payment channel
and virtual payment channel.

Punish. A Punish transaction takes a Funding UTXO as input but gives
all funds to one party. It is parametrized with (ref, P, tp) where ref is
a reference to a Funding UTXO f out, P ∈ f out.Party is a party and
tp ∈ N is a round number. It is of form (tp, {ref}, {out}, Σ) where
out = (f out.b,P). In the following we denote a Punish transaction with
these parameter by PUNISH TR(f out, P, tp), and an analogous mapping
by PUNISH MAP(f out, P).

Split. A Split transaction takes a Funding UTXO as input and splits
funds across two funding UTXO. It is parametrized with (ref, δ, tS) where
ref is a reference to a Funding UTXO f out, δ ∈ N, δ ≤ f out.b is a balance
and tS ∈ N is a point in time. It is of form (tS , {ref}, {outch, outδ},
Σ) where outch = (f out.b − δ, f out.Party) and outδ = (δ, f out.Party).
In the following we denote a Split transaction with these parameter by
SPLIT TR(f out, δ, tS) and an analogous mapping by SPLIT MAP(f out,
δ). The routines OUT CH and OUT DELTA take either a Split transaction
or analogous mapping as input and return outch and outδ respectively.

Merge. A Merge transaction takes two funding UTXO by three par-
ties and creates a new Funding UTXO. It is parametrized with (tM ,
f outA, f outB, b) where tM ∈ N is a round number, f outA, f outB are
two Funding UTXO and b ∈ N, b = f outA.b = f outA.b is an amount
of coins. Moreover for the involved parties PA,PB,PC holds PA,PB ∈
f outA.Party,PB,PC ∈ f outB.Party. Given, outch = (b, {PA,PC}) and
outB = (b, {PB}), then a Merge transaction is of the form (tM , {ref(f outA),
ref(f outB)}, {outch, outB}, Σ). We denote a Merge transaction with these
parameter by MERGE TR(f outA, f outB, b, tM ) and an analogous map-
ping by MERGE MAP(f outA, f outB, b). The routine OUT CH takes a
Merge transaction or analogous mapping as input and returns outch.

Function open virtual(f,P,P ′, b, b′, t) is used to open a pairwise pay-
ment channel with the provided, Funding UTXO f , between the two
parties P,P ′, respective balance distribution b, b′ and optional timelock
t. See Section 8 and Section 10 for details.
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Algorithm 1 Open Virtual Channel
1: function Open VC(γ0, γ1, δ)
2: tr0,S ← SPLIT TR(γ0.f , δ, γ0.t−∆)
3: tr1,S ← SPLIT TR(γ1.f , δ, γ1.t−∆)
4: tr0,p ← PUNISH TR(OUT DELTA(tr0,S), PA, max(γ0.t, γ1.t) +∆)
5: tr1,p ← PUNISH TR(OUT DELTA(tr1,S), PC , max(γ0.t, γ1.t) +∆)
6: trmrg ← MERGE TR(OUT DELTA(tr0,S), OUT DELTA(tr0,S), δ, max(γ0.t, γ1.t))
7: (γA,B , trroot,A,B) ← open virtual(OUT CH(tr0,S), PA, PB ,

balance(γ0, PA)− δ/2, balance(γ0,PB)− δ/2)
8: (γB,C , trroot,B,C) ← open virtual(OUT CH(tr1,S),PB ,PC ,

balance(γ1,PB)− δ/2, balance(γ1,PC)− δ/2)
9: (γA,C , trroot,A,C) ← open virtual(OUT CH(trmrg),PA,PC , δ/2, δ/2)

10: ∀ transactions except Split: Exchange signatures
11: PA and PC : send Split transactions’ signatures to PB

12: PB : Send Split transactions’ signatures to PA and PC

13: return γv = (γ0, γ1, γA,B , γB,C , γA,C , PA, PB , PC , δ, min(γ0.t, γ1.t)− 2∆)
14: end function

Fig. 4: Creation of a virtual channel. Takes two pairwise payment channel
γ0 and γ1, and an amount of coins δ as input, and outputs a virtual
channel γv.

Definition 1. A pairwise payment channel γ is a tuple of form γ =
(id, f,PA,PB, bA, bB, t, t0) where id ∈ N is a unique identifier, f is a
funding UTXO, PA,PB are parties, bA, bB ∈ N are balances of PA,PB
respectively.

Definition 2. A lightweight virtual payment channel γv is a tuple of form
(id, γ0, γ1, γA,B, γB,C , γA,C , PA, PB, PC , δ, t) where PA,PB,PC are
three parties, γ0, γ1 are pairwise payment channel between PA,PB and
PB,PC respectively provided as inputs, γA,B, γB,C , γA,C are pairwise pay-
ment channel created by the construction between each pair of parties, δ
is the capacity of channel γA,C between PA,PC and t ∈ N is a point in
time until which the channel can be closed.

For simplicity we omit stating id explicitly.

7 The UC Setting

While focusing on the intuition and readability of our approach up until
this point, the remainder of this work is about formal treatment of our
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Algorithm 2 Close Virtual Channel
1: function Close VC(γv)
2: sumA = γv.γA,B .bA + γv.γA,C .bA
3: sumB = γv.γA,B .bB + γv.γA,C .bB
4: sum′B = γv.γB,C .bA + γv.γA,C .bA
5: sumC = γv.γB,C .bB + γv.γA,C .bB
6: (γ0, trroot,A,B) ← open virtual(γv.γ0.f,PA,PB , sumA, sumB , γ

v.t)
7: (γ1, trroot,B,C) ← open virtual(γv.γ1.f,PB ,PC , sum

′
B , sumC , γ

v.t)
8: ∀ transactions except trroot,A,B and trroot,B,C: Exchange signatures
9: PA signs trroot,A,B, PC signs trroot,B,C. Send signatures to PB

10: PB signs trroot,A,B and trroot,B,C. Sends signatures to PA and PC respectively
11: return (γ0, γ1)
12: end function

Fig. 5: Closing of a virtual channel γv by recreating the original channels
γ0 and γ1. The constructions Split transactions are invalidated by having
the roots of the pairwise payment channels have timelocks of at most γv.t.

Algorithm 3 Enforce Virtual Channel
1: function Enforce VC(γv)
2: for all tr in transactions of γv do
3: if tr.t < τ ∧ ∀o ∈ tr.In : o is on the ledger then
4: Commit tr to the ledger
5: end if
6: end for
7: end function

Fig. 6: Parties enforce the state presented by the virtual payment channel
construction by committing transactions to the ledger whenever possible,
i.e. as soon as their timelocks expire and UTXO referenced in their inputs
are present on the ledger.
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protocol in the UC framework including, potentially harder to read, but
necessary detail. First we give an overview of the setting followed by
introduction of all auxiliary functionalities used throughout this work.
We follow up by detailing the pairwise payment channel functionality
FPWCH the lightweight virtual channel functionality FLVPC in the following
sections.

𝒢𝖴𝖳𝖷𝖮−𝖫𝖾𝖽𝗀𝖾𝗋 𝒢𝖢𝖫𝖮𝖢𝖪
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Fig. 7: Overview of our setup within the UC framework.

Overview. Figure 7 depicts an overview of our construction. The setting
is split up in an Ideal world and a (GCLOCK, GUTXO−Ledger, FSIG, FScript)
- hybrid world. The global functionality GUTXO−Ledger is associated with
the global GCLOCK functionality and accessible from either world. The
lightweight virtual channel functionality FLVPC is associated with the pair-
wise payment channel functionality FPWCH receiving access to its internal
state and helper functions. FPWCH includes and replicates the interfaces
and behavior of FSIG, FScript.

The Global Clock Functionality GCLOCK. We adapt the global clock func-
tionality formalized by Katz et al. [10], modified by Kiayias et al. [12,11]
and is depicted in Figure 7. The functionality keeps track of a round num-
ber τ that can be read by any party. After finishing computations a party
sends a clock update request to the functionality. The round number is
incremented after the functionality receives update requests from all par-
ties as well as the ledger functionality. Parties agree upon a starting time
of their protocol as well as a duration for each round, such that time can
be derived from the round number.
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Functionality GCLOCK

The functionality is accessible by any entity and associated with
a global functionality GUTXO Ledger.
State: Stores time τ ∈ N, a set of parties P, bit dGUTXO Ledger

∈ {0, 1}
as well as bits dP for each party in P.
Initialization: Sets τ = dGUTXO Ledger

= 0 and P = ∅.
Register: Upon receiving message (register, sid) from party P, set P
= P ∪ {P}, store a bit dP ∈ {0, 1} initialized with dP = 0 and send
message (register, sid,P) to the adversary.
Clock Update Ledger: Upon receiving message (clock-update, sid)
from GUTXO Ledger set dGUTXO Ledger

= 1 and send message
(clock-update, sid,P) to the adversary.
Clock Update Party: Upon receiving message (clock-update, sid) from
party P set dP = 1. If dGUTXO Ledger

= 1 and dP = 1 for all honest par-
ties in P, set τ = τ + 1, dGUTXO Ledger

= 0 and dP = 0 for all honest
parties in P. Lastly send message (clock-update, sid,GUTXO Ledger)
to the adversary.
Clock Read: Upon receiving message (clock-read, sid) from any entity
reply with message (clock-read, sid, τ).

The Global Functionality GUTXO−Ledger models a UTXO based ledger
maintaining a publicly readable set of UTXO.

The ledger maintains a set U that holds all UTXO. The interface
Transaction is used to modify U by providing a UTXO mapping. It can
be called by Z modeling transactions done by parties outside the proto-
col, however, parties themselves are only able to change U indirectly by
interacting with the FScript functionality. When receiving a request the
functionality checks that all coins within the Outputs of the mapping are
covered by the coins referenced in the Inputs. Any party can read U by
calling the Check UTXO sub-function.

The differences between GUTXO−Ledger and the ledger functionality by
Kiayias et al. [12] are twofold. For one instead of using a verification pred-
icate to check the validity of transactions, we move this verification into
a second functionality FScript representing required parts of a blockchains
scripting language similar to the separation of ledger and smart contract
functionalities in the work of Dziembowski et al. [9,8]. For another we
explicitly make use of UTXO as required in our construction.
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Functionality GUTXO−Ledger
State: Stores set of UTXO U.
Initialization: Z sends the initial state U0. Sets U := U0.
Additional interface: The functionality wraps the FScript and FSIG

functionalities internally and replicates their interface. Any messages
to these functionalities are processed according to their definition.
Transaction: Upon receiving, from either Z or functionalities, the
message (transaction, sid,M) where M is a partial UTXO map-
ping, do : Let (In, Out) =M . Check that In⊆ U,

∑
i∈In i.b ≥

∑
o∈Out o.b.

Upon success within ∆ rounds set U = (U \ In) ∪ Out.
Check UTXO: Upon receiving (check, sid, out) where out ∈ Output
reply (check okay, sid, out) if out ∈ U and (check failure, sid, out)
otherwise.

The signature functionality FSIG by Canetti et. al. [2] as depicted in Fig-
ure 7 provides access to signature generation and verification as well as
facilities to create verification keys.

Functionality FSIG

State: Stores set K which contain tuples of form (P, v) where P
is a party and v is a verification key. Set S with entries of form
(m,σ, v, b) where m is a message, σ as signature, v a verification key
and b ∈ {0, 1}.
Key Generation: Upon receiving message (KeyGen, sid) from party P
verify that sid = (P, sid′) for some sid′. In that case hand (KeyGen, sid)
to the adversary. Upon receiving (VerificationKey, sid, v) from
the adversary, forward the message to P and store (P, v) in K.
Signature Generation: Upon receiving message (Sign, sid,m) from
party P verify that sid = (P, sid′) for some sid′. If that is true, send
(Sign, sid,m) to the adversary. Upon receiving (Signature, sid,m, σ)
from the adversary, if (m,σ, v, 0) 6∈ S send an error message to P and
halt. Otherwise store (m,σ, v, 0) in S and send (Signature, sid,m, σ)
to P.
Signature Verification: Upon receiving message (Verify, sid,m, σ, v′)
from a party P forward it to the adversary. Upon receiving
(Verified, sid,m, φ) from the adversary do:
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1. If v′ = v and (m,σ, v, 1) ∈ S set f = 1.
2. Else if v′ = v, (m,σ′, v, 1) 6∈ S for any σ′ and P is not corrupted

by the adversary, store (m,σ, v, 0) in S and set f = 0.
3. Else if (m,σ, v′, f ′) ∈ S for any v′, f ′ set f = f ′.
4. Else store (m,σ, v′, φ) in S and set f = φ.

Send (Verified, sid,m, f) to P.

The Script functionality represents the elements of a blockchain’s script-
ing language we need to enable our construction. Parties interact with it
using the Transaction interface providing a transaction as input. Then it
does two checks: (1) the time specified in the transaction is lower than the
current time. For this matter it interacts with the GCLOCK functionality to
derive the current time. (2) It checks whether all parties mentioned in the
transaction’s referenced UTXO provided as inputs, provide a signature of
the transaction. For this it interacts with the FSIG functionality.

Functionality FScript

State: Stores set K with entries of form (P, v) where P is a party
and v is a verification key.
Registering Verification Key: Upon receiving
(VerificationKey, sid, v) from a party P store (P, v) in K.
Transaction: Upon receiving (transaction, sid, tr) from P, let (In,
Out, t, Σ) = tr and stub = In,Out, t.

– Update time: Send (get-time, sid, ·) to GCLOCK and receive
(get-time, sid, τ)
– Verify that ∀utxo ∈ In: t ≤ τ . Halt, otherwise.
– Verify ∀utxo ∈ In: For each P ∈ utxo.Party retrieve (P, v) from
K. Verify that Σ contains a signature of stub from P. For each
σ ∈ Σ send (Verify, sid, stub, σ, v) to FSig and verify that FSIG

replies with (Verified, sid, stub, 1) exactly once.
– Send (transaction, sid,Removes,Adds) to GUTXO−Ledger

8 The Pairwise Payment Channel Functionality

The FPWCH functionality creates, maintains and closes pairwise payment
channel between two parties. For simplicity we opt to model a simple
payment channel that uses timelocks to update a channel’s state. The
functionality consists of functions Open, Close, Channel Update and En-
force. The Open function creates a Funding transaction based on a Fund-
ing transaction stub provided as input, commits it to the blockchain by
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interacting with GUTXO−Ledger and, after verifying that the mapping was
applied on the ledger, stores the channel’s state. The State Update func-
tion redistributes the channel’s funds while reducing its timelock by at
least ∆ whereas Close removes the channel’s timelock while disabling any
further updates on it. Lastly Enforce takes a channel as input and checks
whether its timelock is lower or equal than the current round number. If
that is the case a mapping representing a refund transaction is committed
to the ledger.

Definition 3. A pairwise payment channel γ is a tuple of form γ =
(id, f,PA,PB, bA, bB, t, t0) where id ∈ N is a unique identifier, f is a fund-
ing UTXO, PA,PB are parties, bA, bB ∈ N are balances of PA,PB respec-
tively, t ∈ N is a point of time at which the channel has to be committed
to the ledger and t0 ∈ N is the lower limit of t.

For simplicity we omit stating id explicitly.

General Behavior. Before we detail the functionality’s interface, we
describe common non function-specific behavior of both functionalities
FPWCH and FLVPC,FPWCH

, which is described in the next section.
Update time: At beginning of each round in which functionality is ac-
tivated send message (clock-read, sid) to GCLOCK and receive the reply
(clock-read, sid, τ ′). Set internal variable τ = τ ′.
Interactions with simulator: Whenever the functionality receives a mes-
sage msg from any party or from GUTXO−Ledger it leaks the message to the
simulator and appends sender and receiver.
Synchronization with the simulation: Interactions with the ledger are
used to read its state as well as trigger a state change. The state on the
ledger as well as whether a state change is permissible depends on the
moment they are done as transactions that change the set of UTXO on
the ledger can be sent by a party at any time. Therefore we need to ensure
that the functionality’s interaction with the ledger are at the same time
as they happen in the simulation to achieve the same results and receive
the same replies. Whenever the functionality sends a message msg to the
ledger it waits for the simulator to leak a similar message by a honest
party. Note that a TRANSACTION tagged message from the simulator is
processed by the FScript functionality first. Then the functionality sends
the message only once and forwards any replies to the simulator.
Handling corrupted parties: We assume static corruption by a malicious
adversary. At the beginning of execution the functionality asks the sim-
ulator which parties are controlled by the adversary and stores this in-
formation in set COR. The functionality ignores requests from any party
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in the ideal world of which counterpart in the simulation is corrupted by
the adversary. The functionality needs to learn whether a party corrupted
by the adversary misbehaved or delayed execution of a protocol beyond
a channel’s lifetime. For this matter as soon as the simulator leaks that
any simulated honest party P ′h sends message (failure, sid,msg) to Z
the functionality aborts execution of the function triggered by receiving
msg and sends (failure, sid,msg) to P ′h’s dummy-party counterpart Ph
in the ideal world.

Functionality FPWCH

State: Current time τ . Set Γ of existing pairwise payment channel,
set ΓA of active pairwise payment channel. Set CONS with entries of
form (P ′,msg) where P ′ is a party and msg is a message.
Initialization: Sets τ = 0, Γ = ΓA = COR = CONS = ∅.
Helper subfunctions:
consent: A call of this sub-function is of form consent(P,Parties,msg)
where P is a party, Parties is a set of parties and msg is a message.
Let Partiesh = Parties \ COR.

1. If P 6∈ COR, add (P, msg) to CONS
2. If ∀Ph ∈ Partiesh : (Ph,msg) ∈ CONS,

then set CONS = CONS \ {(P ′h,msg)|P ′h ∈ Partiesh} and return
is consent;
Else return no consent

state update: A call of this sub-function is of form
state update(γ,PA, bA,PB, bB, δt).

1. Checks: γ ∈ ΓA, δt ≥ ∆, γ.t − δt > max(γ.t0, τ), bA + bB =
γ.bB + γ.bA; If any check fails halt

2. Update channel: γ = (γ.f,PA,PB, bA, bB, γ.t− δt, γ.t0)

Revoke: A call of this sub-function is of form revoke(γ). Set Γ =
Γ \ {γ}.
Activate: A call of this sub-function is of form activate(γ). Set Γ =
Γ ∪ {γ}.
Balance: A call of this sub-function is of form balance(γ,P) where γ
is a pairwise payment channel and P a party.

1. if P 6∈ {γ.PA, γ.PB} halt
2. if P = γ.PA return γ.bA
3. else P = γ.PB return γ.bB
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Open: Upon receiving message msg = (open, sid,m,PA,PB, bA, bB, t)
from P ∈ {PA,PB} where m is a map, bA, bB ∈ N are amounts of
coins and t ∈ N is a round number do:

1. Let (In,Out) = m, Partiesh = {PA,PB} \ COR.
2. if consent(P, {PA,PB},msg) = no consent: halt
3. Verify; if any verification fails send (failure, sid,msg) to all in
Ph:
– No overspending: Σo∈Outo.b ≤ bA + bB +Σo∈In
– Sufficient funds: ∪o∈{In}o.Party = {PA,PB}
– Parties contribute sufficiently: For i ∈ {A,B} holds
Σo∈In,o.Party=Pi

o.b ≥ bi
– Valid timelock: t ≥ τ +∆+ 1
– ∀o ∈ In send (check, sid, o) to GUTXO−Ledger. If GUTXO−Ledger

replies with (check okay, sid, o) for each o ∈ In continue,
otherwise halt

4. Funding: mf = (In,Out ∪ {f}) where f = (bA + bB, {PA,PB}) is
a funding output

5. Send message (transaction, sid,mf ) to GUTXO−Ledger
6. For all o ∈ (Out∪{f}) send message (check, sid, o) to GUTXO−Ledger.

If it replies (check okay, sid, o) for all o ∈ (Out∪{f}) continue;
otherwise halt and repeat this step next round

Upon receiving message (success, sid,msg) from all parties in Partiesh:

1. Update internal state: Γ = Γ ∪ {γ}, ΓA = ΓA ∪ {γ} where γ =
(f,PA,PB, bA, bB, t, 0)

2. Return message (success, sid,msg) to P ∈ Partiesh

Channel Update: Upon receiving msg =
(channel update, sid, γ,P0, b0,P1, b1, δt) from P ∈ {γ.PA, γ.PB}
where bA, bB, δt ∈ N. Do:

1. Let Partiesh = {γ.PA, γ.PB} \ COR
2. if consent(P, {PA,PB},msg) = no consent: halt
3. Verify: {P0,P1} = {PA,PB}. Send (failure, sid,msg) to all in
Ph if it fails

Upon receiving message (success, sid,msg) from all parties in Partiesh:

1. Execute state update(γ, (P0, b0), (P1, b1), δt)

23



2. Return message (success, sid,msg) to all P ∈ Partiesh
Close: Upon receiving msg = (close, sid, γ) from P ∈ {PA,PB}
where PA = γ.PA and PB = γ.PB do:

1. Let Partiesh = {γ.PA, γ.PB} \ COR.
2. if consent(P, {PA,PB},msg) = no consent: halt
3. Verify: {P0,P1} = {PA,PB}. Send (failure, sid,msg) to all in
Ph if it fails

Upon receiving message (success, sid,msg) from all parties in Partiesh:

1. Execute state update(γ, (γ.PA, γ.bA), (γ.PB, γ.bB), γ.t− γ.t0)
2. ΓA = ΓA \ {γ}
3. Return message (success, sid,msg) to all P ∈ Partiesh

Enforce: Upon receiving msg = (enforce, sid, γ) from party P do:
Let PA = γ.PA and PB = γ.PB.

1. Do the following. If any check or verification fails, immediately
return message (enforce, sid, failure) to P and halt.
– Check: P ∈ {PA,PB}; γ.t ≤ τ
– Send message (check, sid, γ.f) to GUTXO−Ledger. If it replies

(check okay, sid, o) continue, otherwise if it replies
(check failure, sid, o) halt

2. mr = REFUND MAP(γ.f , γ.bA, γ.bB)
3. Send message (transaction, sid,mr) to GUTXO−Ledger
4. Γ = Γ \ {γ}; ΓA = ΓA \ {γ}
5. Return message (success, sid,msg) to P

Functionality FvPWCH is an extension of functionality FPWCH by pro-
viding an alternative function to open a pairwise payment channel which
is required for the virtual payment channel functionality. This function
takes a Funding UTXO instead of a Funding transaction stub as input
and creates a pairwise payment channel without committing a Funding
transaction to the ledger.
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Functionality FvPWCH

Functionality that behaves as FPWCH but includes the following
helper function to facilitate use with virtual channels.
Open Virtual: A call of this sub-function by an associated functional-
ity is of form open virtual(f,PA,PB, bA, bB, t, t0) where f is a funding
output, bA, bB ∈ N are amounts of coins and t, t0 ∈ N is a round
number. Then:

1. mr = REFUND MAP(f , bA, bB)
2. Channel: γ = (f,PA,PB, bA, bB, t, t0)
3. Update internal state: M = M ∪ {(γ,mr, t)}; Γ = Γ ∪ {γ}; ΓA =
ΓA ∪ {γ}

4. Return γ

9 The Ideal Virtual Channel Functionality

In the following we present formal treatment of our protocol in the UC
framework by introducing a functionality for lightweight virtual payment
channel FLVPC,FPWCH

, associated with functionality FPWCH. For this we
make use of auxiliary functionality FScript, global UTXO ledger function-
ality GUTXO−Ledger, global clock functionality GCLOCK, and functionality
FSIG. These functionalities are defined in Section 7.

The Ideal Virtual Channel Functionality. The lightweight virtual
payment channel functionality FLVPC,FPWCH

is used to create and close vir-
tual payment channel between three parties. It provides access to func-
tions VC-Open, VC-Close and VC-Enforce. Function VC-Open takes two
pairwise payment channel between three parties as input, disables state
updates on those, and creates three new pairwise payment channel, one
between each pair of parties. To be able to enforce these channels it creates
and stores mappings that represent Split, Merge and Punish transactions
together with the time at which they become valid. Function VC-Close
takes a virtual channel as input. First it checks whether no virtual chan-
nel have been created using the pairwise payment channel created with
it. If positive it disables state updates on these channels, re-enables state
updates for the original channels, updates their balance to reflect the lat-
est balance distribution among the three channels and sets the channel’s
timelocks to be lower than the one of the Split mappings by ∆. Function
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Enforce is used to commit any mapping representing Split, Merge or Pun-
ish transactions if their timelocks have expired. This disables closure of
the virtual channel because the funding UTXO of the original pairwise
payment channels are removed from the ledger.

The functionality shares the same non-function specific behavior as
FPWCH, i.e. time management, interactions with the simulator and han-
dling of corrupted parties. We refer to the previous section for details.

Functionality FvLVPC,FPWCH

Has access to FvPWCH’s helper functions.
State: Set of closable virtual payment channel Γ v of virtual payment
channels. List Mv of entries (γ′v,m, t) where γ′v is a virtual payment
channel, m is a partial mapping and t is a round number. It has access
to the internal state of FvPWCH including set Γ of pairwise payment
channels. Moreover it shares common state with FvPWCH which is the
current round number τ , list of corrupted parties COR and set of
consent giving parties CONS.
Initialization: Initializes FvPWCH and shared state τ,COR,CONS. Sets
Γ v = Mv = ∅.
VC-Open: Execute upon receiving message msg =
(open, sid, γ0, γ1, δ, t,PA,PB,PC) from P ∈ {PA,PB,PC} where
γ0, γ1 ∈ Γ , δ ∈ N is an amount of coins and t ∈ N is a round number.
Let Partiesh = {PA,PB,PC} \ COR:

1. if cns = consent(P, {PA,PB,PC},msg) = no consent: halt
2. Verify; if any verification fails send (failure, sid,msg) to all in
Ph:
– {PA,PB} = {γ0.PA, γ0.PB} and {PB,PC} = {γ1.PA, γ1.PB}
– for each γ ∈ {γ0, γ1}: if {γ.PA, γ.PB} \ COR 6= ∅ then
• γ ∈ Γ ; γ.t > τ + 2∆; γ.t0 > τ + 2∆; γ.bA ≥ δ/2 and
γ.bB ≥ δ/2

Upon receiving message (success, sid,msg) from all parties in Partiesh:

1. Create Mappings
– Split: m0,S = SPLIT MAP(γ0.f , δ); m1,S = SPLIT MAP(γ1.f ,
δ)

– Merge: mmrg = MERGE MAP(OUT DELTA (m0,S),
OUT DELTA( m1,S), δ)

– Punish: m0,p = PUNISH MAP(OUT DELTA(m0,S), PA)
– m1,p = PUNISH MAP ( OUT DELTA(m1,S), PC)
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2. Create new channel, revoke old
– γA,B = open virtual(fA,B,PA, PB, balance(γ0,PA) − δ/2,

balance(γ0,PB) − δ/2, t, γ0.t)
– γB,C = open virtual(fB,C ,PB, PC , balance(γ1, PB) − δ/2,

balance(γ1,PC) − δ/2, t, γ1.t)
– γA,C = open virtual(fA,C , PA, PC , δ/2, δ/2, t, max(γ0.t, γ1.t)+
∆)

– Revoke old channel: revoke(γ0) and revoke(γ1)
3. Virtual channel: γv = (γ0, γ1, γA,B, γB,C , γA,C ,PA,PB,PC , δ,

min(γ0.t, γ1.t)− 2∆)
4. Update: Γ v = Γ v ∪ {γv} and Mv = Mv ∪ {(γv,m0,S , γ0.t − ∆),

(γv,m1,S , γ1.t−∆), (γv,mmrg,max(γ0.t, γ1.t)), (γv,m0,p, max(γ0.t,
γ1.t) + ∆), (γv,m1,p,max(γ0.t, γ1.t) + ∆)}

5. Return message (success, sid,msg) to P
VC-Close: Upon receiving message msg = (close, sid, γv, ) from
P ∈ {PA,PB,PC} where PA = γv.PA, PB = γv.PB and PC =
γv.PC . Let (γ0, γ1, γA,B, γB,C , γA,C ,PA,PB,PC , δ, t) = γv. Moreover
let Partiesh = {PA,PB,PC} \ COR. Do:

1. if cns = consent(P, {PA,PB,PC},msg) = no consent: halt
2. Verify; if any verification fails send (failure, sid,msg) to all in
Ph:
– γv ∈ Γ v; {γA,B, γB,C , γA,C} ⊆ FvPWCH.Γ ; t > τ ; γ0.t0 > τ +

2∆, γ1.t0 > τ + 2∆

Upon receiving message (success, sid,msg) from all parties in Partiesh:

1. Revoke old channel, reactivate and update original channel:
– activate(γ0), activate(γ1)
– state update(γ0,PA, bA,PB, bB, 2∆) and state update(γ1, PB,
b′B, PC , bC , 2∆) where bA = γA,B.bA+γA,C .bA; bB = γA,B.bB+
γA,C .bB; b′B = γB,C .bA + γA,C .bA; bC = γB,C .bB + γA,C .bB.

– revoke(γA,B), revoke(γB,C), revoke(γA,C)
2. Update internal state: Γ v = Γ v \ {γv}
3. Return message (success, sid,msg) to P

VC-Enforce: Triggered upon receiving msg = (enforce, sid, γv) from
party P where γv is a lightweight virtual payment channel. Let PA =
γv.PA, PB = γv.PB and PC = γv.PC .
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1. Check if P ∈ {PA,PB,PC}, γ ∈ Γ
2. Let Mγ = {(γ′v,m′, t′)|(γ′v,m′, t′) ∈Mv; γ′v = γv; t′ ≤ τ,∃utxo ∈
m′.In : P ∈ utxo.Party}

3. for each m ∈Mγ

– Let (In,Out) = m. For all o ∈ In send message (check, sid, o)
to GUTXO−Ledger. If it replies (check okay, sid, o) for all o ∈
In:
• Send message (transaction, sid,m) to GUTXO−Ledger
• Channel cannot be closed: Γ v = Γ v \ {γv}

4. Return message (success, sid,msg) to P

Definition 4. Balance Security: The sum of a honest party’s funds only
changes with its consent.

Definition 5. Liveness: Eventually all of a party’s funds are unlocked
and committed to the ledger within UTXO that are spendable by the party
alone.

Security of Funds and Liveness. In the following we briefly argue
that functionality FLVPC,FPWCH

fulfills these two properties for honest par-
ties by design. We expect a honest party to call sub-function VC-Enforce
as soon as they would lead to submission of a mapping to the ledger, i.e.
at times γv.γ0.t−∆, γv.γ1.t−∆, max(γv.γ0.t, γ

v.γ1.t) and in case a pun-
ish transaction has to be committed at time max(γv.γ0.t, γ

v.γ1.t) + ∆.
Eventually all funds that a honest party holds will be accessible over
UTXOs on the ledger such that liveness holds. Balance Security holds
since only FPWCH’s channel update function, which requires the party’s
consent, changes a honest parties’ balance.

10 The Pairwise Payment Channel Protocol

Analogous to the functionalities we define protocols PWCH and it’s ex-
tension PWCHv for pairwise payment channel, as well as a protocol for
virtual payment channel LVPCPWCHv in the following section. They are
designed similar to their functionality counterparts, however, parties in-
volved in such a protocol need to additionally do:

– Instead of abstract mappings, transactions need to be created. Parties
need to exchange signatures as ways to provide consent

– In the Channel Update method, in addition to updating an internal
state, parties need to create a transaction to make it enforceable
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– Order matters: The root of a transaction subtree spending the Funding
UTXO needs to be signed last. In VC-Open and VC-Close the inter-
mediary party is allowed to sign the root of the transactions subtree
only after receiving signatures of those from the other parties

The following behavior is always performed by any honest party and
for either protocol and is the analogous component of the functionalities’
common non-function specific behavior:

Update time: Sub-function that is executed at the beginning of each
round. Send message (clock-read, sid) to GCLOCK and receive reply
(clock-read, sid, τ ′). Set internal variable τ = τ ′.

Handling corrupted parties: During execution as soon as another party
is observed deviating from a protocol send message (failure, sid,msg)
to Z and halt.

Timeouts: Upon receiving message(open, sid,m,PA,PB, bA, bB, t),
(state update, sid, γ, δ) or (close, sid, γ′), if the execution of the sub-
protocol triggered by these messages does not finish until round number t,
γ.t or γ′.t respectively the counterparty is considered to be unresponsive.
Send (failure, sid,msg) to Z and halt the sub-protocol’s execution.

Protocol PWCH
State: Each party stores current time τ , verification key v, set of
other party’s verification keys V , set Γ of created pairwise payment
channel and ΓA of active pairwise payment channel, set CONS with
entries of form (P,msg), Refund transactions RFND(γ) for each cre-
ated channel γ ∈ Γ .
Initialization: Send message (register, sid) to GCLOCK followed by
(clock-read, sid) to receive (clock-read, sid, τ ′, fast). Initialize τ =
τ ′. Set Γ = ΓA = CONS = ∅. Lastly send message (KeyGen, sid) to
FSIG and wait for reply (Verification Key, sid, v′). Set verification
key v = v′. Send message (Verification Key, sid, v) to FScript and
broadcast (Verification Key, sid, v) to all parties.
Verification Keys: Whenever receiving a message
(Verification Key, sid, v) from another party P store tuple (P, v)
in V .
Subprotocol sign broadcast: Takes as input signing parties PartiesS ,
transaction tr, set of receiving parties PartiesR.

1. Set stub = (tr.t, tr.Ref, tr.Out)
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2. Each P ∈ PartiesS :
– send message (Sign, sid, stub) to FSIG and receive reply

(Signature, sid, stub, σ)
– ∀(out,Σ)∈Tr.In: if P ∈ out.Party set Σ = Σ ∪ {σ}
– send message (Signature, sid, stub, σ) to all parties in Parties

3. Each party in Parties upon receiving (Signature, sid, stub, σ)
does:
– Lookup entry (P, v′) ∈ V and send (Verify, sid,m, σ′, v′) to
FSIG

– if such an entry does not exist, or if FSIG replies with
(Verified, sid,m, f) where f = 0 then return failure

– else ∀(out,Σ)∈Tr.In: if P ∈ out.Party set Σ = Σ ∪ {σ}
4. Return success

Consent: Whenever a party receives a message of form (req, sid,msg)
from a party P ′′ they store tuple (P ′′,msg) in CONS.
Subprotocol consent verification:
Inputs: Parties,msg

1. Send message (req, sid,msg) to all P ∈ Parties
2. If ∃(P,msg) 6∈ CONS wait; proceed upon receiving (req, sid,msg)

from P
3. Set CONS = CONS \ {req}

Request Verifications: Upon receiving message msg from Z trigger-
ing execution of a subprotocol below, if any verifications fails send
(failure, sid,msg) to Z.
Revoke: A call of this sub-protocol is of form revoke(γ). Set ΓA =
ΓA \ {γ}.
Activate: A call of this sub-protocol is of form activate(γ, tr). Set
ΓA = ΓA ∪ {γ}; RFND(γ) = tr.
Balance: A call of this sub-protocol is of form balance(γ,P) where γ
is a pairwise payment channel and P a party.

1. if P 6∈ {γ.PA, γ.PB} halt
2. if P = γ.PA return γ.bA
3. else P = γ.PB return γ.bB

Open: A party P upon receiving msg = (open, sid,m,PA,PB, bA, bB, t)
from Z where PA and PB are parties, m is a map, bA, bB ∈ N are
amounts of coins and t ∈ N is a round number does:
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1. Party is addressed: Check P ∈ {PA,PB}. Otherwise ignore re-
quest. In the following let Pc be P’s counterparty.

2. Consent: Execute sub-protocol consent verification({Pc},msg)
3. Let (In,Out) = m. Verify:

– Σo∈Outo.b ≤ bA+ bB +Σo∈In; ∪o in{In}o.Party = {PA,PB}; for
i ∈ {A,B} holds Σo∈In,o.Party=Pi

o.b ≥ bi; t ≥ τ +∆+ 1
– ∀o ∈ In, after sending message (check, sid, o) to GUTXO−Ledger

(check okay, sid, o) is returned
4. If check of verification fails the party sends (failure, sid,msg) to
Z

5. Funding: mf = (In,Out ∪ {f}) where f = (bA + bB, {PA,PB}).
Transaction trf = φ(mf , 0)

6. Refund: trr = REFUND TR(f , t, bA, bB)
7. Perform sign broadcast({PA,PB}, trr, {PA,PB})
8. Perform sign broadcast({PA,PB}, trf , {PA,PB})
9. Send (transaction, sid, trf ) to FScript.

10. Poll result: Send message (check, sid, f) to GUTXO−Ledger. If it
returns (check okay, sid, f) continue; otherwise if it returns
(check failure, sid, f) halt and repeat next round

11. Set γ = (f,PA,PB, bA, bB, t, 0)
12. Update state: Γ = Γ ∪ {γ}; ΓA = ΓA ∪ {γ}; RFND(γ) = trr
13. Return message (success, sid,msg) to Z
Channel Update: A party P, upon receiving msg =
(state update, sid, γ,P0, b0,P1, b1, δt) from Z does: Let PA = γ.PA
and PB = γ.PB.

1. Party is addressed: Check P ∈ {PA,PB}. Otherwise ignore re-
quest. In the following let Pc be P’s counterparty

2. Verify P ∈ {PA,PB}. Otherwise ignore request. In the following
let Pc be P’s counterparty

3. Perform consent verification({Pc},msg)
4. if P0 = PA then bA = b0, bB = b1 else bA = b1, bB = b0
5. Verify (PA,PB, γ) ∈ Γ ; γ ∈ Γ ; δt ≥ ∆; γ.t − δt > max(γ.t0, τ);
bA + bB = γ.bB + γ.bA

6. Refund: trr = trr = REFUND TR(γ.f , γ.t− δt, bA, bB)
7. Perform sign broadcast({PA,PB}, trr, {PA,PB})
8. Update state: γ = (γ.f,PA,PB, bA, bB, γ.t− δt, γ.t0); RFND(γ) =

trr
9. Send message (success, sid,msg) to Z
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Close: A party P, upon receiving msg = (close, sid, γ) from Z does:
Let PA = γ.PA and PB = γ.PB.

1. Verify P ∈ {PA,PB}. Otherwise ignore request. In the following
let Pc be P’s counterparty.

2. Execute consent verification({Pc},msg)
3. Verify (PA,PB, γ) ∈ Γ
4. Refund: trr = trr = REFUND TR(γ.f , γ.t, γ.bA, γ.bB)
5. Perform sign broadcast({PA,PB}, trr, {PA,PB})
6. Update state: γ = (γ.f,PA,PB, γ.bA, γ.bB, 0); RFND(γ) = trr
7. Return message (success, sid,msg) to Z

Enforce: A party P upon receiving msg = (enforce, sid, γ) from
party Z does: Let PA = γ.PA and PB = γ.PB.

1. Verify:
– γ ∈ ΓA; γ.t ≤ τ . In the following let φ−1(RFND(γ)) = (m, t,Σ),

(In,Out) = m
2. Let (In,Out) = m. For all o ∈ In send message (check, sid, o)

to GUTXO−Ledger. If it replies (check okay, sid, o) for all o ∈ In
continue, otherwise if it replies (check failure, sid, o) for any
o ∈ In halt

3. Set Γ = Γ \ {γ}, ΓA = ΓA \ {γ}
4. Send (transaction, sid, tr) to FScript

5. Return message (success, sid,msg) to Z.

Similar to the functionality we provide an extension of our protocol
which is PWCHv that includes an interface of opening a pairwise payment
channel that can be used with the virtual channel construction. More
specifically it allows for the Funding UTXO to not be committed to the
ledger.
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Protocol PWCHv

Protocol that behaves as PWCH but is modified to facilitate use
with virtual channels by providing following sub-protocol:
Open Virtual: A call of this sub-protocol is of form
open virtual(f,PA,PB, bA, bB, t, t0) where f is a funding output, bA,
bB ∈ N are amounts of coins and t, t0 ∈ N are round numbers. Let P
be caller of this function. Then:

1. Set trr = REFUND TR(f , t, bA, bB)
2. Perform sign broadcast({PA,PB}, trr, {PA,PB})
3. Channel: γ = (f,PA,PB, bA, bB, t, t0)
4. Update internal state: Γ = Γ ∪ {γ}
5. Return γ, trr

11 The Formal Virtual Channel Protocol

Protocol LVPCPWCHv utilizes protocols PWCHv to implement function-
ality FLVPC,FPWCH

. In addition to the sub-protocols stated below, parties
perform non-function specific behavior to track time, and handle misbe-
having parties. This behavior is shared with protocol LVPCPWCHv and we
refer to the previous section for details.

Analogous to protocol PWCHv the protocols’ design is derived from
functionality FLVPC,FPWCH

and follows its structure, however, in turn it
has to handle creation and storage of transactions and it has to handle
signatures of transactions as well as their order to enforce atomic setup
of our construction.

Protocol LVPCPWCHv

Has access to PWCHv’s internal state and helper sub-protocols.
State: Each party P stores the following state. Set of closable virtual
payment channel Γ v, set Trv of entries (γ′v, tr) where γ′v is a virtual
payment channel, tr is a transaction. It has access to the internal
state and helper protocols of PWCHv and shares common state with
PWCHv which is the current round number τ , verification key v list
of other parties’ verification keys V and set of consent giving parties
CONS.
Initialization: Execute PWCHv’s Initialization sub-protocol. More-
over set Γ v = Trv = ∅.
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VC-Open: Executed upon receiving message msg =
(open, sid, γ0, γ1, δ, t,PA,PB,PC) where γ0, γ1 ∈ Γ , δ ∈ N is an
amount of coins and t ∈ N is a point in time. In the following let
PCMP = {PA,PB,PC} \ {P} and Partiesh = {PA,PB,PC} \ COR.

1. Party is addressed: Check P ∈ {PA,PB,PC}, otherwise ignore
request

2. Perform consent verification(PCMP ,msg)
3. Verify:

– {PA,PB} = {γ0.PA, γ0.PB} and {PB,PC} = {γ1.PA, γ1.PB}
– for each γ ∈ {γ0, γ1}: if P ∈ {γ.PA, γ.PB} then
• γ ∈ FvPWCH.Γ ; γ.t > τ + 2∆; γ.t0 > τ + 2∆; γ.bA ≥ δ/2

and γ.bB ≥ δ/2
4. PA and PB: tr0,S = SPLIT TR(γ0.f , δ, γ0.t−∆)

tr0,p = PUNISH TR(OUT DELTA(tr0,S), PA, max(γ0.t, γ1.t) +∆)
5. PB and PC : tr0,S = SPLIT TR(γ1.f , δ, γ1.t−∆)

tr1,p = PUNISH TR(OUT DELTA(tr1,S), PC , max(γ0.t, γ1.t) +∆)
6. trmrg = MERGE TR(OUT DELTA(tr0,S), OUT DELTA(tr0,S), δ,

max(γ0.t, γ1.t))
7. PA and PB:
γA,B, trA,B = open virtual(OUT CH(tr0,S),PA,PB, balance(γ0,PA)−
δ/2, balance(γ0,PB)− δ/2, t, γ0.t)

8. PB and PC : γB,C , trB,C = open virtual(OUT CH(tr1,S), PB, PC ,
balance(γ1, PB) − δ/2, balance(γ1, PC) − δ/2, t, γ1.t)

9. PA and PC : γA,C , trA,C = open virtual(OUT CH(trmrg), PA, PC ,
δ/2, δ/2, t, max(γ0.t, γ1.t) + ∆)

10. Perform sign broadcast({PA,PB,PC}, trmrg, {PA,PB,PC})
11. Perform sign broadcast({PA,PB}, tr0,p, {PA,PB})
12. Perform sign broadcast({PB,PC}, tr1,p, {PB,PC})
13. Perform sign broadcast({PA}, tr0,S , {PA,PB})
14. Perform sign broadcast({PC}, tr1,S , {PB,PC})
15. Perform sign broadcast({PB}, tr0,S , {PA,PB})
16. Perform sign broadcast({PB}, tr1,S , {PB,PC})
17. PA,PB: Γ = Γ ∪ {γA,B}; activate(γA,B, trA,B); revoke(γ0)
18. PB,PC : Γ = Γ ∪ {γB,C}; activate(γB,C , trB,C); revoke(γ1)
19. PA,PC : Γ = Γ ∪ {γA,C}; activate(γA,C , trA,C)
20. Setup virtual channel: γv = (γ0, γ0.t, γ1.f , γ1.t, γA,B, γB,C , γA,C ,
PA, PB, PC), δ, min(γ0.t, γ1.t)− 2∆)
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21. State Update: Γ v = Γ v ∪{γv} and Trv = Trv ∪{(γv, tr0,S , tr0,S .t),
(γv, tr1,S , tr1,S .t), (γv, trmrg, trmrg.t), (γv, tr0,p, tr0,p.t), (γv, tr1,p,
tr1,p.t)}

22. Return message (success, sid,msg) to Z
VC-Close: Executed upon receiving message msg = (close, sid, γv, )
from Z. Let PA = γv.PA, PB = γv.PB and PC = γv.PC . Let
(γ0, γ1, γA,B, γB,C , γA,C ,PA,PB,PC , δ, t) = γv; PCMP = {PA,PB,PC}\
{P}. Do:

1. Party is addressed: Check P ∈ {PA,PB,PC}. Otherwise ignore
request.

2. Perform consent verification(PCMP ,msg)
3. Verify:

– γv ∈ Γ v; {γA,B, γB,C , γA,C} ⊆ FvPWCH.Γ ; t > τ ; γ0.t0 > τ +
2∆, γ1.t0 > τ + 2∆

4. revoke(γA,B), revoke(γB,C), revoke(γA,C)
5. For PA,PB do: tr0,r = REFUND TR(γ0.f , γ0.t−2∆, sumA, sumB)

where sumA = γA,B.bA + γA,C .bA and sumB = γA,B.bB + γA,C .bB
6. For PB,PC do: tr1,r = REFUND TR(γ1.f , γ1.t−2∆, sum′B, sumC)

where sum′B = γB,C .bA + γA,C .bA and sumC = γB,C .bB + γA,C .bB
7. Perform sign broadcast({PA}, tr0,r, {PA,PB})
8. Perform sign broadcast({PC}, tr1,r, {PB,PC})
9. Perform sign broadcast({PB}, tr0,r, {PA,PB})

10. Perform sign broadcast({PB}, tr1,r, {PB,PC})
11. PA,PB:

(a) γ0 = (γ0.f,PA,PB, bA, bB, γ0.t− 2∆, γ0.t0)
(b) activate(γ0, tr0,r)

12. PB,PC :
(a) γ1 = (γ1.f,PB,PC , bB, bC , γ1.t− 2∆, γ1.t0)
(b) activate(γ1, tr1,r)

13. Update internal state: Γ v = Γ v \ {γv}
14. Return message (success, sid,msg) to Z

VC-Enforce: Triggered upon receiving msg = (enforce, sid, γv) from
party Z where γv is a lightweight virtual payment channel. Let
PA = γv.PA, PB = γv.PB and PC = γv.PC .

1. Check there is an enforceable mapping: Let TRγ = (γ, tr) ∈
{(γ′, tr′)|(γ′, tr′) ∈ TRv, γ′ = γ, tr′.t ≤ τ}.
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2. ∀(γ, tr) ∈ TRγ :
– Let φ−1(tr) = (m, t,Σ), (In,Out) = m.
– ∀o ∈ In send message (check, sid, o) to GUTXO−Ledger
– if ∀o ∈ In it replies (check okay, sid, o) then send message

(transaction, sid, tr) to FScript.
– Set Γ v = Γ v \ {γv}

3. Return message (success, sid,msg) to Z

12 Simulation Based Security Proof

In the following we provide simulation based proof of the security of our
protocols. First we construct simulators SPWCH and SV LPC . Thereafter,
using those we introduce and prove security as stated in Theorems 1 and
2 below.

Simulator SPWCH

State: Simulates protocol PWCH creating the internal states of each
party and maintaining their view. Moreover it stores a set of cor-
rupted parties COR.
Initialization: Creates and initializes internal state of each of the sim-
ulated parties. At beginning of execution the adversary can corrupt
any parties in which case the simulator will leak the corrupted par-
ties’ internal state to the adversary and stores their identities in COR.
Upon request from the functionality, the simulator responds with the
set of corrupted parties COR.
Behavior: Whenever the functionality leaks a message with sender
and receiver appended, SPWCH simulates sending of that message
by the sender to the receiver. If the message’s receiver is a corrupted
party, SPWCH forwards the message to the respective party. When-
ever any simulated party or the adversary send a message to a func-
tionality, i.e. FScript, FSIG, GUTXO−Ledger, GCLOCK or to Z, the simu-
lator leaks it to FPWCH annotating sender and receiver. If the sending
entity expects a reply the simulator waits for FPWCH to leak it.
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Simulator SV LPC
State: Simulates protocol LVPCPWCHv creating the internal states of
each party and maintaining their view. Moreover it stores a set of
corrupted parties COR.
Initialization and Behavior are analogous to SPWCH , however it in-
teracts with FLVPC,Fv

PWCH
instead of FPWCH.

Theorem 1. Protocol PWCH realizes FPWCH in the (GCLOCK, GUTXO−Ledger,
FSIG, FScript) - hybrid world

Sketch of Proof. First, we show that the probability that the simulated
parties and parties in the hybrid world have different state changes with
the same requests from Z is in O(negl(n)). The probability that the chan-
nel states stored by FPWCH is different to those stored by the parties is
in O(negl(n)). The probability that the global functionality GUTXO−Ledger
has different state changes depending on whether Z sends the same re-
quests to either the ideal or the hybrid world is in O(negl(n)). We argue
that following this the simulation by SPWCH is indistinguishable from
the execution in the hybrid world and IDEALF ,S,Z ≈c HYBRIDπFaux ,A,Z .

We briefly handle the case that two parties corrupted by the ad-
versary are instructed to setup a pairwise payment channel. Note that
FPWCH is aware on which parties are corrupted by the adversary by in-
quiring this information from SPWCH . In this case FPWCH forwards re-
quests from Z to SPWCH where they are handed to the adversary, but
ignores them otherwise. Any communication between corrupted parties
and GCLOCK, GUTXO−Ledger, FSIG, FScript or Z are forwarded by SPWCH and
FPWCH to the appropriate interfaces, resulting in the same state changes
in GUTXO−Ledger and the same messages received by corrupted parties and
the adversary as in the hybrid world.

In the following we assume that all pairwise payment channel created
by instructions of Z have at least one party participating that is not
corrupted by the adversary. Any requests sent by Z are forwarded by
FPWCH to SPWCH to be simulated such that all requests are received in
the simulation. The same requests are permissible in either world, either
by having access to the same functionalities, as FSIG, or by FPWCH provid-
ing an interface for the sub-protocols in PWCH. Each request is subject
to the same checks in either world. Upon each request, the functionality
as well as the protocol verify consent between all honest parties. Consent
of corrupted parties is implicit by their cooperation or lack thereof. After-
wards checks on the parameter within a request are performed which are
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the same. Attention has to be paid to verification that an utxo ∈ UTXO
is logged on the ledger. These require sending messages to GUTXO−Ledger
tagged with check. The replies on these messages are time-dependent as
messages tagged to GUTXO−Ledger tagged transaction can alter its state
at any time and the adversary might try to delay execution of the pro-
tocol to provoke receiving different replies from GUTXO−Ledger. However,
FPWCH waits with sending any such message for the simulation to catch
up such that they are sent at the same time and the same replies are
processed by functionality and simulation. The same holds for messages
sent to GUTXO−Ledger tagged transaction in sub-functions open and enforce
to account for delays created by the adversary. At the end of execution,
successful checks have to lead to the same state changes to be applied be-
tween the simulated parties and the analogous state in FPWCH. However, a
corrupted party might deviate from the protocol in which case any honest
party will abort the sub-protocol. If such behavior is observed any hon-
est party will send a message (failure, sid,msg) to Z where msg is the
message with Z’s request which is forwarded to FPWCH by the simulator.
Respectively FPWCH will abort execution of the respective sub-function
and forward the message to the respective dummy party. However, if no
such behavior was observed any simulated honest party will output a
message to Z of form (success, sid,msg) which indicates to FPWCH that
the respective party finished execution by the sub-protocol including per-
forming a state change. Only then FPWCH performs an analogous state
change.

In the enforce sub-function a refund mapping is created on the fly
depending on the channel’s state. This is not possible in the protocol as a
corrupted party could refuse collaboration. Respectively, in the protocol
when a channel is setup as well as when a channel changes state, a refund
transaction representing the latest state has to be created and signed
by both involved parties to be able to execute enforce unilaterally by
any honest party. We note that whether execution of enforce results in
applying a state change to the ledger depends on when it is executed.
A honest party always attempts to apply a channel’s latest state to the
ledger. If enforce is instructed as soon as a channel γ’s lifetime expires,
i.e. at time γ.t, this will always result in the appropriate state change
as there is no transaction with timelock of less than γ.t + ∆. However,
if enforce is executed later, a corrupted party might attempt to send a
transaction representing an older channel’s state applying it to the ledger.
Nevertheless, as such a transaction would be simply forwarded by FPWCH

this would be the same in either ideal or hybrid world.
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Lastly, an adversary can attempt to forge the signature of a honest
party to create a transaction that spends a channel’s Funding utxo. How-
ever it is shown that the probability for this is in O(negl(n)) [2].

Theorem 2. Protocol LVPCPWCH realizes FLVPC,FPWCH
in the (GCLOCK,

GUTXO−Ledger, FSIG, FScript) - hybrid world.

Sketch of Proof. The proof is analogous to the proof of Theorem 1, how-
ever, in addition we need to analyze the interaction between the parties
because we moved from a protocol between two parties to a protocol
between three parties.

Functionality FLVPC,Fv
PWCH

creates and stores all mappings of a virtual
channel construction and creates, re-activates and disables pairwise pay-
ment channels simultaneously. However, corrupted parties might try to
create only a subset of transactions by selectively providing or withholding
signatures of transactions. In the protocol, the order in which transactions
are signed enforces that from the perspective of a honest party, either all
transactions they hold are fully signed or none of the transaction created
in a sub-protocol can be committed to the ledger before it successfully
terminates.

In the case of the VC-Open protocol, all transactions a honest party
is involved in creating depends on whether the split transactions it holds
can be committed to the ledger. Respectively the party needs to make
sure that it holds all other transactions fully signed before proceeding
to sign any split transactions. As the intermediate party holds two split
transactions, it has to make sure that either all or no split transaction
is signed. For this reason it has to wait signing split transactions and
broadcasting these signatures until it received signatures for each split
transaction from the respective counterparties. For the same reason, in
the case of the VC-Close protocol, the intermediate party has to make
sure that it holds the signatures of refund transactions of the reactivated
pairwise payment channel before signing any of these itself to ensure that
either both or no pairwise payment channel is reactivated.

13 Future Work

We use timelocks to create an order in which transactions in our con-
structions are valid. However, different techniques for invalidating trans-
actions or replacing transactions offchain might be used instead to have
less restrictions on the lifetime of a virtual channel. For this we can adapt
techniques as introduced for the Lightning Network [16] or eltoo [15].
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Lastly we argue that our construction provides incentive for research
into route discovery protocols that yield multiple paths. We reason that
while virtual channel expand the payment channel network topology, they
also reduce the total capacity of the channels involved. Even though vir-
tual channel allow for shorter paths as well as increase the number of
possible paths from a source to a target, larger payments that exceed the
capacity of a virtual channel have to be routed through multiple paths to
be able to ulitize this, for instance using the AMP protocol [14].
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