
Homomorphic string search with constant
multiplicative depth

Charlotte Bonte and Ilia Iliashenko

imec-COSIC, Dept. Electrical Engineering, KU Leuven, Belgium
{charlotte.bonte, ilia}@esat.kuleuven.be

Abstract. String search finds occurrences of patterns in a larger text.
This general problem occurs in various application scenarios, f.e. Internet
search, text processing, DNA analysis, etc. Using somewhat homomor-
phic encryption with SIMD packing, we provide an efficient string search
protocol that allows to perform a private search in outsourced data with
minimal preprocessing. At the base of the string search protocol lies a
randomized homomorphic equality circuit whose depth is independent
of the pattern length. This circuit not only improves the performance
but also increases the practicality of our protocol as it requires the same
set of encryption parameters for a wide range of patterns of different
lengths. This constant depth algorithm is about 12 times faster than the
prior work. It takes about 5 minutes on an average laptop to find the
positions of a string with at most 50 UTF-32 characters in a text with
1000 characters. In addition, we provide a method that compresses the
search results, thus reducing the communication cost of the protocol. For
example, the communication complexity for searching a string with 50
characters in a text of length 10000 is about 347 KB and 13.9 MB for a
text with 1000000 characters.

1 Introduction

The string search problem consists in finding occurrences of a given string (the
pattern) in a larger string (the text). This problem arises in various branches
of computer science including text processing, programming, DNA analysis,
database search, Internet search, network security, data mining, etc.

In real-life scenarios, string-searching algorithms often deal with private in-
formation. For example, the business model of Internet search engines is based
on profiling users given their search queries, which is later used for targeted
advertising. Another example is the analysis of genomic data. Doctors can out-
source the genomic data of their patients to a service provider and query parts
of this data remotely. If this information is exposed in the clear to the service
provider, it might be exploited in an unauthorized way.

To protect private data, users and service providers can resort to a special
type of encryption algorithms, called homomorphic encryption (HE) [25]. In
addition to data hiding, HE allows to perform computations on encrypted data
without decrypting it. Depending on computational capabilities, HE schemes

are divided into several classes. The most powerful class is fully homomorphic
encryption (FHE) that allows to compute any function on encrypted values. The
first realization of FHE was presented in [15].

In secure string search, FHE has the following advantages over other privacy-
preserving cryptographic tools.

– Low communication complexity. FHE requires only two communication rounds
and its communication overhead is proportional to the plaintext size, whereas
Yao’s garbled circuits [30] have communication complexity proportional to
the running time of the string-searching algorithm.

– Non-interactiveness. FHE does not require users and service providers to be
present on-line while computing a string-searching algorithm. In contrast,
multi-party computation (MPC) [30,18] is based on extensive on-line com-
munication between the parties.

– Universality. Any string-searching algorithm can be implemented with FHE
without or with little data preprocessing. This allows to keep data in a form
that is accessible for other computational tasks. On the contrary, private-
information retrieval (PIR) [12], oblivious RAM (ORAM) [17] and private-
set intersection (PSI) [8] protocols require data to be converted to a specific
format that introduces additional time and memory overhead.
In particular, PIR and ORAM retrieve an element with a unique identi-
fier. Thus, substrings with the same sets of characters should be attached
additional labels (e.g. their positions in the text) to distinguish them. PSI
computes the intersection between the query (pattern) and the data (text).
Thus, PSI checks only the pattern presence in the text without specifying its
positions and the number of its occurrences. It implies that both the pattern
and the text must be turned into sets whose intersection contains all the
positions of the text substrings matching the pattern.

– No data leakage. Since the semantic security of the existing FHE schemes
is based on hard lattice problems, FHE is believed to hide any information
about encrypted data except for the maximal data size. In contrast, sym-
metric searchable encryption (SSE) [28] assumes so-called “minimal leakage”
that usually includes whether the same data is accessed on the server side
(access pattern) or whether the same query is generated by the client (search
pattern).

Nevertheless, the efficiency of FHE schemes in general is far from practical
despite numerous optimizations and tricks [4,13,20,11,7]. A more efficient ap-
proach is to resort to somewhat homomorphic encryption (SHE) [15] that can
compute any function of bounded multiplicative depth. SHE is a better option in
practical use cases where a function to be computed is often known in advance.

The most efficient SHE schemes are based on algebraic lattices [5,14]. It was
noticed in [26] that the algebraic structure of these lattices yields a way of pack-
ing several data values into one homomorphic ciphertext. A homomorphic arith-
metic operation applied on such a ciphertext results in an arithmetic operation
operation simultaneously applied on all the packed data values. In other words,

2

a single homomorphic instruction acts on multiple data values. This is why this
technique is called SIMD packing. SIMD packing not only reduces ciphertext-
plaintext expansion ratio of SHE/FHE schemes but also significantly reduces
the computational overhead of homomorphic circuits even when parallelism is
not required [16].

The multiplicative depth of the existing homomorphic string-searching and
pattern-matching algorithms with SIMD packing [9,10,29,23,22,1,2] depends on
the pattern length, which makes it hard to set encryption parameters for pat-
terns of varying lengths. In this work, we show how using the SIMD techniques
from [16] and randomization, we can efficiently address this problem.

1.1 Contribution

We propose a general framework for the design of homomorphic string search
protocols using SHE schemes with SIMD packing.

We consider the setting where a client places encrypted data on a server and
at a later point in time wants to search for a specific pattern without revealing
the text, the pattern or the result of string search to the server. In addition, our
framework is applicable when the server has plaintext data and the client wants
to query it without revealing the pattern and the results of string search.

This framework includes the following steps.

Preprocessing. We provide a simple algorithm for converting a large text
into a set of ciphertexts with reasonably small encryption parameters such that
a homomorphic string search algorithm can efficiently operate on them. Since
this algorithm preserves the natural representation of the text as an array of
characters, the server can easily change the text on the client’s request.

Processing. Even though any secure string search algorithm without prepro-
cessing can be applied at this stage, we provide a concrete efficient example. In
particular, we design a randomized homomorphic circuit with false-biased proba-
bility 1/q that checks the equality relation between pairs of encrypted strings en-
coded as vectors over a finite field Fq. Combining homomorphic SIMD techniques
from [26,16] and the randomization method of Razborov-Smolensky [24,27], this
circuit achieves constant multiplicative depth, which allows to set a single set
of encryption parameters for different pattern lengths. Furthermore, it requires
fewer homomorphic multiplications, which leads to a significant improvement in
computational time over the prior works [23,22,2].

Postprocessing. We describe a new compression technique that allows to
combine the encrypted results of the string search such that the number of
ciphertexts transmitted from the server to the client is reduced by a linear factor.

To demonstrate the efficiency of our framework, we provide its concrete run-
ning time using implementation in the HElib library [21] and compare it with
the prior works.

3

1.2 Related works

The first work on homomorphic string search and pattern matching was pre-
sented in [31,32]. Despite the efficiency of this algorithm, it has several functional
drawbacks.

First, it assumes that data values are packed into plaintext polynomial coef-
ficients. This type of encoding does not admit SIMD operations. Therefore, to
manipulate individual data values one should resort to the coefficient-extraction
procedure, which is expensive in practice [6].

Secondly, given r ciphertexts encrypting the text, this algorithm returns ex-
actly the same number of ciphertexts encrypting string search results. Thus, the
communication complexity in this case is exactly the same as in the naive proto-
col where the server sends all r ciphertexts of the text to the client. If the client
owns the text and uses the server to outsource his data, this problem makes the
above algorithm meaningless.

Every string search algorithm uses the equality function as a subroutine.
Thus, the optimization of a homomorphic string search often boils down to the
optimization of the homomorphic equality function. The first equality circuit for
binary data encoded in the SIMD manner was proposed by Cheon et al. [9]. This
paper shows how homomorphic permutations of SIMD slots can be exploited to
decrease the complexity of the equality circuit as predicted in [16]. Further, Kim
et al. [23] designed an efficient equality circuit over arbitrary finite fields by
employing the homomorphic Frobenius map. However, the multiplicative depth
of the above circuits depends on the input length. In our work, we remove this
dependency.

In [2], a homomorphic string search is based on the classic binary equality
circuit and a randomized OR circuit. Both circuits depend on the input length,
but the multiplicative depth of the OR circuit is decreased by the randomization
method of Razborov and Smolensky [24,27]. In our work, we exploit the extreme
version of this method where the failure probability depends only on the plaintext
space size. This makes the depth of our matching algorithm constant at the cost
of a large plaintext space, which we efficiently use in the preprocessing and
postprocessing steps.

Another drawback of [2] is that it deals only with data encrypted bit-wise
and exploits the SIMD packing only for parallel search in several texts, while
ignoring the techniques from [16]. This data encoding increases the input length
and thus introduces a larger computational overhead in comparison to the cir-
cuits in [9,23,22] as more homomorphic multiplications are required to compute
the equality function. Moreover, the communication complexity is dependent on
the bit-size of the pattern. In our work, the characters are encoded into a finite
field Fq, which results in a bigger number of characters that can be encrypted
by one ciphertext. Furthermore, by employing the SIMD techniques from [16],
we are able to keep and process characters of the same text in each ciphertext.
This means that if the pattern length is always less than the ciphertext capacity,
then we need only one ciphertext to encrypt the pattern. This makes the com-

4

munication complexity from the client to the server independent on the pattern
length.

Another advantage of our work is that our string search algorithm can find
all the string matches in one round, whereas in [2] only one match is returned
to the client.

2 Preliminaries

2.1 Notation

Vectors are written in column form and denoted by boldface lower-case letters.
The vector containing only 1’s in its coordinates is denoted by 1. We write 0 for
the zero vector.

The set of integers {`, . . . , k} is denoted by [`, k]. For a positive integer t, let
wt(t) be the Hamming weight of its binary expansion.

Let t be an integer with |t| > 1. We denote the set of residue classes modulo
t by Zt. The class representatives of Zt are taken from the half-open interval
[−t/2, t/2).

2.2 Cyclotomic fields and Chinese Remainder Theorem

Let m be a positive integer and n = φ(m) where φ is the Euler totient function.
Let K be a cyclotomic number field constructed by adjoining a primitive complex
m-th root of unity to the field of rational numbers. We denote this root of unity
by ζm, so K = Q(ζm). The ring of integers of K, denoted by R, is isomorphic to
Z[X]/ 〈Φm(X)〉 where Φm(X) is the mth cyclotomic polynomial.

Let Rt be the quotient of R modulo an ideal 〈t〉 generated by some element
t ∈ R. The ring Rt is isomorphic to the direct product of its factor rings as
stated by the Chinese Reminder Theorem (CRT).

Theorem 1 (The Chinese Remainder Theorem for Rt). Let t be an inte-
ger with |t| > 1 and 〈t〉 be an ideal of R generated by t. Let 〈t〉 be the product of
pairwise co-prime ideals I0, . . . , Ik−1, then the following ring isomorphism holds

Rt ∼= R/I0 × . . .×R/Ik−1 (1)

where the ring operations of the right-side direct product are component-wise
addition and multiplication.

We can further characterize this isomorphism by using standard facts from num-
ber theory. Let t be a prime number. The cyclotomic polynomial Φm(X) splits
into k irreducible degree-d factors f0(X), . . . , fk−1(X) modulo t where d is the
order of t modulo m, i.e. td ≡ 1 mod m. Note that d = n/k. Correspondingly,
the ideal 〈t〉 splits into k prime ideals 〈t, f0(X)〉 , . . . , 〈t, fk−1(X)〉. Hence, for
any i ∈ [0, k − 1] the quotient ring R/Ii = Z[X]/ 〈t, fi(X)〉 is isomorphic to the
finite field Ftd . As a result, we can rewrite the isomorphism in (1) as Rt ∼= Fktd .

5

We call every copy of Ftd in the above isomorphism a slot. Hence, every
element of Rt corresponds to k slots, which implies that an array of k elements
of Ftd can be encoded as a unique element of Rt. We enumerate the slots in the
same way as ideals Ii’s. Namely, the slot isomorphic to R/Ii is referred to as
the ith slot.

Addition (multiplication) of Rt-elements results in coefficient-wise addition
(multiplication) of their respective slots. In other words, a single Rt operation
induces a single operation applied on multiple Ftd elements, which resembles the
Single-Instruction Multiple-Data (SIMD) instructions used in parallel comput-
ing.

Using multiplication, we can easily define a projection map πi on Rt that
sends a ∈ Rt encoding slots (m0, . . . ,mk−1) to πi(a) encoding (0, . . . ,mi, . . . , 0).
In particular, πi(a) = agi, where gi ∈ Rt encodes (0, . . . , 1, . . . , 0). For any
I ⊆ {0, . . . , k − 1}, we can easily generalize this projection to πI(a) = agI with
gI ∈ Rt encoding 1 in the SIMD slots indexed by I.

The field K = Q(ζm) is a Galois extension and its Galois group Gal (K/Q)
contains automorphisms of the form σi : X 7→ Xi where i ∈ Z×m. The automor-
phisms that fix every ideal Ii in the above decomposition of 〈t〉 form a subgroup
Gt of Gal (K/Q) generated by the automorphism σt, named the Frobenius au-

tomorphism. Since (a(X))t
i

= a(Xti) for every a(X) ∈ Ftd , the elements of Gt
map the values of SIMD slots to their (ti)-th powers for i ∈ [0, d− 1].

The elements of the quotient group H = Gal (K/Q) /Gt act transitively on
I0, . . . , Ik−1, thus permuting corresponding SIMD slots. However, the order of
H is n/d = k, which is less than k!, the number of all possible permutations on
k slots. Gentry et al. [16] showed that every permutation of SIMD slots can be
done via combination of automorphisms from H, projection maps and additions.

One can define the map χ0 : a 7→ at
d−1 from Ftd to the binary set {0, 1}.

According to Euler’s theorem, this map, called the principal character, returns
1 if a is non-zero and 0 otherwise. Since

at
d−1 = a(t−1)(t

d−1+···+1) =

d−1∏
i=0

(at−1)t
i

, (2)

χ0 can be computed with Frobenius maps and multiplications.

2.3 String search

The goal of string search is to find occurrences of a given string, called the
pattern, in a larger string T, called the text. Formally, let Σ be a finite alphabet,
i.e. a finite set of characters. The pattern and the text are arrays of characters
P [0 . . .M − 1] and T [0 . . . N − 1], respectively, where characters are taken from
Σ. Assume that M ≤ N . The string search problem is to find all S ∈ [0, N −M]
such that P [i] = T [S + i] for any i ∈ [0,M − 1]. In other words, this problem
asks to find the positions of all substrings of T that match P .

We assume that there exist an injective map φ : Σ → Ftd that encodes char-
acters of the alphabet Σ into the finite field Ftd . Thus, the pattern and the text
can be considered as vectors over Ftd .

6

3 Homomorphic operations

In this work, we exploit leveled HE schemes that support the SIMD operations
on their plaintexts. Such schemes include FV [14] and BGV [5], whose plaintext
space is the ring Rt for some t > 1. The general framework of these schemes is
outlined below.

3.1 Basic setup

Let λ be the security level of an HE scheme. Let L be the maximal multiplica-
tive depth of homomorphic circuits we want to evaluate. Let d be the order of
the plaintext modulus t modulo the order m of R. Assume that the plaintext
space Rt has k SIMD slots, i.e. Rt ∼= Fktd . For a vector a ∈ Fktd , we denote the
plaintext encoding of a by pt(a). The basic algorithms of any HE scheme are
key generation, encryption and decryption.

KeyGen(1λ, 1L)→ (sk, pk). Given λ and L, this function generates the secret
key sk and the public key pk. Note that pk contains key-switching keys that
help to transform ciphertexts encrypted under other secret keys to ciphertexts
encrypted under sk.

Encrypt(pt ∈ Rt, pk) → ct. The encryption algorithm takes a plaintext pt

and the public key pk and outputs a ciphertext ct.
Decrypt(ct, sk) → pt. The decryption algorithm takes a ciphertext ct and

the secret key sk and returns a plaintext pt. For freshly encrypted ciphertexts,
the decryption correctness means that Decrypt(Encrypt(pt, pk), sk) = pt.

3.2 Arithmetic operations

Basic arithmetic operations in SHE are addition and multiplication.
Add(ct1, ct2)→ ct. The addition algorithm takes two input ciphertexts ct1

and ct2 encrypting plaintexts pt1 and pt2 respectively. It outputs a ciphertext
ct that encrypts the sum of these plaintexts in the ring Rt. It implies that
homomorphic addition sums respective SIMD slots of pt1 and pt2.

AddPlain(ct1, pt2)→ ct. This algorithm takes a ciphertext ct1 encrypting
a plaintext pt1 and a plaintext pt2. It outputs a ciphertext ct that encrypts
pt1 + pt2. As for the Add algorithm, AddPlain sums respective SIMD slots of
pt1 and pt2.

Mul(ct1, ct2) → ct. Given two input ciphertext ct1 and ct2 encrypting
plaintext pt1 and pt2 respectively, the multiplication algorithm outputs a cipher-
text ct that encrypts the plaintext product pt1 · pt2. As a result, homomorphic
multiplication multiplies respective SIMD slots of pt1 and pt2.

MulPlain(ct1, pt2) → ct. Given a ciphertext ct1 encrypting plaintext pt1
and a plaintext pt2, this algorithm outputs a ciphertext ct that encrypts the
plaintext product pt1 · pt2. As a result, MulPlain multiplies respective SIMD
slots of pt1 and pt2.

Using the above operations as building blocks, one can design homomorphic
subtraction algorithms.

7

Sub(ct1, ct2) = Add(ct1, MulPlain(ct2, pt(−1)))→ ct. The subtraction al-
gorithm returns a ciphertext ct that encrypts the difference of two plaintext
messages pt1 − pt2 encrypted by ct1 and ct2, respectively.

SubPlain(ct1, pt2) = AddPlain(ct1, pt2 · pt(−1)) → ct. This algorithm
returns a ciphertext ct that encrypts pt1 − pt2 where pt1 is encrypted by ct1.
We consider SubPlain(pt1, ct2) to be equivalent to SubPlain(ct1, pt2).

As shown in Section 2.2, the projection map πI can select the SIMD slots
indexed by a set I ⊆ [0, k − 1] and set the rest to zero. This operation is homo-
morphically realized by the Select function.

Select(ct, I) = MulPlain(ct, pt(1I))→ ct′ where 1I is a vector having 1’s
in the coordinates indexed by a set I and zeros elsewhere. Given a ciphertext
ct encrypting SIMD slots m = (m0,m1, . . . ,mk−1) and a set I, this function
returns a ciphertext ct′ that encrypts m′ = (m′0, . . . ,m

′
k−1) such that m′i = mi

if i ∈ I and m′i = 0 otherwise.

3.3 Special operations

One can also homomorphically permute the SIMD slots of a given ciphertext
and act on them with the Frobenius automorphism.

Rot(ct, i) → ct′ with i ∈ [0, k − 1]. Given a ciphertext ct encrypt-
ing SIMD slots m = (m0,m1, . . . ,mk−1), the rotation algorithm returns a
ciphertext ct′ that encrypts the cyclic shift of m by i positions, namely
(mi,m(i+1) mod k, . . . ,m(i−1) mod k).

Frob(ct, i)→ ct′ with i ∈ [0, d− 1]. Given a ciphertext ct encrypting SIMD
slots m as above, the Frobenius algorithm returns a ciphertext ct′ that encrypts
a Frobenius map action on m, namely (mti

0 ,m
ti

1 , . . . ,m
ti

k−1).

As discussed in Section 2.2, the Frob and Mul operations can be combined
to compute the principal character χ0(x), which tests whether x is non-zero.

IsNonZero(ct) → ct′. Given a ciphertext ct encrypting SIMD slots
m = (m0,m1, . . . ,mk−1), this function returns a ciphertext ct′ that encrypts

(χ0(m0), χ0(m1), . . . , χ0(mk−1)). Recall that χ0(m) = mtd−1 =
∏d−1
i=0 (mt−1)t

i

as shown in (2). The multiplicative depth of xt−1 is equal to dlog2(t− 1)e. The

multiplicative depth of xt
i

is zero as it can be done by the Frob operation. In
total, d− 1 Frob operations are needed to compute χ0(m). As a result, the total
multiplicative depth of IsNonZero is

dlog2(t− 1)e+ dlog2 de . (3)

Using general exponentiation by squaring, xt−1 requires blog2(t− 1)c + wt(t −
1)−1 field multiplications. Since d−1 field multiplications are needed to compute∏d−1
i=0 (xt−1)t

i

, the total number of multiplications to compute χ0(m) is

blog2(t− 1)c+ wt(t− 1) + d− 2. (4)

8

Table 1: The cost of homomorphic operations with relation to running time and
noise growth.

Operation Time Noise

Add cheap cheap
AddPlain cheap cheap

Mul expensive expensive
MulPlain cheap moderate

Sub cheap cheap
SubPlain cheap cheap
Select cheap moderate
Rot expensive moderate
Frob expensive cheap

IsNonZero expensive expensive

3.4 Cost of homomorphic operations

Note that every homomorphic ciphertext contains a special component called
noise that is removed during decryption. However, the decryption function can
deal only with noise of small enough magnitude; otherwise, this function fails.
This noise bound is defined by encryption parameters in a way that larger pa-
rameters result in a larger bound. The ciphertext noise increases after every
homomorphic operation and, therefore, approaches its maximal possible bound.
It implies that to reduce encryption parameters one needs to avoid homomor-
phic operations that significantly increase the noise. Therefore, while designing
homomorphic circuits, we need to take into account not only the running time
of homomorphic operations but also their effect on the noise.

Table 1 summarizes the running time and the noise cost of the above ho-
momorphic operations. Similar to [19], we divide the operations into expensive,
moderate and cheap. The expensive operations dominate the cost of a homomor-
phic circuit. The moderate operations are less important, but if there are many
of them in a circuit, their total cost can dominate the total cost. The cheap
operations are the least important and can be omitted in the cost analysis.

It is worth to note that there are two multiplication functions Mul (ciphertext-
ciphertext multiplication) and MulPlain (ciphertext-plaintext multiplication).
Since Mul is much more expensive than MulPlain, the multiplicative depth of a
homomorphic circuit is calculated with relation to the number of Mul’s.

4 Equality circuits

The equality function tests whether two `-dimensional vectors over some finite
field F are equal. It returns 1 when input strings are equal and 0 otherwise.

9

4.1 State-of-the-art equality circuits

If input vectors are binary, the equality function can be computed in any ring
Zt>1.

Definition 1 (Binary equality circuit). Given two `-dimensional binary vec-
tors x = (x0, . . . , x`−1) and y = (y0, . . . , y`−1), the equality function can be
computed over any Zt>1 via the following arithmetic circuit

EQ2(x,y) =

`−1∏
i=0

(1− (xi − yi)) .

Representing data in the binary form can be far from optimal, especially when
the plaintext modulus t is bigger than 2. In this case, Rt is capable to encode
n log2 t bits of data rather than just n. To use this extra space, we employ finite
field arithmetic. Let t be a prime number. Then each SIMD slot is isomorphic
to a finite algebraic extension of the finite field Ft of degree d. Hence, data can
be encoded into elements of Ftd rather than into elements of F2. The equality
circuit for vectors over Ftd is defined as follows.

Definition 2 (Equality circuit in Ftd). Given two vectors x = (x0, . . . , x`−1)
and y = (y0, . . . , y`−1) from F`td , the equality function can be computed via the
following polynomial function

EQtd(x,y) =

`−1∏
i=0

(
1− (xi − yi)t

d−1
)
. (5)

Using (3), it is easy to see that the total multiplicative depth of (5) is

dlog2 `e+ dlog2(t− 1)e+ dlog2 de .

It follows from (4) that the total number of multiplications in (5) is

blog2(t− 1)c+ wt(t− 1) + d+ `− 3 .

We can also derive (5) from a function with ` variables. Let IsZero(x) be a
function that outputs 1 when x is the zero vector and 0 otherwise. For x ∈ F`td ,

it holds for each i = [0, ` − 1] that 1 − xt
d−1
i is 1 if xi = 0 and 0 otherwise.

This implies that IsZero(x) is given by
∏`−1
i=0(1 − xt

d−1
i). Since EQtd(x,y) =

IsZero(x− y), we indeed obtain (5) as the expression for the equality circuit.

4.2 Our equality circuits

We propose a new randomized equality circuit that makes the multiplicative
depth independent on the input length. Our circuit is based on the Razborov-
Smolensky method, which helps to represent a high fan-in OR function by a low
degree polynomial. In finite fields, the OR function returns 1 if its input has at

10

least one non-zero coordinate and 0 otherwise. Using the primitive character,

we can represent OR as the polynomial OR(x) = 1 −
∏`−1
i=0(1 − xt

d−1
i) of degree

`(td − 1) over F`td .

To decrease the polynomial degree, we take some positive integer D < `
and sample D` uniformly random elements r0, . . . , rD`−1 and compute ORr(x) =

1−
∏D−1
i=0

(
1−

(∑`−1
j=0 ri`+jxj

)td−1)
. The degree of this polynomial D(td − 1)

is smaller than that of OR, but its output is randomized and might be wrong.
Notice that if x = 0, this polynomial correctly returns 0. If x is a non-zero
vector,

∑`−1
j=0 ri`+jxj = 0 with probability t−d. Thus, ORr wrongly returns 0 with

probability t−Dd. This means that ORr(x) = OR(x) for x 6= 0 with probability
1− t−Dd.

Note that D was chosen to decrease the failure probability. We can simply set
it to 1 if the field size td is sufficiently large. Following this idea, we randomized
the equality function over finite fields.

Definition 3 (Randomized equality circuit over Ftd). Given two `-
dimensional vectors x = (x0, . . . , x`−1) and y = (y0, . . . , y`−1) with xi, yi ∈ Ftd
for any i, the randomized equality function can be computed over Ftd via the
following polynomial function

EQrtd(x,y) = 1−

(
`−1∑
i=0

ri(xi − yi)

)td−1
(6)

where ri’s are uniformly random elements of Ftd .

The correctness of EQrtd is defined by the following lemma.

Lemma 1. Let x,y ∈ F`td . If x = y, then EQrtd(x,y) = 1. If x 6= y, then
EQrtd(x,y) = 0 with probability 1− t−d.

Proof. If x = y, the sum
∑`−1
i=0 ri(xi − yi) always vanishes, which results in

EQrtd(x,y) = 1.

If x 6= y, then there exist a non-empty set of indices I ⊆ [0, `− 1] such that
xi − yi is non-zero for any i ∈ I. Then, the product ri(xi − yi) is a uniformly

random element of Ftd if i ∈ I and 0 otherwise. As a result,
∑`−1
i=0 ri(xi − yi) is

a uniformly random element of Ftd . The above sum is non-zero with probability

1− t−d, which leads to
(∑`−1

i=0 ri(xi − yi)
)td−1

= 1 by Euler’s theorem. Hence,

EQrtd(x,y) outputs 0 when x 6= y with probability 1− t−d.

Complexity. Following the same reasoning as for the deterministic equality cir-
cuit, we obtain that the multiplicative depth of (6) is

dlog2(t− 1)e+ dlog2 de+ 1 ,

11

which is independent on the vector length `. It follows from (4) that the total
number of multiplications in (6) is

blog2(t− 1)c+ wt(t− 1) + d− 2 + ` .

In a similar manner, we can define an equality circuit for vectors containing
wildcards. Let ∗ be a wildcard character meaning that it represents any symbol
in the alphabet. Assume that ∗ is encoded by an element ω ∈ Ftd . Then the
randomized equality circuit with wildcards for Ftd -vectors is defined as follows.

Definition 4 (Randomized equality circuit with wildcards over Ftd).
Let x = (x0, . . . , x`−1) and y = (y0, . . . , y`−1) be two `-dimensional vectors such
that xi ∈ Ftd and yi ∈ Ftd \{ω}. Then the randomized equality function for such
vectors can be computed via the following polynomial function

EQ
r,∗
td

(x,y) = 1−

(
`−1∑
i=0

ri(xi − ω)(xi − yi)

)td−1
(7)

where ri’s are uniformly random elements of Ftd .

Due to additional multiplication by xi − ω, this circuit has multiplicative depth

dlog2(t− 1)e+ dlog2 de+ 2,

which is one more than that of EQrtd . This also introduces ` additional multipli-
cations, so their total number becomes

blog2(t− 1)c+ wt(t− 1) + d− 2 + 2`.

Example 1. The randomized equality testing of two vectors from F8
316 with wild-

cards needs 32 multiplications. The multiplicative depth of this circuit is 7. The
output of this circuit is correct with error probability about 3−16 ' 2−25.

5 Homomorphic string search protocol

In this section, we describe a protocol for homomorphic string search. This proto-
col assumes two parties, the client and the honest-but-curious server. The client
wants to upload a text document to the server and then be able to search over it.
In particular, she wants to send a pattern to the server and receive the positions
of this pattern in the outsourced text. The client is willing to hide the text, the
patterns and the query results from the server.

The flow of the protocol is depicted in Figure 1. Before the start of the
protocol, the client encrypts and sends her text to the server. The protocol
begins when the client encrypts and sends a pattern to the server. Receiving the
encrypted pattern, the server performs a homomorphic string search algorithm
an then sends the results back to the client. Our threat model assumes that
the computationally-bounded server follows the protocol but it tries to extract

12

Fig. 1: Our string search protocol.

information from the client’s queries. The server should not be able to distinguish
two encrypted patterns of the same length. This security requirement is achieved
by the semantic security of an SHE scheme as discussed in Section 3.3 of [2].

In an alternative scenario, one could assume the server has the text in the
clear. Our solution immediately transfers to this scenario by replacing the ci-
phertexts encrypting the text by plaintexts in the solution below, which would
only reduce the complexity of our solution as opertations between a plaintext
and a ciphertext are less expensive than ciphertext-ciphertext operations. As a
solution for the setting where the text is encrypted, immediately yields a solu-
tion for the scenario where the server has the text in the clear, we focus on the
more general problem where the text is encrypted.

The protocol description starts with the preprocessing step where the client
encrypts the text.

5.1 How to encrypt the text into several ciphertexts

Recall that the text T has length N , so it can be represented as an N -dimensional
vector over Ftd . Similarly, the pattern P can be represented as an Ftd -vector of

length M < N . Let T̃
(i)
M be a substring of T of length M starting at the ith

position of T .
In practice, we can assume that M is less than k, the number of SIMD slots,

which seems plausible as k can be hundreds or thousands. However, the entire
text might not fit k SIMD slots; thus, we assume N > k. In this case, we need to

13

split T and encrypt it into different ciphertexts such that a homomorphic string
search algorithm can find all the occurrences of any length-M pattern in T .

Let r = dN/ke. Let us naively split T into substrings T1 . . . Tr, where all
but the last one are of length k and |Tr| ≤ k. Notice that the substrings

T̃
(ik)
M , . . . , T̃

((i+1)k−M)
M are contained in Ti+1 for any i ∈ [0, r − 1]. However,

substrings T̃
(ik−M+1)
M , . . . , T̃

(ik−1)
M for i ∈ [1, r − 1] are missing, which means

that this naive approach does not work. Moreover, it implies that we might need
to duplicate characters of T to encode all its length-M substrings.

We define an (M,k)-cover of T as a set of length-k substrings {T1, T2, . . . Tr}
of T such that every length-M substring of T is contained only in one Ti.
Therefore, all the occurrences of any pattern P of length at most M in T
can be found by matching P with Ti’s. For example, if T = ”example”, then
{”exam”, ”ampl”, ”ple”} is a (3, 4)-cover of T . See Figure 2 for an illustration.

e x a m a m p l p l e

Fig. 2: The (3, 4)-cover of the text T = ”example”. Every rectangle represents
a length-4 substring of this cover. Every length-3 substring of T is contained in
an exactly one of these substrings.

We construct an (M,k)-cover of T as follows. Let T1 be as in the naive
approach, i.e. T1 = T [0] . . . T [k − 1]. As pointed out above, T1 contains all the

length-M substrings up to T̃
(k−M)
M . Thus, T2 should start with T [k −M + 1],

which yields T2 = T [k − M + 1] . . . T [2k − M]. Following this procedure, we
transform T into the set of its length-k substrings T1, T2, . . . , Tr such that

T1 = T [0] . . . T [k − 1],

T2 = T [k −M + 1] . . . T [2k −M],

. . .

Ti = T [(i− 1)(k −M + 1)] . . . T [(i− 1)(k −M + 1) + k − 1],

. . .

Tr = T [(r − 1)(k −M + 1)] . . . T [N − 1].

Thus, r should satisfy N − 1 ≤ k − 1 + (r − 1)(k − M + 1). It follows that
r ≥ (N −M + 1)/(k−M + 1) and then r = d(N −M + 1)/(k −M + 1)e, since
r is an integer.

Note that Ti’s are chosen to fit into one ciphertext with k slots. Hence,
T1, . . . , Tr can be encoded into SIMD slots such that the jth character Ti[j] is
mapped to the jth slot of the ith ciphertext. Hence, r ciphertexts are needed to
encrypt N characters of the text T .

Example 2. The extreme examples are

14

– M = k (the pattern occupies all the SIMD slots of a single ciphertext), then
r = N − k + 1;

– M = 1 (the pattern is just one character, so k copies of the pattern can be
encrypted into one ciphertext), then r = dN/ke, which is optimal.

If M = k/2, then r = d(N − (k/2) + 1)/((k/2) + 1)e ' 2N/k. Thus, about
twice more ciphertexts are needed than in the optimal case. If M = k/c for
some c ∈ (1, k], then r = d(N − (k/c) + 1)/(k − (k/c) + 1)e ' c

c−1 ·
N
k . This

means that if one ciphertext can contain at most c copies of the pattern, then
c/(c − 1) times more ciphertexts are needed to encrypt the text than in the
optimal case.

Using the procedure above the client produces r ciphertexts that contain the
text. These ciphertexts are then uploaded to the server, which concludes the
preprocessing phase.

An (M,k)-cover can also be created at the server side. Let the client naively
split T into substrings T1, . . . , Tr′ of length at most k. These substrings are then
encrypted and sent to the server. As r′ = bk/Mc, this reduces the communication
cost between the client and the server and shifts the workload from the client to
the server. Given the substring ciphertexts ct1, . . . , ctr′ , the server can compute
an (M,k)-cover using the following steps. To create an encryption of a string of an
(M,k)-cover, the server extracts slots of ct1, . . . , ctr′ containing the characters
of that string with Select and glues them into one ciphertext using Rot and
Add operations.

The above procedure makes the setup of our protocol independent of the
maximal pattern length M . The client shares M with the server who can then
create a correct (M,k)-cover either from the naive encryption of the text or
from an earlier formed (M ′, k)-cover. This method requires more homomorphic
operations and hence increases the noise in the ciphertexts which might require
larger parameters to keep the decryption and computation correctness.

The homomorphic string search protocol starts when the client sends an
encrypted pattern to the server. The following section describes how the pattern
should be encrypted.

5.2 How to encrypt the pattern?

Since the pattern length M is assumed to be smaller than the number of slots k,
one ciphertext is enough to encrypt the pattern P . Note that the characters of
P should be encoded into SIMD slots such that the ith character of P is mapped
to the ith SIMD slot. In this way, the order of the pattern characters is aligned
with the order of the text characters. Furthermore, the pattern length can be
several times smaller than the number of the SIMD slots, i.e. bk/Mc = C > 1.
In this case, we encrypt C copies of P by placing them one by one into the
SIMD slots. Namely, the character P [j] is encoded into the slots enumerated by
j, j +M, . . . , j + (C − 1)M . See Figure 3 for an illustration.

15

L o r e m m i p s s u m

i p i p

Fig. 3: The rectangles depict ciphertexts with 5 slots (squares). The top ones
contain the text while the bottom one encrypts two copies of the pattern P =
”ip”.

Algorithm 1: Homomorphic string search algorithm.

Input: ctP – a ciphertext encrypting C copies of a length-M pattern P ,
ct1, . . . , ctr – ciphertexts encrypting the (M,k)-cover T1, . . . , Tr of a
text T .

Output: ct′1, . . . , ct
′
r – ciphertexts such that ct′i contains 1 in the jth SIMD

slot if the occurrence of P starts at the jth position of Ti and 0
otherwise.

1 for i← 1 to r do
2 ct′i ← pt(0)
3 for j ← 0 to M − 1 do
4 ctP,j ← Rot(ctP ,−j)
5 Cj →

⌊
k−j
M

⌋
6 Ij → {j, j +M, . . . , j + (Cj − 1)M}
7 ct← HomEQ(M, cti, ctP,j , Ij)
8 ct′i ← Add(ct′i, ct) //AddPlain(ct′i, ct) when j = 0

9 Return ct′1, . . . , ct
′
r.

5.3 How to compare the text and the pattern?

Given the text encrypted into r ciphertexts ct1, . . . , ctr and a ciphertext ctP
containing C copies of the pattern as above, the homomorphic string search
algorithm follows Algorithm 1. In particular, for every cti Algorithm 1 per-
forms a homomorphic equality test between shifted copies of the pattern and
the text (see Figure 4). The homomorphic equality test is done by the HomEQ

function, which homomorphically realizes any equality circuit described in Sec-
tion 4. Given the pattern shifted by j positions, HomEQ should output a ci-
phertext ct containing the equality results in the SIMD slots indexed by
j, j + M, j + 2M, . . . , j + (Cj − 1)M and zeros in other slots (see Figure 5).
In this case, the equality results can be combined into ct′ by the homomorphic
addition on line 8 of Algorithm 1.

As shown in Figure 4, Algorithm 1 compares all length-M substrings en-
crypted by ciphertext ct1, . . . , ctr to the pattern. For example, when i = 2,
the ciphertext ct2 containing ”m ips” is compared to the length-2 pattern ”ip”.
The string ”m ips” has 4 substrings of length 2, namely {”m ”, ” i”, ”ip”, ”ps”}.

16

i = 1 i = 2 i = 3

cti

j = 0

j = 1

L o r e m m i p s s u m

i p i p

i p i p

i p i p

i p i p

i p i p

i p i p

Fig. 4: Algorithm 1 shifts the position of the pattern SIMD slots such that at
each jth iteration the pattern is compared to different substrings of the text
encrypted by cti.

cti

j = 0

j = 1

m i p s

i p i p

i p i p

HomEQ

HomEQ

0 0 1 0 0

0 0 0 0 0

Fig. 5: The HomEQ function returns the results of string search in the slots where
the pattern copies begin (circled values on the right). Other slots are set to zero,
which allows Algorithm 1 to combine the results with addition (line 8).

When j = 0, ”ip” is compared to ”m ” and ”ip”. When j = 1, the pattern is
shifted to the right and then compared to substrings ” i” and ”ps”.

A concrete instantiation of HomEQ is provided by Algorithm 2. This algorithm
is a homomorphic implementation of the equality circuit EQrtd from (6). In fact,
Algorithm 2 homomorphically computes EQrtd on several vectors simultaneously
in the SIMD manner. Namely, given a set I ⊆ {0, . . . , k − M}, it outputs a
ciphertext ct that contains EQrtd((xi, xi+1, . . . , xi+M−1), (yi, yi+1, . . . , yi+M−1))
for any i ∈ I. Let us prove this claim.

17

Algorithm 2: The HomEQ algorithm that homomorphically implements
the EQrtd circuit.

Input: M ∈ Z,
ctx – a ciphertext encrypting x ∈ Fk

td ,
cty – a ciphertext encrypting y ∈ Fk

td ,
I ⊆ {0, . . . , k −M}.
Output: ct – a ciphertext encrypting 1 in the ith slot if i ∈ I and xi+j = yi+j

for any j ∈ {0, . . . ,M − 1}; all other slots contain 0.
1 cte ← Sub(ctx, cty)
2 ptr ← uniformly random plaintext
3 cte ← MulPlain(ct, ptr)
4 cto ← pt(0)
5 re ← 1
6 ro ←M
7 `←M
8 while ` > 1 do
9 if ` is even then

10 `← `/2
11 else
12 ro ← ro − re
13 cto ← Add(cto, Rot(cte, ro))
14 `← (`− 1)/2

15 cte ← Add(cte, Rot(cte, re))
16 re ← 2re

17 ct← Add(cte, cto)
18 ct← IsNonZero(ct)
19 ct← SubPlain(pt(1), ct)
20 ct← Select(ct, I)
21 Return ct.

Correctness.

Lemma 2. Given an integer M , two vectors x,y ∈ Fktd and a set I ∈ [0, k−M],

Algorithm 2 outputs a correct result with probability at least (1− t−d)|I|.

Proof. It is straightforward that lines 1-3 compute a ciphertext containing zi =
ri(xi − yi) with uniformly random ri ∈ Ftd for any i ∈ [0, k − 1]. The next step
is to sum all zi’s, which is done by adding the ciphertext containing zi’s with
its shifted copies (lines 8-16). Since homomorphic shifts are circular, we assume
that indices of zi’s are taken modulo k.

Let M = 2K +
∑K−1
i=0 ai2

i, ai ∈ {0, 1} be the bit-decomposition of M . Hence,
the while loop in lines 8-16 have K iterations, which we count starting from

1. Let us denote r
(i)
e and r

(i)
o be re and ro at the end of the ith iteration of

the while loop. Let us set r
(0)
e = 1 and r

(0)
o = M . Since re doubles at each

iteration, we have r
(i)
e = 2i. Since ` is set to M before the while loop, the

least significant bit of ` is equal to ai−1 at the start of the ith iteration. Hence,

18

r
(i)
o = r

(i−1)
o − ai−1r(i−1)e = r

(i−1)
o − ai−12i−1, which by induction leads to r

(i)
o =

M −
∑i−1
u=0 au2u = 2K +

∑K−1
u=i au2u. Note that if ai−1 = 1, then r

(i)
o + 2i−1 =

r
(i−1)
o .

Let z
(i)
e [j] (resp. z

(i)
o [j]) be the jth slot of cte (resp. cto) at the end of the

ith iteration. After the first iteration we have z
(1)
e [j] = zj + z

j+r
(0)
e

= zj + zj+1.

By induction, it follows that

z(i)e [j] = z(i−1)e [j] + z(i−1)e [j + r(i−1)e] = z(i−1)e [j] + z(i−1)e [j + 2i−1]

=

2i−1−1∑
u=0

zj+u

+

 2i−1∑
u=2i−1

zj+u

 =

2i−1∑
u=0

zj+u. (8)

The ciphertext cto is updated in the ith iteration of the while loop if ai−1 = 1.

In this case, z
(i)
o [j] = z

(i−1)
o [j] + z

(i−1)
e [j + r

(i)
o]. Since r

(i)
o + 2i−1 = r

(i−1)
o , it

follows from (8) that z
(i−1)
e [j+r

(i)
o] =

∑r(i−1)
o −1
u=r

(i)
o

zj+u. Hence, z
(i)
o [j] = z

(i−1)
o [j]+∑r(i−1)

o −1
u=r

(i)
o

zj+u. As z
(0)
o [j] = 0 (line 4 of the algorithm), it follows by induction

that

z(i)o [j] =
∑

v∈[1,i]:av−1=1

r(v−1)
o −1∑
u=r

(v)
o

zj+u.

Notice that if ai−1 = 0, then r
(i)
o = r

(i−1)
o . Let av−1 = av′−1 = 1 for some v < v′.

Thus, aw = 0 for any w ∈ [v, v′−2]. The previous argument yields r
(v)
o = r

(v′−1)
o .

Hence,

[r(v
′)

o , r(v
′−1)

o − 1] ∪ [r(v)o , r(v−1)o − 1] = [r(v
′)

o , r(v)o − 1] ∪ [r(v)o , r(v−1)o − 1]

= [r(v
′)

o , r(v−1)o − 1].

Applying this argument for all v with av−1 = 1, we obtain

z(i)o [j] =

r(0)o −1∑
u=r

(i)
o

zj+u =

M−1∑
u=r

(i)
o

zj+u. (9)

Combining (8) and (9), we obtain that after the while loop cte and cto contain
the following values in their slots

ze[j] =

2K−1∑
u=0

zj+u , zo[j] =

M−1∑
u=r

(K)
o

zj+u .

Since r
(K)
o = M −

∑K−1
u=0 au2u = 2K , the output of Add on line 17 encrypts the

following value in its jth SIMD slot

z′[j] =

M−1∑
u=0

zj+u =

M−1∑
u=0

rj+u(xj+u − yj+u) .

19

The SIMD slots are then changed by IsNonZero and SubPlain, which results in
the jth slot containing

1−

(
M−1∑
u=0

rj+u(xj+u − yj+u)

)td−1
.

For any j ∈ [0, k−M] this is exactly the output of EQrtd applied on vectors xj =
(xj , . . . , xj+M−1) and yj = (yj , . . . , yj+M−1). Applying the Select operation
on line 20, we zeroize all the slots, whose indices are not in I. Thus, the jth
SIMD slot of the final output contains 1 only if j ∈ I and EQrtd(xj ,yj) = 1.
According to Lemma 1, EQrtd always outputs 1 if xj = yj and returns 1 when
xj 6= yj with probability t−d. Thus, Algorithm 2 is correct with probability at
least (1− t−d)|I|.

Given Lemma 2, we are ready to prove the correctness of Algorithm 1.

Theorem 2. Let ctP be a ciphertext encrypting C copies of a length-M pat-
tern P . Let ct1, . . . , ctr be ciphertexts encrypting an (M,k)-cover of a text T .
Given all the aforementioned ciphertexts, Algorithm 1 outputs a correct result
with probability at least (1− t−d)r(k−M+1).

Proof. Let us consider the for loop in lines 3-8 of Algorithm 1. On line 4, the
pattern copies are shifted by j positions to the right such that they start at
the jth slot of the ciphertext ctP,j as in Figure 4. It means that ctP,j contains
exactly Cj copies of the pattern unbroken by this cyclic shift. The starting
positions of these copies corresponds to the elements of the set Ij . Next, the
HomEQ function compares these pattern copies to the length-M substrings of the
text that starts at the SIMD slots indexed by Ij . It returns a ciphertext that
contains 1 in its jth slot if P = Ti[j] . . . Ti[j +M − 1].

For any j 6= j′ the sets Ij and Ij′ must be disjoint. Otherwise, there exist
integers u, u′ such that j + uM = j′ + u′M , which leads to j − j′ = (u′ − u)M .
Since j, j′ ∈ [0,M −1], it follows that j− j′ < M −1 and thus u = u′ and j = j′.
Hence, Ij ∩ Ij′ = ∅. It means that the homomorphic addition on line 8 puts the
results of HomEQ on line 7 into distinct SIMD slots. Thus, ct′i contains 1 in its
jth slot if the pattern P matches Ti[j] . . . Ti[j +M − 1].

According to Lemma 2, HomEQ outputs a correct result with probability (1−
t−d)Cj in the jth iteration of the inner loop. Hence, the probability that ct′i

contains correct results is at least (1− t−d)
∑M−1

j=0 Cj . Note that

M−1∑
j=0

Cj =

M−1∑
j=0

⌊
k − j
M

⌋
=

M−1∑
j=0

k − j − (k − j) mod M

M

=
k + (k − 1) + · · ·+ (k − (M − 1))

M
− 0 + 1 + · · ·+ (M − 1))

M

=
kM − M(M−1)

2

M
− M(M − 1)

2M
= k −M + 1.

20

Thus, ∪M−1j=0 Ij = [0, k −M]. All the length-M substrings are compared to the
pattern in the inner loop by computing EQrtd homomorphically. Hence, ct′i con-
tains correct results with probability at least (1− t−d)k−M+1. Since there are r
iterations of the outer loop, the Algorithm 1 returns correct results with proba-
bility at least

(1− t−d)r(k−M+1) .

Given the above expression, we see that a bigger pattern length M increases
the probability of success. Since r = d(N −M + 1)/(k −M + 1)e, we can ap-
proximate the success probability with (1 − t−d)N−M+1. When M increases,
(1− t−d)N−M+1 increases as 0 ≤ (1− t−d) ≤ 1. Hence, there will be less failures
when the patterns are longer.

Complexity.

Complexity of Algorithm 2 . The multiplicative depth of Algorithm 2 is fixed and
equal to the multiplicative depth of IsNonZero, which is dlog2(t− 1)e+ dlog2 de
according to (3).

As described in Section 3.4, the most expensive homomorphic operations are
Mul, MulPlain, Select, Rot, and Frob. Let us count them in Algorithm 2. There
is one MulPlain on line 3 and one Select on line 20. All ciphertext-ciphertext
multiplications are executed within the IsNonZero function on line 18. According
to Section 3.3, IsNonZero performs blog2(t− 1)c+wt(t−1)+d−2 Mul operations
and d− 1 Frob operations.

Rot operations are only present in the while loop (lines 8-16). Let 2K +∑K−1
i=0 ai2

i be a bit decomposition of M . Since the while loop has K iterations,
there are at least K rotations performed on line 15. The number of rotations
performed on line 13 is equal to the number of non-zero ai’s, which is equal to
wt(M)−1. Since K = blog2Mc, the total number of Rot operations is blog2Mc+
wt(M)− 1.

In summary, the following (expensive and moderate) operations are required
to compute Algorithm 2:

– Mul : blog2(t− 1)c+ wt(t− 1) + d− 2 ,
– Rot : blog2Mc+ wt(M)− 1,
– Frob : d− 1,
– MulPlain : 1,
– Select : 1.

Similarly to Algorithm 2, we can implement a homomorphic circuit for EQtd ,
which was used in the prior work [23]. This can be easily done by removing
multiplication by a random plaintext (lines 2-3), changing the order of homo-
morphic operations and replacing homomorphic additions with multiplications
in the while loop. As shown in Table 2, our approach is strictly more efficient
as it has fewer ciphertext-ciphertext multiplications. Moreover, the multiplica-
tive depth of the prior technique depends on the pattern length M , whereas our
approach eliminates this dependency.

21

Table 2: The number of expensive and moderate homomorphic operations in
our paper and in the prior work. Our circuit removes the dependency of the
multiplicative depth on the pattern length M .

HomEQ [23,22]

Mul
blog2(t− 1)c+ wt(t− 1)
+d− 2

blog2(t− 1)c+ wt(t− 1)
+d− 3 + blog2Mc+ wt(M)

Rot blog2Mc+ wt(M)− 1 blog2Mc+ wt(M)− 1
Frob d− 1 d− 1

Mul.
depth

dlog2(t− 1)e+ dlog2 de
dlog2(t− 1)e+ dlog2 de
+ dlog2Me

Complexity of Algorithm 1 . Algorithm 1 invokes the HomEQ function exactly rM
times. In addition, it performs r(M − 1) homomorphic rotations of ctP (we can
ignore one rotation with j = 0 as it does not change the ciphertext). As a result,
Algorithm 1 performs the following (expensive and moderate) homomorphic op-
erations.

– Mul : rM(blog2(t− 1)c+ wt(t− 1) + d− 2),
– Rot : rM(blog2Mc+ wt(M))− r,
– Frob : rM(d− 1),
– MulPlain : rM ,
– Select : rM .

The multiplicative depth of Algorithm 1 is the same as that of Algorithm 2,
namely

dlog2(t− 1)e+ dlog2 de .

String search with wildcards. Algorithm 2 can be modified to support the
equality circuit with wildcards, EQr,∗

td
. For simplicity, we assume that ω = 0 in

(7). After the first line of Algorithm 2, we insert cte → Mul(ctx, cte), which
outputs cte encrypting xi(xi − yi). The correctness of this modified algorithm
follows by setting zi to rixi(xi − yi) in the proof of Lemma 2.

Since only a single homomorphic multiplication is added, the modified version
of Algorithm 2 requires blog2(t− 1)c + wt(t − 1) + d − 1 ciphertext-ciphertext
multiplications. Its multiplicative depth also increases by one to dlog2(t− 1)e+
dlog2 de+ 1. This implies that Algorithm 1 should perform M more ciphertext-
ciphertext multiplications at the cost of one additional multiplicative level.

5.4 Compression of results

The string search algorithm in the previous section outputs r ciphertexts con-
taining the positions of the pattern occurrences in the text. Sending all these
ciphertexts to the client makes the entire protocol meaningless as the server could

22

instead send the r ciphertexts encrypting the text back to the client. To avoid
this problem, the encrypted results should be compressed such that significantly
less than r ciphertexts are to be transmitted to the client.

In the output of Algorithm 1, each ciphertext ct′i encrypts SIMD slots con-
taining a single bit. However, every SIMD slot can store any element of the finite
field Ftd , or d blog2 tc bits. Thus, we can split ct′1, . . . , ct

′
r into groups of size

d blog2 tc and then combine ciphertexts within each group as follows

ct =

blog2 tc−1∑
i=0

MulPlain

d−1∑
j=0

MulPlain(ct′id+j , X
j)

 , 2i

 .

The summation symbol means a homomorphic sum of ciphertexts using Add.
The ith slot of ct contains a polynomial

∑d−1
j=0 ajX

j such that the `th bit of aj
is the value of the ith slot of ct′j+(`−1)d.

This compression method reduces the number of ciphertexts containing string
search results from r to r/(d blog2 tc). Even though this method returns O(r)
ciphertexts, it significantly reduces the communication complexity of the string
search protocol in practice. For example, if a SIMD slot is isomorphic to F1716 ,
then r/64 ciphertexts should be transmitted.

Our compression method is not optimal as it does not exploit the last M − 1
slots. For M close to k, this implies a significant part of ciphertext slots is not
used.

This problem can be solved by replacing these zero slots with slots extracted
from other ciphertexts. Assume that the above compression returns ciphertexts
ct1, ct2, . . . , ctr′ . Each cti does not exploit the last M − 1 slots. To fill all the
slots of ct1, we extract the first M − 1 slots of ct2 and write them into the last
M − 1 slots of ct1 (this is done by Select, Rot and Add). We remove these slots
from ct2 by shifting its slots to the left, thus setting the last 2(M − 1) slots to
zero. To fill these zero slots, we move the first 2(M − 1) slots of ct3 to ct2 as
above. We continue this procedure until we end up with ciphertexts whose slots
are fully occupied. The number of such ciphertexts is minimal to encrypt all the
compressed results.

Since this extra compression introduce more ciphertext noise, larger encryp-
tion parameters might be needed to support decryption correctness. This leads
to a larger communication overhead that downgrades the gain from the extra
compression. Therefore, we recommend to assess advantages of this technique
depending on a use case scenario.

6 Implementation results

We tested our homomorphic string search algorithm using the implementation of
the BGV scheme [5] in the HElib software library [21]. Our experiments were per-
formed on a laptop equipped with an Intel Dual-Core i5-7267U CPU (running at
3.1 GHz) and 8 GB of RAM without multi-threading. The code of our implemen-
tation is available on https://github.com/iliailia/he_pattern_matching.

23

https://github.com/iliailia/he_pattern_matching

t m d ε k log q IS, KB EXP , B OS, KB λ

Set 7.12 7 21177 12 ' 2−34 1080 294 930 882 340 150
Set 17.16 17 18913 16 ' 2−65 1182 334 1542 1288 513 260
Set 7.12* 7 21177 12 ' 2−34 1080 330 1041 987 347 135
Set 17.16* 17 18913 16 ' 2−65 1182 376 1736 1504 496 185

Table 3: The parameter sets used in our experiments, where t is the plaintext
modulus, m is the order of the cyclotomic ring R, d is the extension degree of
a SIMD slot over Ft, ε is the maximal failure probability of EQrtd (EQr,∗

td
), k is

the number of SIMD slots, q is the ciphertext modulus, IS is the size of one
input ciphertext, EXP is the input ciphertext expansion per slot (character)
(EXP = IS/k), OS is the size of an output ciphertext, λ is the security level
measured using the LWE estimator [3]. The (*) symbol denote the parameters
used for string search with wildcards.

In all experiments we have the following setup. Texts and patterns are strings
consisting of 32-bit characters (corresponding to the UTF-32 encoding). To im-
itate real scenarios, patterns are generated uniformly randomly in experiments
without wildcard characters. In experiments with wildcard characters, every pat-
tern is random but it has a non-negligible probability of having at least one
wildcard. Given a pattern, we sample a random text, which is enforced to have
substrings matching the pattern with non-negligible probability.

Texts and patterns are encrypted with encryption parameters present in Ta-
ble 3. We empirically found that these parameters yield the best running time
while supporting failure probability of EQrtd (EQr,∗

td
) lower than 2−32 or 2−64. The

Hamming weight of secret keys is not bounded.

For each set of parameters in Table 3, we ran Algorithm 1 on one cipher-
text with the text and the encrypted pattern of length M varying over the set
{1, 2, . . . , 9, 10, 20, . . . , 100}. Since the iterations of the outer for loop in Algo-
rithm 1 are independent, they can run in parallel. Thus, the above setting with
a single ciphertext is a valid benchmark for the parallel implementation of Algo-
rithm 1. In the sequential mode, the timing of this benchmark can be multiplied
by the number r of ciphertexts containing the text.

As shown in Table 3, the size of input ciphertexts varies between 930 KB
and 1.7 MB. The amortized memory usage per slot is 882-1504 bytes. Since an
encoded character occupies exactly one slot, this number can be regarded as the
ciphertext expansion per character. Since the ciphertext size in BGV decreases
after every ciphertext-ciphertext multiplication, output ciphertexts are smaller
than the input ones, namely between 340 and 513 KB.

The results of the experiments are present in Table 6. They include the
total running time of Algorithm 1 with one input ciphertext and the amortized
time per substring of length M . Since the input ciphertext contain k −M + 1
substrings of length M , the amortized time is equal to the total time divided
by k −M + 1. It takes between 4 seconds and 14.5 minutes to perform string

24

N r TS, MB OS, MB Time, min
Max. failure
probability

10000 10 10 0.35 52 ' 2−20

100000 97 99 1.69 506 ' 2−17

1000000 970 986 13.9 5060 ' 2−14

Table 4: The dependency of the communication cost and the running time (in
the sequential mode) of our homomorphic string search protocol on the text of
length N . The encryption parameters are taken from Set 7.12* and the pattern
length is fixed to 50. The rightmost column contains the maximal probability
that Algorithm 1 returns at least one wrong position of the pattern (1 − (1 −
t−d)r(k−M+1)). If the string-searching algorithm is performed with N parallel
threads the running time is decreased fo 5 minutes.

Pattern
length

Failure probability
per substring

Amortized time
per bit, ms

This work 1− 100 2−34 − 2−65 0.06− 0.13
[22] 35− 55 0 7.07− 10.86
[2] 64 2−1 − 2−80 1.58− 5.50

Table 5: Comparison of our string search algorithm with the prior works. The
second column shows the range of pattern lengths used in related experiments.

search on one ciphertext depending on the pattern length, failure probability and
whether wildcards are used. The amortized time per substring varies between
4 and 800 milliseconds. We did not encounter any false positive results in the
experiments.

To give the reader a feeling on how our solution scales up with the text
length, we consider the following use case. Assume that the client wants to search
for patterns of length at most 50 with wildcards. She chooses the parameters
from Set 7.12* and a text of length N . As in Section 5.1, she splits the text
into r substrings, encrypt them and send to the server. We denote the size
of these ciphertext by TS. Then, the client queries the server, which performs
Algorithm 1. Then, the server compresses the r outputs using the technique from
Section 5.4 and sends them back to the client. The size of the compressed results
is denoted by OS. Table 4 illustrates how r, TS, OS and the running time of
Algorithm 1 depend on N . All these values grow linearly, but the communication
cost (OS) remains quite low even if the text contains one million characters. The
running time can be decreased to 5 minutes for any N , if the string-searching
algorithm is processed in the parallel mode.

Comparison to the prior works. As shown in Table 5, our algorithm has
a better running time per bit. Furthermore, our method has several functional
advantages. Namely, our algorithm has a constant depth, which allows to use
modest encryption parameters. In comparison to [22] with ring dimension 27000

25

required for pattern length 55, our method works even in the ring dimension
12960 (Sets 7.12 and 7.12∗) for pattern length up to 100. In [22], it is also
required to transmit additional ciphertexts with wildcard positions.

Our algorithm hides wildcard positions in contrast to [2], where wildcard
positions are publicly known to the server. In addition, our protocol returns all
the pattern matches found in the text, while the protocol in [2] outputs only one
occurrence of the pattern.

Unfortunately, we are not able to compare a concrete communication cost as
it is not indicated in the above works.

7 Conclusion

In this work, we designed a general framework for a homomorphic string search
protocol based on SHE schemes with SIMD packing. We provided an efficient
instantiation of this framework including the preprocessing step where the client
splits the text into several components, which can be separately encrypted and
processed.

We also showed a randomized homomorphic string search algorithm whose
multiplicative depth is independent of the pattern length. This allows us to use
a single set of encryption parameters for a wide range of patterns with different
lengths.

Our string search algorithm can be efficiently executed on an average laptop
as demonstrated by our implementation in the HElib library. The running time
of our algorithm is about 12 times faster than the prior work based on the
SIMD techniques. Another advantage of our work is the communication cost
that is significantly reduced by our compression technique, that allows to send
the result to the client in r/(dblog2 tc) instead of r ciphertexts. For example,
to transmit all the positions of a given substring in a text with million UTF-32
characters, our protocol only requires about 13.9 MB instead of 328.7 MB.

This work presents a homomorphic realization of the naive string search
algorithm with computation complexity Ω(NM) where N is the text length and
M is the length of the pattern. There are asymptotically faster string-searching
algorithms that exploit special data structures, e.g. suffix trees, tries or finite
automata. Given the computational constraints of homomorphic encryption, it
is an open question whether it is possible to implement efficient homomorphic
counterparts of these algorithms.

Acknowledgements. This work has beend supported by CyberSecurity Research
Flanders with reference number VR20192203 and in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT. The second author is supported by a Junior
Postdoctoral Fellowship from the Research Foundation – Flanders (FWO).

References

1. Adi Akavia, Dan Feldman, and Hayim Shaul. Secure search on encrypted data
via multi-ring sketch. In David Lie, Mohammad Mannan, Michael Backes, and

26

Pattern
length

Parameters
Time,

sec
Amortized time,
sec per substring

Parameters
Time,

sec
Amortized time,
sec per substring

1 Set 7.12 4 0.004 Set 7.12* 5 0.005
2 9 0.008 10 0.009
3 14 0.013 16 0.015
4 19 0.018 19 0.018
5 25 0.023 25 0.023
6 30 0.028 30 0.028
7 36 0.034 36 0.034
8 37 0.034 40 0.037
9 44 0.041 49 0.046
10 50 0.047 55 0.051
20 111 0.105 118 0.111
30 184 0.175 187 0.178
40 236 0.227 243 0.233
50 303 0.294 301 0.292
60 385 0.377 382 0.374
70 460 0.455 449 0.444
80 492 0.492 491 0.491
90 619 0.625 617 0.623
100 622 0.634 630 0.642

1 Set 17.16 6 0.005 Set 17.16* 7 0.006
2 12 0.010 14 0.012
3 19 0.016 22 0.019
4 25 0.021 28 0.024
5 32 0.027 36 0.031
6 39 0.033 44 0.037
7 48 0.041 53 0.045
8 52 0.044 59 0.050
9 60 0.051 69 0.059
10 68 0.058 77 0.066
20 129 0.111 160 0.138
30 204 0.177 259 0.225
40 269 0.235 317 0.277
50 351 0.310 413 0.365
60 439 0.391 511 0.455
70 513 0.461 585 0.526
80 571 0.518 663 0.601
90 685 0.627 793 0.726
100 739 0.682 850 0.785

Table 6: The running time (averaged out over 100 experiments) and the amor-
tized time per substring of Algorithm 1 (with and without wildcards) with one
ciphertext encrypting the text and the encryption parameters present in Table 3.
One ciphertext contains a text of 1080 characters for Set 7.12 (Set 7.12*) and of
1182 characters for Set 17.16 (Set 17.16*).

27

XiaoFeng Wang, editors, ACM CCS 2018, pages 985–1001. ACM Press, October
2018.

2. Adi Akavia, Craig Gentry, Shai Halevi, and Max Leibovich. Setup-free secure
search on encrypted data: faster and post-processing free. PoPETs, 2019(3):87–
107, July 2019.

3. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

4. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial
error. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 297–314. Springer, Heidelberg, August 2014.

5. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-
momorphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS
2012, pages 309–325. ACM, January 2012.

6. Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient homomorphic con-
version between (Ring) LWE ciphertexts. Cryptology ePrint Archive, Report
2020/015, 2020. https://eprint.iacr.org/2020/015.

7. Hao Chen and Kyoohyung Han. Homomorphic lower digits removal and improved
FHE bootstrapping. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 315–337. Springer, Heidelberg,
April / May 2018.

8. Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully
homomorphic encryption with malicious security. In David Lie, Mohammad Man-
nan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1223–
1237. ACM Press, October 2018.

9. Jung Hee Cheon, Miran Kim, and Myungsun Kim. Search-and-compute on en-
crypted data. In Michael Brenner, Nicolas Christin, Benjamin Johnson, and
Kurt Rohloff, editors, FC 2015 Workshops, volume 8976 of LNCS, pages 142–159.
Springer, Heidelberg, January 2015.

10. Jung Hee Cheon, Miran Kim, and Kristin E. Lauter. Homomorphic computation
of edit distance. In Michael Brenner, Nicolas Christin, Benjamin Johnson, and
Kurt Rohloff, editors, FC 2015 Workshops, volume 8976 of LNCS, pages 194–212.
Springer, Heidelberg, January 2015.

11. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of
LNCS, pages 3–33. Springer, Heidelberg, December 2016.

12. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private in-
formation retrieval. In 36th FOCS, pages 41–50. IEEE Computer Society Press,
October 1995.

13. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryp-
tion in less than a second. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part I, volume 9056 of LNCS, pages 617–640. Springer, Heidelberg,
April 2015.

14. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144, 2012. http://eprint.

iacr.org/2012/144.

15. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June
2009.

28

https://eprint.iacr.org/2020/015
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144

16. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption
with polylog overhead. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 465–482. Springer, Heidelberg,
April 2012.

17. Oded Goldreich. Towards a theory of software protection and simulation by obliv-
ious RAMs. In Alfred Aho, editor, 19th ACM STOC, pages 182–194. ACM Press,
May 1987.

18. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

19. Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 554–571.
Springer, Heidelberg, August 2014.

20. Shai Halevi and Victor Shoup. Bootstrapping for HElib. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
641–670. Springer, Heidelberg, April 2015.

21. HElib: An implementation of homomorphic encryption (1.0.1). https://github.

com/shaih/HElib, April 2020. IBM.
22. Myungsun Kim, Hyung Tae Lee, San Ling, Benjamin Hong Meng Tan, and Huax-

iong Wang. Private compound wildcard queries using fully homomorphic encryp-
tion. IEEE Transactions on Dependable and Secure Computing, 2017.

23. Myungsun Kim, Hyung Tae Lee, San Ling, and Huaxiong Wang. On the efficiency
of FHE-based private queries. IEEE Transactions on Dependable and Secure Com-
puting, 15(2):357–363, 2018.

24. Alexander A Razborov. Lower bounds on the size of bounded depth circuits over
a complete basis with logical addition. Mathematical Notes of the Academy of
Sciences of the USSR, 41(4):333–338, 1987.

25. Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks and
privacy homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

26. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations.
Des. Codes Cryptography, 71(1):57–81, April 2014.

27. Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing, pages 77–82, 1987.

28. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In 2000 IEEE Symposium on Security and Privacy,
pages 44–55. IEEE Computer Society Press, May 2000.

29. Haixu Tang, Xiaoqian Jiang, Xiaofeng Wang, Shuang Wang, Heidi Sofia, Dov
Fox, Kristin Lauter, Bradley Malin, Amalio Telenti, Li Xiong, and Lucila Ohno-
Machado. Protecting genomic data analytics in the cloud: state of the art and
opportunities. BMC medical genomics, 9(1):63, 2016.

30. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

31. Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. Secure pattern matching using somewhat homomorphic encryp-
tion. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 2013, pages 65–76. ACM Press, November 2013.

32. Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. Privacy-preserving wildcards pattern matching using symmetric
somewhat homomorphic encryption. In Willy Susilo and Yi Mu, editors, ACISP
14, volume 8544 of LNCS, pages 338–353. Springer, Heidelberg, July 2014.

29

https://github.com/shaih/HElib
https://github.com/shaih/HElib

	Homomorphic string search with constant multiplicative depth

