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Abstract

In this note, we study the security of oblivious transfer protocols in the
presence of adversarial superposition queries. We define a security notion
for the sender against a corrupted receiver that makes a superposition
query. We present an oblivious transfer protocol that is secure against a
quantum receiver restricted to a classical query but it is insecure when
the receiver makes a quantum query.

Keywords. Oblivious Transfer; Post-Quantum Security; Superposition
Attack

1 Introduction

The oblivious transfer (OT) [Rab05] is a fundamental cryptographic primitive
which allows a receiver to obtain one out of two inputs held by a sender, while
the receiver learns nothing on the other input and the sender learns nothing at
all (in particular, the input that the receiver receives). Later [Cré87] showed
that one-out-of-two OT is equivalent to the more generic case of one-out-of-n
OT, where the sender holds n inputs and the receiver receives one of them. The
importance of oblivious transfer is exemplified by a result by Goldreich, Micali,
and Wigderson [GMWR8T], where they prove that OT is MPC-complete, meaning
that it can be used as a building block to securely evaluate any polynomial-time
computable function without any additional primitive. Studying the security
of this primitive becomes then of paramount importance, especially in light of
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the advent of quantum computers, that numerous computer scientists and ex-
perts consider as imminent. When talking about attacks mounted through a
quantum computer, there is usually some ambiguity in the terminology and
its meaning. When an assumption is deemed “quantum resistant” or “post-
quantum” it means that the underlying problem is supposed to be hard to solve
even for a quantum computer. However, building protocols that rely on quan-
tum resistant assumptions might not be sufficient to claim that the protocol
itself cannot be broken with a quantum computer. The security essentially
and crucially depends on the adversarial model that we consider. One way to
look at the problem is imagining that the communication channels that connect
the parties involved in the protocol are purely classical, meaning that they can
transport only classical information. Indeed, in this case it seems that instan-
tiating the protocol from quantum resistant problems is sufficient to obtain the
desired proof of security.

However, in a line of works started in 2010, Kuwakado and Morii [KM10)]
put forward a new and more general adversarial scenario. In this model, all
the communication channels controlled by the malicious parties support the
transmission of quantum information while the honest parties uses classical
constructions and communication. They show that 3-round Feistel cipher is
distinguishable from a random permutation when the adversary has quantum
access to the primitive. Subsequently, there have been extensive research works
to consider this model to define the security definition for the classical cryp-
tographic constructions and prove the security with the respected definition:
quantum secure pseudo-random functions [Zhal2l [Zhal6], encryption schemes
[BZ13bl [GHS16, MS16l [ATTU16, [CEV20l, [(CETU20], message authentication
codes and signature schemes [BZ13al [AMRS18], hash functions [Zhal5l [Unr16],
multi-party computation protocols [DFNS13], and etc.

Security in this general model is harder to achieve, as the adversary is no
longer limited to attacking the protocol and the underlying problems with a
quantum computer, but can also send messages in superposition and try to take
advantage of this in order to extract information from the protocol’s transcripts.
For instance in [KM10], the authors use Simon’s algorithm [Sim97] to recover the
hidden (for a classical adversary) periodicity in 3-round Feistel cipher. Similarly,
the Simon’s algorithm has been used in [KM12] [KLLN16] to break the security
of the Even-Mansour construction and some message authentication codes.

In this paper, we study the security of the OT protocols in the presence
of superposition queries. The motivation to consider this general model to
prove the security of OT protocols can be similar to the reasons presented in
the previous works [DENST3| [ATTU16] that consider this general model: 1) A
classical OT protocol can be used as a part of a quantum protocol that actively
uses quantum communication. So obviously the OT protocol may be run in
superposition. 2) To prove the security of some of classical protocols against
a quantum adversary, intermediate games in the security proof may actually
contain honest parties that will run in superposition (for instance the security
of zero-knowledge proof systems against a quantum adversary [Unr12l [Wat09]).
So to prove the security of such a systems, we may need to prove the security of



cryptographic constructions in the presence of adversarial superposition queries.
3) The miniaturization of classical devices that may reach a quantum scale and
therefore a classical protocol will have some quantum effects, etc.

1.1 Related Previous Works

Unconditionally secure quantum OT protocols. In [Lo98, [SSS15], the
authors show that an unconditionally secure oblivious transfer protocol is not
achievable even using quantum systems. This is in contrast to the key distri-
bution task that is achievable with the unconditional security using quantum
communication and systems [BB84]. Therefore, the alternative is to design an
OT protocol that is computationally secure and obviously in the light of an
adversary with the quantum computing power, the computational assumption
needs to be quantum secure.

Computationally secure OT protocols against a quantum adversary.
Usually, the security of OT protocols will be proven in an Universal Composabil-
ity (UC) [Can01] style security model in which a real protocol will be compared
with an ideal protocol. The real protocol is secure if there exists a simulator
that is interacting with the ideal protocol and it successfully mimics the be-
haviour of the adversary. The first translation of the UC framework to the
quantum setting appears in [Unrl0] by Unruh. Later in [LKHB17], the authors
prove the security of the oblivious transfer protocol presented in [PVWO0§| in
the Unruh’s model. However, we emphasize that in the Unruh’s model, the
adversary is not allowed to make superposition queries to the protocol and the
ideal functionality measures the inputs of the adversary in the computational
basis. Considering that the adversary can make the superposition queries the
UC style security model need to be revisited. In [DFNS13]|, the authors address
this problem. However, they show that simulation based security is not pos-
sible for the model that gives more power to the adversary. In more details,
they show that the simulation is impossible in the model with supplied response
registers by the adversary. They achieve positive result by restricting the ad-
versary. Even considering a restricted adversary, they show that any protocol
secure in this model is “non-trivial” that means the protocol cannot be proven
secure by running the classical simulator in superposition and the simulator has
to be “more quantum”.

1.2 Concurrent and Independent Work

In a concurrent and independent work, Liu et al. study the security of one-
time memories (OTM) (the hardware version of oblivious transfer) against a
quantum adversary with superposition access to the memory. They propose a
protocol consists of 2\ one-time memories. In a nutshell, their protocols works
as follows. For two bits mg, m1, the sender chooses 4 uniformly random strings
X0, X1,Y0,Y: € {0,1}* such that the inner product of Xy, Yy and X, V3
module 2 are equal to mg and mg, respectively. Let X, = (xp1,---, %) and



Yy = (Yb,1,- - »Yp,n). The receiver queries 2\ OTMs with inputs (zg;, x1,;) and
(yo,i,y1,4) for i =1,--- , X to obtain m;. They show that this protocol emulates
the classical ideal functionality even if the adversary has quantum access to the
protocol. Achieving the superposition security in the UC framework (with the
classical ideal functionality) comes with an overhead on the number of queries
invoked by the receiver, namely 2\ queries. In this paper, we show that their
indistinguishability bound is tight. In other words, we construct an adversary
such that for any simulator that has access to the classical ideal functionality
the trace distance between the output of the adversary in the real world and
the simulated world is 1/2**+1.

1.3 Our Contribution

In this paper, we study the security of (2-round) OT protocols in the pres-
ence of adversarial superposition queries. We choose a different approach from
IDFNS13] to study the security of OT protocols against superposition queries.
We define an indistinguishability based security notion against adversarial su-
perposition queries. We present separation examples for a quantum receiver
making classical queries versus quantum queries. In addition to the indistin-
guishability based security definition, we propose a UC-style security definition,
however, we leave further investigation of this security definition for the future
work.

Problem with UC-style security model. Ideally, we may want to modify a
UC-style security model to guarantee the security against adversarial superpo-
sition queries (as in [DENS13]). This means that a real world protocol may be
executed in superposition by the adversary. So in order to define an UC-style
security definition, we need to consider an ideal protocol that will be run in
superposition too (in other words, the ideal functionality will not measure the
quantum queries of corrupted parties as in [Unrl()])lﬂ Now, we will encounter
obstacles to define an ideal OT protocol secure against superposition queries.
To illustrate this, let assume an one-out-of-two (1-2) bit OT protocol. An ideal
functionality F9T ~ for 1-2 bit OT protocol can be define as Algorithm

mo,m1
[CLOS02]. We naively run this ideal functionality in superposition considering

chT

mo,mi

Algorithm 1 : Functionality

1: Upon receiving messages bits mg, m; from the sender, store the messages.
2: Upon receiving a message bit b from the receiver, send my to the receiver
(if the messages mg, my are stored) and halt.

a corrupted receiver. A corrupted receiver can send a superposition of its inputs

Hn [LSZ20], the authors have proposed a protocol such that the superposition access to the
protocol can be simulated by a simulator that has access to the classical ideal functionality,
however, the protocol needs O(\) of communications between the sender and the receiver (to
transfer one bit) versus O(1) communications in the most of OT protocols.



using a quantum input register Q;, (for instance the state %(|0) +[1)g,,) to
the ideal functionality. The ideal functionality needs to answer with a superpo-
sition of outputs using a quantum register Q,u¢ (%ﬂmo) +1m1)) Qo I Qout is
initiated with 0 by the ideal functionality). At this stage, a corrupted receiver
can posses a superposition of this form:

1

0%,

When mg = my, this state |¥) can be written as

W) :

mo)q,.. T1q,.Imq,..)-

%(|O> + |1>)Qm ® |mO>Qaut'

Therefore, a measurement in the {|4),|—)} basis on Q;, register will return [+)
with probability 1. But when mg # m;, this measurement returns |+) or |—)
with probability % The corrupted receiver A returns the inputs are the same
(b =1) if he observes |+). Otherwise, it returns the inputs are different (b = 0).
We calculate the probability of ouputing the parity of inputs below.

Pr[b = [mg =mq] : b+ A| :% Pr[b = [mg = mq] : b+ Almg = m4]

1
+ iPr[b = [mo = mq] : b < Ajmg # my]

11

T
Therefore, overall, the corrupted receiver can guess if the inputs of the sender are
the same or not with probability %. The situation becomes more troublesome
if the output register will also be provided by the corrupted receiver. In this
case the receiver can execute the Deutsch—Jozsa algorithm [DJ92| to recover if
mg = mq or mg # my with probability 1. Obviously, this implementation of
the ideal OT functionality leaks the parity of the sender’s inputs to a corrupted
receiver.

In contrast, we observe that in the real world, a corrupted receiver may not
be able to produce such a superposition state as |¥). This is due to the fact
that an implementation of a superposition query to a real protocol may produce
some auxiliary registers that remain entangled with the input register Q;, even
when mo = my. So the attack sketched above will not work in this case.

So, we may encounter a situation that a real classical OT protocol remains
secure against adversarial superposition queries, but, as discussed above the
(classical) ideal OT functionality will be insecure against superposition queries.
In this paper we propose an indistinguishability based security definition. In
addition, we propose an UC-style security definition by modifying the ideal
functionality to accept superposition queries.

Our definition and result. To define an indistinguishability based security
definition, first, we need to discuss which party in an OT protocol may be able



to break the security of the protocol with a superposition query. Note that an
OT protocol is a two party protocol in which the receiver queries the sender
and the sender replies to the receiver’s query. Then, the receiver extracts the
targeted input from the sender’s answer. Therefore, there is no direct query
from the sender to the receiver. So if we consider a malicious sender and a
honest receiver, since the receiver’s query is classical all the communication will
be classical. However, if we consider a malicious receiver and a honest sender,
since the receiver’s query can be in superposition, then the answer of the sender
is in superposition too. So a malicious quantum receiver may be able to extract
some information about the inputs of the sender from the superposition state.
Therefore, we consider the security of the sender against a quantum receiver that
makes a superposition query in this paper. Considering an 1-2 bit OT protocol,
in our security definition the sender chooses two random bits as inputs. The
quantum receiver makes a quantum query to the sender and outputs a bit at the
end. We say that the oblivious protocol is secure if the quantum polynomial-time
receiver can guess the parity of the sender’s inputs with at most a probability
negligibly bigger than %

In[subsection 3.2], we implement a superposition query to a real OT protocol.
We observe that a quantum implementation of the functionality applied by the
sender will produce some ancillary registers that remain entangled with other
registers. For this reason, the attack sketched above (using Deutsch—Jozsa algo-
rithm) may not work for a real protocol. Later in we examine the
security of an OT protocol based on fully homomorphic public-key encryption
scheme (FHE) in this model. The security analysis supports our claim that the
ancillary registers may prevent the attack to go through in the real case. The
protocol can be instantiated with a lattice based public key encryption scheme
that is fully homomorphic.

On the negative side, we attack the protocol proposed in [LSZ20] when the
parameter A = 1. This protocol is secure against a quantum receiver restricted
to a classical query but it is insecure when the receiver makes a quantum query
(See [subsubsection 3.3.2). In we observe that the OT protocol
based on a fully homomorphic public-key encryption scheme (sketched above)
can be quantum insecure if the FHE scheme fulfils an extra requirement. In
other words, we show that conditioned on an extra requirement for the FHE
scheme the OT protocol is secure when the receiver makes a classical query,
but, it is insecure when the receiver makes a quantum query. We emphasize
that this extra condition on the FHE scheme may tamper the security of the
receiver against a malicious sender, however, it remains a separation example for
a quantum query versus a classical query made by a malicious receiver (assuming
that the sender is honest).

1.4 Organization of The Paper

In we present some preliminaries and notations that are needed in
this paper. Next, in we present our result. This section consists of
a security definition for the sender against a malicious quantum receiver that



is permitted to make a superposition query (see jsubsection 3.1f). It consists of

a discussion subsection on how a malicious receiver with a superposition access
can break the security of an OT protocol. In the positive side, we show that a
superposition query to an OT protocol may cause some ancillary registers that
are entangled with the input register and therefore they will prevent the attack
to go through. In the negative side, we present some cases that the attack is
successful. Later in we present an OT protocol based on a fully
homomorphic encryption scheme that is vulnerable when the receiver makes a
superposition query. But is is secure against a malicious receiver restricted to
a classical query. We finish our paper with a section on conclusion and open
problems,

2 Preliminaries

Notation. We say a function f from the natural numbers to the real numbers
is negligible if for any positive polynomial P there exists a positive integer N
such that for any input n > N, |f(n)| < ﬁ. We use “neg(A)” to show a
negligible function in the security parameter A\. The notation [n] depicts the set
{1,2,--- ,n}. For two bits mg, my, the notation [my = m;] indicates the parity
of two bits. For two distributions D; and Dy defined over the finite set X , the
statistical distance between them is define as

1
A(Dy, D) = 5 > |Pr[D; = 2] — Pr[D, = z]].
rzeX

We say two distributions are statistically close if the statistical distance between
them is a negligible function in the security parameter.

Quantum computation. We briefly recall some basic of quantum information
and computation needed for our paper below. Interested reader can refer to
[INC16] for more information. For two vectors |¥) = (1,9, -+ ,¥,) and |®) =
(¢1,¢2,- -+, ¢yp) in C", the inner product is defined as (¥, ®) =" 1 ¢p; where
¥} is the complex conjugate of 1);. Norm of |®) is defined as |||®)] = 1/( P, D).
The n-dimensional Hilbert space H is the complex vector space C" with the
inner product defined above. A quantum system is a Hilbert space H and a
quantum state [¢) is a vector [¢) in H with norm 1. An unitary operation over
H is a transformation U such that UUT = UTU = I where U' is the Hermitian
transpose of U and I is the identity operator over H. The computational basis for
‘H consists of n vectors |b;) of length n with 1 in the position ¢ and 0 elsewhere.
With this basis, the unitary CNOT is defined as

CNOT : |mq,ma2) — |mq,m1 & ma),

where mq,mso are bit strings. The Hadamard unitary is defined as

H:[b) — %(@ +(=1)%)),



where b € {0,1}. An orthogonal projection P over H is a linear transformation
such that P2 = P = Pf. A measurement on a Hilbert space is defined with
a family of orthogonal projectors that are pairwise orthogonal. An example of
measurement is the computational basis measurement in which any projection
is defined by a basis vector. The output of computational measurement on state
| W) is ¢ with the probability ||(b;, ¥)||* and the post measurement state is |b;).
For two quantum systems H; and Ho, the composition of them is defined by
the tensor product and it is H; ® Ho. For two unitary U; and Us defined over
H; and Hso respectively, (Uy @ Us)(H1 @ Ha) = U1 (H1) ® Uz(Hs). If a system
is in the state |¥;) with the probability p;, we interpret this with a quantum
ensemble £ = {(|¥;),p;)};. Different outputs of a quantum algorithm can be
represented as a quantum ensemble. The density operator corresponding with
the ensemble E is p = Y. p;|¥;)(¥;| where [¥;)(¥;| is the operator acting as
[W3) (Wil : |@) = (g, D)[W5).

Any classical function f : X — Y can be implemented as a unitary oper-
ator Uy in a quantum computer where Uy : |z,y) — |2,y @ f(z)). Note that
it is clear that Ul = Us. A quantum adversary has “standard oracle access”
to a classical function f if it can query the unitary Uy. When only the input
register will be provided by the adversary and the output register is initiated
with 0 by the oracle, we say the adversary has “embedding oracle access” to
the function. That is, the adversary has oracle access to the unitary that maps
|z,0) = |z, f(z)) [CETTU20].

Two rounds 1-2 oblivious transfer protocol. A two rounds 1-2 oblivious
transfer is a two party protocol between a sender and a receiver:

e The receiver on input a bit b chooses a randomness r and sends Ry (b; )
to the sender.

e The sender on inputs mg, m; computes OT(Ry(b; ), mg, my;7’) for a ran-
domness r’ and sends it to the receiver.

e The receiver applies a function Re to OT(Ry(b;r), mg, my;1’") to extract
my.

Informally, the sender’s security will be satisfied if the input mj remains secret
to the receiver after execution of the protocol. The receiver’s security will be
achieved if the sender dose not learn the input of the receiver (the bit b).

Fully homomorphic public-key encryption scheme [Gen09]. A fully
homomorphic public-key encryption scheme consists of four polynomial-time
algorithms KeyGen, Enc, Dec, Evaluate, as follows:

e On input of the security parameter, the randomized algorithm KeyGen
returns a pair of keys (pk, sk).

e The encryption algorithm Enc is a randomized algorithm that on inputs
pk and a message m, chooses a randomness r and returns the ciphertext
¢ := Encp(m; 7).



e The decryption algorithm is (possibly randomized) algorithm that on in-
put sk and the ciphertext ¢ := Enc,x(m) returns m (with high probability
if the decryption is randomized). For an invalid ciphertext, the decryption
returns L.

¢ The Evaluate algorithm is an (possibly randomized) algorithm that on
input any (pk, sk) generated by KeyGen, for any circuit C' and any ci-
phertexts ¢; := Encpi(m;; ;) for i € [n], returns a ciphertext

a = Evaluatey, (C, ¢;, -+, ¢p)
such that Decg () = C(mq, -, my).

Definition 1. We say a fully homomorphic encryption scheme is “circuit-
private” if for any (pk, sk) generated by KeyGen, any circuit C' and any cipher-
texts ¢; = Encpp(my; ;) fori € [n], the two distribution Encpr(C(ma, - -+ ,my))
and Evaluatep, (C, c;, - -+ ,¢,) are statistically close.

3 Our Result

In this section, we define a security definition that takes into consideration
adversarial superposition queries made by a malicious receiver. Then, we present
a discussion about how general OT protocols may be vulnerable to such queries
and what will be a possible solution to avoid such attacks. Later, we implement
the superposition query to an actual protocol and verify when the protocol will
be broken in the sense of our definition.

3.1 Security Definition

We define the security notion for an honest sender against a malicious receiver.
We assume that the sender’s database contains two bit entries, i.e., mg, m1
€ {0,1}. To capture the sender’s security, we define the security definition
through the following game. We say an 1-2 bit OT protocol is computationally
secure against a malicious quantum receiver if any polynomial-time adversary
wins the following game with the probability at most % + negl(\).

Game 1. OTY -MR: (MR stands for malicious receiver)

Sender’s input: Two bits mg, my.

Challenge query: The adversary sends two quantum registers Qin, Qout to
the challenger. The challenger applies UoT(.mg,m,:) to quantum registers
Qin, Qout and send both registers to the adversary.

Guess: The adversary outputs a bit § and wins if 6 = [mg = mq].

Definition 2. We say an 1-2 bit OT protocol is computationally secure against
a malicious quantum receiwer if any polynomial-time quantum adversary wins
the Game (1| with the probability at most % + negl(\).



Restricted to an adversary that is only allowed to make a classical query,
the definition captures the sender’s security because the adversary can recover
the bit my from OT(R1(b), mg,my;7’") by the correctness property of the OT
protocol. Then learning if the unrecovered bit is the same as the recovered bit
or not should be negligibly close to %. For completeness, we present the security

2
definition restricted to a classical query below.

Game 2. OT}*-MR-Classical Query:

Sender’s input: Two bits mg, my.

Challenge query: The adversary makes a query to the challenger, let say
Ri(b;r). The challenger chooses a randomness v’ and sends OT(Ry(b; ), mg, my;7")
to the adversary.

Guess: The adversary outputs a bit § and wins if 6 = [mg = m4].

Definition 3. We say an 1-2 bit OT protocol is computationally secure against a
malicious quantum receiver restricted to a classical query if any polynomial-time
quantum adversary wins the Game @ with the probability at most % + negl(A).

3.2 Attack Implementation

In this section, we implement a superposition query to an OT protocol. Note
that the purpose of this section is to illustrate the ideas used in the superposi-
tion attacks on some specific OT protocols in later sections. This section also
explains the challenges that appear when we want to implement such an attack
on more general OT protocols and it opens a direction to design a secure OT
protocol in the presence of adversarial superposition queries. Based on discus-
sions in this section, we propose an modified ideal functionality that can be run
in superposition and resist to DJ attack. First, we explain why DJ algorithm
may not successfully attack all OT protocols.

Why DJ algorithm may fail to attack an OT protocol. Recall that
any boolean function f : X — Y can be implemented efficiently as a unitary
operator Uy : |z)|y) — |z)|y @ f(z)) using quantum gates [NC16]. Let Ry be a
randomized function that is applied by the receiver on its input. Then, the Ug,
is an unitary operation applied by the receiver that maps

D) |y) — [b)|y & Ra(bs7)).
The Upr is an unitary operation applied by the sender that maps
Ri(b;m))]y) — [Ri(b;r))ly © OT(Ra(b;r), mo, masr')),

where my and m; are sender’s inputs. Let Rs is a function applied by the
receiver to extract my from OT(Rq(b;r), mo, m1;r’). Then, Ur, maps

[6)[R1 (b3 7))[OT(Ra (b5 7), mo, ma; 7)) |y)
to

[6) R (b5 7)) [OT (R (b ), mo, ma; 7)) [y @ ).

10
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Qin :
Qout :
QDec :

0)
Ur, () UR, ()
o —L H o SR
UOT(~,m0,m1 ir’) UR2 UOT(~,mo,m1 ir’)
0) H B 0)

Figure 2: The register Q..+ has been returned to |0) at the end of circuit. But
using two queries to OT protocol.

Note that Ro 0o OT o R; is a function from {0, 1} to {0, 1} that is constant when
mg = mq and it is balanced when mg # m;. Now one may think that a
malicious receiver can use the Deutsch-Jozsa (DJ) algorithm [DJ92] to decide if
the function is constant or balanced with the probability 1 and break the security
in the sense of Definition 2] But this might not work for all OT protocols. The
reason is that the function OT will be applied by the sender and may produce
some garbage in an ancillary register. These garbage information cannot be
undone by the malicious receiver and therefore it may interfere the analysis of
the DJ algorithm. We illustrate this by implementing the DJ algorithm on an
OT protocol in Figure[f] In the circuit, the register Q,,+ contains some unknown
information from the receiver point of view and will interfere the analysis of the
DJ algorithm.

@0 -
o0 UR, () UR, () 0

in 1|0) —— H ] | 10
UOT(',mg,ml;r’) UR2

Qout |0> -1 [
QDec |1> @

Figure 1: Implementation of DJ algorithm to general OT protocols. The register
Qout may be entangled to @ and results in the failure of DJ attack.

One can undo the register Q.+ by a second application of OT function as
depicted in Figure [2| But since mg, m; and the randomness r’ are not known
to the receiver, this second application also has to be applied by the sender.
Therefore, we will end up making two quantum queries to the sender that is
trivially useless.

Some cases that (a variant of) DJ algorithm works. Even though the
attack may not work for all OT protocols, there might be some cases that one
superposition access will break the security of oblivious transfers. For instance,

11



Q10 -
UR, (-r) URy (- |1
Qin |0> | ] [ 1 H— ‘0>
UOT(~,m0,m1;r’) UR2 !
Qout :|0) ——— H ‘
Qpec :10) “V
0)

Figure 3: A variant of DJ algorithm in which Qpec starts with |0). This may
be used to attack some OT protocols.

if the unitary operator Ur, oo can be applied by the receiver, then the attack
will work. We present such a scenario in the [subsubsection 3.3.1| using the ob-
fuscated program of OT.

Also, we can use a variant of the DJ algorithm to attack an OT protocol
that satisfies the following:

e OT(R1(0;7), mg, my;7") = OT(R1(1;7), mg, my; ") when mo = my.

In the we design an OT protocol that satisfies the property
above. We draw the circuit to attack such an OT protocol in Figure [3] We
compute and analyse the output of the circuit. The output of the circuit right
before applying the Hadamard operator is:

_ L

W) 7

(‘0>Qb |0>Qm |OT(R1(0;7),mo, m1; 7"/)>Q,,m m0>QDm+

Do, [0)q,, [OT®1(L:r),mo, mai 1), [mi1)g,,.)-

When my = m;. We can write the state |¥) as follows where we use only myg
in the state.

I
V2

Therefore, after applying the Hadamard operator, the state will be in |0) and
the measurement will return 0 with the probability 1.

When mg # m;. In this case, we cannot write |¥) as above and the register
@y remains entangled with Q) pe.. So the measurement returns 0 with the prob-
ability % and it returns 1 with the probability %

Overall probability of success. Therefore, overall, the attack breaks the
security notion in the sense of Definition [2| with the probability 2.

w) (10) +[1))@,) ® [0) g, IOT(R1(0;7),mo, ma;1")) g, IM0) g .-

Another case that the attack works is when the function Ry is linear. In
this case the quantum implementation of Ry does not need the ancillary regis-
ter Qpec and the circuit in Figure 3] without the last wire will attack the protocol.

12



Remark. Note that in the attack depicted in Figure|3] the output register Q¢
starts with zero. Therefore, the attack works even when the malicious receiver
has embedding oracle access to the sender that is a weaker oracle access compare
to the standard oracle access. This shows that even measuring the output
register by the sender will not help to prevent the superposition attack.

3.3 Separation Examples
3.3.1 Superposition Attack on Obfuscated OT.

Here we show that when the malicious quantum receiver possesses the obfus-
cated program of OT(-,mq,mq;7’") where mg,my are the sender’s input it can
break the security of OT protocol. Let the program obfuscated in a way that
it will not run anymore after one execution (then it is classically secure.). In
this case, the receiver can implement the OT protocol on a quantum device
and run it on quantum inputs. The attack uses the Deutsch-Jozsa quantum
algorithm [DJ92] [CEMMO98] that distinguishes a constant function from a bal-
anced function by one quantum access to the function. In details, if a function
f:{0,1}" — {0,1} is promised to be either a constant function (it outputs 0
or 1 for all inputs) or a balanced function (half of the inputs maps to 0 and
the other half maps to 1), then Deutsch-Jozsa algorithm finds if the function is
constant or balanced with the probability 1 and using only one quantum query
to Us. We illustrate how the Deutsch-Jozsa quantum algorithm can be used to
break the OTS*-MR security (Definition [2)) of the obfuscated oblivious transfer
protocols. Roughly speaking, Ry 0o OT oR; is a function from {0,1} to {0,1}
that is constant when my = m; and it is balanced when mgy # m,. Therefore,
one superposition query to Ur, 00T oR, can break OT¢*-MR, security with the
probability 1. We draw the circuit to attack in the following that is exactly the

DJ algorithm.
Q)

URry 00T oR,

QpDec : |1> —

3.3.2 Liu-Sahai-Zhandry protocol [LSZ20].

For two bits mg, m1, the sender chooses 4 uniformly random strings X¢, X1, Yy, Y7 €
{0, 1})‘ such that the inner product of Xy, Yy and X7, Y7 module 2 are equal
to mg and myq, respectively. Let X, = (zp1,--- ,@px) and Y = (Yp 1, , Yb,A)-
The receiver queries 2\ OTMs with inputs (zg,,21;) and (yo,,y1,;) for i =
1,---, X to obtain my. The authors show that if the sender gives both Y, and
Y1 to the receiver, the protocol remains a classically secure one-time memory.
We present the functionality after this modification below and it is the same as
Functionality 4 in [LSZ20].
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Algorithm 2 : Functionality Fp,g m,

1: Create: Upon inputs (mq,mq),

1. The sender chooses 4 uniformly random strings Xy, X1,Yy,Y1 €
{0,1}* such that the inner product of Xy, Yy and X;, ¥; module
2 are equal to mg and mq, respectively.

2. The sender prepares a table {¢;} initiated with zero indicating if j-th
query has been queried or not.

2: Execute: Upon receiving a quantum query and classical input j,

1. The sender checks if t; = 0. If it is not, the sender does nothing and
return the state back to the receiver.

2. Otherwise, the sender applies unitary Us, ; ,, |b,c) = |b,c @ ;) and
sends back the state along with classical values of (yo;,%1,;) to the
receiver. Then it sets ¢; = 1 and deletes g j,%1,5,%0,5,¥1,; from the

memory.

A malicious quantum receiver A can invoke DJ algorithm to obtain the
parity of bits (zo,;,21,;) with the probability 1. Then using the vectors Yy, Y;
determines the parity of inputs mg, m; with the probability 1/2 + 1/2**1. In
the following, we show that when Yy = Y7, the adversary can determine the
parity of my and my correctly. Otherwise, the adversary returns a random bit
as an output. Note that my, = Z%‘:l Zp,jYp,j. Therefore, when Yy = Y7, we can

J
factor out 13 ; in the sum of mg + m:

A

mo +my = Zyb,j(xo,j +z1,;) mod 2.
j=1

Since the adversary knows zg ; + x1; using DJ algorithm, he can obtain the
parity of inputs with the probability 1 in this case. If there exists a j € [A] such
that yo,; # y1,; one of xg 1 or x1 ; in the sum above remains uniformly random
from the adversary’s point of view. Therefore, the adversary has to return a
random guess in this case and the success probability is 1/2. We calculate the
overall probability of success:

1
Primo+mi =b:b+ A =Pr[Yo =Y1] + iPr[Yo # Y1]

11 1
= — 4+ (1- —
x tall =)
11
=5t o

Note that the protocol above is a classically secure OT protocol even when A = 1
ILSZ20]. However, a quantum adversary can return the parity of inputs with the

14



probability 3/4. So this is a separation example for a classical receiver versus a
quantum receiver with the superposition access (considering Definition .

In Lemma 5 in [LSZ20], it has been shown that there exists an efficient
simulator Sim such that for every adversary A the trace distance between the
final density matrix of A in the real case (showed by A <= Fy,y m,) and the
final density matrix of A in the simulated case where the simulator has access
to the ideal OT functionality (showed by Sim(A) <= FGT, ) is strictly less
than 2-9W);

T (A <> Frngm,)s (Sim(A) <= FOT 1)) < 279,

mo,m1

We use the attack presented above to show that the security bound in [LSZ20]
is tighﬂ

Theorem 1. There exists an efficient quantum adversary such that for any
efficient simulator Sim:

T (A <= Frngmy), (Sim(A) < FOT ) =27+,

mo,m1

Proof of Theorem 2. Let A be the adversary presented above that returns the
parity of inputs mg,m;. As calculated above, A returns the parity of inputs
correctly (let say it returns the state |1) in this case) with probability & + o3

Then the quantum ensemble corresponding to this adversary in the real case is:

{1+ 5300 (00, ~ x|

In the simulated case, the success probability of the adversary is 1/2 since the
simulator has access to the classical ideal functionality fgiml. Therefore, the
quantum ensemble corresponding to this adversary in the simulated case is:

{(m.3): (0. )}

A simple calculation shows that the trace distance between the density operators
corresponding to these ensembles is 2~ 1), O

3.4 Superposition Attack on an OT Protocol?

In this section, we present an OT protocol that is secure against a quantum
adversary that is only allowed to make a classical query. Then, we implement
a quantum query to the sender and discuss when the protocol will be insecure
against an adversarial superposition query made by the receiver. We present
an OT protocol based on a fully homomorphic lattice-based encryption scheme
below.

2We slightly contradict their result since their bound is strictly less than 2=%X) | but, we
show that there exists an adversary such that for any simulator the trace distance is 2= (A1),
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Protocol 1. Let £ = (KeyGen, Enc,Dec) be a fully homomorphic public-key
encryption scheme. Let F be a circuit that on input (b,mg, m1) returns (1 —
b)mg + bmy. We define an OT protocol as follows.

e The receiver on input b € {0,1} runs KeyGen to generate a pair of
keys (pk,sk). Then it chooses a randomness r and sends pk and ¢, =
Encyi(b; 1) to the sender.

e The sender chooses ro, 1 uniformly at random and computes cjy = Encyi(mo; ro)
and ¢y = Encpr(ma;r1). Then it computes cpinar = Evaluateyy (F, ¢y, ¢y, i3 17)
and sends it to the receiver.

o The receiver decrypts Crinal using the secret key sk to obtain my.

Note that a malicious receiver can send an invalid ciphertext ¢; in first round
of the protocol and this may fail the Evaluate,) function. We show the security
when the receiver follows the protocol instructions in the first round.

Theorem 2. On the existence of a fully homomorphic public-key encryption
scheme that is circuit-private, the Protocol[l]is secure against a quantum polynomial-
time honest-but-carious receier restricted to a classical query. (In the sense of

Definition @

Proof of Theorem 2. Evaluate,(F, cp, ¢, ¢} ) is statistically close to Encyx (F (b, mg, m1))
that is Encpx(msp) because the public-key encryption is circuit-private. There-
fore, cfinai is statistically close to Encpr(my). This finishes the proof because
Encpr(mp) is independent of the bit mg. O

Remark. Note that the protocol above can be proven secure against a malicious
sender if the FHE scheme is IND-CPA secure. However, we consider a malicious
receiver in this paper and skip the formal proof for the security of a honest
receiver against a malicious sender.

Instantiation. We can instantiate this protocol with a lattice-based public-key
encryption scheme that is fully homomorphic and it is circuit-private [Gen09]
BPMW16].

3.4.1 Superposition Implementation.

Below, we implement a quantum query to the Protocol [1] in Figure |4 Then we
compute the output of the circuit and discuss in which condition the protocol
will be broken with this attack. Note that in the circuit below ¢ and ¢| are
classical values that the sender computes by encrypting its inputs. In other
words, ¢y = Encpy(mo; ro) and ¢§ = Encp(mq;r1). Note that ¢o and ¢; will not
pass to the sender. The registers Qp, Qin, Qout and @ pe. are quantum registers
provided by the receiver and all are initiated by 0. If the measurement returns
0, then the adversary outputs that the inputs of the sender are the same. Oth-
erwise, it outputs that the inputs are different.
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Figure 4: Implementing DJ attack to Protocol

The output of the circuit right before the application of the Hadamard op-
erator is:

1

=

(\O)Qb|O>Qm|Evaluatepk(F,0070670’1;r')>Q mo)+

out‘
11)g,10)q,, [Evaluate, (F, c1, cg, c1; r')}Qout [mq)).

Note that for a FHE scheme that is circuit private, Evaluateyy (F), co, ¢y, ¢i;7")
is statistically close to Enc,x(mo) and Evaluatep (F, c1, cp, ¢i;7') is statistically
close to Encp(mg). Therefore, the state |U’) written below (using some ran-
domness Ry and R;) is indistinguishable from | ).

W) = = (1000, 0, [Bncyc(mo: Ro)g

m0>+

out

D), 10)q,, [Encpr(m1; Bi))g, , Ima))-

Unsuccessful attack. Note that if Ry # R, the measurement will return 0
with the probability 1/2 in both cases of mg = my and mg # my.

Condition for a successful attack. If there exists a randomness R such

that when mo = my, the value Evaluate,; (F, co, (), ¢|; r’) is statistically close to

Enc, (mo; R) and Evaluatep, (F, ¢1, ¢, ¢} ;1) is statistically close to Encpy(m1; R),
we can write |P’) as follows where we use mg instead of m;.

1
V2

3We are not aware of a FHE scheme that fulfils this requirement. Also, this extra require-
ment for the FHE scheme might tamper the security of the receiver against a malicious sender,
but, it still remains a separation example for a superposition query versus a classical query
made by a malicious receiver.

(10) + 1))@, 10)q,,, [Encpr(mo; R))q, ., Imo)-
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Now, the state after applying the Hadamard operator is

10)q, [Encyr(mo; R)) g, . Imo),

and therefore the measurement returns 0 with the probability 1. On the other
hands, when mg # mq, we cannot write |¥) as %(|0) +1(1))g, ® |¢) for some
state |¢). In other words, the register @ is entangled with other registers and
therefore, the measurement returns 0 or 1 with the probability % Overall, the
adversary can break the security in the sense of Definition 2] with the probability
3

1

3.5 UC-style Security Definition

In this section, we propose an ideal functionality that receives superposition
queries and it resists to DJ attack. We follow the ideas developed in
that an OT protocol that its quantum implementation requires an
ancillary register that is entangled with the input register will resist to the super-
position DJ attack. We have embed this idea directly to the ideal functionality
in Algorithm [3] We emphasize that the definition needs further investigation
to be more justified. Informally, We say an OT protocol is secure against su-

Algorithm 3 : Functionality F297

mo,mi

1: Upon receiving messages bits mg, m; from the sender, store the messages.

2: Create: On inputs (mg,m1), choose two uniformly random strings
Xo, X1 € {0,1}", and an ancillary register Q. initiated with |0).

3: Execute: Upon receiving a quantum query with registers Q;n, Qout, apply
the unitary Uy m;[0)g. 16)g,..10)q,, . = [b,cO & my) where my is obtained
by appending X3 to my. Then it sends all three quantum registers to the
receiver.

perposition queries if for any (polynomial for computational security) quantum
receiver A, there exists an efficient simulator such that the trace distance be-
tween the density matrix of A in the real case (A <= OT),, m, ) and the density
matrix in the ideal case (A <= FI97T ) is at most neg(n).

It is easy to see that if an OT protocol securely emulates }“gg?;m for an
adversary restricted to a classical query, then it securely emulates ‘Ffrg,Tml (Al-
gorithm . In a nutshell, the simulator can chooses a random strings X. Upon
receiving the classical query, it forwards it to ffn(g:";n |- After receiving the answer
my, it appends X to m; and sends the result to the adversary.

4 Conclusion and Open Problems

In this paper, we initiate to study the security of OT protocols in a scenario
when a malicious receiver can make a quantum query to the sender. We define a
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security notion in this model. We observe that a superposition query to an ideal
OT functionality will break the security of the protocol, in contrast, a real OT
protocol may resist to such an attack. This is due to some ancillary registers
that will appear on the quantum implementation of an OT functionality.

We verify the quantum security of 2-round 1-2 bit OT protocols in the sense
of an indistinguishability based definition proposed in this paper. We present
OT protocols that are secure against an quantum receiver restricted to the
classical query, but, insecure when the receiver can make a superposition query.
In addition, we propose a UC-style security definition considering the scenario
when a malicious receiver can make a superposition query. We leave further
investigation of our UC-style security definition along with verifying the security
of OT protocols with more rounds as a future work.
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