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Abstract. This paper initiates the study of the provable security of authenticated encryption (AE)
in the memory-bounded setting. Recent works – Tessaro and Thiruvengadam (TCC ’18), Jaeger and
Tessaro (EUROCRYPT ’19), and Dinur (EUROCRYPT ’20) – focus on confidentiality, and look at
schemes for which trade-offs between the attacker’s memory and its data complexity are inherent. Here,
we ask whether these results and techniques can be lifted to the full AE setting, which additionally
asks for integrity.

We show both positive and negative results. On the positive side, we provide tight memory-sensitive
bounds for the security of GCM and its generalization, CAU (Bellare and Tackmann, CRYPTO ’16).
Our bounds apply to a restricted case of AE security which abstracts the deployment within protocols
like TLS, and rely on a new memory-tight reduction to corresponding restricted notions of confiden-
tiality and integrity. In particular, our reduction uses an amount of memory which linearly depends
on that of the given adversary, as opposed to only imposing a constant memory overhead as in earlier
works (Auerbach et al., CRYPTO ’17).

On the negative side, we show that a large class of black-box reductions cannot generically lift confi-
dentiality and integrity security to a joint definition of AE security in a memory-tight way.
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1 Introduction

Cryptographic attacks aim to use as little memory as possible. While some attacks are memoryless (e.g.,
for collision finding), others are subject to a trade-off – as the available memory decreases, the time and
data complexities increase. A security proof (especially one in the spirit of concrete security) should tell
us precisely how memory affects other complexity metrics. However, this is technically challenging, and
consequently, security proofs ignored memory until recently.

This paper continues an ongoing line of works introducing memory limitations in provable security,
and initiates the study of (nonce-based) authenticated encryption (AE) in the memory-bounded setting.
Recent works [17,11,7] have shown memory-sensitive proofs of security for symmetric encryption, showing
that trade-offs between memory and data complexities are inherent. These results, however, only deal with
confidentiality of encryption – and one of the main contributions of this paper is to highlight the challenges
of lifting them to the more complex setting of AE.

We discuss definitional aspects, and then shift our focus to memory-tight reductions [1] in the AE setting.
We prove both positive and negative results. We introduce a new technique for memory-tight reductions to
obtain tight memory-sensitive bounds for the AE-security of GCM in a setting that corresponds to its usage
for establishing a secure channel. We also show that restricting AE security to specific settings is inherent for
memory-tight reductions – indeed, we show that the common approach of lifting confidentiality and integrity
guarantees into a combined notion of AE security (or of CCA security) fails in its most general form, at least
with respect to a broad class of security reductions.

‹ A preliminary version of this paper appears in the proceedings of CRYPTO 2020. This is the full version.



1.1 Context: Time-memory Trade-offs for AE

Let us start by setting the context and highlighting some of the challenges. First off, existing results [11,7]
can be combined to analyze the INDR security1 of nonce-based encryption. For example, consider a toy
scheme2 SE based on a block cipher E with block length n which encrypts M P t0, 1un with key K as

SE.EpK,N,Mq “ EKpNq ‘M .

Here, N is the nonce and INDR security should hold as long as no two messages are encrypted with the
same nonce. One can show that for every adversary A with time, data, and memory complexities t, q, and
S, respectively,

AdvindrSE pAq ď O

ˆ

q ¨ S ¨ logpqq

2n

˙

` AdvprpE pBq , (1)

where B is an adversary against the security of E as a pseudorandom permutation (PRP), which has time
and memory complexities (roughly) t and S, respectively, and makes q queries. In particular, if S ă 2n{2,
then SE achieves beyond-birthday security q ą 2n{2 with respect to data complexity.

Our goal, in more detail. However, INDR security is rarely sufficient on its own – we want fully secure
AE schemes which also satisfy (ciphertext) integrity (or CTXT security, for short). Following [16], we adopt
a single AE security definition that incorporates both INDR and CTXT, by measuring indistinguishability
of two oracle pairs pEncb,Decbq for b P t0, 1u. For b “ 1, Enc1 returns real ciphertexts, and Dec1 decrypts
properly. For b “ 0, instead, Enc0 returns random ciphertexts, and Dec0 decrypts only previous outputs
from Enc0. It is important to use a combined definition, as it captures settings such as chosen-ciphertext
attacks and padding-oracle attacks [18], which use a decryption oracle to break confidentiality.3

Lifting trade-offs. We want to prove a bound analogous to that of (1) for AE security, preserving in
particular the existing space-time trade-off. The usual approach is to prove INDR and CTXT individually,
and then combine them to show AE security. This makes sense because (1) we know how to prove tight
trade-offs for INDR security, and (2) we may be able to prove stronger bounds on CTXT easily, even
without memory restrictions. The classical statement (originally in [16]) is that for every adversary A,

AdvaeSEpAq ď AdvindrSE pBq ` AdvctxtSE pCq ,

for suitable adversaries B and C, with similar time and query complexities as those of A. However, this is only
helpful towards our goal if the reduction is memory-tight, in the sense Auerbach et al. (ACKF) [1], i.e., B and
C’s memory costs must not noticeably exceed those of A. This is fundamental to preserve a time-memory
trade-off like the one from (1).

Unfortunately, the standard proof is not memory-tight with respect to the INDR adversary B, as it needs
to simulate Dec0 which requires remembering prior ciphertexts. In a nutshell, we will show that the lack of
memory-tightness is inherent, but the definition can be restricted enough for interesting deployment scenarios
to actually allow for a memory-tight reduction.

Definitional issues. Several “without loss of generality” definitional equivalences are false in the memory-
bounded setting. For example, INDR security holds as long as nonces do not repeat, but there are options
to formalize this, e.g.: (A) The game enforces this by answering encryption queries repeating a nonce with
K, unless the same message is re-encrypted, or (B) The adversary never repeats a nonce. If we do not care
about memory, these two definitions are indeed equivalent, but if we do, then they are not. Indeed, the bound
in (1) for our toy scheme can only be true for (B) – it is not hard to see that otherwise we can mount a
memory-less distinguishing attack with q « 2n{2 queries. (The attack also works if K is returned even if we
re-encrypt the same message.) We discuss definitions in detail in Section 3.

1 Which measures the indistinguishability of ciphertexts from truly random ones.
2 Our discussion can easily be extended to many schemes following the format of counter-mode encryption.
3 While we target such a single definition of AE, we stress that our results would extend to considering CCA security

as a target.
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1.2 Positive Results

We provide a novel memory-tight reduction for the common case where AE is used to establish a secure
communication channel, as in TLS. The key point is that in this setting, only certain restricted adversarial
interactions can occur in the AE security game, i.e.:

(1) Nonces are implicit – they are incremented as a counter.
(2) The receiver aborts upon the first decryption failure. In particular, messages need to be delivered in the

same order as they are encrypted.

Our memory-tight reduction is for an abstraction of this setting we refer to as a channel. (Although, for this
introduction, we stick with the more conventional language of AE.) We apply our reduction to prove (tight)
memory-sensitive bounds for a channel instantiated with the CAU scheme by Bellare and Tackmann [4], an
abstraction of GCM [12].

The security game.When restricting AE security to this setting, we can assume that the adversary A can
encrypt messages M1,M2, . . . and obtains ciphertexts C1, C2, . . . via an encryption oracle Encb, for b P t0, 1u.
When b “ 1, the Ci’s are actual encryptions of the Mi’s (with increasing nonces), whereas when b “ 0, they
are truly random ciphertexts. The adversary is also given access to a decryption oracle Decb. If b “ 1, this
just applies the decryption algorithm of the AE scheme, using increasing nonces. If decryption fails, Decb
responds to this and any future queries with K. For b “ 0, the oracle responds with M1,M2, . . . as long as it
is supplied the ciphertexts C1, C2, . . . in the order they have been produced by Enc0. If the ciphertexts come
in the wrong order, Dec0 responds to this and any future queries with K. The goal here is to distinguish
pEnc0,Dec0q and pEnc1,Dec1q.

Proof idea. In this channel setting, to obtain a memory-tight reduction from AE security to CTXT and
INDR security, we first use CTXT security to replace the oracles pEnc1,Dec1q with pEnc1,Dec0q. (This
step is easily seen to be memory-tight.) Next, we aim to use INDR security to replace Enc1 with Enc0. The
catch here is that when doing so, we need to simulate the Dec0 oracle in the INDR security game (which does
not provide one). Again, this seems to require remembering all prior ciphertexts, thus preventing memory-
tightness.

A key observation, however, is that ciphertexts are only accepted when arriving with the right order.
For this reason, we will show (via an information-theoretic argument) that our reduction only needs to store
the δ oldest ciphertexts which have not been delivered yet, for some δ – the key point here is that δ can be
chosen to depend (roughly linearly) on the memory of the adversary used by the reduction, so the overall
memory of the constructed adversary is of the same magnitude of that of the AE adversary.

This is in contrast to existing memory-tight reductions in the literature which are (near) “memory-less”,
i.e., the reduction adds a small memory overhead, independent of the memory of the adversary. Our reduction
is the first example where the reduction uses memory in addition to that of the adversary, but the size of
this memory is bounded in terms of the adversary’s memory complexity.

Application to CAU. We apply our memory-tight reduction to show bounds for CAU (and hence GCM)
in the communication channel setting. We refer to the resulting channel as NCH, and it is based on a block
cipher E. We show that for every adversary A, there exists B such that

Advch-aeNCH pAq ď 4 ¨ AdvprpE pBq `O
ˆ

pqS

2n

˙

, (2)

where Op¨q hides a small constant, q and S are the data and memory complexities of A, and p is an upper
bound on the length of ciphertexts. Further, B makes q ¨p queries, and has time complexity similar to that of
A. Instrumental to our result here is Dinur’s Switching Lemma [7]. The main challenge is to prove a bound
for CTXT security – our proof relies once again on similar techniques to our memory-tight reduction.

1.3 Negative Results

A meaningful question is whether we can give a memory-tight reduction beyond the setting of channels,
and reduce AE security to INDR and CTXT security in the most general sense. Here, we show that this is
unlikely by giving impossibility results for black-box reductions.
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We consider reductions to INDR and CTXT which are restricted, but note that all prior impossibility
results on memory-tight reductions [1,19,9] make similar or stronger restrictions. In particular, we require
the reductions to simulate their encryption oracles “faithfully” to an AE adversary, i.e., if they answer an
encryption query with a ciphertext C, the same query (1) has been asked to the encryption oracle available
to the reduction and (2) it has returned C. This restriction is natural, and we are not aware of any reductions
evading it.

Straightline reductions. Our first result builds an (inefficient) adversary A against AE security which
no straightline reduction can use to (1) break CTXT security (regardless of the memory available to the
reduction) or, more importantly, to (2) break INDR security (unless the reduction uses an amount of memory
proportional to the query complexity of the adversary). Moreover, A uses little memory, and thus our result
implies impossibility even for “weakly memory-tight reductions” which adapt their memory usage (such as
the one we give in this paper). This is unlike recent works [19,9], which only rule out reductions with memory
independent of that of the adversary.

At a high level, A forces the reduction to complete a memory-hard task before being useful. If the
reduction succeeds, A executes an (inefficient) procedure to break INDR security. (And importantly, this
procedure does not help in breaking CTXT security!) More in detail, the first part of A’s execution consists
of challenge rounds. In each of these rounds, A encrypts random plaintexts M1, . . . ,Mu, which result in
ciphertexts C1, . . . , Cu, and also picks a random index i˚ P rus. It then asks for the decryption of Ci˚ , and
checks whether the response equals Mi˚ . If so, it moves to the next round, if not it aborts by doing something
useless. Only if all rounds are successful A proceeds to break INDR security. We use techniques borrowed
from the setting of random oracles with auxiliary input (AI-ROM) [5] to prove that the probability that all
rounds are successful decays exponentially as long as the reduction’s memory does not fit all of M1, . . . ,Mu.

Full Rewinding.The restriction to straightline reductions seem too restrictive: After all, a reduction could
(1) wait for a decryption query Ci˚ , then (2) rewind the adversary to re-ask M1,M2, . . . until Mi˚ is asked.
The caveat is that our definition of INDR security does not allow for re-asking encryption queries (again, as
pointed out above, such a notion would prevent us from using the results of [11,7]). Therefore, if we assume
that all the reduction can do is remember (say) S plaintext-ciphertext pairs, the above adversary A will fail
to pass a challenge round with probability at least 1´ S{u.

Still, this does not mean that rewinding cannot help when allowing more general adversarial strategies.
While handling arbitrary rewinding appears to be out of reach, we make partial progress by extending our
proof (and our construction of A) to show that “full” rewinding (i.e., re-running A from the beginning) does
not help. This is the same rewinding model considered in prior memory-tightness lower bounds [1]. However,
in those results, one obtains a rewinding-memory trade-offs (in that reducing memory would require more
rewinding). Here, our result is absolute, in the sense that if memory is too small, no amount of rewinding
can help.

Paper overview. In Section 2, we introduce our notation, basic definitions and cover some cryptographic
background necessary for the paper. In Section 3, we recall the standard definitions for the security notions of
nonce-based encryption. We point out several nuances while defining security in the memory bounded setting.
We conclude the section by giving a time-memory tradeoff for the INDR security of CAU. In Section 4, we
show that memory-tight reductions can be given for the combined confidentiality and integrity security of
cryptographic channels. Using the result from Section 3, we prove the security of a channel based on CAU.
The resulting channel can be viewed as (a simplification of) the channel obtained when using GCM in TLS
1.3. In Section 5, we give impossibility results (for a natural restricted class of black-box reductions) for
giving a memory-tight reduction from AE security to INDR and CTXT security. This establishes that our
move to the channel setting for Section 4 was necessary for our positive result.

2 Definitions

Let N “ t0, 1, 2, . . . u. For D P N, let rDs “ t1, 2, . . . , Du. If S and S1 are finite sets, then FcspS, S1q denotes
the set of all functions F : S Ñ S1 and PermpSq denotes the set of all permutations on S. Picking an element
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uniformly at random from S and assigning it to s is denoted by sÐ$ S. The set of finite vectors with entries
in S is S˚ or pSq˚. Thus t0, 1u˚ is the set of finite length strings.

If x P t0, 1u˚ is a string, then |x| denotes its bitlength. If n P N and x P t0, 1u˚, then |x|n “ maxt1, r|x|{nsu.
We let x1 . . . x` Ðn x denote setting `Ð |x|n and parsing x into ` blocks of length n (except x` which may
have |x`| ă n). We let xr: ns denote the first n bits of x and xri : ns denote the i-th (exclusive) through n-th
(inclusive) bits of x. We adopt the convention that if |x| ă |x1| then x‘ x1 “ x‘ x1r: |x|s. The empty string
is ε.

We will make use of queues which operate in first-in, first-out order. If Q is a queue then Q.addpMq
adds M to the back of the queue and M Ð Q.dqpq removes the first element of the queue and assigns it to
M . If the queue is empty, then M is assigned the value K R t0, 1u˚ which is used to represent rejection or
uninitialized values.

Algorithms are randomized when not specified otherwise. If A is an algorithm, then y Ð AO1,...px1, . . . ; rq
denotes running A on inputs x1, . . . with coins r and access to the oracles O1, . . . to produce output y.
Performing this execution with a random r is denoted yÐ$ AO1,...px1, . . . q. The set of all possible outputs
of A when run with inputs x1, . . . is rApx1, . . . qs. The notation y Ð Opx1, . . . q is used for calling oracle
O with inputs x1, . . . and assigning its output to y. (Note, the code run by the oracle is not necessarily
deterministic.)

We make regular use of pseudocode games inspired by the code-based framework of [3]. Examples of
games can be found in Fig. 1. We let PrrGs denote the probability that a game G outputs true. Booleans
are implicitly initialized to false, integers to 0, and all other types to K.

Complexity conventions. When measuring the efficiency of an adversary we follow the standard con-
vention used in studying memory-tightness [1] on measuring the local complexity of an adversary and not
included the complexity of whatever game it interacts with. We primarily focus on the worst-case runtime
(i.e. how much computation it performs in between making oracle queries) and memory complexity (i.e. how
many bits of state it stores for local computation) of adversaries. Note that while these exclude the time and
memory used within whatever oracles the adversary may call, we do include the time and memory used to
write down an oracle query and receive the response.

2.1 Cryptographic Background

Function family.A function family is an efficiently computable function F : AˆB Ñ C, where A, B, and
C are sets. A hash function is a family of functions. We often write FKp¨q in place of F pK, ¨q.

Pseudorandom function/permutation. Let E : t0, 1uk ˆ t0, 1un Ñ t0, 1um be a function family. If
n “ m and EKp¨q is a permutation for each K P t0, 1uk, then we say that E is a block-cipher. The primary
security notions of interest for such functions are PRF and PRP security. The former is typically more useful
in applications, but when E is a block-cipher we prefer to assume PRP security and use that to deduce PRF
security.

These security notions are defined by games shown in Fig. 1. In Gprp, the adversary is given access to
either EKp¨q for a random key or a random permutation P : t0, 1un Ñ t0, 1un. Game Gprf is defined similarly
except a random function F : t0, 1un Ñ t0, 1um is used in place of the permutation. For x P tprp, prfu, we
define the advantage of A by AdvxEpAq “ PrrGxE,1pAqs ´ PrrGxE,0pAqs.
Switching Lemma. A classic result in cryptography is the “switching lemma” which bounds how well
an adversary can distinguish between a random function and a random permutation. Consider the game
Gsl
D,b shown in Fig. 1. In it, the adversary is given oracle access to either a random function or a random

permutation with domain/range rDs and is trying to figure out which. We define AdvslDpAq “ PrrGsl
D,bpAqs ´

PrrGsl
D,bpAqs.

The classic switching lemma shows AdvslDpAq P Opq2{Dq where q is the number of queries made by
A. In general, bounding the memory-complexity of the attacker cannot be used to meaningfully improve
this bound because a low-memory collision-finding attack (e.g., using Pollard’s ρ-method [13,14]) achieves
advantage AdvslDpAq P Ωpq2{Dq. However, as originally observed by Jaeger and Tessaro we can obtain better
results when restricting attention to adversaries that never repeat any queries.
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Game Gprp
E,bpAq

KÐ$ t0, 1uk

P Ð$ Permpt0, 1unq
b1Ð$ AEvalb

Return b1 “ 1

Oracle Evalbpxq
y1 Ð EKpxq
y0 Ð P pxq
Return yb

Game Gprf
E,bpAq

KÐ$ t0, 1uk

F Ð$ Fcspt0, 1un, t0, 1umq
b1Ð$ AEvalb

Return b1 “ 1

Oracle Evalbpxq
y1 Ð EKpxq
y0 Ð F pxq
Return yb

Game Gsl
D,bpAq

F Ð$ FcsprDs, rDsq
P Ð$ PermprDsq
b1Ð$ AEvalb

Return b1 “ 1

Oracle Evalbpxq
y1 Ð F pxq
y0 Ð P pxq
Return yb

Fig. 1. Security games for PRF and PRP security of E and the switching lemma.

Game Gaxu
H pX q

ppA1, C1q, pA2, C2q, Zq Ð$ X
LÐ$ t0, 1uk

If pA1, C1q “ pA2, C2q then return false

Return HLpA1, C1q ‘HLpA2, C2q “ Z

Fig. 2. Security game for AXU security of H.

Let AdvslDpq, Sq denote the maximal value of AdvslDpAq for all A that are S-bounded and make q non-
repeating queries to their oracle. Jaeger and Tessaro [11] showed that AdvslDpq, Sq ď

a

Sq{D under a combi-

natorial conjecture. Later, Dinur [7] improved this to show that AdvslDpq, Sq P OpSq logpqq{Dq.
An immediate application of the switching lemma is that if A is an S-bounded adversary which makes q

non-repeating queries to its oracle, then |AdvprfE pAq ´AdvprpE pAq| ď AdvslDpq, Sq for any block-cipher E whose
range has size D.

AXU hash function. Let H : t0, 1uk ˆ pt0, 1u˚ ˆ t0, 1u˚q Ñ t0, 1un be a hash function. Its almost XOR-
universal (AXU) security is defined by the game Gaxu

H shown in Fig. 2. In it, an adversary X attempts to guess
the xor of the output of H on two distinct inputs of its choosing for a random key L. We define AdvaxuH pX q “
PrrGaxu

H pX qs. Typically one makes use of a c-AXU hash which for all X satisfy AdvaxuH pX q ď c ¨ pN1`N2q{2
n

where N1 (resp. N2) is the maximum block length of any A (resp. C) output by X . Note this is unconditional,
so we will not have to worry about memory complexity when reducing to AXU security.

3 Nonce-based Encryption and Memory-boundedness

In this section we recall known definitions and results for nonce-based encryption [15]. We carefully consider
how these change when we move to the memory-bounded setting. For example, as was previously noted by
Auerbach, et al. [1], definitions which are tightly equivalent when the memory usage of adversaries is not
bounded do not necessarily remain so with bounds on memory. So we will consider several variants of the
definitions we are recalling and try to reason about which is the “correct” one to use. We additionally note
some results which can be extended to give appealing time-memory tradeoffs in the memory-bounded setting
and some for which this does not seem to be possible.

In Section 3.1, we discuss INDR security which measures the indistinguishability of ciphertexts from
truly random ones. This security notion requires that the adversary be disallowed from repeating nonces. We
discuss three conventions for capturing this which are tightly equivalent when ignoring memory restrictions,
but observe they are no longer tightly equivalent with these restrictions. Based on these discussions, the rest
of the paper focuses on the restricted class of adversaries that will never repeat nonces in their queries to
encryption oracles. In Section 3.2, we discuss CTXT (integrity of ciphertexts) and AE security (combined
INDR and CTXT) security. For these, the adversary must be disallowed from trivially winning by forwarding
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ciphertexts from its encryption oracle to its decryption oracle. Again we discuss several conventions for this
which are tightly equivalent when ignoring memory restrictions. Based on these discussions, the rest of the
paper will use the convention that if an adversary queries pN,Cq to its decryption oracle after receiving
C from an encryption query for pN,Mq, the oracle will respond with M . With our chosen conventions, it
does not appear to be possible to prove that AE security is implied by INDR and CTXT security with a
memory-tight reduction. The rest of the paper will focus on this (im)possibility. Section 4 shows it is possible
in the restricted setting of secure channels while Section 5 shows it is not possible for general nonce-based
encryption if the reduction behaves in a black-box manner.

Finally, in Section 3.3 we recall the CAU scheme by Bellare and Tackmann [4], an abstraction of GCM [12].
Following existing proofs [4,10,12] and using [11,7], we show that INDR security of CAU can be proven by a
memory-tight reduction to PRP security with an appealing time-memory tradeoff and we informally discuss
why such reductions seem impossible for CTXT or AE security.

Syntax and correctness.A (nonce-based) encryption scheme NE is defined by algorithms NE.Kg, NE.D,
and NE.E. Additionally it is associated with message space NE.M Ď t0, 1u˚ and nonce space NE.N.

The syntax of the algorithms is shown in Fig. 3. The key generation algorithm NE.Kg takes no input
and returns key K. The encryption algorithm NE.E takes key K, nonce N P NE.N, and message M P NE.M.
It returns ciphertext C. The decryption algorithm NE.D takes key K, nonce N P NE.N, and ciphertext

NE Syntax
KÐ$ NE.Kg
C Ð NE.EpK,N,Mq
M Ð NE.DpK,N,Cq

Fig. 3. Syntax of nonce-based
encryption scheme.

C. It returns message M P NE.M Y tKu. When M “ K, the ciphertext is
rejected as invalid.

We additionally assume there is a ciphertext-length function NE.cl : NÑ
N such that for any K P rNE.Kgs, N P NE.N, and M P NE.M we have
|C| “ NE.clp|M |q whenever C Ð NE.EpK,N,Mq. Typically, a nonce-based
encryption scheme also takes associated data as input which is authenticated
during encryption. Associated data does not meaningfully effect our results,
so we have omitted it for simplicity of notation.

Correctness of an encryption scheme requires for all K P rNE.Kgs, N P

NE.N, and M P NE.M that NE.DpK,N,NE.EpK,N,Mqq “M .

3.1 Indistinguishability From Random (INDR) Security

The first security notion we will consider requires that ciphertexts output
by the encryption scheme cannot be distinguished from ciphertexts chosen at random.

Definitions.Consider the game Gindr
NE,b shown in Fig. 4. Here an adversary A is given access to an encryption

oracle Enc to which it can query a pair pN,Mq and receive back either the encryption of message M with
nonce N (b “ 1) or a random string of the appropriate length (b “ 0). The adversary outputs a bit trying
to guess which of these two views it was given. We define AdvindrNE pAq “ PrrGindr

NE,1pAqs ´ PrrGindr
NE,0pAqs.

In defining security we must address how to handle the possibility of A making multiple queries with
the same nonce. Encryption schemes are typically designed under the assumption that the same nonce will
not be used multiple times and may become completely insecure in the face of such nonce repetition. The
primary convention we will adopt is to restrict attention to adversaries that will never repeat nonces in their
encryption queries. We use the phrase “nonce-respecting INDR” to refer to security with respect to such
adversaries.

An alternate approach would be to modify the code of the game to respond appropriately to queries
where nonces repeat. One version of this, which we will refer to as INDR-R, would restrict attention to
adversaries that will only repeat nonces when they also repeat the message queried to encryption. For this
the game would be modified to keep track of all encryption queries that have been made so far. When it
receives a repeated pN,Mq pair, it simply returns the same C that it returned last time it saw that pair. A
second version of this, which we will refer to as INDR-B, makes no restriction on the queries of the adversary.
Instead, the game is modified to return K whenever the adversary makes a query with a nonce it has already
used.
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Game Gindr
NE,bpAq

KÐ$ NE.Kg
b1 Ð AEncb

Return b1 “ 1

Oracle EncbpN,Mq
C1 Ð NE.EpK,N,Mq
C0 Ð$ t0, 1uNE.clp|M |q

M rN,Cbs ÐM
Return Cb

Game Gctxt-w
NE,b pAq

KÐ$ NE.Kg
b1 Ð AEnc1,Decwb

Return b1 “ 1

Game Gae-w
NE,b pAq

KÐ$ NE.Kg
b1 Ð AEncb,Decwb

Return b1 “ 1

Oracle Decwb pN,Cq
If M rN,Cs ‰ K then

Return M rN,Cs if w “ 1
Return ˛ if w “ 2
Return K if w “ 3

M1 Ð NE.DpK,N,Cq
M0 Ð K

Return Mb

Fig. 4. Games defining INDR, CTXT-w, and AE-w security of NE for w P t1, 2, 3u.

Discussion. When memory is not an issue, all of these variants would be equivalent. Proving this follows
by noting that an adversary can just remember all prior queries it has made and thus never need to repeat.
This proof strategy is no longer available to us when we want to preserve the memory usage of adversaries.
We focus on nonce-respecting INDR because it hits the sweet spot of being strong enough for common
applications, yet weak enough that we know how to give provable time-memory trade-offs.

Because nonce-respecting INDR considers a strictly smaller class of adversaries than the other two and
all of the games behave identically for this class of adversary it is tightly implied by the others. In fact, using
ideas from [11,7] we can see that nonce-respecting INDR is strictly weaker. The toy encryption scheme SE
considered in the introduction built from a block-cipher with block length n is vulnerable to low-memory
collision-finding attacks with advantage Ωpq2{2nq in the INDR-R and INDR-B settings, but no attacks
can have advantage better than Opqs{2nq in the nonce-respecting INDR setting. Here q and s refer to the
number of queries and amount of memory used by the attackers, respectively. This underlies why the ideas
of Jaeger and Tessaro [11] can be used to prove nonce-respecting INDR (but not INDR-R or INDR-B) time-
memory trade-offs for natural counter-mode based encryption schemes. In most common uses of nonce-based
encryption the nonces are incremented as a counter or picked uniformly at random. In the former case,
nonces clearly never repeat so nonce-respecting INDR suffices (we will see this formally in Section 4). Nonces
may repeat in the latter case, but we can follow [11,7] here and replace the uniform random values with
random, non-repeating values so again nonce-respecting INDR suffices.

3.2 Security Beyond Confidentiality

INDR security only guarantees confidentiality of the messages against passive attackers. However, in practice,
attackers may actively modify ciphertexts in transit. As such, it is important to consider security definition
that take this into account. We will consider integrity definitions and authenticated encryption definitions
which simultaneously asked for integrity and confidentiality.

Definitions.Consider the other two games shown in Fig. 4. We will first focus on Gae-w
NE,b which defines three

variants of authenticated encryption security parameterized by w P t1, 2, 3u. In this game, the adversary is
given access to an encryption oracle and a decryption oracle. Its goal is to distinguish between a “real” and
“ideal” world. In the real world (b “ 1) the oracles uses NE to encrypt messages and decrypt ciphertexts. In
the ideal world (b “ 0) encryption returns random messages of the appropriate length and decryption returns
K. For simplicity, we will restrict attention nonce-respecting adversaries which do not repeat nonces across
encryption queries (as in nonce-respecting INDR security). Note there is no restriction placed on nonces used
for decryption queries. Integrity of ciphertext security is defined by Gctxt-w

NE,b which behaves similarly except
the adversary is always given access to the real encryption algorithm.

The decryption oracle needs to prevent trivial attacks. If the adversary receives C from a query of
EncpN,Mq and then queries DecpN,Cq it would receive M in the real world and K in the ideal world,
making them easy to distinguish. We must adopt some convention for how the oracles behave when such a
query is made to prevent this type of trivial attack. Towards this, the decryption oracle is parameterized by
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the value w P t1, 2, 3u corresponding to three different security notions. In all three, we use a table M r¨, ¨s
to detect when the adversary forwards encryption queries on to its decryption oracle. When w “ 1, the
decryption oracle returns M rN,Cs in this case. When w “ 2, it returns a special symbol ˛. When w “ 3, it
returns the symbol K which is also used by the encryption scheme to represent rejection. For x P tae, ctxtu
and w P t1, 2, 3u we define the advantage of an adversary A by Advx-wNE pAq “ PrrGx-wNE,1pAqs ´ PrrGx-wNE,0pAqs.
The corresponding security notions are referred to as AE-w and CTXT-w.

Discussion. When memory usage is not an issue, the choice of w does not matter. We can without loss of
generality assume that the adversary never makes one of these trivial attack queries because it could simply
store the table M r¨, ¨s for itself and simulate any such queries.4 It’s not clear that this equivalence holds if
we do not assume that storing M r¨, ¨s is “free” for the adversary.

The only memory-tight implication we are aware of between these is that security for w “ 2 tightly
implies security for w “ 3. This follows because an adversary with access to Dec2

b can simulate Dec3
b with

low memory. If Dec2
b returns M “ ˛ the adversary returns K, otherwise it does not modify M . All of

the other implications we might want to show seem to require remembering all prior encryption queries to
properly simulate Dec.

Ultimately, for heuristic reasons, we believe that w “ 1 is the “correct” choice and will focus on it
in our later sections. The typical motivation behind chosen-ciphertext security notions is that in practice
an attacker can often observe the behavior of the decrypting party to learn something about the message
they received. There is no reason to think an attacker should only be able to do that for ciphertexts that
have been modified, but not ciphertexts that have been unmodified. This is best captured by w “ 1. The
w “ 2 definition seems to posit that the adversary can distinguish between ciphertexts it forwarded on and
ciphertexts that it modified (whether they were accepted or rejected) by observing the decrypting party’s
behavior. The w “ 3 definition seems to posit that the adversary cannot learn anything about ciphertexts it
forwards on unmodified, but can learn about other modified ciphertexts by observing the decrypting party’s
behavior.

Revisiting a classic result.A classic result, which has been shown for numerous styles of encryption, is
that confidentiality and integrity together imply authenticated encryption [16]. However, this becomes more
difficult for nonce-based encryption when we consider memory-tightness.

The classic proof that INDR and CTXT-1 security imply AE-1 security first replaces real decryption
with K via a reduction to CTXT-1 security and then replace real encryption with random using INDR
security. However, in this second step the reduction adversary would have to simulate the oracle Dec1

0 which
seems to require storing the table M r¨, ¨s.5 This potentially requires using much more memory than the AE-1
adversary, losing the benefit of time-memory tradeoffs for INDR-R. The rest of the paper is dedicated to
understanding this reduction. In Section 4.2, we make it memory tight when restricting attention to secure
channels which only accept ciphertexts if they are received in order. In Section 5, we give negative results
showing that for nonce-based encryption this reduction cannot be made memory tight (using a black-box
reduction).

3.3 Security of the CAU Encryption Scheme

We conclude this section by considering the specific encryption scheme CAU for which we can prove INDR
security with a time-memory tradeoff. We will use this scheme in Section 4 to show a time-memory tradeoff
for the authenticated encryption security of a channel instantiated with it.

One of the most widely deployed encryption schemes is Galois Counter-Mode (GCM) [12]. Bellare and
Tackmann [4] generalized it to the scheme CAU which constructs an encryption scheme from a block cipher
E and hash function H. Using the techniques of Jaeger and Tessaro [11] we obtain a proof of security for its
nonce-respecting INDR security with an appealing time-memory tradeoff.

4 Restricting attention to adversaries which never make trivial attack queries is, indeed, a fourth way one could
define security.

5 The standard reduction would be memory tight for w “ 3.
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Algorithm CAUrE,Hs.EpK,N,Mq
Y Ð padpNq
M1 . . .M` Ðn M
For i “ 1, ..., ` do
Ci ÐMi ‘ EKpY ` iq

C Ð C1 . . . C`
LÐ EKp0

n
q

T Ð HLpA,Cq ‘ EKpY q
Return T }C

Algorithm CAUrE,Hs.DpK,N, T }Cq
LÐ EKp0

n
q; Y Ð padpNq

C1 . . . C` Ðn C
T 1 Ð HLpA,Cq ‘ EKpY q
If T ‰ T 1 then return K
For i “ 1, ..., ` do
Mi Ð Ci ‘ EKpY ` iq

M ÐM1 . . .M`

Return M

Fig. 5. Encryption scheme CAU parameterized by function family E (typically a block cipher) and hash function H.
In the code, padpNq “ N } 0m } 1 for the appropriate choice of m and M1 . . .M` Ðn M splits M into n-bit blocks.

Construction. We recall the CAU construction of an encryption scheme. Fix a key length CAU.kl P N, a
block length n “ CAU.bl P N, and a nonce length CAU.nl ă CAU.bl. Then let E be a function family with
E : t0, 1uCAU.kl ˆ t0, 1uCAU.bl Ñ t0, 1uCAU.bl and H be a function family with H : t0, 1uCAU.bl ˆ pt0, 1u˚ ˆ
t0, 1u˚q Ñ t0, 1uCAU.bl. The scheme constructed from E and H is denoted CAUrE,Hs. Its message space
CAUrE,Hs.M is the set of all strings of length at most n ¨ p2n´CAU.nl ´ 1q and its nonce space CAUrE,Hs.N is
the set t0, 1uCAU.nl.

The algorithms of CAUrE,Hs are shown in Fig. 5. The code uses padp¨q to denote the padding function
which on input N outputs N } 0n´CAUrE,Hs.nl´1 } 1. Since our simplified notation does not use associated data
we instead assume there is a fixed associated data string A used with every message.

The encryption algorithm parses the input message into ` blocks of length n (except for the last, which
may be shorter) and pads the nonce to a string Y of length n. It encrypts the message using counter-mode
encryption with Y `1 as the first counter. This gives it a partial ciphertext C. The authentication is inspired
by a Carter-Wegman MAC. A key L for the hash function is obtained as LÐ EKp0

nq. This key is used to
compute the tag T as T Ð HLpA,Cq ‘ EKpY q and then T }C is the full ciphertext output by encryption.

The decryption algorithm parses the input ciphertext as T }C. It computes the correct tag T 1 for C by
setting L Ð EKp0

nq and T Ð HLpA,Cq ‘ EKpY q (as was done in encryption). If T ‰ T 1 the ciphertext is
rejected by returning M “ K. Otherwise the message M is obtained by counter-mode decrypting C.

INDR security of CAU. The following theorem formalizes that CAU is nonce-respecting INDR secure
assuming E is a secure PRF.

Theorem 1. Let A be an adversary against the nonce-respecting INDR security of CAUrE,Hs that makes
at most q oracle queries, each at most p ¨ CAU.bl bits long. Then we can construct a Aprf such that

AdvindrCAUrE,HspAq ď AdvprfE pAprfq .

Adversary Aprf has runtime essentially that of A, makes at most qpp ` 1q ` 1 queries to its oracle, has
memory/time complexity essentially that of A and never repeats queries to its oracle.

It is important that Aprf never repeats queries because it allows us to apply the time-memory switching
lemma from Section 2. This gives us roughly,

AdvindrCAUrE,HspAq P AdvprpE pAprfq `OpS ¨ pq ¨ logppqq{2nq

where S is a bound on the memory complexity of A. For variants other than nonce-respecting INDR it would
not be clear how to prevent Aprf from repeating queries without storing the prior queries of A.

Proof (Sketch). One constructs Aprf to first set L Ð Evalp0nq. Then it runs A and simulates encryption
queries by running CAU.E while using its Eval oracle in place of EK . It does not recompute L each time
because it has already computed it. Its final output is whatever A outputs. One can verify that the view of
A when simulated by Aprf is “real” encryptions when b “ 1 and random strings when b “ 0, so the claimed
advantage bound follows. [\
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CH Syntax
pσs, σrq Ð$ CH.Sg
pσs, Cq Ð$ CH.Spσs,Mq
pσr,Mq Ð CH.Rpσr, Cq

Game Gch-corr
CH,b pAq

pσs, σrq Ð$ CH.Sg
b1Ð$ AEncDec

Return b1 “ 1

Oracle EncDecbpM0q

pσs, Cq Ð$ CH.Spσs,M0q

pσr,M1q Ð CH.Rpσr, Cq
Return Mb

Fig. 6. Left: Syntax of channel algorithms. Right: Channel correctness game.

CTXT/AE security of CAU. It does not appear to be possible to give a similar time-memory trade-off for
the CTXT or AE security of CAU. The standard analysis of either of these first uses PRF security to replace
the output of E with random. It then argues that the adversary’s view is independent of the HLpA,Cq values
produced in encryption so that it can apply the security of H. For x “ ae or x “ ctxt this would give a bound
of the form,

Advx-1CAUrE,HspAq “ AdvprfE pAprfq ` AdvaxuH pX q .

However, this PRF adversary Aprf needs to to simulate a decryption oracle to A. The natural ways of doing
this (remembering all prior encryption queries or using Eval to run decryption) either require significant
use of memory or repeating queries to Eval. This prevents us from applying the switching lemmas of [11,7]
to get appealing time-memory tradeoffs when E is a PRP.

In Section 4.3, we will use a new technique for memory-tight reductions to prove that using CAU in a
channel can provide (the channel equivalent of) CTXT security (and thus AE security from Section 4.2).

4 Memory-tight Reductions for Cryptographic Channels

In this section we show that memory-tight reductions can be given for the combined confidentiality and
integrity security of cryptographic channels. These are a form of stateful encryption which provide the
guarantee that messages cannot be duplicated or reordered, in addition to the typical confidentiality and
integrity goals of encryption.

4.1 Syntax and Security Notions

Syntax and correctness. A (cryptographic) channel CH specifies algorithms CH.Sg, CH.S, and CH.R
along with message space CH.M Ď t0, 1u˚. The syntax of these algorithms is shown in Fig. 6. The state
generation algorithm CH.Sg takes no input. It returns sender state σs and receiver state σr. The sending
algorithm CH.S takes a sender state σs and message M P CH.M. It returns updated sender state σs and a
ciphertext C. The receiving algorithm CH.R takes a receiver state σr and a ciphertext C. It returns updated
receiver state σr and a message M P CH.M Y tKu. When M “ K, this represents the receiver rejecting the
message as invalid.

A channel is expected to never again return M ‰ K after if it has rejected a message. This models the
behavior of protocols such as TLS which are assumed to be run over a reliable transport layer and has been
the standard notion for channels since the work of Bellare, Kohno, and Namprempre [2]. When a protocol
(e.g. QUIC or DTLS) is run over an unreliable transport layer, then a robust channel is used instead [8]. We
leave memory-tight proofs of security for robust channels as an interesting direction for future work.

We typically assume there is a ciphertext-length function CH.cl : N Ñ N such that for any M P CH.M
and state σs, we have Prr|C| “ CH.clp|M |q : pσs, Cq Ð$ CH.Spσs,Mqs “ 1.

Correctness requires that if the receiver is given the ciphertexts sent by the sender in order and without
modification then the receiver will output the same sequence of messages that were sent. One way to formalize
this is via the game Gch-corr

CH,b shown in Fig. 6. We define Advch-corrCH pAq “ PrrGch-corr
CH,1 pAqs´PrrGch-corr

CH,0 pAqs. Perfect

correctness requires that Advch-corrCH pAq “ 0 for all (even unbounded) A. This implies that the M1 output by
CH.R always equals M0.
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Game Gch-ae
CH,b pAq

sync Ð true

pσs, σrq Ð$ CH.Sg
b1Ð$ AEncb,Decb

Return b1 “ 1

Game Gch-indr
CH,b pAq

sync Ð true

pσs, σrq Ð$ CH.Sg
b1Ð$ AEncb

Return b1 “ 1

Game Gch-ctxt
CH,b pAq

sync Ð true

pσs, σrq Ð$ CH.Sg
b1Ð$ AEnc1,Decb

Return b1 “ 1

Oracle EncbpMq
pσs, C1q Ð$ CH.Spσs,Mq
C0 Ð$ t0, 1uCH.clp|M |q

M.addpMq; C.addpCbq
Return Cb

Oracle DecbpCq
pσr,M1q Ð CH.Rpσr, Cq
M0 Ð K

M 1
Ð M.dqpq

C 1 Ð C.dqpq
If sync then

If C “ C 1 then
Return M 1

sync Ð false

Return Mb

Fig. 7. Games defining the INDR, CTXT, and AE security of a channel.

Game Git
L,δpA1,A2q

RÐ$ t0, 1uL

pi, σq Ð$ A1pRq
rÐ$ A2pi, σ,Rr: i´1sq
Return r “ Rri : i` δs

Fig. 8. Information theoretic game
in which A tries to remember a δ
bit sequence in an L-bit random
string.

Security definitions. We consider indistinguishability from random, integrity of ciphertext, and authen-
ticated encryption security for channels just like we did for nonce based encryption.

Authenticated encryption security of a channel CH is defined by game Gch-ae
CH,b defined in Fig. 7. In it the

adversary is given access to an encryption oracle and a decryption oracle. The adversary’s goal is to distinguish
between a “real” and “ideal” world. In the real world (b “ 1) the oracles use CH to encrypt messages and
decrypt ciphertexts. In the ideal world (b “ 0) encryption returns random messages of the appropriate length
and decryption returns K. In both worlds, as long as the adversary’s queries to decryption have consisted
of the outputs of encryption in the correct order, the oracles are considered in sync and decryption just
returns the appropriate message that was queried to encryption.6 After the first time the adversary queries
something else, the oracles are out of sync and will never be in sync again (so Dec will always return Mb).

Authenticated encryption security is a combined confidentiality and integrity notion. We can also define
separate notions. INDR security is defined by the game Gch-indr

CH,b which is the same as Gch-ae
CH,b except the

adversary is only given oracle access to Encb. CTXT security is defined by the game Gch-ctxt
CH,b which is

the same as Gch-ae
CH,b except the adversary is given oracle access to Enc1 and Decb. These games are given

explicitly in Fig. 7. We define the advantage of A by AdvxCHpAq “ PrrGxCH,1pAqs ´ PrrGxCH,0pAqs for x P
tch-ae, ch-indr, ch-ctxtu.

4.2 Confidentiality and Integrity Imply Authenticated Encryption

We will show that INDR security plus CTXT security imply AE security using a memory-tight reduction.
While the normal proof that INDR and CTXT security suffice to imply AE security is not particularly
difficult, it uses a non-memory tight reduction to INDR security. Making the proof memory tight will require
more involved analysis.

Information theoretic lemma.Before proceeding to the proof, we first will provide a simple information
theoretic lemma that will be a useful subcomponent of that proof. Consider the game Git

L,δ shown in Fig. 8.
In it, an adversary is given a length L string R and tries to choose an index i for which it is able to remember
the next δ-bits of the string using state σ. We say that an adversary pA1,A2q is S-bounded if |σ| “ S always.
We define AdvitL,δpA1,A2q “ PrrGit

L,δpA1,A2qs.

Lemma 1. Let L, δ, S P N. Let pA1,A2q be an S-bounded adversary. Then

AdvitL,δpA1,A2q ď L ¨ 2S{2δ .

6 This matches the convention of CTXT-1 and AE-1 for encryption schemes. We believe it to be “correct” for the
same reasons discussed for those definitions.
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Proof. Let L, δ, S,A1,A2 be defined as in the theorem statement. Without loss of generality we can assume
that A1 and A2 are deterministic. Then for any fixed choice of i and σ, the probability that A2pi, σ,Rr:
i´ 1sq “ Rri : i` δs will be exactly 1{2δ. Then we can calculate as follows.

PrrGit
L,npA1,A2qs ď PrRrDi, σ s.t. Rri : i` δs “ A2pi, σ,Rr: i´ 1sqs

ď
ÿ

i,σ

PrrRri : i` δs “ A2pi, σ,Rr: i´ 1sqs

“
ÿ

i,σ

1{2δ ď L ¨ 2S{2δ .

The last inequality follows from there being at most L ¨ 2δ choices for pi, σq. [\

Security result. Now we can proceed to our security result showing that AE security can be implied
by INDR and CTXT security in a memory-tight manner. The technical crux of the result is the reduction
adversary Aδ which simulates the view of an AE adversary A to attack the INDR security of the channel.
In our theorem statement this reduction adversary is parameterized by a variable δ which determines how
much local memory it uses. Using Lemma 1, our concrete advantage bound is expressed in terms of δ and
establishes that the reduction can be successful with this value not much larger than the local memory of A.

Theorem 2. Let CH be a cryptographic channel. Let A be an adversary with memory complexity S and
making at most q queries to its Enc oracle, each of which returns a ciphertext of length at most x. Then for
any δ P N we can build an adversary Aδ (described in the proof) such that

Advch-aeCH pAq ď Advch-ctxtCH pAq ` 2 ¨ Advch-indrCH pAδq ` 2q ¨ x ¨ 2S{2δ .

Adversary Aδ has running time approximately that of A and uses about S ` 2δ bits of state.

Setting δ “ S ` logpqxq ` κ makes the last term about 1{2κ while limiting the memory usage of Aδ to
only 2S ` 2 logpqxq ` 2κ.

The standard way of proving that INDR security and CTXT security imply AE security would first use
CTXT security to transition from a world in which A is given oracle access to pEnc1,Dec1q to a world in
which A is given oracle access to pEnc1,Dec0q. Then INDR security would be used to transition to A being
given oracle access to pEnc0,Dec0q. The issue in our setting with this proof arises in the second step. The
INDR reduction adversary needs to simulate Dec0 for A. The natural way of doing so requires storing the
entirety of the tables M and C which means that Aδ may use much more memory than A.

Our proof of Thm. 2 follows this same general proof flow, but uses a more involved analysis for the
reduction to INDR security. In particular, we make use of the following insight: If A has memory complexity
S but cannot distinguish the ciphertexts it sees from random (because of INDR security), then from Lemma 1
it cannot remember many more than S of the ciphertext bits that it has received from Enc but not yet
forwarded to Dec.

If A ever queries a ciphertext which is not the next ciphertext in C, then Dec0 oracle will never again
return anything other than K. Because we can assume that A will be unable to remember too many bits of
ciphertext, we can just have our reduction adversary Aδ remember a few more bits of ciphertext than A can.
If the total length of ciphertext that A has received from its encryption oracle, but not forwarded on to its
decryption oracle ever exceeds the amount that Aδ will store, then Aδ assumes A must have forgotten some
intermediate ciphertext before that point, allowing the reduction to cease storing future ciphertexts because
sync will be false before that point.

Proof. We will construct INDR adversaries A1δ, A2δ , and S-bounded adversary pA1,A2q and show that

Advch-aeCH pAq ď Advch-ctxtCH pAq ` Advch-indrCH pA1δq ` 2 ¨ Advitq¨x,δpA1,A2q ` Advch-indrCH pA2δq .

The stated theorem then follows by applying Lemma 1 and constructing the adversary Aδ which runs either
A1δ or A2δ (chosen at random) and outputs whatever that adversary does. The resulting Aδ will satisfy
the efficiency constraints stated in the theorem statement. We will prove this bound via a sequence of
transformations that slowly change Gch-ae

CH,1 to Gch-ae
CH,0 .
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Games G2 , G3, G4, G5

flag Ð true

sync Ð true

pσs, σrq Ð$ CH.Sg
b1Ð$ AEnc,Dec

Return b1 “ 1

Oracle EncpMq
pσs, Cq Ð$ CH.Spσs,Mq
CÐ$ t0, 1uCH.clp|M |q

M2.addpMq; C2.addpCq
If flag then

If ||C|| ` |C| ă δ then
M.addpMq; C.addpCq

Else
flag Ð false

Return C

Oracle DecpCq

M 1
Ð M.dqpq; M2 Ð M2.dqpq

C 1 Ð C.dqpq; C2 Ð C2.dqpq
If sync then

If C “ C 1 then
Return M 1

Elif C “ C2 then
bad Ð true

Return M2

sync Ð false

Return K

Fig. 9. Hybrid games for proof of Theorem 2. Highlighted code is only included in highlighted games. Boxed code is
only included in boxed games.

CTXT transition.Let G0 “ Gch-ae
CH,1 pAq and G1 “ Gch-ctxt

CH,0 pAq. Because Gch-ae
CH,1 pAq and Gch-ctxt

CH,1 pAq are identical

games we have that PrrG0s ´ PrrG1s “ Advch-ctxtCH pAq.

Transition to limited memory game. Next we want to transition to a version of G1 that stores a
bounded amount of local state. Consider the games G2 and G3 shown in Fig. 9. The tables M2 and C2 track
the messages and ciphertexts as in the real game. Because of this PrrG1s “ PrrG2s.

In the transition to G3 we are going to stop using these tables and instead solely rely on the tables M
and C. With these tables, if the total number of bits of ciphertexts that would be stored in C exceeds δ then
we permanently stop adding elements to these tables – we assume that the adversary will cause sync to be
set to false at some point earlier in the game. Note that up until this point the tables pM2,C2q and pM,Cq
are used identically. The two games only differ in the boxed code in Dec which returns M2 if the adversary
has queried a ciphertext stored in C2 that was not stored in C. Hence, these games are identical-until-bad
so the Fundamental Lemma of Game Playing [3] gives,

PrrG3s ´ PrrG2s ď PrrG3 sets bads.

We want to apply Lemma 1 to bound the probability that bad is set. To do so we need to be able to treat
the ciphertexts as random strings. Thus we defer the analysis of the probability that it occurs until after
applying INDR security.

INDR Transition.Now consider the game G4. It is identical to G3 except that the ciphertexts returned by
Enc are chosen at random instead of using CH. We can transition to this game using a reduction to INDR
security. It is important here that our reduction adversary will not need to use too much memory because
of the way that we have limited the memory needed for G3.

Consider the adversaries Aδ and A1δ shown in Fig. 10. Highlighted code is only included in the latter
adversary.

Adversary A1δ uses its Enc oracle to present A with a view identical to G3 if b “ 1 and identical to G4 if
b “ 0. Note here that the tables pM2,C2q do not effect the view of A in either of these game, allowing Aδ

not to have to store them. We have that PrrGch-indr
CH,1 pA1δqs “ PrrG3s and PrrGch-indr

CH,0 pA1δqs “ PrrG4s. In other

words, Advch-indrCH pA1δq “ PrrG3s ´ PrrG4s.

Adversary A2δ instead uses its INDR oracle to simulate the view of A, but returns 1 if the flag bad would
have been set. Because this can only be set by the first ciphertext not stored in C we only need to be able
to simulate the games up until that point. So we store this extra ciphertext and put an ˚ in C so that in
Dec we know when we have reached the relevant point. We have that PrrGch-indr

CH,1 pA2δqs “ PrrG3 sets bads and

PrrGch-indr
CH,0 pA2δqs “ PrrG4 sets bads. In other words, PrrG3 sets bads ď Advch-indrCH pA2δq ` PrrG4 sets bads.
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Adversary A1Encδ

flag Ð true

sync Ð true

b1Ð$ ASimEnc,SimDec

Return b1 “ 1

Adversary A2Encδ

flag Ð true

sync Ð true

ASimEnc,SimDec

Return 0

Oracle SimEncpMq
flag Ð true

sync Ð true

CÐ$ EncpMq
If flag then

If ||C|| ` |C| ă δ then
M.addpMq; C.addpCq

Else
C.addp˚q; C˚ Ð C
flag Ð false

Return C

Oracle SimDecpCq

M 1
Ð M.dqpq; C 1 Ð C.dqpq

If sync then
If C “ C 1 then

Return M 1

Elif C 1 “ ˚ and C “ C˚ then
abortp1q

sync Ð false

Return K

Fig. 10. INDR adversaries for proof of Theorem 2. Highlighting indicates code that is only used by adversary A1δ.

Final transition.The final transition is from G4 to G5. These two games are identical-until-bad as can be
seen in Dec. Because of this we have that

PrrG4s ´ PrrG5s ď PrrG4 sets bads.

Using all of M2 and C2 instead of just M and C makes G5 identical to Gch-ae
CH,0 .

Bounding probability of bad. We conclude by bounding the probability G4 sets bad via a reduction
to our information theoretic analysis. Consider the S-bounded pA1,A2q that behaves as follows. First, A1

internally simulates the view of A in G4 using the coins for A which maximize the probability of bad and
using the bits of R as the ciphertext bits returned by encryption. If A causes flag to be set to false, A1 will
halt and output the current state of A as σ with i chosen so the next δ bits of C and c are the values of R
for A2 to guess.

Then A2 will resume executing A using σ. When A makes encryption queries it will just make up its own
responses. When A makes a decryption query for a ciphertext C then A2 will concatenate it into its guess r.
It just assumes this was the correct next ciphertext that should have been stored in C (otherwise A would fail
in setting bad). To determine which M to return for this query, A2 re-runs A from the beginning using the
same coins A1 used. It uses its given prefix of R and the current value of r to respond to encryption queries
until it reaches the encryption query corresponding to the current decryption query. Whatever message A
queried for this encryption query is then returned for the decryption query. Once r is δ bits long, A2 outputs
that as its guess.

We can see that when bad would be set in G4, the view of A is perfectly simulated up until that point
and A2 will guess r correctly. This gives us PrrG4 sets bads ď Advitq¨x,δpA1,A2q as desired.

Combining all the bounds we have shown completes the proof. [\

4.3 AE Security of a TLS 1.3-like Channel

We have shown that the AE security of a channel can be reduced to its constituent INDR and CTXT security
in a way that preserves memory complexity. This is, of course, only meaningful if we have channels for which
we can give provable time-memory tradeoffs for their INDR and CTXT security. Using the ideas of Jaeger
and Tessaro [11] it is easy to give such examples for INDR security.

Using the ideas from proof of Thm. 2 we will prove the security of a channel based on GCM (or more
generally CAU). The resulting channel can be viewed as a (simplified) version of the channel obtained by
using GCM in TLS 1.3.

The construction. The construction we consider is a straightforward construction of a channel from a
nonce-based encryption scheme NE by using a counter for the nonce. The INDR security of this channel
follows easily from the nonce-respecting INDR security of NE. Proving integrity of the channel from the

15



NCHrNEs.Sg
KÐ$ NE.Kg
N Ð$ NE.N
Return ppK,Nq, pK,Nqq

NCHrNEs.SppK,Nq,Mq
N Ð N ` 1
C Ð NE.EpK,N,Mq
Return ppK,Nq, Cq

NCHrNEs.RppK,Nq, Cq
If N “ K then

Return ppK,Kq,Kq
N Ð N ` 1
M Ð NE.DpK,N,Cq
If M “ K then

Return ppK,Kq,Kq
Return ppK,Nq,Mq

Fig. 11. Algorithms of channel NCHrNEs constructed from encryption scheme NE.

integrity of NE is possible, but of limited applicability since we do not have examples of encryption schemes
with proven time-memory tradeoffs for integrity. We will instead only show integrity for the specific case
that NE “ CAU.

The channel NCHrNEs is parameterized by an encryption scheme NE. It has NCHrNEs.M “ NE.M. We
assume that NE.N can be interpreted as a cyclic group written using additive notation. Its algorithms are
shown in Fig. 11. State generation sets the state of both parties equal to a shared random key and nonce.
Encryption increments the nonce and uses NE to encrypt the message with the current nonce. Decryption
increments the nonce and uses NE to decrypt the ciphertext with the current nonce. If the ciphertext is
rejected (M “ K), the receiver will replace its state with K’s. Henceforth it will reject all ciphertexts it
receives (via the first line which checks if N “ K already holds.

INDR Security.The INDR security of NCHrNEs follows easily from nonce-respecting INDR security of NE.
This is captured by the following theorem.

Theorem 3. Let A be an adversary against the INDR security of NCHrNEs that makes less than |NE.N|
oracle queries. Then we can construct B such that

Advch-indrNCHrNEspAq ď AdvindrNE pBq .

Adversary B has complexity comparable to that of A and is nonce-respecting.

Proof (Sketch). Adversary B picks N at random and then starts executing A. Whenever A makes a EncpMq
query, B increments N , queries C Ð EncpN,Mq, and returns C to A. Adversary B outputs whatever A
does. Verifying the claims made about this adversary is straightforward. [\

CTXT Security. For CTXT security we need to focus our attention on the particular construction of
NCHrNEs obtained when using the encryption scheme NE “ CAUrE,Hs for some function families E and H.

In our proof, we will take advantage of the fact that the adversary can essentially only make a single
forgery attempt. If it fails at this attempt, then the state of the decryption algorithm can be erased and it will
henceforth always return K. Because CAU uses a Carter-Wegman style MAC we have to first use the PRF
security of E to hide the values of HLpA,Cq used in encryption queries. To get our desired state-aware results
we need to make sure that our PRF reduction does not use much more memory than the original adversary.
This creates an issue similar to what we saw in Section 4 where it can be difficult to simulate the values
returned by Dec. This issue is resolved by adjusting the proof technique used to establish Thm. 2 where we
exploit the fact that ciphertexts look random to assume that A cannot remember too many ciphertexts.

Theorem 4. Let NE “ CAUrE,Hs for some E and H. Let A be a nonce-respecting adversary against the
CTXT security of NCHrNEs with memory complexity S that makes at most q ď 2CAU.nl´1 encryption queries,
each of which returns a ciphertext of length at most x. Then for any δ P N we can construct an adversary
Aprf such that

Advch-ctxtNCHrNEspAq ď 2 ¨ AdvprfE pAprfq ` AdvaxuH pX q ` q ¨ x ¨ 2S{2δ .
Adversary Aprf has running time approximately that of A and uses about S ` 2δ bits of state. It makes at
most qpx{n` 2q ` 1 non-repeating queries to its oracle.
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Reduction RrAsO

σÐ$ RO.Init
iÐ 0
While i ď R.rew do
bÐ$ AREnc,RDec

σÐ$ RO.Updpσ, bq
NEXT: iÐ i` 1

Return RO.Finpσq

Oracle REncpN,Mq

pσ, rf, Cq Ð$ RO.SimEncpσ,N,Mq
If rf then goto NEXT
Return C

Oracle RDecpN,Cq

pσ, rf,Mq Ð$ RO.SimDecpσ,N,Cq
If rf then goto NEXT
Return M

Fig. 12. Syntax of a black-box reductions R running AE-1 adversary A. We represent the oracles R has access to
collectively as O.

The proof is given in Appendix F. As with Thm. 1, the PRF adversary we give never repeats queries so we
can apply the switching lemma to obtain a bound using PRP security of E. Here it is important that the
memory of Aprf is not much more than that of A. Assuming |A| ă p, setting δ « S`n, and assuming S ą n
we can combine all of our theorems so far to obtain a bound of

Advch-aeNCHrNEspAq ď 4 ¨ AdvprfE pBq `O
ˆ

Spq logppqq ` cpp` qq

2n

˙

for a B with comparable efficiency to A and assuming H is c-AXU.

5 Negative Results for Memory-tight AE Reductions

In this section we give impossibility results for giving a memory-tight reduction (for a natural restricted
class of black-box reductions) from AE-1 security to nonce-respecting INDR and CTXT-1 security. This
establishes that our restriction to the channel setting for Section 4 was necessary for our positive results.

Black-box Reductions.A reduction R maps an adversary A to an adversary RrAs. We consider reductions
that run an AE-1 adversary A in a black-box manner as shown in Fig. 12. It starts with initial state σ output
by R.Init. The parameter R.rew determines how many times R will perform a full rewind of A. Then it runs
A while simulating its encryption and decryption oracles. For every encryption query, R runs R.SimEnc with
the query and its state as input to produce the updated state, a flag rf, and a ciphertext. If the flag rf is true,
then R starts running A from the beginning again. Otherwise, it answers with the query answer R.SimEnc
returned. Decryption queries are handled analogously. If R did not rewind A before A finished its execution,
then it runs R.Upd on A’s output to updates its state and starts running A from the beginning if has
not already rewinded R.rew times. Finally, R outputs whatever R.Finpσq returns. The following definition
captures some restrictions we will place on reductions.

Definition 1. Let R be a reduction using the syntax from Fig. 12. It is full-rewinding if R.rew ą 0 or
straightline if R.rew “ 0. It is nonce-respecting if RrAs is nonce-respecting when A is nonce-respecting.
It is faithful if RrAs answers encryption queries of A consistent with its own encryption oracle, i.e., R
responds with C on an encryption query made on pN,Mq, only if it previously queried its own encryption
oracle with pN,Mq and received C as the answer.

Additional notation. We fix an understood nonce-based encryption scheme NE for which we assume
that t0, 1uml Ď NE.M. We also assume N ˆ N Ď NE.N and we use N “ NE.N as shorthand. We assume that
rNE.Kgs “ t0, 1ukl. We let C “ t0, 1uNE.clpmlq. We also introduce some new notation for the complexity of an
algorithm A. First, MempAq is defined as the number of bits of memory that A uses. The total number of
queries to its oracles is QuerypAq, and the number of computation steps TimepAq. For a reduction R we use
MempRq to denote the number of bits of memory that R uses in addition any memory of the adversary it
runs.
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Game Gbf-it-chl
u,m,P pB1,B2q

pI,Qq Ð$ B1 // |I| “ |Q| “ P
For j P rus do
Mj Ð$ t0, 1um

For j P rP s do
MIrjs Ð Qrjs

j˚Ð$ rus
M Ð$ B2pI,Q, j

˚
q

If Mj˚ ‰M then return false

Return true

Adversary D11pK,M1, ¨ ¨ ¨ ,Muq

While(true)
win Ð 1;φÐ K

For k P ri´ 1s do
For j P rus do
M 1
j Ð$ t0, 1um

φÐ D˚1 pφ,M 1
1, ¨ ¨ ¨ ,M

1
uq

j˚Ð$ rus
pφ,M 1

q Ð D˚2 pφ, j˚q
If M 1

‰M 1
j˚ then win Ð 0

If win “ 1 then break
φÐ D˚1 pφ,M1, ¨ ¨ ¨ ,Muq

Return φ

Fig. 14. Game Gbf-it-chl
u,m,P and adversary D11 used in the proof of Lemma 2.

Game Git-chl-r
u,m pD1,D2q

σ Ð K

For i P rrs do
For j P rus do
Mj Ð$ t0, 1um

σ Ð D1pσ,M1, . . . ,Muq

j˚Ð$ rus
pσ,Mq Ð D2pσ, j

˚
q

If Mj˚ ‰M then return false

Return true

Fig. 13. Information theoretic game played by
adversary pD1,D2q.

Information theoretic lemma. We give a lemma that will
be a useful sub-component of our proofs. It pertains to game
Git-chl-r
u,m in Fig. 13. It is an r-round game, played by a two-

stage adversary pD1,D2q. In each round, D1 gets state σ from
the prior round, along with u random strings M1, . . . ,Mu each
of length m. Adversary D1 outputs state σ which is input to
D2 along with a randomly sampled index j˚ from rus. Then
D2 outputs a string M and state σ that is passed to D1 in
the next round. If M “Mj˚ , we say that pD1,D2q has an-
swered the challenge of this round correctly. If pD1,D2q an-
swers all the r challenges correctly, the game returns true.
Otherwise it returns false. We define Advit-chl-ru,m pD1,D2q “

PrrGit-chl-r
u,m pD1,D2qs. Adversary pD1,D2q is S-bounded if the

state output by D1 is at most S bits long. We can prove the
following.

Lemma 2. If pD1,D2q is S-bounded, then

Advit-chl-ru,m pD1,D2q ď

ˆ

2pS `mq

u
`

3

2m

˙r

.

The proof reduces to the r “ 1 case and analyzes this case using techniques from the AI-ROM setting [5].

Proof. We split this lemma into the following two claims. The first claim bounds advantage of any S-bounded
adversary playing the one round version of the game (r “ 1). The second step bounds the advantage of an
adversary playing the full r rounds in using an adversary playing only one round.

Claim. If pD1,D2q is S-bounded, then Advit-chl-1u,m pD1,D2q ď
2S`2m

u ` 3
2m

Claim. If Advit-chl-1u,m pD1,D2q ď ε for all S-bounded pD1,D2q, then Advit-chl-ru,m pD˚1 ,D˚2 q ď εr for all r and all
S-bounded pD˚1 ,D˚2 q.

First claim. In order to show the upper bound on Advit-chl-1u,m pD1,D2q, we first define the game Gbf-it-chl
u,m,P

in Fig. 14. It is the “Bit-Fixed Random Oracle” [5] version of Git-chl-1
u,m . (The sequence of u random strings

that are input to the adversary can be viewed as a random oracle rus Ñ t0, 1um.) This game is played by a
two-stage adversary pB1,B2q. The first stage B1 outputs two lists I and Q, each of length P . All the entries
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of I are in rus and all the entries of Q are in t0, 1um. Then u bit-strings M1, ¨ ¨ ¨ ,Mu are sampled uniformly
at random from t0, 1um. For each j P rP s, the bit-string Mi is overwritten by Qrjs, where i “ Irjs. The
second stage adversary B2 is given the lists and a randomly sampled j˚ as input. It returns M P t0, 1um. The
game returns true if M “Mj˚ and false otherwise. We define Advbf-it-chlu,m,P pB1,B2q “ PrrGbf-it-chl

u,m,P pB1,B2qs.

We claim that Advbf-it-chlu,m,P pB1,B2q ď
P
u `

1
2m . The first term captures the probability that j˚ is in I. The

second term captures the probability that B2 guesses the random string Mj˚ P t0, 1um when j˚ is not in I.
Since pD1,D2q is S-bounded, Theorem 6 of [5] gives that for any P P N and every γ ą 0, if P ě S ` log γ´1

then there exists an adversary pB1,B2q such that

Advit-chl-1u,m pD1,D2q ď 2 ¨ Advbf-it-chlu,m,P pB1,B2q ` γ .

Setting γ “ 1
2m and P “ S `m, gives the claimed bound.

Second claim. Let us assume, towards contradiction, that there exists S-bounded pD˚1 ,D˚2 q such that
Advit-chl-ru,m pD˚1 ,D˚2 q ą εr ‰ 0. Then we can construct an adversary pD11,D12q such that Advit-chl-1u,m pD11,D12q ą ε.

We give D11 in Fig. 14 and let D12 “ D˚2 . We say pD˚1 ,D˚2 q wins round j if Git-chl-r
u,m did not return false before

the pj ` 1qst iteration. It follows that,

Advit-chl-ru,m pD˚1 ,D˚2 q “
r
ź

j“1

Pr
“

pD˚1 ,D˚2 q wins round j
ˇ

ˇ pD˚1 ,D˚2 q wins round j ´ 1
‰

.

Since Advit-chl-ru,m pD˚1 ,D˚2 q ą εr, there must exist some i P rrs, such that,

Pr
“

pD˚1 ,D˚2 q wins round i
ˇ

ˇ pD˚1 ,D˚2 q wins round i´ 1
‰

ą ε .

Adversary D11 keeps running pD˚1 ,D˚2 q until it wins round i ´ 1 on randomly generated Mi,j ’s. Once this
occurs D11 runs D˚1 on its own inputs and returns the state returned by D˚1 . Adversary D12 runs D˚2 on its own
inputs and returns whatever D˚2 returns. Note that pD11,D12q is S-bounded because pD˚1 ,D˚2 q is. Moreover,

Pr
”

Git-chl-1
u,m pD11,D12q

ı

“ Pr
“

pD˚1 ,D˚2 q win round i
ˇ

ˇ pD˚1 ,D˚2 q win round i´ 1
‰

.

Thus Advit-chl-ru,m pD11,D12q ą ε, which contradicts our assumption. [\

5.1 Memory Lower Bound for Straightline Reductions

Our first theorem shows that it is not possible to give memory-tight, straightline reductions proving the
AE-1 security of an encryption scheme from its INDR and CTXT-1 security. (As the theorem statement is
somewhat complicated, we will describe how to interpret it below.)

Theorem 5 (Impossibility for straightline reductions). Let NE be a nonce-based encryption scheme.
Fix u, r P N and define the nonce-respecting adversary A as shown in Fig. 16. Let R be a straightline, nonce-
respecting, faithful black-box reduction from AE-1 to nonce-respecting INDR with MempRq “ S. Let R1 be a
straightline, nonce-respecting, faithful reduction from AE-1 to CTXT-1. Then, we can construct adversaries
C and W such that,

(i) Advae-1NE pAq ě 1´
2kl

22NE.clpmlq
,

(ii) AdvindrNE pRrAsq ď 2 ¨

ˆ

2pS ` log r ` klq ` 2ml

u
`

3

2ml

˙r

` 4 ¨ AdvindrNE pCq ,

(iii) Advctxt-1NE pR1rAsq ď Advctxt-1NE pR1rWsq .

Moreover, A satisfies QuerypAq “ pu`1q¨r`2 and MempAq ď 2kl`2ml`2NE.clpmlq`2 log |N|`log u ¨ r. Also
C and W satisfy QuerypCq ă QuerypRq ` QuerypAq, TimepCq P OpQuerypAq ` TimepRqq, and QuerypWq “
QuerypAq and TimepWq P OpQuerypAqq.
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Games G0
b , G1

bÐ 1
K˚Ð$ NE.Kgpq; σÐ$ REncb .Init
For i P rrs do
j˚Ð$ rus
For j P rus do
Mj Ð$ t0, 1uml; Nj Ð pi, jq
pσ, ¨, Cjq Ð$ REncb .SimEncpσ,Nj ,Mjq

pσ, ¨,Mq Ð$ REncb .SimDecpσ,Nj˚ , Cj˚q

If M ‰Mj˚ then return false

Return true

Oracle EncbpN,Mq
C0 Ð$ C
C1 Ð NE.EpK˚, N,Mq
C1 Ð NE.EpK˚, N, 0ml

q

Return Cb

Fig. 15. Games G1 and G0
b for b P t0, 1u. Highlighted code is only included in G1.

Adversaries AEnc,Dec, SEnc,Dec , WEnc,Dec

For i P rrs do
j˚Ð$ rus
For j P rus do
Mj Ð$ t0, 1uml

Nj Ð pi, jq
Cj Ð EncpNj ,Mjq

M Ð DecpNj˚ , Cj˚q

If M ‰Mj˚ then return 1
bad Ð true

Return BEnc; Return 0; Return EEnc

Adversaries BEnc, EEnc

M1 Ð$ t0, 1uml

M2 Ð$ t0, 1uml

N1 Ð p0, 1q; N2 Ð p0, 2q
C1 Ð EncpN1,M1q

C2 Ð EncpN2,M2q

For K P t0, 1ukl do
eq1 Ð pNE.EpK,N1,M1q “ C1q

eq2 Ð pNE.EpK,N2,M2q “ C2q

If eq1 and eq2 then return 1
Return 0; Return 1

Fig. 16. Adversaries against the AE-1 security of NE. Boxed code is only included in S. Highlighted code is only
included in A and B.

To interpret this theorem, assume that the parameters of NE are such that the advantage of A is essentially
one. Hence, a successful pair of reductions R and R1 would need at least one of RrAs or R1rAs to have high
advantage. For memory-tight R and R1 we expect there to be linear functions f1 and f2 such that their local
computation time and memory usage when interacting with an adversary A would be bounded by f1pqAq
and f2psAq where qA “ QuerypAq and sA “ MempAq.

Suppose this was the case. Then we can fix upper bounds for logpuq and logprq, determining the memory

usage of A and hence f1psAq “ S. Now we can pick reasonable u and r such that, 2¨
´

2pS`log r`klq`2ml
u ` 3

2ml

¯r

is very small (by say making the inside of the parenthesis less than 1{2 and setting r “ 128). Then, for one
of the reductions to have high advantage, one of C or R1rWs would have to have high advantage. But the
efficiencies of these are bounded as small functions of the query complexity of A (rather than its local
runtime) so cannot be too large. But then assuming security of NE prevents any of them from having high
advantage.

Proof. Consider the adversary A in Fig. 16 against AE-1 security of NE. Note that it is nonce-respecting.
It has a challenge phase followed by an invocation of B. Each iteration of the challenge phase consists
of A making u encryption queries with unique nonces and making one decryption query on one of the u
ciphertexts it received as answers chosen uniformly at random with its corresponding nonce. If the answer
of the decryption query is not consistent with the prior encryption query, A returns 1. There are r iterations
of the challenge phase. If these are all passed, A runs adversary B (shown on the right) with its Enc oracle
and outputs whatever B outputs. From the code of A we can see that it makes r ¨ u` 2 encryption queries,
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r decryption queries, and satisfies

MempAq ď 2kl` 2ml` 2NE.clpmlq ` 2 log |N| ` log u ¨ r .

To prove the theorem we need to separately establish the three advantage claims (and corresponding state-
ments about the efficiency of various algorithms). For the first claim, note that Advae-1NE pAq “ Advae-1NE pBq
because M will always equal Mj˚ when A is playing Gae-1

NE,b. The simple analysis giving the needed bound on

Advae-1NE pBq is deferred to Appendix B.
For the third claim, consider adversary W defined as shown in Fig. 16. It is identical to A, except that

it calls E , which is similar to B but always returns 1. Because R1 is faithful, B would never return 0 when
run by R1rAs playing Gctxt-1

NE,b so Advctxt-1NE pR1rAsq “ Advctxt-1NE pR1rWsq holds trivially.
We spend the rest of the proof establishing the second claim. Consider the adversary S in Fig. 16. It

behaves identically to A until the flag bad is set. Using the Fundamental Lemma of Game Playing [3], we
can obtain for b P t0, 1u that

ˇ

ˇ

ˇ
Pr

”

Gindr
NE,bpRrAsq

ı

´ Pr
”

Gindr
NE,bpRrSsq

ı
ˇ

ˇ

ˇ
ď Pr

”

RrAs sets bad in Gindr
NE,b

ı

.

Consider the games G0
b for b P t0, 1u in Fig. 15. In it, we assume that R always outputs rf “ false since

it is straightline. Note that G0
b simulates the challenge phase of A and the game Gindr

b to R perfectly, so it
returns true whenever RrAs would set bad is set in Gindr

b . From this we can show

AdvindrNE pRrAsq ď AdvindrNE pRrSsq ` Pr
“

G0
0

‰

` Pr
“

G0
1

‰

. (3)

Now consider the game G1 defined in the same figure. It is identical to either G0
b except that it answers all

encryption queries with the encryption of the message 0ml. We now state two lemmas which give bounds
on both Pr

“

G0
b

‰

’s via G1. First, in Lemma 3, we use that the INDR security of NE implies G1’s encryption

oracle is indistinguishable from those in either G0
b to transition to G1. Next, in Lemma 4 we give a bound on

Pr
“

G1
‰

which was obtained by using R to construct an adversary for Git-chl-r
u,ml and bounding its advantage

with Lemma 2. The proofs of these lemmas are deferred to Appendix C.1 and Appendix D, respectively.

Lemma 3. There exist adversaries C1 and C2 such that

Pr
“

G0
1

‰

ď Pr
“

G0
0

‰

` AdvindrNE pC1q,
Pr

“

G0
0

‰

ď Pr
“

G1
‰

` AdvindrNE pC2q

where G0
b and G1 are defined as in Fig. 15. Moreover QuerypC1q ă QuerypRq ` QuerypAq and TimepC1q P

OpQuerypAq ` TimepRqq. Adversary C2’s complexity is the same.

Lemma 4. If R is a straightline, nonce-respecting, faithful black-box reduction from AE-1 to nonce-respecting
INDR with MempRq “ S. Then,

Pr
“

G1
‰

ď

ˆ

2pS ` log r ` klq ` 2ml

u
`

3

2ml

˙r

where G1 is defined as in Fig. 15.

Applying these lemmas to equation (3) gives

AdvindrNE pRrAsq ď 2 ¨

ˆ

2pS ` log r ` klq ` 2ml

u
`

3

2ml

˙r

` AdvindrNE pRrSsq ` 2 ¨ AdvindrNE pC1q ` AdvindrNE pC2q .

To complete the proof, we combine the three INDR adversaries RrSs, C1, and C2. Let C be the INDR
adversary that randomly chooses one of RrSs, C1, or C2 (with probabilities 1{4, 1{2, and 1{4, respectively)
then runs the adversary it chose, outputting whatever that adversary does. Simple calculations give

4 ¨ AdvindrNE pCq “ AdvindrNE pRrSsq ` 2 ¨ AdvindrNE pC1q ` AdvindrNE pC2q .

The claimed complexity of C follows from that of RrSs, C1, and C2. [\
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5.2 Memory Lower Bound for Full-Rewinding Reductions

We can extend our result to cover full-rewinding reductions as captured by the following theorem. Its inter-
pretation works similarly to that of Thm. 5.

Theorem 6 (Impossibility for full-rewinding reductions). Let NE be a nonce-based encryption scheme.
Fix u, r, c P N. We can construct a nonce-respecting adversary A such that for all full-rewinding, nonce-
respecting, restricted reductions R from AE-1 to nonce-respecting INDR with MempRq “ S and all full-
rewinding, nonce-respecting, restricted reductions R1 from AE-1 to CTXT-1 there exist adversaries C and
W such that,

(i) Advae-1NE pAq ě 1´
2kl

22NE.clpmlq
,

(ii) AdvindrNE pRrAsq ď 2 ¨

ˆ

2pS ` log r ` klq ` 2ml

u
`

3

2ml

˙r

`
2S`1

2c¨NE.clpmlq
` 6 ¨ AdvindrNE pCq ,

(iii) Advctxt-1NE pR1rAsq ď Advctxt-1NE pR1rWsq.

Moreover, A satisfies QuerypAq “ c`pu`1q ¨r`2 and MempAq ď 2kl`2ml`2NE.clpmlq`2 log |N|` log u ¨ r.
Also C and W satisfy QuerypCq ă QuerypRq ` QuerypAq, TimepCq P OpQuerypAq ` TimepRqq, QuerypWq “
QuerypAq, and TimepWq P OpQuerypAqq.

The proof of this result has been deferred to Appendix A. We give a very brief intuition about how this
impossibility proof proceeds. We define a new adversary that is similar to A used for the proof of Thm. 5, but
has an additional “buffer” phase before the challenge phase. In the buffer phase, it makes c encryption queries
on a fixed message 0ml using different nonces. The key idea is that if the reduction rewinds the adversary
after going past the buffer phase and still manages to pass the challenge phase, it must have remembered
the c ciphertexts. Because these c ciphertexts look random (from the INDR security of NE), the memory of
the reduction has to grow with c. This rules out low memory reductions that pass the challenge phase after
rewinding the adversary after going past the buffer phase. As in the previous section, we can show that if
a reduction cannot pass the challenge phase, it cannot have a high advantage of breaking INDR security. If
the reduction does not rewind after going past the buffer phase, we can bound its advantage analogously to
the straightline reduction case.

6 Conclusions

Our work gives memory-sensitive bounds for the security of a particular construction of a channel and shows
the difficulty of providing such bounds for encryption schemes. It leaves open a number of interesting questions
including: (i) whether memory-sensitive bounds can be given for other practical examples of channels, (ii)
whether analogous results can be shown for any robust channels [8], and (iii) whether memory-sensitive
bounds can be extended to the multi-user setting.
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A Proof of Theorem 6 (Impossibility for Full-Rewinding Reductions)

In this section we prove Thm. 6 which was given in Section 5.2.
Consider the adversary A shown in Fig. 17 playing against AE-1 security of NE. It has a buffer phase,

followed by a challenge phase, followed by an invocation of adversary B. In the buffer phase, A makes c
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Adversaries AEnc,Dec, SEnc,Dec , WEnc,Dec

For i P rcs do // Buffer Phase
Ni Ð pr ` 1, iq
Ci Ð EncpNi, 0

ml
q

For i P rrs do // Challenge Phase
j˚Ð$ rus
For j P rus do
Mj Ð$ t0, 1uml

Nj Ð pi, jq
Cj Ð EncpNj ,Mjq

M Ð DecpNj˚ , Cj˚q

If M ‰Mj˚ then return 1
bad Ð true

Return BEnc; Return 0; Return EEnc

Adversaries BEnc, EEnc

M1 Ð$ t0, 1uml

M2 Ð$ t0, 1uml

N1 Ð p0, 1q; N2 Ð p0, 2q
C1 Ð EncpN1,M1q

C2 Ð EncpN2,M2q

For K P t0, 1ukl do
eq1 Ð pNE.EpK,N1,M1q “ C1q

eq2 Ð pNE.EpK,N2,M2q “ C2q

If eq1 and eq2 then return 1
Return 0; Return 1

Fig. 17. Adversaries against the AE-1 security of NE used for proof of Thm. 6. Highlighted code is only included in
A. Boxed code is only included in S. Adversaries B (used by A) and E (used by W) are repeated from Fig. 16.

encryption queries on a fixed message 0ml using different nonces. The next phase is the challenge phase. Each
iteration of the challenge phase consists of A making u encryption queries to and asking for the decryption
of one randomly chosen ciphertext from the ones it received as the answer of the encryption queries. If the
answer of the decryption query is not consistent with the corresponding encryption query, then A halts
and returns 1. There are r iterations of the challenge phase. If all of these phases are passed, then A runs
adversary B which is defined in the same figure (identically to the B that was defined in Fig. 16). From
the code of A we can see that it makes r ¨ u ` c ` 2 encryption queries, r decryption queries, and satisfies
MempA2q ď 2kl` 2ml` 2NE.clpmlq ` 2 log |N| ` log u ¨ r.

To prove the theorem we need to separately establish the three advantage claims (and corresponding
statements about the efficiency of various algorithms).

First and third claims. For the first claim, note that Advae-1NE pAq “ Advae-1NE pBq because M will always
equal Mj˚ when A is playing Gae-1

NE,b. The simple analysis showingn that Advae-1NE pBq ě 1 ´ 2kl{22NE.clpmlq is
given in Appendix B.

For the third claim, consider adversary W defined as shown in Fig. 17. It is identical to A, except that it
calls E which is defined in the same figure (identically to the E that was defined Fig. 16), which is similar to
B but always returns 1. Because R1 is faithful, B would never return 0 when run by R1rAs playing Gctxt-1

NE,b so

Advctxt-1NE pR1rAsq “ Advctxt-1NE pR1rWsq holds trivially. The claims on its complexity follow from its similarity
to A.

Second claim. We spend the rest of the proof establishing the second claim. Consider the adversary S
in Fig. 17. It behaves identically to A until the flag bad is set. Using the Fundamental Lemma of Game
Playing [3], we obtain for b P t0, 1u that

ˇ

ˇ

ˇ
Pr

”

Gindr
NE,bpRrAsq

ı

´ Pr
”

Gindr
NE,bpRrSsq

ı
ˇ

ˇ

ˇ
ď Pr

”

RrAs sets bad in Gindr
NE,b

ı

.

We will use the sequence of games shown in Fig. 18 to bound these probabilities that RrAs sets bad. Start
by considering the games G0

b for b P t0, 1u. They were obtained by plugging the code of RrAs into Gindr
NE,b,

then changing the code to output true if R passes all of A’s challenges and output false otherwise (and
adding a flag crw that we will use later). In other words, G0

b outputs true whenever RrAs would set bad in
Gindr
NE,b. This gives us that

AdvindrNE pRrAsq ď AdvindrNE pRrSsq ` Pr
“

G0
0

‰

` Pr
“

G0
1

‰

. (4)
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Games G0
b , G1 , H2

bÐ 1
K˚Ð$ NE.Kgpq; k Ð 0; σÐ$ REncb .Init
While k ď R.rew do

For i P rcs do // Buffer Phase
Ni Ð pr ` 1, iq
pσ, rf, Ciq Ð$ REncb .SimEncpσ,Ni, 0

ml
q

If rf then goto NEXT2
For i P rrs do // Challenge Phase
j˚Ð$ rus
For j P rus do
Mj Ð$ t0, 1uml

Nj Ð pi, jq
pσ, rf, Cjq Ð$ REncb .SimEncpσ,Nj ,Mjq

If rf then goto NEXT
pσ, rf,Mq Ð$ REncb .SimDecpσ,Nj˚ , Cj˚q

If rf then goto NEXT
If M ‰Mj˚ then
σÐ$ REncb .Updpσ, 1q
Goto NEXT

Return true

NEXT: crw Ð true; k Ð R.rew ` 1
NEXT2: k Ð k ` 1

Return false

Oracle EncbpN,Mq
C0 Ð$ C
C1 Ð NE.EpK˚, N,Mq

C1 Ð NE.EpK˚, N, 0ml
q

Return Cb

Games G2, G3

bÐ 1
K˚Ð$ NE.Kgpq; k Ð 0; σÐ$ REncb .Init
While k ď R.rew do

For i P rcs do // Buffer Phase
Ni Ð pr ` 1, iq
pσ, rf, Ciq Ð$ REncb .SimEncpσ,Ni, 0

ml
q

If rf then goto NEXT2
For i P rrs do // Challenge Phase
j˚Ð$ rus
For j P rus do
Mj Ð$ t0, 1uml

Nj Ð pi, jq
pσ, rf, Cjq Ð$ REncb .SimEncpσ,Nj ,Mjq

If rf then goto NEXT
pσ, rf,Mq Ð$ REncb .SimDecpσ,Nj˚ , Cj˚q

If rf then goto NEXT
If M ‰Mj˚ then
σÐ$ REncb .Updpσ, 1q
Goto NEXT

Return true^ crw
NEXT: crw Ð true

NEXT2: k Ð k ` 1
Return false

Oracle EncbpN,Mq

C1 Ð NE.EpK˚, N, 0ml
q

C1 Ð$ C
Return Cb

Fig. 18. Sequence of games used in proof Theorem 6. On the left, boxed code is not included in G1 and highlighted
code is only included in H2. On the right, highlighted code is included in both games (indicating where they differ
from G1) and boxed code is only included in G3.

Now consider the game G1 defined in the same figure. It is identical to either G0
b except that it answers

all encryption queries with the encryption of the message 0ml. The following lemma allows us to bound the
Pr

“

G0
b

‰

’s using PrrG1
s and the advantage of two adversaries attacking the INDR security of NE. Its proof is

given in Section C.2.

Lemma 5. There exist adversaries C1 and C2 such that

Pr
“

G0
1

‰

ď Pr
“

G0
0

‰

` AdvindrNE pC1q and Pr
“

G0
0

‰

ď Pr
“

G1
‰

` AdvindrNE pC2q

where G0
b and G1 are defined as in Fig. 18. Moreover QuerypC1q ă QuerypRq ` QuerypAq and TimepC1q P

OpQuerypAq ` TimepRqq. Adversary C2’s complexity is the same.

Next we are going to bound Pr
“

G1
‰

ď PrrH2
s ` PrrG2

s. Game H2 does not let R rewind again if it has
already passed the buffer, so it captures the possibility that R passes the challenges on its first attempt
past the buffer. Game G2 only outputs true if R has passed the buffer, then rewinded, and then passed the
buffer again before successfully completing the challenge. To make this formal, let crw denote the event that
crw “ true at the end of the execution of a game and crw to denote the opposite event in the following
probability statements. We claim that,

Pr
“

G1
^ crw

‰

ď Pr
“

H2
‰

and Pr
“

G1
^ crw

‰

ď Pr
“

G2
‰

. (5)
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Adversary D1pφ,M1, ¨ ¨ ¨ ,Muq

If φ “ K then
K˚ Ð NE.Kg; k Ð 0; σÐ$ REnc.Init
While k ď R.rew do

For i P rcs do // Buffer Phase
Ni Ð pr ` 1, iq
pσ, rf, Ciq Ð$ REnc.SimEncpσ,Ni,M0q

If rf then goto NEXT2
Goto BUF-END
NEXT2: k Ð k ` 1

BUF-END: φÐ p1,K˚, σq
pi,K˚, σq Ð φ1

For j P rus do
Nj Ð pi, jq
pσ, ¨, Cjq Ð$ REnc.SimEncpσ,Nj ,Mjq

φÐ pi,K˚, σq
Return φ

Adversary D2pφ, j
˚
q

pi,K˚, σq Ð φ2

Nj˚ Ð pi, j˚q
Cj˚ Ð NE.EpK˚, Nj˚ , 0ml

q

pσ, ¨,Mq Ð$ REnc.SimDecpNj˚ , Cj˚q

φÐ pi` 1,K˚, σq
Return pφ,Mq

Oracle EncpN,Mq

Return NE.EpK˚, N, 0ml
q

Fig. 19. Adversary pD1,D2q used to prove Lemma 7.

The former of these holds because G1 and H2 are identical until crw has been set (and hence Pr
“

G1
^ crw

‰

“

Pr
“

H1
^ crw

‰

). The latter holds because G2 is identical to G1 except it only outputs true if G1 would and
crw “ true.

Because R only has one attempt to pass the challenge phase in H2, we can directly bound the probability
that it succeeds in this by using R to construct an adversary for Git-chl-r

u,ml and bounding its advantage with
Lemma 2. This gives the following lemma.

Lemma 6. Let R be a full-rewinding, nonce-respecting, faithful black-box reduction from AE-1 to nonce-
respecting INDR with MempRq “ S. Then,

Pr
“

H2
‰

ď

ˆ

2pS ` log r ` klq ` 2ml

u
`

3

2ml

˙r

where H2 is defined as in Fig. 18.

Proof. Consider the adversary pD1,D2q for Git-chl-r
u,ml defined in Fig. 19. It assumes that R will succeed in H2

and tries to use this to succeed in its own game. The first time D1 is executed (i.e. when φ “ K) it simulates
the buffer phase, allowing R to rewind up to R.rew times until R completes the buffer phase (if R never
completes the buffer phase, reaching the code “Goto BUF-END”, then it couldn’t have won in H2 so we do
not need to worry about the behavior of D1 in this case).

After this, and in all subsequent executions, D1 uses its input as the messages given to R in one iteration
of the challenge. We let D1 ignore R’s output rf here because if R ever output rf “ true then it would be
unable to win that execution of H2. Then D1 halts, passing the current state of R to D2 which uses R to
attempt to answer its challenge.

The view of R is perfectly simulated for any execution of H2 in which it would have succeeded, so
PrrH2

s ď Advit-chl-ru,ml pD1,D2q. The state used by pD1,D2q is a tuple φ “ pi,K˚, σq where |i| “ log r, |K˚| “ kl,
and |σ| “ S so pD1,D2q is S ` log r ` kl-bounded. Applying Lemma 2 gives the claimed bound. [\

We now state two lemmas which give us a bound on Pr
“

G2
‰

via G3. First, in Lemma 7 we use the INDR

security of NE to transition from G2 to G3 which is identical, except the encryption oracle returns random
ciphertexts to R. Its proof is given in Appendix C.3. Now consider G3. The reduction R must pass the
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buffer phase, then rewind, then pass the buffer phase again to win this game. Because it is faithful, passing
the buffer phase the second time requires R to remember c random ciphertexts. In Lemma 8, we use a
compression argument (via a lemma from [6]) to give an information theoretic bound on Pr

“

G3
‰

. Its proof
is given in Appendix E.

Lemma 7. There exists an adversary C3 such that

Pr
“

G2
‰

ď Pr
“

G3
‰

` AdvindrNE pC3q

where G2 and G3 are defined as in Fig. 18. Moreover, QuerypC3q ă QuerypRq ` QuerypAq and TimepC3q P
OpQuerypAq ` TimepRqq.

Lemma 8. Let R be a full-rewinding, nonce-respecting, faithful black-box reduction from AE-1 to nonce-
respecting INDR with MempRq “ S. Then,

Pr
“

G3
‰

ď
2S

|C|c
“

2S

2c¨NE.clpmlq

where G3 is defined as in Fig. 18.

We combine (in order) Equation 4, Lemma 5, Equation 5, and Lemma 7 to obtain

AdvindrNE pRrAsq ď AdvindrNE pRrSsq ` Pr
“

G0
0

‰

` Pr
“

G0
1

‰

ď AdvindrNE pRrSsq ` AdvindrNE pC1q ` 2 ¨ Pr
“

G0
0

‰

ď AdvindrNE pRrSsq ` AdvindrNE pC1q ` 2 ¨ pAdvindrNE pC2q ` Pr
“

G1
‰

q

ď AdvindrNE pRrSsq ` AdvindrNE pC1q ` 2 ¨ pAdvindrNE pC2q ` PrrH2
s ` PrrG2

sq

ď AdvindrNE pRrSsq ` AdvindrNE pC1q ` 2 ¨ pAdvindrNE pC2q ` PrrH2
s ` AdvindrNE pC3q ` Pr

“

G3
‰

q.

To complete the proof, we apply our information theoretic bounds from Lemma 7 and Lemma 8, then combine
the four INDR adversaries RrSs, C1, C2, and C3. Let C be the INDR adversary that randomly chooses one
of RrSs, C1, C2, and C3 (with probabilities 1{6, 1{6, 2{6, and 2{6, respectively), then runs the adversary it
chose, outputting whatever that adversary does. Simple calculations give

6 ¨ AdvindrNE pCq “ AdvindrNE pRrSsq ` AdvindrNE pC1q ` 2 ¨ AdvindrNE pC2q ` 2 ¨ AdvindrNE pC3q .

The claimed complexity of C follows from that of RrSs, C1, C2, and C3. [\

B Analysis of Brute-Force Adversary’s Advantage

We prove a bound on the advantage of the adversary B we use in the proofs of Thm. 5 and Thm. 6.

Lemma 9. Fix kl,ml P N. Let NE be a nonce-based encryption scheme for which t0, 1uml Ď NE.M, rNE.Kgs “
t0, 1ukl, and tp0, 1q, p0, 2qu Ď NE.N. Then,

Advae-1NE pBq ě 1´ 2kl{22NE.clpmlq.

for B as defined in Fig. 16.

Proof. Adversary B makes two encryption queries then performs a brute-force to check if there is an en-
cryption key consistent with those queries, returning 1 if so, and 0 otherwise. In Gae-1

1 there will always be
a consistent key so B will always return 1. For fixed M1, M2, and N1 ‰ N2 there are at most 2kl values the
ordered pair pNE.EpK,N1,M1q,NE.EpK,N2,M2qq can take (one for each K P t0, 1ukl). Moreover, there are
22NE.clpmlq different values of pC1, C2q that might be chosen at random by the encryption oracle, so B will
return 1 with probability at most 2kl{22NE.clpmlq when interacting with Gae-1

NE,0. Combining these observations
gives the desired bound. [\
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Adversary CEnc
1 , CEnc

2

σÐ$ RSimEnc.Init
For i P rrs do
j˚Ð$ rus
For j P rus do
Mj Ð$ t0, 1uml

Nj Ð pi, jq
pσ, ., Cjq Ð$ RSimEnc.SimEncpσ,Nj ,Mjq

pσ, .,Mq Ð$ RSimEnc.SimDecpσ,Nj˚ , Cj˚q

If M ‰Mj˚ then return 0; return 1
Return 1; Return 0

Oracle SimEncpN,Mq
Return EncpN,Mq

Return EncpN, 0ml
q

Fig. 20. Adversaries C1 and C2 used for Lemma 3. The highlighted code is present only in C1 and the boxed code is
present only in C2.

C Proofs of Lemma 3, Lemma 5, and Lemma 7 (INDR Reductions)

C.1 Proof of Lemma 3

Consider the adversary C1 shown in Fig. 20. It was obtained by copying the code of G0
0 and G0

1 (from Fig. 15),
then modifying the code to use its own Enc oracle to respond to encryption queries from R and, to return
1 whenever the games would output true and 0 otherwise. Consequently, C1 playing Gindr

NE,0 (resp. Gindr
NE,1)

perfectly simulates G0
0 (resp. G0

1) to R and we have

Pr
“

G0
0

‰

“ Pr
”

Gindr
NE,0pC1q

ı

and Pr
“

G0
1

‰

“ Pr
”

Gindr
NE,1pC1q

ı

.

It follows that,
Pr

“

G0
1

‰

ď Pr
“

G0
0

‰

` AdvindrNE pC1q .

The claims on C1’s complexity can be verified from its code.
Now consider the adversary C2 shown in Fig. 20. It was obtained by copying the code of G0

0 and G1 (from
Fig. 15), then modifying the code to use its own Enc oracle to respond to encryption queries from R, and
to return 0 whenever the games would outputs true and 1 otherwise. Consequently, C2 playing Gindr

NE,0 (resp.

Gindr
NE,1) perfectly simulates G0

0 (resp. G1) to R and we have

1´ Pr
“

G0
0

‰

“ Pr
”

Gindr
NE,0pC2q

ı

and 1´ Pr
“

G1
‰

“ Pr
”

Gindr
NE,1pC2q

ı

.

It follows that,
Pr

“

G0
0

‰

ď Pr
“

G1
‰

` AdvindrNE pC2q .

The claims on C2’s complexity can be verified from its code. [\

C.2 Proof of Lemma 5

Consider the adversary C1 shown in Fig. 21. It was obtained by copying the code of G0
0 and G0

1 (from Fig. 18),
then modifying the code to use its own Enc oracle to respond to encryption queries from R, and to return
1 whenever the games would output true and 0 otherwise. Consequently, C1 playing Gindr

NE,0 (resp. Gindr
NE,1 )

perfectly simulates G0
0 (resp. G0

1) to R and we have

Pr
“

G0
0

‰

“ Pr
”

Gindr
NE,0pC1q

ı

and Pr
“

G0
1

‰

“ Pr
”

Gindr
NE,1pC1q

ı

.
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Adversaries CEnc
1 , CEnc

2

k Ð 0; σÐ$ RSimEnc.Init
While k ď R.rew do

For i P rcs do // Buffer Phase
Ni Ð pr ` 1, iq
pσ, rf, Ciq Ð$ RSimEnc.SimEncpσ,Ni, 0

ml
q

If rf then goto NEXT2
For i P rrs do // Challenge Phase
j˚Ð$ rus
For j P rus do
Mj Ð$ t0, 1uml

Nj Ð pi, jq
pσ, rf, Cjq Ð$ RSimEnc.SimEncpσ,Nj ,Mjq

If rf then goto NEXT
pσ, rf,Mq Ð$ RSimEnc.SimDecpσ,Nj˚ , Cj˚q

If rf then goto NEXT
If M ‰Mj˚ then
σÐ$ REnc.Updpσ, 1q
Goto NEXT

Return 1; Return 0
NEXT: crw Ð true

NEXT2: k Ð k ` 1
Return 0; Return 1

Oracle SimEncpN,Mq
C Ð EncpN,Mq

C Ð EncpN, 0ml
q

Return C

Adversary CEnc
3

k Ð 0; σÐ$ RSimEnc.Init
While k ď R.rew do

For i P rcs do // Buffer Phase
Ni Ð pr ` 1, iq
pσ, rf, Ciq Ð$ RSimEnc.SimEncpσ,Ni, 0

ml
q

If rf then goto NEXT2
For i P rrs do // Challenge Phase
j˚Ð$ rus
For j P rus do
Mj Ð$ t0, 1uml

Nj Ð pi, jq
pσ, rf, Cjq Ð$ RSimEnc.SimEncpσ,Nj ,Mjq

If rf then goto NEXT
pσ, rf,Mq Ð$ RSimEnc.SimDecpσ,Nj˚ , Cj˚q

If rf then goto NEXT
If M ‰Mj˚ then
σÐ$ RSimEnc.Updpσ, 1q
Goto NEXT

If crw then return 1 else return 0
NEXT: crw Ð true

NEXT2: k Ð k ` 1
Return 0

Oracle SimEncpN,Mq

C Ð EncpN, 0ml
q

Return C

Fig. 21. Adversaries C1 and C2 for Lemma 5 and adversary C3 for Lemma 7. Highlighted code is only included in C1

and boxed code is only included in C2.

It follows that,

Pr
“

G0
1

‰

ď Pr
“

G0
0

‰

` AdvindrNE pC1q .

The claims on C1’s complexity can be verified from its code.
Now consider the adversary C2 shown in Fig. 21. It was obtained by copying the code of G0

0 and G1 (from
Fig. 18), then modifying the code to use its own Enc oracle to respond to encryption queries from R, and
to return 0 whenever the games would output true and 1 otherwise. Consequently, C2 playing Gindr

NE,0 (resp.

Gindr
NE,1) perfectly simulates G0

0 (resp. G1) to R and we have

1´ Pr
“

G0
0

‰

“ Pr
”

Gindr
NE,0pC2q

ı

and 1´ Pr
“

G1
‰

“ Pr
”

Gindr
NE,1pC2q

ı

.

It follows that,

Pr
“

G0
0

‰

ď Pr
“

G1
‰

` AdvindrNE pC2q .

The claims on C2’s complexity can be verified from its code. [\

C.3 Proof of Lemma 7

Proof. Consider the adversary C3 shown in Fig. 21. It was obtained by copying the code of G2 and G3 (from
Fig. 18), then modifying the code to use its own Enc oracle to respond to encryption queries from R, and
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Adversary D1pφ,M1, ¨ ¨ ¨ ,Muq

If φ “ K then
iÐ 1; K˚ Ð NE.Kg; σÐ$ REnc.Init

Else
pi,K˚, σq Ð φ

Foreach j P rus do
Nj Ð pi, jq
pσ, ., Cjq Ð$ REnc.SimEncpσ,Ni,j ,Mjq

φÐ pi,K˚, σq
Return φ

Adversary D2pφ, j
˚
q

pi,K˚, σq Ð φ
Nj˚ Ð pi, j˚q
Cj˚ Ð NE.EpK˚, Nj˚ , 0ml

q

pσ, .,Mq Ð$ REnc.SimDecpNj˚ ,Mj˚q

φÐ pi` 1,K˚, σq
Return pφ,Mq

Oracle EncpN,Mq

Return NE.EpK˚, N, 0ml
q

Fig. 22. Adversary pD1,D2q used in the proof of Lemma 4.

to return 1 whenever the games would output true and 0 otherwise. Consequently, C3 playing Gindr
NE,0 (resp.

Gindr
NE,1) perfectly simulates G3 (resp. G2) to R and we have

Pr
“

G3
‰

“ Pr
”

Gindr
NE,0pC3q

ı

and Pr
“

G2
‰

“ Pr
”

Gindr
NE,1pC3q

ı

.

It follows that,
Pr

“

G2
‰

ď Pr
“

G3
‰

` AdvindrNE pC3q .
The claims on C3’s complexity can be verified from its code. [\

D Proof of Lemma 4

Consider the adversary pD1,D2q shown in Fig. 22. Adversary D1 samples a key for NE and starts running
R from the beginning in the first round of Git-chl-r

u,ml (when φ “ K) and from the state at which R was last

stopped in later rounds. It responds to the encryption queries of R as in G1 (Fig. 15). Adversary D1 makes u
encryption queries which are distributed identically to the queries made to R in one iteration of G1 since the
inputs to D1 are sampled uniformly at random in Git-chl-r

u,ml . It then stops running R and outputs its state φ
which consists of the state σ of R along with the iteration number i and the key K˚. Adversary D2 resumes
running R from the state it was last stopped and makes a decryption query which is identically distributed
to the decryption query made in G1 because j˚ is chosen at random and independently of the Mi’s in Git-chl-r

u,ml .
It outputs the message M it received as answer to the decryption query along with a state φ which consists
of the current state of R, the next iteration number i` 1, and the key K˚.

It follows from their that during the r iterations of Git-chl-r
u,ml , the view of R provided by pD1,D2q perfectly

matches its view in G1. Note that Git-chl-r
u,ml pD1,D2q will output true whenever G1 would output true, so

PrrG1
s ď Advit-chl-ru,ml pD1,D2q.

The state of pD1,D2q is always a tuple pi,K˚, σq for which |i| “ log r, |K˚| “ kl, and |σ| “ S all hold.
Hence pD1,D2q is pS ` log r ` klq-bounded and the desired bound follows by applying Lemma 2. [\

E Proof of Lemma 8 (Compression Argument)

For this proof we use the compression lemma given in [6], which we state here as a proposition. It quantita-
tively formalizes that it is impossible to compress a random element in set X to a string that than log |X |
bits long, even relative to a random string.

Proposition 1. Let Encode be a randomized map from X to Y and let Decode be a randomized map from
Y to X such that

Pr rxÐ$ X : DecodepEncodepxqq “ xs ě ε ,

then log |Y| ě log |X | ´ logp1{εq.
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Algorithm EncodeppT1, ¨ ¨ ¨ , Tcqq

k Ð 0; σÐ$ REnc.Init
While k ď R.rew do

For i P rcs do // Buffer Phase
Ni Ð pr ` 1, iq
pσ, rf, Ciq Ð$ REnc.SimEncpσ,Ni, 0

ml
q

If rf then goto NEXT2
For i P rrs do // Challenge Phase
j˚Ð$ rus
For j P rus do
Mj Ð$ t0, 1uml

Nj Ð pi, jq
pσ, rf, Cjq Ð$ REnc.SimEncpσ,Nj ,Mjq

If rf then return σ
pσ, rf,Mq Ð$ REnc.SimDecpσ,Nj˚ , Cj˚q

If rf then return σ
If M ‰Mj˚ then
σÐ$ REnc.Updpσ, 1q
Return σ

Return σ
NEXT: crw Ð true

NEXT2: k Ð k ` 1
Return σ

Oracle EncpN,Mq
For i P rcs do

If pN,Mq “ ppr ` 1, iq, 0ml
q then return Ti

CÐ$ C
Return C

Algorithm Decodepσq
k Ð 0
While k ď R.rew do

For i P rcs do // Buffer Phase
Ni Ð pr ` 1, iq
pσ, rf, C˚i q Ð$ REnc.SimEncpσ,Ni, 0

ml
q

If rf then goto NEXT2
NEXT2: k Ð k ` 1

Return pC˚1 , ¨ ¨ ¨ , C
˚
c q

Oracle EncpN,Mq
CÐ$ C
Return C

Fig. 23. Procedures Encode and Decode. Highlighting indicates interesting code changes from G2.

To apply this proposition we use the reduction R to construct procedures Encode and Decode which attempt
to encode an element of X “ Cc with a state σ P t0, 1uS “ Y and succeed whenever G3 (Fig. 18) would
output true. They are shown in Fig. 23.

The procedure Encode was obtained by copying the code of G3, then making two modifications. First,
whenever R makes a Enc oracle query corresponding to the ith buffer query, Encode responds using its input
string Ti P C (the other queries are answered at random as in G3). Second, Encode returns the state σ of R
whenever crw would be set in G3 (i.e. whenever there was a goto NEXT) or whenever G3 would halt and
return an output.

The procedure Decode uses σ to run R and see if it would ever again pass the buffer phase. If R does so,
Decode does not need to continue simulating its view correctly because it already has the required values.
Because Decode does not know how many times R has already rewinded, it simply allows R to rewind R.rew
times. The final output of Decode consists of the strings C˚1 , ¨ ¨ ¨ , C

˚
c that R responded to buffer queries with.

We argue that Decode answers correctly if G3 would return true. Since G3 returns true only if crw is
set, we only look at executions of Encode and Decode where crw would have been set in G3. Observe that
Encode simulates G3 to R perfectly right up until crw is set in G3 (the simulation of Enc is perfect because
T1, ¨ ¨ ¨ , Tc are distributed uniformly at random in C). Then Decode perfectly simulates G3 to R from the
point crw is set until R passes the buffer phase (or until G3 would have halted without R passing the buffer
again). While Encode and Decode may end up running R for more than R.rew iterations, G3 would have
returned false if it has completed R.rew iterations and R had never passed the buffer phase a second time,
so we need not worry about incorrectness simulation after the first R.rew iterations.
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Games G0, G1

sync Ð true

NeÐ$ t0, 1uCAU.nl

Nd Ð Ne
KÐ$ t0, 1uCAU.kl

LÐ EKp0
CAU.bl

q

b1Ð$ AEnc,Dec

Return b1 “ 1

Oracle EncpMq
C Ð EpMq
M.addpMq; C.addpCq
Return C

Oracle DecpCq
If Nd “ K then return K
Nd Ð Nd ` 1
M 1

Ð M.dqpq
C 1 Ð C.dqpq
If sync then

If C “ C 1 then
Return M 1

sync Ð false

M1 Ð DpCq
M0 Ð K

Return Mb

Algorithm EpMq
Ne Ð Ne ` 1
Y Ð padpNeq
M1 . . .M` Ðn M
For i “ 1, ..., ` do
Ci ÐMi ‘ EKpY ` iq

C Ð C1 . . . C`
T Ð HLpA,Cq ‘ EKpY q
Return ppK,Nq, T }Cq

Algorithm DpT }Cq
Y Ð padpNdq
C1 . . . C` Ðn C
T 1 Ð HLpA,Cq ‘ EKpY q
If T “ T 1 then

badforge Ð true

Nd Ð K

Return K
For i “ 1, ..., ` do
Mi Ð Ci‘EKpY `iq

M ÐM1 . . .M`

Return M
Nd Ð K

Return K

Fig. 24. Games G0 and G1 introducing badforge for proof of Thm. 4. Highlighted code is only included in G1.

Now, because R is faithful, it must have queried the buffer queries to Enc before passing the buffer
phase in Encode and on every rewind, it answers with the same answers it had given previously. Hence, if R
passes the buffer phase in both Encode and Decode, then it must have responded with T1, ¨ ¨ ¨ , Tc in Decode.
Consequently, if G3 would return true, then T1, ¨ ¨ ¨ , Tc will be output by Decode. So, we have that

Pr rpT1, ¨ ¨ ¨ , Tcq Ð$ Cc : DecodepEncodeppT1, ¨ ¨ ¨ , Tcqqq “ pT1, ¨ ¨ ¨ , Tcqs ě Pr
“

G3
‰

.

Letting PrrG3
s “ ε and applying Proposition 1 gives log 2S ě log |C|c ´ log 1{ε. Then rearranging the terms

gives ε ď 2S{|C|c, which concludes the proof.

F Proof of Thm. 4 (NCHrCAUrE,Hss is CTXT secure)

In this section we provide a proof of Thm. 4 which gave a concrete bound on the CTXT security of NCHrNEs
for NE “ CAUrE,Hs.

Proof. Consider the game G0 shown in Fig. 24. It was obtained by plugging the code of NCHrNEs into
Gae
NCHrNEs,1 and making some minor organizational changes (e.g. L is computed once for all time and encryp-

tions/decryptions are performed in the separate algorithms E and D). The game G1 is the same except that
when a forgery would occur (i.e. when badforge is set) the oracle D sets the nonce to K and returns K anyway.
Equivalently, this game always returns K once sync is false. Because of this we have that G1 is identical to
Gae
NCHrNEs,0. Thus we have that

Advch-ctxtNCHrNEspAq “ PrrG0s ´ PrrG1s ď PrrG1 sets badforges.

The rest of the proof is dedicated to bounding this probability.

Transitioning to random.Recall that CAU’s authentication is inspired by a Carter-Wegman MAC. Thus
we ultimately expect to reduce security to the AXU security of H. However, to do so we first will need to
replace the output of E with random so that the key L looks random and the encryption queries before
the forgery attempt have not revealed anything about L. Naturally, this consists of a reduction to the PRF
security of E, but this is somewhat difficult in our setting. We’d like the reduction to be memory tight and
not repeat PRF queries. This makes it difficult to simulate Dec while sync “ true.

Ultimately, the approach we will take here closely mirrors that used in our proof of Thm. 2. We will
assume that the adversary A cannot remember too many bits of ciphertext at a time because the ciphertexts
should look random to it. If there are ever more than that many bits of ciphertext that A has received from
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Games H0 , H1, H2, H3

flag Ð true

sync Ð true

NeÐ$ t0, 1uCAU.nl

Nd Ð Ne
KÐ$ t0, 1uCAU.kl

LÐ Rfp0CAU.bl
q

Run AEnc,Dec

Return false

Oracle EncpMq
C Ð EpMq
M2.addpMq; C2.addpCq
If flag then

If ||C|| ` |C| ă δ then
M.addpMq; C.addpCq

Else
flag Ð false

Return C

Oracle DecpCq
Nd Ð Nd ` 1
M 1

Ð M.dqpq
C 1 Ð C.dqpq
M2 Ð M2.dqpq
C2 Ð C2.dqpq
If C “ C 1 then

Return M 1

Elif C “ C2 then
bad Ð false

Return M2

abortpfalseq
T }C Ð C
Y Ð padpNdq
X Ð HLpA,Cq
If T “ X ‘RfpY q then

badforge Ð true

abortptrueq
abortpfalseq

Algorithm EpMq
Ne Ð Ne ` 1
Y Ð padpNeq
M1 . . .M` Ðn M
C1 . . . C`Ð$ t0, 1u|M |

For i “ 1, ..., `´ 1 do
F rY ` is Ð Ci ‘Mi

Ci ÐMi ‘RfpY ` iq
C Ð C1 . . . C`
T Ð$ t0, 1uCAU.bl

F rY s Ð T ‘HLpA,Cq
T Ð HLpA,Cq ‘RfpY q
Return T }C

Oracle Rfpxq
If F rxs “ K then
F rxs Ð$ t0, 1uCAU.bl

y Ð F rxs
y Ð EKpxq
Return y

Fig. 25. Games used to analyze badforge for proof of Thm. 4. Boxed or highlighted code is only included in corre-
spondingly indicated game(s).

Enc, but not forwarded to Dec then we can stop remembering additional ciphertext bits in our table and
assume the sender and receiver will be out of sync before A has forwarded on all the ciphertext bits.

To start this analysis consider the game H0 shown in Fig. 25 for which we claim PrrG1 sets badforges “

PrrH0s. Note that H0 returns badforge rather than something depending on the bit guessed by A. To obtain
H0 from G1 we have made a few syntactic changes that do not effect the probability badforge is set. First, the
use of tables surrounding sync has been re-organized to use two copies of the table as was done in proving
Thm. 2. The flag sync has been removed because we will simply abort whenever it would be changed. Next,
all executions of EK has been forwarded to an oracle Rf which simply runs E. Finally, we have added code
to Dec to make the game abort and output badforge rather than return K and continue execution (after a
failed attempt to set badforge in G1 the nonce Nd would be set to K, preventing badforge from ever being set
again in the future).

The game H1 is the analog of G3 in the proof of Thm. 2. It differs from H0 by never using M2 to
determine the output of Dec, thereby limiting how much memory is needed to simulate it. Games H0 and
H1 are identical-until-bad so we have that

PrrH0s ´ PrrH1s ď PrrH1 sets bads.

PRF Transition. Having moved to a game that can be simulated with low memory we can now apply
PRF security to replace the output of E with random. Consider the game H2. It differs from H1 in that the
highlighted code has been removed from Rf which now implements a (lazily sampled) random function. In
Fig. 26, we give PRF adversaries A1prf and A2prf satisfying

PrrH1s ´ PrrH2s ď AdvprfE pA
1
prfq and PrrH1 sets bads ´ PrrH2 sets bads ď AdvprfE pA

2
prfq.

These adversaries simulate the view of A in H1 or H2 by using its Eval oracle whenever E would be executed,
the first outputting 1 whenever badforge would be set and the second outputting 1 whenever bad would be set.
They store one extra ciphertext C˚ beyond what C stores to know when bad occurs. We want to be careful
that neither adversary repeats queries to Eval. This is immediate for A2. When A1 checks if the tag of a
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Adversaries A1Evalprf , A2Evalprf

flag Ð true

NeÐ$ t0, 1uCAU.nl

Nd Ð Ne
LÐ Evalp0CAU.bl

q

Run ASimEnc,SimDec

Return 0

Algorithm EpMq
Ne Ð Ne ` 1
Y Ð padpNeq
M1 . . .M` Ðn M
For i “ 1, ..., `´ 1 do
Zi Ð EvalpY ` iq
Ci ÐMi ‘ Zi

C Ð C1 . . . C`
X Ð HLpA,Cq
T Ð X ‘ EvalpY q
Return T }C

Oracle SimEncpMq
C Ð EpMq
If flag then

If ||C||`|C| ă δ then
M.addpMq
C.addpCq

Else
C.addp˚q
C˚ Ð C
flag Ð false

Return C

Oracle SimDecpCq
Nd Ð Nd ` 1
M 1

Ð M.dqpq; C 1 Ð C.dqpq
If C “ C 1 then

Return M 1

Elif C 1 “ ˚ and C “ C˚ then
abortp1q
abortp0q

abortp0q
Y Ð padpNdq
T }C Ð C
X Ð HLpA,Cq
If C 1 “ ˚ then C 1 Ð C˚

If C 1 ‰ K then
T 1 }C 1 Ð C 1

X 1 Ð HLpA,C
1
q

Z Ð T 1 ‘X 1

Else
Z Ð EvalpY q

If T “ X ‘ Z then
abortp1q

abortp0q

Fig. 26. PRF adversaries for proof of Thm. 4. Highlighted code is only used by the highlighted adversary.

ciphertext is correct in SimDec we have to be careful not to create a repeat query. This would be possible
if Ne ě Nd, but in that case we have the corresponding ciphertext stored from which we can re-derive the
appropriate output of Eval (referred to as Z).

Rewriting transition. Our next transition (to H3) is merely a conceptual change which does not effect
the behavior at the game. This gives

PrrH2s ´ PrrH3s “ 0 and PrrH2 sets bads ´ PrrH3 sets bads “ 0.

The change occurs solely in E where, rather than creating the output ciphertext by xor-ing things with
entries of the table F (via Rf), we instead pick these outputs at random and use them to define F to match.
Note that this results in a uniform distribution for F either way as long as F had not already been defined at
that point. This is necessarily the case; E never repeats queries to Rf because Ne is always always increasing
and if Dec makes a query to Rf, then the game will abort immediately afterwards.

Bounding probability of bad. At this point we are in a game where the adversary is given ciphertexts
which are picked uniformly at random. To set bad is must at some point remember more than δ bits of
ciphertext that it delayed sending to Dec. In the exact same way we saw in the proof of Thm. 2 we can
create an pA1,A2q that succeeds in Git

q¨x,δ with the same probability that bad is set, giving

PrrH3 sets bads ď Advitq¨x,δpA1,A2q.

This advantage is then bounded by q ¨ x ¨ 2S{2δ using Lemma 1.

Final bound. Finally we can conclude the proof by analyzing PrrH3s. This reduces naturally to the AXU
security of the hash function H. Note that Enc returns random bits, so when A makes its one attempt to set
badforge its view is independent of L. Assuming Ne ě Nd (the Ne ă Nd case is strictly harder) at the time of
this attempt, the adversary has seen a random tag T and random C from which F rpadpNdqs was defined to
equal T ‘HLpA,Cq. Letting T˚ }C represent its final query, it will win if T˚ “ HLpA,C

˚q ‘ F rpadpNdqs.
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Adversary X
flag Ð true

NeÐ$ t0, 1uCAU.nl

Nd Ð Ne
Run ASimEnc,SimDec

Return K

Oracle SimEncpMq
C Ð EpMq
M2.addpMq; C2.addpCq
If flag then

If ||C|| ` |C| ă δ then
M.addpMq; C.addpCq

Else
flag Ð false

Return C

Oracle SimDecpCq
Nd Ð Nd ` 1
M 1

Ð M.dqpq; C 1 Ð C.dqpq
M2 Ð M2.dqpq; C2 Ð C2.dqpq
If C “ C 1 then return M 1

Elif C “ C2 then abortpKq
T }C Ð C
If C2 ‰ K then
T2 }C2 Ð C2

Else
T2 Ð$ t0, 1uCAU.bl

C2 Ð C ‘ 1|C|

xÐ pA,Cq
x2 Ð pA,C2q

abortpx1, x2, T ‘ T2q

Algorithm EpMq
Ne Ð Ne ` 1
CÐ$ t0, 1u|M |

T Ð$ t0, 1uCAU.bl

Return T }C

Fig. 27. Adversary against the AXU security of H.

Plugging in for F and re-arranging gives T˚ ‘ T “ HLpA,C
˚q ‘ HLpA,Cq. The adversary X shown in

Fig. 27 captures this idea. It simulates the view of A with random strings until a query is made to Dec
that has the potential of setting badforge, in which case it provides (In the case that Nd ą Ne it just picks
T2 at random and sets C2 to anything other than C. This gives the correct probability distribution because
A’s view would have been independent of F rpadpNdqs at that point and it would have needed to guess
HLpA,C

˚q ‘ F rpadpNdqs to set the flag.)
The above reasoning tells us that

PrrH3s “ AdvaxuH pX q.

Completing the proof is then a simply matter of combining all of the equations we have established. The
PRF adversary A is defined to randomly choose either A1prf and A2prf (each with probability 1{2) and then
run the adversary it chose, outputting whatever that adversary does. [\
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