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Abstract. Binary error LWE is the particular case of the learning with
errors (LWE) problem in which errors are chosen in {0, 1}. It has various
cryptographic applications, and in particular, has been used to construct
efficient encryption schemes for use in constrained devices. Arora and
Ge showed that the problem can be solved in polynomial time given a
number of samples quadratic in the dimension n. On the other hand,
the problem is known to be as hard as standard LWE given only slightly
more than n samples.

In this paper, we first examine more generally how the hardness of the
problem varies with the number of available samples. Under standard
heuristics on the Arora–Ge polynomial system, we show that, for any
ε > 0, binary error LWE can be solved in polynomial time nO(1/ε) given

ε ·n2 samples. Similarly, it can be solved in subexponential time 2Õ(n1−α)

given n1+α samples, for 0 < α < 1.

As a second contribution, we also generalize the binary error LWE to
problem the case of a non-uniform error probability, and analyze the
hardness of the non-uniform binary error LWE with respect to the error
rate and the number of available samples. We show that, for any error
rate 0 < p < 1, non-uniform binary error LWE is also as hard as worst-
case lattice problems provided that the number of samples is suitably
restricted. This is a generalization of Micciancio and Peikert’s hardness
proof for uniform binary error LWE. Furthermore, we also discuss at-
tacks on the problem when the number of available samples is linear but
significantly larger than n, and show that for sufficiently low error rates,
subexponential or even polynomial time attacks are possible.

Keywords: Binary Error LWE · Algebraic Attacks · Macaulay Matrix
· Sample Complexity · Complexity Tradeoffs · Lossy Function Family.

1 Introduction

Most of the public-key cryptography deployed today, such as the RSA cryptosys-
tem [15] and Diffie–Hellman key exchange [6], relies on the conjectured hardness
of integer factoring or the discrete logarithm problem, both of which are known
to be broken by sufficiently large quantum computers [16]. As the advent of such
quantum computers becomes increasingly plausible, it is important to prepare



the transition towards postquantum cryptography, based on problems that are
believed to be hard even against quantum adversaries.

One such problem particularly worthy of attention is the learning with errors
problem (LWE), introduced by Regev in 2005 [14]. LWE and its variants are at
the core of lattice-based cryptography, which offers attractive constructions for
a wide range of cryptographic primitives in the postquantum setting from en-
cryption and signatures all the way to fully homomorphic encryption, combining
good efficiency with strong security guarantees. From a security perspective, the
nice feature of LWE is that, while it is in essence an average-case problem (and
hence easy to generate instances for), it is nevertheless as hard as worst-case
lattice problems, for suitable parameter choices.

In terms of efficiency, standard LWE itself has relatively large keys, but a
number of variants have been proposed with excellent performance in an asymp-
totic sense or for concrete security levels. These include structured versions of
LWE, like Ring-LWE [10], and instantiations in more aggressive ranges of param-
eters than those for which Regev’s worst-case to average-case reduction holds.

An important example is binary error LWE, where the error term is sam-
pled from {0, 1} (instead of a wider discrete Gaussian distribution). Binary error
LWE is a particularly simple problem with various interesting cryptographic ap-
plications, such as Buchmann et al.’s efficient lattice-based encryption scheme
for IoT and lightweight devices [5] (based on the ring version of binary error
LWE, with the additional constraint that the secret is binary as well). However,
the problem is not hard given arbitrarily many samples: in fact, an algebraic
attack due to Arora and Ge [3] solves uniform Binary-Error LWE in polynomial
time given around n2/2 samples. The same approach can also be combined by
Gröbner basis techniques to reduce the number of required samples [2]. On the
other hand, Micciancio and Peikert [13] showed that the uniform binary error
LWE problem reduces to standard LWE (and thus is believed to be exponen-
tially hard) when the number of samples is restricted to n+O(n/ log n). Thus,
the hardness of binary error LWE crucially depends on the number of samples
released to the adversary.

1.1 Our Results

In this paper, we show that a simple extension of the Arora-Ge attack (based on
similar ideas as the Gröbner basis approach, but simpler and at least as fast) pro-
vides a smooth time-sample trade-off for binary error LWE: the attack can tackle
any number of samples, with increasing complexity as the number of samples de-
creases. In particular, for binary error LWE with ε ·n2 samples (ε > 0 constant),
we obtain an attack in polynomial time nO(1/ε), assuming standard heuristics
on the polynomial system arising from the Arora-Ge approach (namely, that it
is semi-regular, a technical condition that is in particular known to be satisfied
with overwhelming probability by random polynomial systems). Similarly, for

n1+α samples (0 < α < 1), we obtain an attack in subexponential time 2Õ(n1−α)

(again assuming semi-regularity). The precise complexity for any concrete num-



ber of samples is also easy to compute, which makes it possible to precisely set
parameters for cryptographic schemes based on binary error LWE.

In public-key encryption schemes, however, the number of samples given out
to the adversary (as part of the public key) is typically of the form c · n for
some constant c > 1. Therefore, it is neither captured by the Micciancio–Peikert
security proof, nor within reach of our subexponential algebraic attack. In order
to understand what additional results can be obtained with algebraic means in
that range of parameters, we also generalize the binary error LWE to the non-
uniform case, in which the error is chosen from {0, 1} and the error is 1 with
some probability p not necessarily equal to 1/2.

We analyze this problem from two perspectives. On the one hand, we show
that for any error rate p ≤ 1/2, non-uniform binary error LWE is as hard as
worst-case lattice problems given n+O(pn/ log n) samples. This is a direct gen-
eralization of the hardness proof given by Micciancio and Peikert to the non-
uniform case. On the other hand, we show that when the error rate is p = 1/nα

(α > 0), there is a subexponential attack using only O(n) samples (which is even
polynomial time if α ≥ 1).

In order to show a clear view of our result, the hardness result for binary error
LWE is depicted in Figure 1. When the number of available samples is quadratic
in dimension n, Arora-Ge algorithm gives a polynomial time attack. When the
number of available samples is n1+α(0 < α < 1), we show a subexponential
algebraic attack. Besides, on the one hand, the blue line corresponds to the
Micciancio-Peikert hardness proof, where we generalize to the whole trapezoid.
On the other hand, the red line corresponds to our attack against non-uniform
binary error LWE.

1.2 Techniques

Macaulay matrices. The basic Arora–Ge attack can be described as follows.
Each binary error LWE sample provides a quadratic equation in the coefficients

Fig. 1. Hardness Result for Binary Error LWE



s1, . . . , sn of the secret key:

f(s1, . . . , sn) = 0, (1)

obtained by observing that the corresponding error value is equal to either 0
or 1, and hence one of the two linear equations corresponding to these error
values holds, so their product vanishes. Arora and Ge form a polynomial system
with these equations and linearize it, replacing each of the monomials of degree
≤ 2 appearing in the system by a new variable, and solving that linear system.
This is of course only possible if the number of equations is sufficiently large:
one needs at least as many equations as there are monomials of degree ≤ 2 in
s1, . . . , sn, namely

(
n+2
2

)
≈ n2/2.

To go beyond that bound, one can try and increase the degree of the system.
Instead of deducing a single equation (1) from the binary LWE sample, one can
derive

(
n+d
d

)
equations by multiplying by all possible monomials of degree up to

d, for some degree bound d to be chosen later:

f(s1, . . . , sn) = 0

s1f(s1, . . . , sn) = 0

...

s1s2f(s1, . . . , sn) = 0

...

sdnf(s1, . . . , sn) = 0

When linearizing, we get more variables since the degree of the system is larger
and there are thus more monomials, but we also get many more equations, and on
balance, the minimal number of samples to start with in order for the resulting
system to be solvable decreases (although a naive bound obtained by comparing
the number of equations and the number of variables is insufficient, since the
equations are no longer necessarily linearly independent with high probability).

The matrix of that linear system is called the Macaulay matrix of degree
d. The basic idea of the extended attack is basically to start with the Arora–
Ge polynomial system, and find the minimal d such that the Macaulay matrix
becomes full-rank. This is difficult to estimate in full generality, but assuming
that the Arora–Ge system is semi-regular, this can be done using techniques
from complex analysis.

From uniform to non-uniform. For the hardness proof for non-uniform bi-
nary error LWE, we follow the outline of Micciancio and Peikert’s proof, but have
to adapt the various parts of the proof that rely on the input distribution being
uniform. For instance, their proof of uninvertibility uses the following lemma:

Lemma 1. Let L be a family of functions on the common domain X, and
let χ = U(X) be the uniform input distribution over X. Then (L,X ) is ε-
uninvertible statistically, for ε = Ef←L[|f(X)|]/|X|.



In the proof for this lemma, the uniform property of the input distribution
serves as a key factor to bound the success probability of the adversary. Suppose
that f is a function and the domain, range of f is denoted as X, Y respectively.
If y ∈ Y has several preimages, since the input distribution is uniform, the
adversary can not do better than randomly guessing one preimage, even with
unbounded computation power. However, this is not the case for a non-uniform
input distribution. Suppose that the domain of f is {0, 1, 2, 3} with probability
{1/2, 1/6, 1/6, 1/6} respectively and f(0) = 0, f(1) = 0, f(2) = 0, f(3) = 1.
If the adversary is given y = 0, instead of randomly guessing, the adversary
can get some advantage by guessing the preimage with the highest conditional
probability, so the adversary can always output 0. If guessing randomly, the
adversary only has 1/3 probability of correctness, but if always guessing 0, the
success probability becomes (1/2)/(1/2 + 1/6 + 1/6) = 3/5. Therefore, we need
to prove new lemmas for non-uniform error distributions.

Our algorithm to attack non-uniform binary error LWE. Our algorithm
comes from a simple idea: Suppose that we have n samples from non-uniform
binary error LWE with error rate p = 1/n, the probability that n samples are
all error free is (1− 1/n)n. Since

lim
n→∞

(1− 1/n)n = 1/e

the probability is asymptotically a constant. Intuitively, we can have the follow-
ing simple algorithm:

– Step 1: Get n samples from the LWE oracle.
– Step 2: By assuming that the n samples are error free, solve the linear system.
– Step 3: If this fails, go back to step 1.

Since the success probability is a constant asymptotically, this algorithm is sup-
posed to end in polynomial time. However, this algorithm has some slight issues.
The first issue is that the n samples may not guarantee that LWE is well defined.
The second issue is that this algorithm runs in expected polynomial time and
uses O(n) samples on average, but these are not absolute bounds. To obtain a
satisfactory algorithm, we need to modify the approach somewhat, and rely on
careful tail bounds to analyze the resulting attacks.

2 Preliminaries

2.1 Learning with Errors

Definition 1 (LWE). The (search) LWE problem, defined with respect to a
dimension n, a modulus q and an error distribution χ over Zq, asks to recover
a secret vector s ∈ Znq given polynomially many samples of the form(

a, 〈a, s〉+ e mod q
)
∈ Znq × Zq (2)

where a is uniformly random in Znq , and e is sampled according to χ. One can
optionally specify the number of available samples as an additional parameter.



2.2 Arora-Ge algorithm

Arora and Ge proposed an algebraic approach to the LWE problem, which essen-
tially amounts to expressing LWE as a system of polynomial equations, and then
solving that system by unique linearization techniques. More precisely, solving
an instance (A,b) of the binary error LWE problem amounts to finding a vector
s ∈ Znq (which is uniquely determined) such that for i = 1, . . . ,m, we have:

bi − 〈ai, s〉 ∈ {0, 1},

where the vectors ai are the rows of A, and the scalars bi the coefficients of b.
The idea of Arora and Ge is to rewrite that condition as:(

bi − 〈ai, s〉
)
·
(
bi − 〈ai, s〉 − 1

)
= 0,

which is a quadratic equation in the coefficients s1, . . . , sn of s.
In general, solving a multivariate quadratic system is hard. However, it be-

comes easy when many equations are available. Arora and Ge propose to solve
this system using a simple linearization technique: replace all the monomials
appearing in the system by a new variable.

There are
(
n+2
2

)
= (n+2)(n+1)/2 monomials of degree at most 2. Therefore,

if the number of samples m is at least (n+ 2)(n+ 1)/2, linearizing the quadratic
system should yield a full rank linear system with high probability, and the secret

s can be recovered by solving this linear system. This takes time O
((
n+2
2

)ω)
=

O(n2ω), and therefore shows that Binary-Error LWE can be solved in polynomial
time given m ≈ n2/2 samples.

2.3 Function Family

A function family is a probability distribution F over a set of functions F ⊂
(X → Y ) with common domain X and range Y . Let X be a probability dis-
tribution over the domain X of a function family F . We recall the following
standard security notions:

One Wayness: (F ,X ) is (t, ε)-one-way if for all probabilistic algorithms A
running in time at most t,

Pr
[
f ← F , x← X : A(f, f(x)) ∈ f−1(f(x))

]
≤ ε

Uninvertibility: (F ,X ) is (t, ε)-uninvertible if for all probabilistic algorithms
A running in time at most t,

Pr[f ← F , x← X : A(f, f(x)) = x] ≤ ε

Second Preimage Resistance: (F ,X ) is (t, ε)-second preimage resistant if
for all probabilistic algorithms A running in time at most t,

Pr [f ← F , x← X , x′ ← A(f, x) : f(x) = f (x′) ∧ x 6= x′] ≤ ε



Pseudorandomness: (F ,X ) is (t, ε)-pseudorandom if the distributions {f ←
F , x← X : (f, f(x))} and {f ← F , y ← U(Y ) : (f, y)} are (t, ε)-indistinguishable,
where U(Y ) denotes the uniform distribution over Y.

2.4 Lossy Function Families

Lossy function family is a concept introduced by Micciancio and Peikert, which
is a general framework to prove the one-wayness of some functions.

Definition 2 (Lossy Function Families [13]). Let (L, F) be two probability
distributions(with possibly different supports) over the same set of (efficiently
computable) functions F ⊂ X → Y , and let X be an efficiently sampleable
distribution over the domain X. We say that (L, F , X ) is a lossy function
family if the following properties are satisfied:

– the distributions L and F are indistinguishable.
– (L, X ) is uninvertible.
– (F , X ) is second preimage resistant.

The following two lemmas are some properties of lossy function family.

Lemma 2 ([13]). Let F be a family of functions computable in time t′. If (F ,X )
is both (t, ε)-uninvertible and (t+ t′, ε′)-second preimage resistant, then it is also
(t, ε+ ε′)-one-way.

Lemma 3 ([13]). Let F and F ′ be any two indistinguishable, efficiently com-
putable function families, and let X be an efficiently sampleable input distri-
bution. Then if (F , X ) is uninvertible(respectively, second-preimage resistant),
then (F ′, X ) is also uninvertible(resp., second preimage resistant). In particu-
lar, if (L, F , X ) is a lossy function family, then (L, X ) and (F , X ) are both
one-way.

2.5 SIS and LWE Function Family

The Short Integer Solution function family SIS(m,n, q,X) is the set of all func-
tions fA indexed by A ∈ Zn×mq with domain X ⊆ Zm and range Y = Znq defined
as fA(x) = Ax mod q. The Learning With Errors function family LWE(m,n, q,X)
is the set of all functions gA indexed by A ∈ Zn×mq with domain Znq × X and

range Y = Zmq , defined as gA(s,x) = AT s + x mod q. The following theorems
are needed in our proof.

Theorem 1 ([11, 12]). For any n,m ≥ n+ω(logn), q, and distribution X over
Zm, the LWE(m, n, q) function family is one-way (resp. pseudorandom, or un-
invertible) with respect to input distribution U(Znq )×X if and only if the SIS(m,
m - n, q) function family is one-way (resp. pseudorandom, or uninvertible) with
respect to the input distribution X .



Theorem 2 ([13]). For any positive m,n, δ, q such that ω(log n) ≤ m − n ≤
nO(1) and 2

√
n < δ < q < nO(1), if q has no divisors in the range ((δ/ωn)1+n/k,

δ · ωn), then the SIS(m,m− n, q) function family is pseudorandom with respect
to input distribution Dm

Z,δ, under the assumption that no (quantum) algorithm
can efficiently sample(up to negligible statistical errors) D∧,

√
2nq/δ. In particular,

assuming the worst-case (quantum) hardness of SIVPnωnq/δ on n-dimensional
lattices, the SIS(m,m − n, q) function family is pseudorandom with respect to
input distribution Dm

Z,δ.

3 Sample-Time Trade-off for Binary Error LWE

In this section, we use the Macaulay matrix approach to get a sample-time
trade-off for the binary error LWE.

3.1 Hilbert’s Nullstellensatz for Arora–Ge

Slightly informally, Hilbert’s Nullstellensatz essentially states that the ideal gen-
erated by a family of polynomials f1, . . . , fm ∈ Zq[x1, . . . , xn] coincides with the
ideal of polynomials that vanish on the set V (f1, . . . , fm) of solutions of the
polynomial system:

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0

Now consider the application of Hilbert’s Nullstellensatz to the polynomial sys-
tem arising from Arora and Ge’s approach to Binary-Error LWE. That system
is of the form: 

f1(x1, . . . , xn) = 0

...

fm(x1, . . . , xn) = 0

where f1, . . . , fm ∈ Zq[x1, . . . , xn] are known quadratic polynomials. By the
uniqueness of LWE solution, the set V (f1, . . . , fm) of solutions of that system is
reduced to a single point:

V (f1, . . . , fm) =
{

(s1, . . . , sn)
}

=
{
s
}
,

namely, the unique solution of the Binary-Error LWE problem. It follows that
the ideal I = (f1, . . . , fm) ⊂ Zq[x1, . . . , xn] generated by the polynomials fi
coincides with the ideal of polynomial functions vanishing on

{
s
}

, which is just
(x1 − s1, . . . , xn − sn).

As a consequence, for j = 1, · · · , n, there exists polynomials g1j , · · · , gmj ∈
Zq[x1 · · ·xn] such that:

g1j · f1 + · · ·+ gmj · fm = xj − sj .



3.2 The Macaulay matrix

Now consider the Arora-Ge approach of linearizing the polynomial system, ex-
cept that we do not apply it to the quadratic system directly, but instead to
an equivalent, expanded polynomial system. This expanded system is obtained
by multiplying each equation fi = 0 by all possible monomials of degree up to
d, for some fixed d ≥ 0. The d-th Macaulay linear system is then the linear
system obtained by taking this expanded polynomial system and linearizing it,
i.e., replacing each monomial appearing in the system by a new variable. Since
the maximum degree is d + 2, the resulting linear system consists of m

(
n+d
d

)
equations in

(
n+d+2
d+2

)
unknowns. The matrix of the system is called Macaulay

matrix.
Consider then the polynomials gij introduced above and let d be the maxi-

mum of their total degrees. Clearly, the polynomial g1j · f1 + · · · + gmj · fm is
a linear combination of the polynomials appearing in the expanded system. But
by definition, this polynomial is equal to xj − sj . Therefore, any solution of the
d-th Macaulay linear system must assign the variable associated to xj to sj , the
j-th coefficient of the actual solution s.

3.3 Semi-regularity

We can completely determine the cost of the approach above provided that we
can determine the minimal value D sufficient to recover s, starting from a given
number m of samples. This value D is called the degree of regularity of the
system.

In general, the degree of regularity is difficult to compute, but has a tractable
expression for a certain subclass of polynomial systems called semi-regular poly-
nomial systems. It is believed that random polynomial systems are semi-regular
with overwhelming probability,3 and therefore assuming semi-regularity is a stan-
dard heuristic assumption.

We omit the formal definition of a semi-regular system here. For our purpose,
it suffices to explain how the degree of regularity of a semi-regular system can
be computed. Consider a polynomial system of m equations in n unknowns with
m > n, defined by polynomials f1, · · · , fm of total degree d1, · · · , dm respectively,
and introduce

H(z) =

∏m
i=1(1− zdi)
(1− z)n+1

Note that this function H is a polynomial 1 + H1z + H2z
2 + · · · with integer

coefficients since 1− z divides 1− zdi for all i, and m ≥ n+ 1. If the polynomial
system is semi-regular, then its degree of regularity D is the smallest j such that
the coefficient Hj of degree j of H satisfies Hj ≤ 0.

3 More precisely, it is known that among of systems of m equations of prescribed
degrees in n unknowns, non-semi-regular systems form a Zariski closed subset. It is
believed that this subset has relatively large codimension, so that only a negligible
fractions of possible systems fail to be semi-regular. This is related to a conjecture
of Fröberg [9]. See e.g. [1, §1] for an extended discussion.



3.4 Application to Binary Error LWE

The Arora-Ge polynomial system arising from binary error LWE is a polynomial
system as above with d1 = · · · = dm = 2. Therefore, we can sum up the results
of this section as the following theorem.

Theorem 3. Under the standard heuristic assumption that the Arora-Ge poly-
nomial system is semi-regular, one can solve Binary Error LWE in time O(

(
n+D
D

)w
),

where D is the smallest j such that the coefficient of degree j of the following
polynomial

H(z) =
(1− z2)m

(1− z)n+1

is non-positive.

One can apply this result for concrete instances of the binary error LWE prob-
lems. For instance, the first two parameter sets proposed for the scheme of Buch-
mann et al. [5] correspond to the case when n = 256 and m = 2n = 512. One
can easily check that the first non-positive coefficient of (1− z2)512/(1− z)257 is
the coefficient of degree 30. Therefore, this algebraic attack reduces to solving a
polynomial system in

(
256+30

30

)
≈ 2135 unknowns.

The attack can in fact be improved due to the fact that the secret in that
scheme is also binary, which provides n more quadratic equations of the form
si(si − 1) = 0, for a total of 768. The first non-positive coefficient of (1 −
z2)768/(1−z)257 is the coefficient of degree 20, reducing the number of unknowns
to
(
256+20

20

)
≈ 2100. The resulting attack is better than the naive attack by

guessing the error vector, but is worse than what can be achieved by lattice
reduction techniques against the same parameters.

To estimate the complexity of the attack in more general cases, we simply
need to find asymptotic estimates for the degree of the first non-positive coeffi-
cient of the polynomial H.

Remark 1. One can ask how this approach compares to simply applying Gröbner
basis computation algorithm to the Arora–Ge polynomial system. The answer
is that the two approaches are essentially equivalent (and in fact, some Gröbner
basis algorithms such as Matrix-F4 for a suitable monomial ordering can be
expressed in terms of Macaulay matrix [8]), but knowing the degree D in advance
avoids the difficulties related to the iterative nature of Gröbner basis algorithms,
and hence saves some polynomial factors in terms of asymptotic complexity.
It also makes it clear that the problem reduces to solving a relatively sparse
linear system (since the rows of the Macaulay matrix have only O(n2) nonzero
coefficients among O(nD)), which can yield to various algorithmic optimizations.

Nevertheless, our results can be regarded as closely related to the Gröbner-
based analysis presented in [1]. The main difference is that we are interested in a
wider range of asymptotic regimes in order to obtain a full, smooth time-sample
trade-off.



3.5 Sample-Time Trade-off

As discussed above, estimating the asymptotic complexity of our algebraic attack
reduces to computing the degree of regularity D of the Arora-Ge polynomial
system, which is equivalent to finding the degree of the smallest non-positive

coefficient of Hz = (1−z2)m
(1−z)n+1 .

We consider two distinct asymptotic regimes: m ∼ ε · n2 for ε > 0 and
m ∼ n1+α for some α ∈ (0, 1). The analysis in the first case can be done
combinatorially in a way that is essentially fully explicit, and shows that the
attack is polynomial time for any ε > 0. The second case is more similar to
previous cases considered in the literature, and can be dealt with using techniques
from complex analysis as demonstrated by Bardet et al. [4]; the attack in that
case is subexponential.

Attack With Quadratically Many Samples Consider first the case m ∼
ε ·n2 for some ε > 0. We claim that the attack is then polynomial: this means in
particular that the degree of regularity is constant. In other words, there exists
a fixed d depending on ε such that for all large enough n, the d-th coefficient hd
of the Hilbert polynomial:

Hm,n(z) =
(1− z2)m

(1− z)n+1
= (1− z)m−n−1(1 + z)m =

∑
d≥0

hdz
d (3)

is non positive. To find this d, we can write down hd explicitly, and try to estimate
its sign for n → +∞. After some combinatorial computations (left to the full
version of this paper), we find that the sign of hd is related to the sequence
(Pd)d≥0 of polynomials with rational coefficients uniquely defined as follows:

P0 = P1 = 1 P ′k = −Pk−2 (for all k ≥ 2) Pk(0) =
1

k!
.

The relationship between those polynomials and the problem at hand is as fol-
lows.

Lemma 4. Suppose m ∼ ε · n2 for some ε > 0, and fix d ≥ 0. Then we have,
for n→ +∞:

hd = Pd(ε) · nd +O(nd−1).

In particular, the sign of hd for sufficiently large n is the same as the sign of
Pd(ε) as long as Pd(ε) 6= 0.

Furthermore, the polynomials Pk can be expressed in terms of the well-known
Hermite polynomials, and hence their roots are well-understood.

Lemma 5. Let Hk(x) = (−1)kex
2 dk

dxk
e−x

k

be the k-th Hermite polynomial.
Then we have:

Pk(x2) =
xk

k!
Hk

( 1

2x

)



for all k ≥ 0. In particular, for k ≥ 2, the roots of Pk are all real, positive,
and simple. Denote by xk > 0 the smallest root of Pk. The sequence (xk)k≥2
decreases towards 0, and we have xk ∼k→+∞ 1/(8k).

Combining the lemmas above, we obtain:

Theorem 4. Suppose m ∼ ε · n2 (ε a positive constant), and let (xk)k≥1 be
the decreasing sequence defined in Lemma 5, with the convention that x1 =
+∞. Then the degree of regularity dreg of a semi-regular system of m quadratic
equations in n variables satisfies that dreg ≤ d as soon as ε > xd. In particular,
dreg is always bounded, and if ε /∈ {x2, x3, . . . }, it is exactly equal to the unique
d such that xd < ε < xd−1. Furthermore, as ε approaches 0, it behaves as dreg ∼
1/(8ε). The time complexity O

((
n+dreg
dreg

)ω)
of the attack on binary error LWE is

always polynomial in this setting.

Attack With Subquadratically Many Samples We now turn to the case
when m ∼ n1+α for some α ∈ (0, 1). As mentioned earlier, the attack in this
case is subexponential.

Theorem 5. For m = n1+α + o(n) (α a constant in (0, 1)) quadratic equations
in n variables, the degree of regularity dreg of a semi-regular system behaves

asymptotically as dreg ∼ 1
8n

1−α. The time complexity O
((
n+dreg
dreg

)ω)
of the attack

on binary error LWE is then subexponential.

The proof essentially follows [1, Appendix A.1].

Proof. Denote again by hd the d-th coefficient of the Hilbert series.

Hm,n(z) =

(
1− z2

)m
(1− z)n+1

=

∞∑
d=0

hdz
d (4)

Since our goal is to determine the first index d such that hd is non-positive, we
try to estimate the behavior of hd asymptotically as d increases. To do so, we
write hd as an integral using Cauchy’s integral formula:

hd =
1

2iπ

∮
Hm,n(z)

dz

zd+1

where the integration path encloses the origin and no other singularity ofHm,n(z).
Since we are looking for the smallest value d such that hd crosses from positive to
negative, this amounts to solving for real d > 0 such that the integral vanishes.
To do so, we estimate the integral using Laplace’s method. Write:

hd =
1

2iπ

∮
enf(z)dz

for some function f . By identification, we have:

enf(z) =
(1− z)m−n−1(1 + z)m

zd+1
,



which gives:

nf(z) = (m− n− 1) log(1− z) +m log(1 + z)− (d+ 1) log z.

Laplace’s method shows that the behavior is determined by the point z0 where
f vanishes (or the points in the case of multiple roots). Since we have:

nf ′(z) =
n−m+ 1

1− z
+

m

1 + z
− d+ 1

z
,

z0 is a root of the quadratic equation:

(n− 2m+ d+ 2)z2 + (n+ 1)z − (d+ 1) = 0.

If the discriminant ∆ of this equation is not zero, it means that there are two
distinct saddle points. The contribution of these two saddle points to the integral
are conjugate values whose sum does not vanish. Hence the two saddle points
must be identical, which means that ∆ = 0. Now:

∆ = 4(d+ 1)2 + 4(n− 2m+ 1)(d+ 1) + (n+ 1)2 = 0.

Solving this equation, we get

d+ 1 = m− n+ 1

2
−
√
m(m− n).

Substituting m = n1+α, it follows that:

d+ 1 = n1+α − n+ 1

2
− n1+α

√
1− 1

nα

= n1+α − n+ 1

2
− n1+α

[
1− 1

2nα
− 1

8n2α
+ o(n−2α)

]
= n1+α − n+ 1

2
− n1+α +

n

2
+

1

8
n1−α + o(n1−α)

=
(1

8
+ o(1)

)
n1−α

as required. One easily checks that the same estimate still holds for m = n1+α+
o(n), i.e., m =

(
1 + t

)
n1+α for some t = o(n−α).

4 Hardness of LWE with Non-uniform Binary Error

In this section we analyze the hardness of non-uniform binary error LWE.

4.1 Hardness of Non-uniform Binary Error LWE with Limited
Samples

First, we show that non-uniform binary error LWE is as hard as worst-case
lattice problems when the number of available samples is restricted. We follow



the outline of Micciancio-Peikert proof[13](for some other similar work, see [7]),
by constructing a lossy function family with respect to the non-uniform input
distribution χ. As previously stated, we overcome the difficulty of transforming
from uniform to non-uniform, hence adapting the various parts of proof that
relies on the distribution being uniform. In order to prove (L,F ,X ) is a lossy
function family, we will prove:

– L is uninvertible with respect to X .
– F is second preimage resistant with respect to X .
– (L,F) are indistinguishable.

where F = SIS(m,m−n, q) and L = SIS(l,m−n, q) ◦ I(m, l,Y), where ◦ means
the composition of two functions and I(m, l,Y) is defined in Definition 3.

Statistical Uninvertibility.

Lemma 6. Let m be a positive integer, L be a family of functions on the common
domain X = {0, 1}m, we define a non-uniform distribution χ over {0, 1}m such
that each coefficient xi(i = 1, · · · ,m) is 1 with probability p(0 < p < 1), and
set p′ = max(p, 1 − p). Then L is ε-uninvertible statistically w.r.t χ for ε =
Ef←L(p′)

m · |f(X)|, where |f(X)| means the number of elements in the range
and E means taking the expectation over the choice of f .

Proof. Fix any f ← L and choose a input x from the distribution χ. Denote
y = f(x). The best attack that the adversary can achieve is to choose the
element with the highest conditional probability.

Pr[adversary can invert] =
∑
x

Pr[x] · Pr[adversary can invert given f(x)]

=
∑
x

Pr[x] · Pr[x is the preimage with highest conditional probability in f−1(f(x))]

=
∑

y∈f(X)

maxx∈f−1(y) Pr(x)∑
x∈f−1(y) Pr(x)

·
∑

x∈f−1(y)

Pr(x) =
∑

y∈f(X)

max
x∈f−1(y)

Pr(x)

All the possible probability for sampling x from χ is pk · (1 − p)m−k (k =
0, 1, 2 · · ·m), we know that the maximum probability is (max(p, 1− p))m. Then
let p′ = max(p, 1− p), the result follows.

In order to establish a connection with standard LWE, the following definition
is needed.

Definition 3 ([13]). For any probability distribution Y over Zl and integer
m ≥ l, let I(m, l,Y) be the probability distribution over linear functions [I | Y ] :
Zm → Zl where I is l× l identity matrix, and Y ∈ Zl×(m−l) is obtained choosing
each column of Y independently at random from Y.

The following lemma shows that, for the Gaussian distribution, the function
family I(m, l,Y) is statistically uninvertible.



Lemma 7. Let m be a positive integer, χ be a not necessarily uniform distribu-
tion over {0, 1}m such that each coefficient xi (i = 1, · · · ,m) is 1 with probability
p (0 < p < 1), Y = Dl

Z,δ be the discrete Gaussian distribution with parameter
δ > 0, p′ = max(p, 1 − p). Then I(m, l,Y) is ε-uninvertible with respect to the
non-uniform distribution χ, for ε = O(δm/

√
l)l · (p′)m + 2−Ω(m).

Proof. In order to use Lemma 6, we only need to bound the size of the range

f(X). Recall that f = [I | Y ] where Y ← D
l×(m−l)
Z,δ . Since the entries of

Y ∈ Rl×(m−l) are independent mena-zero subgaussians with parameter δ, by a
standard bound from the theory of random matrices, the largest singular value
s1(Y ) = max0 6=x∈Rm ||Y x||/||x|| of Y is at most δ ·O(

√
l+
√
m− l) = δ ·O(

√
m),

except with probability 2−Ω(m). We now bound the l2 norm of all vectors in the
image f(X). Let u = (u1,u2) ∈ X, with u1 ∈ Zl and u2 ∈ Zm−l. Then

||f(u)|| ≤ ||u1 + Y u2|| ≤ ||u1||+ ||Y u2|| ≤ (
√
l + s1(Y )

√
m− l)

≤ (
√
l + δ ·O(

√
m)
√
m− l) = O(δm)

The number of integer points in the l-dimensional zero-centered ball of ra-
dius R = O(δm) can be bounded by a simple volume argument, as |f(X)| ≤
(R +

√
l/2)nVl = O(δm/

√
l)l, where Vl = πl/2/(l/2)! is the volume of the l-

dimensional unit ball. From Lemma 6, and considering the event that s1(Y ) is
not bounded as above, we get that I(m, l,Y) is ε-uninvertible for ε = O(δm/

√
l)l·

(p′)m + 2−Ω(m).

Second Preimage Resistance.

Lemma 8. Let χ be a not necessarily uniform distribution over {0, 1}m such
that each coefficient xi (i = 1, · · · ,m) is 1 with probability p (0 < p < 1).
For any positive integers m, k, any prime q, the function family SIS(m, k, q) is
(statistically) ε-second preimage resistant with respect to the non-uniform distri-
bution χ for ε = 2m/qk.

Proof. Let x ← χ and A ← SIS(m, k, q) be chosen at random. We want
to evaluate the probability that there exists an x′ ∈ {0, 1}m\{x} such that
Ax = Ax′(mod q), or equivalently, A(x − x′) = 0(mod q). Fix two distinct
vectors x,x′ ∈ {0, 1}m and let z = x− x′. Then considering taking the random
choice of A, since all coordinates of z are in the range zi ∈ {−1, 0, 1} and at
least one of them is nonzero, the vectors Az(mod q) is distributed uniformly at
random in (Zq)k, the probability of Az = 0 (mod q) is 1/qk. Therefore, by using
union bound(over x′ ∈ X\{x}) for any x, the probability that there is a second
preimage x′ is at most (2m − 1)/qk < 2m/qk .

Indistinguishability of L and F .

Lemma 9. Let F = SIS(m,m − n, q) and L = SIS(l,m − n, q) ◦ I(m, l,Y),
where I(m, l,Y) is defined in Definition 3. If SIS(l,m − n, q) is pseudorandom
with respect to the distribution Y, then L and F are indistinguishable.



Proof. Choose a random input x ∈ Zm. According to the definition of F and L

L : x→ A[I|Y ]x mod q

F : x→ [A′1, A
′
2]x mod q

With the property of block matrix multiplication, A can be divided into two
blocks: A1 is a l × l matrix, A2 is a (m− n− l)× l matrix, so we have

L : x→ [A1, A2Y ]x mod q

F : x→ [A′1, A
′
2]x mod q

Since A1 and A′1 are uniformly random chosen, A1x and A′1x are indistinguish-
able. Recall that SIS(l,m−n, q) is pseudorandom with respect to the distribution
Y, thus A2Y is indistinguishable from A′2. Then we can conclude that L and F
are indistinguishable.

One-wayness.

Theorem 6. Let m,n, k (0 < k ≤ n ≤ m) be some positive integer, q be a
prime modulus and let χ be a not necessarily uniform distribution over {0, 1}m
such that each coefficient xi (i = 1, · · · ,m) is 1 with probability p (0 < p < 1),
p′ = max(p, 1 − p), and Y be the discrete Gaussian distribution Y = Dl

Z,δ over

Zl, where l = m− n+ k. If SIS(l,m− n, q) is pseudorandom with respect to the
discrete Gaussian distribution Y = Dl

Z,δ, then SIS(m,m−n, q) is (2ε+2−Ω(m))-
one-way with respect to the input distribution χ if

(C ′δm/
√
l)l/ε ≤ 1/(p′)m and 2m ≤ ε · (q)m−n

where C ′ is universal constant in big O notation in Lemma 7.

Proof. We will prove that (L,F ,X ) is a lossy function family, where F =
SIS(m,m− n, q) and L = SIS(l,m− n, q) ◦ I(m, l,Y). It follows from Lemma 8
that F is second-preimage resistant with respect to χ. The indistinguishability
of L and F follows from Lemma 9. By lemma 7, we have the uninvertibility of
I(m, l,Y), since L = SIS(l,m−n, q)◦I(m, l,Y), the uninvertibility of L follows.
With the three properties of lossy function family, we conclude that (L,F ,X )
is a lossy function family. Then from the property of lossy function family with
Lemma 3, this theorem is proved.

Instantiation for the LWE parameter. After getting the hardness result for
SIS function, the one-wayness of LWE function can be established.

Theorem 7 (LWE Parameter). Let 0 < k ≤ n ≤ m, 0 < p < 1, p′ =
max(p, 1 − p), l = m − n + k, 1/p′ ≥ (Cm)l/m for a large enough universal
constant C, and q be a prime such that max(3

√
k, 8m/(m−n)) ≤ q ≤ kO(1). Let

χ be a non-uniform distribution over {0, 1}m such that each coefficient xi(i =
1, · · · ,m) is 1 with probability p, the LWE(m,n, q) function family is one-way



with respect to the distribution UZnq × χ. In particular, these conditions can be
satisfied by setting k = n/(c2 log1/p′ n), m = n(1+1/(c1 log1/p′ n)), where c1 > 1
is any constant, and c2 such that 1/c1 + 1/c2 < 1.

Proof. In order to prove the one-wayness of LWE(m,n, q)(SIS and LWE are
equivalent according to theorem 1) using theorem 6, we need to satisfy the two
requirements:

(C ′δm/
√
l)l/ε ≤ 1/(p′)m and 2m ≤ ε · (q)m−n

Set δ = 3
√
k, and with l ≥ k, the first requirement can be simplified to (3C′m)l

(1/p′)m <

ε. Since we have 1/p′ ≥ (Cm)l/m, so (1/p′)m ≥ (Cm)l. Let C = 4C ′, we get that
(3C′m)l

(1/p)m ≤ (3/4)−l ≤ (3/4)−k is exponentially small in k, so the first inequality

is satisfied. Since q > 8m/(m−n), the second inequality is also satisfied.
Besides, we also need to prove the pseudorandomness of SIS(l,m−n, q) with

respect to discrete Gaussian distribution Y = Dl
Z,δ, which can be based on

the hardness of SIVP on k-dimensional lattice using Theorem 2. After properly
renaming the variables, and using δ = 3

√
k, the requirement becomes ω(log k) ≤

m−n ≤ kO(1), 3
√
k < q < kO(1). The corresponding assumption is the worst-case

hardness of SIVPγ on k-dimensional lattices, for γ = Õ(
√
kq).

For the particular instantiation, let m = n(1 + 1/(c1 log 1
p′
n))(c1 > 1),

k = n/(c2 log 1
p′
n)( c2 is a positive constant such that 1/c1 + 1/c2 < 1). The

requirement 1/p′ ≥ (Cm)l/m is equivalent to m ≥ l log1/p′ Cm. Since we can do
a asymptotic analysis:

l = m− n+ k = (1/c1 + 1/c2)n/ log1/p′ n

and

log1/p′ Cm = log1/p′ Cn(1 + 1/log1/p′n) ≈ log1/p′ n+ log1/p′ C

So we have

l log1/p′ Cm ≈ (1/c1 + 1/c2)n(1 + log1/p′ C/ log1/p′ n)

When (1/c1 + 1/c2) < 1, m ≥ l log1/p′ Cm asymptotically(we only need to
consider the dominant term). This concludes the proof.

4.2 Attacks Against Non-uniform Binary Error LWE

Now we consider the case where the number of available samples is not so
strongly restricted and the error rate is a function of n such that p = 1/nα(α >
0). We show an attack against LWE with non-uniform binary error given O(n)
samples. The idea behind our attack is quite simple:

– Step 1: Get n samples from the LWE oracle.



– Step 2: By assuming the n samples are all error free, solve the linear equation
system.

– Step 3: If failed, go back to step1.

For instance, when the error rate p = 1/n, the probability that all samples are
error free is:

lim
n→∞

(1− 1/n)n = 1/e

This means that our algorithm is expected to stop after polynomial times of
trials. However, the number of total samples used is not bounded. Therefore, we
slightly modified the algorithm as follows:

– Step 1: Get 3n samples from the LWE oracle.
– Step 2: Choose 2n samples randomly from the 3n samples got in step1.
– Step 3: By assuming the 2n samples are all error free, solve the linear equa-

tion system.
– Step 4: If failed, go back to step2.

We analyze the following two cases respectively:

– p = 1/nα for any constant α ≥ 1.
– p = 1/nα for any constant 0 < α < 1.

and have the following results:

Theorem 8. By applying the above algorithm, for any positive constant α ≥ 1,
non-uniform binary error LWE with error rate p = 1/nα can be attacked in
polynomial time with O(n) samples, and for any positive constant 0 < α < 1,
non-uniform binary error LWE with error rate p = 1/nα can be attacked in
subexponential time with O(n) samples.

Proof. Suppose that there are m errors within the 3n samples. The probability
that 2n samples are all error free is

Pr (success) =

(
3n−m
2n

)(
3n
2n

) =
(3n−m)!

(n−m)!(2n)!
· (2n)!(n!)

(3n)!
=

(3n−m)!

(n−m)!
· (n!)

(3n)!

=
n · · · (n−m+ 1)

3n · · · (3n−m+ 1)
≥
(
n−m

3n

)m
≥
(

1

3
− o(1)

)m
provided that m = o(n). With tail bound for binomial distribution,

Pr(m ≥ k) ≤ exp(−nD(
k

n
||p)) if p <

k

n
< 1

where D(a||p) is the relative entropy between an a-coin and a p-coin(0 < a < 1
and 0 < p < 1).

D(a||p) = a log
a

p
+ (1− a) log

1− a
1− p

We consider the cases α ≥ 1 and 0 < α < 1 separately.



Case 1: α ≥ 1 For this case, we set k = log n.

D(
k

n
||p) = D(

log n

n
|| 1

nα
) =

log n

n
· log(nα−1 log n) + (1− log n

n
) log

1− logn
n

1− 1
nα

= (α− 1)
(log n)2

n
+

log n

n
log log n+O

(
log n

n

)
.

Since (α−1) (logn)2

n is the dominant term (or 1
n log n · log log n if α = 1), we have

that

Pr(m ≥ log n) ≤ exp(−nD(
k

n
||p))

is negligible. Thus, with overwhelming probability on the choice of the initial 3n
samples, there are m ≤ log n erroneous samples. Thus, the probability that the
2n samples chosen in Step 2 are all error-free is bounded as:

Pr(success) ≥ (1/3− o(1))logn = 1/poly(n)

and hence the secret key is recovered with overwhelming probability after poly-
nomially many iterations of Steps 2–3 as required.

Note that it can never happen in that case that the algorithm returns an
incorrect secret key: indeed, the linear system solved in Step 3 consists of 3n
equations in n unknowns, 3n −m > 2n of which are error-free. Thus, it must
either be rank-deficient (in which case it is not solvable) or contain at least n
linearly independent equations with the correct solution, and thus if it is solvable,
the correct secret key is the only possible solution.

Case 2: 0 < α < 1 For this case, we set k = n1−α log n

D(
k

n
||p) = D(

n1−α log n

n
|| 1

nα
) = D(

log n

nα
|| 1

nα
)

=
log n

nα
log log n+ (1− log n

nα
) log

1− logn
nα

1− 1
nα

=
log n

nα
log log n+O

(
log n

nα

)
.

The dominant term is logn
nα log log n, so

Pr(m ≥ n1−α log n) ≤ exp(−nD(
k

n
||p))

≤ exp(−n1−α log n log log n)

This probability is again negligible. Thus, as before, with overwhelming proba-
bility on the choice of the initial 3n samples, there are m ≤ n1−α log n erroneous
samples. As a result, the success probability at Steps 2–3 satisfies:

Pr(success) ≥ (1/3− o(1))n
1−α logn = 1/subexp(n)

This means that after repeating Steps 2–3 subexponentially times, we can recover
the secret key with overwhelming probability.
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