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Abstract. Recent advances in password-based authenticated key exchange (PAKE) protocols can
offer stronger security guarantees for globally deployed security protocols. Notably, the OPAQUE
protocol [Eurocrypt2018] realizes Strong Asymmetric PAKE (saPAKE), strengthening the protection
offered by aPAKE to compromised servers: after compromising an saPAKE server, the adversary still has
to perform a full brute-force search to recover any passwords or impersonate users. However, (s)aPAKEs
do not protect client storage, and can only be applied in the so-called asymmetric setting, in which
some parties, such as servers, do not communicate with each other using the protocol.

Nonetheless, passwords are also widely used in symmetric settings, where a group of parties share a
password and can all communicate (e.g., Wi-Fi with client devices, routers, and mesh nodes; or industrial
IoT scenarios). In these settings, the (s)aPAKE techniques cannot be applied, and the state-of-the-art
still involves handling plaintext passwords.

In this work, we propose the notions of (strong) identity-binding PAKEs that improve this situation:
they protect against compromise of any party, and can also be applied in the symmetric setting. We
propose counterparts to state-of-the-art security notions from the asymmetric setting in the UC model,
and construct protocols that provably realize them. Our constructions bind the local storage of all
parties to abstract identities, building on ideas from identity-based key exchange, but without requiring
a third party.

Our first protocol, CHIP, generalizes the security of aPAKE protocols to all parties, forcing the adversary
to perform a brute-force search to recover passwords or impersonate others. Our second protocol, CRISP,
additionally renders any adversarial pre-computation useless, thereby offering saPAKE-like guarantees
for all parties, instead of only the server.

We evaluate prototype implementations of our protocols and show that even though they offer stronger
security for real-world use cases, their performance is in line with, or even better than, state-of-the-art
protocols.
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1 Introduction

Passwords are arguably the most widely deployed authentication method today, and are used in a
vast range of applications from authentication on the internet (e.g., email and bank servers), wireless
network encryption (e.g., Wi-Fi, Smart Homes, Industry 4.0), and enterprise network authentication
(e.g., Kerberos [27], EAP-pwd [20]). Early password-based protocols allowed adversaries to verify
password guesses offline against observed network traffic. To remedy this, Password Authenticated
Key Exchange (PAKE) protocols were proposed, as first studied by Bellovin and Merritt [3]. PAKEs
allow parties to negotiate a strong secret key based only on a shared and possibly low-entropy
password, do not leak any information about the password to passive adversaries, and allow only an
inevitable online password guess attack.

The traditional PAKE threat model does not include compromise of the local storage – notably,
most PAKEs work in a way that requires the plaintext password to be available at both parties,
including SPAKE-2 and WPA3’s DragonFly/SAE. This implies that non-interactive parties such as
servers, IoT devices, and wireless access points, need to store the password in plaintext. Compromising
the database of these parties directly reveals the password. In the client-server model, this means
that a server compromise allows the adversary to impersonate as the client or server towards either,
or perform a MiTM attack. Moreover, because clients often re-use passwords across services, this
enables credential stuffing.

To partially mitigate this threat, Bellovin and Merritt [4] proposed so-called asymmetric PAKEs
(also known as aPAKEs, Augmented PAKEs, or V(erifier)-PAKEs) that make this much harder: the
clients still need to provide the password in plaintext, but the verifying servers now only need to
provide, and thus store, information that (a) is derived from the password using a one-way function,
yet (b) allows establishing a shared key with a party that knows the password. Thus, compromising
an aPAKE server does not allow the adversary to impersonate the client, and forces it to perform a
brute-force attempt to extract the password.

1.1 Identity-binding PAKEs (iPAKE)

aPAKE protocols still have substantial limitations: they only protect the server, and perhaps more
importantly, cannot be applied to settings that do not fall into the client-server model, e.g., where a
password can be shared among group members that can communicate with all other members. Prime
examples of such symmetric settings are found in wireless networking and IoT settings. For example,
the globally deployed IEEE 802.11 Wi-Fi standard includes the WPA protocol, which uses network
passwords to enable devices to automatically connect to routers, extenders, and mesh network nodes;
crucially, all parties can automatically communicate with each other using the network password
without any user input. This led the Wi-Fi alliance to base their latest WPA3 protocol [31] on a
symmetric PAKE for mesh networks called Simultaneous Authentication of Equals (SAE) [19].

In such settings, asymmetric PAKEs cannot be applied, because protecting two parties using
known aPAKE-server methods stops them from being able to communicate with each other: by
construction, aPAKE’s servers can only authenticate themselves to clients, not to other servers.
Furthermore, because parties in common symmetric group settings operate without user input, they
need to store the password in plaintext. E.g., Wi-Fi passwords are stored in plaintext on users’
devices.

Hence, despite the many advances made over the years, all state-of-the-art PAKEs in the
symmetric setting offer substantially weaker protection and no containment: compromising any
party allows impersonation of any other party in the group, thus compromising the entire group.
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In this work we address this gap by initiating the study and construction of so-called identity-
binding PAKEs (iPAKE). We provide a UC-security definition that is the symmetric counterpart
to aPAKE. We instantiate iPAKE with CHIP, a novel compiler from any PAKE to iPAKE. We
leverage ideas from Identity-Based Key-Exchange to introduce abstract identities for each party,
and effectively bind the locally stored password-derived data to these identities, while retaining the
required key agreement functionality. Unlike Identity-Based Key-Exchange, we do not require a third
party: instead, each party locally simulates the Key Distribution Center during the password file
generation. Identities can be arbitrary bit strings, and could also encode functions or roles instead of
the party’s name, e.g., “server”, “router”, or “fire brigade chief”, “Elon’s third iPhone”. Binding the
locally stored password-derived data to identities is useful for many purposes, such as preventing
reflection attacks, revocation of compromised or disposed of devices, network segmentation (i.e.,
which nodes may interact), permissions (e.g., prevent guest devices from configuring an access point),
and authentic audit logs that allow anomaly detection and reliable retroactive damage assessment.

1.2 Strong Identity-binding PAKEs (siPAKE)

In 2018, Jarecki, Krawczyk, and Xu [22] strengthened the aPAKE notion by additionally requiring
that an adversary gains no benefits from any pre-computations performed before a server compromise,
thereby forcing it to do a full brute-force attack after the compromise. They named this notion
strong asymmetric PAKE (saPAKE), and proposed the OPAQUE protocol to meet it. This has been
widely regarded as a major step forward, and has led the Internet Engineering Task Force (IETF)
to work towards standardizing OPAQUE and its use for TLS 1.3’s password-based logins [7].

To provide similar protection against pre-computations, we strengthen iPAKE to strong identity-
binding PAKEs (siPAKE), and provide a UC-security definition that is the symmetric counterpart
to saPAKE. We instantiate siPAKE with CRISP, a novel compiler from any PAKE to siPAKE, that
extends the protection provided by state-of-the-art saPAKE protocols [9, 22] to all parties.

We prove the correctness of both of our constructions, provide open source prototype implementations,
and evaluate their efficiency.

1.3 Contributions

1. We initiate the study of identity-binding PAKEs, which offer additional security guarantees
compared to their corresponding state-of-the-art aPAKE relatives. In particular:
– Identity-binding PAKEs offer containment against compromise of any party, instead of only

a specific subset such as servers.
– Unlike aPAKEs, iPAKEs are symmetric and allow all parties to communicate with each

other, and can therefore also be applied to settings such as IEEE 802.11’s WPA (Wi-Fi).
2. We define the ideal functionality FiPAKE for identity-binding PAKE (iPAKE) in the UC

model, and construct the CHIP compiler that turns any symmetric PAKE into an iPAKE. CHIP
offers aPAKE-like guarantees for all parties: the compromise of any party does not allow the
adversary to impersonate another unless they perform a brute-force attack. We prove that CHIP
is secure in the Programmable Random Oracle Model (ROM) under the Strong Diffie-Hellman
assumption.

3. We define the ideal functionality FsiPAKE for strong identity-binding PAKE (siPAKE) in
the UC model, and construct the CRISP compiler that turns any symmetric PAKE into an
siPAKE. CRISP offers saPAKE/OPAQUE-like guarantees for all parties: to impersonate any
other party after a compromise, the adversary’s brute-force attack additionally cannot utilize
any pre-computation in a useful manner. CRISP is based on a bilinear group with pairing and

3



Security notion Example protocol
Post-compromise Secure against

impersonation resistance pre-computation

PAKE [13] CPace [18] # #
aPAKE [16] AuCPace [18] G# #
iPAKE (Section 4) CHIP (Section 6)  #
saPAKE [22] OPAQUE [22] G# G#
siPAKE (Section 4) CRISP (Section 7)   

Table 1: PAKE notions, example protocols, and security guarantees. # denotes the property is
not provided; G# denotes that the property only holds for servers, and can only be applied to the
asymmetric setting; and  denotes that it is provided for all parties.

“Hash-to-Group”, and we prove it secure in the Generic Group with Random Oracle Model
(GGM+ROM).

4. We implemented prototypes of both our protocols. While our protocols offer substantial security
benefits over existing state-of-the-art PAKEs for the symmetric setting, a performance benchmark
(Section 8.4) that shows their performance is in line with, or even better than, state-of-the-art
protocols.

Table 1 summarizes the different security notions and example protocols.

Prototype implementations We provide open source implementations of both protocols at
https://github.com/shapaz/CRISP.

1.4 Structure of the Paper

We give background on the formalization of PAKEs in Section 2. We discuss various methods for
compromise resilience in Section 3. In Section 4 we describe the notation and UC building blocks
we use. We present our new ideal functionalities for iPAKE and siPAKE in Section 5. We introduce
the CHIP compiler in Section 6 and the CRISP compiler in Section 7. In Section 8 we analyze the
computational cost of running our protocols and the cost of the inevitable brute-force attack. We
also propose several optimization to the protocol as well as performance benchmarks. We conclude
and present open problems in Section 9.

We provide full proofs and further reference material in the supplementary appendix. In particular,
CHIP’s proof is provided in Appendix A and CRISP’s proof in Appendix C. For reference, we
include the (strong) asymmetric PAKE functionalities in Appendix E and the IB-KA protocol (a
building block for CHIP) in Appendix F.

2 Related Work on Formalizing PAKE

Bellare, Pointcheval, and Rogaway [2] were the first to formalize the notion of PAKE. Canetti,
Halevi, Katz, Lindell, and MacKenzie [13] formalized PAKE in the Universal Composability (UC)
framework [11]. Their ideal functionality FPAKE (originally denoted FpwKE) trades each party’s
password with a randomly chosen key for the session, only allowing the adversary an online attack
where a single guess may be made to some party’s password.

Asymmetric PAKE (aPAKE) protocols (a.k.a. Augmented PAKEs or Verifier PAKEs) were
formalized by Boyko, MacKenzie, and Patel [8]. They address the problem of password compromise
from long term storage by introducing asymmetry, separating parties into “clients” and “servers”.
While clients supply their passwords on every session, servers use a “password file” generated in a
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setup phase. To prevent servers from impersonating clients, it should be “hard” to directly extract
the password from such a file. However, since we assume that the password domain is small, an
attacker can run an offline dictionary attack, testing every possible password against the file until
one is accepted. The best one can hope for is that password extraction time will be linear in the
dictionary’s size. Gentry, MacKenzie, and Ramzan [16] formalized an ideal functionality FaPAKE in
the UC framework, and presented a generic compiler from FPAKE to FaPAKE.

The notion of Strong Asymmetric PAKE FsaPAKE by Jarecki, Krawczyk, and Xu [22] addresses
an issue with the original FaPAKE, that allowed a pre-computation attack: password guesses could
have been submitted before a server compromise. Most of the computational work could have been
done prior to the actual compromise of the password file, allowing “instantaneous” password recovery
upon compromise. For example, the attacker can pre-compute the hash value for all passwords in a
given dictionary in advance. When a server is compromised at a later point, the adversary can find
the pre-image for the compromised hash value, retrieving the password immediately.

In summary, while (s)aPAKE protect against server compromise in the asymmetric setting, prior
works did not address party compromise in the symmetric setting or client compromise (in the
asymmetric setting).

3 Methods and limitations for compromise resilience

In compromise resilience of PAKE protocols, we consider two main parameters:

1. The computational cost of a brute-force attack to recover the original password, using the
information stored on the device in the offline phase (i.e., in the password file).

2. The possibility of performing a trade-off between the pre-computation cost (performed before
the compromise of the device) and the computation cost (performed after the compromise).

We assume the adversary holds a password dictionary that contains the right password, and a
brute-force attack’s computational cost is proportional to the size of that dictionary. Being a
“machine-in-the-middle”, our adversary may alter messages and exploit information sent in the online
phase of the protocol, and might target multiple passwords used by different users.

We note that in practice, passwords are used across many types of devices. Some of these devices
are directly controlled by (human) users, such as phones or laptops, which either don’t store the
password (e.g., user remembers) or store it protected by another interactive security mechanism (e.g.,
biometrics, password, PIN), thereby making the compromise of the password file harder. However, a
large proportion of devices that share the same password have no such user interaction, such as
internet routers, TVs, IoT devices, and drones; and compromising them thus can lead to revealing
the unprotected password file.

We survey known methods for achieving various levels of compromise resilience and also give
examples for systems using them:

1. Plaintext password: The password is stored as-is in the password file. No computation is
required for password recovery. This is the case for the WPA3 protocol in Wi-Fi [31], and the
client-side for aPAKEs.

2. Hashed password: A one-way function of the password is stored in the password file. This
option is only beneficial when using a high entropy password chosen from a password space that
is too large to pre-compute. Otherwise, an adversary might hash every possible password and
prepare a reverse lookup table from hash value to plain password, allowing password recovery in
O(1) time. This can be done once, amortizing the cost of the pre-computation over multiple
password recoveries.
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3. Hashed password with public identifiers: A one-way function of the password and some
public identifiers of the connection is computed and stored in the password file. For example,
the public identifiers can be derived from the SSID (network name) in Wi-Fi or a combination
of the server and user names. In this case, pre-computation is still possible, but amortization
is prevented, since the pre-computation does not apply for different public identifiers. This
protection is offered by some aPAKE protocols [18] and by our novel iPAKE protocol.

4. Hashed password with public “salt”: A one-way function of the password and a randomly
generated value (“salt”) is computed and stored in the password file. The “salt” is sent in
the clear, as part of the PAKE protocol. As in the previous case, pre-computation before a
compromise is possible, but only after the adversary eavesdrops to a PAKE protocol of the target
device and learns the “salt”. This is the case for the server side in some aPAKE protocols [18, 32].

5. Hashed password with secret “salt”: In this case, the random “salt” is kept secret, which
requires more intricate mechanisms than with the public salt, since it is no longer possible to
send the salt in the clear. This approach prevents any pre-computation, and yields a level of
protection that is offered by saPAKE for the servers in the asymmetric setting, and by our novel
siPAKE protocol for all parties in any setting. The only remaining attack left for the adversary
is a brute-force post-compromise attack, which is inevitable, as we show below.

Inevitable Generic Post-compromise Brute-force Attack

Post-compromise brute-force dictionary attacks are inevitable for any PAKE protocol. In the
following attack, we assume that the correct password is in the dictionary and exploit the property
that PAKE protocols fail to agree on a key when the participants have different passwords. The
attack works by simulating a normal protocol run, where one party uses the compromised data, and
the peer uses the password guess:
1. Retrieve a password file file from a compromised device.
2. For every password guess π′ in the dictionary:

(a) Derive password file file′ according to the protocol specification’s setup phase for the peer,
using π′.

(b) Use file and file′ to simulate both parties in a normal run of the PAKE protocol.
(c) If the simulated parties negotiate the same key, π′ is the correct password for the compromised

device.
The cost of each password guess in the black-box attack is the cost of deriving the password

file from a password and running the protocol for both parties. This generic attack provides an
upper bound to the cost of the brute-force attack on any PAKE protocol. To increase the cost of
the generic attack, we must also increase the computational cost of either password file derivation
or running the online phase of the protocol. Note that the password file derivation can be done in
pre-computation.

4 Notation and UC Building Blocks

In this section, we first introduce some notational convention and recall the symmetric PAKE
functionality. We then introduce modelling of the random oracle model and the generic group model.

Notation and conventions Our notational conventions inherit from the PAKE and UC settings:

π a password
id some party’s abstract identifier
P a party interacting in either real or ideal world
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κ a security parameter
q a large prime number q ≥ 2κ

Zq the field of integers modulo q, Z?q = Zq\{0}
x an element of Zq
F a polynomial in Zq[X]
X a formal variable in a polynomial (indeterminate)
G a cyclic group of order q
[x]G a member of group G, identified by the exponent x of some

public generator g∈G: [x]G = gx

{0, 1}n the set of binary strings of length n
{0, 1}? the set of binary strings of any length

x
R←S sampling x from uniform distribution over set S

x∈S restriction: x must be an element of S
H a hash function

Ĥ a hash-to-group function

Similar to existing asymmetric PAKE constructions analyzed in the UC framework, we use two
levels of sessions:

sid identifies a static session, e.g., a group of parties communicating using the same
shared password. (E.g., when instantiated in the Wi-Fi setting, this could be the
Wi-Fi network identifier)

ssid identifies a particular online exchange, i.e., a sub-session.

Symmetric PAKE Functionality In Figure 1 we restate the symmetric PAKE functionality
FPAKE from Canetti et al. [13] (denoted FpwKE there), incorporating the fix recommended by
Abdalla et al. [1]. In our presentation of FPAKE, we explicitly record keys handed to parties in
fresh sessions using 〈key, . . . 〉 records, which we will later use in our protocol proofs.

Whenever an ideal functionality is required to retrieve some record (“Retrieve 〈record, . . . 〉 ”)
but it cannot be found, the functionality is said to implicitly ignore the query.

4.1 UC Modelling of Random Oracle and Generic Group

The necessity of non-black-box assumptions for proving compromise resilience in the UC framework
has been previously observed (see [16], [22] and [9]). Hesse [21] proved that UC-realization of aPAKE
is impossible under non-programmable ROM. In this work we rely on programmable ROM for
proving CHIP and on Generic Group Model for CRISP.

We model ROM in UC by allowing parties in the real world to access an ideal functionality FRO,
depicted in Figure 2. Invocations of hash functions in the protocol are modelled as queries to FRO.
The functionality acts as an oracle, answering fresh queries with independent random values, but
consistent results to repeated queries. The model is programmable, meaning that the simulator is
able to view hash queries and program their results. The model is also local, meaning that every
session has a separate independent FRO machine. However, every Hash query is parametrized by a
unique sid, effectively separating the hash domain. Consequently, a single global random oracle in
the real world suffices to handle queries from multiple sessions.

The Generic Group Model (GGM), introduced by [30], allows proving properties of algorithms,
assuming the only permitted operations on group elements are the group operation and comparison.
Hence a “generic group element” has no meaningful representation. Algorithms in GGM operate on
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Functionality FPAKE, with security parameter κ, interacting with parties {Pi}ni=1 and an adversary S.

Upon (NewSession, sid,Pj , πi) from Pi:
◦ Send (NewSession, sid,Pi,Pj) to S
◦ If there is no record 〈session,Pi,Pj , ·, ·〉:

. record 〈session,Pi,Pj , πi〉 and mark it fresh

Upon (TestPwd, sid,Pi, π′) from S:
◦ Retrieve 〈session,Pi,Pj , πi〉 marked fresh
◦ If πi = π′: mark the session compromised and return “correct guess” to S
◦ otherwise: mark the session interrupted and return “wrong guess” to S

Upon
(
NewKey, sid,Pi,K′∈{0,1}κ

)
from S:

◦ Retrieve 〈session,Pi,Pj , πi〉 not marked completed
◦ If it is marked compromised: Ki←K′
◦ else if it is marked fresh and there is a record 〈key,Pj , πj ,Kj〉 with πi=πj : Ki←Kj

◦ otherwise: pick Ki
R← {0, 1}κ

◦ If the session is marked fresh: record 〈key,Pi, πi,Ki〉
◦ Mark the session completed and send 〈sid,Ki〉 to Pi

Fig. 1: Symmetric PAKE functionality FPAKE from [13] with the fix recommended by [1] and minor
presentational modifications to simplify comparison.

Functionality FRO, parametrized by domain D and range E, interacting with parties {Pi}ni=1 and adversary S.
Upon (Hash, sid, s∈D) from P ∈ {Pi}ni=1 ∪ {S}:

◦ If there is no record 〈hash, s, h〉:
. Pick h

R← E and record 〈hash, s, h〉
◦ Return h to P.

Fig. 2: Random Oracle functionality FRO

encodings of elements, and may consult a group oracle which computes the group operation for two
valid encodings, returning the encoded result. The group oracle declines queries for encodings not
returned by some previous query.

Any cyclic group G of prime-order q with generator g can be viewed as {[x]G |x∈Zq} with group
operations [x]G � [y]G = [x+ y]G and [x]G � [y]G = [x− y]G, unit element [0]G and generator [1]G,
using some encoding function [·]G: x 7→ gx. In GGM we consider encoding functions carrying no
further information about the group, e.g., encodings using random bit-strings or numbers in the
range {0, . . . , q−1}. This is in contrast to concrete groups which might have a meaningful encoding.

In order to prove CRISP’s security under Universal Composition, we need to formalize GGM
in terms of an ideal functionality FGG. Figure 3 shows the basic GGM functionality FGG, which
answers group operation queries (multiply/divide) on encoded elements. As with FRO, functionality
FGG is both programmable and local. Unlike ROM, where local independent oracles can be created
from a single global one, the same is not trivial with generic groups. Appendix D deals with group
reuse across instances of CRISP.

For simplicity one can think of the set of encoding E=Zq, so each exponent x∈Zq is encoded as
[x]G=ξ∈Zq, resulting in the encoding function being a random permutation over Zq, ensuring no
information about oracle usage is disclosed between parties.

Note that although the group order q might be (exponentially) large, FGG maps at most one
new element per query. Also note the mapping is injective.
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Functionality FGG, parametrized by group order q, encoding set E (|E|≥q) and generator g∈E, interacting with
parties {Pi}ni=1 and adversary S.
Initially, S={1}, [1]G=g and [x]G is undefined for any other x∈Zq. Whenever FGG references an undefined [x]G, set

[x]G
R← E\S and insert [x]G to S.

Upon
(
MulDiv, sid, [x1]G, [x2]G, s∈{0,1}

)
from P ∈ {Pi}ni=1 ∪ {S}:

◦ x← x1 + (−1)sx2 mod q
◦ Return [x]G to P

Fig. 3: Generic Group functionality FGG

A bilinear group is a triplet of cyclic groups G1,G2,GT of prime order q, with an efficiently
computable bilinear map ê:G1×G2→GT satisfying the following requirements:

– Bilinearity: ê(gx1 , g
y
2) = ê(g1, g2)

xy for all x, y∈Zq.
– Non-degeneracy: ê(g1, g2) 6= 1T .

where g1, g2 are generators for G1,G2 respectively. We also consider an efficiently computable
isomorphism ψ:G2→G1 satisfying ψ(g2)=g1.

A hash to group, also referred to as Hash2Curve, is an efficiently computable hash function,
modelled as random oracle, whose range is a group. For the bilinear setting, we consider the range
G2.

In order to represent groups with pairing and hash into group, we suggest a modified functionality
FGGP, depicted in Figure 4, similar to the extension of GGM to bilinear groups by [6]. FGGP

can be queried MulDiv for each of G1, G2 and GT , and maintains separate encoding maps
for each group. It introduces three new queries: (a) Pairing to compute the bilinear pairing ê:
([x1]G1 , [x2]G2) 7→ [x1·x2]GT ; (b) Isomorphism to compute an isomorphism ψ,ψ−1 between G2 and
G1: [x]G1 7→[x]G1 , [x]G1 7→[x]G2 ; and (c) Hash which is a random oracle into G2: for each freshly

queried string s∈{0, 1}? it picks a random exponent x
R←Z?q , then returns its encoding [x]G2 .

We note that there are groups for which only ψ is efficiently computable but ψ−1 is not, or
even ψ itself is inefficient. However, CRISP does not require these Isomorphism queries and they
can be omitted for such groups. We state that equipping the adversary with Isomorphism queries
guarantees security even when such isomorphism is found.

5 (Strong) Identity-binding PAKE Functionality

In Figure 5 we present the Identity-binding PAKE functionality FiPAKE and the Strong Identity-
binding PAKE functionality FsiPAKE. Essentially, they preserve the symmetry of FPAKE while
adopting the notion of password files and party compromise from the Asymmetric PAKE functionality
FaPAKE of [16] and Strong Asymmetric PAKE functionality FsaPAKE of [22] (found in Appendix E).

Informally speaking, our threat model includes the online adversary from traditional PAKEs.
Additionally, we consider adversaries that may compromise parties in order to impersonate as other
parties, e.g., compromise an IoT device to impersonate as the router or server. The strong form
additionally considers adversaries that can perform large amounts of precomputation.

Compared to the asymmetric functionalities, our main addition is the notion of abstract identities
(idi) assigned by the environment to parties, and reported to participating parties as output alongside
the session key. Without them, a single party compromise would allow the adversary to compromise
any sub-session by impersonating any other party or perform a MiTM attack. Having the functionality
inform a party of its peer identity prevents such attacks.
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Functionality FGGP, parametrized by group order q, encoding sets E1, E2, ET (|Ej |≥q for j∈{1, 2, T}) and generators
g1∈E1, g2∈E2, interacting with parties {Pi}ni=1 and adversary S. Let P = {Pi}ni=1 ∪ {S}.
Initially, S1=S2={1}, ST=∅, [1]G1=g1, [1]G2=g2 and [x]Gj is undefined for any other x∈Zq j∈{1, 2, T}. Whenever

FGGP references an undefined [x]Gj , set [x]Gj
R← E\Sj and insert [x]Gj to Sj .

Upon
(
MulDiv, sid, j∈{1,2,T}, [x1]Gj , [x2]Gj , s∈{0,1}

)
from P ∈ P:

◦ Return [x← x1 + (−1)sx2 mod q]Gj to P

Upon (Pairing, sid, [x1]G1 , [x2]G2) from P ∈ P:
◦ Return [xT ← x1 · x2 mod q]GT to P

Upon
(
Isomorphism, sid, j∈{1,2}, [x]Gj

)
from S:

◦ Return [x]G3−j to P

Upon (Hash, sid, s) from P ∈ P:
◦ If there is no record 〈hash, s, [x]G2〉:

. pick x
R← Z?q and record 〈hash, s, [x]G2〉

◦ Return [x]G2 to P

Fig. 4: Generic Group with Pairing and Hash-to-Group functionality FGGP

For symmetry, we restored the notation of parties as {Pi}ni=1: All parties invoke StorePwdFile
before starting a session and all use the password file instead of providing a password when starting
a session; UsrSession query was eliminated, and SvrSession was renamed NewSession as in
FPAKE. We also parametrized queries on Pi and Pj where FaPAKE and FsaPAKE omitted them, since
in the symmetric setting those queries may be applied to several parties, e.g., StealPwdFile
applying to any party. On the other hand, we omit Pj from StorePwdFile; in our setting a
password file is derived for each party independently, and is not bound to specific peers.

Our functionalities introduce a new query OfflineComparePwd, allowing the adversary to
test whether two stolen password files correspond to the same password. In the real world, such
attack is always possible by an adversary simulating the protocol for those parties, and comparing
the resulting keys. We argue that in most real-world settings, all parties of the same session use the
same password (e.g., devices connecting to the same Wi-Fi network), and hence such a query is
both inevitable and non-beneficial for the adversary.

Notice the four types of records used by the functionalities:

1. 〈file,Pi, idi, πi〉〈file,Pi, idi, πi〉〈file,Pi, idi, πi〉 records represent password files created for each party Pi, and are derived from
its password πi and identity idi. Similar type of records exist in FPAKE and FsaPAKE (without
identities) only for the server.

2. 〈session, ssid,Pi,Pj , idi, πi〉〈session, ssid,Pi,Pj , idi, πi〉〈session, ssid,Pi,Pj , idi, πi〉 records represent party Pi’s view of a sub-session with identifier
ssid between Pi and Pj . Similar type of records exist in FaPAKE and FsaPAKE, without identities.

3. 〈key, ssid,Pi, πi,Ki〉〈key, ssid,Pi, πi,Ki〉〈key, ssid,Pi, πi,Ki〉 records represent sub-session keys Ki created for party Pi participating
in sub-session ssid with password πi, and whose session was not compromised or interrupted.
These records were implicitly required in prior UC PAKE works [13, 16, 22], and appear here
explicitly for clarity.

4. 〈imp, ssid,Pi, id′〉〈imp, ssid,Pi, id′〉〈imp, ssid,Pi, id′〉 records represent “permissions” for the adversary to set the peer identity
observed by party Pi in sub-session ssid to id′. They are created when the adversary invokes
one of the online attack queries OnlineTestPwd or Impersonate. The functionalities reject
NewKey queries with non-permitted id′. When id′=? this record acts as a “wild card”, permitting
the adversary to select any identity.
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Functionalities FiPAKE and FsiPAKE, with security parameter κ, interacting with parties {Pi}ni=1 and adversary S.

Upon (StorePwdFile, sid, idi, πi) from Pi:
◦ If there is no record 〈file,Pi, ·, ·〉:

. record 〈file,Pi, idi, πi〉 and mark it uncompromised

Upon (StealPwdFile, sid,Pi) from S:
◦ If there is a record 〈file,Pi, idi, πi〉:

. π ←

{
πi if there is a record 〈offline,Pi, πi〉
⊥ otherwise

. mark the file compromised and return
(
“password file stolen”, idi , π

)
to S

◦ otherwise: return “no password file” to S

Upon (OfflineTestPwd, sid,Pi, π′) from S:
◦ Retrieve 〈file,Pi, idi, πi〉
◦ If it is marked compromised:

. return “correct guess” to S if πi = π′, and “wrong guess” otherwise
◦ otherwise: Record 〈offline,Pi, π′〉

Upon (OfflineComparePwd, sid,Pi,Pj) from S:
◦ Retrieve 〈file,Pi, idi, πi〉 and 〈file,Pj , idj , πj〉 both marked compromised
◦ Return “passwords match” to S if πi = πj , and “passwords differ” otherwise

Upon (NewSession, sid, ssid,Pj) from Pi:
◦ Retrieve 〈file,Pi, idi, πi〉 and send (NewSession, ssid,Pi,Pj , idi) to S
◦ If there is no record 〈session, ssid,Pi,Pj , ·〉:

. record 〈session, ssid,Pi,Pj , πi〉 and mark it fresh

Upon (OnlineTestPwd, sid, ssid,Pi, π′) from S:
◦ Retrieve 〈session, ssid,Pi,Pj , πi〉 marked fresh or compromised
◦ If πi = π′: record 〈imp, ssid,Pi, ?〉
◦ If πi = π′: mark the session compromised and return “correct guess” to S
◦ otherwise: mark the session interrupted and return “wrong guess” to S

Upon (Impersonate, sid, ssid,Pi,Pk) from S:
◦ Retrieve 〈session, ssid,Pi,Pj , πi〉 marked fresh or compromised
◦ Retrieve 〈file,Pk, idk, πk〉 marked compromised
◦ If πi = πk: record 〈imp, ssid,Pi, idk〉
◦ If πi = πk: mark the session compromised and return “correct guess” to S
◦ otherwise: mark the session interrupted and return “wrong guess” to S

Upon
(
NewKey, sid, ssid,Pi, id′,K′∈{0,1}κ

)
from S:

◦ Retrieve 〈session, ssid,Pi,Pj , πi〉 not marked completed and 〈file,Pj , idj , πj〉
◦ Ignore the query if either the session is marked fresh and id′ 6=idj , or it is compromised and 〈imp, ssid,Pi, id〉

is not recorded for both id∈{id′, ?}
◦ If the session is marked compromised: Ki←K′
◦ else if it is marked fresh and there is a record 〈key, ssid,Pj , πj ,Kj〉 with πi=πj : Ki←Kj

◦ otherwise: pick Ki
R← {0, 1}κ

◦ If the session is marked fresh: record 〈key, ssid,Pi, πi,Ki〉
◦ Mark the session completed and send 〈ssid, id′,Ki〉 to Pi

Fig. 5: Functionality FiPAKE is defined by the full text (including grey text), and FsiPAKE is defined
by the text excluding grey text.

Additionally, FiPAKE inherits from FaPAKE the following record type:

5. 〈offline,Pi, π′〉〈offline,Pi, π′〉〈offline,Pi, π′〉 records represent an offline-guess π′ for party Pi’s password, submitted by
S before compromising Pi. If Pi is later compromised, S will instantly learn if the guess was
successful, i.e., π′=πi.
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Identity verification is implicit. When no attack is carried out by the adversary, both parties
report each other’s real identities. However, when the adversary succeeds in an online attack, it is
allowed to change the reported identities. A successful OnlineTestPwd query allows the adversary
to specify any identity, while a successful Impersonate query limits the choice to the impersonated
party’s real identity only. If any of the attacks fails, we still allow the adversary to control the
reported identity, at the cost of causing each party to output an independent random key. Therefore,
in the absence of a successful online attack, matching session keys indicate the reported identities
are correct.

To simplify our UC simulator, we additionally allow both OnlineTestPwd and Impersonate
queries against the same session, as long as they succeed4. This is achieved by accepting them on
compromised sessions, not only fresh. Note that this permits at most one failed attempt per
session, which has no impact on security.

The FiPAKE functionality is weaker than FsiPAKE in the sense that it permits pre-computation
of OfflineTestPwd queries prior to party compromise. It is therefore only of interest when
permitting more efficient constructions than its strong counterpart. Indeed, we present the more
efficient CHIP protocol (Section 6) realizing FiPAKE in ROM using any cyclic group, while CRISP
(Section 7) requires bilinear groups for realizing FsiPAKE in GGM.

Comparison to (s)aPAKE The symmetric functionalities FiPAKE and FsiPAKE offer security
guarantees beyond their asymmetric counterparts: given a FiPAKE (respectively, FsiPAKE) function-
ality, it is trivial to realize the FaPAKE (respectively, FsaPAKE) functionality. The client party U
will be assigned identity “client” and will simply compute its password file on each session, when
receiving UsrSession query from the environment. The server party S will be identified as “server”
and will have to verify its peer identity is “client”. Nevertheless, we are not aware of any direct
extension of FaPAKE/FsaPAKE to FiPAKE/FsiPAKE.

Sessions and identifiers The distinction between a “static” session (identified by sid) and an
“online” sub-session (identified by ssid) was inherited from FaPAKE and FsaPAKE.

A static session represents a set of parties which are expected to communicate with each other,
such as devices connected to the same Wi-Fi network (sid can be the network name). Normally,
all such parties are configured with the same password. Otherwise, only parties with matching
passwords will be able to derive a shared key. Since sid is selected locally, it is possible to have two
unrelated networks configured with the same identifier (e.g., two home networks named “Miller”).
As long as their passwords differ, there will not be any real impact on security; password files created
for one network are unusable for the other.

An online sub-session is a specific run of the protocol between two parties of a static session. ssid
is given as external input to the protocol in order to uniquely identify message flows within a sub-
session among parties of the same static session. In many cases the transport layer’s communication
identifiers (e.g., TCP/IP 5-tuple) suffice. If necessary, an additional communication round can be
used to negotiate unique ssid (as in [18]).

4 In fact, our relaxed functionality now allows for a stronger adversary that can submit as many such queries as it
chooses. However, the first failed query interrupts the session, thus preventing subsequent queries. On the other
hand, after a successful attack, the adversary has already compromised the session.
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6 The CHIP iPAKE protocol

6.1 Design motivation

When extending the protection of traditional PAKE to consider party compromise attacks, one
might think of a trivial solution: simply store the hash of the password, and use this hash value in
the PAKE, instead of the plain password. While this solves the problem of leaking the password
upon party compromise, it does not protect from impersonation. Since hash values are not bound
to any identity, a hash value stolen from a compromised party Pi can be used to impersonate any
non-compromised party Pj towards anyone. This is known as a Key Compromise Impersonation
(KCI) attack.

To protect against KCI attacks we need to bind those hash values to identities. However, KCI
resistance is not trivial to achieve. For instance, if parties were to concatenate their identity to the
password as input to a hash function: hi ← H(idi, π), there would be no simple means for party Pi
knowing hi (but no longer π) to derive a shared key with another party Pj that only holds hj .

One family of protocols that provides KCI resistance by design is Identity-Based Key-Exchange
(IB-KE), introduced by Günther [17]. Unfortunately, IB-KE protocols require a trusted third party
called Key Distribution Centre (KDC). The KDC is responsible for delivering identity-bound key
material to other parties in a setup phase. In our setting, there is no trusted third party, only a
password that is shared between the parties. To remove the KDC requirement, we modify the IB-KE
protocol by allowing each party to locally simulate the operation of the KDC. To achieve this, we use
the password hash as the KDC’s secret data. This ensures that all parties with the same password
are simulating “the same” KDC, i.e., using the same KDC secrets to derive password files.

Unfortunately, this construction might still be vulnerable to offline password guessing. Since
an IB-KE protocol assumes the KDC secret to have high entropy, IB-KE protocols might send
information that is dependent on this value. For instance, a certificate signed by the KDC secret key
might be sent in the clear. With the KDC secrets being derived deterministically from a low entropy
password, a passive eavesdropper might capture such a message then start an offline brute-force
attack to find the correct password.

We solve this by considering IB-KE protocols with message flows independent from the KDC
secrets. Specifically, we chose the Identity-Based Key-Agreement (IB-KA) protocol by Fiore and
Gennaro [15]. IB-KA requires a single simultaneous communication round, is proven secure in
the Canetti-Krawczyk model [12] under the strong Diffie-Hellman assumption, and provides weak
Forward Secrecy (wFS) and KCI resistance. Figure 17 shows a reference diagram of IB-KA.

A final issue with the construction is that the output key of IB-KA depends on the KDC secret.
Recall that Forward Secrecy (ephemeral key secrecy after long-term keys are compromised) in IB-KA
is not perfect but weak (i.e., only holds against passive adversaries), therefore an active adversary
can modify the incoming flow to party Pi, then offline derive the resulting key from every possible
password guess π′. Any subsequent usage of the key, e.g. for data authentication, would allow the
adversary to test the password guesses and extract the correct session key. We resolve this by using
the IB-KA output key as input to a symmetric PAKE, along with the transcript of the IB-KA.

Figure 6 depicts CHIP, which transforms any PAKE into an iPAKE using the modified IB-KA
protocol [15], with the following changes:

– KDC Simulation: Instead of using a real KDC, each party Pi simulates the KDC’s setup
phase during its password file generation. This is achieved by replacing the KDC’s randomly
generated private value yi with the hash of Pi’s password H1(sid, πi).
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Public Parameters: Cyclic group G of prime order q≥2κ with generator g∈G, a PAKE protocol realizing FPAKE,
hash functions H1, H2: {0, 1}?→Z?q , and κ a security parameter. Note that here sid is explicitly concatenated to the
input of H1, H2 invocations for domain separation.

Password File Generation:
Pi upon (StorePwdFile, sid, idi, πi): Pj upon (StorePwdFile, sid, idj , πj):

Pick random xi
R← Z?q Pick random xj

R← Z?q
yi ← H1(sid, πi) yj ← H1(sid, πj)
Xi←gxi , Yi←gyi Xj←gxj , Yj←gyj
hi ← H2(sid, idi, Xi) hj ← H2(sid, idj , Xj)
x̂i ← xi + yi·hi x̂j ← xj + yj ·hj
Record file[sid] = 〈idi, Xi, Yi, x̂i〉 Record file[sid] = 〈idj , Xj , Yj , x̂j〉

Key Exchange:
Pi upon (NewSession, sid, ssid,Pj): Pj upon (NewSession, sid, ssid,Pi):
Retrieve file[sid] = 〈idi, Xi, Yi, x̂i〉 Retrieve file[sid] = 〈idj , Xj , Yj , x̂j〉
Pick ri

R← Z?q Pick rj
R← Z?q

Ri←gri Rj←grjfi = (ssid, idi, Xi, Ri)

fj = (ssid, idj , Xj , Rj)

hj ← H2(sid, idj , Xj) hi ← H2(sid, idi, Xi)
αi ← Rj

ri αj ← Ri
rj

βi ←
(
RjXjYi

hj
)ri+x̂i βj ←

(
RiXiYj

hi
)rj+x̂j

tri ← 〈min(fi, fj),max(fi, fj)〉 trj ← 〈min(fj , fi),max(fj , fi)〉
Si ← 〈αi, βi, tri〉 Sj ← 〈αj , βj , trj〉

sid, ssid, Si sid, ssid, Sj

PAKE

Ki Kj

Output (sid, ssid, idj ,Ki) Output (sid, ssid, idi,Kj)

Fig. 6: CHIP protocol

– PAKE Integration: We use the output of IB-KA (αi, βi) alongside the IB-KA transcript (tri)
as input to a PAKE instance. The output from this PAKE, Ki, is the resulting session key.

6.2 Correctness

The correctness of CHIP follows from the correctness of IB-KA. Parties Pi, Pj compute the secret
values Si, Sj respectively, where Si = 〈αi, βi, tri〉. Si, Sj are converted to keys Ki,Kj by inputting
them to the PAKE. For honest parties:

αi = (gri)rj = (grj )ri = αj
tri = 〈min(fi, fj),max(fj , fi)〉 = 〈min(fj , fi),max(fi, fj)〉 = trj

Therefore, assuming H1(sid, ·) is injective on the password domain we get:

βi = (RjXjY
hj
i )ri+x̂i = g(rj+xj+yi·hj)·(ri+xi+yi·hi)

βj = (RiXiY
hi
j )rj+x̂j = g(ri+xi+yj ·hi)·(rj+xj+yj ·hj)

Ki=Kj ⇐⇒ Si=Sj ⇐⇒ βi=βj ⇐⇒ yi=yj ⇐⇒ H1(sid, πi)=H1(sid, πj) ⇐⇒ πi=πj
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6.3 CHIP realizes FiPAKE

The IB-KA protocol, which CHIP is based upon, is proven secure in [15] under the strong DH
assumption:

Definition 1 (SDH). Let G be a group and DDH(X,Y, Z) an oracle returning 1 if Z = DH(X,Y )
and 0 otherwise. The Strong Diffie-Hellman (SDH) assumption is said to hold in G if every PPT
adversary A with oracle access DDH has only negligible probability to compute the Diffie-Hellman

result DH(X,Y ) for given inputs X,Y
R← G.

The following theorem (proven in Appendix A) states the security of CHIP as an iPAKE protocol
in the UC framework.

Theorem 1. If the SDH assumption holds in G, then the CHIP protocol in Figure 6 UC-realizes
FiPAKE in the (FPAKE,FRO)-hybrid world.

Proof Technique Intuition

To prove that CHIP UC-realizes FiPAKE we need to show how CHIP can be simulated using FiPAKE.
Here we provide some intuition for key aspects of our simulation and proof.

Simulation of message flows. One of the properties of IB-KA is that its flows are independent
of the KDC secrets, which in our setting translates to being independent of the passwords. This has
the side-effect of allowing us to easily simulate message flows.

Simulating password files. When a password hash is requested we employ the programmability
of our ROM to set the hash value in correspondence with previously stolen password files. We
use OfflineComparePwd to ensure consistency of generated hash values across parties with
the same password. If a party is compromised after the hash is computed, we take advantage of
OfflineTestPwd executed during Hash simulation to reveal the correct password of the party to
be compromised, then simulate a password file with the known hash.

Simulating TestPwd. To extract a password guess from the environment’s TestPwd input we
consider all possible password hash values: If a previous H1(π

′) query outputs a value satisfying
Z’s input, we mount an OnlineTestPwd against FiPAKE with π′; If a previously compromised
password file contained a hash value satisfying the input, then we Impersonate that compromised
party. It is possible that Z’s guess was incorrect, in which case our attacks will also fail.

Preserving KCI-resistance. We state that despite simulating the KDC using a hash of a password,
we preserve the KCI resistance property of IB-KE, as long as the password remains secret. That
is, modelling the hash function applied to the password as a random oracle, the adversary has no
access to the random value H(π) until it queries the oracle with the correct password. Thus, the
local generation of a password file under our modification is equivalent to a KDC generating key
files, while H(π) is not queried by the adversary.

6.4 The Cost of Brute-force Attack on CHIP

We note that in our proof, H1 corresponds to OfflineTestPwd or the cost of a single password
guess. Therefore, to increase the cost of a brute-force attack, it is advised to choose a computationally
costly hash function (see Section 8.1).

CHIP is vulnerable to pre-computation. CHIP’s password files include the (unsalted) hash value
Y = gy = gH1(sid,π). While extracting the password from a compromised file requires a brute-force
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Public Parameters: Cyclic groups G1,G2,GT of prime order q≥2κ with generator g2∈G2, bilinear pairing
ê:G1×G2→GT , a PAKE protocol realizing FPAKE, hash functions Ĥ1, Ĥ2: {0, 1}?→G2 and κ a security parameter.
Note that here sid is explicitly concatenated to the input of Ĥ1, Ĥ2 invocations for domain separation.

Password File Derivation (offline)
Pi upon (StorePwdFile, sid, idi, πi): Pj upon (StorePwdFile, sid, idj , πj):

Pick random salt xi
R←Z?q Pick random salt xj

R←Z?q
Ai←gxi1 Aj←g

xj
1

Bi←Ĥ1(sid, πi)
xi , Ci←Ĥ2(sid, idi)

xi Bj←Ĥ1(sid, πj)
xj , Cj←Ĥ2(sid, idj)

xj

Record file[sid] = 〈idi, Ai, Bi, Ci〉 Record file[sid] = 〈idj , Aj , Bj , Cj〉

Key Exchange
Pi upon (NewSession, sid, ssid,Pj): Pj upon (NewSession, sid, ssid,Pi):
Retrieve file[sid] = 〈idi, Ai, Bi, Ci〉 Retrieve file[sid] = 〈idj , Aj , Bj , Cj〉
Pick random exponent ri

R←Z?q Pick random exponent rj
R←Z?q

Ãi←Arii , B̃i←Brii , C̃i←Crii Ãj←A
rj
j , B̃j←B

rj
j , C̃j←C

rj
j(ssid, idi, Ãi, C̃i)

(ssid, idj , Ãj , C̃j)

Ignore if Ãj=1G1 or Ãj /∈G1 Ignore if Ãi=1G1 or Ãi /∈G1

or ê(g1, C̃j) 6= ê(Ãj , Ĥ2(sid, idj)) or ê(g1, C̃i) 6= ê(Ãi), Ĥ2(sid, idi)

Si ← ê(Ãj , B̃i) Sj ← ê(Ãi, B̃j)

sid, ssid, Si sid, ssid, Sj

PAKE

Ki Kj

Output (sid, ssid, idj ,Ki) Output (sid, ssid, idi,Kj)

Fig. 7: CRISP protocol

attack, this property enables pre-computation: if the adversary prepares a mapping Yπ′ 7→ π′ for
each password guess π′ in advance for a specific sid, it can discover the correct password immediately
after compromising a party. Our next protocol mitigates this.

7 The CRISP siPAKE protocol

7.1 Protocol Description

CRISP is a compiler that transforms any PAKE into a compromise resilient, identity-binding, and
symmetric PAKE. CRISP (defined in Figure 7) is composed of the following phases:

1. Public Parameters Generation: In this phase, public parameters common to all parties are
generated from a security parameter κ. These parameters include the bilinear groups G1, G2,
GT with hash to group functions Ĥ1, Ĥ2, and the PAKE protocol to be used.

2. Password File Derivation: In this phase, the user enters a password πi and an identifier idi
for a party Pi (e.g., some device such as a personal computer, smartphone, server or access
point). The party selects an independent and uniform random salt, and then derives and stores
the password file.

3. Key Exchange: In this phase, two parties, Pi and Pj engage in a sub-session to derive a shared
key. This phase consists of three stages:
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(a) Blinding. Values from the password file are raised to the power of a randomly selected
exponent. This stage can be performed once and re-used across sub-sessions (see Section 8.3).

(b) Secret Exchange. Using a single communication round (two messages), each party computes
a secret value. These values depend on the generating party’s password, and both parties’
salt and blinding exponents.

(c) PAKE. Both parties engage in a PAKE where they input their secret values as passwords to
receive secure cryptographic keys.

The hash-to-group functions (Ĥ1 and Ĥ2) can be realized by FGGP’s Hash queries using domain
separation with different prefixes: Ĥ1(sid, π) will query Hash using s = 1||π, and Ĥ2(sid, id) will
use s = 2||id.

We provide intuition by explaining the necessity of several components.

Bilinear Pairing. To protect against pre-computation attacks the password file cannot contain
neither the plain password, nor its unsalted hash. Nevertheless, the classical salted hash method (e.g.,
H(π, x) for a random salt x) guarantees pre-computation resistance, but cannot be used to derive a
shared key across parties with independent salts, because the hashes have no structure to link them
with each other, in the absence of the password during the online key exchange. Storing 〈x, Y 〉 for
a random x and Y=gH(π)·x is also vulnerable to pre-computation of a map M : gH(π′) 7→ π′, then
finding the password π immediately with M [Y 1/x].

In search of a construct that is both resilient to pre-computation and has some algebraic structure

we considered 〈X,Y 〉 for X=gx1 , Y=g
H(π)·x
2 and random x. This utilizes the oracle hashing scheme

[10] 〈X,XH(v)〉, which implies pre-computation resistance. The parties can then compute a shared
value using bilinear pairing:

ê(Xi, Yj) = ê(gxi1 , g
H(π)·xj
2 ) = ê(g1, g2)

H(π)·xi·xj = ê(g
xj
1 , g

H(π)·xi
2 ) = ê(Xj , Yi)

Hash-to-Group. Although the 〈X,Y 〉 construct from last paragraph satisfies pre-computation
resistance, it has inherent asymmetry in the computation cost: while honest parties are required to
run bilinear pairing to derive a shared key, an adversary that has stolen a password file can test
passwords offline with a cost of one exponentiation per password guess. This is accomplished by

pre-computing h[π′]=H(π′), then after compromising a party testing whether Xh[π′] ?
= ψ(Y ) for

each password guess π′. 5

The similar approach selected for CRISP is 〈X,Y 〉 for X=gx1 , Y=Ĥ(π)x and x generated at
random, using a hash-to-group function Ĥ. This ensures that the exponent e for ge2=Ĥ(π) is kept
hidden, even from those who possess the password. Thus, the adversary is required to compute a
bilinear pairing per password guess post compromise.

Blinding. The blinding stage perfectly hides the salt xi (information theoretically) in the first
message transmitted from Pi, since 〈Ãi, C̃i〉 = 〈gx̃i1 , Ĥ2(sid, idi)

x̃i〉 for x̃i=xiri which is a random
element of Z?q . Blinding is required because transmitting the raw Ai value allows A to mount a
pre-computation attack. A may compute the inverse map Bπ′ 7→π′ for any password guess π′:

Bπ′ = ê(Ai, Ĥ1(sid, π
′)) = ê(g1, Ĥ1(sid, π

′))xi

Then after compromising Pi, use the map to lookup:

ê(g1, Bi) = ê(g1, Ĥ1(sid, πi)
xi) = ê(g1, Ĥ1(sid, πi))

xi ,

5 Even without ψ, A can compute XT=ê(X, g2) and YT=ê(g1, Y ) with just two pairings, then test each password

guess π′ using a single exponentiation: X
h[π′]
T

?
= YT .
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finding the correct π′=πi instantly. A similar attack would have also been possible if the values
B̃i=B

ri
i or ri were disclosed to A upon compromise.

Symmetric PAKE. The final key Ki should be derived from the secret Si using a PAKE and not
some deterministic key derivation function. The reason is the lack of perfect forward secrecy in the
first message exchange, as explained for CHIP in Section 6.1. Concretely, consider the following
attack:

Adversary A modifies the flow from Pj to Pi into Ã′j=g
x′j
1 , C̃ ′j=Ĥ2(sid, idj)

x′j using some

arbirarily chosen exponent x′j . A can now use Ãi (sent by an honest party Pi) to compute the value

S[π′] = ê(Ãi, Ĥ1(sid, π
′)x
′
j ) for any password guess π′. A can now derive a guess for the resulting

key K ′ and test this key against encrypted messages sent by Pi. A correct key implies the password
guess was right. This can be repeated for multiple guesses without engaging in additional online
exchanges.

Generic group model. As discussed in Section 4.1 we require a non-black-box assumption to
prove pre-computation resilience, and “count” the number of operations required for an offline
brute-force attack. Similarly to [9], we use GGM to bind each offline guess to a group operation.
In our case, we bind it to the computationally expensive operation of pairing. This is explained
in more detail in Section 7.4. CRISP is proven in local GGM. Appendix D discuss how we can
modify the functionality to allow the reuse of a single generic group for all CRISP instances. It also
discusses the limitation on composing CRISP with other protocols sharing the same group (e.g.,
same bilinear curve).

7.2 Correctness

Honest parties Pi, Pj compute the secrets Si, Sj respectively, which are used as inputs to FPAKE to
get Ki, Kj . Assuming Ĥ1(sid, ·) is injective on the password domain we get:

Si = ê(Ãj , B̃i) = ê(g
xjrj
1 , Ĥ1(sid, πi)

xiri) = ê(g1, Ĥ1(sid, πi))
xiri·xjrj

Sj = ê(Ãi, B̃j) = ê(gxiri1 , Ĥ1(sid, πj)
xjrj ) = ê(g1, Ĥ1(sid, πj))

xjrj ·xiri

Ki=Kj ⇐⇒ Si=Sj ⇐⇒ Ĥ1(sid, πi)=Ĥ1(sid, πj) ⇐⇒ πi=πj

7.3 CRISP realizes FsiPAKE

Theorem 2. Protocol CRISP as depicted in Figure 7 UC-realizes FsiPAKE in the (FPAKE,FGGP)-
hybrid world.

We give the full proof in Appendix C and describe the high-level strategy below. In the UC proof,
we omit sid from Ĥ1 and Ĥ2 for the sake of brevity.

We prove CRISP’s UC-security by providing an ideal-world adversary S, that simulates a
real-world adversary A against CRISP, while only having access to the ideal functionality FsiPAKE.
We show the real and ideal worlds in Figure 8.

The main challenge for S is the unknown passwords assigned to parties by Z. To overcome
this, S simulates the real-world Ĥ1(πi) = [yπi ]G2 using a formal variable (indeterminate) Zi in
the ideal-world: Ĥ?

1 (πi) = [Zi]G2 . Wherever the real world uses group encodings of exponents, S
simulates them using encodings of polynomials with these formal variables: [F ]Gj for polynomial F .

This simulation technique, using formal variables for unknown values, is very common in GGM
proofs. It “works” because Z is only able to detect equality of group elements, and group operations
produce only linear combinations of the exponents. Two formally distinct polynomials F1 6=F2 in
the ideal world would only represent the same value in the real world in the case of a collision on
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Fig. 8: Depiction of real world running protocol CRISP with adversary A versus simulated world
running the ideal protocol for FsiPAKE with adversary S.

some unknown value: F1(x) = F2(x). Since these unknown values are uniformly selected over a large
domain and the polynomials have low degrees, the probability of collisions is negligible.

To simulate several unknown values, we use these variables:

1. Xi represents party Pi’s salt xi.
2. Yπ represents the unknown exponent yπ s.t. Ĥ1(π)=gyπ2 , for any password π.
3. Iid represents the unknown exponent ιid s.t. Ĥ2(id) = gιid2 .
4. Ri,ssid represents party Pi’s blinding value ri in sub-session ssid.
5. Zi is an alias for Yπi , where πi is party Pi’s password.

Note that some variables are created “on the fly” during the simulation. For example, upon
every fresh Ĥ1(π) query S creates a new variable Yπ.

Using these variables, S simulates the following:

– Hash queries: Ĥ1(π) = [Yπ]G2 and Ĥ2(id) = [Iid]G2 .
– Group operations: [F1]Gj � [F2]Gj = [F1+F2]Gj , [F1]Gj � [F2]Gj = [F1−F2]Gj ,
ê([F1]G1 , [F2]G2) = [F1·F2]GT , ψ([F ]G2) = [F ]G1 and ψ−1([F ]G1) = [F ]G2 .

– Pi’s password file: 〈idi, [Xi]G1 , [XiZi]G2 , [XiIidi ]G2〉.
– First message from Pi: (ssid, idi, [XiRi,ssid]G1 , [XiRi,ssidIidi ]G2).

Variable Aliasing. Note that S uses both Yπ and Zi variables: Yπ are used for simulating an
evaluation of Ĥ1(π), while Zi are used for simulating Pi’s password file. Since Yπi and Zi are distinct
variables that might represent the same value in the real world, the simulation seems flawed. For
instance, Z might ask A to compromise a party Pi and then evaluate ê(g1, Bi) = ê(g1, Ĥ1(πi)

xi)
and ê(Ai, Ĥ1(π

′)) = ê(gxi1 , Ĥ1(π
′)). With overwhelming probability, these encodings will be equal if

and only if Z chose πi=π
′, since collisions in Ĥ1 only occur with negligible probability. Yet because

of using the alias Zi, S would generate ê(g1, Bi) = ê([1]G1 , [XiZi]) = [XiZi]GT and ê(Ai, Ĥ1(π
′)) =

ê([Xi]G1 , [Yπ′ ]G2) = [XiYπ′ ]GT which are always different encodings.

Nevertheless, S is able to detect possible aliasing collisions: when two distinct polynomials,
whose group encodings were sent to the environment Z, become equal under substitution of Zi with
Yπ′ (for some previously evaluated Ĥ1(π′)), S knows there will be a collision if πi=π

′. This condition
can be tested by S using OfflineTestPwd queries, for a compromised party Pi. When FsiPAKE

replies “correct guess” to such query, S substitutes Yπ′ for Zi in all its data sets.

While we could have identified collisions across all FGGP queries, we chose to limit OfflineTest-
Pwd to only pairing evaluations (Pairing simulation), for better modelling of pre-computation
resilience (see Section 7.4). This implies that S needs to predict possible future collisions when
simulating a pairing. This prediction is achieved by the polynomial matrix explained below.
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1: function InsertRow(v)
2: for all row w with pivot column j in M do
3: v ← v − v[j]·w
4: j ← SelectPivot(v)
5: if v =

#»
0 then return

6: v ← v/v[j]
7: for all row w in M do
8: w ← w − w[j]·v
9: Insert row v with pivot column j to M

10: function SelectPivot(v)
11: sent ← false

12: for all compromised party Pi with identifier idi do
13: for all passwords π′ that were queried by Ĥ1(π′) do
14: j1 ← index of monomial XiYπ′

15: j2 ← index of monomial XiYπ′Iidi
16: if v[j1] 6=0 or v[j2] 6=0 then
17: Send (OfflineTestPwd, sid,Pi, π′) to FsiPAKE

18: sent ← true

19: if FsiPAKE returned “wrong guess” then

20: return

{
j1 if v[j1] 6=0

j2 otherwise

21: Substitute variable Zi with Yπ′ in all polynomials
22: Merge corresponding columns of M , v

23: if some party Pi has been compromised and sent=false then
24: Send (OfflineTestPwd, sid,Pi,⊥) to FsiPAKE

25: if v 6= #»
0 then return arbitrary column j having v[j] 6= 0

Algorithm 1: S’s row reduction algorithm, using OfflineTestPwd queries

Polynomial Matrix. Throughout the simulation S maintains a matrix M whose rows correspond
to polynomials in GT , and its columns to possible terms. A polynomial is represented in M by its
coefficients stored in the appropriate columns. For example, if columns 1 to 3 correspond to terms
Xi, XiZi and XiYπ′ respectively, then polynomial F = 2XiZi − 3XiYπ′ will be represented in M by a
row (0, 2,−3).

Matrix M is extended during the simulation: when a new variable is introduced (e.g., when A
issues a Hash query) new columns are added; and when a new polynomial is created in GT by a
Pairing query, another row is added to M , but using a row-reduction algorithm (see Algorithm 1)
so the matrix is always kept in reduced row-echelon form. Note that when polynomials are created
due to MulDiv operations in GT , S does not extend the table, as the created polynomial is by
definition a linear combination of others, so it would have been eliminated by the row-reduction
algorithm. It is therefore clear that all polynomials created by S in GT are linear combinations of
the matrix rows seen as polynomials.

When invoked by A to compute a pairing ê([F1]G1 , [F2]G2), S first computes the product
polynomial FT = F1·F2, converts it to a coefficient vector V then applies the first step of row-
reduction; that is, a linear combination of M ’s rows is added to V so to zero V ’s entries already
selected as pivots for these rows. S then scans V for a non-zero entry corresponding to a term XiYπ′

(or XiIidiYπ′) for some compromised party Pi and a password guess π′, where password guesses are
taken from A’s Ĥ1(π′) queries. If such non-zero entry exists in V , S sends OfflineTestPwd query
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to FsiPAKE testing whether party Pi was assigned password π′ (i.e., πi=π
′). If the guess failed, S

chooses this as the pivot entry. Otherwise, S merges the variable Zi with Yπ′ , and repeats the process
until some test fails or no more entries of the specified form are non-zero in V . If V 6=0 and no pivot
is selected, arbitrary non-zero entry is selected. S then applies the second step of row-reduction;
that is S uses V to zero the entries of the selected pivot entry in other rows, and insert V as a new
row to M . Finally, S proceeds as usual for group operations, choosing the encoding [FT ]GT using
the original FT , possibly merging some variables.

This completes the proof sketch; for further details we refer to Appendix C.

7.4 Cost of offline brute-force attack on CRISP

We now show that the cost of an offline brute-force attack is at least one pairing per guess. The original
UC framework does not limit the ideal-world adversary S from testing every possible password
via OfflineTestPwd queries once compromising a party. This allows a very strong simulator
who can instantly reconstruct the party’s password once compromised with StealPwdFile. The
solution is to bind offline tests with some real-world work, by keeping the environment aware of
OfflineTestPwd queries in the ideal world and of the corresponding real-world computation. For
instance, [22] requires OPRF query for each tested password, while [9] shows linear relation between
the number of offline tests and Generic Group operations.

We will bind each ideal-world OfflineTestPwd query with a bilinear pairing computed (after
a compromise) in the real-world using Pairing query to FGGP. We stress that it suffices to prove
this for failed offline tests, since successful tests may happen at most once per compromised party’s
password. In real-life scenarios, where all parties share a single password, there might only be one
successful offline test.

Note that S never sends OfflineTestPwd queries, except when simulating FGGP’s Pairing
query, where a sequence of such offline tests is sent to FsiPAKE. It is also easy to see that this
sequence ends when FsiPAKE replies with “Correct guess”. If all tests are answered on the affirmative
and some party Pi has been compromised, then S sends a final query with π=⊥ resulting in “Wrong
guess” from FsiPAKE.

Therefore there is a one-to-one mapping between bilinear pairings computed by the real-world
adversary after a compromise, and OfflineTestPwd queries sent by the ideal-world adversary
S when simulating those computations. As a result, an environment Z equipped with awareness
of failed offline tests (in the ideal-world) and of pairings (in the real-world) gains no advantage
distinguishing these executions.

7.5 Primum Non Nocere - breakdown resilience of CRISP

Our CRISP compiler is based on pairing-friendly group and UC-realizes FsiPAKE assuming the
Generic Group Model with pairing. However, we can show that CRISP preserves several important
properties even when the pairing-friendly group’s security is completely broken (e.g., discrete log is
easy).

Unconditional PAKE Security First we consider the underlying symmetric PAKE’s original
properties. To show this, we are only concerned with the additional actions added before invoking
the PAKE. Recall that the message added by CRISP for party Pi is:

idi, Ãi, C̃i = idi, (g
xi
1 )ri , (Ĥ2(sid, idi)

xi)ri ,

where ri and xi are random values. This message is thus completely independent of the password
and does not leak any information about it. Also, we recall from Section 7.2 that the inputs to
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CHIP CRISP

Password file derivation 2H + 2E 2Ĥ + 3E
Key exchange: Blinding 1E 3E

Identity check 0 1Ĥ + 2P
Key generation 1H + 3E + PAKE 1P + PAKE

Table 3: Comparison of costly operations in CRISP and CHIP

FPAKE Si, Sj are equal if and only if the passwords are equal (only assuming Ĥ1 is injective on the
password domain). Thus, unless a party is compromised, the underlying PAKE properties (leaking
no information of the password and allowing a single online guess) are preserved by CRISP.

GGM-Free Password File Security Recall that CRISP’s password file for party Pi takes the
following form: 〈file, idi, Ai, Bi, Ci〉 where only Bi is derived from the password πi as Bi=Ĥ1(πi)

xi

with a random salt xi. Hash-to-Group functions usually consist of a composition of a “conventional”
hash function H with a Map-to-Group function F : Ĥi(s) ← F (Hi(s)). Therefore, the password
file is derived from a “conventionally hashed” password H1(πi) rather than the plain password.
Thus, modelling H1 as RO, to mount a brute-force attack against a compromised password file, the
adversary has to evaluate H1 on the each guess π′, regardless of group properties.

For example, with discrete log capabilities, the adversary can extract the salt xi from Ai=g
xi
1 .

Assuming F−1 is efficiently computable, they can extract:

F−1(B
1/xi
i ) = F−1(Ĥ1(πi)

xi/xi) = F−1(F (H1(πi))) = H1(πi)

However, a conventional hash computation is still required to test each password guess: H1(π
′)

?
=

H1(πi). Note that hash evaluation of guesses can be pre-computed. GGM is only used to prove that
some work per guess (specifically, bilinear pairing) is required from the attacker post-compromise.

8 Computational Cost

The computational costs for CHIP and CRISP are summarized in Table 3 in terms of costly
operations. In the table, we use H, Ĥ, E, and P to denote Hash, Hash-to-Group, Exponentiation,
and Pairing costs, respectively, and PAKE denotes the additional cost of the underlying PAKE used.
We ignore the cost of group multiplications.

8.1 Password Hardening for Pre-Compromise

Common password hardening techniques (e.g., PBKDF2 [26], Argon2 [5], and scrypt [28]) are used
in the process of deriving a key from a password to increase the cost of brute-force attacks. As
mentioned in Section 3 both CHIP and CRISP protocols can use those techniques to increase the
cost of the pre-compromise computation phase of the attack (pre-computation). In CHIP, we can
use any of those hardening techniques to implement the hash function denoted as H1. Similarly, in
CRISP, we can use those techniques as the first step in implementing the Hash-to-Group function
denoted as Ĥ1. As those functions are only called once in the password file derivation phase, we can
increase their cost without increasing the cost of the online phase of the protocol.

8.2 Password Hardening for Post-Compromise

In addition to the cost of the pre-compromise phase, the CRISP protocol also requires the attacker
to perform a post-compromise phase. The offline test post-compromise cost mentioned above is
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taken from the lower bound proved in Section 7.4. This is also an upper bound for CRISP, since
having compromised a password file, an adversary can check for any password guess π′ if:

ê(g1, Bi)
?
= ê(Ai, Ĥ1(sid, π

′))

The left-hand side can be computed once and re-used for different guesses. The right-hand side must
be computed per-password, but the invocation of Ĥ1 can be done prior to the compromise.

We stress that a pairing operation is preferred over exponentiation when considering the cost of an
offline test. While the latter can be significantly amortized (e.g., by using a window implementation),
to the best of our knowledge, only 37% speed-up can be achieved for pairing with a fixed point [14].
Moreover, pairing requires more memory than a simple point multiplication and is harder to
accelerate using GPUs [29].

In OPAQUE [22], the difficulty of offline tests was increased by iterative hashing (password
hardening). CRISP cannot benefit from this approach for post-compromise hardening, because the
design does not allow the salt inside the hash. However, by using larger group sizes, we can increase
the cost of each pairing and slow down offline tests. Although coarse-grained, this allows some
trade-off between compromise resilience and computational complexity of CRISP.

8.3 CRISP Optimization

We can optimize the CRISP protocol in several ways to reduce the added computational cost and
latency.

Identity Verification A substantial part of the added computational cost of the protocol is the
identity verification that requires two pairing operations. We propose two options to optimize this
cost:
1. Reducing latency – The verification does not affect the derived key or the subsequent messages.

This implies we can continue with the protocol by sending the next message and postpone the
verification for later, while we wait for the other party to respond. The total computational cost
remains the same, but the latency (or running time) of the protocol is reduced.

2. Verification delegation – Any party that receives the protocol messages, can verify the identity
appearing in it (verification is only based on the identity and blinded values). We consider the
following scenario, where we have a broadcast network with many low-end devices, such as IoT
devices, and one or more high-end devices, such as a controller or bridge. The bridge can perform
the identity verification for all protocols in the network, and alert the user if any verification
fails.

Number of Messages CRISP requires two additional messages compared to the underlying PAKE.
We can trivially reduce this to one additional message. The first message remains the same, but
after receiving it, the other party can already derive the shared secret Si and prepare the first PAKE
message. Consequently, CRISP’s second message can be combined with the first PAKE message,
resulting in a single additional message, and again reducing the total latency of the protocol. As
any PAKE protocol requires at least two simultaneous messages [24], we can implement CRISP
using only three sequential messages. The same optimization applies to CHIP.

8.4 Performance Benchmark

We provide open source implementations for CHIP and CRISP. In both we rely on CPace [18] as
the underlying symmetric PAKE. CHIP was implemented on top of Ristretto255 curve from the
libsodium library (v1.0.18). CRISP uses the pairing friendly curve BLS12-381 from the MCL library
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CPace SAE CHIP OPAQUE CRISP

CPU time (ms) 0.2 >1.3 0.6 0.6 4.1
Communication rounds 1 2 2 2 2
Security notion PAKE none iPAKE saPAKE siPAKE

Table 4: Online performance comparison and proven security notions for PAKEs.

(v1.22). Both curves are assumed to provide 128-bit of security strength. The source code is available
at https://github.com/shapaz/CRISP.

In Table 4 we compare the online performance of CHIP and CRISP with those of other popular
PAKE protocols, running on an i7-4790 processor. CPace and OPAQUE [22] were chosen by
IETF CFRG as symmetric and asymmetric PAKEs (respectively) for usage with TLS 1.3, and are
considered to be very efficient. SAE [19] is the underlying symmetric PAKE of Wi-Fi’s WPA-3 and is
designed to be supported by low-resource embedded devices. For measurements, our code implements
both CPace and OPAQUE over Ristretto255. For SAE we used the official hostapd/wpa supplicant.
Note that although Wi-Fi’s SAE was designed to be a PAKE, its security was never proven.

9 Conclusions and discussion

In this paper, we formalized the novel notions of iPAKE and siPAKE, that bring compromise
resilience to all parties, and can also be applied in the symmetric setting. We presented CHIP, which
we proved to UC-realize FiPAKE under ROM. We also introduced CRISP, which we proved to realize
FsiPAKE under GGM+ROM. Moreover, we have shown that each offline password guess for CRISP
requires a computational cost equivalent to one pairing operation. Finally, we showed our protocols
are practical and efficient.

Deploying (s)iPAKE Deploying (s)iPAKEs in practice could be done by, e.g., using CRISP or
CHIP inside a Wi-Fi handshake, and choosing roles and device names (“Phone: Elon’s third iPhone”)
as the identities, and requiring consistency between the reported identity and the identity in the
handshake. A compromise of the phone would afterwards only allow the adversary to impersonate as
this device identity, which would enable manual detection (e.g., a lost phone appearing as an access
point) and facilitate allow/deny listing. Other application examples include IoT settings, where one
could link role identities to capabilities, e.g., the window cannot instruct the garage door to open.

Comparison of CRISP and CHIP CHIP and CRISP both provide Password Authenticated
Key Exchange with compromise resilience, and allow fine-grained password hardening by selecting
computationally hard hash functions (Section 8.1). Parties running CHIP or CRISP only evaluate
those hash functions once in the offline setup phase, which means that computationally costly
variants can be chosen.

However, while CHIP realizes FiPAKE providing “Hashed password with public identifiers” level
of compromise resilience (Section 3), CRISP realizes FsiPAKE, providing the more secure “Hashed
password with secret salt” level. Thus, CRISP requires the adversary to pay an additional coarse-
grained cost after party compromise (Section 8.2). CRISP’s pre-computation resistance comes at a
cost: CHIP is faster, requires standard assumptions, and can be implemented with simple group
operations; CRISP, on the other hand, requires bilinear pairing and local GGM, and cannot be
trivially composed with other protocols that share the same group.
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Going forward with the concept of identity-binding PAKEs, we identify several remaining open
problems:

Two message protocol. In Section 8.3, we showed how our protocols require only three
messages. As shown in [24], PAKE can be realized with only two messages. It is an open problem to
either prove a lower bound of three messages or to implement a two message iPAKE or siPAKE
protocol. To the best of our knowledge, there are no two message (s)aPAKE protocols. Jutla and
Roy [23] propose a one-round aPAKE, but it seems that they require an additional message from
the server before the protocol [22].

Optimal bound on the cost of brute-force attack. In Section 3 we showed a black-box
post-compromise brute-force attack on any PAKE protocol. The computational cost of the attack is
two runs (i.e., for both parties) of the PAKE protocol for each offline password guess. However, to
the best of our knowledge, brute-forcing current PAKE implementations requires a computational
cost equivalent to only one run of the protocol. It remains an open problem to find a more efficient
black-box attack or to implement a more resilient PAKE.

Fine-grained password hardening. While both CHIP and CRISP allow for fine-grained pass-
word hardening, CRISP additionally provides coarse-grained post-compromise password hardening
by enlarging the group (e.g., curves of larger size). Allowing fine-grained hardening (e.g., iterative
hashing) while preserving pre-computation resistance for all parties remains an open problem.
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A Proof of Theorem 1: CHIP UC-realizes FiPAKE

To prove Theorem 1 and show that our CHIP protocol UC-realizes FiPAKE, we provide a simulator
S that only has access to the ideal functionality FiPAKE, but whose output is computationally
indistinguishable from a real protocol run. We prove that for any PPT environment Z, the real and
simulated worlds shown in Figure 9 are computationally indistinguishable, thus proving that CHIP
indeed UC-realizes FiPAKE.

In the UC framework, the environment Z’s view consists of the parties’ outputs and the values
returned from the adversary (A in the real world and S in the ideal world). As shown by Canetti [11],
without loss of generality we can assume A to be the “dummy” adversary who merely sends queries
as instructed by Z and forwards to Z anything that it receives. Note that A relays messages between
parties, therefore allowing Z full MiTM control over the communication. The view provided to Z by
A consists of message flows between parties (Flow), replies to compromise queries (StealPwdFile)
and the additional adversarial interfaces provided by the ideal functionalities FRO (Hash) and
FPAKE (TestPwd).

APi Pj

Z

FPAKE FRO

SPi Pj

Z

FiPAKE

(a) real world (b) simulated world

Fig. 9: Depiction of real world running protocol CHIP with adversary A versus simulated world
running the ideal protocol for FiPAKE with adversary S.

We now give the proof for UC security of CHIP protocol from Figure 6, as stated in Theorem 1.

Proof (Theorem 1).
Let A be the dummy adversary running in the (FPAKE,FRO)-hybrid world (will be referred to as

“ideal world” from now on). Consider the simulator S depicted in Figure 10 and Figure 11, running
in the ideal world and let Z be a PPT environment. We will show that Z’s views in both worlds
(shown in Figure 9) are computationally indistinguishable. Since a view consists of queries and
responses between Interactive Turing Machines, we consider each interaction separately, showing
they are all computationally indistinguishable between the two worlds.

StealPwdFile. When Z asks A to compromise party Pi, in both worlds it either returns “no
password file” or a password file. If “no password file” is returned in the real world, then StoreP-
wdFile has not yet been sent to Pi. In this case, in the simulated world FiPAKE would return the
same string to S which will forward it to Z. Otherwise, the tuple 〈file, idi, Xi, Yi, x̂i〉 is returned to
Z. In this case, FiPAKE in the simulated world will send S the identity idi and a (possibly empty)
password πi. Since the identity comes from the installation (StorePwdFile), it exactly matches
the identity in the real world.

The rest of the password file consists of values derived from xi and yi in both worlds in the same
way. In the real world each party Pi chooses its own xi uniformly at random, and S chooses these
values in the same manner in the simulated world, so Z has no means to distinguish them. Finally yi
in the real world is the hash for password πi. We state that this is also true for the simulated world:

27



Initially, pick xi
R←Z?q for each party Pi and Hi[·] is undefined for i = {1, 2}. Whenever S references an undefined

hash value Hi[·], set Hi[·]
R← Z?q .

Upon (StealPwdFile, sid) from Z towards Pi:
◦ Send (StealPwdFile, sid,Pi) to FiPAKE

◦ If FiPAKE returned “no password file”:
. return this to Z

◦ Otherwise, FiPAKE returned (“password file stolen”, idi, πi)
◦ If πi 6= ⊥: set yi ← H1[πi]

◦ Otherwise, pick yi
R←Z?q

◦ For each 〈compromised,Pk, ·, yk〉:
. Send (OfflineComparePwd, sid,Pi,Pk) to FiPAKE

. If FiPAKE returned “passwords match”: set yi←yk
◦ Record 〈compromised,Pi, idi, yi〉
◦ Xi←gxi , Yi←gyi
◦ hi ← H2[idi, Xi]
◦ x̂i ← xi + hi·yi
◦ Return 〈file, idi, Xi, Yi, x̂i〉 to Z

Upon (Hash, sid, s) from Z towards FRO:
◦ If s = 〈1, π′〉: for each party Pi:

. Send (OfflineTestPwd, sid, ssid,Pi, π′) to FiPAKE

. If FiPAKE replied “correct guess”:
� Retrieve 〈compromised,Pi, ·, yi〉
� set H1[π′]← yi

◦ Return to Z

{
H1[π′] s = 〈1, π′〉
H2[id, X] s = 〈2, id, X〉

Fig. 10: CHIP simulator S in the offline part

If Z has already asked to query Hash for πi then H1[πi] was selected by S at that time, and
S must have also issued an OfflineTestPwd for all parties, including Pi. Therefore, FiPAKE is
holding an 〈offline, . . . 〉 record when answering S’s StealPWdFile query, and thus the returned
πi is correct (not empty). So S uses yi = H1(πi) as in the real world.

Otherwise, S chooses value yi while handling StealPwdFile command, and stores it in a
〈compromised, . . . 〉 record. When Z will later query for Hash of πi S will receive a “corret guess”
response from FiPAKE (since πi is the correct password for Pi) and will set H1[πi] to the stored yi
value. Note that S will not re-select yi after selecting yj where the passwords πi, πj are identical,
but instead will use OfflineComparePwd to detect this case and set yi = yj = H1[πj ] = H1[πi].
So in this case too, yi = H1(πi) as in the real world.

We conclude that Z cannot distinguish between the worlds through StealPwdFile queries.

Hash. Eyal: We should explicitly mention here that we use programmable RO. S only deviates from
simulating a perfect random oracle when answering Hash for password guesses (H1(π

′)). However,
the only difference is employing the programmability of our ROM for setting H1[π

′] ← yi when
detecting that π′ is the correct password for a previously compromised party Pi. Since that yi is
also selected uniformly at random, Z has no means to distinguish S’s replies in the simulated world
from FRO’s replies in the real world.

Flows. It is easy to see that S simulates each real party by selecting random xi and ri as in the
real world, so Z’s view of message flows is indistinguishable between real and ideal world.
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Upon (NewSession, sid, ssid,Pi,Pj , idi) from FiPAKE:
◦ Ignore if there is a record 〈session, ssid,Pi,Pj , ·〉
◦ Pick ri

R←Z?q
◦ Record 〈session, ssid,Pi,Pj , ri〉 and mark it fresh
◦ Xi←gxi , Ri←gri
◦ fi ← (ssid, idi, Xi, Ri)
◦ Send fi to Z as Pi towards Pj and receive f ′i from Z towards Pj
◦ Parse f ′i as (ssid, id′i, X

′
i, R
′
i)

◦ Record 〈sent, ssid,Pi, (idi, Xi, Ri)〉 and 〈recv, ssid,Pj , (id′i, X ′i, R′i)〉

Upon (TestPwd, sid, ssid,Pi, α′, β′, tr′) from Z towards FPAKE:
◦ Retrieve 〈session, ssid,Pi,Pj , ri〉 marked fresh
◦ Retrieve 〈send, ssid,Pi, fi〉 and 〈recv, ssid,Pi, f ′j = (id′j , X

′
j , R

′
j)〉

◦ Set αi ← R′rij , hi ← H2[idi, Xi], hj ← H2[id′j , X
′
j ]

◦ tri ← 〈min(fi, f
′
j),max(fi, f

′
j)〉

◦ Define β(y): y 7→ (R′jX
′
jg
y·hj )ri+xi+y·hi

◦ If αi=α
′ and tri=tr′:

. If there is an entry H1[π′]=y′ with β(y′)=β′:
� Send (OnlineTestPwd, sid, ssid,Pi, π′) to FiPAKE

. Otherwise, if there is a record 〈compromised,Pk, idk, yk〉 with β(yk)=β′ and idk=id′j :
� Send (Impersonate, sid, ssid,Pi,Pk) to FiPAKE

◦ If no other query was sent:
. Send (OnlineTestPwd, sid, ssid,Pi,⊥) to FiPAKE

◦ Mark the session compromised if FiPAKE replied “correct guess” or interrupted otherwise
◦ Forward FiPAKE’s response to Z

Upon (NewKey, sid, ssid,Pi, α′) from Z towards FPAKE:
◦ Retrieve 〈session, ssid,Pi,Pj , ri〉 not marked completed
◦ Retrieve 〈sent, ssid,Pj , fj〉 and 〈recv, ssid,Pi, f ′j=(id′j , ·, ·)〉
◦ if the session is fresh and fj 6= f ′j :

. Send (OnlineTestPwd, sid, ssid,Pi,⊥) to FiPAKE

◦ Mark the session completed
◦ Send

(
NewKey, sid, ssid,Pi,K′, id′j

)
to to FiPAKE

Fig. 11: CHIP simulator S in the online part

TestPwd. Consider TestPwd query’s output. If in the real world FPAKE returns “correct guess”
then α′ = αi, β

′ = βi and tr′ = tri. In the simulated world, S easily tests α′ and tr′, since αi and tri
are calculated from data S knows. To check β′ S has to extract the guess for y′, either from H1(π′)
queried earlier, or from a compromised party’s yk.

If the correct password has been previously queried by H1(πi), then S will compute β(H1(πi))
exactly like a real-world party Pi. In this case the comparison with β′ must succeed, and S will
issue an OnlineTestPwd query for πi, which will result in FiPAKE’s session being compromised
and “correct guess” being returned.

For the case where H1(πi) has not been queried yet, we use the following lemma:

Lemma 1. Let G be a group where the SDH assumption holds, let Z be a PPT environment and
Pi a party. If Z never queries FRO with H1(πi) and never compromises any party with identity
idj and password πi (where parties Pi and Pj are the peers of sub-session ssid), then upon sending
TestPwd to FPAKE, Z has negligible probability to compute party Pi’s values (αi, βi).
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If H1(πi) has not been queried yet, then by Lemma 1, with astonishing probability Z could have
only provided α′ = αi and β′ = βi if some compromised party Pk has idk = id′j and πk = πi. In this
case S will find β(yk) = β(H1(πk)) = β(H1(πi)) = βi = β′ and will issue an Impersonate query
for Pk, which will also result in FiPAKE’s session being compromised and “correct guess” to be
returned.

In the other direction, if the TestPwd query succeeded in the simulated world, then S found
that α′ = αi, tr

′ = tri and either β′ = β(H1[π′]) or β′ = β(yk). In the first case, S received “correct
guess” in response to an OnlineTestPwd query with π′, implying πi = π′ and thus β′ = β(H1(πi)).
In the latter case, S received “correct guess” from FiPAKE after issuing an Impersonate query,
implying πi = πk and thus β′ = β(H1(πk)) = β(H1(πi)). This ensures that in both cases the
real-world adversary would also get “correct guess” from FPAKE.

Note that since in both worlds TestPwd query either results in “correct guess” with the session
being marked compromised, or “wrong guess” and the session becoming interrupted, then both
TestPwd’s output and the session state are equivalent in both worlds.

We now consider party Pi’s output, which consists of a session key Ki and an identity id.

Identity. It is easy to see that S uses id′j that was received in the modified flow f ′j , as the identity
for FiPAKE’s NewKey. In the real world, an honest party Pi will also use this identity for its output.
Therefore, we only need to show that FiPAKE allows this identity as input.

When the session is interrupted FiPAKE does not limit the selection of the identity at all.
When the session is fresh S checks if Z asked to make any change in the flow fj from Pj to Pi. If it
did not, then id′j = idj and FiPAKE will accept this identity. Otherwise, S sends an OnlineTestPwd
query with ⊥ as password, which will make the session interrupted in FiPAKE, and as a result
will allow S to choose any identity.

When the session is compromised, S must have succeeded in either an OnlineTestPwd or an
Impersonate query earlier. If the former was queried, then FiPAKE allows S to choose any identity.
Otherwise, it was a successful impersonation of party Pk towards Pi. As shown above for TestPwd
query, thanks to KCI resistance, this only happens when idk = id′j , which FiPAKE permits.

Session Key. Finally, consider the output key Ki. Recall that when NewKey is requested by the
environment, FiPAKE’s session in the simulated world has the same state as FPAKE in the real world.
Since FiPAKE and FPAKE use the same logic for selecting the session key (either Z’s K ′, a previous
Kj or a fresh random Ki), it seems clear that Z cannot distinguish between these keys. However,
when the session is fresh and a change in the flow from Pj to Pi is detected (fj 6= f ′j) S sends an
OnlineTestPwd to FiPAKE making the session interrupted (this was necessary for setting the
identity, as explained above). Nevertheless, in this case the real parties observe different transcripts
(tri 6= trj) and thus they provide FPAKE with different inputs. Therefore, FPAKE will provide Pi
with random key Ki (since its session is fresh) regardless of its password. As for Pj ’s key, it is only
affected by Pi’s session state when Pj ’s own session is fresh, in which case it will be assigned an
independent random key Kj . Recall that S made Pi’s session in FiPAKE interrupted, so in the
simulated world too Pi and Pj ’s session keys will be randomly chosen.

After considering all the components of Z’s views, we conclude that with astonishing probability
Z cannot distinguish between the real and ideal world views, and thus CHIP UC-realizes FiPAKE as
stated.

30



A.1 Proof of Lemma 1

A key compromise impersonation (KCI) attack was formally described by [25] in terms of the
Canetti-Crawczyk model, under which the IB-KA protocol was defined, as follows:

Definition 2. We say that a completed session of a key-exchange protocol is clean if the attacker
did not have access to the session’s state at the time of session establishment, nor it issued a
session-key query against the session after completion.

Definition 3. We say that a KE-attacker A that has learned the private key of party P succeeds
in a KCI attack against P, if A is able to distinguish from random the session key of a complete
session at P for which the session peer is uncorrupted and the session and its matching session (if
it exists) are clean.

Proof (Lemma 1). Assume on the contrary that Z is a PPT environment able to compute (αi, βi)
without querying FRO for H1(πi) and without compromising any party Pk with idk=idj and πk=πi.
Recall that in [15] the IB-KA protocol was proven to provide KCI-resistance under the SDH
assumption. We will show how to mount a KCI attack against IB-KA by simulating a run of the
CHIP protocol towards Z.

When Z configures some party Pi with identity idi and password πi we configure a party P ′i
using KDC Sπi . Therefore parties with the same password in CHIP share the same KDC in IB-KA.
When Z asks to compromise party Pi or run a session between parties Pi and Pj in CHIP, we do
the same in IB-KA (with P ′i and P ′j). We also inspect and modify the message flows exactly as
instructed by Z.

Note that CHIP’s random oracle FRO picks hash values from uniform distribution over Z?q , and
IB-KA’s KDC picks its secret y in the same manner. Also note that when KDC Sπi ’s secret value yπi
equals H1(πi), the flows and password files expected by Z in CHIP are equivalent to the flows and
key files created in IB-KA. Therefore, Z cannot distinguish between our simulation and a normal
run of CHIP. To enforce this equivalence, when Z queries the hash of some party Pk’s password
H1(πk) we issue a special KDC-reveal query against Sπk and program the hash result to be the
revealed secret value yπk .

When Z sends TestPwd to FPAKE in sub-session ssid between Pi and Pj we extract the inputs
αi, βi as key and identity idj that was sent in the clear to mount a KCI attack. By the assumption
that Z has not queried H1(πi), KDC Sπi is still uncompromised, thus its IB-KA session is valid.
Since we assumed that no party with identity idj and password πi has been compromised, then
under KDC Sπi no party with identity idj has been compromised. However, using Z we are able
to compute the correct IB-KA key Ki=H(αi, βi) where the output of party P ′i is 〈idj ,Ki〉. This
contradicts the KCI resistance property of IB-KA, thus proving the lemma.

B CHIP Variant With Key Confirmation

In Section 6 we showed how to combine the IB-KA protocol together with any symmetric PAKE
to construct the CHIP protocol. The construction was sequential; at first the parties executed
the IB-KA protocol, and only then were they able to engage in a PAKE, using the negotiated
shared values (αi and βi). One might wonder if these two communication rounds can be merged by
simultaneously executing both IB-KA and PAKE.

To run PAKE in parallel to IB-KA, the input to PAKE cannot depend on the IB-KA output.
Instead, during the password file generation phase we derive two independent values from the

31



password (instead of just one): yi, pi ← H1(sid, πi). As before, yi is used to simulate the KDC’s
private key. The new value pi is added to the password file, and will be provided as input to PAKE.
Finally, both keys of IB-KA and PAKE should be combined in the derivation of the session key.

Unfortunately, this construction does not provide Perfect Forward Secrecy (PFS). Assume there
is a set of parties that share the same password. Once an adversary has compromised a party, it can
actively interfere in sessions between any two parties. When the correct password is later guessed,
the adversary will find the keys to all those sessions. Recall that the IB-KA protocol only guarantees
Weak Forward Secrecy (wFS not PFS), i.e. past sessions in which the adversary A was active are
vulnerable when long term keys are compromised. In our settings, guessing the correct password
after a session has ended allows A to find the IB-KA key. In order to find the final session key,
A also has to succeed in a TestPwd against the PAKE. However, since the correct input is pi,
which is common to all parties (with the same password), the adversary only needs to have had
compromised in advance a single party Pk (with πk = πi) so it can use its pk = pi and bypass the
PAKE.

We remark that this attack is possible due to the imperfect forward secrecy of IB-KA. Thus, we
can eliminate it by adding PFS to the scheme. We augment our construction with an explicit key
confirmation, and include the transcripts in the session key derivation. Intuitively, this prevents the
aforementioned attack by requiring the adversary to find the correct password during the session to
pass the key confirmation. The transcripts are included to prevent honest parties from agreeing on
a session key in presence of an active adversary. In this case, even the impersonated party will not
be able to complete the key confirmation. Unconfirmed, the resulting key will never be used, and
the adversary will gain nothing from finding it later, when the password is guessed.

Although adding a key confirmation results in a two-round iPAKE protocol, with which we have
started, we stress that in many real-life scenarios (such as TLS) an explicit key confirmation exists
anyway, and so the added communication cost is only one round.

The complete CHIP variant described above is depicted in Figure 12. Note that it combines the
transcripts of both IB-KA and the underlying PAKE6. This requires a slight modification of FPAKE,
to make it output the transcript together with the session key, as was done in [16].

C Proof of Theorem 2: CRISP UC-realizes FsiPAKE

We first introduce a helper lemma to modularize the proof. The main proof considers the case of
aliasing collisions in TestPwd; the following lemma excludes all other collisions.

Lemma 2. Except with negligible probability, there are no collisions in the simulation outside of
aliasing collisions in TestPwd.

Using the above lemma, we now prove CRISP’s UC-security with respect to FsiPAKE:

Proof (Theorem 2). For simplicity let us call the (FPAKE,FGGP)-hybrid world real world. For
any real-world adversary A we describe an ideal world simulator S such that no environment Z
can distinguish between real-world execution of CRISP and a simulation in the ideal-world. As
shown in [11], it suffices to prove this for a “dummy” adversary who merely passes all inputs to the
environment and acts according to its instructions.

6 The PAKE’s transcript is necessary for simulating the case where the adversary uses a compromised pk value to set
the PAKE key, but does not modify the IB-KA flows. In this case the adversary cannot compute the session key,
but decides whether the parties output matching or different keys.
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We remark that the depiction of CRISP ignored the impact of an active adversary. That is, the
flow fi transmitted by Pi might be received differently on Pj . Here we denote incoming flows as f ′i
(and values they carry as id′i, Ã

′
i, C̃
′
i) to account for adversarial modifications.

fi = (ssid, idi, Ãi, C̃i)−−−−−−−−−−−−−−−−−−−→ A
fj = (ssid, idj , Ãj , C̃j)←−−−−−−−−−−−−−−−−−−−

←−−−−−−−−−−−−−−−−−−−
f ′j = (ssid, id′j , Ã

′
j , C̃

′
j)

−−−−−−−−−−−−−−−−−−−→
f ′i = (ssid, id′i, Ã

′
i, C̃
′
i)

Consider the simulator S as depicted in Figure 13, Figure 14 and Figure 15. First we exclude
collisions in the simulation, since by Lemma 2 those appear with negligible probability. Let us
analyse Z’s view in both the real world and the simulated world:

Query Value Real Simulated

MulDiv
ξ1 � ξ2 [a1+a2]Gj [F1+F2]Gj
ξ1 � ξ2 [a1−a2]Gj [F1−F2]Gj

Pairing ê(ξ1, ξ2) [a1·a2]GT [F1·F2]GT

Isomorphism
ψ(ξ2) [a2]G1 [F2]G1

ψ−1(ξ1) [a1]G2 [F1]G2

Hash
Ĥ1(π′) [yπ′ ]G2 [Yπ′ ]G2

Ĥ2(id) [ιid]G2 [Iid]G2

StealPwdFile

idi idi idi

Ai = gxi1 [xi]G1 [Xi]G1

Bi = Ĥ1(πi)
xi [xiyπi ]G2 [XiZi]G2

Ci = Ĥ2(idi)
xi [xiιidi ]G2 [XiIidi ]G2

Flow

idi idi idi

Ãi = Ai
ri [xiri]G1 [XiRi,ssid]G1

C̃i = Ci
ri [xiιidiri]G2 [XiIidiRi,ssid]G2

TestPwd Si = ê(Ã′j , B̃i)
7 [a′j ·(xiyπiri)]GT [F ′j ·(XiZiRi,ssid)]GT

Table 5: Comparison of values viewed by Z in the real world versus the simulated world.

From Table 5 we can see that group elements observed by Z are encodings of polynomials
in the simulated world and encodings of assignments to those polynomials in the real world.8

Since Z only observes encoded group elements, distinguishing between the worlds can only be
achieved by polynomial collisions, i.e. the encodings of two polynomials differ [F1]Gj 6= [F2]Gj while
concrete values assigned to them in the real world (variable assignment #»x ) have the same encodings
[F1(

#»x )]Gj = [F2(
#»x )]Gj . Since the encoding function is injective, this implies collisions F1 6=F2 while

F1(
#»x )=F2(

#»x ). By Lemma 2 the probability for collisions in the simulation is negligible, so Z has
negligible advantage in distinguishing between the encodings.

TestPwd answer. Although Table 5 refers to TestPwd query, it does not compare the responses
of this query to A/Z. In the real world, this response is consistent with the state of the session: when
the guess is correct (S′ = Si) the session becomes compromised and the response is “correct guess”,

7 We remark that Z does not observe Si directly in TestPwd query, but rather the result of comparing its guess S′

against Si.
8 In the UC proof, we omit sid from Ĥ1 and Ĥ2 for the sake of brevity.
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while a wrong guess makes the session interrupted and causes “wrong guess” to be returned.
However, when S simulates TestPwd there seems to be a path allowing the session to remain
freh, when neither Impersonate nor OnlineTestPwd queries are sent by S to FsiPAKE, but the
condition F = a′XiZiRi,ssid holds.

When S responds “correct guess” to a TestPwd query, Z provided a polynomial satisfying
F=a′jXiZiRi,ssid. Recall from Page 19 that Zi might only alias another variable Zk (when πi=πk) or
Yπ′ (when πi=π

′). If F contains Yπ′ then S issued an OnlineTestPwd query, making the session
compromised. A similar argument applies for Zk where Pk has been compromised and having
idk=id′. Since Z only obtains polynomials with Zk by compromising Pk, we are left with the case
that Pk has been compromised, but idk 6=id′. However, in this case a′j must contain Xk and therefore
c′j=a

′
j ·Iid′ contains Xk·Iid′ , which is a term Z cannot produce in G2. Thus, if S replies “correct guess”

then the session becomes compromised in the simulated world, as well as in the real world.

If S answers “wrong guess” then either no queries were submitted by S, or some query has
failed and thus F contains a variable (Yπ′ or Zk) that is not aliased by Zi. In both cases S′ 6=Si in
the real world and the session becomes interrupted. We conclude that after a TestPwd query
the sessions of both the real and simulated worlds are in the same state, and the responses to A/S
are equal.

It is left to compare the outputs of parties in each world. In both worlds, the output consists of
an identity and a session key: 〈sid, ssid, id,Ki〉, which we will analyse separately.

Identity. The identity output by party Pi in the real world is id′ taken from the incoming flow f ′j
controlled by the adversary. In the real world, the identity is taken from the simulator’s input to
NewKey query. Since S uses the same id′ in its query, we only need to show that this query is not
ignored by FsiPAKE (i.e. that id′ is allowed by the check in NewKey).

When the session is interrupted, no restriction is placed on the identity selected by S. The
same applies when the session is compromised due to a successful OnlineTestPwd query. When
an Impersonate query caused the session to become compromised, only the impersonated identity
is allowed, and indeed S verifies that idk=id′ before impersonating party Pk. When the session is
fresh, only the true identity of the peer party is permitted, but S uses id′ as in the real world.
Nevertheless, if id′ 6=idj and a′j = αXjRj,ssid (α∈Z?q) then the condition

c′j = a′j ·Iid′ = αXjRj,ssid·Iid′

could not have been satisfied and the modified flow should have been ignored in both worlds.

Session Key. In the real world, Ki is party Pi’s output of FPAKE. If Pi’s session with Pj was
compromised then A’s input key K ′ to NewKey is selected. Otherwise, both parties receive the
same randomly chosen key Ki=Kj if they had the same input Si=Sj to NewSession with fresh
sessions, or independent random keys otherwise.

In the simulated world, the key Ki selected by FsiPAKE for party Pi is S’s input key K ′ to
NewKey (decided by Z) if the session is compromised. Otherwise, FsiPAKE generates the same
random key for parties using a common password with fresh sessions, or independent random keys
otherwise.

If a session is compromised in the simulated world, then a TestPwd query succeeded, and as
shown above the session is compromised in the real-world as well.

If a session is fresh in the simulated world then no TestPwd query was sent, so it is also
fresh in the real world. Additionally, a′i=αXiRi,ssid and a′j=αXjRj,ssid (S will interrupt a session
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with modified flows, even if A would not send TestPwd queries in the real world), so if the parties’
passwords were identical πi=πj , then in the real world the inputs to FPAKE must also be equal
(Si=Sj).

However, if a session is interrupted in the simulated world, it might be from a failing TestPwd
query, which caused the session to be interrupted in the real world as well, or because S sent
OnlineTestPwd with π=⊥ when handling NewKey query. This happens when the modified
flows f ′i and f ′j are not using a′i=αiXiRi,ssid and a′j=αJXjRj,ssid with αi=αj . If the flows have this
form with αi 6=αj , then

Si = [αjXjRj,ssid · XiZiRi,ssid]GT 6= [αiXiRi,ssid · XjZjRj,ssid]GT = Sj

in the simulated world, regardless of Zi=Zj . Thus, in the real world Si 6=Sj , since assignment collisions
are negligible. If the modifications (a′i and a′j) do not take this form, then since there are no other
polynomials with Ri,ssid and Rj,ssid, Si 6=Sj in both real and ideal world (again due to assignment
collisions being negligible).

C.1 Proof of Lemmas 2 and 3

We prove Lemma 2 by deferring a specific subcase to Lemma 3.

Proof (Lemma 2). There are three types of possible collisions:
1. Hash queries. Since Hash responses are taken from the uniform distribution over Z?q , the

probability of such collisions is bound by qH
q−1 , where qH is the number of Hash queries

(polynomial in κ) and q ≥ 2κ.
2. Variable Aliasing. By Lemma 3, there are no aliasing collisions in the simulation.
3. Variable Assignment. Polynomials created by S for elements in G1 and G2 have maximal

degree 3. MulDiv and Isomorphism queries cannot increase the degree, and Pairing allows
creating polynomials in GT adding the input degrees. Therefore, the maximal degree of any
polynomial whose encoding is observed by Z is 3+3=6.
Since in the real world the exponents (corresponding to variables in the simulated world) are taken
from the uniform distribution over Z?q , the probability of assignment collisions Fi(

#»
X ) = Fj(

#»
X )

for some variable assignment
#»
X , is bound by:

Pr
#»
X
R←Z?q

[
∃i 6=j Fi(

#»
X ) = Fj(

#»
X )

]
≤
∑
i 6=j

Pr
#»
X
R←Z?q

[
(Fi−Fj)(

#»
X ) = 0

]

≤
∑
i 6=j

deg(Fi−Fj)
|Z?q |

≤
(
N

2

)
6

q−1

which is negligible in κ, where N denotes the number of distinct polynomials created in the
simulation.

Lemma 3. Except with negligible probability, there are no aliasing collisions in the simulation
outside of TestPwd.

Proof (Proof of Lemma 3). Variable aliasing collisions take the form Zi=Yπi , where πi is the password
assigned by the environment to party Pi. They arise from defining separate formal variables to
represent the logarithm of Ĥ1(π) for (a) each party Pi’s password πi (unknown to the simulator)
and (b) each adversary invocation of Ĥ1 on some password guess π′.

35



Note that this implies possible aliasing between parties: Zi=Zj when both parties are assigned
the same password: πi=πj .

Since the lemma does not consider aliasing in TestPwd queries, it remains to show no collisions
are possible for group encoding of elements. The following basic polynomials are accessible to the
adversary after the corresponding queries:

1 public generator

Xi
FPAKE’s StealPwdFile queryXi·Iidi

Xi·Zi
Xi·Ri,ssid message flow from Pi
Xi·Ri,ssid·Iidi
Yπ FGGP’s Hash query for Ĥ1(π)

Iid FGGP’s Hash query for Ĥ2(id)

Recall that polynomials in G1, G2 are simply linear combinations of these basic polynomials, and
polynomials in GT are linear combinations of their pairwise products. The only basic polynomial in
which Zi appears is Xi·Zi, which cannot collide (under aliases) with anything but Xi·Yπi or Xi·Zj . Since
such polynomials are not given, no aliasing collisions are possible in G1,G2. Since GT polynomials
are combinations of products, only only linear combinations of the following basic collisions are
possible under aliasing (Zi=Yπi):

1. (Xi·Zi) · (1) = (Xi) · (Yπ′) where Zi=Yπ′ (πi=π
′)

2. (Xi·Zi) · (Iid′) = (Xi·Iidi) · (Yπ′) where Zi=Yπ′ and id′=idi
3. (Xi·Zi) · (Xj) = (Xj ·Zj) · (Xi) where Zi=Zj (πi=πj)
4. (Xi·Zi) · (Xj ·Iidj ) = (Xj ·Zj) · (Xi·Iidi) where Zi=Zj and idi=idj

Recall that the simulator S issues OfflineComparePwd queries comparing the password of
freshly compromised party Pi with those of previously compromised parties, therefore eliminating
collisions of the form Zi=Zj altogether. It is left to prove only for type 1 and 2 aliasing collisions.

Since every polynomial in GT is a linear combination of FT polynomials created in Pairing
query, it is also a linear combination of matrix M ’s rows.

Matrix M created by S in Pairing queries is kept in row echelon form (see Algorithm 1),
therefore each row r is represented by a pivot monomial Pr, corresponding to the pivot column
holding 1. Consider a collision (under aliases):

0 =
∑

αrFr (∃rαr 6= 0)

where Fr is the polynomial corresponding to the r’th row. For every row r whose pivot Pr is
non-collidable, the coefficient αr must be 0, since by the row echelon form, pivots are unique.
Therefore if αr 6=0 for some row r, then the pivot Pr is collidable.

Recall that monomials containing XiYπ′ are only selected by S as pivots after an OfflineTest-
Pwd query failed, implying that πi 6=π′ and hence such monomials are not collidable. Therefore, for
a row r with αr 6=0 the pivot Pr must either be XiZi or XiZiIidi which collides with XiYπi or XiYπiIidi
(respectively).

However, if there is a row r′ that has non-zero coefficient for XiYπi or XiYπiIidi , then S must
have queried OfflineTestPwd for Pi with πi, and this test must have succeeded, causing S to
merge Zi with Yπ′ . In this case αr=0 since the pivot Pr is not collidable after the merge.
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D Group Reuse Across Sessions

As explained in Section 4.1, CRISP is proved in local generic group model. Locality of GGM implies
that any instance of CRISP requires a dedicated independent group in the real world. Therefore, the
proof does not hold when two protocol instances share the same group. While a similar requirement
for CHIP’s ROM is achieved with domain separation (prepending sid to any hash input), it is
unclear how to achieve this for groups.

Instead, we propose to modify the functionality FsiPAKE to explicitly describe multiple instances
with the same group. A similar approach was used in [16] to support multiple aPAKE sub-sessions
under a single server setup. Likewise, we suggest a higher-level of global session that determines a
shared group, identified by gid. Under this global session many CRISP instances may run. Each
instance refers to a different network and identified by unique sid. Some parties may be associated
(by invoking StorePwdFile) with the same sid, marking them members of the same network. We
will forbid queries involving parties from different networks. Finally, a third level of sub-sessions will
correspond to online key-exchanges performed by parties, and identified by ssid.

We do not provide the modified proof and functionalities, for the sake of readability. Mostly, a
gid argument needs to be added to queries, and many data structures should be indexed by sid.
The key change is that FGGP’s Hash query should include an sid parameter. As opposed to other
group operations, hash-to-group can enjoy domain separation. This allows us to create separate Yπ
variables for each network based on sid, to prevent variable aliasing across sessions.

This approach allows us to extend the use of a single generic group for multiple CRISP instances.
It does not provide composition with other protocols using the same group. As a result, protocols
composed with CRISP (either higher-level or the underlying symmetric PAKE) should not share its
group, or the composition will require a new proof. However, we note that CRISP uses a bilinear
group, which would not be selected for most other protocols regardless of the above recommendation.
Moreover, we believe that the use of domain separation in the hash-to-group can help with proving
the security of the composed protocol, even in cases where the same group is shared with other
protocols.

E Asymmetric PAKE Functionality

Figure 16 shows the Strong Asymmetric PAKE functionality from [22], in which only two parties
engage: a server S and a user U . It introduces the concept of a password file, created for S
upon StorePwdFile query and disclosed to the adversary upon adaptive corruption query
StealPwdFile modelling a server compromise attack. Once a server’s password file is obtained,
the ideal-world adversary is able to mount an offline guessing attack using OfflineTestPwd
queries, and an online impersonation attack using Impersonate query.
FsaPAKE encompasses the concept of sub-sessions: a single session corresponds to a single user

account on the server, allowing many sub-sessions (identified by ssid) where the user and server
reuse the same password file to establish independent random keys.

The asymmetry between user and server in this functionality is prominent: only OnlineTestPwd
and NewKey queries consider a general party P , while other queries explicitly mention either U or
S. Even FPAKE’s NewSession query is split in FsaPAKE into UsrSession and SvrSession, since
the user supplies a password for each session, while the server uses its password file.

F IB-KA Protocol

Figure 17 depicts the IB-KA protocol from [15] for reference.
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Public Parameters: Cyclic group G of prime order q≥2κ with generator g∈G, a PAKE protocol realizing F+
PAKE,

hash functions H1:{0, 1}?→{0, 1}κ×Z?q , H2:{0, 1}?→Z?q and H3:{0, 1}?→{0, 1}3κ, and κ a security parameter. Note
that here sid is explicitly concatenated to the input of H1, H2 invocations for domain separation.

Password File Generation:
Pi upon (StorePwdFile, sid, idi, πi): Pj upon (StorePwdFile, sid, idj , πj):

Pick random xi
R← Z?q Pick random xj

R← Z?q
pi, yi ← H1(sid, πi) pj , yj ← H1(sid, πj)
Xi←gxi Yi←gyi Xj←gxj Yj←gyj
hi ← H2(sid, idi, Xi) hj ← H2(sid, idj , Xj)
x̂i ← xi + yi·hi x̂j ← xj + yj ·hj
Record 〈file, idi, pi, Xi, Yi, x̂i〉 Record 〈file, idj , pj , Xj , Yj , x̂j〉

Key Exchange:
Pi upon (NewSession, sid, ssid,Pj): Pj upon (NewSession, sid, ssid,Pi):
Retrieve 〈file, idi, pi, Xi, Yi, x̂i〉 Retrieve 〈file, idj , pj , Xj , Yj , x̂j〉
Pick ri

R← Z?q Pick rj
R← Z?q

Ri←gri Rj←grj

fi = (idi, Xi, Ri)

fj = (idj , Xj , Rj)

sid, ssid, pi sid, ssid, pj

PAKE

αi, tri,1 αj , trj,1

hj ← H2(sid, idj , Xj) hi ← H2(sid, idi, Xi)

βi ←
(
RjXjYi

hj
)ri+x̂i βj ←

(
RiXiYj

hi
)rj+x̂j

γi ← Rj
ri γj ← Ri

rj

tri,2 ← 〈min(fi, fj),max(fi, fj)〉 trj,2 ← 〈min(fj , fi),max(fj , fi)〉
k1, k2, k3 ← H3 (αi, βi, γi, tri,1, tri,2) k1, k2, k3 ← H3 (αj , βj , γj , trj , trj,2)

ui, vi ←

{
k1, k2 if fi ≤ fj
k2, k1 otherwise

uj , vj ←

{
k1, k2 if fj ≤ fi
k2, k1 otherwise

ui

uj

If uj=vi: Ki←k3, otherwise: Ki
R←{0, 1}κ If ui=vj : Kj←k3, otherwise: Kj

R←{0, 1}κ
Output (sid, ssid, idj ,Ki) Output (sid, ssid, idi,Kj)

Fig. 12: CHIP variant with key confirmation
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Simulator S proceeds as follows, interacting with environment Z and ideal functionality FsiPAKE.
Initially, matrix M is empty, S1=S2={1}, ST=∅, [1]G1=g1, [1]G2=g2 and [F ]Gj is undefined for any other polynomial

F and j∈{1, 2, T}. Whenever S references an undefined [F ]Gj , set [F ]Gj
R← Ej\Sj and insert [F ]Gj to Sj .

Upon (StealPwdFile, sid) from Z towards Pi:
◦ Send (StealPwdFile, sid,Pi) to FsiPAKE

◦ If FsiPAKE returned “no password file”:
. Return this to Z

◦ Otherwise, FsiPAKE returned (“password file stolen”, idi)
◦ Record 〈compromised,Pi, idi〉
◦ Create variables Xi, Zi, Iidi if necessary
◦ For each 〈compromised,Pj , idj〉 with Pj 6=Pi:

. Send (OfflineComparePwd, sid,Pi,Pj) to FsiPAKE

. If FsiPAKE returned “passwords match”:
� Merge variables Zi and Zj

◦ Return 〈idi, [Xi]G1 , [XiZi]G2 , [XiIidi ]G2〉 to Z

Upon (NewSession, sid, ssid,Pi,Pj , idi) from FsiPAKE:
◦ Create variables Xi, Zi, Iidi , Ri,ssid as necessary
◦ fi ← (ssid, idi, [XiRi,ssid]G1 , [XiIidiRi,ssid]G2)
◦ Send fi to Z as Pi towards Pj , and receive f ′i from Z towards Pj
◦ Parse f ′i as (ssid, id′, [a′]G1 , [c

′]G2)
◦ Ignore if a′=0 or c′ 6= a′·Iid′
◦ Record 〈sent, ssid,Pi,Pj , id′, a′, c′〉

Fig. 13: S simulating party compromise and session.

Upon (TestPwd, sid||ssid,Pi, [F ]GT ) from Z towards FPAKE:
◦ Retrieve 〈sent, ssid,Pj ,Pi, id′, a′, c′〉
◦ For each 〈compromised,Pk, idk〉 with idk=id′:

. If Zk appears in F :
� Send (Impersonate, sid, ssid,Pi,Pk) to FsiPAKE

� If FsiPAKE returned “correct guess”: replace all Zk with Zi in F
◦ For each password π′ queried by Ĥ1(π′):

. If Yπ′ appears in F :
� Send (OnlineTestPwd, sid, ssid,Pi, π′) to FsiPAKE

� If FsiPAKE returned “correct guess”: replace all Yπ′ with Zi in F
◦ If F = a′XiZiRi,ssid:

. Return “correct guess” to Z
◦ Otherwise:

. Send (OnlineTestPwd, sid, ssid,Pi,⊥) to FsiPAKE

. Return “wrong guess” to Z

Upon
(
NewKey, sid||ssid,Pi,K′∈{0,1}κ

)
from Z towards FPAKE:

◦ Retrieve 〈sent, ssid,Pi,Pj , id′i, a′i, c′i〉 and 〈sent, ssid,Pj ,Pi, id′j , a′j , c′j〉
◦ If @ α∈Z?q s.t. a′i=αXiRi,ssid and a′j=αXjRj,ssid:

. Send (OnlineTestPwd, sid, ssid,Pi,⊥) to FsiPAKE

◦ Send
(
NewKey, sid, ssid,Pi, id′j ,K′

)
to FsiPAKE

Fig. 14: S simulating PAKE functionality FPAKE
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Upon
(
MulDiv, sid, j∈{1,2,T}, [F1]Gj , [F2]Gj , s∈{0, 1}

)
from Z towards FGGP:

◦ Return [F1 + (−1)s · F2]Gj to Z

Upon (Pairing, sid, [F1]G1 , [F2]G2) from Z towards FGGP:
◦ FT ← F1 · F2

◦ Execute InsertRow(v) on the coefficient vector v of FT
◦ Return [FT ]GT to Z

Upon
(
Isomorphism, sid, j∈{1,2}, [F ]Gj

)
from Z towards FGGP:

◦ Return [F ]G3−j to Z

Upon (Hash, sid, s) from Z towards FGGP:

◦ Return

{
[Yπ]G2 s = 1||π
[Iid]G2 s = 2||id

to Z

Fig. 15: S simulating generic group functionality FGGP
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Functionalities FaPAKE and FsaPAKE, with security parameter κ, interacting with parties {U, S} and an adversary S.

Upon (StorePwdFile, sid, U, πS) from S:
◦ If there is no record 〈file, U, S, ·〉:

. record 〈file, U, S, πS〉 and mark it uncompromised

Upon (StealPwdFile, sid, S) from S:
◦ If there is a record 〈file, U, S, πS〉:

. mark it compromised

. π ←

{
πS if there is a record 〈offline, πS〉
⊥ otherwise

. return (“password file stolen” , π) to S
◦ else: return “no password file” to S

Upon (OfflineTestPwd, sid, S, π′) from S:
◦ Retrieve 〈file,U, S, πS〉
◦ If it is marked compromised:

. if πS = π′: return “correct guess” to S

. else: return “wrong guess” to S
◦ otherwise: Record 〈offline, π′〉

Upon (UsrSession, sid, ssid, S, πU ) from U :
◦ Send (UsrSession, sid, ssid, U, S) to S
◦ If there is no record 〈session, ssid, U, S, ·〉:

. record 〈session, ssid, U, S, πU 〉 and mark it fresh

Upon (SvrSession, sid, ssid, U) from S:
◦ Retrieve 〈session,U, S, πS〉
◦ Send (SvrSession, sid, ssid, S, U) to S
◦ If there is no record 〈session, ssid, S, U, ·〉:

. record 〈session, ssid, S, U, πS〉 and mark it fresh

Upon (OnlineTestPwd, sid, ssid,P, π′) from S:
◦ Retrieve 〈session, ssid,P,P ′, πP〉 marked fresh
◦ if πP = π′: mark the session compromised and return “correct guess” to S
◦ else: mark the session interrupted and return “wrong guess” to S

Upon (Impersonate, sid, ssid) from S:
◦ Retrieve 〈session, ssid, U, S, πU 〉 marked fresh
◦ Retrieve 〈file,U, S, πS〉 marked compromised
◦ If πU = πS : mark the session compromised and return “correct guess” to S
◦ else: mark the session interrupted and return “wrong guess” to S

Upon
(
NewKey, sid, ssid,P,K′∈{0,1}κ

)
from S:

◦ Retrieve 〈session, ssid,P,P ′, πP〉 not marked completed
◦ if it is marked compromised: KP ← K′

◦ else if it is marked fresh and there is a record 〈key, ssid,P ′, πP′ ,KP′〉 with πP = πP′ : KP ← KP′

◦ otherwise: pick KP
R← {0, 1}κ

◦ If the session is marked fresh: record 〈key, ssid,P, πP ,KP〉
◦ Mark the session completed and send 〈ssid,KP〉 to P

Fig. 16: Asymmetric PAKE functionality FaPAKE (full text) and Strong Asymmetric PAKE func-
tionality FsaPAKE (grey text omitted)
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Public Parameters: Cyclic group G of prime order q≥2κ with generator g∈G, hash functions H1: {0, 1}?→Z?q ,
H2 : G×G→{0, 1}κ, and κ a security parameter. Note that here sid is explicitly concatenated to the input of H1, H2

invocations for domain separation.

KDC Initialisation:
KDC upon (Init, sid):

Pick random y
R← Z?q

Y←gy
Store 〈sid, y, Y 〉

Private Key Generation:
KDC upon (KeyGen, sid,Pi, idi): KDC upon (KeyGen, sid,Pj , idj):
Retrieve 〈sid, y, Y 〉 Retrieve 〈sid, y, Y 〉
Pick random xi

R← Z?q Pick random xj
R← Z?q

Xi←gxi Xj←gxj
hi ← H1(sid, idi, Xi) hj ← H1(sid, idj , Xj)
x̂i ← xi + y·hi x̂j ← xj + y·hj
Send file[sid] = 〈idi, Xi, Y, x̂i〉 to Pi Send file[sid] = 〈idj , Xj , Y, x̂j〉 to Pj

Key Exchange:
Pi upon (NewSession, sid, ssid,Pj): Pj upon (NewSession, sid, ssid,Pi):
Retrieve file[sid] = 〈idi, Xi, Y, x̂i〉 Retrieve file[sid] = 〈idj , Xj , Y, x̂j〉
Pick ri

R← Z?q Pick rj
R← Z?q

Ri←gri Rj←grjfi = (ssid, idi, Xi, Ri)

fj = (ssid, idj , Xj , Rj)

hj ← H1(sid, idj , Xj) hi ← H1(sid, idi, Xi)
αi ← Rj

ri αj ← Ri
rj

βi ←
(
RjXjY

hj
)ri+x̂i βj ←

(
RiXiY

hi
)rj+x̂j

Si ← H2(sid, αi, βi) Sj ← H2(sid, αj , βj)
Output (sid, ssid, idj , Si) Output (sid, ssid, idi, Sj)

Fig. 17: IB-KA protocol
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G Major differences between versions

Version 1.0, May 2020 Initial upload.
– Introduced iPAKE and siPAKE to protect all parties against compromise.
– Formalized FiPAKE and FsiPAKE as UC functionalities.
– Presented an iPAKE construction from IB-KA.
– Presented CRISP and proved it realizes FsiPAKE in GGM.

Version 1.1, July 2020 Some improvements:
– Fixed the iPAKE protocol and proved it realizes FiPAKE in ROM.
– Added a variant of that protocol which includes explicit key confirmation with the same

number of messages.
Version 1.2, October 2020 Additional improvements:

– Reworked introduction and compromise resilience methods.
– Named the iPAKE protocol “CHIP”.
– Added prototype implementation and benchmark for CHIP and CRISP.
– Justify group reuse across sessions.

Version 2.0, March 2021 Major reworking of the paper.
– Completely reworked motivation, problem positioning, and contributions. Improved the

explanation of the difference to related approaches throughout the paper.
– Added explicit comparisons to aPAKE and saPAKE protocols in terms of security and

application scope.
– Provided more intuition for ideal functionalities and protocol design choices in general.

Clarified protocol diagram flows with distinction between message flows and functionality
I/O, removing potentially confusing flow tags, and made session identifiers and inputs to
FPAKE explicit.

– For CHIP, substantially expanded on its underlying design choices and construction, and
added explicit correctness statement.

– For CRISP, added explanation on which properties require GGM, and which ones are provided
unconditionally. Improved accuracy in the phrasing of the lemmas and their role in the proof.

– New benchmarking results that are more representative and include more related protocols;
also added explicit expensive operations counts for our protocols.

– Added paragraph on practical deployment in conclusions.
Version 3.0, Jun 2022 Major reworking of the paper.

– Extended version of the 2022 CRYPTO paper.
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