
Tiramisu: Black-Box Simulation Extractable
NIZKs in the Updatable CRS Model

Karim Baghery and Mahdi Sedaghat

imec-COSIC, KU Leuven, Leuven, Belgium
karim.baghery@kuleuven.be, ssedagha@esat.kuleuven.be

Abstract. Zk-SNARKs, as the most efficient NIZK arguments in terms
of proof size and verification, are ubiquitously deployed in practice. In
applications like Hawk [S&P’16], Gyges [CCS’16], Ouroboros Crypsi-
nous [S&P’19], the underlying zk-SNARK is lifted to achieve Black-Box
Simulation Extractability (BB-SE) under a trusted setup phase. To miti-
gate the trust in such systems, we propose Tiramisu 1, as a construction
to build NIZK arguments that can achieve updatable BB-SE, which we
define as a new variant of BB-SE. This new variant allows updating the
public parameters, therefore eliminating the need for a trusted third
party, while unavoidably relies on a non-black-box extraction algorithm
in the setup phase. In the cost of one-time individual CRS update by
the parties, this gets around a known impossibility result by Bellare et
al. from ASIACRYPT’16, which shows that BB extractability cannot
be achieved with subversion ZK (ZK without trusting a third party).
Tiramisu uses an efficient public-key encryption with updatable keys
which may be of independent interest. We instantiate Tiramisu, imple-
ment the overhead and present efficient BB-SE zk-SNARKs with updat-
able parameters that can be used in various applications while allowing
the end-users to update the parameters and eliminate the needed trust.

Keywords: zk-SNARKs, updatable CRS, Black-Box Simulation Ex-
tractability, C∅C∅ framework

1 Introduction

Zero-Knowledge (ZK) [GMR89] proof systems, particularly Non-Interactive
Zero-Knowledge (NIZK) arguments [BFM88] are one of the elegant tools
in modern cryptography that due to their impressive advantages and
practical efficiency, they are ubiquitously deployed in practical applica-
tions [BCG+14,KMS+16,JKS16,KKKZ19]. A NIZK proof system allows a party
P (called prover) to non-interactively prove the truth of a statement to another
party V (called verifier) without leaking any information about his/her secret
inputs. For instance, they allow a prover P to convince a verifier V that for a
(public) statement x, he/she knows a (secret) witness w that satisfies a relation
R, (x,w) ∈ R, without leaking any information about w.
1 In Italian, Tiramisu literally means "lift me up".
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Typically, a NIZK argument is expected to satisfy, (i) Completeness, which
implies that an honest prover always convinces an honest verifier (ii) Soundness,
which ensures that an adversarial prover cannot convince an honest veri-
fier except with negligible probability. (iii) Zero-Knowledge (ZK), which guar-
antees that an honestly generated proof does not reveal any information
about the (secret) witness w. In practice, it is shown that bare soundness
is not sufficient and it needs either to be amplified [KMS+16] or the proto-
col needs to be supported by other cryptographic primitives [BCG+14]. To
deal with such concerns, different constructions are proposed that either sat-
isfy one of the following notions, one of which is an amplified variation of
soundness. (iv) Simulation Soundness, (SS), which ensures that an adversar-
ial prover cannot convince an honest verifier, even if he has seen polynomi-
ally many simulated proofs (generated by Sim), except with negligible probabil-
ity. (v) Knowledge Soundness (KS), which guarantees that an adversarial prover
cannot convince an honest verifier, unless he knows a witness w for statement
x such that (x,w) ∈ R. (vi) Simulation Extractability (SE) (a.k.a. Simulation
Knowledge Soundness), which guarantees that an adversarial prover cannot con-
vince an honest verifier, even if he has seen polynomially time simulated proofs,
unless he knows a witness w for statement x.

The term knowledge in KS (in item v) and SE (in item vi) means that a
successful prover should know a w. knowing is formalized by showing that there
exists an algorithm Ext, which can extract the witness w (from the prover or
proof) in either non-Black-Box (nBB) or Black-Box (BB) manner. Typically,
nBB extraction can result in more efficient constructions, as it allows ExtA to
get access to the source-code and random coins of the adversary A. Although
the constructions that obtain BB extractability are less efficient, they provide
stronger security guarantees, as it allows us to have a universal extractor Ext
for any A. The term simulation in notions SS (in item iv) and SE (in item vi)
guarantees that the proofs are non-malleable and an adversary cannot change
an old (simulated) proof to a new one such that V accepts it. The notion SE
provides the strongest security and also implies non-malleability of proofs as
defined in [DDO+01]. Moreover, it is shown [Gro06] that SE is a sufficient re-
quirement for a NIZK argument to be deployed in a Universally Composable
(UC) protocol [Can01].

zk-SNARKs. In the Common Reference String (CRS) model [BFM88],
NIZK arguments require a trusted setup phase. Based on the under-
lying assumptions, they are constructed either using falsifiable or non-
falsifiable assumptions [Nao03]. At the beginning of the last decade, a
line of research initiated that focused on constructing NIZK arguments
with succinct proofs, which finally led to an efficient family of NIZK
arguments, called zero-knowledge Succinct Non-interactive ARgument of
Knowledge (zk-SNARK) [Gro10,Lip12,PHGR13,BCTV13,Gro16,GM17,BG18],
[Lip19,BPR20]. zk-SNARKs are constructed based on knowledge assump-
tions [Dam91] that allow succinct proofs and nBB extractability. Gentry
and Wichs’s impossibility result [GW11] confirmed that succinct proofs can-
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not be built based on falsifiable assumptions. Beside succinct proofs, all
initial zk-SNARKs were designed to achieve completeness, ZK and KS (in
item v) [Gro10,Lip12,PHGR13,BCTV13,Gro16]. KS proofs are malleable, thus
in practice users needed to make extra efforts to guarantee the non-malleability
of proofs [BCG+14] . Following this concern, in 2017, Groth and Maller [GM17]
presented a zk-SNARK that can achieve SE (in item vi) with nBB extractabil-
ity, consequently generates non-malleable proofs. Recent works in this di-
rection have led to more efficient schemes with the same security guaran-
tees [BG18,Lip19,BKSV20,BPR20].
Mitigating the trust in the setup phase of zk-SNARKs. In 2016, Bel-
lare et al. [BFS16] studied the security of NIZK arguments in the face of sub-
verted CRS. They defined (vii) Subversion-Soundness, (Sub-SND), which en-
sures that the protocol guarantees soundness even if A has generated the CRS,
and (viii) Subversion-ZK, (Sub-ZK), which ensures that the scheme achieves
ZK even if A has generated the CRS. Then, they showed that Sub-SND is not
achievable with (standard) ZK, and also we cannot achieve Sub-ZK along with
BB extractability. Two follow-up works [ABLZ17,Fuc18] showed that most of
zk-SNARKs can be lifted to achieve Sub-ZK (in item viii) and KS with nBB
extraction (nBB-KS). Baghery [Bag19b] showed that using the folklore OR tech-
nique [BG90] any Sub-ZK SNARK can be lifted to achieve Sub-ZK and SE (in
item vi) with nBB extraction (nBB-SE). Meanwhile, as an extension to the MPC
approach [BCG+15] and subversion security, in 2018 Groth et al. [GKM+18] in-
troduced a new variation of the CRS model, called updatable CRS model which
allows both prover and verifier to update the CRS and bypass the needed trust
in a third party. Groth et al. first defined, (ix) Updatable KS, (U-KS), which
ensures that the protocol guarantees KS (in item v) as long as the initial CRS
generation or one of CRS updates is honestly, and (x) Updatable ZK, (U-ZK),
which ensures that the protocol guarantees ZK as long as the initial CRS gen-
eration or one of CRS updates is done by an honest party 2 . Then, they pre-
sented a zk-SNARK that can achieve Sub-ZK and U-KS with nBB extraction
(U-nBB-KS). Namely, the prover achieves ZK without trusting the CRS gen-
erator and the verifier achieves nBB-KS without trusting the CRS generator
but by one-time CRS updating. Recent constructions in this direction have bet-
ter efficiency [MBKM19,GWC19]. Recently, Abdolmaleki, Ramacher, and Sla-
manig [ARS20a] presented a construction, called Lamassu, and showed that
using a similar folklore OR technique [BG90,DS16,Bag19b] any zk-SNARK that
satisfies Sub-ZK and U-nBB-KS can be lifted to achieve Sub-ZK and U-nBB-SE.
(xi) U-nBB-SE ensures that the protocol achieves SE with nBB extraction as long
as the initial CRS generation or one of CRS updates is done honestly. Recently,
it is shown that two efficient updatable universal zk-SNARKs Plonk [GWC19]
and Sonic [MBKM19] can also achieve U-nBB-SE [KZ21]. Considering the im-
possibility of achieving Sub-ZK along with BB extraction [BFS16], such schemes
[ARS20a,GWC19,MBKM19] achieve the strongest notion with nBB extraction.

2 Sub-ZK is a stronger notion than U-ZK, as in Sub-ZK A has generated the CRS,
while the later achieves ZK if at least one of CRS updates is done honestly.
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Using zk-SNARKs in UC-Protocols. A UC protocol [Can01] does not inter-
fere with other protocols and can be arbitrarily composed with other protocols.
In 2006, Groth [Gro06] showed that a NIZK argument that can achieve BB-
SE can realize the ideal NIZK-functionality FNIZK [GOS06]. In 2015 Kosba at
al. [KZM+15] proposed a framework called C∅C∅ along with several construc-
tions that allows lifting a sound NIZK argument to a BB-SE NIZK argument,
such that the lifted version can be deployed in UC-protocols. In summary, given
a sound NIZK argument for language L, the C∅C∅ defines a new extended lan-
guage L̂ appended with some primitives and returns a NIZK argument that can
achieve BB-SE. We review the strongest construction of the C∅C∅ in App. B.7.

Unfortunately, the default security of zk-SNARKs is insufficient to be di-
rectly deployed in UC protocols. The reason is that zk-SNARK achieves nBB
extraction and the extractor ExtA requires access to the source code and ran-
dom coins of A, while in UC-secure NIZK arguments, the simulator of ideal-world
should be able to simulate corrupted parties. To do so, the simulator should be
able to extract witnesses without getting access to the source code of the en-
vironment’s algorithm. Due to this fact, all those UC-secure applications that
use zk-SNARKs [KMS+16,JKS16,KKKZ19], use C∅C∅ to lift the underlying
zk-SNARK to achieve BB-SE, equivalently UC-security [Gro06]. Note that the
lifted zk-SNARKs that achieve BB-SE are not witness succinct any more, but
they still are circuit succinct.

1.1 Our Contributions

Tiramisu. The core of our results is presenting Tiramisu as an alternative
to the C∅C∅ framework but in the updatable CRS model. Technically speaking,
Tiramisu allows one to build simulation extractable NIZK arguments with up-
datable parameters that satisfies a variant of black-box extractability which we
define in this work. In the NIZK arguments built with Tiramisu the parties can
update the CRS themselves instead of trusting a third party. The construction is
suitable for modular use in larger cryptographic protocols, which aim to build SE
NIZK arguments with BB extractability, while avoiding to trust a third party.

To construct Tiramisu , we start with the C∅C∅ ’s strongest construction
and lift it to a construction that works in the updatable CRS model. Mean-
while, to attain fast practical performance, we consider the state-of-the-art con-
structions proposed in the updatable CRS model and show that we can simplify
the construction of C∅C∅ and still achieve the same goal, particularly in the
updatable CRS model. Technically speaking, the strongest construction of the
C∅C∅ framework, gets a sound NIZK argument for the language L and lifts
it to a new NIZK argument for the extended language L̂, that can achieve
BB-SE. The language L̂ is an extension of L appended with some necessary
and sufficient primitives, including an encryption scheme to encrypt the wit-
ness and a Pseudo-Random Function (PRF) along with a commitment scheme
that commits to the secret key of the PRF (more details in App. B.7 and
Sec. 4). In composing Tiramisu, we show that considering recent developments
in building NIZK arguments with updatable CRS, namely due to the existence of
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Fig. 1: Using C∅C∅ and Tiramisu to build BB-SE NIZK arguments in the stan-
dard and updatable CRS models. Tiramisu can be instantiated with either ad-
hoc or lifted constructions [BGM17,BG18,BPR20,ARS20a,GWC19,MBKM19].

nBB-SE NIZK arguments with updatable CRS (either with a two-phase updat-
able CRS [Gro16,BGM17,BG18,BKSV20,BPR20] or with a universal updatable
string [GKM+18,ARS20a,GWC19,MBKM19]) we can simplify the definition of
L̂ by removing the commitment and PRF and construct more efficient SE NIZK
arguments with (a variant of) BB extractability that also have updatable CRS.
We show that, Tiramisu also can be added as a layer on top of the construction
proposed in [ARS20a], called Lamassu, and together act as a generic compiler
to lift any sound NIZK argument to a SE NIZK argument with a variant of
black-box extractability in the updatable CRS model. However, we show that
the arguments built with this approach are inefficient in comparison with the
ones built with only Tiramisu. Fig. 1 illustrates how one can use C∅C∅ and
Tiramisu to build BB-SE NIZK arguments in the standard and updatable CRS
models, respectively. Similar to C∅C∅ framework, Tiramisu results in NIZK ar-
guments whose proof size and verification time are (quasi-)linear in the witness
size, that is an unavoidable requirement for UC security [Can01], but still are
independent of the size of the circuit, which encodes L̂.

Bellare et al.’s Negative Result. Constructing Tiramisu shows that one
can bypass a known negative result in the standard CRS model. In [BFS16],
Bellare et al. observed that achieving Sub-ZK and BB extractability is impossible
at the same time. As BB extractability requires the simulator create a CRS with
a trapdoor it withholds, then it can extract the witness from a valid proof. But
Sub-ZK requires that even if A generates the CRS, it should not be able to
learn about the witnesses from the proof. However, if a NIZK argument achieves
BB extractability, an adversary (CRS subvertor) can generate the CRS like the
simulator. So it has the trapdoor and can also extract the witness and break Sub-
ZK. Considering the above negative result, Tiramisu achieves the best possible
combination with downgrading Sub-ZK (in item viii) to U-ZK (in item x) while
achieving updatable BB extractability, either U-BB-SE or U-BB-KS. U-BB-SE
and U-BB-KS does not need a trusted third party, therefore from the trust
point of view, they are stronger definitions than standard BB-SE and BB-KS,
respectively, which require a trusted setup phase. But, in definitions of U-BB-SE
and U-BB-KS, to bypass the needed trust, we rely on the existence of a nBB
extraction algorithm in the setup phase that can extract the trapdoors from the
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(malicious) parameter generator or updaters. This seems to be unavoidable fact
to achieve updatability and BB extractability at the same time.

Key-Updatable Public-key Cryptosystems. Tiramisu uses a semantically
secure cryptosystem with updatable keys that we define here. We show that such
cryptosystems can be built either in a generic manner from key-homomorphic
encryption schemes [AHI11], or via an ad-hoc approach. Using both generic and
ad-hoc approaches, we present two variations of El-Gamal cryptosystem [ElG84]
instantiated in the pairing-based groups which fulfil the requirements of a cryp-
tosystem with updatable keys. Efficiency of both constructions are evaluated
with a prototype implementation in the Charm-Crypto framework [AGM+13],
and seem to be practical. The new syntax and constructions can be interesting
in their own right, particularly for building other primitives in the updatable
CRS model [CFQ19,DGP+19].

Tab. 1 compares NIZK arguments built with Tiramisu with existing schemes
that can achieve a flavour of SE and ZK. Schemes built with C∅C∅ achieve BB
extractability, thus they cannot achieve S-ZK, and the constructions that achieve
Sub-ZK [Bag19b,Lip19,ARS20a]can achieve (U-) nBB-SE in the best case.

1.2 Related Works on Key Updatable Cryptosystems

In [CHK03], Canetti, Halevi, and Katz defined forward-secure public-key en-
cryption schemes that also support updating the secret key. In a forward-secure
encryption scheme, secret keys are updated on a regular basis such that exposure
to the secret key for a given time period does not enable an adversary to break
the cryptosystem for any prior time period. However, in their setting all updates
are supposed to be handled by a single party, hence no proof is required to ensure
the correctness of key updating. Due to this fact, their definition does not fit
our requirements for distributing trust across multiple updaters in the updatable
CRS model. In [FMMO19], Fauzi et al. proposed an updatable key cryptosys-
tem as well, but, much as in the previous cases, their variant is weak for our
settings and cannot meet our requirements. We naturally extend their notion of
updatability from re-randomization of the public-key under the same secret-key,
to updating both public and secret keys, and proving correctness of updating
similar to other primitives in the updatable CRS model [GKM+18,ARS20a],
while keeping the secret key hidden. These components allow us to distribute
trust on setup phase by enabling parties to update keys without revealing their
secret key while providing proof that the updating phase was executed correctly.

The rest of the paper is organized as follows; Sec. 2 presents necessary pre-
liminaries for the paper. Sec. 3 defines the syntax of a public-key cryptosystem
with updatable keys and presents efficient variations of the El-Gamal cryptosys-
tem as an instantiation. Our construction Tiramisu and its security proofs are
described in Sec. 4. In Sec. 5, we present U-BB-SE NIZK arguments built with
Tiramisu . Finally, we conclude the paper in Sec. 6.
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Table 1: A comparison of Tiramisu with related works. ZK: Zero-knowledge,
SE: Simulation Extractable, U: Updatable, S: Subversion, nBB: non-Black-Box,
BB: Black-Box. X: Achieves, ×: Does not achieve.

Zero-Knowledge Simulation Extractability
ZK U-ZK S-ZK nBB-SE BB-SE U-nBB-SE U-BB-SE

Tiramisu X X × X X X X
C∅C∅ [KZM+15,Bag19a] X × × X X × ×

[GM17,BG18] X × × X × × ×
[Bag19b,Lip19,BPR20] X X X X × × ×
[BGM17,BG18,ARS20a] X X X∗ X × X ×

*Theorem 4 in [ARS20a]) states Lamassu, can achieve U-ZK and U-nBB-SE, but it can be shown
that it can achieve Sub-ZK along with U-nBB-SE which is a stronger combination.

2 Notations

Throughout, we suppose the security parameter of the scheme be λ and negl(λ)
denotes a negligible function. We use x←$X to denote x sampled uniformly
according to the distribution X. Also, we use [1 .. n] to denote the set of integers
in range of 1 to n.

Let PPT and NUPPT denote probabilistic polynomial-time and non-uniform
probabilistic polynomial-time, respectively. For an algorithm A, let im(A) be
the image of A, i.e., the set of valid outputs of A. Moreover, assume RND(A)
denotes the random tape of A, and r←$RND(A) denotes sampling of a ran-
domizer r of sufficient length for A’s needs. By y ← A(x; r) we mean given an
input x and a randomizer r, A outputs y. For algorithms A and ExtA, we write
(y ‖ y′) ← (A‖ExtA)(x; r) as a shorthand for "y ← A(x; r), y′ ← ExtA(x; r)".
Two computationally IND distributions A and B are shown with A ≈c B.

We use additive and the bracket notation, i.e., in group Gµ, [a]µ = a [1]µ,
where [1]µ is a fixed generator of Gµ. A bilinear group generator BGgen(1λ)
returns (p,G1,G2,GT , ê, [1]1 , [1]2), where p (a large prime) is the order of cyclic
abelian groups G1, G2, and GT . Finally, ê : G1 × G2 → GT is an efficient
non-degenerate bilinear pairing, s.t. ê([a]1 , [b]2) = [ab]T . Denote [a]1 • [b]2 =
ê([a]1 , [b]2). We refer to App. B for some relevant definitions.

3 Public-Key Cryptosystems with Updatable Keys

As briefly discussed in Sec. 1, one of the key building blocks used in Tiramisu
is the cryptosystem schemes with updatable keys that we define next. Sim-
ilar definitions are recently proposed for zk-SNARKs [GKM+18], and signa-
tures [ARS20a], but considering previous definitions in [CHK03,FMMO19], to
the best of our knowledge this is the first time that this notion is defined
for the public-key cryptosystems. In contrast to subversion-resilient encryption
schemes [ABK18] that the key-generation phase might be subverted, here we
consider the case that the output of the key-generation phase is updatable and
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parties can update the keys. We aim to achieve the standard security require-
ments of a cryptosystem as long as either the original key generation or at least
one of the updates was done honestly. Similar to the case on paring-based subver-
sion resistant NIZK arguments [BFS16], we assume that the group generator is
a deterministic polynomial time algorithm, which given the security parameter,
it can be run by every entity without the need for a trusted third party.

3.1 Definition and Security Requirements

Definition 1 (Cryptosystems with Updatable Keys). A public-key cryp-
tosystem ΨEnc with updatable keys over the message spaceM and ciphertext space
C, consists of five PPT algorithms (KG,KU,KV,Enc,Dec) defined as follows,

– (pk0, Πpk0 , sk0)← KG(1λ): Given the security parameter 1λ returns the cor-
responding key pair (pk0, sk0) and Πpk0 as a proof of correctness.

– (pki, Πpki) ← KU(pki−1): Given a valid (possibly updated) public key pki−1
outputs (pki, Πpki), where pki denotes the updated public-key and Πpki is a
proof for the correctness of the updating process.

– (1,⊥)← KV(pki, Πpki): Given a potentially updated pki and Πpki , checks the
validity of the updated key. It returns either ⊥ if pki is incorrectly formed
(and updated) otherwise outputs 1.

– (c) ← Enc(pki,m): Given a (potentially updated) public key pki and a mes-
sage m ∈M, outputs a ciphertext c ∈ C.

– (⊥,m′) ← Dec(ski, c): Given c ∈ C and the secret key ski, returns either
⊥ (reject) or m′ ∈ M (successful). Note that in the standard public-key
cryptosystems (and in this definition before any updating) ski = sk0.

Primary requirements for a public-key cryptosystem with updatable keys
ΨEnc := (KG,KU,KV,Enc,Dec) can be considered as follows,

Definition 2 (Perfect Updatable Correctness). A cryptosystem ΨEnc with
updatable keys is perfect updatable correct, if

Pr


(pk0, Πpk0 , sk0 := sk′0)← KG(1λ), rs←$RND(Sub),

(({pkj , Πpkj}
i
j=1, ξSub) ‖ {sk

′
j}ij=1)← (Sub ‖ExtSub)(pk0, Πpk0 , rs),

{KV(pkj , Πpkj ) = 1}ij=0 : Dec(ski := {sk
′
j}ij=0,Enc(pki,m)) = m

 = 1 .

where sk′j is the individual secret-key of each party and pki is the final public-key.

Definition 3 (Updatable Key Hiding). In a cryptosystem ΨEnc with updat-
able keys, for (pk0, Πpk0 , sk0 := sk′0)← KG(1λ) and (pki, Πpki)← KU(pki−1), we
say that ΠEnc is updatable key hiding, if one of the following cases holds,

– the original pk0 was honestly generated and KV algorithm returns 1, namely
(pk0, Πpk0 , sk0)← KG(1λ) and KV(pk0, Πpk0) = 1,
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– the original pk0 verifies successfully with KV and the key-update was gener-
ated honestly once, namely KV(pk0, Πpk0) = 1 and
({pkj , Πpkj}

i
j=1)← KU(pk0) such that {KV(pkj , Πpkj ) = 1}ij=1.

Definition 4 (Updatable IND-CPA). A public-key cryptosystem ΨEnc with
updatable keys satisfies updatable IND-CPA, if for all PPT subvertor Sub, for
all λ, and for all PPT adversaries A,

Pr


(pk0, Πpk0 , sk0 := sk′0)← KG(1λ), rs←$RND(Sub),

({pkj , Πpkj}
i
j=1, ξSub)← Sub(pk0, Πpk0 , rs), b←$ {0, 1}, (m0,m1)←

A(pki, ξSub), b′ ← A(Enc(pki,mb)) : {KV(pkj , Πpkj ) = 1}ij=0 ∧ b′ = b

 ≈λ 1

2
,

where ξSub is the auxiliary information which is returned by the subvertor Sub.
Note that Sub can also generate the initial pk0 and then an honest key updater
KU updates it and outputs pki and the proof Πpki .

3.2 Building Key-Updatable Cryptosystems

We first prove a theorem that gives a generic approach for building a cryptosys-
tem with updatable keys using the key-homomorphic cryptosystems. Then, we
use the generic approach and present the first key-updatable cryptosystem.

Theorem 1 (Cryptosystems with Updatable Keys). Every correct, IND-
CPA secure, and key-homomorphic cryptosystem ΨEnc with an efficient extractor
ExtSub, satisfies updatable correctness, updatable key hiding and updatable IND-
CPA security.
Proof. The proof is provided in App. A.1. ut

A Key-Updatable Cryptosystem from Key-Homomorphic Cryptosys-
tems. Next, we show that the El-Gamal cryptosystem [ElG84] instantiated in a
bilinear group (p,G1,G2,GT , ê, [1]1 , [1]2) can be represented as an key-updatable
encryption scheme constructed from key-homomorphic encryption schemes. In
bilinear group based instantiation, in contrast to the standard El-Gamal en-
cryption (reviewed in Sec. B.4)), the public key consists of a pair ([x]1 , [x]2).
Consequently, the algorithms of new variation can be expressed as follows,

– (pk0, Πpk0 , sk0 := sk′0) ← KG(1λ): Given 1λ, obtain (p,G1,G2,GT , ê, [1]1 ,
[1]2) ← BGgen(1λ); sample sk′0←$Z∗p and return the key pair (pk0, sk0) :=((
pk10, pk

2
0

)
, sk0

)
:=
(([

sk′0
]
1
,
[
sk′0
]
2

)
, sk′0

)
and Πpk0 :=

(
Π1

pk0
, Π2

pk0

)
:=
([
sk′0
]
1
,
[
sk′0
]
2

)
as a proof of correctness (a.k.a. well-formedness).

– (pki, Πpki) ← KU(pki−1): Obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ);
then for a given pki−1 :=

(
pk1i−1, pk

2
i−1
)

:=
([
ski−1

]
1
,
[
ski−1

]
2

)
,

for i ≥ 1, sample sk′i ←$Z∗p and output: (pki, Πpki) :=(([
ski−1 + sk′i

]
1
,
[
ski−1 + sk′i

]
2

)
,
([

sk′i

]
1
,
[
sk′i

]
2

))
, where pki :=
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pk1i , pk

2
i

)
denotes the updated public-key associated with the secret key

ski := ski−1+ sk′i and Πpki :=
(
Π1

pki
, Π2

pki

)
:=
([

sk′i

]
1
,
[
sk′i

]
2

)
is the proof

for correctness of the update.

– (1,⊥) ← KV
(
{pkj}ij=0, Πpki

)
: Obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ←

BGgen(1λ), and then,
- for i = j = 0, given pk0 :=

(
pk10, pk

2
0

)
:= ([sk0]1 , [sk0]2), and the proof

Πpk0 :=
(
Π1

pk0
, Π2

pk0

)
:=
([

sk′0

]
1
,
[
sk′0

]
2

)
, checks Π1

pk0
• [1]2

?
= [1]1 •

pk20, [1]1 • Π2
pk0

?
= pk10 • [1]2 , [1]1 • Π2

pk0

?
= Π1

pk0
• [1]2 .

- for i ≥ 1, given pki−1 :=
(
pk1i−1, pk

2
i−1
)
:=
([
ski−1

]
1
,
[
ski−1

]
2

)
, a po-

tentially updated pki :=
(
pk1i , pk

2
i

)
:=
([

ski−1 + sk′i

]
1
,
[
ski−1 + sk′i

]
2

)
,

and Πpki :=
(
Π1

pki
, Π2

pki

)
:=
([

sk′i

]
1
,
[
sk′i

]
2

)
, checks

(
pk1i−1 + Π1

pki

)
•

[1]2
?
= [1]1 • pk

2
i , [1]1 •

(
pk2i−1 + Π2

pki

)
?
= pk1i • [1]2 and [1]1 • Π2

pki

?
=

Π1
pki
• [1]2.

in each case, if all the checks pass, it returns 1, otherwise ⊥.

– (c) ← Enc (pki,m): Obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ) and
then given a (potentially updated) public key pki := ([ski]1 , [ski]2), such
that ski := ski−1 + sk′i , and a message m ∈ M, samples a randomness
r←$Z∗p and outputs c := (c1, c2) := (m · [rski]T , [r]T ) .

– (⊥,m) ← Dec(ski, c): Obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ) and
then given a ciphertext c ∈ C and a potentially updated secret key ski =

ski−1 + sk′i it returns, c1
csk2

=
m·[rski]T
[rski]T

= m.

In the proposed construction, for the case that {KV({pkj}ij=0, Πpki) = 1}ij=0,
under the BDH-KE knowledge assumption (in Def. 23) with checking [1]1 •
Π2

pkj

?
= Π1

pkj
• [1]2 for 0 ≤ j ≤ i, there exists an efficient nBB extractor ExtSub

that can extract all sk′j from the subvertor Subj . Note that here we considered
the standard version of the El-Gamal cryptosystem, but we could also take its
lifted version, which encrypts gm instead of m.

A More Efficient Key-Updatable Cryptosystem. The technique proposed
in The. 1, acts as a generic approach but might lead to inefficient constructions.
Next, we present a more efficient key-updatable variant of Elgamal cryptosystem.

Hash-based El-Gamal Cryptosystem in Bilinear Groups. The hash-based varia-
tion of El-Gamal cryptosystem [ElG84], is proven to achieve IND-CPA in the
random oracle model. In the rest, we present a new variation of it, instantiated
with bilinear groups, and show that the proposed variation can be represented as
a secure key-updatable encryption scheme. The PPT algorithms (KG,KU,KV) of
the new variation are the same as the algorithms of the first construction, while
in this case the encryption and decryption algorithms, (Enc,Dec) act as follows,
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– (c)← Enc(H, pki,m): Given the one-way hash function H, a public key pki :=
(pk1i , pk

2
i ) and a message m ∈ {0, 1}n as inputs. It samples r←$Z∗p and

returns c := (c1, c2) := (m⊕ H((pk1i )
r), [r]1).

– (⊥,m) ← Dec(H, ski, c): Given the hash function H, the secret key ski, cor-
responding to pki, and a ciphertext c := (c1, c2), decrypts c by calculating
m := c1 ⊕ H(c

ski
2 ).

Theorem 2 (Hashed El-Gamal Cryptosystem with Updatable Keys).
The proposed variation of Hashed El-Gamal encryption satisfies updatable cor-
rectness, updatable key hiding and updatable IND-CPA if BDH-KE and Extended
asymmetric Computational Diffie–Hellman assumptions hold in (G1,G2), and
the hash function H is a random oracle.

Proof. The proof is provided in App. A.2. ut

3.3 Performance of the Proposed Key-Updatable Cryptosystems

We evaluate practical efficiency of both the proposed key-updatable cryp-
tosystems using the Charm-Crypto framework [AGM+13], a Python library
for pairing-based cryptography 3. We apply Barreto-Naehrig (BN254) curve,
y2 = x3 + b with embedding curve degree 12 [BN05] as an SNARK-friendly
curve. Benchmarks are done on a laptop with Ubuntu 20.04.2 LTS equipped
with an Intel Core i7-9850H CPU @2.60 GHz and 16 GB of memory. As we
observed in Sec. 3.2, both the pairing-based and hash-based constructions have
the same (KG,KU,KV) algorithms. In Fig. 2, we plot the running time of key-
updating KU, key-verification KV and the transcript size versus the number of
key updates. By transcript, we mean all the keys along with the proofs generated
with all the updaters.
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Fig. 2: Key updating, key verification (standard & batched versions) and tran-
script size for both the proposed key-updatable cryptosystems.

As it is illustrated in Fig. 2, in both constructions, the key updating, key
verification times and the transcript size are practical and grow linearly with the
number of updates. One time key updating along with generating the underlying
3 The source code is publicly available on https://github.com/Baghery/Tiramisu.

https://github.com/Baghery/Tiramisu
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proof requires ≈ 1 millisecond (ms), while to update a key 50 times and provide
proof of correctness only takes ≈ 36 ms. To verify the validity of a key that is
updated 50 times, a verifier requires ≈ 6 seconds in the standard form of KV
algorithm, however, using the standard batching techniques [ABLZ17] this can
be done 12× faster, in ≈ 0.5 second. In terms of the transcript size, for a key
that is updated 10 times, the verifier requires to store ≈ 3 Kbytes.

Our experiments confirm that the time required for running the encryption
algorithm is constant and takes about ≈ 32ms and ≈ 1.2ms in the pairing-based
and hash-based constructions independent of the number of updates, respec-
tively. While the running time for the decryption algorithm are equal to ≈ 4.5
ms and ≈ 1 ms, respectively. One may notice that the ciphertext size remains
constant in our setting they are equal to 1028 and 46 bytes in the paring-based
and Hash-based encryption schemes, respectively.

4 Tiramisu: BB-SE NIZK in Updatable CRS Model

We present Tiramisu, as a protocol that allows one to generically build NIZK
arguments in the updatable CRS model, which achieve U-ZK (in Def. 15) along
with either Updatable Black-Box Simulation Extractability (U-BB-SE) or Up-
datable Black-Box Knowledge Soundness (U-BB-KS) which we define next. We
first define Updatable Simulation Soundness (U-SS) that is used in

Definition 5 (Updatable Simulation Soundness). A non-interactive ar-
gument ΨNIZK is updatable simulation soundness for R, if for any subvertor Sub,
and every PPT A, the following probability is negl(λ),

Pr


(R, ξR)← R(1λ), ((crs0, Πcrs0) ‖ ts0 := ts′0)← Kcrs(R, ξR), rs←$RND(Sub),

(({crsj , Πcrsj}ij=1, ξSub) ‖ {ts′j}ij=1)← (Sub ‖ExtSub)(crs0, Πcrs0 , rs),

{CV(crsj , Πcrsj ) = 1}ij=0, (x, π)← AO(tsi,...)(R, ξR, crsi, ξSub) :

(x, π) 6∈ Q ∧ x 6∈ L ∧ V(R, ξR, crsi, x, π) = 1

 ,
where Πcrs is a proof for correctness of CRS generation/updating, tsi is the simu-
lation trapdoor associated with the final CRS that can be computed using {ts′j}ij=0,
and Q is the set of simulated statement-proof pairs returned by oracle O(.).

Definition 6 (Updatable Black-Box Simulation Extractability). An ar-
gument ΨNIZK is updatable black-box (strong) simulation-extractable for R, if
for every PPT A and subvertor Sub, the following probability is negl(λ),

Pr



(R, ξR)← R(1λ), ((crs0, Πcrs0) ‖ ts0 := ts′0 ‖ te0 := te′0)← Kcrs(R, ξR),

rs←$RND(Sub), (({crsj , Πcrsj}ij=1, ξSub) ‖ {ts′j}ij=1 ‖ {te′j}ij=1)← ...

...(Sub ‖ExtSub)(crs0, Πcrs0 , rs), {CV(crsj , Πcrsj ) = 1}ij=0, rA←$RND(A),

(x, π)← AO(tsi,...)(R, ξR, crsi, ξSub; rA),w← Ext(R, ξR, crsi; tei) :

(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξR, crsi, x, π) = 1

 ,
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where ExtSub in a nBB PPT extractor (e.g. based of rewinding or knowledge as-
sumption), Ext is a black-box PPT extractor (e.g. using a decryption algorithm),
Πcrs is a proof for correctness of CRS generation/updating, and tsi, tei are the
simulation and extraction trapdoors associated with the final CRS that can be
computed using {ts′j}ij=0 and {te′j}ij=0, respectively. Here, RND(A) = RND(Sub)
and Q is the set of the statement and simulated proofs returned by oracle O(.).

Intuitively, the definition implies that under the existence of a nBB extractor
in the he setup phase, the protocol achieves SE with BB extraction, as long as the
initial CRS generation or one of CRS updates is done by an honest party. Our
definition of U-BB-SE is inspired from the standard definition (realized under a
trusted setup) presented by Groth [Gro06], which considers two extractors, one
for the setup phase and the other for the rest of argument. However, our defini-
tion uses a non-black-box extractor in the setup phase, which seems a unavoid-
able requirement for building U-BB-SE NIZK argument without a trusted third
party [BFS16]. Indeed, using some arguments or assumptions with non-black
box extraction techniques, e.g. by rewinding [DPSZ12] or knowledge assump-
tions [BFS16,ABLZ17,GKM+18], is a common and practical way to mitigate or
eliminate the trust on the parameters of various cryptographic protocols. We
also consider building NIZK arguments that can achieve U-BB-KS which is a
weaker version of U-BB-SE, where in the former, A would not have access to
oracle O(·). Note that in Def. 5 and Def. 6, it is equivalent for the adversary to
batch all its updates and then think of one honest update. This requires that
the trapdoor contributions of setup and update commute. This is true of known
constructions in the updatable CRS model [MBKM19]. Therefore, in the under-
lying NIZK and key-updatable cryptosystem, we expect that they both satisfy
the property that trapdoors combine and commute.

Our main goal is to construct an alternative to the C∅C∅ frame-
work [KZM+15] but in the updatable CRS model, such that in new constructions
the end-users can bypass the blind trust in the setup phase by one-time updat-
ing the shared parameters. Our starting point is the strongest construction of
the C∅C∅ framework (reviewed in App. B.7) that gets a sound NIZK argument
and lifts it to a BB-SE NIZK argument. To do so, given a language L with the
corresponding NP relation RL, the C∅C∅ framework defines a new language L̂
such that ((x, c, µ, pks, pke, ρ), (r, r0,w, s0)) ∈ RL̂ iff:

c = Enc(pke,w; r) ∧ ((x,w) ∈ RL ∨ (µ = fs0(pks) ∧ ρ = Com(s0; r0))) ,

where {fs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ is a pseudo-random function family,
(KGe,Enc,Dec) is a set of algorithms for a semantically secure encryption scheme,
(KGs,Sigs,Vfys) is a one-time signature scheme and (Com,Vfy) is a perfectly
binding commitment scheme.

As a result, given a sound NIZK argument ΨNIZK forR constructed from PPT
algorithms (Kcrs,P,V,Sim,Ext), the C∅C∅ framework returns a BB-SE NIZK
argument Ψ̂NIZK with PPT algorithms (K̂crs, P̂, V̂, ˆSim, Êxt), where K̂crs is the CRS
generator for new construction and acts as follows,
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– (ĉrs ‖ t̂s ‖ t̂e) ← K̂crs(RL, ξRL
): Given (RL, ξRL

), sample (crs ‖ ts) ←
Kcrs (RL̂, ξRL̂

); (pke, ske)← KGe (1
λ); s0, r0←$ {0, 1}λ; ρ := Com

(s0; r0); and output (ĉrs ‖ t̂s ‖ t̂e) := ((crs, pke, ρ) ‖ (s0, r0) ‖ ske), where ĉrs is
the CRS of Ψ̂NIZK and t̂s and t̂e, respectively, are the simulation trapdoor
and extraction trapdoor associated with ĉrs.

Considering the description of algorithm K̂crs, to construct an alternative to the
C∅C∅ framework but in the updatable CRS model, a naive solution is to construct
the three primitives above (with gray background) in the updatable CRS model,
and then define a similar language but using the primitives constructed in the
updatable CRS model. But, considering the state-of-the-art ad-hoc constructions
and generic compilers to build NIZK arguments with updatable CRS model, a
more efficient solution is to simplify the language L̂ and construct more efficient
BB-SE NIZK arguments with updatable parameters.

Continuing the second solution, since currently there exist some ad-hoc con-
structions that allow two-phase updating (e.g. [BGM17,BG18,BKSV20,BPR20])
or even a lifting construction to build nBB-SE zk-SNARKs with universal CRS
in the updatable CRS model (e.g. [ARS20a,ARS20b]), therefore we simplify the
original language L̂ defined in C∅C∅ and show that given a simulation sound
NIZK argument with updatable CRS we can construct U-BB-SE NIZK argu-
ments in a more efficient manner than the mentioned naive way. To this end, we
use the key-updatable cryptosystems, defined and built in Sec. 3.

Let ΨEnc := (KG,KU,KV,Enc,Dec) be a set of algorithms for a semantically
secure cryptosystem with updatable keys (pki, ski). Similar to C∅C∅ framework,
we define a new language L̂ based on the main language L corresponding to
the input updatable nBB-SE NIZK ΨNIZK := (Kcrs,CU,CV,P,V,Sim,Ext). The
language L̂ is embedded with the encryption of witness with the potentially
updated public key pki given in the CRS. Namely, given a language L with the
corresponding NP relation RL, we define L̂ for a given random element r←$Fp,
such that ((x, c, pki), (w, r)) ∈ RL̂ iff, c = Enc(pki,w; r) ∧ (x,w) ∈ RL.

The intuition behind L̂ is to enforce the P to encrypt its witness with a
potentially updated public key pki, given in the CRS, and send the ciphertext
c along with a simulation sound proof. Consequently, in proving BB-SE, the
updated ski of the defined cryptosystem ΨEnc is given to the Ext, which makes it
possible to extract the witness in a black-box manner. By sending the encryption
of witnesses, the proof will not be witness succinct anymore, but still, it is
succinct in the size of the circuit that encodes L̂.

In security proofs, we show that due to updatable simulation soundness
(in Def. 5) of the underlying NIZK argument ΨNIZK, the updatable IND-CPA
security (in Def. 4) and perfect updatable completeness (in Def. 2) of ΨEnc

is sufficient to achieve BB-SE in the updatable NIZK argument Ψ̂NIZK for
the language L̂. By considering new language L̂, the modified construction
Ψ̂NIZK := (K̂crs, ĈU, ĈV, P̂, V̂, ˆSim, Êxt) for L̂ can be written as in Fig. 3.

Efficiency: Considering new language L̂, in new argument Ψ̂NIZK the CRS gen-
eration (CRS updating and CRS verification) of the input argument ΨNIZK will
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CRS and trapdoor generation, (ĉrs0, Π̂ĉrs0)← K̂crs(RL, ξRL): Given (RL, ξRL)
acts as follows: execute key generation of ΨEnc as (pk0, Πpk0 , sk0 :=
sk′0) ← KG(1λ); run CRS generator of NIZK argument ΨNIZK and
sample (crs0, Πcrs0 , ts0 := ts′0) ← Kcrs(RL̂, ξRL̂

), where ts0 is the
simulation trapdoor associated with crs0; set (ĉrs0 ‖ Π̂ĉrs0 ‖ t̂s0 ‖ t̂e0) :=
((crs0, pk0) ‖ (Πcrs0 , Πpk0) ‖ ts0 ‖ sk0); where Π̂ĉrs0 is the proof of well-formedness
of ĉrs0, t̂s0 is the simulation trapdoor associated with ĉrs0, and t̂e0 is the ex-
traction trapdoor associated with ĉrs0; Return (ĉrs0, Π̂ĉrs0).

CRS Updating, (ĉrsi, Π̂ĉrsi)← ĈU(RL, ξRL , ĉrsi−1): Given (RL, ξRL) ∈
im(R(1λ)), and ĉrsi−1 as an input CRS, act as follows: Parse
ĉrsi−1 := (crsi−1, pki−1); execute (crsi, Πcrsi) ← CU(RL, ξRL , crsi−1); run
(pki, Πpki) ← KU(pki−1); set (ĉrsi ‖ Π̂ĉrsi) := ((crsi, pki) ‖ (Πcrsi , Πpki)), where
Π̂ĉrsi is the proof of well-formedness of ĉrsi; Return (ĉrsi, Π̂ĉrsi). Note that after
each update, the simulation and extraction trapdoors are updated, for instance
t̂si := tsi = tsi−1 + ts′i, and t̂ei := tei = tei−1 + te′i := ski−1 + sk′i, where ts′i and
te′i are individual (simulation and extraction) trapdoors of the updater i, and
tsi and tei are the trapdoors of the CRS after updating by i-th updater.

CRS Verify, (⊥, 1)← ĈV(ĉrsi, Π̂ĉrsi): Given ĉrsi := (crsi, pki), and Π̂ĉrsi :=
(Πcrsi , Πpki) act as follows: if CV(crsi, Πcrsi) = 1 and KV(pki, Πpki) = 1 return 1
(i.e., the updated ĉrsi is correctly formed), otherwise ⊥.

Prover, (π̂,⊥)← P̂(RL, ξRL , ĉrsi, x,w): Parse ĉrsi := (crsi, pki); Return ⊥ if
(x,w) /∈ RL; sample r←$ {0, 1}λ; compute encryption of witnesses c =
Enc(pki,w; r). Then execute prover P of the input NIZK argument ΨNIZK and
generate π ← P(RL̂, ξRL̂

, crsi, (x, c, pki), (w, r)); and output π̂ := (c, π).
Verifier, (0, 1)← V̂(RL, ξRL , ĉrsi, x, π̂): Parse ĉrsi := (crsi, pki) and π̂ := (c, π);

call verifier of the input NIZK argument ΨNIZK as V(RL̂, ξRL̂
, crsi, (x, c, pki), π)

and returns 1 if ((x, c, pki), (w, r)) ∈ RL̂, otherwise it responses by 0.
Simulator, (π̂)← ˆSim(RL, ξRL , ĉrsi, x, t̂si): Parse ĉrsi := (crsi, pki) and t̂si := tsi;

sample z, r←$ {0, 1}λ; compute c = Enc(pki, z; r); execute simulator of the input
NIZK argument ΨNIZK and generate π ← Sim(RL̂, ξRL̂

, crsi, (x, c, pki), tsi); and
output π̂ := (c, π).

Extractor, (w)← Êxt(RL, ξRL , ĉrsi, t̂ei, x, π̂): Parse π̂ := (c, π) and t̂ei := ski; ex-
tract w← Dec(ski, c); output w.

Fig. 3: Tiramisu, a construction for building BB-SE NIZK argument Ψ̂NIZK with
updatable CRS.

be done for a larger instance, and one also needs to generate (update and ver-
ify) the key pairs of the updatable public-key cryptosystem. The corresponding
circuit of the newly defined language L̂, expands by the number of constraints
needed for the encryption function. Recall that the language L̂ is an appended
form of language L by encryption of witnesses. However, due to our simplifica-
tions in defining language L̂, the overhead in Tiramisu will be less than the
case one uses the C∅C∅ framework. Meanwhile, as we later show in Sec.5 the
efficiency of final constructions severely depends on the input NIZK argument.

The prover of the new construction Ψ̂NIZK needs to generate a proof for new
language L̂ that would require extra computations. The proofs will be the proof
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of input nBB-SE updatable NIZK argument ΨNIZK appended with the ciphertext
c which leads to having proofs linear in witness size but still succinct in the circuit
size. It is a known result that having proofs linear in witness size is an undeniable
fact to achieve BB extraction and UC-security [Can01,GW11].

As the verifier is unchanged, so the verification of new constructions will be
the same as NIZK ΨNIZK but for a larger statement.

Theorem 3 (Perfect Updatable Completeness). If the input NIZK argu-
ment ΨNIZK guarantees perfect updatable completeness for the language L, and
the public-key cryptosystem ΨEnc be perfectly updatable correct, then the NIZK
argument constructed in Sec. 4 for language L̂, is perfectly updatable complete.

Proof. The proof is provided in App. A.3. ut

Theorem 4 (Computationally Updatable Zero-Knowledge). If the in-
put NIZK argument ΨNIZK guarantees (perfect) zero-knowledge, and the public-
key cryptosystem ΨEnc is updatable IND-CPA and satisfies updatable key hiding,
then the NIZK argument constructed in Sec. 4 for language L̂ satisfies compu-
tational updatable ZK.

Proof. The proof is provided in App. A.4. ut

Theorem 5 (Updatable Black-Box Simulation Extractability). If the
input NIZK argument ΨNIZK guarantees updatable correctness, updatable simu-
lation soundness and updatable zero-knowledge, and the public-key cryptosystem
ΨEnc satisfies updatable perfect correctness, updatable key hiding, and updatable
IND-CPA, then the NIZK argument constructed in Sec. 4 for language L̂ satisfies
updatable BB simulation extractability.

Proof. The proof is provided in App. A.5. ut

Note that to bypass the impossibility of achieving Sub-ZK and BB ex-
tractability in NIZKs [BFS16], one-time honest key generation/updating on pki
is a crucial requirement which does not allow an adversary to obtain the trap-
doors associated with final updated CRS, particularly the extraction keys.

Building Updatable Black-Box Knowledge Sound NIZK Arguments
with Tiramisu. The primary goal of Tiramisu is constructing BB-SE NIZK
arguments in the updatable CRS model. However, due to some efficiency rea-
sons, in practice one might need to build an Updatable Black-Box Knowledge
Sound (U-BB-KS) NIZK argument. In such cases, starting from either an up-
datable sound NIZK or an U-nBB-KS NIZK (e.g. Groth et al.’s updatable zk-
SNARK [GKM+18]), the same language L̂ defined in Tiramisu along with
our constructed updatable public-key cryptosystem allows one to build an U-
BB-KS NIZK argument. Namely, given an updatable cryptosystem ΨEnc :=
(KG,KU,KV,Enc,Dec) with updatable keys (pki, ski), and an updatable sound
NIZK ΨNIZK := (Kcrs,CU,CV,P,V,Sim) for language L with the corresponding
NP relation RL, we define the language L̂ for a given random element r←$Fp,
such that ((x, c, pki), (w, r)) ∈ RL̂ iff, (c = Enc(pki,w; r)) ∧ ((x,w) ∈ RL).
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Table 2: An efficiency comparison of BB-SE NIZK arguments built with the
C∅C∅ and Tiramisu . n′: Number of constraints (multiplication gates) used to
encode language L̂, |pk|: Size of the public key of ΨEnc, λ: Security parameter,
Ei: Exponentiation in Gi, P : Paring operation, l′: the size of statement in new
language L̂, w : the witness for new relation RL̂.

C∅C∅
with [Gro16]

Tiramisu
(with [GKM+18,ARS20a])

Tiramisu
(with [BGM17,BG18])

Trusted Setup Yes No No
CRS Updatability No One-phase (Universal) Two-phase
CRS Size ≈ 3n′G1 +n′G2 ≈ 30n′2G1 +9n′2G2 ≈ 3n′G1 +n′G2

CRS Verifier — ≈ 78n′2P 14n′P (batchable)

CRS Updater — ≈ 30n′2E1 +9n′2E2 ≈ 6n′E1 +n′E2

Prover ≈ 4n′E1 +n′E2 ≈ 4n′E1 +n′E2 ≈ 4n′E1 +n′E2

Proof Size o(w) + 3G1 +2G2 + λ o(w) + 4G1 +3G2 o(w) + 3G1 +2G2

Verifier 4P + l′E1 6P + l′E1 5P + l′E1

Corollary 1. If the input ΨNIZK for RL guarantees updatable correctness, updat-
able soundness and updatable zero-knowledge, and the public-key cryptosystem
ΨEnc satisfies updatable perfect correctness, updatable key hiding, and updatable
IND-CPA, then the NIZK argument for language L̂ satisfies updatable correct-
ness, updatable knowledge soundness and updatable zero-knowledge.

The proof can be done similar to the proof of Theorem 5, without providing
the simulation oracle to the adversaries A and B.

5 Building U-BB-SE NIZK Arguments with Tiramisu

To build an U-BB-SE NIZK argument with Tiramisu, one needs two primitives.
Namely, (1) a key-updatable cryptosystem ΨEnc that satisfies perfect updatable
correctness, updatable key hiding, and updatable IND-CPA, and (2) a NIZK argu-
ment ΨNIZK with updatable CRS that guarantees updatable simulation soundness
or nBB simulation extractability. Next, we instantiate ΨEnc and ΨNIZK, and obtain
two U-BB-SE NIZK arguments. To instantiate ΨEnc, one can use either of the
proposed variations of El-Gamal cryptosystem in Sec. 3. Whereas to instantiate
the ΨNIZK, one can either use an ad-hoc construction (e.g. [GWC19,MBKM19]
with universal CRS, or [BG18,BKSV20,BPR20] when their CRS is generated
with [BGM17], which will have a two-phase updating), or a construction lifted
with Lamassu [ARS20a] (e.g. using [GKM+18]).

In BB-SE NIZK arguments built with Tiramisu, the parties have to update
the shared parameters individually once and check the validity of the previous
updates. This is basically the computational cost that the end-users need to
pay to bypass the trust in the standard CRS model. As an important prac-
tical optimization, it can be shown that the prover can only update the CRS
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ĉrsi := (crsi, pki) partially, namely only pki. Tab. 2 summarizes the efficiency
of two BB-SE NIZK arguments built with Tiramisu and compares them with
a construction lifted by the C∅C∅ framework in the standard CRS model. We
instantiate C∅C∅ with the state-of-the-art zk-SNARK [Gro16] and instantiate
Tiramisu with 1) the lifted version of [GKM+18] with Lamassu [ARS20a], and
2) one of the constructions proposed in [BPR20]when their CRS is sampled using
the two-phase protocol proposed in [BGM17]. As we observed in Section 3.3, in
the resulting U-BB-SE zk-SNARKs, the overhead added by the key updateable
encryption schemes add very little overhead to the CU and CV algorithms.

Both C∅C∅ and Tiramisu constructions result a linear proof in the wit-
ness size, but they keep the asymptotic efficiency of other algorithms in the in-
put NIZK. Consequently, instantiating Tiramisu with a more efficient nBB-SE
NIZK argument will result in a more efficient BB-SE NIZK argument. There-
fore, as also is shown in Tab. 2, suitable ad-hoc constructions result in more
efficient U-BB-SE NIZK arguments. We found constructing more efficient up-
datable nBB-SE zk-SNARKs as an interesting future research direction. Follow-
ing, the impossibility result of Gentry and Wichs [GW11], it is undeniable that
achieving BB extraction will result in non-succinct proof. Consequently, in all
the schemes in Tab. 2, the proof size is dominated with the size of c which is a
ciphertext of IND-CPA cryptosystem and is o(w).

6 Conclusion

We proposed Tiramisu that allows one to build BB-SE NIZK arguments in the
updatable CRS model. U-BB-SE NIZK arguments allow the parties bypass the
trust in a third party by one-time participation in the CRS generation/updating.
We instantiated Tiramisu in two manners and presented NIZK arguments with
either one-phase or two-phase updatable parameters, that achieve BB-SE. In-
stantiating Tiramisu with ad-hoc constructions results in more efficient U-BB-
SE NIZKs. Meanwhile, as a building block for Tiramisu, we defined the syntax
of public-key cryptosystems with updatable keys and presented two variations of
El-Gamal cryptosystem [ElG84] which both of which strike different trade-offs.

In practice, by deploying the constructed U-BB-SE NIZK arguments in UC-
protocols, such as Hawk [KMS+16], and Ouroboros Crypsinous [KKKZ19], the
end-users can bypass the trust in the setup phase by one-time updating the
parameters. More precisely, the cost that end-users need to pay is one-time up-
dating the parameters plus checking the others’ updates. Tiramisu comes with
efficient algorithms CU and CV for parameter updating and verification, respec-
tively. Specifically about UC-secure privacy-preserving smart contracts systems
like Hawk [KMS+16], by deploying an U-BB-SE NIZK argument in a two-party
smart contract, both parties can avoid trusting a third party if both individually
update the public parameters using CU and also check the other party’s update
with CV.
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A Omitted Proofs

A.1 Proof of Theorem 1

Proof. To consider the updatable correctness, let the key updating and verifica-
tion algorithms KU and KV be defined as follows,

– (pki, Πpki) ← KU({pkj}i−1j=0): Given the public keys {pkj}i−1j=0, where the
pki−1 is the latest updated public-key, act as follows: choose ∆←$H; set
sk′i := ∆, where sk′i is the secret key of the updater; set pki = pki−1 · µ(∆)
and Πpki := µ(∆); Output (pki, Πpki), where pki denotes the updated public
and Πpki is a proof for the correctness of the updating process.

– (1,⊥) ← KV({pkj , Πpkj}
i
j=0): Given a potentially updated pki along with

previous keys {pkj}i−1j=0, and Πpki (along with {Πpkj}
i−1
j=0), returns 1 either if

pki = pk0 or pki := pki−1 ·Πpki , otherwise it responses by ⊥.

One can see that ski := ski−1 +∆ := ski−1 + sk′i, where ski is the secret key
associated with pki, ski−1 is the secret key associated with pki−1, and sk′i := ∆
is the secret-key of the updater. Consequently, due to the existence of ExtSub,
(which allows to extract all the secret keys injected in the key updates by Sub,
namely {sk′j}ij=1) the updatable correctness follows from the correctness of ΨEnc.

Updatable key hiding directly comes from the key-homomorphic property (in
Def. 22) of the cryptosystem ΨEnc, and the algorithms KU and KV required in
Def. 3 act as defined above.

Next, we prove updatable IND-CPA security by a reduction to the IND-CPA
security of the cryptosystem ΨEnc. Suppose A is a successful adversary against
updatable IND-CPA of ΨEnc. Namely, let pk0 be the public-key generated by
challenger of ΨEnc, and ({pkj , Πpkj}

i
j=1) be the output of A on input pk0. Then,

if {KV(pkj ,
Πpkj ) = 1}ij=1, so one can use ExtSub to extract {sk′j}ij=1 (the secret keys of Sub
in each update) and also conclude that pki := pki−1 ·Πpki . Next, for random bit
b←$ {0, 1} taken by challenger, and (m0,m1) taken by A, the challenger sends
back cb = Enc(pki,mb) to A and with non-negligible advantage, A guesses b,
correctly.

Now, consider a new adversary B for IND-CPA of ΨEnc that given pk0 sends it
to A and gets ({pkj , Πpkj}

i
j=1) and (m0,m1) from A. Then B sends (m0,m1) to

the challenger and gets cb = Enc(pk0,mb) which is encrypted with pk0. Next, the
adversary B uses ExtSub and extracts all {sk′j}ij=1 from A (subvertor Sub) and
uses them to compute sk. After that, executes (pki, c′b)← Adapt(pk0, cb, sk) and
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sends c′b (which is encrypted with pki) to the adversary A and gets b′. Finally,
adversary B returns the same b′ to the challenger and wins the IND-CPA game
with the same probability that A wins the game updatable IND-CPA. The case
that first pki−1 is subverted and then one-time honest updating is done can be
shown analogously, which is omitted. ut

A.2 Proof of Theorem 2

Proof. To prove perfect updatable correctness, we first show that the KV al-
gorithm accepts all honestly generated/updated keys and vice versa. Secondly,
given the secret key, the Dec algorithm perfectly decrypts honestly generated
ciphertexts. The former can be shown by taking two following cases discussed in
KV algorithm,

– for i = j = 0: Π1
pk0
• [1]2 =

[
sk′0
]
1
• [1]2 = [1]1 •

[
sk′0
]
2
= [1]1 • pk

2
0,

[1]1 •Π2
pk0

= [1]1 •
[
sk′0
]
2
=
[
sk′0
]
1
• [1]2 = pk10 • [1]2 ,

[1]1 •Π2
pk0

= [1]1 •
[
sk′0
]
2
=
[
sk′0
]
1
• [1]2 = Π1

pk0
• [1]2.

– for i ≥ 1:
(
pk1i−1 +Π1

pki

)
•[1]2 =

[
ski−1 + sk′i

]
1
•[1]2 = [1]1•

[
ski−1 + sk′i

]
2
=

[1]1 • pk
2
i ,

[1]1•
(
pk2i−1 +Π2

pki

)
= [1]1•

[
ski−1 + sk′i

]
2
=
[
ski−1 + sk′i

]
1
•[1]2 = pk1i •[1]2 ,

[1]1 •Π2
pki

= [1]1 •
[
sk′i
]
2
=
[
sk′i
]
1
• [1]2 = Π1

pki
• [1]2 .

By considering the key-updating algorithm, and the properties of paring, the
correctness of the above checks is straightforward. For the second case, consid-
ering the key-pair pki := ([ski]1 , [ski]2), and the corresponding proof Πpki :=([
sk′i
]
1
,
[
sk′i
]
2

)
, if the KV returns 1, under the BDH-KE assumption, there ex-

ists non-BB extraction algorithms that can extract the witness from the key
generator or key updaters. Then, it allows one to reconstruct the secret key
of the final public key, as ski =

∑i
j=0 skj . Then given the final secret key

ski, the Dec algorithm can decrypt a honestly generated ciphertext as below,
m = c1 ⊕ H(c

ski
2 ) = m⊕ H([rski]1)⊕ H([r]ski1 ).

Updatable Key Hiding. The updatable key-hiding of the construction follows
from the additive homomorphism of the underlying bilinear group, and the al-
gorithms KU and KV, constructed above.

Updatable IND-CPA. Finally, we show that the proposed variation satisfies up-
datable IND-CPA under Extended asymmetric Computational Diffie–Hellman
(EaCDH) assumption and the fact that H is a random function.

Let there exists a PPT adversary, A, who can break the proposed scheme in
updatable IND-CPA security game with a non-negligible advantage of ε. Then
we are going to show that how a PPT adversary, B, can solve EaCDH hard prob-
lem with a non-negligible advantage of at least ε

qH
such that qH is the maximum

number of queries that the adversary can request from the random oracle. In
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fact, the adversary B by controlling the random oracle, serves as a challenger
for the adversary A, such that exploits it to solve the mentioned hard prob-
lem. Moreover, A can update the initial public key pk0 on the condition that
the updated key passes the verification key algorithm. Let the challenger C of
the EaCDH hard assumption for the security parameter λ runs the asymmetric
bilinear group generator BGgen(1λ) and obtains the public parameters as the
tuple (p,G1,G2,GT , ê, [1]1 , [1]2). Also, she samples a, b←$Z∗p uniformly at ran-
dom and sends the tuple ([1]1 , [a]1 , [a]2 , [b]1 , [1]2) along with (p,G1,G2,GT , ê,
[1]1 , [1]2) to B. Thereby, B follows the below phases.

Initialization: In this phase, B transfers the received tuple (p,G1,G2,GT , ê,
[1]1 , [1]2) to A and controls the public random oracle H. She assumes sk′0 = a
and generates the initial public key as pk0 = ([a]1 , [a]2) and the corresponding
proof Πpk0 = ([a]1 , [a]2) and sends them to A.

H-Query: B responses to the received hash queries from A by considering a
hash-query list QH such that it is an empty list at the beginning. In this list
there exists a randomly generated value yi corresponding to each query xi such
that H(xi) = yi. To be more precise, if xi ∈ QH then it responses by yi, otherwise
it uniformly samples yi←$ {0, 1}n and QH = QH ∪ {(xi, yi)}.

Key updating: In this phase, the adversary A can update the public key in
polynomially bounded times. If KV(pk0, Πpk0) = 1, then in the jth step of up-
dating, she samples random integer sk′j = aj ←$Z∗p and revises the public key of

the system from pkj−1 to pkj = (pk1j , pk
2
j ) = (

[
a+

∑j
i=1 ai

]
1
,
[
a+

∑j
i=1 ai

]
2
)

along with a proof Πpkj = ([aj ]1 , [aj ]2). B can check the validity of the poten-
tially updated public key pkj by running KV({pki}

j
i=0, Πpkj ) and if it passes the

conditions then B accepts it as a new public key for the system. A who knows
the secret values {ai}ji=1 chooses the last updated key pkj as the challenge public
key and sends it to B.

Challenge: The adversary A chooses two same length plaintexts
{m0,m1} ←$ {0, 1}n × {0, 1}n and sends them to B. B runs KV({pki}

j
i=0, Πpkj )

and if the challenge public key be valid then she flips a fair coin β ∈ {0, 1}
and samples T ←$ {0, 1}n and returns the challenge ciphertext c∗ = (c∗1, c

∗
2) =

(T, [b]1). The random integer T can be seen as the encryption of mβ ∈ {m0,m1}
under random integer b if H(

[
bskj

]
1
) = T ⊕mβ .

Guess: It is assumed that A is allowed to make at most qH queries and she
has queried

[
skjb

]
1
with probability ε. The challenge hash query is determined

by (pk1j )
b = (

[
skj
]
1
)b =

[
skjb

]
1
, such that it is queried already by A, i.e.,

(
[
bskj

]
1
),H(

[
bskj

]
1
)) ∈ QH. Thus the randomly selected value of x =

[
skjb

]
1

exists in the QH list with probability ε/qH. In this case, B can randomly choose
x ∈ QH as the challenge hash query and finally solve the EaCDH problem. To be
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more precise B returns (
[
ab+

∑j
i=1 aib

]
1
, [a1]1 , ..., [aj ]1) to C. As a result, by

contradiction, since the EaCDH is hard, there is then no PPT adversary to win
in the defined game against the proposed scheme and the proposed construction
meets the updatable IND-CPA security property. ut

A.3 Proof of Theorem 3

Proof. By considering the construction in Fig. 3, and the fact that both ΨNIZK

and ΨEnc are perfectly updatable correct (given in Def. 14 and Def. 2), one can
conclude the statement. Namely, if (ĉrs0, Π̂ĉrs0)← K̂crs(RL, ξRL

), (ĉrsi, Π̂ĉrsi)←
ĈU(RL, ξRL

, {ĉrsj}i−1j=0) and
(
{ĈV(ĉrsj , Π̂ĉrsj ) = 1}ij=0 ∧ (x,w) ∈ RL

)
, then with

probability 1, V̂(RL, ξRL
, ĉrsi, x, P̂(RL, ξRL

, ĉrsi, x,w)) = 1. ut

A.4 Proof of Theorem 4

Proof. Note that the updatable ZK property (in Def. 15) of the input NIZK ar-
gument ΨNIZK along with the updatable completeness of the encryption scheme
ΨEnc imply that for one-time honest CRS generation, namely (ĉrs0, Π̂ĉrs0 , t̂s0 :=

ts′0)← K̂crs(RL, ξRL
), and arbitrary time acceptable 4 (possibly malicious) CRS

updating ({ĉrsj , Π̂ĉrsj}ij=1, ξSub) ← Sub(ĉrs0, Π̂ĉrs0 , rs), there exists an nBB ex-
traction algorithm ExtSub, that given access to the source code and random
coins of Sub, under a knowledge assumption, can extract {ts′j}ij=1, namely
{ts′j ← ExtSub(ĉrsj , Π̂ĉrsj , rs)}i−1j=1. So, given the ts′0 provided by the honest CRS
generator (or an updater) along with the extracted trapdoors {ts′j}ij=1 from sub-
vertor, the simulator Sim of argument Ψ̂NIZK can compute t̂si using {ts′j}ij=0 (i.e.
t̂si =

∑i
j=0 ts

′
j) and simulate the proofs as described in Fig. 3, where t̂si is the

simulation trapdoor associated with final CRS ĉrsi.
Next, we write a series of hybrid experiments starting from an experiment

that encrypts a random value and uses the Sim, and finally getting to an ex-
periment that uses the real prover. While moving on between the experiments,
we show that they all are indistinguishable two-by-two. Consider the following
experiments,

EXPzk1 (simulator):

– Setup: (pk0, Πpk0 , sk0 := sk′0)← KG(1λ), (crs0, Πcrs0 , ts0 := ts′0)← Kcrs(RL̂,
ξRL̂

), rs←$RND(Sub), ({pkj , Πpkj}
i
j=1, ξSub)← Sub(pk0, Πpk0 , rs),

({(crsj , Πcrsj )}ij=1 ‖ {ts′j}ij=1) ← (Sub ‖ExtSub)(crs0, Πcrs0 , rs), Return
(ĉrsi ‖ Π̂ĉrsi ‖ t̂si) := ((crsi, pki) ‖ (Πcrsi , Πpki) ‖ {ts

′
j}ij=0);

– Define function O(x,w) : Abort if (x,w) 6∈ RL; Abort if for any j ∈ [0 .. i],
CV(crsj , Πcrsj ) 6= 1; Abort if for any j ∈ [0 .. i], KV(pkj , Πpkj ) 6= 1; Sample
z, r ← {0, 1}λ; c = Enc(pki, z; r); π ← Sim(RL̂, ξRL̂

, crsi, (x, c, pki), t̂si);

4 By acceptable, we mean ĈV accepts them, namely {ĈV(ĉrsj , Π̂ĉrsj ) = 1}ij=0.
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– b← AO(x,w)(ĉrsi, Π̂ĉrsi);
return b;fi

EXPzk2 (simulator with witness):

– Setup: The same as in experiment EXPzk1 .
– Define function O(x,w) : Abort if (x,w) 6∈ RL; Abort if for any j ∈ [0 .. i],

CV(crsj , Πcrsj ) 6= 1; Abort if for any j ∈ [0 .. i], KV(pkj , Πpkj ) 6= 1; Sample
r ← {0, 1}λ ; c = Enc(pki,w; r); π ← Sim(RL̂, ξRL̂

, crsi, (x, c, pki), t̂si);

– b← AO(x,w)(ĉrsi, Π̂ĉrsi);
return b;fi

Lemma 1. If the cryptosystem ΨEnc deployed in the above games satisfies up-
datable IND-CPA (in Def. 4) and updatable key hiding (in Def. 3), then we have
Pr[EXPzk2 ] ≈c Pr[EXPzk1 ].

Proof. The updatable key hiding properties of the cryptosystem ΨEnc guarantees
that pk0 ≈λ pki, and the updatable IND-CPA of ΨEnc implies that no PT algo-
rithm can distinguish an oracle that encrypts z ← {0, 1}λ and uses the simulator
Sim from the case that it encrypts witness w and uses Sim.

EXPzk3 (prover):

– Setup: The same as in experiment EXPzk1 and EXPzk2 .
– Define function O(x,w) : Abort if (x,w) 6∈ RL; Abort if for any j ∈ [0 .. i],

CV(crsj , Πcrsj ) 6= 1; Abort if for any j ∈ [0 .. i], KV(pkj , Πpkj ) 6= 1; Sample
r ← {0, 1}λ; c = Enc(pki,w; r);
π ← P(RL̂, ξRL̂

, crsi, (x, c, pki), (w, r)) ;

– b← AO(x,w)(ĉrsi, Π̂ĉrsi);
return b;fi

Lemma 2. If the NIZK argument ΨNIZK used in above experiments satisfies up-
datable ZK, then for two experiments EXPzk3 and EXPzk2 we have Pr[EXPzk3 ] ≈c
Pr[EXPzk2 ].

Proof. The updatable ZK of the NIZK argument ΨNIZK implies that the real
proof (generated by prover) in experiment EXPzk3 is indistinguishable from the
simulated proof (generated by simulator) in experiment EXPzk2 .

This completes proof of the theorem. As Lemmas 1 and 2 show that Pr[EXPzk1 ] ≈
Pr[EXPzk2 ] and Pr[EXPzk2 ] ≈ Pr[EXPzk3 ], respectively. Since the indistinguishabil-
ity of experiments is transitive then we can conclude, Pr[EXPzk1 ] ≈c Pr[EXPzk3 ].

ut
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A.5 Proof of Theorem 5

Recall that the notion of updatable BB-SE guarantees that for a one time honest
CRS generation/updating, even if A has seen an arbitrary number of simulated
proofs, he cannot come up with a fresh valid proof unless he knows the witness.
The concept of knowing is formalized by showing that there exists a BB extrac-
tion algorithm Ext that given extraction trapdoor generated in the setup phase,
it can extract the witness from the proof. In this setting, the decryption function
of cryptosystem ΨEnc plays the role of the mentioned Ext, such that given the
extraction trapdoor t̂ei (secret key) associated with the final public key pki, can
decrypt a valid c and obtain w. The key idea behind our construction is that
in order to provide t̂ei to the Ext, and t̂si to the Sim, we use the extraction
algorithm ExtSub constructed in the setup phase of ΨEnc and ΨNIZK to extract the
simulation and extraction trapdoors from the untrusted key generator or key
updaters (maximum i parties) and then along with honestly sampled simula-
tion and extraction trapdoors (without loss of generality, sk′0 and ts′0) calculate
t̂ei := {sk′j}ij=0, (e.g. t̂ei =

∑i
j=0 sk

′
j), and t̂si := {ts′j}ij=0, (e.g. t̂si =

∑i
j=0 ts

′
j),

and finally provide them to the Ext and Sim. Note that, the updatable correct-
ness of the cryptosystem ΨEnc and the updatable ZK of the NIZK argument
ΨNIZK guarantee the existence of such ExtSub for both primitives that allows sim-
ulator to extract the extraction trapdoors {sk′j}ij=1 and the simulation trapdoors
{ts′j}ij=1 from i malicious CRS updaters.

Proof. Suppose that A is an adversary against updatable black-box simulation
extractability in the NIZK argument constructed in Fig. 3. Then, we construct
an adversary B against the Upd-SS of the input NIZK (zk-SNARK), ΨNIZK. The
procedure is as follows,

– Suppose B gets an honestly generated (crs0, Πcrs0) as an input, where
CV(crs0, Πcrs0) = 1.

– B samples a key-pair for the encryption scheme, (pk0, Πpk0 , sk0) ← KG(1λ),
where KV(pk0, Πpk0) = 1.

– B runs A on input (ĉrs0, Π̂ĉrs0) = ((crs0, pk0), (Πcrs0 , Πpk0)).
– The adversary A arbitrary times updates ĉrs0 and obtains {(ĉrsj , Π̂ĉrsj ) :=

((crsj , pkj), (Πcrsj , Πpkj ))}
i
j=1 and sends them to the adversary B, and B

verifies whether {ĈV(ĉrsj , Π̂ĉrsj ) = 1}ij=0. If so, B sends {(crsj , Πcrsj )}ij=1

to it’s own simulator. If all the updated CRSs verified successfully by the
ĈV and CV algorithms, then there exist extraction algorithms that allow
the simulator to extract the simulation trapdoors of each updated CRS and
re-construct the final simulation trapdoor (e.g. t̂ei =

∑i
j=0 sk

′
j).

– Then, whenever A submits a query x to the simulation oracle, B submits
(x, c = Enc(pki, z) to it’s own simulation oracle, where z is a randomly chosen
value.

– B will obtain a proof π from the oracle and sends to A a proof (c, π).
– Finally, A outputs some statement and proof (x′, (c′, π′)). A wins if

(x′, (c′, π′)) was not in the list of queried statements and simulated proofs,
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if the verifier accepts π′ and c′ does not contain a witness for x′. However, if
that is the case, then B can output a statement (x∗, c∗) that was also never
queried and a proof π∗ that will break the updatable simulation soundness
property of the input NIZK (zk-SNARK).

Since B can succeed only with negligible probability, then so does A. ut

B Preliminaries

B.1 Zk-SNARKs in the Updatable CRS Model

We adopt the definition of NIZK arguments in the updatable CRS model
from [GKM+18]. Let R be a relation generator, such that R(1λ) returns a
polynomial-time decidable binary relation R = {(x,w)}, where x is the state-
ment and w is the corresponding witness. We assume one can deduce λ from the
description of R. The relation generator also outputs auxiliary information ξR,
which both the honest parties and the adversary have access to it. ξR can be a
value returned by BGgen(1λ) [Gro16]. Consequently, we also give ξR as an input
to the honest parties; if needed, one can include an additional auxiliary input to
the adversary. Let LR = {x : ∃ w | (x,w) ∈ R} be an NP-language including all
the statements which there exist corresponding witnesses in relation R.

A NIZK argument ΨNIZK in the updatable CRS model for R consists of PPT
algorithms (Kcrs,CU,CV,P,V,Sim,Ext), such that:

– (crs0, Πcrs0)← Kcrs(R, ξR): Given (R, ξR), where (R, ξR) ∈ im(R(1λ)), sam-
ples the trapdoors ts′0 and te′0 and then generates crs0 along with Πcrs0 as
a proof for its well-formedness. Then, stores the trapdoors associated with
crs0 including the simulation trapdoor ts0 := ts′0, and the extraction trapdoor
te0 := te′0. Finally, it returns (crs0, Πcrs0) as the output.

– (crsi, Πcrsi) ← CU(R, ξR, crsi−1): Given the tuple of (R, ξR, crsi−1), where
crsi−1 is an input CRS, returns the pair of (crsi, Πcrsi), where crsi is the
updated CRS and Πcrsi is a proof of correct updating. Note that after each
update, the simulation and extraction trapdoors are updated, for instance
tsi := tsi−1 + ts′i, and tei := tei−1 + te′i.

– (⊥, 1)← CV(crsi, Πcrsi): Given a potentially updated crsi, and Πcrsi returns
either ⊥ on the condition that the crsi is incorrectly formed or 1.

– (π,⊥) ← P(R, ξR, crsi, x,w): For CV(crsi, Πcrsi) = 1, given the tuple of
(R, ξR, crsi, x,w), such that (x,w) ∈ R, outputs an argument π. Otherwise,
it returns ⊥.

– (0, 1) ← V(R, ξR, crsi, x, π): For CV(crsi, Πcrsi) = 1, given the set of param-
eters as (R, ξR, crsi, x, π), returns either 0 (reject π) or 1 (accept π).

– (π) ← Sim(R, ξR, crsi, tsi, x): For CV(crsi, Πcrsi) = 1, given the tuple
(R, ξR, crsi, tsi, x), where tsi is the simulation trapdoor associated with the
latest CRS, namely crsi, outputs a simulated argument π.

– (w)← Ext(RL, ξRL
, crsi, x, π, tei): Given (RL, ξRL

, crsi, x, π, tei) extracts the
witness w, where tei is the extraction trapdoor associated with the latest
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well-formed CRS, namely crsi. In nBB extraction algorithms, the tei can be
the source code and random coins of the adversary.

In the CRS model, a NIZK argument for R has a tuple of algorithms
(Kcrs,P,V,Sim,Ext), while subversion-resistant constructions [BFS16] addition-
ally have a CV algorithm which is used to verify the well-formedness of CRS
elements to achieve S-ZK [BFS16,ABLZ17,Fuc18,Bag19b]. But as listed above,
in the updatable CRS model, a NIZK argument additionally has a CU algorithm
that allows the parties (prover or verifier) to update the CRS elements and inject
their own private shares to the CRS elements and avoid trusting a third party.

B.2 Requirements of subversion-resistant NIZKs in the CRS model

Next, we provide security requirement of standard and subversion-resistant NIZK
arguments in the CRS model [Gro16,BFS16,ABLZ17,GM17,KZM+15]. A zk-
SNARK ΨNIZK in the CRS model for R consists of tuple of PPT algorithms
(Kcrs,P,V,Sim,Ext), that is expected to satisfy Completeness, ZK and Knowl-
edge soundness defined as bellow,

Definition 7 (Perfect Completeness [Gro16]). A non-interactive argu-
ment ΨNIZK is perfectly complete for R, if for all λ, all (R, ξR) ∈ im(R(1λ)),
and (x,w) ∈ R,

Pr [crs← KG(R, ξR) : V(R, ξR, crs, x,P(R, ξR, crs, x,w)) = 1] = 1 .

Definition 8 (Statistically Zero-Knowledge [Gro16]). A non-interactive
argument ΨNIZK is statistically ZK for R, if for all λ, all (R, ξR) ∈ im(R(1λ)),
and for all NUPPT A, εunb0 ≈λ εunb1 , where

εb = Pr[(crs ‖ ts)← KG(R, ξR) : AOb(·,·)(R, ξR, crs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns
P(R, ξR, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and
otherwise it returns Sim(R, ξR, crs, x, ts). ΨNIZK is perfect ZK forR if one requires
that ε0 = ε1.

Intuitively, a non-interactive argument ΨNIZK is zero-knowledge if it does not
leak extra information besides the truth of the statement.

Definition 9 (Computational Knowledge-Soundness [Gro16]). A non-
interactive argument ΨNIZK is computationally (adaptively) knowledge-sound for
R, if for every NUPPT A, there exists a NUPPT extractor ExtA, s.t. for all λ,

Pr

(R, ξR)← R(1λ), (crs ‖ ts)← KG(R, ξR),

r ←r RND(A), ((x, π) ‖w)← (A‖ExtA)(R, ξR, crs; r) :
(x,w) 6∈ R ∧ V(R, ξR, crsV, x, π) = 1

 ≈λ 0 .
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Here, ξR can be seen as a common auxiliary input to A and ExtA that is gener-
ated by using a benign [BCPR14] relation generator; A knowledge-sound argu-
ment system is called an argument of knowledge.

Besides the mentioned properties defined in Def. 7-9, a zk-SNARK has suc-
cinctness property, meaning that the proof size is poly(λ) and the verifier’s com-
putation is poly(λ) and the size of the instance.

Next, we recall some stronger notions of NIZK arguments that usually are
needed in cases that one requires to achieve stronger security guarantees in the
NIZK argument.

Definition 10 (Simulation Soundness [Gro06]). A non-interactive argu-
ment ΨNIZK is simulation sound for R if for all NUPPT A, and all λ,

Pr

[
(R, ξR)← R(1λ), (crs ‖ ts)← KG(R, ξR), (x, π)← AO(.)(R, ξR, crs) :

(x, π) 6∈ Q ∧ x 6∈ L ∧ V(R, ξR, crs, x, π) = 1

]
≈λ 0 .

Here, Q is the set of simulated statement-proof pairs generated by adversary’s
queries to O, that returns simulated proofs.

Definition 11 (Non-Black-Box Simulation Extractability [GM17]). A
non-interactive argument ΨNIZK is non-black-box simulation-extractable for R,
if for any NUPPT A, there exists a NUPPT extractor ExtA s.t. for all λ,

Pr

(R, ξR)← R(1λ), (crs ‖ ts)← KG(R, ξR),

r ←r RND(A), ((x, π) ‖w)← (AO(.) ‖ExtA)(R, ξR, crs; r) :
(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξR, crs, x, π) = 1

 ≈λ 0 .

Here, Q is the set of simulated statement-proof pairs generated by adversary’s
queries to O that returns simulated proofs.

It is worth to mention that non-black-box simulation extractability implies
knowledge soundness (given in Def. 9), as the earlier is a strong notion of the
later which additionally the adversary is allowed to send query to the proof
simulation oracle. Similarly, one can observe that nBB simulation extractability
implies simulation soundness (given in Def. 10) [Gro06].

Definition 12 (Black-Box Simulation Extractability [KZM+15]). A
non-interactive argument ΨNIZK is black-box simulation-extractable forR if there
exists a black-box extractor Ext that for all NUPPT A, and all λ,

Pr

(R, ξR)← R(1λ), (crs ‖ ts ‖ te)← KG(R, ξR),

(x, π)← AO(.)(R, ξR, crs),w← Ext(R, ξR, crs, te, x, π) :

(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξR, crs, x, π) = 1

 ≈λ 0 .

Similarly, Q is the set of simulated statement-proof pairs, and te is the extraction
trapdoor. A keynote about Def. 12 is that the extraction procedure is BB and
unlike the nBB case, the extractor Ext works for all adversaries.
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A subversion-resistant zk-SNARK ΨNIZK in the CRS model for R consists of
tuple of PPT algorithms (Kcrs, CV ,P,V,Sim,Ext), that beyond Completeness,
ZK and Knowledge soundness it is expected to achieve Subversion ZK which is
defined as follows,

Definition 13 (Statistically Subversion Zero-Knowledge [ABLZ17]).
A non-interactive argument Ψ is statistically subversion ZK for R, if for any
NUPPT subvertor Sub there exists a NUPPT extractor ExtSub, such that for all
λ, all (R, ξ) ∈ im(R(1λ)), and for all NUPPT A, ε0 ≈λ ε1, where

Pr

[
r ←r RND(Sub), (crs, ξSub ‖ ts)← (Sub ‖ExtSub)(R, ξ; r) :
CV(R, ξ, crs) = 1 ∧ AOb(·,·)(R, ξ, crs, ts, ξSub) = 1

]
.

Here, ξSub is auxiliary information generated by subvertor Sub, and the or-
acle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns
P(R, ξ, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and oth-
erwise it returns Sim(R, ξ, crs, ts, x). Ψ is perfectly subversion ZK for R if one
requires that ε0 = ε1.

B.3 Requirements of NIZKs in the updatable CRS model

Below we recall various security requirements that a NIZK argument can satisfy
in the updatable CRS model [GKM+18,ARS20a].

Definition 14 (Perfect Updatable Completeness). A non-interactive ar-
gument ΨNIZK is perfectly updatable complete for R, if for all (R, ξR) ∈
im(R(1λ)), and (x,w) ∈ R, the following probability is 1 on security parame-
ter λ,

Pr

(R, ξR)← R(1λ), (crs0, Πcrs0)← Kcrs(R, ξR),

({crsj , Πcrsj}ij=1)← A(R, ξR, crs0), {CV(crsj , Πcrsj ) = 1}ij=0 :

(x, π)← P(R, ξR, crsi, x,w) ∧ V(R, ξR, crsi, x, π) = 1

 ,
where Πcrsi is a proof for the correctness of the initial CRS generation or CRS
updating. Note that in the above definition and all the following one, i is the
index of final update, and without loss of generality, A can also first generate
{crsj}i−1j=0 and then an honest updater updates crsi−1 to crsi.

Definition 15 (Updatable Zero-Knowledge). A non-interactive argument
ΨNIZK is statistically updatable ZK for R, if for all (R, ξR) ∈ im(R(1λ)), and
for all computationally unbounded A, εunb0 ≈λ εunb1 , where εb is equal to

Pr

(R, ξR)← R(1λ), ((crs0, Πcrs0) ‖ ts0 := ts′0)← Kcrs(R, ξR), rs←$RND(Sub),

(({crsj , Πcrsj}ij=1, ξSub) ‖ {ts′j}ij=1)← (Sub ‖ExtSub)(crs0, Πcrs0 , rs) :

{CV(crsj , Πcrsj ) = 1}ij=0 ∧ AOb(·,·)(R, ξR, ξSub, crsi) = 1

 .
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Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it re-
turns P(R, ξR, crsi, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R,
and otherwise it returns Sim(R, ξR, crsi, x, tsi := {ts′j}ij=0), where tsi is the sim-
ulation trapdoor associated with crsi that can be computed using {ts′j}ij=0. We
say ΨNIZK is perfect updatable ZK for R if one requires that ε0 = ε1.

Definition 16 (Updatable nBB Knowledge Soundness). A non-
interactive argument ΨNIZK is updatable non-black-box knowledge sound for R,
if for every PPT adversary A and any subvertor Sub, there exists a PPT extrac-
tor ExtA, and the following probability is negl(λ),

Pr


(R, ξR)← R(1λ), (crs0, Πcrs0)← Kcrs(R, ξR), rs←$RND(Sub),

({crsj , Πcrsj}ij=1, ξSub)← Sub(crs0, Πcrs0 , rs), {CV(crsj , Πcrsj )

= 1}ij=0, rA←$RND(A), ((x, π) ‖w)← (A‖ExtA)
(R, ξR, crsi, ξSub; rA) : (x,w) 6∈ R ∧ V(R, ξR, crsi, x, π) = 1

 ,
Here RND(A) = RND(Sub), and Πcrs is a proof for correctness of CRS generation
or updating process. In the definition, ξR can be seen as a common auxiliary input
to A and ExtA that is generated by using a benign [BCPR14] relation generator
and ξSub can be auxiliary information provided by Sub to A.

Definition 17 (Updatable nBB Simulation Extractability). A non-
interactive argument ΨNIZK is updatable non-black-box simulation-extractable
for R, if for every PPT A and any subvertor Sub, there exists a PPT extractor
ExtA, and the following probability is negl(λ),

Pr


(R, ξR)← R(1λ), (crs0, Πcrs0)← Kcrs(R, ξR), rs←$RND(Sub),

({crsj , Πcrsj}ij=1, ξSub)← Sub(crs0, Πcrs0 , rs), {CV(crsj , Πcrsj ) = 1}ij=0,

rA←$RND(A), ((x, π) ‖w)← (AO(.) ‖ExtA)(R, ξR, ξSub, crsi; rA) :
(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξR, crsi, x, π) = 1

 ,
where Πcrs is a proof for correctness of CRS generation or updating. Here,
RND(A) = RND(Sub) and Q is the set of simulated statement-proof pairs re-
turned by A’s queries to O.

Note that updatable nBB-SE implies updatable nBB knowledge soundness, as
in the former additionally A is allowed to make query to the proof simulation
oracle. It also implies updatable simulation soundness, as if there exists a witness
w s.t. (x,w) ∈ R, therefore the instance x belongs to the language [Gro06].

B.4 Public-key Cryptosystems

Definition 18 (Public-key Cryptosystem). A public-key cryptosystem ΨEnc

over the message space of M and ciphertext space of C, consists of three PPT
algorithms defined as follows,
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– (pk, sk) ← KG(1λ): Key Generation is a PPT that given security parameter
1λ returns a key-pair (pk, sk).

– (c)← Enc(pk,m): Encryption is a PPT algorithm that given a public-key pk
and a message m ∈M, outputs a ciphertext c ∈ C.

– (⊥,m)← Dec(sk, c): Decryption is a deterministic algorithm that given a ci-
phertext c ∈ C and a secret-key sk, returns either ⊥ (reject) or m ∈M (suc-
cessful).

The primary security requirements for an encryption scheme is correctness
and INDistinguishability Under Chosen Plaintext Attacks (IND-CPA) that are
defined as below.

Definition 19 (Perfect Correctness). A public-key cryptosystem ΨEnc :=
(KG,Enc,Dec) satisfies perfect correctness, if

Pr
[
(pk, sk)← KG(1λ), c = Enc(pk,m) : Dec(sk, c) = m

]
= 1 .

where the probability is taken over the randomness of the encryption algorithm.

Definition 20 (IND-CPA Security). A public-key cryptosystem ΨEnc :=
(KG,Enc,Dec) satisfies IND-CPA, if for all PPT adversaries A,

Pr

[
(pk, sk)← KG(1λ), b←$ {0, 1}, (m0,m1)← A(pk),
b′ ← A(pk,Enc(pk,mb)) : b = b′

]
≈λ

1

2
.

El-Gamal Cryptosystem. One of the known IND-CPA secure cryptosystems is
proposed by El-Gamal [ElG84] that its algorithms (KG,Enc,Dec) work as below,

– (pk, sk) ← KG(1λ): Given the security parameter 1λ, generate an efficient
description of a cyclic group G of order p with generator g; sample sk←$Z∗p
and set h = gsk; return (pk, sk) := ((g, h), sk).

– (c) ← Enc(pk,m): Given pk := (g, h) and a message m ∈ M, sample a
randomness r←$Z∗p and return c := (c1, c2) := (m · hr, gr).

– (⊥,m) ← Dec(sk, c): Given sk and a ciphertext c := (c1, c2) := (m · hr, gr)
returns, m := c1/c

sk
2 = m · hr/gskr.

B.5 Key-Homomorphic Cryptosystems

Let ΨEnc = (KG,Enc,Dec) be a key-homomorphic cryptosystem and the secret
and public keys are chosen from the cyclic groups of (H,+) and (G, ·), respec-
tively.

Definition 21 (Secret-key to Public-key Homomorphisms [TW14]).
We say the cryptosystem ΨEnc over the message spaceM admits a secret-key to
public-key homomorphism if there exists a map µ : H→ G such that:

– µ is a homomorphism. i.e., for all sk, sk′ ∈ H, we have µ(sk+ sk′) = µ(sk) ·
µ(sk′);
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– Every output (pk, sk)← KG(1λ), satisfies pk = µ(sk).

In particular, similar to Def. 19, such construction satisfies completeness if for a
valid secret key sk output by KG, the probability Pr[Dec(sk,Enc(µ(sk),m)) 6= m]
is negligible for all messages m ∈ M, where the probability is over the coins of
Enc. It satisfies perfect completeness if the probability is zero.

In the discrete logarithm setting, it is usually the case sk ∈ Z∗p and pk := gsk

such that g is the generator of a cyclic group G of prime order p, e.g., for El-
Gamal cryptosystem [ElG84].

Definition 22 (Key-Homomorphic Cryptosystems [AHI11]). We say
ΨEnc overM and C satisfies key-homomorphism property, if there exists an effi-
cient algorithm Adapt, that given pk, c ∈ C, and a shift amount ∆ ∈ H, it returns
a new pk′ and a new ciphertext c′ ∈ C, namely (pk′, c′) ← Adapt(pk, c,∆), such
that for every ∆ ∈ H, for all (pk, sk)← KG(1λ) and message m ∈M we have,

(pk,Enc(pk · µ(∆),m)) ≈λ (pk′, c′)← Adapt(pk,Enc(pk,m), ∆)

and the distribution is induced by randomnesses of Enc and Adapt.

For instance, an Adapt algorithm for El-Gamal [ElG84] cryptosystem (that we
later use in Sec. 3) can be written below,

– (pk′, c′) ← Adapt(pk, c,∆): Given pk := (g, h := gsk), c := (c1, c2) =
(mhr, gr), sample the shift parameter ∆←$Z∗p, and computes pk′ :=

(g, h′ := h · g∆); c′ := (c′1, c
′
2) = (mhr · gr∆, gr); Return (pk′, c′).

B.6 Assumptions

Definition 23 (Bilinear Diffie-Hellman Knowledge of Exponent (BDH-
KE) Assumption). We say BGgen is BDH-KE secure for relation set R if for
any λ, (R, ξR) ∈ im(R(1λ)), and PPT adversary A there exists a PPT extractor
ExtA, such that,

Pr

(p,G1,G2,GT , ê, [1]1 , [1]2)← BGgen(1λ), r←$RND(A),
([α1]1 , [α2]2 ‖ a)← (A‖ExtA)(R, ξR; r) :

[α1]1 • [1]2 = [1]1 • [α2]2 ∧ a 6= α1

 ≈λ 0 .

Where ξR is the auxiliary information related to the underlying group.

The BDH-KE assumption [ABLZ17] is an asymmetric-pairing version of the
original knowledge assumption [Dam92].

Definition 24. (asymmetric Computational Diffie-Hellman (aCDH)
Assumption): Let (p,G1,G2,GT , ê, [1]1 , [1]2)← BGgen(1λ). We call the aCDH
assumption by given a vector ~e = ([1]1 , [x]1 , [x]2 , [y]1 , [1]2), for the randomly
chosen integers x, y←$Z∗p is computationally hard, if there is no PPT adver-
sary AaCDH , has a non-negligible advantage in solving the aCDH assumption.
In other words,

Pr [AaCDH (~e) = ([xy]1)] ≤ negl(λ)·
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Definition 25. (Extended asymmetric Computational Diffie-Hellman
(EaCDH) Assumption): Let (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ). We
call the EaCDH assumption by given a vector ~e = ([1]1 , [x]1 , [x]2 , [y]1 , [1]2), for
the randomly chosen integers x, y←$Z∗p is computationally hard, if there is no
PPT adversary AEaCDH , has a non-negligible advantage in solving the EaCDH
assumption. In other words,

Pr

[
AEaCDH (~e) =

([
xy +

j∑
i=1

xiy

]
1

, [x1]1 , ..., [xj ]1

)]
≤ negl(λ)·

The intuition behind the hardness of this assumption is that the adversary
AEaCDH can calculate the term

[
xy +

∑j
i=1 xiy

]
1
and break EaCDH, if and

only if she can compute [xy]1. As a result, this can trivially reduce to the eCDH
hard problem.

B.7 C∅C∅ : a Framework for Constructing BB-SE NIZK Arguments
in the CRS Model

In 2015, Kosba et al. [KZM+15] presented a framework, called C∅C∅, with several
constructions which allows one to build BB-SE NIZK arguments. Their most
powerful construction gets a sound NIZK and lifts to a NIZK argument that
satisfies BB-SE (defined in Def. 12), which is shown to be a sufficient requirement
for NIZK arguments to achieve UC-security [Gro06]. Here we review their most
powerful construction.
Construction. Given a sound NIZK, to achieve a UC-secure NIZK, the C∅C∅
framework applies several changes in all setup, proof generation and verification
procedures of the input NIZK. Initially, the framework defines a new language L̂
based on the language L in underlying NIZK and some new primitives that are
needed for the transformation. Let (KGe,Enc,Dec) be a set of algorithms for a
semantically secure encryption scheme, (KGs,Sigs,Vfys) be a one-time signature
scheme and (Com,Vfy) be a perfectly binding commitment scheme. Given a
language L with the corresponding NP relation RL, define a new language L̂
such that ((x, c, µ, pks, pke, ρ), (r, r0,w, s0)) ∈ RL̂ iff:

(c = Enc(pke,w; r)) ∧ ((x,w) ∈ RL ∨ (µ = fs0(pks) ∧ ρ = Com(s0; r0))) ,

where {fs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ is a pseudo-random function family. Now,
a sound NIZK argument system ΨNIZK for R constructed from PPT algorithms
(KG,P,V,Sim,Ext) can be lifted to a BB-SE NIZK Ψ̂NIZK with PPT algorithms
(K̂G, P̂, V̂, ˆSim, Êxt) as follows.

CRS and trapdoor generation K̂G(RL, ξRL
): Sample (crs ‖ ts) ←

KG(RL̂, ξRL̂
); (pke, ske)← KGe(1

λ); s0, r0←$ {0, 1}λ; ρ := Com(s0; r0); and
output (ĉrs ‖ t̂s ‖ t̂e) := ((crs, pke, ρ) ‖ (s0, r0) ‖ ske).
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Prover P̂(RL, ξRL
, crs, x,w): Parse ĉrs := (crs, pke, ρ);

Abort if (x,w) /∈ RL; (pks, sks) ← KGs(1
λ); sample

z0, z1, z2, r1←$ {0, 1}λ; compute c = Enc(pke,w; r1); generate
π ← P(RL̂, ξRL̂

, crs, (x, c, z0, pks, pke, ρ), (r1, z1, w, z2)); sign σ ←
Sigs(sks, (x, c, z0, π)); and output π̂ := (c, z0, π, pks, σ).

Verifier V̂(RL, ξRL
, ĉrs, x, π̂): Parse ĉrs := (crs, pke, ρ) and π̂ :=

(c, µ, π, pks, σ); Abort if Vfys(pks, (x, c, µ, π), σ) = 0; call
V(RL̂, ξRL̂

, crs, (x, c, µ, pks, pke, ρ), π) and abort if it outputs 0.
Simulator ˆSim(RL, ξRL

, ĉrs, t̂s, x): Parse ĉrs := (crs, pke, ρ) and
t̂s := (s0, r0); (pks, sks) ← KGs(1

λ); set µ = fs0(pks); sam-
ple z3, r1←$ {0, 1}λ; compute c = Enc(pke, z3; r1); generate
π ← P(RL̂, ξRL̂

, crs, (x, c, µ, pks, pke, ρ), (r1, r0, z3, s0)); sign σ ←
Sigs(sks, (x, c, µ, π)); and output π̂ := (c, µ, π, pks, σ).

Extractor Êxt(RL, ξRL
, ĉrs, t̂e, x, π̂): Parse π̂ := (c, µ, π, pks, σ), t̂e := ske; ex-

tract w← Dec(ske, c); output w.

C Using U-BB-SE NIZK Arguments in UC Protocols

Following the known result that BB-SE NIZK arguments can realize the ideal
NIZK-functionality FNIZK [GOS06,Gro06] in the Fcrs-model, the UC-protocols
like Hawk [KMS+16], Gyges [JKS16], and Ouroboros Crypsinous [KKKZ19],
directly use the BB-SE NIZK arguments constructed by the C∅C∅ framework.
Consequently, due to the nature of CRS model, under a trusted setup phase, the
deployed BB-SE NIZK argument securely composes with other primitives in the
main protocol.

In the BB-SE NIZK arguments that are built with Tiramisu, there is not a
trusted third party and the parties do not need to trust a third party, instead,
they need to individually update the CRS and give a proof Πcrs for their update,
before starting to use CRS for proof generation and proof verification. But, since
the proof Πcrs in the setup phase relies on a knowledge assumption [Dam91] and
nBB extraction, therefore one can realizing FNIZK [GOS06,Gro06] in a relaxed
form of Fcrs-model. In the relaxed model, we assume that in the setup phase it
is allowed to build non-BB extractors to extract the trapdoors from malicious
parties participated in the setup phase and provide them to the universal UC-
simulator to simulate the rest of protocol in a black-box manner. Another similar
case where a trustless setup phase (called offline phase) uses nBB extractors,
while the online phase achieves BB extraction and UC-security is achieved in
the known SPDZ MPC protocol [DPSZ12]. However, their construction does
not guarantee the updatability of parameters in the offline phase [DPSZ12].
More details about realizations NIZK-functionality FNIZK [GOS06,Gro06] with
an U-BB-SE NIZK argument in the relaxed Fcrs-model is provided bellow.

Due to construction of subversion/updatable NIZK arguments that rely on a
knowledge assumption in the setup phase, this looks an avoidable fact that one
has to take either 1) a UC-secure setup phase while trusting a third party, or
2) a non-UC secure setup phase but without a need for a trusted third party. In
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practice, usually, the public parameters are generated once and used for a long-
time, therefore having a non-UC secure setup phase might be a more desired
option than having a UC-secure trusted setup for a long time.

Based on the construction of Tiramisu, we observe that in the setup phase
of constructed NIZK arguments, the simulator uses non-black-box extractors
to simulate the corrupted parties. Consequently, in UC realization the universal
simulator requires non-black-box access to the source code of parties in the setup
phase. While, in the rest of protocol, precisely in the proof generation and proof
verification, the simulator works in a black-box manner for all parties.

Theorem 6. Let FRcrs denotes a relaxed form of Fcrs, where as a relaxation,
FRcrs allows the universal simulator to use non-black-box extraction to simulate
Fcrs in the setup phase. The construction proposed in Fig 3 securely realizes
FNIZK in the FRcrs-model.

Proof. Let the adversary A interacts with the proposed protocol in the real-
process FRcrs with parties {P1, ...,Pn}. We construct an ideal world such that
adversary S interacts with FNIZK and dummy parties {P̃1, ..., P̃n} to fool all en-
vironments like E . S starts by invoking a copy of A. It will run a simulated
interaction of A, the parties and the environment. Particularly, whenever the
simulated A communicates with the environment, S just passes this informa-
tion along. And whenever A corrupts a party Pi, S corrupts the corresponding
dummy party P̃i.

– Simulating FRcrs: S chooses the common reference string (crs, (ts, te)) using
K̂crs. Note that as in our setting there is not a trusted third party, therefore
under the knowledge assumption, BDH-KE, the S first extracts the trap-
doors (ts, te) from the parties participated in the setup phase of the protocol
and then uses them to sample the common reference string crs. S simulates
FRcrs sending (CRS, sid, crs) to all parties. Whenever A decides to deliver
such a message to a party Pi, S will simulate Pi receiving this string.

– Simulating Honest Prover: As long as no prover is corrupted, the envi-
ronment E sends the pair of (x,w) ∈ R to FNIZK and then it transfers (x)
to the adversary S. S runs the simulator π ← Sim(RL, ξRL

, crsi; tsi, x), and
returns (π) to FNIZK. As a response to a dummy prover P̃ , FNIZK returns the
tuple of (x, π) to the environment E .

– Simulating Honest Verifier: As long as no verifier is corrupted, the envi-
ronment E as a dummy verifier Ṽ requests the validity of (x, π) from FNIZK

that means the adversary S receives pair of (x, π) from FNIZK. Consequently,
S executes b←$V(R, ξR, crsi, x, π) and in the case of b = 0, S returns
(no witness) to FNIZK. Also, FNIZK responses to the dummy verfier Ṽ by
(0) that means E will receive reject. On the other, if b = 1, then S has to
return a valid witness by running the extractor w← Ext(R, ξR, crsi; tei, x, π)
such that with a high probability (x,w) ∈ R. In this case, S returns w to
FNIZK. Consequently the dummy verifier Ṽ delivers acceptance to the envi-
ronment E .
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– Simulating Corrupted Prover: If adversary A corrupts prover Pi, then S
should be able to simulate Pi’s transcripts. Since the proposed construction
is black-box setting, then S does not require the source code of the prover
and can extract witnesses corresponding to all the previous generated proofs
by Pi. Thus, S by running Ext(R, ξR, crsi; tei, x, π) returns (x,w) ∈ RL to
FNIZK, otherwise if (x,w) 6∈ RL she gives up the simulation. Finally, FNIZK

returns (x) to a dummy corrupted prover P̃i, and it delivers them to the
environment E .

– Simulating Corrupted Verifier: In the case of verfier corruption, S has to
simulate all the internal tapes including all the accepted proofs by a dummy
corrupted verifer Ṽi. It is straightforward that S can run Sim and returns the
set of accepted proofs by Vi to FNIZK and delivers them to the environment
E .

Analysis: Let A♦B denotes A interacts with B. Our goal is to show for every
environment E , we have (A,FRcrs-hybrid,P,V)♦E ∼ (S, FNIZK-hybrid, P̃, Ṽ)♦E .
In other words, there is no environment E to distinguish between the case that
it is interacting with adversary A and real parties with FRcrs-hybrid model and
the ideal-process with adversary S and dummy parties in the FNIZK-hybrid.

Assume the first hybrid is the real-process that is interacting with E , i.e,
(A,FRcrs-hybrid,P,V)♦E . Based on the Updatable Zero-Knowledge property in
Definition 15, we can modify this hybrid to (S, FNIZK-hybrid, P̃,V)♦E by cre-
ating the honest provers’ proofs as π ← Sim(RL, ξRL

, crsi; tsi, x). In the next
modification, based on the Updatable Black-Box Simulation Extractability in
Definition 6, there exists an extractor Ext to extract the corresponding wit-
nesses to the real verifier V such that with a high probability (x,w) ∈ RL. More
precisely, we can modify the previous hybrid by considering a dummy verifier
Ṽ to obtain (S, FNIZK-hybrid, P̃, Ṽ)♦E that is the ideal-process of the proposed
Updatable Black-Box NIZK. In conclusion, no environment can distinguish be-
tween (A,FRcrs-hybrid,P,V) and (S,FNIZK-hybrid, P̃, Ṽ). ut
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