
x-only point addition formula and faster compressed SIKE

Geovandro Pereira1,2, Javad Doliskani3, and David Jao1,2

1 University of Waterloo, Waterloo, Canada
2 evolutionQ Inc., Kitchener, Canada

{geovandro.pereira,djao}@uwaterloo.ca
3 Ryerson University, Toronto, Canada
javad.doliskani@ryerson.ca

Abstract. The optimization of the main key compression bottlenecks of the supersingular isogeny
key encapsulation mechanism (SIKE) has been a target of research in the last few years. Signif-
icant improvements were introduced in the recent works of Costello et al. [6] and Zanon et al.
[18,19]. The combination of the techniques in [18,19] reduced the running time of binary tor-
sion basis generation in decompression by a factor of 29 compared to previous work [6]. On the
other hand, generating such a basis still takes almost a million cycles on an Intel Core i5-6267U
Skylake. In this paper, we continue the work of [19] and introduce a technique that drops the
complexity of binary torsion basis generation by a factor log p in the number of underlying field
multiplications. In particular, our experimental results show that a basis can be generated in
about 1, 300 cycles, attaining an improvement by a factor more than 600. Although this result
eliminates one of the key compression bottlenecks, many other bottlenecks remain. In addi-
tion, we give further improvements for the ternary torsion generation with significant impact
on the related decompression procedure. Moreover, a new trade-off between ciphertext sizes vs
decapsulation speed and storage is introduced and achieves a 1.7 times faster decapsulation.

1 Introduction

Public-key cryptosystems based on elliptic curve isogenies are conjectured to be secure against quan-
tum attacks, and as a result have attracted some interest in the post-quantum cryptography commu-
nity. One particular such cryptosystem, Supersingular Isogeny Key Encapsulation (SIKE) [17], has
been proposed as a candidate for the NIST post-quantum standardization process [15]. SIKE is based
on the Supersingular Isogeny Diffie-Hellman (SIDH) construction of Jao and De Feo [11], whose
security relies on the hardness of the supersingular isogeny graph path-finding problem introduced
by Charles et al. [5].

An especially attractive feature of SIKE is its small public key size. Of all the public-key cryp-
tosystems submitted to the NIST standardization process in the first round, SIKE has the smallest
proposed public keys at each of its supported security levels. Furthermore, the public keys can ac-
tually be made even smaller: in 2016, Azarderakhsh et. al. [2] introduced techniques to compress
SIDH public keys by a factor of 2 in size. Unfortunately, these techniques are quite expensive in
terms of performance, and they were not included in the SIKE first round NIST submission. Sub-
sequent work [6,18,19] has led to a series of performance improvements in key compression, and
an option to use key compression was added into the second round submission for SIKE, incorpo-
rating all of the aforementioned performance optimizations. For example, public keys occupy 196
bytes and ciphertexts 209 bytes for SIKEp434 [17, Table 2.2]. This work is about further improving
the performance of key compression in SIKE beyond what was achieved in the SIKE second round
submission and other prior work.

We remark that other isogeny-based cryptosystems, notably CSIDH [4], are able to achieve even
smaller public keys than SIKE at the lowest security levels defined by NIST (namely, NIST category

1, equivalent to AES-128 in security). At higher security levels, in the post-quantum setting, CSIDH
eventually requires larger keys than SIKE, since CSIDH admits a known quantum subexponential-
time attack whereas SIKE does not; to our knowledge the exact location of the crossover has not
been identified in prior literature. In any case, CSIDH is not a NIST candidate, and the focus of this
paper is on SIKE.

Our contributions. SIKE is a key encapsulation mechanism (KEM) based on the combination of
SIDH together with the Kirkwood variant [13] of the Fujisaki–Okamoto transform [9]. The latter
transform is necessary in any setting where one party’s public key is re-used, because of the GPST
attack [10] against SIDH. Public keys in SIDH and SIKE are identical, but as we will see, key com-
pression in SIKE involves different considerations than in SIDH because of variations in how the
keys are used.

The results in this paper affect the speed of encapsulation and decapsulation which both involve
torsion basis generation when decompressing keys and ciphertexts, respectively. We propose two
types of performance improvements. Some of our optimizations apply equally well to SIDH or SIKE.
Others arise from optimizing the interactions between key compression and the Fujisaki–Okamoto
transform in SIKE. In many cases, performance gains are subject to some sort of time-space tradeoff,
where the space being traded off refers not only to runtime memory usage, but also to key size. The
specific improvements that we propose are as follows, in summary form:

1. Extend the shared elligator technique introduced in [19]. During key generation, add two extra
bits of information to the public key indicating the correct ternary basis generators which are
elligator points. This prevents repeating two quadratic residuosity tests during encapsulation.
Moreover, instead of multiplying both ternary basis elements by a cofactor 2e2 and then com-
puting the linear combination corresponding to the secret kernel point, reverse the order of
these computations, saving one scalar multiplication by the cofactor. Two finite field inversions
can be saved due to this reordering since the Ladder3pt algorithm (introduced in [12] and
improved in [8]) now takes two affine cofactor-unreduced points. The combination of all the
previous optimizations applied to SIKEp751 gives a 6.2× faster ternary basis generation and a
1.9× faster decompression step in encapsulation.

2. During decapsulation, we save a square root evaluation by using an x-only point addition for-
mula4 to complete the Ladder3pt algorithm. The latter is used in the computation of the
kernel point for the shared secret computation step. The use of x-only formula is possible here
because the basis elements produced by entangled basis generation [18] are of a special form. In
particular, the binary torsion basis generation applied to SIKEp751 is experimentally improved
by a factor 662 (during decompression) and decompression itself by a factor 1.44.

3. An optimization proposed in [6] involves scaling the coordinate vectors in a compressed key so
that one of the four coordinates equals 1, saving an additional 12.5% of key size (the coordinate
vector is only half of the compressed key). In SIDH, this optimization is essentially free, since
scaling the coordinate vector results in scaling the secret kernel point, leaving the kernel sub-
group unchanged. However, in SIKE, it is no longer free, since Fujisaki–Okamoto key validation
during decapsulation requires comparing the transmitted key with a re-computed key, which is
difficult if the two keys are scaled differently. We propose to eliminate this key size optimiza-
tion, making the compressed ciphertexts larger, but the comparison easier. We also propose a
new optimization for performing this comparison more quickly than naively. The experimental
results show a speedup by a factor of ≈ 1.7 for the overall decapsulation operation.

4 This formula was dubbed entangled addition due to the fact that one of the basis generator is intrinsi-
cally related to the other following the nomenclature introduced in [18]. This formula was independently
discovered in [14].

2

We have implemented the above improvements on top of the SIKE library submitted to the sec-
ond round of the NIST standardization process [1,17]. Our software can be found at https:
//github.com/microsoft/PQCrypto-SIDH/releases/tag/v3.3.

Remark. We should stress that part of contribution 1 (saving 1 scalar multiplication) and the con-
tribution 2 above were independently discovered by Naehrig and Renes [14]. Contribution 3 is fully
independent from [14] and provides the best result of this paper (2 times speed up in the decapsu-
lation operation). Comparing these contributions to [14], we give further detailed analysis of these
improvements, Section 3 explains and gives algorithmic description of the improved decompression,
including a complexity analysis of the new basis generation. Moreover, Section 7 provides tailored
experiments giving precise figures of the impact of the entangled addition formula combined with
basis generation.

We also note that many algorithms and lookup tables in this work are not constant time as we
are mostly dealing with public keys and not secret information.

1.1 Notations and conventions

For simplicity, we assume that finite field arithmetic is carried out in a base field Fp and its quadratic
extension Fp2 for a prime p of form p := 2e2 · 3e3 − 1 for some e2 > 2 and e3 > 1, so that p ≡ 3
(mod 4). The quadratic extension Fp2/Fp is represented as Fp2 = Fp[i]/〈i2 + 1〉, and arithmetic
closely mimics that of the complex numbers.

All curves are represented using the Montgomery model unless otherwise specified. We follow
the convention of using subscripts 2 and 3 for Alice and Bob, respectively. For example, the secret
isogeny φ2 is computed by Alice and her public parameters are denoted by the points P2,Q2 and
the curve E2.

1.2 Key compression and Entangled basis review

Key (De)Compression. Given a Montgomery curve E3 : y2 = x3 + Ax2 + x defined over Fp2 for p =
2e23e3−1, the public key of Bob in SIDH consists of two points on E3, denoted byφ3(P2),φ3(Q2) ∈ E3,
where φ3 is Bob’s private isogeny.

The main idea to achieve key compression [2,6] is the following: instead of transmitting points
φ3(P2), φ3(Q2) ∈ E3[2e2], which are represented by two abscissas in Fp2 and consume 4 log p bits,
Bob computes a canonical basis R1, R2 ∈ E3[2e2] and expresses the expanded public key in that basis
as φ3(P2) = a0R1 + b0R2 and φ3(Q2) = a1R1 + b1R2. This representation consists of four smaller
integers (a0, b0, a1, b1) ∈ (Z/2e2Z)4 of total size 2 log p bits as suggested in [2]. This was improved
in [6] by transmitting only the triple (a−1

0 b0, a−1
0 a1, a−1

0 b1) ∈ (Z/2e2Z)3 or (b−1
0 a0, b−1

0 a1, b−1
0 b1) ∈

(Z/2e2Z)3 depending on whether a0 or b0 is invertible. Therefore, only (3/2) log p bits, plus one bit
indicating the invertibility of a0 or b0 modulo 2e2 , is needed.

The major Alice’s goal in decompression is to obtain the kernel point of her second isogeny,
which is given by ker(φ23) = 〈φ3(P2) + sk2 ·φ3(Q2)〉. Assuming a0 to be invertible, the kernel of
φ23 can be rewritten as

〈φ3(P2) + sk2 ·φ3(Q2)〉 ≡ 〈(a0R1 + b0R2) + sk2 · (a1R1 + b1R2)〉

≡ 〈R1 + a−1
0 b0R2 + sk2 · (a−1

0 a1R1 + a−1
0 b1R2))〉

Essentially, the decompression step consists of obtaining the basis {R1, R2} and performing the
related scalar multiplications in the last expression above upon reception of a−1

0 b0, a−1
0 a1 and a−1

0 b1.

3

https://github.com/microsoft/PQCrypto-SIDH/releases/tag/v3.3
https://github.com/microsoft/PQCrypto-SIDH/releases/tag/v3.3

Entangled Basis. Zanon et al. introduced the idea of entangled bases, a faster technique to generate a
basis {R1, R2} for the 2e2 -torsion subgroup of E3, denoted E3[2e2] = 〈R1, R2〉 where R1, R2 ∈ E3(Fp2)
[18]. Roughly speaking, the idea is inspired by the Elligator technique [3], which finds a point on
the curve deterministically. The difference is that the authors in [18] tweaked the original Elligator
to get not one but two points that are on the curve simultaneously with probability 50%. This was
combined with the 2-descent technique [6] to get not only points on the curve but of maximal order
2e2 . In particular, they proved that if the two points are picked in a special way (see Theorem 1) they
not only are on the curve but they are linearly independent, therefore forming a basis for E3[2e2].
To be precise, the following theorem was proved:

Theorem 1. [18] Given a Montgomery supersingular elliptic curve E3/Fp2 : y2 = x(x2 + Ax + 1)
where p = 2e2 · 3e3 − 1, #E3(Fp2) = (p + 1)2, and A 6= 0, let t ∈ Fp2 be a field element such that
t2 ∈ Fp2 \ Fp, and let x1 := −A/(1 + t2) be a quadratic non-residue that defines the abscissa of a
point R1 ∈ E3(Fp2). Then x2 := −x1 − A defines the abscissa of another point R2 ∈ E3(Fp2) such that
〈[h]R1, [h]R2〉= E3[2e2], where h := 3e3 is the cofactor of the 2e2 -torsion group.

Note that in the theorem above points R1 and R2 may have order ki · 2e2 , i.e., a multiple of 2e2

for some ki dividing 3e3 for i ∈ {1,2}. We also say that points Ri are cofactor-unreduced since they
contain a cofactor ki . The multiplication by the cofactor h = 3e3 reduces the points Ri and ensures
that the result is a point of order exactly 2e2 .

2 x-only entangled addition formula

Let E : y2 = x3 + A · x2 + x be a Montgomery supersingular elliptic curve over Fp2 . Zanon et al.
showed that if x1 = −A· v is a quadratic non-residue (QNR) and the abscissa of a point on E, where
v = 1/(1+ u · r2) ∈ Fp2 , u ∈ Fp2 is a quadratic residue (QR) and y1 =

p
x1, then x2 := u · r2 · x1 =

−A− x1 and y2 = u0 · r · y1
5 are automatically the coordinates of a point S2 ∈ E such that the points

〈[3e3]S1, [3e3]S2〉= E[2e2] generate a basis for the binary torsion subgroup [18, Theorem 1].
In the SIKE protocol, the kernel point generator computed in the first step of decapsulation is

of the form K := S1 + t · S2 ∈ E[2e2] for some t ∈ Z2e2 as explained in Section 5 (Equation 6). In
order to evaluate the expression S1 + t · S2, a Ladder3pt algorithm B.2 is used. Such algorithm
takes as input the affine representation of S1, S2 and the x coordinate of S2 − S1. The latter can
be computed using the traditional Montgomery addition formula (which actually computes the
difference between the points)

x(S2 + (−S1)) = ((y2 − (−y1))/(x2 − x1))
2 − A− x1 − x2 (1)

assuming that the Montgomery coefficient B equals 1. Observe that when S1 and S2 are entangled
points, the linear relation y(S2) = y2 = u0 · r · y1 is satisfied. Substituting such relation in 1 one gets
the x-only addition formula for x(S2 + (−S1))

x(S2 − S1) = ((y2 + y1)/(x2 − x1))2 − A− x1 − x2
= ((u0 · r · y1 + y1)/(x2 − x1))2 − A− x1 − (−A− x1)
= (y1(u0 · r + 1)/(x2 − x1))2

= y2
1 (u0 · r + 1)2/(x2 − x1)2

= (x3
1 + Ax2

1 + x1)(u0r + 1)2/(x2 − x1)2.

(2)

Interestingly, the Ladder3pt Algorithm B.2 can be modified to accept x(S2−S1) in its projec-
tive representation, and consequently the inversion in Equation 2 can be avoided by taking x = X/Z

5 Note that u0 =
p

u ∈ Fp2\Fp as defined in the original work.

4

where X = (x3
1 + A · x2

1 + x1)(u0 · r + 1)2 and Z = (x2 − x1)2. Overall, the above formula avoids the
need for the y coordinates of S1 and S2 and does not add any extra inversion. Algorithm 2.1 illus-
trates the sequence of steps of the addition. It is adapted to receive the inverse of the second point
which is necessary for SIKE’s use cases.

Algorithm 2.1 EntangledDifference [this work]: add an entangled basis generator with
the inverse of the other without using their y-coordinates.

INPUT: Affine points P1 = (x1, y1), P2 = (x2, y2) s.t. y2 = u0 · r · y1 ∈ Fp2

– Montgomery curve coefficient A∈ Fp2

– public parameter u0 ∈ Fp2

OUTPUT: A projective representation (X : Z) of the addition P1 + (−P2)
1: t1← u0 · r + 1
2: t1← t2

1
3: X ← x1 + A
4: X ← x1 · X + 1
5: X ← x1 · X
6: X ← t1 · X // X = y2

1 (u0 · r + 1)2 = (x3
1 + A · x2

1 + x1)(u0 · r + 1)2

7: Z ← x2 − x1

8: Z ← z2 // Z = (x2 − x1)2

9: return (X , Z)

3 Faster entangled basis generation

This section explains how SIKE decapsulation can benefit from the point addition formula intro-
duced in Section 2. Zanon et al. introduced a faster (entangled) binary torsion basis generation
in [18], which was further improved in [19] with a shared elligator technique. The idea of shared
elligator is to share the small counters obtained during key compression for getting basis generator
points. These counters tell which are the correct points on the curve and the user performing de-
compression can simply recover the points deterministically if counters are shared. The combined
improvements of [18,19] dropped the original cycle count from 26M to about a million for SIKEp751
on an Intel i5 Skylake processor at 2.9 GHz.

In particular, Algorithm B.3 from [19] generates an entangled basis during compression and
stores both the bit representing the quadraticity of the curve coefficient A and the elligator counter
r that gives the correct entry of a precomputed table T . This extra information learned during
compression is then transmitted to make decompression faster. Typically the counter r does not
exceed one byte. During decompression, binary basis generation is then performed deterministically
by consuming the shared information using the tailored Algorithm 3.1.

An immediate consequence of the entangled addition formula is that the expensive square
root computation taken at Steps 4–14 of Algorithm 3.1 can be automatically avoided, since the y
coordinates become unnecessary for the subsequent steps. As a result, an extremely fast entangled
basis generation can be achieved. In particular, the major cost of the entangled basis is reduced to
one single multiplication in Fp2 independently of the field size as opposed to the previous O(log p)
multiplications due to the square root needed for recovering the y-coordinate. This would roughly
represent a log p factor improvement if the scalar multiplication by cofactor was not needed. But
since it is required later the overall improvement is by a constant factor. A more precise complexity
analysis based on the underlying operation counts is provided later in this section.

The faster entangled basis generation is shown in Algorithm 3.2. In practice, this algorithm
revealed to be more than 662 times faster than the previous work from our experiments for the
prime p751. The actual cycle counts are of 0.85× 103 and 1.25× 103 for SIKEp434 and SIKEp751,

5

Algorithm 3.1 EntBasisDecompression [19]: Entangled basis generation with shared Elli-
gator for E[2e2](Fp2) : y2 = x3 + Ax2 + x

INPUT: A = a + bi ∈ Fp2 , a bit bi t indicating A’s quadraticity, a counter r ∈ Fp and the public parameters
u0 ∈ Fp2 : u= u2

0 ∈ Fp2\Fp; tables T1, T2 of pairs (r ∈ Fp, v = 1/(1+ ur2) ∈ Fp2) of QNR and QR.
OUTPUT: {S1, S2} such that 〈[3e3]S1, [3e3]S2〉= E[2e2](Fp2)

1: T ← (bi t
?
= 1) T1 : T2 // Table T1 is picked if A is QR and T2 otherwise

2: look up entry v corresponding to r in T
3: x ←−A · v
4: t ← x · (x · (x + A) · x + 1)
5: z← c2 + d2

6: s← z(p+1)/4

7: if s2 6= z then // test quadraticity of t = c + di
8: Abort: invalid input parameters (bi t, r) received
9: end if

10: z← (c + s)/2
11: α← z(p+1)/4

12: β ← d · (2α)−1

13: y ← (α2 ?
= z) α+ β i : −β −αi // y ←

p
x3 + A · x2 + x

14: return S1← (x , y), S2← (u · r2 · x , u0 · r · y)

respectively, showing that binary torsion basis generation during decompression is not a bottleneck
any more (see Section 7). The integrated version of the new entangled addition with the fast basis

Algorithm 3.2 EntBasisDecompression [this work]: Entangled basis generation with
shared elligator and entangled addition for E[2e2](Fp2) : y2 = x3 + A · x2 + x

INPUT: A= a+ bi ∈ Fp2

– a bit bi t indicating A’s quadraticity
– an elligator counter r ∈ Fp

– public tables T1, T2 of pairs (r ∈ Fp, v = 1/(1+ ur2) ∈ Fp2) of QNR and QR v’s, respectively
OUTPUT: {x(S1), x(S2)} such that 〈[3e3]S1, [3e3]S2〉= E[2e2]

1: T ← (bi t
?
= 1) T1 : T2 // select proper table according to A’s quadraticity

2: lookup entry v corresponding to r on T
3: x1←−A · v
4: x2←−x1 − A
5: return (x1, x2)

generation is given by the decompression Algorithm 3.3. Note that the decompression procedure
is a step of the SIKE decapsulation (Decaps function of Algorithm 6.1) and has its cost slightly
amortized by the remaining steps.

3.1 Complexity analysis of entangled basis generation

In order to evaluate the theoretical expected improvement for entangled basis generation during
Decompression (ran within SIKE Decapsulation) we analyze the previous Algorithm 3.1 and the
proposed Algorithm 3.2 with respect to the underlying operation counts in terms of base field mul-
tiplications (Fp).

For this analysis, we denote by i, c, m and s the costs of inverting, cubing, multiplying, squaring,
and adding/subtracting/shifting in Fp, respectively, and by I, C, M and S the costs of the corre-
sponding operations in Fp2 . We disregard the cost of changing a sign (for instance, when handling
the conjugate of a field element) and additions. The squaring over the base field s is implemented

6

Algorithm 3.3 Decompress_2 [this work]: decompress the public key and compute a kernel
generator for the last 2e2 -isogeny

INPUT: Secret key sk2 ∈ Z2e2 ,
– compressed public key pk2 = {bi t, (t1, t2, t3) ∈ (Z2e2)3, A∈ Fp2 , ent_bi t, r ∈ Z256}
– ent_bi t indicates if A is a QR (=1) or not (=0).
– bi t indicates which one of the possible scalars is invertible

OUTPUT: A kernel generator (x ′, z′) for the last 2e2 -isogeny
1: (x1, x2)← EntBasisDecompression(A, ent_bi t, r) // Alg. 3.2
2: X , Z ← ADDEntangled(x1, x2, A) // Alg. 2.1
3: if bi t = 0 then
4: scal ← (t1 + sk2 · t3)(1+ sk2 · t2))−1

5: (x , z)← Ladder3pt(scal, x1, x2, X , Z , A) // Alg. B.2
6: else
7: scal ← (t1 + sk2 · t2)(1+ sk2 · t3))−1

8: (x , z)← Ladder3pt(scal, x2, x1, X , Z , A) // Alg. B.2
9: end if

10: (x ′, z′)← [3e3](x , z)
11: return (x ′, z′)

by simply calling a multiplication m and thus Fp-squarings are replaced by Fp-multiplications in the
analysis. The costs of the Fp2 operations relative to the costs of operations in Fp can be approximated
by 1M≈ 3m and 1S≈ 2m.

Complexity of Algorithm 3.1. The relative cost of Steps 1 and 2 is negligible as they involve a condi-
tional test and a table entry lookup. Step 3 involves 1M≈ 3m. Step 4 involves 3M, or equivalently,
≈ 9m. Step 5 is just a comment for the following steps. Note that from Step 6 and further (except
by the last one), operations take place over the base field. Step 6 involves 2s≈ 2m. Step 7 involves
an exponentiation to the (p + 1)/4-power or, equivalently, to the 2e2−23e3 -power. This amounts to
(e2 − 2)s ≈ (e2 − 2)m and e3c ≈ 2e3m . Step 8 amounts to 1s ≈ 1m. Step 12 involves an expo-
nentiation similar to Step 7 and thus takes (e2 − 2)m+ 2e3m = (e2 + 2e3 − 2)m. Step 13 involves
1i and 1m. Step 14 carries 1s ≈ 1m. Finally, in Step 15, both expressions u0 · r and u · r2 can be
computed each with 2m for small constant r. Two extra multiplications over the quadratic field are
then performed, i.e., 6m. Adding up all the steps together one gets:

(2e2 + 4e3 + 23)m+ i (3)

Complexity of Algorithm 3.2. Equivalently to Algorithm 3.1 Steps 1 and 2 have negligible cost. Step
3 involves 1M≈ 3m. Adding up all the steps together one gets 3m.

For instance, the expected improvement for SIKEp751 parameter set can be theoretically esti-
mated as

�

(2 · 372+ 4 · 239+ 23)m+ 150m
3m

�

≈ 624 (4)

For the above estimate we verified experimentally that our inversion operation i, implemented
as a binary GCD algorithm, costs ≈ 150m.

4 Extend shared elligator for faster ternary basis generation

In [19], the authors introduced the shared elligator technique to speed-up basis generation during
decompression. This section focuses on the ternary basis generation which impacts the encapsula-
tion operation of SIKE (Encaps function of Algorithm 6.1).

7

For speeding up ternary basis generation during decompression, the entity who performs key
compression transmits not only the compressed key but also a small counter r storing the correct
entry in an auxiliary table T . This table is used for getting basis generator points on a Montgomery
curve E : y2 = x3 + A · x2 + x , A ∈ Fp2 . In particular, it stores precomputed values of the form
v := 1/(1 + U r2) ∈ Fp2 for small values of r ∈ Fp and a constant U ∈ Fp2 . The values v in T are
used to search for point candidates whose abscissa can be either

x := −A · v or x := −A+ A · v.

A quadraticity test is conducted to decide which one of the abscissas corresponds to a point on the
curve [3]. Once two of the points found are full order 3e3 and linearly independent, a ternary basis
has been generated. The values of r that lead to the basis points typically fit one byte and thus it is
worth it to share them at the cost of a small increase in the public key.

Although shared elligator allows for a deterministic recovery of the correct table entries r, there
are still two expensive quadraticity tests to be performed by the user decompressing the keys. We
suggest an extension of the elligator idea that transmits two extra bits indicating the correct abscissas
and therefore avoids the expensive quadraticity tests. The two extra bits can be accommodated in
one extra byte in the public key. This modification adds a very small overhead in size compared to
speed up gains. The faster (and fully) deterministic ternary basis generation algorithm is illustrated
in Algorithm 4.1. Moreover, the full (ternary) decompression including the extended elligator is
described in Algorithm 5.2.

Algorithm 4.1 BasePoint3nDecompression [this work]: Deterministic affine construction
of a point of order 3e3 in the Montgomery curve E : y2 = x3 + A · x2 + x from r and bi t

INPUT: curve coefficient A∈ Fp2

– elligator counter r ∈ Z points the correct table entry
– elligator bi t indicating the correct elligator point
– public table T of elligator values v = 1/(1+ U r2) ∈ Fp2 where U ∈ Fp2\Fp is a QNR

OUTPUT: Abscissa x of a point of order 3e3 from r
1: lookup entry v corresponding to r on T
2: x ←−A · v
3: if bi t then
4: x ←−x − A
5: end if
6: return x

5 Eliminate a multiplication by cofactor in the ternary decompression

We briefly explain how one can save a cofactor multiplication in the decompression of the ternary
basis. The same technique was originally used for the binary basis in [19]. The key compression
idea of [2,6] for Alice’s public key φ2(P3),φ2(Q3) ∈ E2[3e3] is as follows. Let R1, R2 ∈ E2[3e3]
be a canonical basis. Write φ2(P3) = a0R1 + b0R2 and φ2(Q3) = a1R1 + b1R2 for unique ai , bi ,
i = 0, 1. Then, Alice only needs to transmit the triple (a−1

0 b0, a−1
0 a1, a−1

0 b1) ∈ (Z/3e3Z)3 (or (b−1
0 a0,

b−1
0 a1, b−1

0 b1) ∈ (Z/3e3Z)3) if a0 (or b0) is invertible mod 3e3 . The coefficients a0, a1, b0, b1 can be
computed using Tate pairings and discrete logs in Z/3e3Z.

In [19], the authors proposed reverse basis decomposition to save one pairing computation. The
idea is to write R1, R2 as linear combinations of φ2(P3),φ2(Q3). Let R1 = c0φ2(P3) + d0φ2(Q3) and
R2 = c1φ2(P3) + d1φ2(Q3). Then the coefficients c0, d0, c1, d1 can be computed by first computing

8

the pairings

h0 = e3e3 (φ2(P3),φ2(Q3))
h1 = e3e3 (φ2(P3), R1) = e3e3 (φ2(P3), c0φ2(P3) + d0φ2(Q3)) = hd0

0

h2 = e3e3 (φ2(P3), R2) = e3e3 (φ2(P3), c1φ2(P3) + d1φ2(Q3)) = hd1
0

h3 = e3e3 (φ2(Q3), R1) = e3e3 (φ2(Q3), c0φ2(P3) + d0φ2(Q3)) = h−c0
0

h4 = e3e3 (φ2(Q3), R2) = e3e3 (φ2(Q3), c1φ2(P3) + d1φ2(Q3)) = h−c1
0 ,

(5)

and then computing the discrete logs c0 = − logh0
h3, d0 = logh0

h1, c1 = − logh0
h4 and d1 =

logh0
h2 in Z/3e3Z. The first pairing h0 can be computed once and for all using public param-

eters, so only the last four pairings need to be computed at runtime. Assume that d1 is a unit
mod 3e3 , then Alice transmits the triple (−d−1

1 d0,−d−1
1 c1, d−1

1 c0) = (a−1
0 b0, a−1

0 a1, a−1
0 b1). After re-

ceiving this compressed key, Bob first computes the basis R1, R2, and then computes the kernel
〈R1 + (1+ sk3a−1

0 a1)−1(a−1
0 b0 + sk3a−1

0 b1)R2〉 of his secret isogeny φ2,3.
The same public key triple can be obtained without R1, R2 being necessarily a basis. More pre-

cisely, suppose there is an algorithm that generates two linearly independent points S1, S2 ∈ E2(Fp2)
of orders 2k13e3 , 2k23e3 for some k1, k2 ≥ 0. Without loss of generality, assume that (R1, R2) =
(2e2S1, 2e2S2) is our canonical basis. By definition, the Tate pairing in E2[3e3] allows using an ar-
bitrary point of E(Fp2) in the second argument. We have

ĥ1 = e3e3 (φ2(P3), S1) = e3e3 (φ2(P3), S1)
2e2−e2 = e3e3 (φ2(P3), 2e2S1)

2−e2 = e3e3 (φ2(P3), R1)
2−e2 = h2−e2

1 .

Repeating the same steps for the other pairings we obtain ĥi = h2−m

i for all 1 ≤ i ≤ 4. Now, solving
discrete logarithms gives ĉ0 = 2−e2 c0, d̂0 = 2−e2 d0, ĉ1 = 2−e2 c1, d̂1 = 2−e2 d1, and assuming d̂1 is a
unit mod 3e3 , Alice transmits

(−d̂−1
1 d̂0,−d̂−1

1 ĉ1, d̂−1
1 ĉ0) = (−d−1

1 2e22−e2 d0,−d−1
1 2e22−e2 c1, d−1

1 2e22−e2 c0)

= (−d−1
1 d0,−d−1

1 c1, d−1
1 c0)

= (a−1
0 b0, a−1

0 a1, a−1
0 b1).

To decompress, Bob uses the same algorithm to generate S1, S2 and computes

S← S1 + [(1+ sk3a−1
0 a1)

−1(a−1
0 b0 + sk3a−1

0 b1)]S2. (6)

The kernel of his secret isogeny will then be ker(φ2,3) = 〈2e2S〉. In summary, instead of computing
R1, R2, which takes two scalar multiplications by the cofactor 2e2 , and then computing ker(φ2,3),
Bob only needs to compute 2e2S, which takes one scalar multiplication by 2e2 , and then ker(φ2,3).

Note that since the scalar multiplication by cofactor is postponed, Steps 1 and 2 in the general
ternary basis generation Algorithm 5.2 will retrieve the abscissas of affine points, and consequently
Algorithm 5.1 gets projective points with z = 1 in Steps 3 and 4. This means that inversions and
some extra multiplications and squarings in the CompleteMPoint can be avoided in those steps.

6 A new tradeoff between ciphertext size and speed

In the SIKE specification submitted to the second round of the NIST process [1], a variant with
compressed keys and ciphertexts was described. The compression techniques follow closely [6] and
the subsequent performance optimizations [18,19]. In particular, it reflects the exact techniques
from [19].

9

Algorithm 5.1 CompleteMPoint: given a xz-only representation on a Montgomery curve E,
compute the affine representation.

INPUT: Montgomery curve coefficient A, point P = (x , z) ∈ E
OUTPUT: (x ′, y ′, z′), the affine representation of P
1: if z 6= 0 then
2: xz← x · z
3: ss← (x + i · z)(x − i · z)
4: r r ← xz(A · xz + ss)
5: sr ←

p
r r

6: x ′← x
7: y ′← sr
8: z′← 1
9: else

10: x ′← 0; y ′← 1; z′← 0
11: end if
12: return x ′, y ′, z′

Algorithm 5.2 BuildE3nBasisDecompression [this work]: deterministically generating
a basis for E[3e3](Fp2) : y2 = x3 + Ax2 + x from A and elligator counters r1, r2 and bits bi t1, bi t2

INPUT: Montgomery curve coefficient A, elligator bits bi t1, bi t2 and elligator counters (r1, r2) ∈ Z2
256

OUTPUT: (x1, y1), (x2, y2): a basis for E[3e3]
1: x1← BasePoint3nDecompression(A, bi t1, r1) // Alg. 4.1
2: x2← BasePoint3nDecompression(A, bi t2, r2) // Alg. 4.1
3: x1, y1← CompleteMPoint(A, x1, 1) // Alg. 5.1
4: x2, y2← CompleteMPoint(A, x2, 1) // Alg. 5.1
5: return (x1, y1), (x2, y2)

An important observation is that during decapsulation, the Fujisaki–Okamoto transform requires
an extra expensive validation (Steps 3–9 of Decaps Algorithm 6.1). This validation is implemented
by regenerating and recompressing the ciphertext component, denoted here by c′0, so that it can
be compared against the received ciphertext c0. This approach poses two major drawbacks 1) it is
more computationally costly and 2) it involves discrete log computations due to the recompression.
Unfortunately, the discrete log computation employs precomputed tables on the order of megabytes
in order to achieve high speed. Many real applications typically have a memory-constrained IoT
device that receives data and performs decapsulation. Deploying those tables would pose a big
challenge in terms of both flash and stack memory consumption.

We now show how to eliminate those tables while making decapsulation faster. The main idea is
to avoid recompressing c′0 by generating a partially compressed ciphertext c0 during encapsulation.
This will allow for a comparison between the ciphertexts in their uncompressed form. The main
observation is that instead of sending 3 coefficients in Z/2e2Z as suggested in [6], function Encaps
will send the 4 coefficients (a0, a1, b0, b1) as originally proposed in [2] and described in Section 5.
In this case, the regenerated points (φ′3(P2),φ′3(Q2)) = c′0 are left uncompressed and compared
directly against the points derived from the ciphertext, which contains the 4 coefficients and the
information necessary to recover the entangled basis {S1, S2}.

Naively evaluating c′0
?
= c0 using the 4-coefficient approach incurs two equality checks with

ciphertexts in their uncompressed form6:

6 We omit the subscripts forφ, P and Q for the sake of simplicity. Note also that the entangled basis generators
S1, S2 are not cofactor-reduced and extra multiplications by 3e3 appear in Equation 7.

10

Algorithm 6.1 SIKE KEM = (KeyGen, Encaps, Decaps) [1].
Function G below is SHAKE256.
1: function KeyGen
INPUT: ()
OUTPUT: (s, sk2, pk2)
2: sk2 ←R Z2e2
3: pk2 ← isogen2(sk2) // Alg. in 1.3.5 of [1]
4: s←R {0,1}n
5: return

�

s, sk2, pk2

�

6:
7: end function

1: function Encaps
INPUT: pk2
OUTPUT: (c, K)
2: m←R {0, 1}n
3: r ← G(m || pk2)
4: (c0, c1)← Enc(pk2, m; r) // Alg. 1 of [1]
5: K ← H(m || (c0, c1))
6: return ((c0, c1), K)
7: end function

1: function Decaps
INPUT: (s, sk2, pk2), (c0, c1)
OUTPUT: K
2: m′ ← Dec(sk2, (c0, c1))
3: r ′ ← G(m′ || pk2)
4: c′0 ← isogen2(r ′) // Alg. 1 of [1]
5: if c′0 = c0 then
6: K ← H(m′ || (c0, c1))
7: else
8: K ← H(s || (c0, c1))
9: end if
10: return K
11: end function

φ′(P)
?
= 3e3([a0]S1 + [b0]S2)

φ′(Q)
?
= 3e3([a1]S1 + [b1]S2)

(7)

Note that the above equality checks involve six scalar multiplications in total (by ai , bi and 3e3)
and the two point additions {aiS1 + biS2} require recovering the y coordinates of aiS1 and biS2.

This can be initially optimized by adding up both equations to save three scalar multiplications
and a point addition. One must be careful in doing that, since it is easy to see that if a direct addition
of the equations is performed it becomes easy for an adversary to manipulate the 4 coefficients so
that the equality check still holds. The intuition for this is that individual comparisons check the
unique decomposition of points φ′3(P2),φ′3(Q2) into the vector space generated by {S1, S2}. On the
other hand, the point φ′3(P2) + φ′3(Q2) has projection a0 + a1 into the subspace 〈S1〉 and b0 + b1
into the subspace 〈S2〉 and the coefficients (a0, a1) and (b0, b1) do not need to be unique (only their
sum) in this case.

The problem above can be avoided by using a well known idea of randomizing one of the equa-
tions during verification (cf. batch signature verification). One can randomize one of the subspaces
(e.g., 〈φ′3(Q)〉) before adding up the two equations. If the randomization scalar t is unknown to
an adversary, then they don’t know how much the values a0 + ta1 and b0 + t b1 add up to and are
unlikely to fake the coefficients. This leads to the following check

φ′(P) + [t]φ′(Q)
?
= 3e3([a0 + a1 t]S1 + [b0 + t b1]S2) (8)

Note that this modification technically is not Fujisaki–Okamoto anymore, but we believe it is
equally secure. An adversary will have negligible advantage of forging the coefficients (a0, a1, b0, b1)
in Equation 8. To see this, expand out the LHS in terms of the basis {S1, S2}. Also, simplify the
RHS by performing the 3e3 multiplication by S1 and S2. This yields the equality [a0]R1 + [b0]R2) +
[t]([a1]R1 + [b1]R2

?
= [a0 + a1 t]R1 + [b0 + b1 t]R2 which holds as long as the respective scalars

a0 + ta1 of R1 and b0 + t b1 of R2 are equal in both sides, since R1 and R2 are linearly independent.
Without loss of generality, assume that an adversary applies the replacement (a0, a1, b0, b1) 7→ (a0+
α, a1+β , b0+γ, b1+δ) for non-zero α,β ,γ,δ. The equality holds if a0+ ta1 ≡ (a0+α)+ t(a1+β)

11

Table 1: Benchmark of the 2e2 -torsion basis generation on an Intel Core i5-6267U Skylake clocked
at 2.9 GHz (GCC compiler with -O3 flag, and s=m in this implementation) for SIKEp751.
(∗) Benchmarks provided in [19].

technique source Kcycles ratio (previous/current)

2-descent SIDH v2.0 [6] 23,770∗ –

ent. basis + shared ell Zanon et al. [19] 830.00 29

ent. basis + shared ell + ent. add this work 1.25 662

(mod 2e2) and b0+ t b1 ≡ (b0+γ)+ t(b1+δ) (mod 2e2). This implies that −α/β ≡ t and −γ/δ ≡ t.
The latter equivalences tell us that for any β (or δ) chosen by the adversary, there is only one single
value of α (or γ) that will satisfy the equality for a given t ∈ Z/2e2Z picked at random by the verifier.
Therefore, the success probability of forging the coefficients is at most 2−e2 .

For efficiency reasons and without loss of generality, note that Equation 8 can be rewritten as

φ′(P + [t]Q)
?
= 3e3[a0 + ta1](S1 + [(b0 + t b1)(a0 + ta1)−1]S2) (9)

where the LHS applies the linearity of the isogeny to move the randomization to the initial curve
and the RHS assumes that (a0 + ta1) is invertible and can be factored out.

In order to evaluate the LHS, a key idea is that one could set the randomization scalar to be
t := sk2 since sk2 is private and thus unpredictable by the adversary. Moreover, the point K :=
P + [sk2]Q is exactly the kernel generator of Alice’s isogeny, which was already computed during
key generation (Step 3 of KeyGen Algorithm 6.1). Therefore, Alice can append the x-coordinate
of K to her secret key and reuse it during decapsulation. Overall, computing the LHS boils down to
computing the isogeny φ′3 by only carrying the point K (instead of carrying P and Q) and no scalar
multiplication is needed so far.

Setting t := sk2 also benefits the evaluation of the RHS as it becomes 3e3[a0+ sk2a1](S1+[(b0+
sk2 b1)(a0 + sk2a1)−1]S2, which coincides (up to a scalar factor of [a0 + sk2a1]) with the generator
point of Alice’s final isogeny already computed in Step 2 of Decaps in Algorithm 6.1. Therefore,
since the RHS is readily available, no computation at all is needed. Finally, for the equality check to
hold, the LHS just needs to accommodate the scalar a0+ sk2a1 and one single scalar multiplication
is needed overall (as opposed to six multiplications in SIKE Round 2 submission), which leads to
Equation 10:

[a0 + ta1]−1φ′(P + [t]Q)
?
= 3e3(S1 + [(b0 + t b1)(a0 + ta1)−1]S2). (10)

6.1 Complexity Analysis of the new decapsulation tradeoff vs SIKE Round 2

A theoretical estimate of the speed up achieved by the tradeoff is described in this section. For doing
so, we estimate the number of base field multiplications required for the decapsulation operation
in both SIKE Round 2 submission and by our proposed approach.

In order to perform the operation counts we briefly recall the involved procedures in the overall
decapsulation procedure Decaps at Algorithm 6.1. Step 2 of Decaps consists of processing the
Dec procedure, which is given by Algorithm 6.3. The major cost of Algorithm 6.3 in terms of field
operations comes from Algorithm 6.2 and we look at it next.

Step 1 of Algorithm 6.2 involves an entangled basis computation which was already analyzed in
Section 3.1 and costs (2e2 + 4e3 + 23)m+ i operations over the base field. Steps 2-6 involve 3m+ i
operations. Step 7 consists of a three-point ladder computation (Alg. B.2), which costs 6M+ 4S ≈
26m per step, which amounts to a total of (26e2)m. Step 8 triples the kernel generator point R e3

12

times, which amounts to (5M + 6S)e3 ≈ 27e3m 7. Finally Step 9 computes an isogeny from the
kernel point K . For the sake of simplicity, we assume an isogeny is computed via a fully balanced
strategy (which is very close to an optimal strategy), which has an expected number of operations
of e2 log e2/2 right and left traversals8. Since our kernel point K has order 2e2 , left traversals are
computed as squarings and right edge traversals are computed as 2-isogeny calculations. Thus we
have (e2 log e2)/2S ≈ (e2 log e2)m due to left edge traversals and 2(e2 log e2)/2S ≈ (2e2 log e2)m
due to right edge traversals9. Therefore, adding up everything together we get a cost of [(28 +
3 log e2)e2 + 31e3 + 26]m + 2i for the isoex2 algorithm, which in turn is the main cost of the
algorithm Dec.

Next, Step 3 of algorithm Decaps is just a hash so we proceed to the analysis of Step 4. This
step is implemented by Algorithm 6.4, which internally involves an SIDH key generation (Steps
1 and 2) followed by key compression (Step 3). Step 1 involves a three-point ladder and costs
26e3m. Theoretically estimating the exact count of Step 2 (GetIsogeny) is more laborious since
it involves not only computing a smooth-degree isogeny, but also evaluating it on multiple carried
points, and a simple formula like the one proposed by [12] does not give a fair count. Thus, we
have introduced a counter in the C implementation of the SIKE Round 2 in order to get the exact
number of based field multiplications incurred by this procedure for SIKEp751, which amounted to
55686m. Step 4 involves compressing the the points φ(P2),φ(Q2). Overall, compression involves
one entangled basis generation ((2e2 + 4e3 + 23)m+ i), 4 Tate pairings of order 2e2 and 4 discrete
logarithms of order 2e2 . Using a similar approach with a counter we get an exact cost of 60017m
for the pairings and discrete logs together for SIKEp751. By adding up everything above, we get the
total number of base field multiplications required by the original AlgorithmDecaps for SIKEp751.

[(28+ 3 log e2)e2 + 57e3 + 115729]m+ 2i≈ 149600m

For estimating the cost of the proposed decapsulation we first note that Algorithm 6.3 (Dec)
is slightly modified to receive the four coefficients a0, b0, a1, b1 ∈ (Z2e2)4 as instead of a triple.
Therefore the new ciphertext is given by c0 = (A, a0, b0, a1, b1) and is the new input for Algo-
rithm 6.5 (isoex2_ours). Note that the only modifications required for algorithm isoex2 is
to express the scalar in terms of the fours coefficients instead of three and also retrieving the
kernel point as described in Section 6. The cost of the algorithm is unchanged and is therefore
[(28+3 log e2)e2+31e3+26]m+2i as previously analyzed. The proposed modifications to isogen2
is given by Algorithm 6.6. The main changes compared to previous Algorithm 6.4 involve comput-
ing the isogeny directly on the point xK = P2 + [sk2]Q2 as previously described and also avoiding
the recompression of the image points. The cost of Step 1 (ladder) is 26e3m. Step 2, also involving
carrying points through the isogeny so we adopt the some approach as before using a counter in our
C implementation to get the exact number of base field multiplications for SIKEp751, i.e., 50707m.

Finally, the only modification required in the procedure Decaps (Algorithm 6.1) is Step 5,
which instead of direct comparison of the ciphertexts, ones performs the comparison suggested in
Section 6 (Equation 10). As the RHS is readily available, only one single scalar multiplication is
required on the left side, which can be done with (4S+7M)e2 ≈ 29e2m. The new cost of the overal
decapsulation is

[(57+ 3 log e2)e2 + 31e3 + 50733]m+ 2i≈ 89176m

7 We assume the tripling algorithm proposed in [18].
8 This estimation is given by [7].
9 We assume a cost of 2S to compute a 2-isogeny from [16].

13

The theoretical improvement is thus by a factor of 149600/89176 ≈ 1.7. The experimental
results show that the technique proposed in this section improves decapsulation speed by a factor
≈ 1.76 in exchange of a ≈ 12% larger ciphertext and a larger secret key by one field element.

Algorithm 6.2 isoex2: given a compressed ciphertext (c0, c1) and the receiver’s secret key sk2,
uncompress c0 and retrieve the shared secret j.

INPUT: sk2 ∈ Z2e2 , c0 = (A, bi t1, bi t2, r, (t, u, v)) ∈ (Fp2 × {0,1}2 × Z × (Z2e2)3), c1 ∈ {0,1}256.
bi t2 is a bit indicating how to compute the scalar scal.

OUTPUT: j ∈ Fp2

1: xS1
, xS2

← EntBasisDecompression(A, bi t1, r) //Al g. 3.1
2: if bi t2 = 0 then
3: scal ← (sk2 ·u+ 1)−1(sk2 ·v + t)
4: else
5: scal ← (sk2 ·v + 1)−1(sk2 ·u+ t)
6: swap(S1, S2)
7: end if
8: xR← Ladder3pt(scal, xS1

, xS2
, xS2−S1

, A) //Al g. B.2
9: xK ← x3e3 R // points S1, S2 are not cofactor reduced

10: j← GetSharedSecret(xK , A) // isogeny computation
11: return j

Algorithm 6.3 Dec: given a ciphertext (c0, c1) and the receiver’s secret key sk2, retrieve the encap-
sulated key m.
Function F maps j-invariants into bitstrings. It is instantiated with SHAKE256.

INPUT: sk2 ∈ Z2e2 , (c0 ∈ (Z2e2)3, c1 ∈ {0, 1}256).
OUTPUT: m ∈ {0,1}256

1: j← isoex2(c0, sk2)
2: h← F(j)
3: m← h⊕ c1

4: return m

Algorithm 6.4 isogen2: given a scalar r ′, compute the corresponding isogeny φ of kernel 〈P3 +
r ′Q3〉 in its compressed form.

INPUT: r ′ ∈ Z3e3 , and public parameters P2,Q2 ∈ E0[2e2], P3,Q3 ∈ E0[3e3] for E0 : y2 = x3 + A0 x2 + x .
OUTPUT: A∈ Fp2 (the coefficient of the image curve of φ), (t, u, v) ∈ Z2e2 (the compressed ciphertext).

1: xR← Ladder3pt(r ′, xP3
, xQ3

, xQ3−P3
, A0) //R= P3 + [r ′]Q3

2: (A,φ(P2),φ(Q2))← GetIsogeny(xR, P2,Q2)
3: (t, u, v)← CompressPoints(A,φ(P2),φ(Q2))
4: return c0 = (A, t, u, v)

7 Implementation and experimental results

The techniques introduced in the previous sections have been implemented on top of the official
SIKE optimized C + ASM implementation submitted to the second round of NIST [1]. The imple-
mentation provided in [1] offers a faster field arithmetic due to recent improvements in assembly
and our results also get benefit from that when compared to [19], which builds on top of a previous
implementation of SIKE. Our methodology consists of measuring the cost of the operations in cycle

14

Algorithm 6.5 isoex2_ours: given a compressed ciphertext (c0, c1) and the receiver’s secret key
sk2, uncompress c0 and retrieve the shared secret j and kernel point K .

INPUT: sk2 ∈ Z2e2 , c0 = (A, bi t1, bi t2, r, (a0, b0, a1, b1)) ∈ (Fp2 × {0,1}2 × Z × (Z2e2)4), c1 ∈ {0,1}256.
bi t2 is a bit indicating how to compute the scalar scal.

OUTPUT: (j, xK) ∈ (Fp2)2

1: xS1
, xS2

← EntBasisDecompression(A, bi t1, r) //Al g. 3.1
2: if bi t2 = 0 then
3: scal ← (sk2 ·a1 + a0)−1(sk2 ·b1 + b0)
4: else
5: scal ← (sk2 ·b1 + b0)−1(sk2 ·a1 + a0)
6: swap(S1, S2)
7: end if
8: xR← Ladder3pt(scal, xS1

, xS2
, xS2−S1

, A) //Al g. B.2
9: xK ← x3e3 R // points S1, S2 are not cofactor reduced

10: j← GetSharedSecret(xK , A) // isogeny computation
11: return (j, xK)

Algorithm 6.6 isogen2_ours: given a scalar r ′, compute the corresponding isogeny φ of kernel
〈P3 + r ′Q3〉 in expanded form (no need for recompression).

INPUT: r ′ ∈ Z3e3 , xK = P2 + [sk2]Q2 ∈ Fp2 , and public parameters P3,Q3 ∈ E0[3e3] for E0 : y2 = x3 + A0 x2 + x .
OUTPUT: A, xφ(P2+[sk2]Q2) ∈ Fp2

1: xR← Ladder3pt(r ′, xP3
, xQ3

, xQ3−P3
, A0) //R= P3 + [r ′]Q3

2: (A,φ(P2 + [sk2]Q2))← GetIsogeny(xR, xK)
3: return (A, xφ(P2+[sk2]Q2))

counts which allows us to compare directly against [18,19] as we run the algorithms over the same
processor model. The cycle count is an average over 5 thousand executions.

Table 1 shows the results for the fast binary basis generation during decompression which runs
internally to SIKE’s decapsulation procedure (Decaps in Algorithm 6.1). The results here are par-
ticularly impacted by the techniques of entangled addition introduced in Section 2 and of faster
entangled basis generation introduced in Section 3. Note that binary basis generation was origi-
nally a considered bottleneck with about 24M cycles. The reduction to about 1k cycles (or even less
for smaller SIKE primes) can be considered as an effective solution for this bottleneck.

We also show the results for the faster ternary basis generation during decompression in Table
2, which impacts SIKE’s encapsulation procedure (Encaps in Algorithm 6.1). The new figures are
impacted by the techniques of extended elligator with extra bits introduced in Section 4 and removal
of a cofactor multiplication introduced in Section 5.

It is worth mentioning that although we achieve a much better speed-up factor in the binary
torsion basis generation saving almost a million cycles, we were able to save even more cycles for
the ternary case (≈ 6M in SIKEp751), since the latter case seems to not have been fully optimized
by previous works.

Table 3 gives a complete comparison that includes high-level operations of SIKE. The experi-
mental results for the ciphertext size vs decapsulation speed tradeoff introduced in Section 6 is also
given. In this case, we were able to get a factor 2 speedup in exchange for a≈ 12% larger ciphertext
and one extra field element in the secret key. One can also see that although a big improvement was
achieved for individual basis generation, they get amortized in the presence of even more expensive
operations related to key compression, i.e., discrete logs and pairings. The overall decapsulation is
improved by a factor of 1.27 to 2.0 depending on the technique employed and the overall encapsu-

15

Table 2: Benchmark of the 3e3 -torsion basis generation on an Intel Core i5-6267U clocked at 2.9
GHz (GCC compiler with -O3 flag, and s=m in this implementation) for SIKEp751.
(∗) Benchmarks provided in [19].

technique source Kcycles ratio (previous/current)

Costello et. al. (based on 3-descent) SIDH v2.0 [6] 19,980∗ –

shared ell. Zanon et al. [19] 7,260 2.8

ext. shared ell. + avoid mult. by cof. this work 1,175 6.2

Table 3: Benchmarks in 106 cycles on an Intel Core i5-6267U Skylake clocked at 2.9 GHz (GCC
compiler with -O3 flag, and s=m in this implementation) for SIKEp751.
(∗) A few megabytes saved in storage for the entity running decapsulation since it avoids discrete
log computations.

2e2 -torsion 3e3 -torsion

operation Zanon et al. [19] ours ratio Zanon et al. [19] ours ratio

basis generation 0.830 0.00125 662.0 7.260 1.175 6.2

decompression 8.970 6.223 1.44 12.910 6.888 1.87

encapsulation 89.110 74.684 1.19 – – –

decapsulation 90.130 70.856 1.27 – – –

encapsulation tradeoff (∗) – 73.897 1.21 – – –

decapsulation tradeoff (∗) – 51.077 1.76 – – –

lation is improved by a factor of 1.19 to 1.21 for SIKEp751. For the sake of completeness we also
give extra comparisons for the binary basis generation including the new SIKE primes in Table 4 of
Appendix A.

8 Conclusion

In this work, we fully remove one of the SIDH/SIKE’s bottlenecks, i.e., the binary torsion basis gen-
eration during decompression. This has an impact on SIKE decapsulation algorithm. We also provide
a faster ternary basis generation where about 6M cycles are saved for SIKEp751. This impacts the
encapsulation algorithm. Furthermore, we introduce a tradeoff where ciphertexts are increased by
about 12% and decapsulation speed improves by a factor of ≈ 1.7 compared to best previous work
and more importantly get rid of megabytes of precomputed tables used in discrete log computa-
tion. This makes the decapsulation operation more friendly to IoT devices. A natural next step is to
combine the complementary results proposed here with the ones in [14].

References

1. R Azarderakhsh, M Campagna, C Costello, LD Feo, B Hess, A Jalali, D Jao, B Koziel, B LaMacchia, P Longa,
M Naehrig, G Pereira, J Renes, V Soukharev, and D Urbanik. Supersingular isogeny key encapsulation.
Submission to the 2nd Round of the NIST Post-Quantum Standardization project, 2019.

2. R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi. Key compression for isogeny-based cryp-
tosystems. In Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, pages
1–10. ACM, 2016.

16

3. D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: Elliptic-curve points indistinguish-
able from uniform random strings. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 967–980. ACM, 2013.

4. W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. Csidh: An efficient post-quantum commutative
group action. In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018,
pages 395–427, Cham, 2018. Springer International Publishing.

5. Denis X. Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash functions from expander graphs.
Journal of Cryptology, 22(1):93–113, Jan 2009.

6. C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik. Efficient compression of SIDH public
keys. In Advances in Cryptology – Eurocrypt 2017, number 10210 in Lecture Notes in Computer Science,
pages 679–706, Paris, France, 2017. Springer.

7. L. De Feo, D. Jao, and J. Plût. Towards quantum-resistant cryptosystems from supersingular elliptic curve
isogenies. Journal of Mathematical Cryptology, 8(3):209–247, 2014.

8. Armando Faz-Hernández, Julio López, Eduardo Ochoa-Jiménez, and Francisco Rodríguez-Henríquez. A
faster software implementation of the supersingular isogeny diffie-hellman key exchange protocol. IEEE
Transactions on Computers, 2017.

9. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes. Journal
of Cryptology, 26(1):80–101, Jan 2013.

10. S. D. Galbraith, C. Petit, B. Shani, and Y. Ti. On the security of supersingular isogeny cryptosystems. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, pages 63–91,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

11. D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic curve isoge-
nies. In Post-quantum cryptography, volume 7071 of Lecture Notes in Comput. Sci., pages 19–34. Springer,
Heidelberg, 2011.

12. D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies.
In Post-Quantum Cryptography – PQCrypto 2011, number 7071 in Lecture Notes in Computer Science,
pages 19–34, Taipei, Taiwan, 2011. Springer.

13. D. Kirkwood, B. Lackey, J. McVey, M. Motley, J. Solinas, and D. Tuller. Failure is not an option: Stan-
dardization issues for post-quantum key agreement. https://csrc.nist.gov/groups/ST/
post-quantum-2015/presentations/session7-motley-mark.pdf, 2015.

14. Michael Naehrig and Joost Renes. Dual isogenies and their application to public-key compression for
isogeny-based cryptography. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 243–272. Springer, 2019.

15. National Institute of Standards and Technology. Post-quantum cryptography. https://www.nist.
gov/pqcrypto/, 2019.

16. Joost Renes. Computing isogenies between montgomery curves using the action of (0, 0). In International
Conference on Post-Quantum Cryptography, pages 229–247. Springer, 2018.

17. SIKE. Supersingular isogeny key encapsulation, 2017. https://sike.org.
18. G. Zanon, M. Simplicio Jr., G. Pereira, J. Doliskani, and P. Barreto. Faster isogeny-based compressed key

agreement. In International Workshop on Post-Quantum Cryptography, pages 248–268. Springer, 2018.
19. G. Zanon, M. Simplicio Jr., G. Pereira, J. Doliskani, and P. Barreto. Faster key compression for isogeny-based

cryptosystems. IEEE Transactions on Computers, 68:688–701, 2018.

17

https://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session7-motley-mark.pdf
https://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session7-motley-mark.pdf
https://www.nist.gov/pqcrypto/
https://www.nist.gov/pqcrypto/
https://sike.org

A Additional performance experiments

In order to illustrate our techniques for different SIKE primes that are not present in the previous
compression works, we give extra benchmarks in Table 4.

Table 4: Benchmark for 2e2 -torsion basis generation in cycles on an Intel Core i5-6267U Skylake
clocked at 2.9 GHz (GCC compiler with -O3 flag, and s=m in this implementation).
(∗) Cycle counts based on our implementation of [19] since they only provide results for p751.

prime binary basis generation ratio
Zanon et al. [19] this work

p434 186,192∗ 852 219
p503 249,483∗ 1083 230
p610 420,331∗ 1183 355
p751 830,000 1254 662

B Auxiliary algorithms

This appendix lists some key algorithms in SIKE specification that were used in this work.

Algorithm B.1 xDBLADD: combined coordinate doubling and differential addition [17]
INPUT: (XP : ZP), (XQ : ZQ), (XQ−P : ZQ−P), and A24 = A+ 2/4
OUTPUT: (X[2]P : Z[2]P), (XP+Q : ZP+Q)

1: t0← X P + ZP

2: t1← X P − ZP

3: X[2]P ← t2
0

4: t2← XQ − ZQ

5: XP+Q ← XQ + ZQ

6: t0← t0 · t2

7: Z[2]P ← t2
1

8: t1← t1 · XP+Q

9: t2← X[2]P − Z[2]P
10: X[2]P ← X[2]P · Z[2]P
11: X P+Q ← A24 + t2

12: ZP+Q ← t0 − t1

13: Z[2]P ← X P+Q + Z[2]P
14: X P+Q ← t0 + t1

15: Z[2]P ← Z[2]P · t2

16: ZP+Q ← Z2
P+Q

17: X P+Q ← X 2
P+Q

18: ZP+Q ← XQ−P · ZP+Q

19: X P+Q ← ZQ−P · XP+Q

20: return {(X[2]P : Z[2]P), (X P+Q : ZP+Q)}

18

Algorithm B.2 Ladder3pt: Three point ladder [12,8]
INPUT: m= (m`−1, . . . , m0)2 ∈ Z, (xP , xQ, xQ−P), and A
OUTPUT: (XP+[m]Q : ZP+[m]Q)

1:
�

(X0 : Z0), (X1 : Z1), (X2 : Z2)
�

←
�

(xQ : 1), (xP : 1), (xQ−P : 1)
�

2: A24← (A+ 2)/4
3: for i = 0 to `− 1 do
4: if mi = 1 then
5:

�

(X0 : Z0), (X1 : Z1)
�

← xDBLADD
�

(X0 : Z0), (X1 : Z1), (X2 : Z2), A24

�

6: else
7:

�

(X0 : Z0), (X2 : Z2)
�

← xDBLADD
�

(X0 : Z0), (X2 : Z2), (X1 : Z1), A24

�

8: end if
9: end for

10: return (X1 : Z1)

Algorithm B.3 EntangledBasisGeneration for E[2e2](Fp2) : y2 = x3 + Ax2 + x [19]

INPUT: A = a + bi ∈ Fp2 and the public parameters u0 ∈ Fp2 : u = u2
0 ∈ Fp2\Fp; tables T1, T2 of pairs (r ∈

Fp, v = 1/(1+ ur2) ∈ Fp2) of QNR and QR.
OUTPUT: {S1, S2} such that 〈[3e3]S1, [3e3]S2〉 = E[2e2](Fp2), a bit bi t indicating the quadraticity of A and the

table entry for r
1: z← a2 + b2

2: s← z(p+1)/4

3: // select proper table by testing quadraticity of A
4: if s2 ?

= z then
5: bi t ← 1; T ← T1 // A is a QR
6: else
7: bi t ← 0; T ← T2 // A is a QNR
8: end if
9: repeat

10: look up next entry (r, v) from T
11: x ←−A · v
12: t ← x · (x2 + A · x + 1) // test quadraticity of t = c + di
13: z← c2 + d2, s← z(p+1)/4

14: until s2 = z
15: z← (c + s)/2
16: α← z(p+1)/4

17: β ← d · (2α)−1

18: y ← (α2 ?
= z) α+ β i : −β −αi // y ←

p
x3 + A · x2 + x

19: return S1← (x , y), S2← (ur2 x , u0r y), bi t, r

19

Algorithm B.4 BasePoint3n_decompression [19]: Deterministic xz-only construction of
a point of order 3e3 in the Montgomery curve E : y2 = x3 + Ax2 + x from r

INPUT: Curve coefficient A∈ Fp2

– Elligator counter r ∈ Z informing the correct table entry
– Public table T of elligator values v = 1/(1+ ur2) ∈ Fp2

OUTPUT: Projective point (x , z) of order 3e3 from r
1: v← T[r + 1]
2: x ←−A · v
3: y y ← x + A
4: y y ← x · y y + 1
5: y y ← x · y y // y y = x3 + Ax2 + x = a+ bi
6: N ← a2 + b2

7: z← N (p+1)/4

8: if z2 6= N then
9: x ←−x − A

10: end if
11: x , z← [2e2](x , 1)
12: return (x , z)

20

	x-only point addition formula and faster compressed SIKE

