
A preliminary version of this paper appears in the proceedings of INDOCRYPT 2020. This is the
full version.

The Multi-Base Discrete Logarithm Problem: Tight
Reductions and Non-Rewinding Proofs for Schnorr

Identification and Signatures

Mihir Bellare1 Wei Dai2

October 2020

Abstract

We introduce the Multi-Base Discrete Logarithm (MBDL) problem. We use this to give
reductions, for Schnorr and Okamoto identification and signatures, that are non-rewinding and,
by avoiding the notorious square-root loss, tighter than the classical ones from the Discrete
Logarithm (DL) problem. This fills a well-known theoretical and practical gap regarding the
security of these schemes. We show that not only is the MBDL problem hard in the generic
group model, but with a bound that matches that for DL, so that our new reductions justify
the security of these primitives for group sizes in actual use.

1 Department of Computer Science & Engineering, University of California, San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/˜mihir/. Supported in
part by NSF grant CNS-1717640 and a gift from Microsoft.

2 Department of Computer Science & Engineering, University of California, San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: weidai@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/˜weidai/. Supported
in part by a Powell Fellowship and grants of first author.

1

Contents

1 Introduction 3

2 Preliminaries 8

3 The Multi-Base Discrete-Logarithm Problem 8

4 Schnorr Identification and Signatures from MBDL 10

5 MBDL hardness in the Generic Group Model 17

References 24

A Okamoto Identification and Signatures from MBDL 27

B Ratio-based tightness 30

2

1 Introduction

It would not be an exaggeration to say that Schnorr identification and signatures [45] are amongst
the best-known and most influential schemes in cryptography. With regard to practical impact,
consider that Ed25519, a Schnorr-derived signature scheme over twisted Edwards curves [12], is
used, according to IANIX [34], in over 200 different things. (OpenSSL, OpenSSH and GnuPG to
name a tiny fraction.) Meanwhile the algebraic structure of the Schnorr schemes has resulted in
their being the basis for many advanced primitives including multi- [39, 6, 3, 38], ring- [2, 32] and
threshold- [50, 37] signatures.

Proving security of these schemes has accordingly attracted much work. Yet, all known standard-
model proofs [44, 1, 36] exhibit a gap: the proven bound on adversary advantage (success proba-
bility) is much inferior to (larger than) the one that cryptanalysis says is “true.” (The former is
roughly the square-root of the latter. Accordingly we will refer to this as the square-root gap.)

The square-root gap is well known and acknowledged in the literature. Filling this long-standing
and notorious gap between theory and practice is the subject of this paper. We start with some
background.
Schnorr schemes. Let G be a group of prime order p, and g ∈ G a generator of G. We let
ID = SchID[G, g] denote the Schnorr identification scheme [45] (shown in Figure 4). The security
goal for it is IMP-PA (impersonation under passive attack [24]). The Schnorr signature scheme
DS = SchSig[G, g] [45] is derived from ID via the Fiat-Shamir transform [25] (also shown in Figure 4).
The security goal for it is UF (unforgeability under chosen-message attack [30]) in the ROM (random
oracle model [10]).

Recall that, G, g being public, the DL problem is for an adversary, given X = gx, to recover
x. Since we will introduce variants, we may, for emphasis, refer to DL itself as the “basic” version
of the discrete-logarithm problem. Existing standard-model proofs for both ID and DS [44, 1, 36]
are based on the assumed hardness of DL. The heart of the proof for DS, and the cause of the
square-root gap, is the rewinding reduction in the proof for ID. This makes ID the first and most
basic concern.
The situation with ID. The simplest proof of IMP-PA for ID = SchID[G, g] uses the Reset
Lemma of [7]. It shows that, roughly:

εimp-pa(t) ≤
√
εdl(t) + 1

p
, (1)

where εimp-pa(t) is the probability of breaking IMP-PA security of ID in time t and εdl(t) is the
probability of breaking DL in time t. To draw quantitative conclusions about εimp-pa(t) as required
in practice, however, we now also need to estimate εdl(t). The accepted way to do this is via the
Generic Group Model (GGM) bound [47], believed to be accurate for elliptic curve groups. It says
that

εdl(t) ≈ t2

p
. (2)

Putting together the two equations above, we get, roughly:

εimp-pa(t) ≤ t
√
p
. (3)

There is, however, no known attack matching the bound of Eq. (3). Indeed, the best known time t
attack on ID is via discrete-log computation and thus has the considerably lower success probability
of t2/p. For example if p ≈ 2256 the best known attack against ID gives a time t = 280 attacker a
success probability of t2/p = 2−96, but Eq. (3) only rules out a success probability of t/√p = 2−48.

3

The proof is thus under-estimating security by a fairly large margin.
Accordingly in practice the proof is largely viewed as a qualitative rather than quantitative

guarantee, group sizes being chosen in ad hoc ways. Improving the reduction of Eq. (1) to bring
the theory more in line with the indications of cryptanalysis has been a long-standing open question.
Tiers and knobs. Before continuing with how we address this question, we draw attention to the
two-tiered framework of a security proof for a scheme S (above, S = ID) based on the assumed
hardness of some problem P (above, P=DL). The first tier is the reduction from P. It is represented
above by Eq. (1). The second tier is the estimate of the security of P itself, made (usually) in an
idealized model such as the GGM [47] or AGM (Algebraic Group Model) [27]. It is represented
above by Eq. (2). Both tiers are necessary to draw quantitative conclusions. This two-tier structure
is an accepted one for security proofs, and widely, even if not always explicitly, used.

In this structure, we have the flexibility of choice of P, making this a “knob” that we can tune.
Creative and new choices of P have historically been made, and been very valuable in cryptography,
yielding proofs for existing schemes and then going on to be useful beyond. Historically, a classical
example of such a (at the time, new) P is the Diffie-Hellman problem; the schemes S whose proof this
allows include the Diffie-Hellman secret-key exchange [21] and the El Gamal public-key encryption
scheme [23]. An example P closer to our work is the One-More Discrete Logarithm (OMDL)
problem [5], which has by now been used to prove many schemes S [7, 20, 43, 26, 22]. But this
knob-tuning approach is perhaps most visible in the area of bilinear maps, where many choices of
problem P have been made, justified in the GGM, and then used to prove security of many schemes
S. In the same tradition, we ask, how can we tune the knob to fill the square-root gap? Our answer
is a choice of P we call MBDL.
MBDL. Our Multi-Base Discrete Logarithm (MBDL) problem is a variant of the One-More Discrete
Logarithm (OMDL) problem of [5]. Continue to fix a cyclic group G and generator g of G. In MBDL,
the adversary is given a challenge Y ∈ G, a list X1, X2, . . . , Xn ∈ G∗ of generators of G, and access
to an oracle DLO that, on input i,W , returns DLG,Xi(W), the discrete logarithm of W , not in base
g, but in base Xi. To win it must find DLG,g(Y), the discrete logarithm of the challenge Y to base
g, while making at most one call to DLO overall, meaning it is allowed to take the discrete log of
at most one group element. (But this element, and the base Xi, can be chosen as it wishes.) The
number of bases n is a parameter of the problem, so that one can refer to the n-MBDL problem or
assumption. (Our results will rely only on 1-MBDL, but we keep the definition general for possible
future applications.) The restriction to at most one DLO call is necessary, for if even two are
allowed, DLG,g(Y) can be obtained as DLO(1, Y) ·DLO(1, g)−1 mod p where p = |G|.
Core results. We suggest that the square-root gap of Eq. (1) is a manifestation of an unformalized
strength of the discrete logarithm problem. We show that this strength is captured by the MBDL
problem. We do this by giving a proof of IMP-PA security of the Schnorr identification scheme
ID = SchID[G, g] with a tight reduction from 1-MBDL: letting ε1-mbdl(t) be the probability of
breaking the 1-MBDL problem in time t, Theorem 4.1 says that, roughly:

εimp-pa(t) ≤ ε1-mbdl(t) + 1
p
. (4)

Eq. (4) does not suffer from the square-root gap of Eq. (1). Progress. But this is in the first of the
two tiers discussed above. Turning to the second, we ask, how hard is MBDL? Theorem 5.1 shows
that, in the GGM, roughly:

ε1-mbdl(t) ≈ t2

p
. (5)

That is, 1-MBDL problem has essentially the same GGM quantitative hardness as DL. Putting

4

Schnorr Identification
t ε log(p1) log(p2) Speedup s = (log(p1)/ log(p2))3

280 2−48 256 208 1.9
264 2−64 256 192 2.4
2100 2−156 512 356 3

Schnorr Signatures
t qh ε log(p1) log(p2) Speedup s = (log(p1)/ log(p2))3

280 260 2−48 316 268 1.6
264 250 2−64 306 242 2.0
2100 280 2−156 592 436 2.5

Figure 1: Speedups yielded by our results for the Schnorr identification scheme ID =
SchID[G, g] (top) and signature scheme DS = SchSig[G, g] (bottom). The target for the first
is that IMP-PA adversaries with running time t should have advantage at most ε. We show the log
of the group size pi required for this under prior results (i = 1), and our results (i = 2). Assuming
exponentiation in G is cubic-time, we then show the speedup ratio of scheme algorithms. The target
for the second is that UF adversaries with running time t, making qh queries to H, should have
advantage at most ε, and the table entries are analogous.

Eqs. (4) and (5) together, we get (roughly) the following improvement over Eq. (3):

εimp-pa(t) ≤ t2

p
. (6)

This bound is tight in the sense that it matches the indications of cryptanalysis.
A direct indication of the practical value of this improvement is that, for a given target level

of provable security, we increase efficiency. Thus suppose that, for some chosen values of ε, t, we
want to pick the group G to ensure εimp-pa(t) ≤ ε. Eq. (6) allows us to use smaller groups than
Eq. (3). Since scheme algorithms have running time cubic in the log of p = |G|, this results in a
performance improvement. Figure 1 says that this improvement can range from 1.9x to 3x.
What has been gained? A natural question is that our results rely on a new assumption (MBDL),
so what has been gained? Indeed, MBDL, as with any new assumption, should be treated with
caution. However, it seems that improving Eq. (1) to something like Eq. (4) under the basic DL
assumption is out of reach and likely not possible, and thus that, as indicated above, the apparent
strength of the Schnorr schemes indicated by cryptanalysis is arising from stronger hardness prop-
erties of the discrete log problem not captured in the basic version. We are trying to understand
and formalize this hardness via new problems that tightly imply security of the Schnorr primitives.

Of course it would not be hard to introduce some problem which allows this. But we believe
MBDL, and our results, are “interesting” in this regard, for the following reasons. First, MBDL
is not a trivial reformulation of the IMP-PA security of ID, meaning we are not just assuming the
square-root problem out of existence. Second, and an indication of the first, is that the proof of
the IMP-PA security of ID from MBDL (see “Reduction approach” below) is correspondingly not
trivial. Third, the use of MBDL is not confined to Schnorr identification; as we also discuss below
under “MBDL as a hub,” it already has many further applications and uses, and we imagine even
more will arise in the future.

5

Reduction approach. The proof of Eq. (1) uses a rewinding argument that exploits the special
soundness property of the Schnorr identification scheme, namely that from two compatible tran-
scripts —this means they are accepting and have the same commitment but different challenges—
one can extract the secret key. To find the discrete log, in base g, of a given challenge Y , the
discrete log adversary B plants the challenge as the public key X and performs two, related runs of
the given IMP-PA adversary, hoping to get two compatible transcripts, in which case it can extract
the secret key and solve its DL instance. The Reset Lemma [7] says it is successful with probability
roughly the square of the IMP-PA advantage of A, leading to the square-root in Eq. (1).

Recall that our 1-mbdl adversary B gets input a challenge Y whose discrete logarithm in the
usual base g it must find, just like a DL adversary. To get Eq. (4) we must avoid rewinding. The
question is how and why the ability to take one discrete logarithm in some random base X1 helps
to do this and get a tight reduction. Our reduction deviates from prior ones by not setting Y
to the public key. Instead, it sets X1 to the public key. Then, it performs a single execution of
the given IMP-PA adversary A, “planting” Y in the communication in such a way that success of
A in impersonating the prover yields DLG,g(Y). This planting step makes one call to DLO(1, ·),
meaning asks for a discrete logarithm in base X1 of some W that depends on the execution. The
full proof is in Section 4.
MBDL as a hub. Having identified MBDL, we find that its applicability extends well beyond
what is discussed above, making it a hub. Here we briefly discuss further results from MBDL.

The Schnorr signature scheme DS = SchSig[G, g] has a proof of UF-security in the ROM under
the basic DL assumption [44, 41, 1, 36]. The bound —recalled in Eq. (15)— continues to exhibit
the square-root gap. Theorem 4.3 gives a square-root avoiding reduction from 1-MBDL to fill this
gap. Figure 1 shows resulting speedup factors of 1.6x to 2.5x for Schnorr signatures.

Security above refers to the single-user setting. Our results extend to tightly reduce the multi-
user IMP-PA security of SchID[G, g] to 1-MBDL, and analogously for signatures. This can be shown
directly, but is also a consequence of general results of [36].

The situation for the Okamoto identification and signature schemes [42] is analogous to that
for Schnorr, meaning the reductions in the current security proofs, from DL, use rewinding and has
the square-root loss. In Appendix A we give results for Okamoto that are analogous to our results
for Schnorr, meaning reductions from 1-MBDL that avoid the square root.

There’s more. In a follow-up work, we also give reductions from MBDL that improve secu-
rity of the following: (1) Bellare-Neven multi-signatures [6] (2) Abe, Ohkubo, Suzuki 1-out-of-n
(ring/group) signatures [2] and (3) Schnorr-based threshold signatures [50].
Related work. One prior approach to resolving the square-root gap has been to use only an
idealized model like the GGM [47] or AGM [27]. Thus, Shoup [47] directly showed that εimp-pa(t) ≤
t2/p in the GGM. Fuchsbauer, Plouviez and Seurin [28] give, in the AGM, a tight reduction from
DL to the UF security of DS = SchSig[G, g]. These results correspond to a setting of the knob, in
the above-discussed two-tier framework, that is maximal: P is the target scheme itself (here Schnorr
identification or signatures), so that the first tier is trivial and the second tier directly proves the
scheme secure in the idealized model.

But it is well understood that idealized models have limitations. Proofs in the GGM assume the
adversary does not exploit the representation of group elements. In the AGM, it is assumed that,
whenever an adversary provides a group element Z, it is possible to extract its representation as a
product of known powers of prior group elements. This is analogous to a “knowledge of exponent
assumption” [19, 31, 8]. However, even in a typical elliptic curve group, an adversary can quite
easily create group elements without “knowing” such a representation. The maximal setting of
knob (working purely in an idealized model) means the security guarantee on the scheme is fully

6

subject to the limitations of the idealized model.

With MBDL, we, instead make a non-trivial, moderate setting of the knob. Our tight reduc-
tions from MBDL, such as Eq. (4), are in the standard model, and make no GGM or AGM-like
assumptions on adversaries. It is of course true that we justify MBDL in the GGM (Theorem 5.1),
but we are limiting the use of the idealized model to show security for a purely number-theoretic
problem, namely MBDL. The first direct benefit is better security guarantees for the schemes. The
second is that MBDL is a hub. As discussed above, we can prove security of many schemes from
it, which reduces work compared to proving them all from scratch in idealized models, and also
increases understanding by identifying a problem that is at the core of many things.

Another prior approach to improving reduction tightness has been to change metrics, measuring
tightness, not via success probability and running time taken individually, but via their ratio [36].
This however does not translate to actual, numeric improvements. To discuss this further, let IMP-
KOA denote impersonation under key-only attack. (That is, IMP-PA for adversaries making zero
queries to their transcript oracle.) Kiltz, Masny and Pan (KMP) [36] define a problem they call
1-IDLOG that is a restatement of (“precisely models,” in their language) the IMP-KOA security of
ID = SchID[G, g]. Due to the zero knowledge of ID, its IMP-PA security reduces tightly to its IMP-
KOA security and thus to 1-IDLOG. Now, KMP [36] give a reduction of 1-IDLOG to DL that is
ratio-tight, meaning preserves ratios of advantage to running time. This, however, uses rewinding,
and is not tight in our sense, incurring the usual square-root loss when one considers running time
and advantage separately. In particular the results of KMP do not seem to allow group sizes any
smaller than allowed by the classical Eq. (1). Our reductions, in contrast, are tight for advantage
and time taken individually, and across the full range for these values, and numerical estimates
(Figure 1) show clear improvements over what one gets from Eq. (1). Also our results establish
1-IDLOG tightly (not merely ratio-tightly) under 1-MBDL. We discuss ratio-tightness further in
Appendix B.

Discussion. Measuring quality of a reduction in terms of bit security effectively only reflects the
resources required to attain an advantage close to 1. Under this metric, whether one starts from
Eq. (1) or Eq. (4), one concludes that ID = SchID[G, g] has log2(|G|)/2-bits of security. This reflects
bit security being a coarse metric. The improvement offered by Eq. (4) over Eq. (1) becomes visible
when one considers the full curve of advantage as a function of runtime, and is visible in Figure 1.

While new assumptions (like MBDL) should of course be treated with caution, cryptographic
research has a history of progress through introducing them. For example, significant advances were
obtained by moving from the CDH assumption to the stronger DDH one [40, 18]. Pairing-based
cryptography has seen a host of assumptions that have had many further applications, including
the bilinear Diffie-Hellman (BDH) assumption of [16] and the DLIN assumption of [15]. The RSA
Φ-Hiding assumption of [17] has since found many applications. This suggests that the introduction
and exploration of new assumptions, which we continue, is an interesting and productive line of
research.

There is some feeling that “interactive” or “non-falsifiable” assumptions are undesirable. How-
ever, it depends on the particular assumption. There are interactive assumptions that are unbroken
and successful, like OMDL [5], while many non-interactive ones have been broken. It is important
that it be possible to show an assumption is false, but this is possible even for assumptions that are
classified as “non-falsifiable;” for example, knowledge-of-exponent assumptions have successfully
been shown to be false through cryptanalysis [8]. (The latter result assumes DL is hard.) MBDL
is similarly amenable to cryptanalytic evaluation.

7

2 Preliminaries

Notation. If n is a positive integer, then Zn denotes the set {0, . . . , n− 1} and [n] or [1..n] denote
the set {1, . . . , n}. We denote the number of coordinates of a vector x by |x|. If x is a vector then |x|
is its length (the number of its coordinates), x[i] is its i-th coordinate and [x] = {x[i] : 1 ≤ i ≤ |x|}
is the set of all its coordinates. A string is identified with a vector over {0, 1}, so that if x is a string
then x[i] is its i-th bit and |x| is its length. By ε we denote the empty vector or string. The size of
a set S is denoted |S|. For sets D,R let FNS(D,R) denote the set of all functions f :D → R.

Let S be a finite set. We let x←$ S denote sampling an element uniformly at random from S
and assigning it to x. We let y ← AO1,...(x1, . . . ; r) denote executing algorithm A on inputs x1, . . .
and coins r with access to oracles O1, . . . and letting y be the result. We let y←$ AO1,...(x1, . . .)
be the resulting of picking r at random and letting y ← AO1,...(x1, . . . ; r). We let [AO1,...(x1, . . .)]
denote the set of all possible outputs of A when invoked with inputs x1, . . . and oracles O1,
Algorithms are randomized unless otherwise indicated. Running time is worst case.
Games. We use the code-based game playing framework of [11]. (See Fig. 3 for an example.)
Games have procedures, also called oracles. Amongst these are Init and a Fin. In executing an
adversary A with a game Gm, procedure Init is executed first, and what it returns is the input to
A. The latter may now call all game procedures except Init,Fin. When the adversary terminates,
its output is viewed as the input to Fin, and what the latter returns is the game output. By
Pr[Gm(A)] we denote the event that the execution of game Gm with adversary A results in output
true. In writing game or adversary pseudocode, it is assumed that boolean variables are initialized
to false, integer variables are initialized to 0 and set-valued variables are initialized to the empty
set ∅. When adversary A is executed with game Gm, the running time of the adversary, denoted
TA, assumes game procedures take unit time to respond. By QO

A we denote the number of queries
made by A to oracle O in the execution. These counts are all worst case.
Groups. Let G be a group of order p. We will use multiplicative notation for the group operation,
and we let 1G denote the identity element of G. We let G∗ = G\{1G} denote the set of non-identity
elements, which is the set of generators of G if the latter has prime order. If g ∈ G∗ is a generator
and X ∈ G, the discrete logarithm base g of X is denoted DLG,g(X), and it is in the set Z|G|.

3 The Multi-Base Discrete-Logarithm Problem

We introduce the multi-base discrete-logarithm (MBDL) problem. It is similar in flavor to the
one-more discrete-logarithm (OMDL) problem [5], which has found many applications, in that it
gives the adversary the ability to take discrete logarithms. For the rest of this Section, we fix a
group G of prime order p = |G|, and we fix a generator g ∈ G∗ of G. Recall that DLG,g : G→ Zp is
the discrete logarithm function in G with base g.
DL and OMDL. We first recall the standard discrete logarithm (DL) problem via game Gdl

G,g on
the left of Figure 2. Init provides the adversary, as input, a random challenge group element Y , and
to win it must output y′ = DLG,g(Y) to Fin. We let Advdl

G,g(A) = Pr[Gdl
G,g(A)] be the discrete-log

advantage of A.
In the OMDL problem [5], the adversary can obtain many random challenges Y1, Y2, . . . , Yn ∈ G.

It has access to a discrete log oracle that given W ∈ G returns DLG,g(W). For better comparison
with MBDL, let’s allow just one query to this oracle. To win it must compute the discrete logarithms
of two group elements from the given list Y1, Y2, . . . , Yn ∈ G. The integer n ≥ 2 is a parameter of
the problem.

8

Game Gdl
G,g

Init:
1 p← |G| ; y←$ Zp ; Y ← gy

2 Return Y

Fin(y′):
3 Return (y = y′)

Game Gmbdl
G,g,n

Init:
1 p← |G| ; y←$ Zp ; Y ← gy

2 For i = 1, . . . , n do
3 xi←$ Z∗p ; Xi ← gxi

4 Return Y,X1, . . . , Xn

DLO(i,W): // One query
5 Return DLG,Xi (W)

Fin(y′):
6 Return (y = y′)

Figure 2: Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G. Left: Game
defining standard discrete logarithm problem. Right: Game defining (n,m)-multi-base discrete
logarithm problem. Recall DLG,X(W) is the discrete logarithm of W ∈ G to base X ∈ G∗.

MBDL. In the MBDL problem we introduce, we return, as in DL, to there being a single random
challenge point Y whose discrete logarithm in base g the adversary must compute. It has access to
an oracle DLO to compute discrete logs, but rather than in base g as in OMDL, to bases that are
public, random group elements X1, X2, . . . , Xn. It is allowed just one query to DLO. (As we will
see, this is to avoid trivial attacks.) The integer n ≥ 1 is a parameter of the problem.

Proceeding formally, consider game Gmbdl
G,g,n on the right in Fig. 2, where n ≥ 1 is an integer

parameter called the number of bases. The adversary’s input, as provided by Init, is a random
challenge group element Y together with random generators X1, X2, . . . , Xn. It can call oracle
DLO with an index i ∈ [n] and any group element W ∈ G of its choice to get back DLG,Xi(W).
Just one such call is allowed. At the end, the adversary wins the game if it outputs y′ = DLG,g(Y)
to Fin. We define the mbdl-advantage of A by

Advmbdl
G,g,n(A) = Pr[Gmbdl

G,g,n(A)] .

Discussion. By n-MBDL we will refer to the problem with parameter n. It is easy to see that if
n-MBDL is hard then so is n′-MBDL for any n′ ≤ n. Thus, the smaller the value of n, the weaker
the assumption. For our results, 1-MBDL, the weakest assumption in the series, suffices.

We explain why at most one DLO query is allowed. Suppose the adversary is allowed two
queries. It could compute a = DLO(1, Y) = DLG,X1(Y) and b = DLO(1, g) = DLG,X1(g), so that
Xa

1 = Y and Xb
1 = g. Now the adversary returns y′ ← ab−1 mod p and we have gy′ = (gb−1)a =

Xa
1 = Y , so the adversary wins.

As evidence for the hardness of MBDL, Theorem 5.1 proves good bounds on the adversary
advantage in the generic group model (GGM). It is also important to consider non-generic ap-
proaches to the discrete logarithm problem over elliptic curves, including index-calculus methods
and Semaev polynomials [48, 46, 49, 35, 29], but, to the best of our assessment, these do not yield
attacks on MBDL that beat the GGM bound of Theorem 5.1.

The MBDL problem as we have defined it can be generalized to allow multiple DLO queries
with the restriction that at most one query is allowed per base, meaning for each i there can be
at most one DLO(i, ·) query. In this paper, we do not need or use this extension. We have found
applications based on it, but not pursued them because we have been unable to prove security of
this extended version of MBDL in the GGM. We consider providing such a GGM proof an intriguing

9

ExecID(vk, sk):

1 (R, st)←$ ID.Cmt(vk)
2 c←$ ID.Ch
3 z ← ID.Rsp(sk, c, st)
4 b← ID.Vf(vk, R, c, z)
5 tr← (R, c, z)
6 Return (b, tr)

Game Gmimp-pa
ID

Init:
1 (vk, sk)←$ ID.Kg ; Return vk

Tr:
2 (b, tr)←$ ExecID(vk, sk) ; Return tr

Ch(R∗): // One query
3 c∗←$ ID.Ch ; Return c∗

Fin(z∗):
4 Return ID.Vf(vk, R∗, c∗, z∗)

Figure 3: Left: Algorithm defining an honest execution of the canonical identification scheme ID
given key pair (sk, vk). Right: Game defining IMP-PA security of ID.

open question, resolving which would open the door to several new applications.
Our formalizations of DL and MBDL fix the generator g. See [4] for a discussion of fixed versus

random generators.

4 Schnorr Identification and Signatures from MBDL

In this section, we give a tight reduction of the IMP-PA security of the Schnorr identification scheme
to the 1-MBDL problem and derive a corresponding improvement for Schnorr signatures.
Identification Schemes. We recall that a (canonical) identification scheme [1] ID (see Figure 4
for an example) is a 3-move protocol in which the prover sends a first message called a commitment,
the verifier sends a random challenge, the prover sends a response that depends on its secret key,
and the verifier makes a decision to accept or reject based on the conversation transcript and the
prover’s public key. Formally, ID is specified by algorithms ID.Kg, ID.Cmt, ID.Rsp, and ID.Vf, as
well as a set ID.Ch of challenges Via (vk, sk)←$ ID.Kg, the key generation algorithm generates
public verification key vk and associated secret key sk. Algorithms ID.Cmt and ID.Rsp are the
prover algorithms. The commitment algorithm ID.Cmt takes input the public key vk and returns
a commitment message R to send to the verifier, as well as a state st for the prover to retain. The
deterministic response algorithm ID.Rsp takes input the secret key sk, a challenge c ∈ ID.Ch sent
by the verifier, and a state st, to return a response z to send to the verifier. The deterministic
verification algorithm ID.Vf takes input the public key and a conversation transcript R, c, z to return
a decision b ∈ {true, false} that is the outcome of the protocol.

An honest execution of the protocol is defined via procedure ExecID shown in the upper left of
Fig. 3. It takes input a key pair (vk, sk) ∈ [ID.Kg] to return a pair (b, tr) where b ∈ {true, false}
denotes the verifier’s decision whether to accept or reject and tr = (R, c, z) is the transcript of
the interaction. We require that ID schemes satisfy (perfect) completeness, namely that for any
(vk, sk) ∈ [ID.Kg] and any (b, tr) ∈ [ExecID(sk, vk)] we have b = true.

Impersonation under passive attack (IMP-PA) [24] is a security metric asking that an adversary
not in possession of the prover’s secret key be unable to impersonate the prover, even given access
to honestly generated transcripts. Formally, consider the game Gmimp-pa

ID given in the right column
of Fig. 3. An adversary has input the public key vk returned by Init. It then has access to honest
transcripts via the oracle Tr. When it is ready to convince the verifier, it submits its commitment R∗

10

Prover
Input: X,x
r←$ Zp
R← gr

z ← (xc+ r) mod p

R-
c�
z-

Verifier
Input: X

c←$ Zp

b← (gz = RXc)

ID.Kg:

1 x←$ Z|G| ; X ← gx ; Return (X,x)

ID.Cmt(X):

2 r←$ Z|G| ; R← gr ; Return (R, r)

ID.Rsp(x, c, r):

3 z ← (xc+ r) mod |G|
4 Return z

ID.Vf(X,R, c, z):

5 b← (gz = XcR) ; Return b

DS.Kg:

1 x←$ Z|G| ; X ← gx

2 Return (X,x)

DS.SignH(x,m):

3 r←$ Z|G| ; R← gr

4 c← H(R,m)
5 z ← (xc+ r) mod |G|
6 Return (R, z)

DS.VfH(X,m, σ):

7 (R, z)← σ

8 c← H(R,m)
9 Return (gz = XcR)

Figure 4: Let G be a group of prime order p = |G| and let g ∈ G∗ be a generator of G. The Schnorr
ID scheme ID = SchID[G, g] is shown pictorially at the top and algorithmically at the bottom left.
At the bottom right is the Schnorr signature scheme DS = SchSig[G, g], using H : G×{0, 1}∗ → Zp.

to oracle Ch. We allow only one query to Ch. In response the adversary obtains a random challenge
c∗. It must now output a response z∗ to Fin, and the game returns true iff the transcript is accepted
by ID.Vf. The R∗, c∗ at line 4 are, respectively, the prior query to Ch, and the response chosen at
line 3. We define the IMP-PA advantage of A against ID as Advimp-pa

ID (A) = Pr[Gmimp-pa
ID (A)], the

probability that the game returns true.
Schnorr identification scheme and prior results. Let G be a group of prime order p = |G|,
and g ∈ G∗ a generator of G. We recall the Schnorr identification scheme [45] ID = SchID[G, g] in
Fig. 4. The public key vk = X = gx ∈ G where sk = x ∈ Zp is the secret key. The commitment is
R = gr ∈ G, and r is returned as the prover state by the commitment algorithm. Challenges are
drawn from ID.Ch = Zp, and the response z and decision b are computed as shown.

The IMP-PA security of ID = SchID[G, g] based on DL is proven by a rewinding argument. The
simplest analysis is via the Reset Lemma of [7]. It leads to the following (cf. [7, Theorem 2], [9,
Theorem 3]). Let A be an adversary attacking the IMP-PA security of ID. Then there is a discrete
log adversary B such that

Advimp-pa
ID (A) ≤

√
Advdl

G,g(B) + 1
p
. (7)

Additionally, the running time TB of B is roughly 2 TA plus simulation overhead O(QTr
A · T

exp
G),

where T exp
G is the time for an exponentiation in G.

Our result. We show that the IMP-PA-security of the Schnorr identification scheme reduces
tightly to the 1-MBDL problem. The reduction does not use rewinding. Our mbdl-adversary B

11

solves the 1-MBDL problem by running the given imp-pa adversary A just once, so the mbdl-
advantage, and running time, of the former, are about the same as the imp-pa advantage, and
running time, of the latter. Refer to Section 2 for notation like TA,QTr

A .

Theorem 4.1 Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G. Let
ID = SchID[G, g] be the Schnorr identification scheme. Let A be an adversary attacking the imp-pa
security of ID. Then we can construct an adversary B (shown explicitly in Figure 5) such that

Advimp-pa
ID (A) ≤ Advmbdl

G,g,1(B) + 1
p
. (8)

Additionally, TB is roughly TA plus simulation overhead O(QTr
A · T

exp
G).

Proof of of Theorem 4.1: Recall that, when reducing IMP-PA security of Schnorr to DL, the
constructed dl adversary B sets the target point Y to be the public key X. It is natural to take
the same approach in our case. The question is how to use the discrete logarithm oracle DLO to
avoid rewinding and get a tight reduction. But this is not clear and indeed the DLO oracle does
not appear to help towards this.
Our reduction deviates from prior ones by not setting the target point Y to be the public key.
Instead we look at a successful impersonation by A. (Simulation of A’s transcript oracle Tr is
again via the honest-verifier zero-knowledge property of the scheme.) Adversary A provides R∗,
receives c∗ and then returns z∗ satisfying gz∗ = R∗X

c∗ , where X is the public key. Thus, A
effectively computes the discrete logarithm of R∗Xc∗ . We make this equal our mbdl challenge Y ,
meaning B, on input Y , arranges that Y = R∗X

c∗ . If it can do this successfully, the z∗ returned
by A will indeed be DLG,g(Y), which it can output and win.
But how can we arrange that Y = R∗X

c∗? This is where the DLO oracle enters. Adversary B
gives X as input to A, meaning the public key is set to the group generator relative to which B
may compute discrete logarithms. Now, when A provides R∗, our adversary B returns a challenge
c∗ that ensures Y = R∗X

c∗ . This means c∗ = DLG,X(Y R−1
∗), and this is something B can compute

via its DLO oracle.
Some details include that the X returned by Init is a generator, while the public key is a random
group element, so they are not identically distributed, and that the challenge computed via DLO
must be properly distributed. The analysis will address these.
For the formal proof, consider the games of Figure 5. Procedures indicate (via comments) in which
games they are present. Game Gm1 includes the boxed code at line 2 while Gm0 does not. The
games implement the transcript oracle via the zero-knowledge simulation rather than using the
secret key, but otherwise Gm0 is the same as game Gmimp-pa

ID so we have

Advimp-pa
ID (A) = Pr[Gm0(A)]

= Pr[Gm1(A)] + (Pr[Gm0(A)]− Pr[Gm1(A)]) .
Games Gm0,Gm1 are identical-until-bad, so by the Fundamental Lemma of Game Playing [11] we
have

Pr[Gm0(A)]− Pr[Gm1(A)] ≤ Pr[Gm1(A) sets bad] .
Clearly Pr[Gm1(A) sets bad] ≤ 1/p. Now we can work with Gm1, where the public key X is a
random element of G∗ rather than of G. We claim that

Pr[Gm1(A) = Pr[Gm2(A)] . (9)

12

Adversary BDLO:

1 (Y,X)←$ Init() ; z∗←$ACh,Tr(X) ; Return z∗

Ch(R∗):

2 W ← R−1
∗ · Y ; c∗ ← DLO(1,W) ; Return c∗

Tr:

3 z←$ Zp ; c←$ Zp ; R← gz ·X−c ; Return (R, c, z)

Game Gm0 / Gm1 / Gm2

Init: // Games Gm0, Gm1
1 p← |G| ; y←$ Zp ; Y ← gy ; x←$ Zp

2 If (x = 0) then bad← true ; x←$ Z∗p
3 X ← gx ; Return (Y,X)

Init: // Game Gm2
4 p← |G| ; y←$ Zp ; Y ← gy ; x←$ Z∗p ; X ← gx ; Return (Y,X)

Ch(R∗): // Games Gm0,Gm1
5 c∗←$ Zp ; Return c∗

Ch(R∗): // Game Gm2
6 W ← R−1

∗ · Y ; c∗ ← DLG,X(W) ; Return c∗

Tr(W): // Games Gm0,Gm1,Gm2
7 z←$ Zp ; c←$ Zp ; R← gz ·X−c ; Return (R, c, z)

Fin(z∗): // Games Gm0,Gm1
8 Return (gz∗ = Xc∗R∗)

Fin(z∗): // Games Gm2
9 Return (z∗ = DLG,g(Xc∗R∗))

Figure 5: Top: MBDL adverary B for Theorem 4.1, based on IMP-PA adversary A. Bottom:
Games for proof of Theorem 4.1.

We now justify this. At line 4, game Gm2 picks x directly from Z∗p, just like Gm1, and also rewrites
Fin in a different but equivalent way. The main thing to check is that Ch in Gm2 is equivalent to
that in Gm1, meaning line 6 results in c∗ being uniformly distributed in Zp. For this regard R∗, X
as fixed and define the function fR∗,X : G → Zp by fR∗,X(Y) = DLG,X(R−1

∗ Y). The adversary has
no information about Y prior to receiving c∗ at line 6, so the claim is established if we show that
fR∗,X is a bijection. This is true because X ∈ G∗ is a generator, which means that the function
hR∗,X : Zp → G defined by hR∗,X(c∗) = R∗X

c∗ is the inverse of fR∗,X . This establishes Eq. (9).

We now claim that adversary B, shown in Fig. 5, satisfies
Pr[Gm2(A)] ≤ Advmbdl

G,g,1(B) . (10)
Putting this together with the above completes the proof, so it remains to justify Eq. (10). Ad-
versary B has access to oracle DLO as per game Gmbdl

G,g,1. In the code, Ch and Tr are subroutines
defined by B and used to simulate the oracles of the same names for A. Adversary B has input
the challenge Y whose discrete logarithm in base g it needs to compute, as well as the base X

13

relative to which it may perform one discrete log operation. It runs A on input X, so that the
latter functions as the public key, which is consistent with Gm2. The subroutine Ch uses DLO to
produce c∗ the same way as line 6 of Gm2. It simulates Tr as per line 7 of Gm2. If Gm2 returns
true at line 9 then we have gz∗ = Xc∗R∗ = WR∗ = R−1

∗ Y R∗ = Y , so B wins.

Quantitative comparison. Concrete security improvements are in the end efficiency improve-
ments, because, for a given security level, we can use smaller parameters, and thus the scheme
algorithms are faster. Here we quantify this, seeing what Eq. (8) buys us over Eq. (7) in terms of
improved efficiency for the identification scheme.

We take as goal to ensure that any adversaryA with running time t has advantage Advimp-pa
ID (A)

≤ ε in violating IMP-PA security of ID = SchID[G, g]. Here t, ε are parameters for which many
choices are possible. For example, t = 290 and ε = 2−32 is one choice, reflecting a 128-bit security
level, where we define the bit-security level as log2(t/ε). The cost of scheme algorithms is the cost
of exponentiation in the group, which is cubic in the representation size k = log p of group elements.
So we ask what k must be to provably ensure the desired security. Equations (7) and (8) will yield
different choices of k, denoted k1 and k2, with k2 < k1. We will conclude that Eq. (8) allows a
s = (k1/k2)3-fold speedup for the scheme.

Let B1 denote the DL adversary referred to in Eq. (7), and B2 the 1-MBDL adversary referred
to in (8). To use the equations, we now need estimates on their respective advantages. For this,
we assume G is a group in which the security of discrete-log-related problems is captured by the
bounds proven in the generic group model (GGM), as seems to be true, to best of our current
understanding, for certain elliptic curve groups. We will ignore the simulation overhead in running
time since the number of transcript queries of A reflects online executions of the identification
protocol and should be considerably less than the running time of A, so that we take the running
times of both B1 and B2 to be about t, the running time of our IMP-PA adversary A. Now the
classical result of Shoup [47] says that Advdl

G,g(B1) ≈ t2/p, and our Theorem 5.1 says that also
Advmbdl

G,g,1(B2) ≈ t2/p.
Here we pause to highlight that these two bounds being the same is a central attribute of the

1-MBDL assumption. That Theorem 4.1 (as per Figure 1) provides efficiency improvements stems
not just from the reduction of Eq. (8) being tight, but also from that fact that the 1-MBDL problem
is just as hard to solve as the DL problem, meaning Advmbdl

G,g (B2) ≈ Advdl
G,g(B1) ≈ t2/p.

Continuing, putting together what we have so far gives two bounds on the IMP-PA advantage
of A, the first via Equations (7) and the second via Eq. (8), namely, dropping the 1/p terms,

Advimp-pa
ID (A) ≤ ε1(t) =

√
t2

p
= t
√
p

(11)

Advimp-pa
ID (A) ≤ ε2(t) = t2

p
. (12)

Recall our goal was to ensure that Advimp-pa
SchID[G,g](A) ≤ ε. We ask, what value of p, in either case,

ensures this? Solving for p in the equations ε = ε1(t) and ε = ε2(t), we get two corresponding
values, namely p1 ≈ t2/ε2 and p2 ≈ t2/ε. We see that p1 > p2, meaning Theorem 4.1 guarantees
the same security as Eq. (7) in groups of a smaller size. Finally, the ratio of representation sizes
for group elements is

r ≈ log(p1)
log(p2) ≈

log(t2/ε) + log(1/ε)
log(t2/ε) = 1 + log(1/ε)

log(t2/ε) .

Scheme algorithms employ exponentiation in the group and are thus cubic time, so the ratio of
speeds is s = r3, which we call the speedup factor, and we can now estimate it numerically. For a

14

Game Guf
DS

Init:
1 h←$ DS.HF ; (vk, sk)←$ DS.Kg
2 Return vk

Sign(m):
3 σ←$ DS.SignH(sk,m) ; S ← S ∪ {m}
4 Return σ

H(x):
5 Return h(x)

Fin(m∗, σ∗):
6 Return ((m∗ 6∈ S) and DS.VfH(vk,m∗, σ∗))

Figure 6: Game defining UF security of signature scheme DS.

few values of t, ε, Figure 1 shows the log of the group size pi needed to ensure the desired security
under prior results (i = 1) and ours (i = 2). Then it shows the speedup s. For example if we want
attacks of time t = 264 to achieve advantage at most ε = 2−64, prior results would require a group
of size p1 satisfying log(p1) ≈ 256, while our results allow it with a group of size log(p2) ≈ 192,
which yields a 2.4x speedup. Of course many more examples are possible.
Signature schemes. Towards results on the Schnorr signature scheme, we start by recalling
definitions. A signature scheme DS specifies key generation algorithm DS.Kg, signing algorithm
DS.Sign, deterministic verification algorithm DS.Vf and a set DS.HF of functions called the hash
function space. Via (vk, sk)←$ DS.Kg the signer generates a public verification key vk and secret
signing key sk. Via σ←$ DS.Signh(sk,m) the signing algorithm takes sk and a message m ∈ {0, 1}∗,
and, with access to an oracle h ∈ DS.HF, returns a signature σ. Via b ← DS.Vfh(vk,m, σ),
the verifier obtains a boolean decision b ∈ {true, false} about the validity of the signature. The
correctness requirement is that for all h ∈ DS.HF, all (vk, sk) ∈ [DS.Kg], all m ∈ {0, 1}∗ and all
σ ∈ [DS.Signh(sk,m)] we have DS.Vfh(vk,m, σ) = true.

Game Guf in Fig. 6 captures UF (unforgeability under chosen-message attack) [30]. Procedure
H is the random oracle [10], implemented as a function h chosen at random from DS.HF. We define
the UF advantage of adversary A as Advuf

DS(A) = Pr[Guf
DS(A)].

Schnorr signatures. The Schnorr signature scheme DS = SchSig[G, g] is derived by applying
the Fiat-Shamir transform [25] to the Schnorr identification scheme. Its algorithms are shown at
the bottom right of Fig. 4. The set DS.HF consists of all functions h : G× {0, 1}∗ → Zp.
Our and prior results. We give a reduction, of the UF security of the Schnorr signature scheme
to the 1-MBDL problem, that loses only a factor of the number of hash-oracle queries of the
adversary. We start by recalling the following lemma from [1]. It derives the UF security of
SchSig[G, g] from the IMP-PA security of SchID[G, g]:

Lemma 4.2 [1] Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G. Let
ID = SchID[G, g] and DS = SchID[G, g] be the Schnorr identification and signature schemes, respec-
tively. Let Ads be an adversary attacking the uf-security of DS. Let α = (1 + QH

Ads
+ QSign

Ads
)QSign
Ads

.
Then we can construct an adversary Aid such that

Advuf
DS(Ads) ≤ (1 + QH

Ads) ·Advimp-pa
ID (Aid) + α

p
.

15

Additionally, TAid ≈ TAds and QTr
Aid

= QSign
Ads

.

Combining this with Theorem 4.1, we have:

Theorem 4.3 Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G. Let
DS = SchSig[G, g] be the Schnorr signature scheme. Let A be an adversary attacking the uf security
of ID. Let β = (1 + QH

A+ QSign
A)QSign

A + (1 + QH
A). Then we can construct an adversary B such that

Advuf
DS(A) ≤ (1 + QH

A) ·Advmbdl
G,g,1(B) + β

p
. (13)

Additionally, TB is roughly TA plus simulation overhead O(QSign
A · T exp

G).

Let’s compare this to prior results. A simple proof of UF-security of DS from DL can be obtained
by combining Lemma 4.2 with the classical DL-based security of ID as given by Eq. (7). For A an
adversary attacking the UF security of DS, this would yield a discrete log adversary B such that

Advuf
DS(A) ≤ (1 + QH

A) ·
√

Advdl
G,g(B) + β

p
, (14)

where β is as in Theorem 4.3 and TB is about 2 TA plus the same simulation overhead as above.
This is however not the best prior bound. One can do better with a direct application of the general
Forking Lemma of [6] as per [44]. For A an adversary attacking the UF security of DS, this would
yield a discrete log adversary B such that

Advuf
DS(A) ≤

√
(1 + QH

A) ·Advdl
G,g(B) + β

p
, (15)

where β and TB are as above. The reason Eq. (15) is a better bound than Eq. (14) is that the
1 + QH

A term has moved under the square root. Still we see that Eq. (13) is even better; roughly
(neglecting the additive term), the bound in Eq. (13) is the square of the one in Eq. (15), and thus
(always) smaller.
Quantitative comparisons. Our numerical comparisons will be with the best prior bound, mean-
ing that of Eq. (15). For a few values of t, qh, ε with t ≥ qh = QH

A, Figure 1 shows the speedup
s from Eq. (13) over Eq. (15). The table shows that the speedup is a bit less than for Schnorr
identification shown in the same Figure, but still significant. For example if we want attacks of
time t = 264 to achieve advantage at most ε = 2−64, Theorem 4.3 is allowing group sizes to go down
enough to yield a 5.4-fold speedup.

To derive these estimates, we use the same framework and setup as we did for identification.
Let G be a group of prime order p with generator g. We take as goal to ensure that any adversary A
with running time t, making qh queries to H and qs queries to Sign, has advantage Advuf

DS(A) ≤ ε
in violating UF security of DS = SchSig[G, g], where t, ε, qh, qs are parameters. We assume qs <
< qh ≤ t, as one expects in practice. Let B1,B2 be the adversaries of Equations (15) and (13),
respectively. As before, assume Advdl

G,g(B1) ≈ t2/p from [47], and also Advmbdl
G,g,1(B2) ≈ t2/p from

Theorem 5.1. Then

Advuf
DS(A) ≤ ε1(t, qh) ≈

√
qht2

p

Advuf
DS(A) ≤ ε2(t, qh) ≈ qh ·

t2

p
= qht

2

p
≈ ε1(t, qh)2 .

In the estimates above, we have dropped the additive term, which has order qhqs/p, because this
is negligible compared to the other term for reasonable parameter values, including the ones we

16

Game Ggg-mbdl
G,n // Set G is the range of the encoding, |G| is prime.

Init():
1 p← |G| ; E←$ Bijections(Zp, G) // Think “ E(x) = gx ”
2 1← E(0) ; g ← E(1) // Think 1 the identity and g generator
3 y←$ Zp ; Y ← E(y)
4 For i = 1, . . . , n do xi←$ Z∗p ; Xi ← E(xi)
5 GL← {1, g, Y,X1, . . . , Xn}
6 Return 1, g, Y,X1, . . . , Xn

Op(A,B, sgn): // A,B ∈ G and sgn ∈ {+,−}
7 If (A 6∈ GL or B 6∈ GL) then return ⊥
8 c← (E−1(A) sgn E−1(B)) mod p ; C ← E(c) ; GL← GL ∪ {C}
9 Return C

DLO(i,W): // i ∈ [1..n] and W ∈ G
10 If (W 6∈ GL) then return ⊥
11 z ← x−1

i · E
−1(W) mod p // x−1

i is inverse of xi mod p

12 Return z

Fin(y′):
13 Return (y = y′)

Figure 7: Game defining n-MBDL problem in the generic group model.

consider. This leaves ε1, ε2 not depending on qs, but recall the latter is expected to be (much)
smaller than qh. Then our bound ε2 is about the square of the prior one, and thus always smaller.

We now ask what value of p ensures Advuf
DS(A) ≤ ε, in each case. Solving ε1(t, qh) ≤ ε yields

p1 ≈ t2qh/ε
2, and solving ε2(t, qh) ≤ ε yields p2 ≈ t2qh/ε. As before we see that p2 < p1, meaning

Theorem 4.1 guarantees security in groups of smaller size. The ratio of the representation-size of
group elements is

r ≈ log(p1)
log(p2) ≈

log(t2qh/ε) + log(1/ε)
log(t2qh/ε)

= 1 + log(1/ε)
log(t2qh/ε)

.

As before the ratio of speeds (speedup factor) is s = r3, and we can now estimate it numerically.
For a few values of t, ε, Figure 1 shows the log of the group size pi needed to ensure the desired
security under prior results (i = 1) and ours (i = 2). Then it shows the speedup s.

5 MBDL hardness in the Generic Group Model

With a new problem like MBDL it is important to give evidence of hardness. Here we provide this
in the most common and accepted form, namely a proof of hardness in the generic group model
(GGM).

The quantitative aspect of the result is just as important as the qualitative. Theorem 5.1 below
says that the advantage of a GGM adversary A in breaking n-MBDL is O(q2/p) where q is n
plus the number of group operations (time) invested by A, namely about the same as the ggm-dl-
advantage of an adversary of the same resources. Reductions (to some problem) from MBDL that
are tighter than ones from DL now bear fruit in justifying the secure use of smaller groups, which
lowers costs.

17

The proof of Theorem 5.1 begins with a Lemma that characterizes the distribution of replies
to the DLO query. A game sequence is then used to reduce bounding the adversary advantage to
some static problems in linear algebra.

Some prior proofs in the GGM have been found to be wrong. (An example is that of [13] as
pointed out by [33]. We note that the assumption was changed to fill the gap in [14].) Also we, at
least, have often found GGM proofs imprecise and hard to verify. This has motivated us to try to
be precise with definitions and to attend to details.

Starting with definitions, we associate to any encoding function E an explicit binary operation
opE that turns the range-set of E into a group. A random choice of E then results in the GGM,
with the “generic group” being now explicitly defined as the group associated to E. The proof uses
a game sequence and has been done at a level of detail that is perhaps unusual in this domain.
MBDL in the GGM. We start with definitions. Suppose G is a set whose size p = |G| is a prime,
and E : Zp → G is a bijection, called the encoding function. For A,B ∈ G, define A opE B =
E(E−1(A) + E−1(B)). Then G is a group under the operation opE [51], with identity element
E(0), and the encoding function becomes a group homomorphism: E(a+ b) = E(a) opE E(b) for all
a, b ∈ Zp. The element g = E(1) ∈ G is a generator of this group, and E−1(A) is then the discrete
logarithm of A ∈ G relative to g. We call opE the group operation on G induced by E.

In the GGM, the encoding function E is picked at random and the adversary is given an oracle
for the group operation opE induced on G by E. Game Ggg-mbdl

G,n in Fig. 7 defines, in this way, the
n-MBDL problem. The set G parameterizes the game, and the random choice of encoding function
E : Zp → G is shown at line 1. Procedure Op then implements either the group operation opE on
G induced by E (when sgn is +) or its inverse (when sgn is −). Lines 3,4 pick y, x1, . . . , xn and
define the corresponding group elements Y,X1, . . . , Xn. Set GL holds all group elements generated
so far. The new element here is the oracle DLO that takes i ∈ [1..n] and W ∈ G to return the
discrete logarithm of W in base Xi. This being x−1

i times the discrete logarithm of W in base g,
the procedure returns z ← x−1

i ·E−1(W). The inverse and the operations here are modulo p. Only
one query to this oracle is allowed, and the adversary wins if it halts with output y′ that equals y.
We let Advgg-mbdl

G,n (A) = Pr[Ggg-mbdl
G,n (A)] be its ggm-mbdl-advantage.

Result. The following upper bounds the ggm-mbdl-advantage of an adversary A as a function of
the number of its Op queries and n.

Theorem 5.1 Let G be a set whose size p = |G| is a prime. Let n ≥ 1 be an integer. Let
A be an adversary making QOp

A queries to its Op oracle and one query to its DLO oracle. Let
q = QOp

A + n+ 3. Then

Advgg-mbdl
G,n (A) ≤ 2 + q(q − 1)

p− 1 . (16)

Proof framework and lemma. Much of our work in the proof is over Zn+2
p regarded as a vector

space over Zp. We let ~0 ∈ Zn+2
p be the all-zero vector, and ~ei ∈ Zn+2

p the i-th basis vector, meaning
it has a 1 in position i and zeros elsewhere. We let 〈~a,~b〉 = (~a[1]~b[1] + · · ·+~a[n+ 2]~b[n+ 2]) denote
the inner product of vectors ~a,~b ∈ Zn+2

p , where the operations are modulo p.
In the GGM, the encoding function takes as input a point in Zp. The proof of GGM hard-

ness of the DL problem [47] moved to a modified encoding function that took input a univariate
polynomial, the variable representing the target discrete logarithm y. We extend this to have the
modified encoding function take input a degree one polynomial in n+1 variables, these representing
x1, . . . , xn, y. The polynomial will be represented by the vector of its coefficients, so that represen-
tations, formally, are vectors in Zn+2

p . At some point, games in our proof will need to simulate the

18

Game Gsmp1
p,n

Init(i, ~w): // i ∈ [1..n] and ~w ∈ Zn+2
p

1 x1, . . . , xn←$ Z∗p ; y←$ Zp ; w ← ~w[i]
2 ~xi ← (x1, . . . , xi−1, 0, xi+1, . . . , xn, 1, y)
3 z ← w + x−1

i · 〈~w, ~xi〉 ; Return (x1, . . . , xn, y, z)

Game Gsmp0
p,n

Init(i, ~w): // i ∈ [1..n] and ~w ∈ Zn+2
p

1 x1, . . . , xi−1, xi+1, . . . , xn←$ Z∗p ; y←$ Zp ; w ← ~w[i]
2 ~xi ← (x1, . . . , xi−1, 0, xi+1, . . . , xn, 1, y)
3 If (〈~w, ~xi〉 6= 0) then z←$ Zp \ {w} ; xi ← (z − w)−1 · 〈~w, ~xi〉
4 Else z ← w ; xi←$ Z∗p
5 Return (x1, . . . , xn, y, z)

Figure 8: Games for Lemma 5.2.

reply to a DLO(i,W) query, meaning provide a reply z without knowing xi. At this point, W ∈ G
will be represented by a vector ~w ∈ Zn+2

p that is known to the game and adversary. The natural
simulation approach is to return a random z←$ Zp or z←$ Z∗p, but these turn out to not perfectly
mimic the true distribution of replies, because this distribution depends on ~w. We start with a
lemma that describes how to do a perfect simulation.

While the above serves as motivation for the Lemma, the Lemma itself is self-contained, making
no reference to the DLO oracle. We consider the games of Figure 8. They are played with an
adversary making a single Init query whose arguments are an integer i ∈ [1..n] and a vector
~w ∈ Zn+2

p . The operations in the games, including inverses of elements in Z∗p, are in the field Zp.
Game Gsmp1

p,n captures what, in our vector-representation, will be the “real” game, with z at line 3
computed correctly as a function of xi. Game Gsmp0

p,n represents the simulation, first picking z and
then defining xi. Lines 3,4 show that there are two cases for how z, xi are chosen in the simulation,
depending on the value of w = ~w[i] and the inner product of ~w with ~xi. The games return all
variables involved. The claim is that the outputs of the games are identically distributed, captured
formally, in the statement of Lemma 5.2 below, as the condition that any adversary returns true
with the same probability in the two games.

Lemma 5.2 Let p be a prime and n ≥ 1 an integer. Then for any adversary A we have
Pr[Gsmp1

p,n (A)] = Pr[Gsmp0
p,n (A)] , (17)

where the games are in Figure 8.

Proof of Lemma 5.2: With i, ~w being A’s query to Init, we can regard vector ~xi = (x1, . . . ,
xi−1, 0, xi+1, . . . , xn, 1, y) as fixed, since its constituents are chosen identically in the two games. Let
α = 〈~w, ~xi〉. Now consider two cases. The first is that α = 0. Then, in both games, z = w, and xi
is chosen randomly from Z∗p. The second case is that α 6= 0. For x ∈ Z∗p let Zw,α(x) = w + x−1 · α,
so that z = Zw,α(xi) at line 3 of game Gsmp1

p,n . That α 6= 0 implies Zw,α(x) 6= w, meaning the
function Zw,α maps as Zw,α : Z∗p → Zp \ {w}. For z ∈ Zp \ {w}, let Xw,α(z) = α · (z−w)−1, so that
xi = Xw,α(z) at line 3 of game Gsmp0

p,n . That z 6= w and α 6= 0 means Xw,α(z) 6= 0, meaning the

19

Init(): // Gm0–Gm3
1 p← |G| ; E←$ Bijections(Zp, G) ; y←$ Zp

2 For i = 1, . . . , n do xi←$ Z∗p
3 ~x← (x1, . . . , xn, 1, y) ; ~v ← ~0
4 1← VE(~0) ; g ← VE(~en+1) ; Y ← VE(~en+2)
5 For i = 1, . . . , n do Xi ← VE(~ei)
6 Return 1, g, Y,X1, . . . , Xn

VE(~t): // Gm0. Here ~t ∈ Zn+2
p .

7 If (TV[~t] 6= ⊥) then return TV[~t]
8 v ← 〈~t, ~x〉 ; C ← E(v) ; TV[~t]← C ; TI[C]← ~t ; Return TV[~t]

VE−1(C): // Gm0–Gm3. Here TI[C] 6= ⊥.
9 Return TI[C]

Op(A,B, sgn): // Gm0–Gm3. Here TI[A],TI[B] 6= ⊥ and sgn ∈ {+,−}
10 ~c← VE−1(A) sgn VE−1(B) ; C ← VE(~c) ; Return C

DLO(i,W): // Gm0. Here i ∈ [n] and TI[W] 6= ⊥.
11 ~w ← VE−1(W) ; z ← (xi)−1 · 〈~w, ~x〉 ; Return z

Fin(y′): // Gm0–Gm3
12 Return (y = y′)

Figure 9: Game Gm0 for the proof of Theorem 5.1. Some procedures will also be in later games,
as marked.

function Xw,α maps as Xw,α : Zp \{w} → Z∗p. The proof is complete if we show that these functions
are inverses of each other, in particular showing that both are bijections. Indeed, for any x ∈ Z∗p
we have Xw,α(Zw,α(x)) = Xw,α(w + x−1 · α) = α · (w + x−1 · α− w)−1 = α · x · α−1 = x.

Equipped with this lemma, we give the proof of Theorem 5.1.

Proof of Theorem 5.1: By span(~v) we denote the span of a vector ~v ∈ Zn+2
p , which simply

means the set of all a · ~v as a ranges over Zp. Beyond the procedures of game Ggg-mbdl
G,n,m , some of

our games define procedures VE and VE−1, the vector-encoding and its inverse. These procedures
are not exported, meaning can be called only by other game procedures, not by the adversary.
Throughout, we assume the adversary A makes no trivial queries. By this we mean that the checks
at lines 7 and 10 of game Ggg-mbdl

G,n,m are not triggered. In our games the consequence is that we
assume TI[A],TI[B] 6= ⊥ in any Op(A,B, sgn) query and, for a DLO(i,W) query, that i ∈ [n],
that TI[W] 6= ⊥ and that the number of queries to this oracle is exactly m = 1. (The table TI[·]
referred to here starts appearing in Game Gm0 of Figure 9.)

We start with game Gm0 of Figure 9, claiming that
Advgg-mbdl

G,n,m (A) = Pr[Gm0(A)] . (18)
We now explain the game and justify Eq. (18). At line 10, operation sgn is performed modulo p,
and at line 11, the inverse and product in computing z are modulo p. The game picks y, x1, . . . , xn
in the same way as game Ggg-mbdl

G,n,m . At line 1, it also picks encoding function E in the same way
as game Ggg-mbdl

G,n,m , but does not use this function directly to do the encoding, instead calling VE,
which we call the vector-encoding function, on the indicated vector arguments. This procedure

20

VE(~t): // Gm1 , Gm2. Here ~t ∈ Zn+2
p .

13 If (TV[~t] 6= ⊥) then return TV[~t]
14 If (∃ ~t′ : (TV[~t′] 6= ⊥ and ~t− ~t′ ∈ span(~v))) then
15 C ← TV[~t′] ; TV[~t]← C ; TI[C]← ~t ; Return TV[~t]
16 C←$ G \GL
17 If (∃ ~t′ : (TV[~t′] 6= ⊥ and 〈~t, ~x〉 = 〈~t′, ~x〉)) then
18 bad← true ; C ← TV[~t′]
19 TV[~t]← C ; TI[C]← ~t ; GL← GL ∪ {C} ; Return TV[~t]

DLO(i,W): // Gm1, Gm2. Here i ∈ [n] and TI[W] 6= ⊥.
20 ~w ← VE−1(W) ; z ← (xi)−1 · 〈~w, ~x〉 ; ~v ← ~w − z · ~ei
21 Return z

Figure 10: Procedures for games Gm1,Gm2,Gm3 in the proof of Theorem 5.1, where Gm1 includes
the boxed code.

maintains tables TV : Zn+2
p → G ∪ {⊥} and TI :G → Zn+2

p ∪ {⊥} (the “I” stands for “inverse”)
that from the code can be seen to satisfy the following, where vector ~x is defined at line 3:

(1) If TV[~t] 6= ⊥ then TV[~t] = E(〈~t, ~x〉)
(2) If TI[C] 6= ⊥ then 〈TI[C], ~x〉 = E−1(C)

This ensures Eq. (18) as follows. From line 4 and the above we have g = TV[~en+1] = E(〈~en+1, ~x〉) =
E(1), and, similarly, we have Y = E(y) and Xi = E(xi) for i ∈ [1..n], meaning these quantities are
as in game Ggg-mbdl

G,n,m . Turning to Op, by linearity of the inner product and item (2) above, we have
〈~c, ~x〉 = 〈TI[A] sgn TI[B], ~x〉 = 〈TI[A], ~x〉 sgn 〈TI[B], ~x〉

= E−1(A) sgn E−1(B) ,
so by item (1) we have VE(~c) = E(E−1(A) sgn E−1(B)), as in game Ggg-mbdl

G,n,m . Finally, for DLO,
item (2) says that 〈~w, ~x〉 = E−1(W), again as in game Ggg-mbdl

G,n,m .

Games Gm1,Gm2 are formed by taking the indicated procedures of Figure 9 and adding those
of Figure 10, with the former game including the boxed code, and the latter not. Procedure VE
no longer invokes E, instead sampling it lazily. The vector ~v defined at line 20 satisfies 〈~v, ~x〉 =
〈~w − z · ~ei, ~x〉 = 〈~w, ~x〉 − z · 〈~ei, ~x〉 = 〈~w, ~x〉 − x−1

i · 〈~w, ~x〉 · xi = 0. As a result, at any time, any
vector ~u ∈ span(~v) satisfies 〈~u, ~x〉 = 0. Now we claim that

Pr[Gm1(A)] = Pr[Gm0(A)] . (19)

Let us justify this. If the “If” statement at line 14 is true, we have, by the above, 〈~t−~t′, ~x〉 = 0, or
〈~t, ~x〉 = 〈~t′, ~x〉, and so, as per line 8 of Figure 9, ought indeed to set TV[~t] = TV[~t′]. The inclusion
of the boxed code at line 18 further ensures consistency with line 8 of Figure 9. So VE is returning
the same things in games Gm1,Gm0. While DLO defines some new quantities, what it returns
does not change compared to game Gm0. This concludes the justification of Eq. (19).

Games Gm1,Gm2 are identical-until-bad as defined in [11]. Let B2 be the event that Gm2(A) sets bad.
Then by the Fundamental Lemma of Game Playing [11],

Pr[Gm1(A)] ≤ Pr[Gm2(A) and B2] + Pr[B2] , (20)

21

Init(): // Gm3–Gm5, Gmα,β .
1 p← |G| ; 1← VE(~0) ; g ← VE(~en+1) ; Y ← VE(~en+2)
2 For i = 1, . . . , n do Xi ← VE(~ei)
3 Return 1, g, Y,X1, . . . , Xn

VE(~t): // Gm3–Gm5, Gmα,β . Here ~t ∈ Zn+2
p .

4 If (TV[~t] 6= ⊥) then return TV[~t]
5 C←$ G \GL
6 If (∃ ~t′ : (TV[~t′] 6= ⊥ and ~t− ~t′ ∈ span(~v))) then C ← TV[~t′]
7 Else k ← k + 1 ; ~tk ← ~t ; GL← GL ∪ {C}
8 TV[~t]← C ; TI[C]← ~t ; Return TV[~t]

VE−1(C): // Gm3–Gm5, Gmα,β . Here TI[C] 6= ⊥.
9 Return TI[C]

Op(A,B, sgn): // Gm3–Gm5, Gmα,β . Here TI[A],TI[B] 6= ⊥ and sgn ∈ {+,−}
10 ~c← VE−1(A) sgn VE−1(B) ; C ← VE(~c) ; Return C

DLO(i,W): // Gm3 , Gm4. Here i ∈ [n] and TI[W] 6= ⊥.
11 ~w ← VE−1(W) ; w ← ~w[i]
12 If (~w − w · ~ei = ~0) then return w

13 z←$ Zp \ {w} ; y←$ Zp ; x1, . . . , xi−1, xi+1, . . . , xn←$ Z∗p
14 ~xi ← (x1, . . . , xi−1, 0, xi+1, . . . , xn, 1, y) ; xi ← (z − w)−1 · 〈~w, ~xi〉
15 If (〈~w, ~xi〉 = 0) then bad← true ; z ← w ; xi←$ Z∗p
16 ~v ← ~w − z · ~ei ; Return z

Fin(y′): // Gm3, Gm4.
17 ~x← (x1, . . . , xn, 1, y)
18 Return ((y = y′) or (∃ α, β : 1 ≤ α < β ≤ k and 〈~tα − ~tβ , ~x〉 = 0))

Figure 11: Procedures for games Gm3,Gm4 in the proof of Theorem 5.1. Some procedures, as
marked, will be used in later games.

where B2 denotes the complement of event B2. We claim that
Pr[Gm2(A) and B2] + Pr[B2] ≤ Pr[Gm3(A)] , (21)

where game Gm3 is in Figure 11. It includes the boxed code, which game Gm4 excludes. In these
games, VE returns the same thing as in game Gm2, but also indexes (keeps track of) vectors ~t that
might set bad in Gm2, so that it can refer to them in Fin. The achievement is that this procedure
no longer refers to ~x. Now we would like the same to be true for DLO. A natural approach would
be to have DLO return a random z←$ Zp. However, the true distribution of z is more complex,
and instead we will use Lemma 5.2. Line 11 sets w ∈ Zp to be the i-th coordinate of vector ~w.
Line 12 checks if ~w is 0 at all but its i-th coordinate, if so correctly returning w as the answer to
the oracle query. At lines 13,14, the choices of z and xi are made in accordance with one case of
Lemma 5.2, with y, and the xj for j 6= i, chosen correctly. Line 15 checks if it is the other case
that happened, and, if so, game Gm3 corrects the choices of z, xi according to the Lemma. The
Lemma thus implies that in game Gm3, the returned z is distributed as it is in game Gm2. Fin of
game Gm3 returns true if either y = y′, or game Gm2 would set bad, justifying Eq. (21).

22

DLO(i,W): // Gm5, Gmα,β . Here i ∈ [n] and TI[W] 6= ⊥.
19 ~w ← VE−1(W) ; w ← ~w[i]
20 If (~w − w · ~ei = ~0) then return w

21 z←$ Zp \ {w} ; ~v ← ~w − z · ~ei ; Return z

Fin(y′): // Gm5.
22 y←$ Zp ; Return (y = y′)

Fin(y′): // Gmα,β .
23 If (not (1 ≤ α < β ≤ k)) then return false
24 y←$ Zp ; x1, . . . , xi−1, xi+1, . . . , xn←$ Z∗p
25 ~xi ← (x1, . . . , xi−1, 0, xi+1, . . . , xn, 1, y) ; xi ← (z − w)−1 · 〈~w, ~xi〉
26 ~x← (x1, . . . , xn, 1, y)
27 Return (〈~tα − ~tβ , ~x〉 = 0)

Figure 12: Further procedures to define game Gm5 and games Gmα,β (1 ≤ α < β ≤ q) in the proof
of Theorem 5.1.

Games Gm3,Gm4 are identical-until-bad, so by the Fundamental Lemma of Game Playing [11],
Pr[Gm3(A)] ≤ Pr[Gm4(A)] + Pr[Gm4(A) sets bad] . (22)

We claim

Pr[Gm4(A) sets bad] ≤ 1
p− 1 . (23)

That is, the probability that 〈~w, ~xi〉 = 0 at line 15 is at most 1/(p−1). We now justify this. Line 12
tells us that, at line 15, there is some j ∈ [1..n + 2] \ {i} such that ~w[j] 6= 0. Consider two cases.
The first is that there is such a j satisfying j 6= n + 1. If j = n + 2, there is exactly one choice of
y ∈ Zp making 〈~w, ~xi〉 = 0, while if j ∈ [1..n] \ {i}, there is at most one choice of xj ∈ Z∗p making
〈~w, ~xi〉 = 0, so overall the probability that 〈~w, ~xi〉 = 0 is at most 1/(p− 1). The second case is that
~w[j] = 0 for all j 6= n + 1. But then the probability that 〈~w, ~xi〉 = 0 is zero. This completes the
justification of Eq. (23).
We now define a game Gm5, and also a game Gmα,β for each 1 ≤ α < β ≤ q, where q = QOp

A +n+3.
The DLO,Fin procedures of these games are shown in Figure 12, and the other procedures remain
as in Figure 11. Since the boxed code is absent in DLO of game Gm4, the only random choice it
needs to make is z, yielding the simplified DLO procedure of Figure 12. The other random choices
are delayed to Fin. The event resulting in game Gm4 returning true is broken up in the new games
so that, by the union bound,

Pr[Gm4(A)] ≤ Pr[Gm5(A)] +
∑

1≤α<β≤q
Pr[Gmα,β(A)] . (24)

Clearly

Pr[Gm5(A)] ≤ 1
p
. (25)

Now, fix any 1 ≤ α < β ≤ q. We assume wlog that k always equals q. In game Gmα,β, let
~d = ~tα − ~tβ, let a = (z − w)−1 and let ~u = a · ~d[i] · ~w + ~d. Let Z be the event that 〈~d, ~x〉 = 0, and
let S be the event that ~d ∈ span(~v). Then

Pr[Gmα,β(A)] = Pr[Z] = Pr[Z and S] + Pr[Z and S]

23

≤ Pr[Z |S] + Pr[S] . (26)
We will show that

Pr[Z |S] ≤ 1
p− 1 (27)

Pr[S] ≤ 1
p− 1 . (28)

We now justify Eq. (27). We have
〈~d, ~x〉 = xi · ~d[i] + 〈~d, ~xi〉 = a · 〈~w, ~xi〉 · ~d[i] + 〈~d, ~xi〉

= 〈a · ~d[i] · ~w + ~d, ~xi〉 = 〈~u, ~xi〉

Assume ~d 6∈ span(~v), meaning event S happens. Then we claim (we will justify this in a bit) that
there exists a j ∈ [1..n + 2] \ {i, n + 1} such that ~u[j] 6= 0. This means that the random choice
of either xj (if j ∈ [1..n] \ {i}) or y (if j = n + 2) has probability at most 1/(p − 1) of making
〈~u, ~xi〉 = 0. To justify the claim, suppose to the contrary that for all j ∈ [1..n + 2] \ {i, n + 1} we
have ~u[j] = 0. Since 〈~u, ~xi〉 = 0, it must be that ~u[n + 1] = 0 as well. Let b = −a · ~d[i], so that
~d[i] = −b · a−1 = −b · (z−w) = b · (w− z). For j ∈ [1..n+ 2] \ {i} we have a · ~d[i] · ~w[j] + ~d[j] = 0, or
~d[j] = −a · ~d[i] · ~w[j] = b · ~w[j]. Recalling that ~v = ~w−z ·~ei and w = ~w[i], we see that ~d = b ·~v, which
puts ~d in span(~v), contradicting our assumption that ~d 6∈ span(~v). This concludes the justification
of Eq. (27).
We turn to Eq. (28). Suppose ~d ∈ span(~v), meaning ~d = b · ~v = b · ~w − bz · ~ei for some b ∈ Z∗p.
By line 4 of Figure 11, ~tα 6= ~tβ, so ~d 6= ~0 so b 6= 0. So there is at most one z ∈ Zp such that
~d[i] = bw − bz, and our z chosen at random from Zp \ {w} has probability at most 1/(p − 1) of
being this one.
Putting the above together we have

Advgg-mbdl
G,n,m (A) ≤ 1

p− 1 + 1
p

+ q(q − 1)
2

2
p− 1

= 1 + q(q − 1)
p− 1 + 1

p
.

This concludes the proof.

References
[1] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures via the Fiat-

Shamir transform: Minimizing assumptions for security and forward-security. In L. R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433. Springer, Heidelberg, Apr. / May 2002. 3,
6, 10, 15

[2] M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys. In Y. Zheng, editor,
ASIACRYPT 2002, volume 2501 of LNCS, pages 415–432. Springer, Heidelberg, Dec. 2002. 3, 6

[3] A. Bagherzandi, J. H. Cheon, and S. Jarecki. Multisignatures secure under the discrete logarithm
assumption and a generalized forking lemma. In P. Ning, P. F. Syverson, and S. Jha, editors, ACM
CCS 2008, pages 449–458. ACM Press, Oct. 2008. 3

[4] J. Bartusek, F. Ma, and M. Zhandry. The distinction between fixed and random generators in group-
based assumptions. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part II, volume 11693
of LNCS, pages 801–830. Springer, Heidelberg, Aug. 2019. 10

24

[5] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion problems
and the security of Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–215, June 2003.
4, 7, 8

[6] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma.
In A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399.
ACM Press, Oct. / Nov. 2006. 3, 6, 16, 29

[7] M. Bellare and A. Palacio. GQ and Schnorr identification schemes: Proofs of security against imperson-
ation under active and concurrent attacks. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS,
pages 162–177. Springer, Heidelberg, Aug. 2002. 3, 4, 6, 11, 28

[8] M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge proto-
cols. In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 273–289. Springer, Heidelberg,
Aug. 2004. 6, 7

[9] M. Bellare, B. Poettering, and D. Stebila. From identification to signatures, tightly: A framework and
generic transforms. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part II, volume 10032
of LNCS, pages 435–464. Springer, Heidelberg, Dec. 2016. 11

[10] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM CCS 93, pages
62–73. ACM Press, Nov. 1993. 3, 15

[11] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426.
Springer, Heidelberg, May / June 2006. 8, 12, 21, 23

[12] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security signatures.
Journal of cryptographic engineering, 2(2):77–89, 2012. 3

[13] A. Boldyreva, C. Gentry, A. O’Neill, and D. H. Yum. Ordered multisignatures and identity-based
sequential aggregate signatures, with applications to secure routing. In P. Ning, S. De Capitani di
Vimercati, and P. F. Syverson, editors, ACM CCS 2007, pages 276–285. ACM Press, Oct. 2007. 18

[14] A. Boldyreva, C. Gentry, A. O’Neill, and D. H. Yum. Ordered multisignatures and identity-based
sequential aggregate signatures, with applications to secure routing. Cryptology ePrint Archive, Report
2007/438, 2007. http://eprint.iacr.org/2007/438. 18

[15] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS, pages 41–55. Springer, Heidelberg, Aug. 2004. 7

[16] D. Boneh and M. K. Franklin. Identity based encryption from the Weil pairing. SIAM Journal on
Computing, 32(3):586–615, 2003. 7

[17] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polyloga-
rithmic communication. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 402–414.
Springer, Heidelberg, May 1999. 7

[18] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003. 7

[19] I. Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks. In J. Feigen-
baum, editor, CRYPTO’91, volume 576 of LNCS, pages 445–456. Springer, Heidelberg, Aug. 1992. 6

[20] E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with linear complexity. In
R. Sion, editor, FC 2010, volume 6052 of LNCS, pages 143–159. Springer, Heidelberg, Jan. 2010. 4

[21] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976. 4

[22] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and I. Stepanovs. On the security
of two-round multi-signatures. In 2019 IEEE Symposium on Security and Privacy, pages 1084–1101.
IEEE Computer Society Press, May 2019. 4

25

http://eprint.iacr.org/2007/438

[23] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31:469–472, 1985. 4

[24] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of Cryptology, 1(2):77–94,
June 1988. 3, 10

[25] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, Aug. 1987. 3, 15, 29

[26] M. Fischlin and N. Fleischhacker. Limitations of the meta-reduction technique: The case of Schnorr
signatures. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 444–460. Springer, Heidelberg, May 2013. 4

[27] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In H. Shacham
and A. Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, Aug. 2018. 4, 6

[28] G. Fuchsbauer, A. Plouviez, and Y. Seurin. Blind schnorr signatures and signed ElGamal encryption in
the algebraic group model. In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part II, volume
12106 of LNCS, pages 63–95. Springer, Heidelberg, May 2020. 6

[29] S. D. Galbraith and P. Gaudry. Recent progress on the elliptic curve discrete logarithm problem.
Designs, Codes and Cryptography, 78(1):51–72, 2016. 9

[30] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988. 3, 15

[31] S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols. In H. Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 408–423. Springer, Heidelberg, Aug. 1998. 6

[32] J. Herranz and G. Sáez. Forking lemmas for ring signature schemes. In T. Johansson and S. Maitra,
editors, INDOCRYPT 2003, volume 2904 of LNCS, pages 266–279. Springer, Heidelberg, Dec. 2003. 3

[33] J. Y. Hwang, D. H. Lee, and M. Yung. Universal forgery of the identity-based sequential aggregate
signature scheme. In W. Li, W. Susilo, U. K. Tupakula, R. Safavi-Naini, and V. Varadharajan, editors,
ASIACCS 09, pages 157–160. ACM Press, Mar. 2009. 18

[34] IANIX. Things that use Ed25519. https://ianix.com/pub/ed25519-deployment.html. 3

[35] M. J. Jacobson, N. Koblitz, J. H. Silverman, A. Stein, and E. Teske. Analysis of the xedni calculus
attack. Designs, Codes and Cryptography, 20(1):41–64, 2000. 9

[36] E. Kiltz, D. Masny, and J. Pan. Optimal security proofs for signatures from identification schemes.
In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 33–61.
Springer, Heidelberg, Aug. 2016. 3, 6, 7, 30

[37] C. Komlo and I. Goldberg. Frost: Flexible round-optimized schnorr threshold signatures. Cryptology
ePrint Archive, Report 2020/852, 2020. https://eprint.iacr.org/2020/852. 3

[38] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple schnorr multi-signatures with applications
to bitcoin. Cryptology ePrint Archive, Report 2018/068, 2018. https://eprint.iacr.org/2018/068. 3

[39] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures: Extended abstract. In M. K.
Reiter and P. Samarati, editors, ACM CCS 2001, pages 245–254. ACM Press, Nov. 2001. 3

[40] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. Journal
of the ACM, 51(2):231–262, 2004. 7

[41] K. Ohta and T. Okamoto. On concrete security treatment of signatures derived from identification. In
H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 354–369. Springer, Heidelberg, Aug.
1998. 6

26

https://ianix.com/pub/ed25519-deployment.html
https://eprint.iacr.org/2020/852
https://eprint.iacr.org/2018/068

[42] T. Okamoto. Provably secure and practical identification schemes and corresponding signature schemes.
In E. F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer, Heidelberg, Aug.
1993. 6, 27

[43] P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be equivalent to discrete log. In
B. K. Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS, pages 1–20. Springer, Heidelberg, Dec.
2005. 4

[44] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of
Cryptology, 13(3):361–396, June 2000. 3, 6, 16

[45] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, Jan.
1991. 3, 11

[46] I. Semaev. Summation polynomials and the discrete logarithm problem on elliptic curves. Cryptology
ePrint Archive, Report 2004/031, 2004. http://eprint.iacr.org/2004/031. 9

[47] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor, EURO-
CRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997. 3, 4, 6, 14, 16,
18

[48] J. H. Silverman. The xedni calculus and the elliptic curve discrete logarithm problem. Designs, Codes
and Cryptography, 20(1):5–40, 2000. 9

[49] J. H. Silverman and J. Suzuki. Elliptic curve discrete logarithms and the index calculus. In K. Ohta
and D. Pei, editors, ASIACRYPT’98, volume 1514 of LNCS, pages 110–125. Springer, Heidelberg, Oct.
1998. 9

[50] D. R. Stinson and R. Strobl. Provably secure distributed Schnorr signatures and a (t, n) threshold
scheme for implicit certificates. In V. Varadharajan and Y. Mu, editors, ACISP 01, volume 2119 of
LNCS, pages 417–434. Springer, Heidelberg, July 2001. 3, 6

[51] A. Yun. Generic hardness of the multiple discrete logarithm problem. In E. Oswald and M. Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 817–836. Springer, Heidelberg, Apr.
2015. 18

A Okamoto Identification and Signatures from MBDL

In this section, we give a tight reduction of the IMP-PA security of the Okamoto identification
scheme to the 1-MBDL problem and derive a corresponding improvement for Okamoto signatures.
Okamoto identification scheme and prior results. Let G be a group of prime order p =
|G|, and g ∈ G∗ a generator of G. We recall the Okamoto identification scheme [42] ID = OkaID[G, g]
in Fig. 13. The public key has the form vk = (g2, X) ∈ G2 where g2 is a generator and X = gx1gx2

2 ,
where the secret key is sk = (g2, x1, x2) ∈ Z3

p. The commitment is R = gr1gr2
2 ∈ G, and (r1, r2) is

returned as the prover state by the commitment algorithm. Challenges are drawn from ID.Ch = Zp,
and the response z and decision b are computed as shown.

Given an IMP-PA adversary A against ID = OkaID[G, g], the classical proof of [42] builds a
DL-adversary B, as follows. On input a target point Y whose discrete-log it wants to compute,
B sets g2 = Y . It then itself picks x1, x2 and sets X = gx1gx2

2 , so that (x1, x2) is what’s called a
representation of X. Now B runs A on public key (g2, X). Knowing the secret key (g2, x1, x2), it
is easy for B to simulate the Tr oracle. When A makes its impersonation attempt, rewinding is
used, as usual, to obtain two accepting conversation transcripts with the same commitment R∗.
From these, B can compute another representation of X, namely some a1, a2 such that X = ga1ga2

2 .
The witness indistinguishability property of the protocol says that (a1, a2) 6= (x1, x2), except with

27

http://eprint.iacr.org/2004/031

Prover
Input: (g2, X), (g2, x1, x2)
r1, r2←$ Zp
R← gr1gr2

2

z1 ← (x1c+ r1) mod p
z2 ← (x2c+ r2) mod p

R -
c�

(z1, z2)-

Verifier
Input: (g2, X)

c←$ Zp

b← (gz1gz2
2 = RXc)

ID.Kg:

1 g2←$ G∗

2 x1, x2←$ Z|G| ; X ← gx1gx2
2

3 Return ((g2, X), (g2, x1, x2))

ID.Cmt((g2, X)):

4 r1, r2←$ Z|G| ; R← gr1gr2
2

5 Return (R, (r1, r2))

ID.Rsp((g2, x1, x2), c, (r1, r2)):

6 z1 ← (x1c+ r1) mod |G|
7 z2 ← (x2c+ r2) mod |G|
8 Return (z1, z2)

ID.Vf(X,R, c, (z1, z2)):

9 b← (gz1gz2
2 = XcR) ; Return b

DS.Kg:

1 g2←$ G∗

2 x1, x2←$ Z|G| ; X ← gx1gx2
2

3 Return ((g2, X), (g2, x1, x2))

DS.SignH((g2, x1, x2),m):

4 r1, r2←$ Z|G| ; R← gr1gr2
2

5 c← H(R,m)
6 z1 ← (x1c+ r1) mod |G|
7 z2 ← (x2c+ r2) mod |G|
8 Return (R, (z1, z2))

DS.VfH((g2, X),m, σ):

9 (R, (z1, z2))← σ

10 c← H(R,m)
11 Return (gz1gz2

2 = XcR)

Figure 13: Let G be a group of prime order p = |G| and let g ∈ G∗ be a generator of G. The
Okamoto ID scheme ID = OkaID[G, g] is shown pictorially at the top and algorithmically at the
bottom left. At the bottom right is the Okamoto signature scheme DS = OkaSig[G, g], using
H : G× {0, 1}∗ → Zp.

probability 1/p. Finally, from the two distinct representations of X, adversary B can compute
DLG,g(g2). Again the simplest analysis is via the Reset Lemma of [7], which says that

Advimp-pa
ID (A) ≤

√
Advdl

G,g(B) + 2
p
, (29)

the extra 1/p term compared to Equation (7) being due to the probability that the two representa-
tions are equal. The running time TB of B is roughly 2 TA plus simulation overhead O(QTr

A ·T
exp
G),

where T exp
G is the time for an exponentiation in G.

Our result. We show that the IMP-PA-security of the Okamoto identification scheme reduces
tightly to the 1-MBDL problem. As with Schnorr, the reduction does not use rewinding.

Theorem A.1 Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G. Let
ID = OkaID[G, g] be the Okamoto identification scheme. Let A be an adversary attacking the imp-pa
security of ID. Then we can construct an adversary B (shown explicitly in Figure 14) such that

Advimp-pa
ID (A) ≤ Advmbdl

G,g,1(B) + 1
p
. (30)

Additionally, TB is roughly TA plus simulation overhead O(QTr
A · T

exp
G).

28

Adversary BDLO:

1 (Y,X)←$ Init() ; w←$ Z∗p ; g2 ← gw

2 (z1, z2)←$ACh,Tr((g2, X))
3 Return z1 + wz2

Ch(R∗):

4 W ← R−1
∗ · Y ; c∗ ← DLO(1,W) ; Return c∗

Tr:

5 z1, z2←$ Zp ; c←$ Zp ; R← gz1gz2
2 ·X

−c ; Return (R, c, (z1, z2))

Figure 14: MBDL adverary B for Theorem A.1, based on IMP-PA adversary A.

Proof of of Theorem A.1: Our reduction from MBDL deviates from the prior one discussed
above. It does not set g2 to the target point Y , instead picking w and setting g2 = gw. It sets
X to a base under which it can take a discrete logarithm. When adversary A provides R∗ in its
impersonation attempt, adversary B picks c∗ so that Y = R∗X

c∗ . Then, from A, it gets (z1, z2)
satisfying gz1gz2

2 = R∗X
c∗ = Y . Using w, adversary B then finds DLG,g(Y). It simulates the Tr

oracle using the zero-knowledge simulator. Thus, while in the prior approach the reduction knows
the secret key but not DLG,g(g2), in ours the reduction does not know the secret key but knows
DLG,g(g2).

For the formal proof, we claim that the adversary B, shown in Fig. 14, satisfies Equation (30).
Since the analysis is similar to that in the proof of Theorem 4.1, we will be brief. The X provided
by B to A is a generator. In the scheme, X = gx1+wx2 fails to be generator iff x1 + wx2 = 0,
which happens with probability 1/p, accounting for this additive term in the bound. Adversary B
simulates the transcript oracle correctly by the usual zero-knowledge method. If A succeeds, we
have gz1gz2

2 = R∗X
c∗ . But gz1gz2

2 = gz1+wz2 and R∗X
c∗ = Y , so z1 + wz2 can be returned as the

discrete log of Y .

Okamoto signatures. The Okamoto signature scheme DS = OkaSig[G, g] is derived by applying
the Fiat-Shamir transform [25] to the Okamoto identification scheme. Its algorithms are shown at
the bottom right of Fig. 13. The set DS.HF consists of all functions h : G× {0, 1}∗ → Zp.

Combining Lemma 4.2 with Theorem A.1, we get the following reduction, of the UF security
of the Okamoto signature scheme to the 1-MBDL problem, that loses only a factor of the number
of hash-oracle queries of the adversary.

Theorem A.2 Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G.
Let DS = OkaSig[G, g] be the Okamoto signature scheme. Let A be an adversary attacking the uf
security of ID. Let β = (1 + QH

A + QSign
A)QSign

A + (1 + QH
A). Then we can construct an adversary B

such that

Advuf
DS(A) ≤ (1 + QH

A) ·Advmbdl
G,g,1(B) + β

p
. (31)

Additionally, TB is roughly TA plus simulation overhead O(QSign
A · T exp

G).

As before, the best prior result, obtained via the general Forking Lemma of [6], said that given an
adversary A attacking the UF security of DS, one can construct a discrete log adversary B such

29

that

Advuf
DS(A) ≤

√
(1 + QH

A) ·Advdl
G,g(B) + β

p
, (32)

where β and TB are as above. Roughly the bound in Eq. (31) is the square of the one in Eq. (32),
and thus (always) smaller.

B Ratio-based tightness

KMP [36] claims a tight reduction between passive impersonation security of Schnorr identification
and discrete log. Their results are claimed to be tight when evaluated under time-to-sucesss ratio.
We show here why their result does not give bounds that are as good as ours.

Let ID be the Schnoor identification scheme defined in Section 4. Let A be an adversary
against the IMP-PA security of ID with running time TA. For any given parameter N ≥ 1,
KMP [36][Lemma 3.5] construct a DL adversary DN such that√

Advdl
G,g(DN) ≥ 1−

[
1−

(
Advimp-pa

ID (A)− 1
p

)]N
, (33)

and TDN = 2N · TA. Notice that when N = 1, this is identical to Eq. (7), meaning there is no
improvement in that case. Next, KMP [36] pick a specific value of N that we call N∗. This value
is N∗ = (Advimp-pa

ID (A)− 1/p)−1. So the term on the right hand side of Eq. (33) becomes

1−
[
1−

(
Advimp-pa

ID (A)− 1
p

)]N∗
≈ 1− 1

e
≈ 0.63 , (34)

a constant close to 1. Let B∗ = DN∗ be the DL adversary for this parameter choice. Then,
neglecting 1/p as being essentially 0, one has

Advdl
G,g(B∗) ≥

(
1− 1

e

)2
≈ 0.4 (35)

TB∗ = 2N∗ · TA ≈
TA

Advimp-pa
ID (A)

. (36)

Dividing, they obtain the ratio tightness

Advimp-pa
ID (A)
TA

≤
Advdl

G,g(B∗)
TB∗

. (37)

“Tightness” is claimed because the time-to-success ratio is preserved. However, we will show that
one cannot use the above to instantiate parameters that as competitive as the ones guaranteed by
our bounds. This is because the running time TB∗ from Eq. (36) is in general much larger than TA
and the ratio tightness only holds when the running time of the DL adversary is increased in this
way to make its advantage a constant as per Eq. (35).

As before, let us the GGM bound for breaking DL, i.e. Advdl
G,g(B∗) ≤ T2

B∗/p. Then, from
Eq. (35) one has TB∗ ≈

√
0.4 · p, so

Advimp-pa
ID (A)
TA

≤ 0.4√
0.4 · p , (38)

which means that one would need a group of size

p ≈
(

TA
Advimp-pa

ID (A)

)2

. (39)

This is exactly the same requirement as dictated by the prior results, namely Equation (7) and

30

Equation (11). Hence, the guarantee by the results of KMP is the same as offered by prior results
in Fig. 1.

31

